

Intrinsic neural diversity quenches the dynamic volatility of neural networks

Axel Hutt^{1,*}, Scott Rich², Taufik A Valiante^{2,5,*}, and Jérémie Lefebvre^{2,3,4,*, **}

¹Université de Strasbourg, CNRS, Inria, ICube, MLMS, MIMESIS, F-67000 Strasbourg, France

²Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada

³Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada

⁴Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada

⁵Department of Electrical and Computer Engineering; Institute of Medical Science; Institute of Biomedical Engineering; University of Toronto, ;Division of Neurosurgery, Department of Surgery; CRANIA (Center for Advancing Neurotechnological Innovation to Application; Max Planck-University of Toronto Center for Neural Science and Technology, Toronto, ON, Canada

*These authors contributed equally to this study

**Corresponding Author: jeremie.lefebvre@uottawa.ca

November 3, 2022

1 Abstract

2 Heterogeneity is the norm in biology. The brain is no different: neuronal cell-types are myriad, reflected
3 through their cellular morphology, type, excitability, connectivity motifs and ion channel distributions.
4 While this biophysical diversity enriches neural systems' dynamical repertoire, it remains challenging
5 to reconcile with the robustness and persistence of brain function over time. To better understand
6 the relationship between heterogeneity and resilience, we analyzed both analytically and numerically a
7 non-linear sparse neural network with balanced excitatory and inhibitory connections evolving over long
8 time scales. We examined how neural diversity expressed as excitability heterogeneity in this network
9 influences its dynamic volatility (i.e., its susceptibility to critical transitions). We exposed this network to
10 slowly-varying modulatory fluctuations, continuously interrogating its stability and resilience. Our results
11 show that excitability heterogeneity implements a homeostatic control mechanism tuning network stability
12 in a context-dependent way. Such diversity was also found to enhance network resilience, quenching
13 the volatility of its dynamics, effectively making the system independent of changes in many control
14 parameters, such as population size, connection probability, strength and variability of synaptic weights as
15 well as modulatory drive. Taken together, these results highlight the fundamental role played by cell-type
16 heterogeneity in the robustness of brain function in the face of change.

17 Significance Statement

18 Contemporary research has identified widespread cell-to-cell intrinsic diversity in the brain, manifest through
19 variations in biophysical features such as neuronal excitability. A natural question that arises from this
20 phenomenon is what functional role, if any, this heterogeneity might serve. Combining computational and
21 mathematical techniques, this interdisciplinary research shows that intrinsic cell-to-cell diversity, far from
22 mere developmental noise, represents a homeostatic control mechanism, promoting the resilience of neuronal
23 circuits. These results highlight the importance of diversity in the robustness and persistence of brain function
24 over time and in the face of change.

25 1 INTRODUCTION

26 Neural systems exhibit surprisingly reliable behavior across a lifespan. Despite high phenotypic variability [1–4],
27 learning related plasticity changes [5], and constant alterations in neuromodulatory tone [6–11] and circuit
28 topology [7, 12], neural dynamics remain qualitatively invariant in healthy brains over extended time scales.
29 This is a signature of the brain's manifest resilience, where its dynamics persist despite changes in intrinsic
30 and/or extrinsic control parameters, preserving associated function [13–17]. In contrast, the failure to regulate

31 such perturbations may predispose neural systems to dynamic volatility: qualitatively distinct dynamics
32 following changes in stability, resulting from critical transitions [18]. Such volatile dynamics in neural systems
33 often arise from disease states: for example, changes associated with epilepsy [19], stimuli [20], or modulatory
34 fluctuations associated with circadian and/or multidien rhythms [21] may cause these systems to slip towards
35 critical transitions, such as recurrent seizures [22–24].

36 The resilience of neural circuits has been thoroughly studied through pioneering experiments in the crab
37 and lobster stomatogastric ganglia (STG) network [1, 25]. These experiments revealed highly stable, robust
38 and invariant rhythmic activity despite pervasive phenotype heterogeneity, even when exposed to severe
39 environmental perturbations [1]. These discoveries in neuroscience echo a long history, primarily in the field
40 of macroecology, of experimental and theoretical studies examining the relationship between biodiversity,
41 stability, and the resilience of ecosystems and food webs over time (see [14, 16, 26–32] and references therein),
42 which typify the well known ‘stability-diversity’ debate [14, 16, 30, 33]. In this setting, resilience is a system’s
43 propensity for invariance and ability to retain its (in)stability in response to changing control parameters.
44 In contrast, volatile systems are associated with changes in stability and critical transitions, also called
45 bifurcations [13, 15, 18, 30]. A confluence of theoretical studies in macroecology have explored this question and
46 shown (see [33] and references therein) that diversity often renders a system volatile. Combined graph-theoretic
47 and spectral approaches have shown that complex networks tend to lose stability when population sizes
48 increase [14, 32, 34], coupling weights are too strong and/or diverse [14, 26–28, 31, 35], connection probability
49 is too dense [14, 31, 34–36], or when connectivity motifs become too heterogeneous [37].

50 These questions have been examined by neuroscientists as well: numerous experimental [1, 4, 25, 38–43]
51 and theoretical [43–50] studies have explored the influence of cellular heterogeneity, seemingly the norm in
52 the brain [51–56], on neural dynamics and communication. Furthermore in the context of disease states,
53 excitability heterogeneity can stabilize neural dynamics away from pathological brain states [43]. Collectively,
54 these studies have shown that cell-to-cell diversity stabilizes “healthy” dynamics to optimize responses,
55 learning, information flow and coding capacity by tuning neural networks towards criticality [57], a regime
56 that balances quiescence and excitability while residing between stability and instability. Despite these
57 advances, linking single neuron attributes with emergent physiological activity that undergirds the persistence
58 of brain function remains inaccessible by current experimental techniques.

59 Inspired by decades of theoretical work in macroecology, we extended spectral theory of random networks
60 [34, 58, 59] and applied it to neuroscience to study the impact of phenotype diversity on the brain’s resilience
61 over extended time scales. We considered a generic large-scale non-linear neural network with sparse balanced
62 excitatory and inhibitory connections, over time scales spanning minutes, hours and/or days to examine
63 the persistence of its dynamics. We exposed this network to a slowly fluctuating modulatory input, a

64 control parameter that is continuously interrogating the system's stability. Over such time scales, slow
65 modulation influences neural activity in a manner mimicking fluctuations during the resting state resulting
66 from modulatory [6–11], environmental [1, 25, 60], and/or stimuli-induced perturbations, for instance. To
67 quantitatively determine a system's resilience or volatility, we leveraged spectral theory for large random
68 systems [34, 58, 59], commonly used in macroecology to examine the stability of complex natural systems, such
69 as food webs [14, 16, 26–32]. Through this framework, we analyzed the statistical properties of eigenvalues
70 resulting from changes in network size, synaptic weights, connectivity motifs, modulatory drive, and cell-to-cell
71 intrinsic diversity amongst neurons. In so doing, we looked beyond the stability of the system to how this
72 stability responds to intrinsic and/or extrinsic changes, in order to understand how excitability heterogeneity
73 predisposes balanced neural systems to stability transitions.

74 We begin these explorations by showing that excitability heterogeneity, one of many types of intrinsic
75 phenotypic diversity (see Discussion), renders networks less prone to sudden shifts in stability. Excitability
76 heterogeneity refers to cell-to-cell variability in firing rate thresholds (see Methods). We specifically focused
77 on excitability heterogeneity, given that neuronal excitability is a primary mechanism targeted by intrinsic
78 plasticity mechanisms in learning [61], and which is altered in pathological states like epilepsy [43] and
79 neuropsychiatric conditions [62]. We leveraged spectral theory for large random systems to reveal that
80 excitability heterogeneity implements a generic control mechanism promoting: 1) homeostasis, by tuning the
81 distribution of eigenvalues complex plane in a context-dependent way; and 2) resilience, by anchoring this
82 eigenvalue distribution and gradually making it less dependent on modulatory influences. We explored how
83 excitability heterogeneity can influence system resilience to "insults" like increases in network size, connection
84 probability, strength and variability of synaptic weights, and modulatory fluctuations which promote stability
85 transitions. We found that intrinsic excitability heterogeneity rendered the network more resilient to these
86 insults, a generic feature that was further preserved across a wide range of network topologies. These findings
87 are particularly relevant to learning where synaptic plasticity, unless stabilized by homeostatic mechanisms,
88 would lead to runaway (i.e., unstable) activity [5, 63, 64]. Taken together, these results provide new vistas on
89 the role of a fundamental organizing principle of the brain - neural diversity [51–53] - in brain resilience.

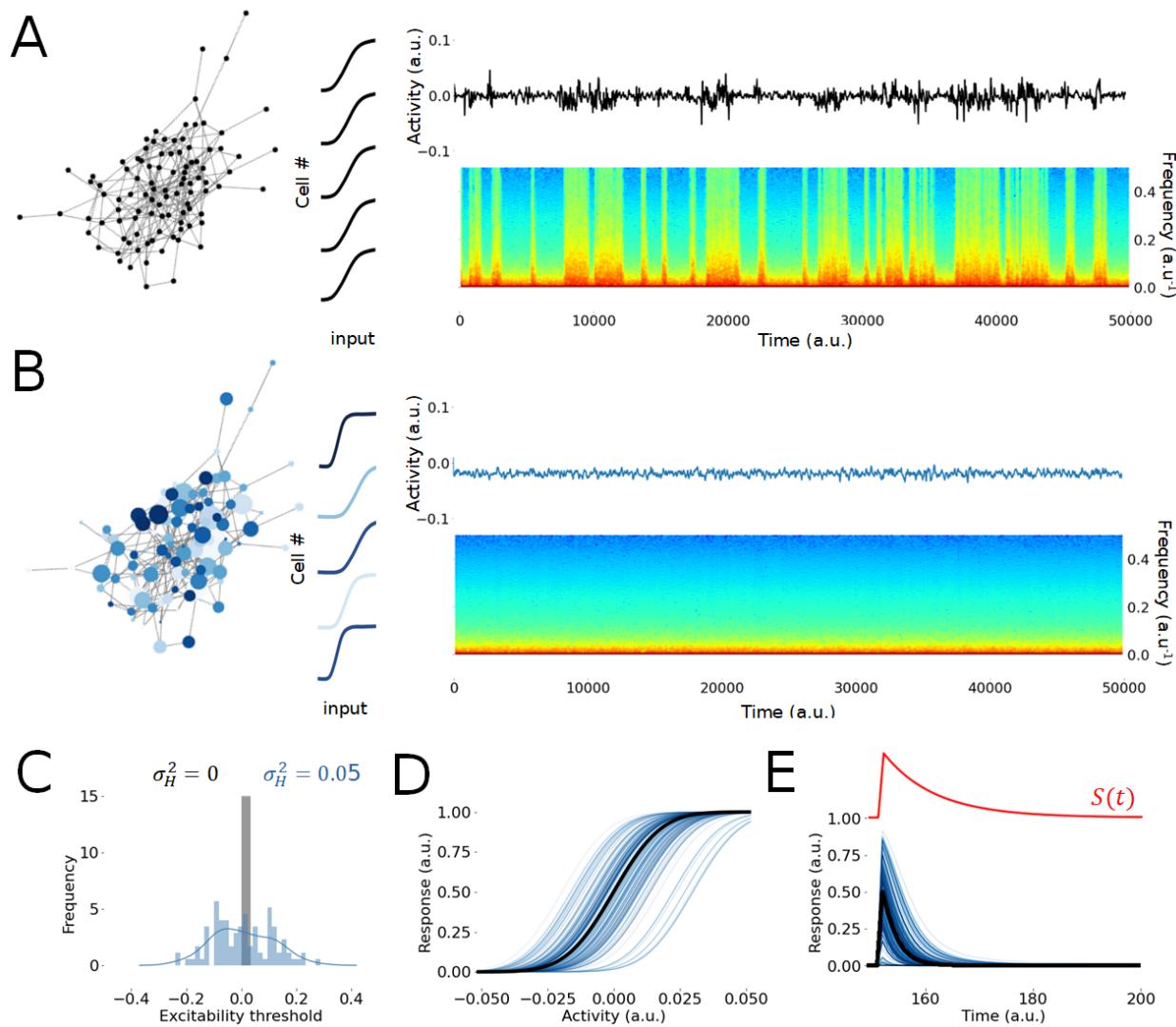


Figure 1. Intrinsic neural diversity promotes the resilience of balanced networks **A.** Homogeneous networks are composed of neurons with the same biophysical properties, yielding identical excitability profiles (left). Mean network activity (see MATERIALS AND METHODS) displays recurring sudden shifts in stability (i.e. bifurcations) characterized by transitions between states of low- and high-frequency activity. **B** Intrinsic excitability heterogeneity results in variability in the excitability profile of neurons (left) while suppressing shifts in stability. Low-frequency activity persists. **C.** The distribution of excitability thresholds in homogeneous networks ($\sigma_H^2 = 0$; grey histogram) displays zero variance, while intrinsic diversity in heterogeneous networks increases excitability threshold variability ($\sigma_H^2 > 0$; blue histogram). Thresholds were sampled from a normal distribution of mean zero and variance $\sigma_H^2 > 0$ (see main text). **D** Such heterogeneity is reflected in the firing rate response functions which encapsulates the excitability profile of each neuron. In the homogeneous case (black lines; indistinguishable from each other), response functions are identical, but differ in presence of heterogeneity (blue lines). **E** Homogeneous neurons exhibit both the same baseline activity and response to perturbations (black lines; indistinguishable from each other). In contrast, heterogeneous networks exhibiting diversity in excitability yield diversified baseline activities and responses to perturbations (blue lines). The perturbation applied (i.e. $S(t)$) is plotted in red (top). The input applied is a filtered step function i.e. $\dot{S}(t) = -S(t) + I(t)$ with $I(t) = 0.05$ at $t = 150$ and $I(t) = 0$ otherwise. Other parameters are given by $d = -1$, $\beta = 15$ and $\sigma_H^2 = 0.05$.

90 2 RESULTS

91 Neural systems display activity that remains qualitatively invariant over extended time scales highlighting
92 their resilience in the face of changes in connectivity, development and ageing, pathological insults, and
93 exposure to perturbations such as stimuli and/or modulatory influences [6–11]. To better understand the
94 mechanisms underlying such resilience and how it is influenced by excitability heterogeneity, we developed a
95 mathematical framework in which long term stability can be analytically quantified (see MATERIALS AND
96 METHODS). We built and analyzed a large-scale, balanced and sparse network with excitatory and inhibitory
97 connections (see Fig. 1) whose dynamics extend over time scales spanning minutes, hours and/or days. This
98 model is both flexible and general, encompassing a wide range of population-based models involving excitatory
99 and inhibitory interactions. It relates network size, the mean activity of neurons, their mutual synaptic
100 connectivity, their individual level of excitability, and the influence of slowly varying modulatory inputs. We
101 required that neurons were exposed to balanced synaptic connectivity such as seen experimentally [65, 66],
102 in which the net sum of excitatory and inhibitory synaptic weights is zero. We further selected connection
103 probabilities reflecting those observed experimentally [67].

104 Within this framework, we can tune the intrinsic excitability of each individual neuron, resulting in
105 increasingly heterogeneous networks; without such variability, the network remain homogeneous. It is
106 well-known that balanced networks are prone to volatility, i.e., susceptible to stability transitions [68, 69].
107 To confirm this, neurons in the network were collectively exposed to a random, slowly varying modulatory
108 input, mimicking excitability changes in neural activity arising from endogenous and/or exogenous control
109 parameter changes (i.e., neuromodulation, temperature, etc.) [6–11]. Such a slowly varying modulatory input
110 continuously interrogates network stability and therefore is an ideal tool to expose the system’s resilience.
111 As expected from this context, the homogeneous network (Fig. 1A) was predisposed to volatility through
112 recurring changes in stability. Frequent sharp transitions between states of low- and high-frequency dynamics
113 could be observed in the network’s mean activity (see MATERIALS AND METHODS), and confirmed using
114 power spectral analysis. Such transitions index states of instability, characterized by elevated high-frequency
115 activity, and are reminiscent of dynamics seen in electrophysiological recordings during seizures [70].

116 However, heterogeneous networks did not exhibit such transitions in response to an identical modulatory
117 input (Fig. 1B). Instead, intrinsic excitability variability was found to suppress these transitions, and low-
118 frequency activity persisted throughout. Intrinsic variability amongst neurons was implemented by varying the
119 effective firing rate response functions, reflecting diverse degrees of cellular excitability. We randomized firing
120 rate response thresholds in which excitability is sampled from a normal distribution of mean 0 and variance
121 σ_H^2 (Fig. 1C; see MATERIALS AND METHODS). This way of characterizing heterogeneity is well aligned

122 with experimental evidence that excitability is a key target for intrinsic plasticity mechanism [3, 43, 61, 62, 71],
 123 and echoes numerous previous studies on heterogeneous networks [43, 47, 49, 50, 72]. This heterogeneity
 124 leads to differing response functions for the individual neurons (Fig. 1D) as well as variable responses to
 125 perturbations like those occurring due to fluctuations in modulatory input (Fig. 1 E).

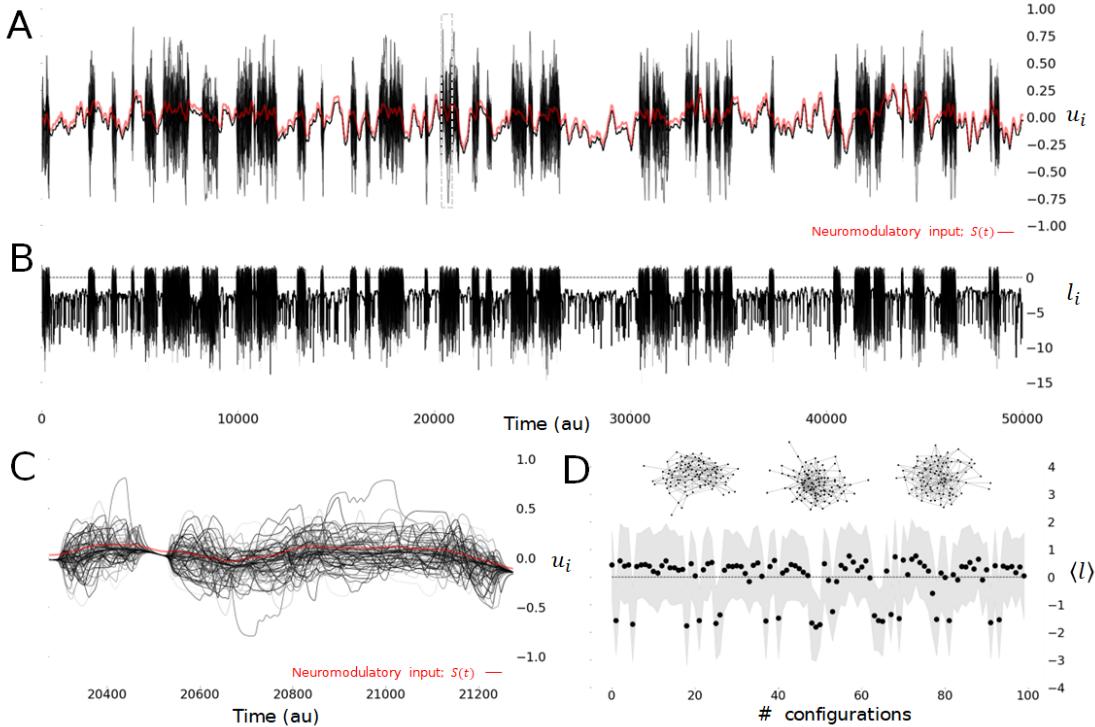


Figure 2. Dynamic volatility of homogeneous networks when exposed to modulatory input over long time scales. **A** Dynamics of a homogeneous network where all neurons possess the same level of excitability. Averaged neuron activity over an extended time scale. A slowly varying modulatory input ($S(t)$, red line) continuously interrogates the network stability, leading the network through alternating epochs of stability and instability which typifies high volatility. Individual nodes (u_i ; black curves) display transient unstable dynamics, alternating with periods of stability. **B** Lyapunov exponents (l_i) – computed numerically based on time series of each neuron across time – delineate periods of stability and instability. The network is unstable whenever Lyapunov exponents are positive, and stable otherwise. This behavior exemplifies volatile (frequently changed) stability. **C** For some epochs, the network is stable and exhibits dynamics smoothly driven by the modulatory input. Such dynamics corresponds to regimes in which neural activity relaxes back to the equilibrium after a perturbation. These stable periods alternate with epochs of instability in which the activity of the neurons diverge: Such dynamics are characterized by diverging, synchronous and/or chaotic neural activity, and do not relax back to the equilibrium after a perturbation. Fast noise-like fluctuations commonly observed in neural signals are here absent, being averaged out at these slow time scales. **D** Network mean Lyapunov exponent ($\langle l \rangle$) over independent network configurations, realized using identical parameters but different net connectivity. Fluctuations overlapping the horizontal line ($\langle l \rangle = 0$; black dashed line) indicate volatility. Gray shading indicates \pm SD computed over independent trials of duration $T = 3000$ a.u.. Other parameters are $N = 100$, $\rho = 0.05$, $f = 0.8$, $\mu_e = 0.08$, $\beta = 50$, $d = -1$, $\mu_i = \frac{f}{f-1}\mu_e$, $\sigma_{W,e}^2 = \sigma_{W,i}^2 = 0.005$, $B = -0.05$.

126 2.1 Resilience to modulation across time scales

127 We further characterized the dynamic volatility of our homogeneous network in Fig. 2A. For the parameters
128 chosen, neuronal activity was characterized by alternating epochs of stability and instability, as portrayed in
129 Fig. 1A. This volatility was further confirmed by numerically computing Lyapunov exponents, which we
130 found repeatedly changed sign (Fig 2B), as expected from the theory of nonlinear balanced networks [68, 69].
131 Slowly driven by the modulatory input, the network dynamics displayed seemingly stable behavior over short
132 time scales. The activity of individual neurons appears smoothly driven by the modulatory input. Such stable
133 dynamics indexes states in which neural activity is stable, and relaxes back to equilibrium after perturbations;
134 at these temporal scales, this corresponds to asynchronous neural firing. We emphasize that fast noise-like
135 fluctuations, commonly present and expected in neural recordings, are here absent, as a consequence of the
136 slow time scale considered. In contrast, other periods were characterized by unstable neural activity (Fig
137 2C) in which the activity of individual neurons diverge away from equilibrium. Such periods of instability
138 result from modulation-driven critical transitions [18] in which neural activity departs from stability, and may
139 diverge, become synchronous and/or chaotic. To confirm the robustness of these results, we computed the
140 mean Lyapunov exponent across independent realizations of the network connectivity and independent trials,
141 in which the system possesses the same parameters (i.e. connection probability, synaptic weights, proportions
142 of excitatory and inhibitory couplings) but exhibit different configurations and exposed to variable modulatory
143 input. As shown in Fig. 2D, persistent positive mean Lyapunov exponent with large variance could be
144 observed, confirming volatility. Collectively, these observations show that slowly fluctuating modulatory input
145 may expose the volatility of homogeneous networks by revealing sudden stability transitions and dynamical
146 regimes that are qualitatively distinct. This exemplifies non-resilient behavior.

147 2.2 Dynamic volatility of homogeneous networks

148 To better understand the dynamics observed in Fig 2 and the underlying mechanisms hindering the resilience
149 of homogeneous networks (i.e., where neurons possess the same level of excitability), we harnessed spectral
150 theory for large-scale random systems [59, 73]. By construction, our network model is subject to the circular
151 law of random matrix theory [58, 73] in which the complex eigenvalues are constrained with high probability
152 in a disk in the complex plane, with a spectral radius Γ centered around the local relaxation gain d (see
153 MATERIALS AND METHODS). Changes in the spectral radius Γ result either in the clustering or dispersion
154 of eigenvalues around the center of the spectral disk (i.e., d). As such, whenever the spectral radius Γ becomes
155 larger (resp. smaller) than $|d|$, the network is said to become unstable (resp. stable) with high probability:
156 eigenvalues cross the imaginary axis and exhibit positive (resp. negative) real parts [34, 36, 58, 74–76]. If the

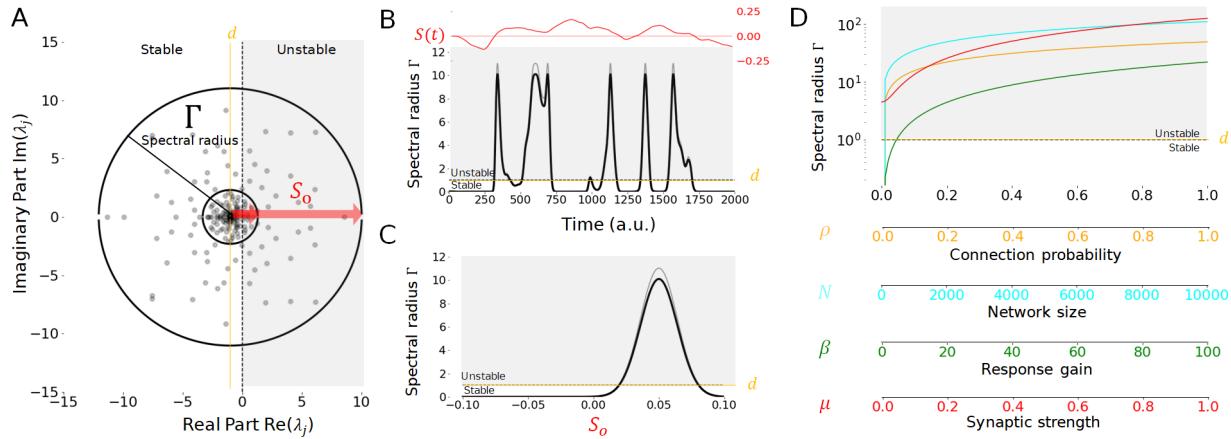


Figure 3. Spectral analysis of homogeneous networks exposed to modulatory input. Modulatory inputs influence the statistical properties and distributions of eigenvalues for homogeneous networks, which may be quantified by the spectral radius Γ . **A.** The network eigenvalues (λ_j , computed for one instance of the network connectivity; gray dots) are complex and distributed in the complex plane within a disk (black circle), centered around the linear relaxation gain d (yellow vertical line) and delineated by a circle of radius Γ . Whenever Γ matches or exceeds the stability threshold (vertical black dashed line located at 0), the system is considered unstable (gray shaded area) with high probability. The slowly fluctuating modulatory input $S(t) \approx S_o$ influences the system's stability by expanding or contracting the spectral radius, and hence the spectral disk containing eigenvalues. As the modulatory input amplitude $|S_o|$ increases (horizontal red arrows) the spectral disk and radius increases, resulting in instability. Here, three examples are plotted for $S_o = 0$ (small black circle), $S_o = 0.025$ (medium black circle) and $S_o = 0.05$ (large black circle). **B.** When $S(t)$ fluctuates slowly in time (top red line), the spectral radius Γ expands and contracts above or below the stability threshold ($\Gamma = d = 1$; orange horizontal line) leading to alternating epochs of stability and instability (gray shaded area) as exemplified in Figure 2. Aside from changes in the amplitude S_o , other parameters remained fixed. **C.** Spectral radius Γ as a function of S_o . At baseline (i.e. $S_o = 0$), the spectral radius is small and hence the network is stable. As $|S_o|$ increases, the spectral radius increases, exposing the system to stability transitions as eigenvalues cross the imaginary axis. As the modulatory input increases further, the spectral radius starts to decrease as the neurons reach saturation. The threshold of stability is plotted for $\Gamma = |d| = 1$ (see MATERIALS AND METHODS; orange horizontal line), alongside both numerically (grey) and theoretically (black) computed spectral radius Γ . Instability region is shaded in gray. **D.** Changes in connection probability (ρ ; orange line), network size (N ; cyan line), firing rate response gain (β ; green line) and mean synaptic strength (μ ; red line) are all collectively destabilizing and increase monotonically the spectral radius Γ . In this panel, $S_o = |B|$. Each parameter was varied independently within the range specified, while other parameters were set to their default value i.e. $N = 100$, $\rho = 0.05$, $d = -1$, $\mu_e = \mu = 0.08$, $\beta = 50$, $f = 0.8$, $\mu_i = f\mu/(f - 1)$, $\sigma_{W,e}^2 = \sigma_{W,i}^2 = 0.005$, $B = -0.05$.

157 spectral radius remains commensurate with $|d|$, then the network is considered metastable and in the vicinity
 158 of a critical point. This framework has been used extensively in macroecology to examine the stability of
 159 complex natural systems, such as food webs [14, 16, 26–32].

160 While the net size of the spectral radius determines the system's stability, how this spectral radius *changes*
 161 with respect to a control parameter (e.g., modulatory input amplitude S_o) reflects the system's resilience
 162 or volatility. That is, changes in spectral radius illustrate the system's susceptibility to stability transitions
 163 due to changes in a control parameter. We thus subjected the homogeneous network to a thorough spectral
 164 analysis (cf. section 4.3). By virtue of having identical excitability, individual neurons' steady states were
 165 found to be identical across the network and entirely dependent on the modulatory input amplitude (i.e.
 166 $u_j^o = B + S_o$), as expected. This is fully consistent with the dynamics observed in Fig. 2. Over short time

167 scales, the modulatory input $S(t) \approx S_o$ can be considered constant: its influence on the spectral radius Γ
168 may thus be quantified. Indeed, as can be seen in Fig. 3A both numerically and analytically, the spectral
169 radius was found to be highly sensitive to modulatory input: changes in S_o resulted in high amplitude clustering
170 and/or dispersion of the eigenvalues around the relaxation gain, causing frequent transitions between stability
171 and instability. The spectral radius Γ was found to increase with the modulatory input amplitude (S_o),
172 indicating that such fluctuations generally lead to instability.

173 We confirmed this volatility in Fig. 3B, alongside the alignment between our numerical and analytical
174 calculations. Time-dependent changes in the amplitude of the modulatory input (such as those exemplified
175 in Fig 2) significantly contract and/or expand spectral radius Γ , whose value intermittently crosses the
176 stability threshold, leading to an alternation between stability and instability. As S_o fluctuates, the network
177 undergoes epochs of instability, alternating with periods where neural activity is either suppressed (S_o strongly
178 inhibiting) and/or saturated (S_o strongly exciting). We note that fast changes in $S(t)$ might cause the network
179 to cross the unstable regime briefly; instability is then difficult to observe since the system does not evolve
180 sufficiently fast to exhibit unstable observable dynamics. Results plotted in Fig. 3C show a high dependence
181 of the spectral radius on modulatory input amplitude (S_o). Stability (i.e., relaxing neural activity, small Γ)
182 characterizes inhibitory and/or low amplitude modulatory input, while higher amplitudes lead to instability
183 (i.e., divergent, chaotic and/or synchronous neural activity, large Γ) and eventually saturation (i.e., neural
184 activity plateaus, small Γ).

185 What must be concluded from these observations is that the spectral radius size is a context- and
186 modulation-dependent metric for stability. Indeed, as neural systems can reside in both stable (relaxation)
187 and/or unstable (oscillations, synchrony, chaos) functionally meaningful dynamic regimes, the spectral radius
188 evaluated at a given moment in time conveys little information about the network dynamic volatility and
189 resilience. It is instead how it *changes* that reflects resilience or volatility. As shown in Fig. 3D, our
190 analysis also revealed that the spectral radius Γ - and hence the dispersion of eigenvalues in the complex
191 plane - increases with network size (N), connection probability (ρ), firing rate response gain (β) as well
192 as net synaptic strength (μ); individually or collectively, all these network features diminish the system's
193 resilience. This is in line with previous results [28,34] notably on balanced networks [68,69], highlighting that
194 homogeneous networks are generically prone to instability. Taken together, our analysis indicates that, in
195 sparse balanced and homogeneous networks, the spectral radius' high sensitivity to modulatory input and
196 other control parameters underlies the system's changing stability, and thus its volatility.

197 2.3 Intrinsic excitability heterogeneity tunes stability and resilience

198 Numerous previous studies [45, 47, 57, 72] have shown that heterogeneous neural systems adapt and converge
199 towards a regime of metastability to optimize responses and coding properties. Such metastability manifests
200 itself through critical-like neural activity [77–79] and/or dynamics residing in the vicinity of a state transition
201 [80]. From the perspective of the aforementioned circular law, such dynamical properties emerge whenever
202 these networks are brought towards and operate in dynamical regimes resulting from a spectral disk of
203 intermediate size, neither too small (i.e., strong stability leading to quiescence) nor too large (i.e., strong
204 instability leading to divergence, chaos and/or synchrony).

205 Our previous findings [43] suggest that excitability heterogeneity should improve network resilience, as
206 does the result presented in Fig. 1B. To further explore this we first repeated the numerical experiment
207 in Fig. 2 in which network response to slow-varying modulatory input is examined over long time scales,
208 but now in presence of excitability heterogeneity (i.e., $\sigma_{\mathbf{H}}^2 > 0$). We exposed the network to the same
209 connectivity statistics and modulatory input as before, while examining the difference in its behavior. In
210 contrast to the homogeneous case, the long term dynamics of the network were found to be resilient: robust,
211 invariant stability replaced the intermittent behavior seen in the homogeneous case. As can be seen for the
212 simulations in Fig. 4A, no transitions between stability and/or instability occurred, and neuronal responses
213 were qualitatively similar, smoothly driven by modulatory input amplitude. Neural activity remained in a
214 regime in which perturbations relax back to equilibrium. As a direct consequence of heterogeneity, degeneracy
215 in the neurons' equilibria is broken: neuron fixed points were now distributed with a mean $\mu_{\mathbf{u}^*} = B + S_0$
216 and variance $\sigma_{\mathbf{u}^*}^2$ (Fig. 4C; see MATERIALS AND METHODS). Lyapunov exponents remained bounded
217 below zero throughout, as can be seen in Fig. 4B. This behavior was also found to persist over independent
218 realizations of the network connectivity (Fig. 4D). Take together, these confirm persistent stability and
219 suggest enhanced resilience in presence of excitability heterogeneity.

220 To better understand the mechanism behind these dynamics, we adapted the spectral theory for large-scale
221 random systems [59, 73] to expose the influence of excitability heterogeneity on the distribution of eigenvalues.
222 We specifically explored the susceptibility of the spectral radius Γ - and hence the dispersion of eigenvalues in
223 the complex plane - to modulation across various degrees of heterogeneity ($\sigma_{\mathbf{H}}^2 > 0$) (see MATERIALS AND
224 METHODS). Our analysis revealed two main roles played by diversity on network dynamics: a) homeostatic
225 control on network stability; and b) the promotion of its resilience.

226 Indeed, we found that excitability heterogeneity is a homeostatic mechanism exerting bidirectional and
227 context-dependent control on network stability: enriching the dynamics whenever they are too poor, or
228 conversely, stabilizing network activity whenever it is too unstable. Indeed, as shown in Fig. 5A, heterogeneity

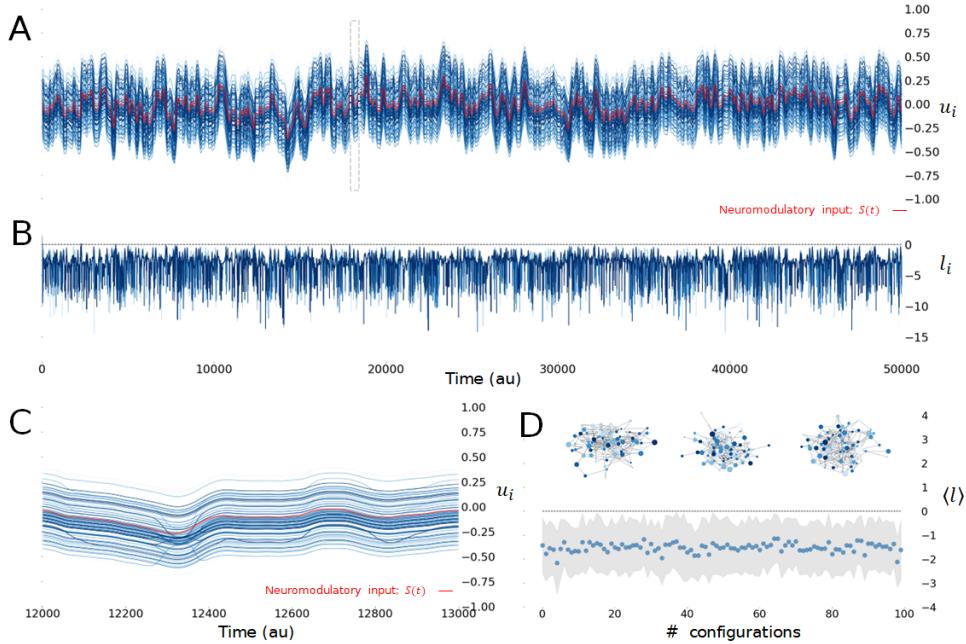


Figure 4. Heterogeneity quenches volatility and promotes resilience to modulatory drive over long time scales. **A.** Long time scale dynamics of an heterogeneous network ($\sigma_H^2 = 10$) exposed to the same slowly varying drive ($S(t)$; red line) as in Fig. 2. Individual neuron activity (u_i ; blue shaded lines) are now distributed around a mean activity $\mu_{u^o} = B + S_o$ and variance $\sigma_{u^o}^2$. The network stability is preserved throughout: neuronal activity sits in a regime where it relaxes back to equilibrium under perturbations, and supervene to modulatory input. **B.** Lyapunov exponents (l_i) – computed numerically based on time series of each neuron across time. Compared to the homogeneous case, stability persists as the Lyapunov exponents remain negative throughout. **C.** For all epochs, the network is stable and exhibits dynamics smoothly driven by the modulatory input. **D.** Network mean Lyapunov exponent $\langle l \rangle$ over independent network configurations, realized using identical parameters but different net connectivity. Fluctuations below the horizontal line ($\langle l \rangle = 0$; black dashed line) indicate resilient dynamics, in which no stability transition occurs. Gray shading indicates \pm SD computed over independent trials of duration $T = 3000$ a.u..Parameters are $N = 100$, $\rho = 0.05$, $\beta = 50$, $d = -1$, $f = 0.8$, $\mu_e = \mu = 0.08$ $\sigma_H^2 = 10$, $\mu_i = f\mu/(f - 1)$, $\sigma_{W,e}^2 = \sigma_{W,i}^2 = 0.005$, and $B = -0.05$.

229 increased the spectral radius (Γ) for small values modulatory input amplitudes (S_o). For such low amplitudes
 230 of modulation, lack of heterogeneity yields highly stable neural activity that invariably relaxes back to
 231 equilibrium whenever perturbed: the spectral radius is infinitesimal and eigenvalues are clustered around
 232 the relaxation gain d . Introducing excitability heterogeneity expanded the spectral disk, enriching network
 233 dynamics towards instability. Surprisingly, higher modulatory input amplitudes, for which the system is
 234 highly unstable, led to the opposite. Indeed, heterogeneity was found to here instead contract the spectral
 235 disk and stabilize the dynamics (Fig. 5B). This contextual control of excitability heterogeneity on stability
 236 which depends on modulatory fluctuations (cf. Figs. 5A, B) suggests that heterogeneity tunes the spectral
 237 disk - and hence eigenvalue dispersion - towards an optimal intermediate size.

238 To confirm the alignment of our mathematical analysis and numerical simulations, we computed the
 239 variance of the neuron's fixed point distribution (i.e., $\sigma_{u^o}^2$), which was also found to depend on the degree of
 240 heterogeneity (Fig. 5C). Introducing heterogeneity also consistently prevented stability transitions, rendering

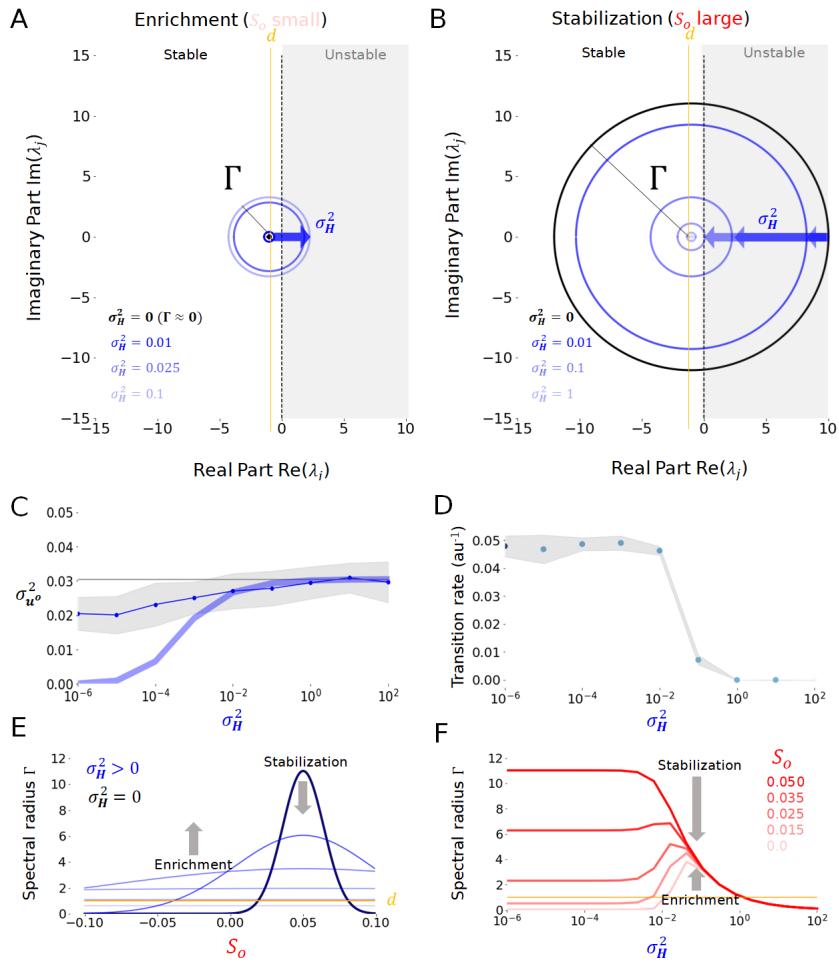


Figure 5. Heterogeneity-induced homeostatic control on stability. Increasing the degree of heterogeneity in the network strongly influences the network's response to modulatory input. **A.** When modulatory input amplitude (S_o) is small, increased diversity results in an enrichment of neural activity. As heterogeneity increases, the spectral disk (Γ) expands ($\sigma_H^2 = 0.01, 0.025, 1$; blue shaded circles) compared to the homogeneous case ($\sigma_H^2 = 0$; black circle). Modulatory input is here $S_o = 0$. **B.** In contrast, when modulatory input amplitude is large, heterogeneity stabilizes neural activity by contracting the spectral disk compared to the homogeneous case (circle colors as in Panel A), causing a clustering of the eigenvalues around the linear relaxation gain d (vertical yellow line). Modulatory input is here $S_o = |B|$. **C.** Variance of the steady state distribution $\sigma_{u^*}^2$ as a function of heterogeneity σ_H^2 . As heterogeneity increases, the variance of the steady state distribution increases. The dotted line corresponds to the numerically computed steady state distribution variance averaged over 50 independent network realizations. The bold blue line represents the analytical calculations in which the approximation $\sigma_{u^*}^2 \ll \sigma_H^2$ was used. Error bars reflect standard deviations over trials. **D.** Stability transition rate as a function of excitability heterogeneity. This rate corresponds to the number of bifurcations per unit time over independent realizations of the network, for 10 trials of duration 50 a.u.. Error bars reflect standard deviations over trials. **E.** Spectral radius Γ as a function of excitability heterogeneity (colors as in Panel A). Diversity has an enrichment effect for low modulatory input, while being stabilizing whenever modulatory input is strong and/or saturating. **F.** The homeostatic influence of heterogeneity on the spectral radius depends on modulatory input. Diversity will invariably stabilize the network (i.e. decrease Γ) whenever S_o is high (bold red curve), while enrichment (i.e. increased Γ) will occur for weak S_o (pale red curve). High levels of heterogeneity are always stabilizing as Γ decreases to zero. Other parameters are given by $N = 100$, $\rho = 0.05$, $d = -1$, $f = 0.8$, $\mu_e = \mu = 0.08$, $\beta = 15$, $\mu_i = f\mu/(f-1)$, $\sigma_{W,e}^2 = \sigma_{W,i}^2 = 0.005$ and $B = -0.05$.

241 the system more resilient. Indeed, as can be seen Fig. 5D, the transition rate - corresponding to the number
 242 of bifurcations observed in the network per unit time - decreased monotonically, confirming the trend seen in

243 Fig. 4. We systematically quantified how excitability heterogeneity shapes the spectral radius in presence
244 of modulatory fluctuations. As plotted in Fig. 5E, the contextual influence of excitability heterogeneity
245 on network stability stems from a damping of spectral radius sensitivity with respect to modulatory input.
246 Indeed, sharp changes in Γ caused by S_o (such as those seen in Fig. 3B, C) were evened out by heterogeneity,
247 resulting in an enrichment or stabilization of the dynamics as the spectral radius is increased or decreased,
248 respectively. Specifically, heterogeneity increased the spectral radius for low and/or saturating modulatory
249 amplitudes, and did the opposite for high amplitudes and decreased the spectral radius. The homeostatic
250 influence of heterogeneity on network stability could be confirmed in Fig. 5F. Irrespective of modulatory
251 input amplitude S_o , heterogeneity was found to tune the spectral radius - through either enrichment or
252 stabilization - towards the same intermediate radius.

253 Another important conclusion stemming from our analysis is that excitability heterogeneity generically
254 enhances network resilience. As can be seen from Fig. 6A, increasing excitability heterogeneity significantly
255 damped spectral radius changes resulting from modulatory input. Indeed, excitability heterogeneity made
256 Γ less sensitive to changes in S_o , and by doing so, quenched volatility. This was confirmed in Fig. 6B by
257 systematically varying modulatory input amplitude and the degree of heterogeneity while measuring the
258 spectral radius. We found that heterogeneity damped the sensitivity of the network stability on S_o , as the
259 spectral radius gradually becomes effectively independent of S_o beyond a given degree of heterogeneity
260 (dashed box in Fig. 6B). This implies that excitability heterogeneity anchors eigenvalue distributions in
261 the complex plane, while making eigenvalues independent of modulatory input. An important consequence
262 of this anchoring is that the network stability remains fixed, preventing stability transitions, confirming
263 resilience. To encapsulate the effect of excitability heterogeneity on the network's resilience, we computed
264 both the spectral volatility (κ) - which measures the effective sensitivity of the spectral radius on a given
265 control parameter - as well as the resilience parameter (\mathcal{R}) - which is the reciprocal of the spectral volatility -
266 as a function of modulatory input amplitude (i.e. S_o). These metrics quantify how invariant to changes in a
267 given control parameter the eigenvalue distribution is. This is done by looking at variations of the spectral
268 radius, cf. section 4.5. As shown in Fig. 6C, heterogeneity optimized resilience to modulatory input, and the
269 spectral volatility decreased. Collectively, these results demonstrate that excitability heterogeneity, greatly
270 enhances the resilience of sparse balanced networks by anchoring the eigenvalues in the complex plane and
271 decreasing the sensitivity of their distribution to modulatory input.

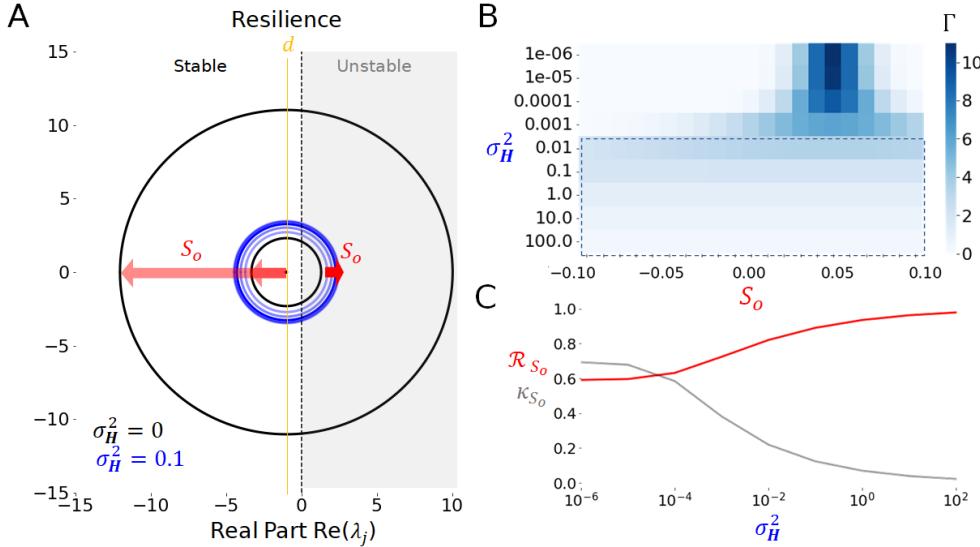


Figure 6. Heterogeneity enhances the resilience of balanced networks. **A.** Diversity limits variations of the spectral disk. Increasing heterogeneity ($\sigma_H^2 = 0.1$; blue shaded circles) constrains changes in the spectral radius Γ resulting from changes in modulatory input amplitude ($S_o = 0, 0.025$ and 0.05 ; red arrows; right). Without heterogeneity, the same fluctuations in modulatory input (red arrows; left) result in much wider changes in Γ ($\sigma_H^2 = 0$, black circles). While both heterogeneous and homogeneous cases result in an expansion of the spectral disk, these variations are much smaller whenever $\sigma_H^2 > 0$; **B.** Spectral radius (Γ) as a function of the degree of heterogeneity and the amplitude of the modulatory input (S_o). Increasing heterogeneity (dashed box) suppresses the system's dependence on the modulatory input as the spectral radius Γ becomes constant despite changes in S_o (dashed box). **C.** Resilience (\mathcal{R}_{S_o} ; red curve) and spectral volatility (κ_{S_o} ; grey curve) measures with respect to the modulatory input amplitude (S_o) as a function of the degree of heterogeneity. Resilience increases with heterogeneity while the spectral radius sensitivity (i.e. volatility) decreases with $\sigma_{u_o}^2$. Other parameters are given by $N = 100$, $\rho = 0.05$, $d = -1$, $f = 0.8$, $\mu_e = \mu = 0.08$, $\beta = 15$, $\mu_i = f\mu/(f-1)$, $\sigma_{W,e}^2 = \sigma_{W,i}^2 = 0.005$ and $B = -0.05$.

272 2.4 Heterogeneity may stabilize networks across changes in connectivity

273 Our results so far indicate that excitability heterogeneity implements a long time-scale homeostatic control
 274 mechanism that promotes resilience in networks exposed to modulatory inputs. However, other control
 275 parameters might influence the neural systems' stability over these time scales. Neural systems are subjected
 276 to perpetual change, even in the absence of modulatory fluctuations and/or stimuli. Synaptic plasticity is
 277 a salient example: during learning, the number of synapses and/or the effective synaptic weights increase,
 278 as a consequence of processes such as long-term potentiation (LTP) and depression (LTD) [12]. Networks
 279 undergoing such plasticity-induced structural modifications of their connectivity tend to be weakly resilient.
 280 Indeed, most forms of synaptic plasticity lead to the development of instability, in which run-away neural
 281 activity departs from baseline and needs to be compensated/stabilized through various homeostatic feedback
 282 processes [5, 63, 64], a few of which have found experimental support [81].

283 We asked whether excitability heterogeneity, on its own, could prevent stability transitions in neural
 284 systems undergoing plasticity-induced changes in connectivity. Our previous analysis demonstrates that the

285 spectral radius Γ - and hence the dispersion of eigenvalues in the complex plane - increases with connection
 286 probability (ρ) as well as net synaptic strength (μ). This suggests that long time-scale changes in these control
 287 parameters - prone to increase together or independently during learning - generically promote instability and
 288 volatility. As can be seen in Fig.7, this is confirmed numerically: increasing both the connection probability
 289 (Fig.7A) and synaptic strength (Fig.7B) over a physiologically realistic range resulted in instability, as
 290 measured with the mean Lyapunov exponent. However, this only occurred in the homogeneous case ($\sigma_H^2 = 0$).
 291 Indeed, increasing the heterogeneity suppressed this instability with the mean Lyapunov exponent remaining
 292 negative over the range of values of explored, i.e. the system did not experience any stability transitions.

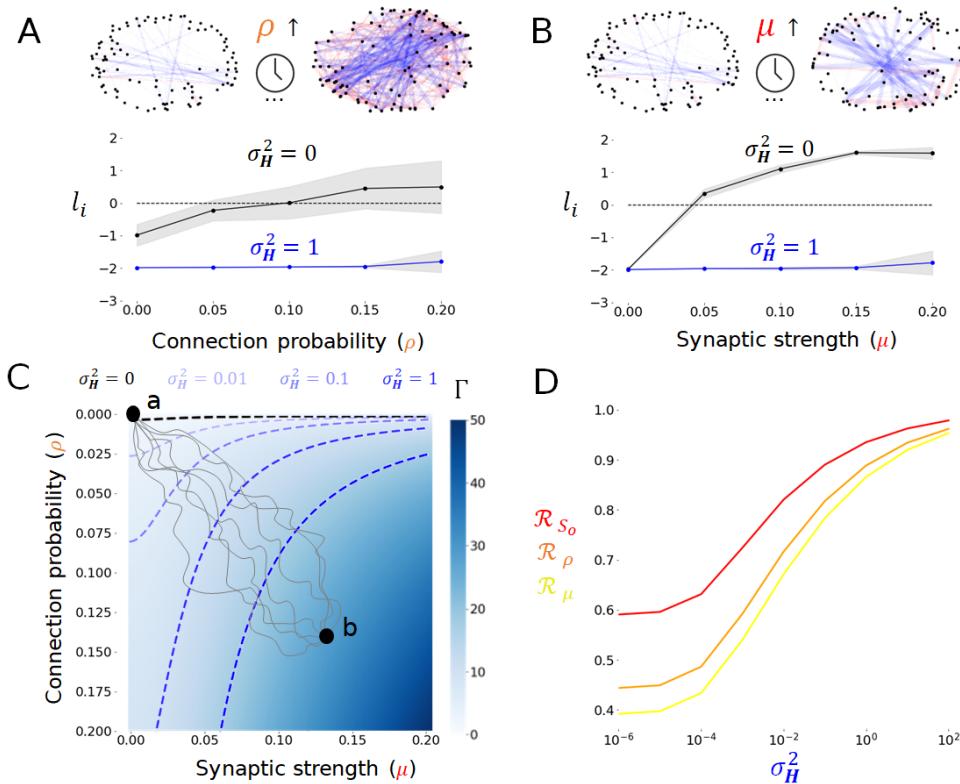


Figure 7. Heterogeneity compensates the destabilizing effect of changes in connection probability and synaptic strength. **A.** Increasing the connection probability generically destabilizes sparse balanced networks. In the homogeneous case ($\sigma_H^2 = 0$; black curve), increasing the connection probability from $\rho = 0$ to 0.2 leads the network into an unstable regime. Lyapunov exponents l_i increase and become positive. In contrast, in the presence of heterogeneity ($\sigma_H^2 = 1$; blue curve), they remain more or less constant, and stability persists. Here $\mu_e = \mu = 0.08$, $\mu_i = f\mu$ ($f = 1$). **B.** The same trend is observed whenever the synaptic strength is increased from $\mu = 0$ to $\mu = 0.2$. Here $\rho = 0.05$. **C.** The spectral radius Γ increases with both connection probability (ρ) and synaptic strength (μ), suggestive of instability. The instability threshold ($\Gamma(\rho, \mu) = |d|$) is shown as a black dashed line. Introducing excitability heterogeneity shifts the instability threshold in parameter space (blue shaded dashed lines), promoting stability. Illustrative curves representing a trajectory in parameter space occurring during plasticity (grey curves), connecting the network state before ($\rho = 0, \mu = 0$; **a**) and after learning ($\rho > 0, \mu > 0$; **b**). **D.** Resilience measure, computed as a function of connection probability (ρ ; \mathcal{R}_ρ ; orange curve) and synaptic strength (μ ; \mathcal{R}_μ ; yellow curve), shown along modulatory input amplitude (S_o ; \mathcal{R}_{S_o} ; red curve) for reference. All these increase with increasing degree of heterogeneity. Other parameters are given by $N = 100$, $d = -1$, $\beta = 50$, $f = 0.8$, $\sigma_{W,e}^2 = \sigma_{W,i}^2 = 0.005$. In panel D, $B = 0$.

293 Mathematical analysis affirms this finding. Figure7C shows that the spectral radius Γ increases monotonically
294 with connection probability (ρ) and synaptic strength (μ) interchangeably, underlying such systems'
295 volatility and associated vulnerability to stability transitions. Slow time scale changes in connectivity resulting
296 from plasticity (illustrated by the gray curves linking points **a** and **b** in Fig.7C) result in stability transitions.
297 Introducing heterogeneity moved the effective stability threshold (i.e., $\Gamma(\rho, \mu) = |d|$) further in parameter
298 space, resulting in overall compensation for the destabilizing influence of increases in connection probability
299 and synaptic strength (c.f., 3D). In this case, slow time scale changes in connectivity cause stability transitions
300 to become increasingly unlikely as the net size of the stability region increases. In addition to this stabilizing
301 influence, heterogeneity was also found to promote resilience by enhancing the persistence of stability via
302 anchoring the eigenvalue distribution/spectral disk in the complex plane. We thus computed the resilience
303 metric, now as a function of connection probability ($\rho; \mathcal{R}_\rho$) and synaptic strength ($\mu; \mathcal{R}_\mu$). As shown in Fig.7D,
304 increasing the degree of excitability heterogeneity enhanced resilience for both these control parameters
305 i.e., promoting the persistence of stability by decreasing the spectral volatility and the susceptibility of the
306 spectral radius on changes in connection probability (ρ) and synaptic strength (μ).

307 3 DISCUSSION

308 In the last several years, with continued advancements in high throughput [82] single cell RNA sequencing
309 (scRNAseq) [83], and with the very recent addition of spatially resolved scRNAseq [84], it is abundantly
310 clear that within cell-types there is a transcriptomic continuum rather than discrete sub-types [56]. This
311 within cell-type transcriptomic diversity is also reflected in functional diversity in excitability features
312 in human [4, 43, 85, 86] and rodent neurons [53, 56, 84] and likely a direct manifestation of the observed
313 transcriptomic variability, given the correlation between the transcriptome and electrophysiological properties
314 of neurons [87, 88]. In light of these technical advances in describing the properties of individual neurons at
315 scale, a major challenge for neuroscience is to bridge across the divide between individual neuronal properties
316 and network function [89]. While bridging this gap remains a significant challenge experimentally, although
317 advances in imaging technologies (NeuroPixels [90], Ca²⁺ [91], ultrasound [92]) are continually closing it, it
318 is the promise of computational and mathematical analyses to simplify the complexity of the brain while
319 addressing this critical divide between brain structure and function [93].

320 It is within this context of bridging scales that we here bridge between neuronal diversity - a seemingly
321 fundamental design principle of the brain - and the stability of cortical dynamics. We have been in part
322 biased by our initial work in the context of epilepsy which is a pathological condition where individuals slip
323 in and out of pathological dynamical brain states [24, 94] called seizures, and how excitability homogenization

324 renders circuits more prone to such seizure-like states [43]. However, we have also been greatly influenced
325 by computational and mathematical work in macroecology that argue that not all types of diversity are
326 stabilizing. Indeed, there is decades of research in the fields of macroecology and food webs, examining the
327 relationship between complex systems' stability, biodiversity and resilience: the so-called "stability-diversity"
328 debate [14, 16, 30, 33]. Fascinatingly, large scale random networks are more prone to volatility and stability
329 transitions in response to increased size [14, 32, 34], connection probability [14, 31, 34–36], and connection
330 strength [14, 26–28, 31, 35], and/or when connectivity motifs become too heterogeneous [26–28, 31, 32, 34–37].

331 Thus, within this stability-diversity debate and the myriad of heterogeneities that could be explored,
332 our choice to explore excitability heterogeneity is not haphazard, and for four reasons it is not surprising
333 that we find that it has profound effects on resiliency of brain circuits. Firstly as discussed above, cellular
334 diversity is the norm in the brain, and thus appears to be a clear "design principle" of neuronal circuits,
335 which we accept at face value to be beneficial to the brain, and for which the biological machinery clearly
336 exists [84, 95]. Secondly, there is ample evidence both experimentally and computationally that excitability
337 heterogeneity is helpful for information coding in the brain, decorrelating brain networks while expanding their
338 informational content [3, 71]. Thirdly, we have shown that amongst a number of experimentally determined
339 electrophysiological features of human neurons, it is the loss of excitability heterogeneity that accompanies
340 epilepsy [43]. Our mathematical and computational work showed that excitability heterogeneity prevents
341 sudden transitions to highly correlated information poor brain activity. Lastly, neuronal excitability is highly
342 malleable. This malleability arises from the process of *intrinsic plasticity*, where neuronal excitability is
343 modulated by the neuron's past activity [5, 61]. Indeed learning is accompanied by changes in voltage and
344 calcium activated channels that are principally involved in setting resting membrane potential, input resistance,
345 and rheobase [61]. It is these kinds of channels as well that are altered in a number of neuropsychiatric
346 conditions, including epilepsy [62]. Excitability thus represents a local parameter tuned to the complexities,
347 or lack thereof of activity of each neuron in the sea of activity it is embedded in.

348 Furthermore, in light of the ubiquity of various forms of neuronal [4, 40, 96–99] and glial [41, 42] diversity,
349 that could render neural circuits unstable (i.e., the stability-diversity debate above), they are in fact highly
350 resilient, and qualitatively invariant across extended time scales in part likely due to excitability heterogeneity.
351 This of course holds true in healthy brains despite continuous external and internal changes, driven by
352 factors including modulatory inputs [6–11], environmental fluctuations and/or stimuli [1, 25, 60], and changes
353 in connectivity like those resulting from synaptic plasticity [63, 64]. The robustness of neural dynamics
354 and function - the persistence of its dynamics - with respect to changing control parameters epitomizes
355 resilience [13–17, 30].

356 This also holds true for processes that continuously change the brain during development and ageing, where

357 brain dynamics remain stable over many decades despite the structural changes that accompany time, and
358 pathological processes, where failure to regulate brain activity in the face of pathological insults predispose
359 the brain to dynamic volatility [18, 21]. A confluence of both experimental [1, 4, 25, 38–43] and theoretical
360 studies [43–50] have highlighted the role of heterogeneity in brain dynamics and stability. Notably, phenotypic
361 diversity has been shown to promote the stability of brain function and its associated dynamics through
362 degeneracy, redundancy and covariation [1, 25, 100].

363 Our initial results confirmed [68, 69, 101] that networks with homogeneous excitability exhibit volatility
364 in response to modulatory input. Increases in network size, synaptic strength, and connection probability
365 all led to stability transitions. These observations highlight that the spectral radius size itself, evaluated
366 at a given moment in time, conveys limited information about a network's volatility and susceptibility
367 to critical transitions, which remains high in the absence of phenotype diversity. Introducing excitability
368 heterogeneity changed the portrait completely: our joint numerical and analytical results revealed that
369 excitability heterogeneity: 1) implements a homeostatic control mechanism tuning the distribution of
370 eigenvalues in the complex plane in a context-dependent way; and 2) enhances network resilience by fixing
371 this distribution and making it independent of modulatory input(s). We extended our analysis to connection
372 probability and synaptic strength, parameters that are prone to change over long time scales during processes
373 such as plasticity [63, 64] and development [102]. Excitability heterogeneity also promoted resilience here by
374 preserving network stability.

375 This formalism also facilitates insightful observations about the role played by various forms of diversity
376 in neural circuits, and complex natural systems generally. In [37], the authors provided a comprehensive
377 overview of the destabilizing influence of motif heterogeneity - the variability in the connection degree, or
378 alternatively a lack of redundancy in connectivity - on complex random graphs. Recontextualized from the
379 perspective of neural systems, these results and ours suggest that networks exhibiting redundant connectivity
380 motifs alongside node heterogeneity will generically exhibit enhanced stability and resilience, corroborating
381 numerous experimental findings [1].

382 As a corollary to our results, less heterogeneous systems should be more vulnerable [18, 43] to critical
383 transitions [18]. Epilepsy is a revealing example in which seizures, which are transitory events typified by
384 hyper-active and -synchronous brain activity [103], seemingly occur paroxysmally. The occurrence of such
385 seizures has been shown to depend on modulatory factors, such as stimuli [20] and circadian and/or multidien
386 cycles [21]. While asynchronous activity relies on a controlled balance between excitation and inhibition [104],
387 the transition to pathologically synchronous activity in epilepsy has largely been conceptualized as a disruption
388 of this balance [19]. Our recent study [43] adds a new dimension to this mechanistic conceptualization of
389 epilepsy, where we observed a decrease in excitability heterogeneity of layer 5 pyramidal neurons in seizure

390 generating areas (epileptogenic zone) in individuals with medically refractory epilepsy. When implemented
391 computationally, this experimentally observed reduction in excitability heterogeneity rendered neural circuits
392 prone to sudden dynamical transitions into synchronous states with increased firing activity, paralleling
393 ictogenesis. These observations suggest an important contribution of neural heterogeneity - or lack thereof -
394 in the disease's etiologies.

395 Collectively, our results suggest that excitability heterogeneity make balanced sparse neural networks
396 insensitive to changes in many key control parameters, quenching volatility preventing transitions in stability
397 that typify a lack of resilience. This phenomenon is far from being exclusive to neural systems: the role of
398 diversity in ecosystem resilience in the face of change has been extensively studied [14–16, 26–32], and extended
399 across environmental science, ecology, engineering, operation research, management science, business, social
400 sciences, and computer science [13, 14, 16, 17, 105]. The instrumental role of diversity at promoting resilience
401 is reminiscent of the Gaussian blur effect observed in data analysis, in which high frequency gradients (i.e.,
402 “noise”) are filtered out to preserve the smoothness of data by suppressing non-linearity [106]. In the context
403 of our work, such heterogeneous “blurring” occurs in control parameter space, resulting in a smooth (and
404 eventually flat and decoupled) relationship between the spectral radius size and given control parameter(s).
405 We thus argue that it's not the spectral radius size itself, but how it changes in response to modulation,
406 that reflects whether a system is resilient or not. Indeed, as neural systems (and complex natural systems
407 generally) can reside in both stable (e.g., relaxation) and/or unstable (e.g., oscillations, synchrony, chaos)
408 functionally meaningful dynamic regimes [18, 107], the spectral radius remains a context-dependent measure
409 of stability that has little to do with the actual function of these systems. Dynamical invariance, robustness
410 and resilience are consequences of the persistence of the spectral radius size over time and in the face of
411 change, resulting from a heterogeneity-induced decoupling between spectral radius size and system's control
412 parameter(s) (e.g., modulation).

413 We highlight that our analyses and results can be generalized across a wide range of network sizes,
414 connectivity profiles, topologies, types of heterogeneity, dynamics (e.g., asynchronous, rhythmic), and
415 individual neuron response properties. Indeed, while we have focused here on Erdős–Rényi - type topology,
416 our results may be easily extended to other graph structures (e.g., multi-modal, scale-free, cascade models)
417 through a proper rescaling of the spectral radius [33, 37], and can also be modified to study time delayed
418 systems [75]. In particular, the circular spectral disk resulting from the connectivity matrix considered
419 here might adopt a different shape whenever predator-prey, competition and/or mutualistic interactions are
420 introduced, yet are fully amenable to a node diversity considerations [60, 108].

421 Like all computational and theoretical work, there are limitations to the contexts in which these results
422 are applicable. First, our model represents a balance between neurophysiological relevance and mathematical

423 tractability. More detailed and biophysically rich models are certainly required to provide a more comprehensive
424 understanding of the role of diversity on network stability. Second, phenotype diversity certainly impacts
425 neural activity beyond excitability. A more thorough characterization of neural variability is surely warranted
426 to reinforce the alignment between our model and experimental data, notably to improve the scope of our
427 predictions. Third, our model does not consider stochastic fluctuations that are known to be ubiquitous in
428 neural systems [109] and to influence their stability [110–112]. We have neglected this source of variation due
429 to the long time scales considered here, and the moderate non-linearity of the system (i.e., parameterized by
430 the firing rate response gain β). Future work is required to incorporate noise in both our simulations and
431 analyses.

432 In summary, our results position excitability heterogeneity, and possibly more generally, neuronal diversity
433 (from transcriptomic and functional studies), as a critical design feature of the brain to ensure its rich
434 dynamics are preserved in the face of a wide set of network parameters. Furthermore, resilience of dynamics
435 to scale (physical scale as in number of neurons, or connectivity as in the strength of connections) is of course
436 critically important for a growing developing brain, as well as an ageing brain. However even more generally
437 as a design principle, excitability heterogeneity provides dynamical resilience to brains of all sizes across the
438 phylogenetic tree, allowing the *freeness* from scale in a scale-free system.

439 4 MATERIALS AND METHODS

440 4.1 Network model

441 We consider a large network of N neurons whose activity evolves according to the interplay between local
442 relaxation, recurrent synaptic connectivity and slowly varying modulatory input. This model provides a
443 description of dynamics unfolding over extended time scales, hence quantifying mean neuronal activity. The
444 mean somatic membrane potential of neurons $u_i(t)$, $i \in [1, N]$ obeys the following set of non-linear differential
445 equations

$$\tau \frac{d}{dt} \mathbf{u} = \mathbf{L}[\mathbf{u}] + \mathbf{Wf}[\mathbf{u} + \mathbf{H}] + \mathbf{B} + \mathbf{S}(t) \quad (1)$$

446 where τ scales the slow time scale at which the dynamics occur. In the following we re-scale time by $t \rightarrow t\tau$
447 for convenience. The model in Eq. 1 is both flexible and general, encompassing the mean behavior of a
448 wide scope of interconnected neurons models involving excitatory and inhibitory interactions, such as the
449 celebrated Wilson-Cowan and Jansen-Rit models, for instance. Depending on the spatial scale considered,
450 which remains here undefined, such models can be either be considered to be neuron-based (where nodes
451 represent individual neurons - the perspective we adopt here) or populations (where nodes represent assemblies

452 of such neurons), geared towards the characterization of neuronal mean activity across extended time scales.
 453 The term $\mathbf{L}[\mathbf{u}] = d\mathbf{u}$ is a linear local relaxation term with rate $d < 0$ and $(\mathbf{f}[\mathbf{u}])_i = f(u_i) = \frac{1}{2}(1 + \text{erf}[\beta u_i])$
 454 represents the firing rate response function of neurons with the Gaussian error function $\text{erf}[\cdot]$. This function
 455 relates the membrane potential activity to the firing rate of the neuron. The vector-valued term \mathbf{H} implements
 456 node diversity through spatially heterogeneous neuronal excitability, i.e. variable firing rate thresholds
 457 between neurons. The entries of \mathbf{H} are sampled from a zero-mean Gaussian distribution of variance $\sigma_{\mathbf{H}}^2$. The
 458 neuron's baseline activity $\mathbf{B} < \mathbf{0}$ is a scaling factor used to set the neurons in a subthreshold regime in the
 459 absence of input. Lastly, the network in Eq. 1 is further subjected to a slow modulatory input $\mathbf{S}(t)$.

460 The connectivity matrix \mathbf{W} in Eq. (1) specifies synaptic coupling between any pair of neurons. We
 461 assume randomly distributed excitatory and inhibitory coupling [76], with connection probability ρ . This
 462 connectivity motif corresponds to a weighted Erdős–Rényi random graph; we emphasize, however, that the
 463 following results may be easily extended to other topologies (e.g., [37]). The strength of these synaptic
 464 connections are individually Gaussian-distributed with mean μ_e and μ_i , variance σ_e^2 and σ_i^2 and with
 465 probability density functions p_e and p_i , respectively. We ensure that there are no self-connections i.e.
 466 $W_{ii} = 0 \forall i$. In addition, we parametrize the relative density of excitatory versus inhibitory connections
 467 by a coefficient f , $0 \leq f \leq 1$. Consequently, the probability density function of synaptic weights W_{ij}
 468 may be written as $p = \rho f p_e - \rho(1-f)p_i$. Moreover, we choose a balanced connection connectivity with
 469 $\sum_{j=1}^N W_{ij} = 0$, i.e. the sum over excitatory and inhibitory synaptic connections vanishes at each node. Given
 470 these constraints, the mean connectivity of the network is $\mu_W \equiv \text{E}[W_{ij}] = 0$ and the variance of the synaptic
 471 connectivity becomes [76] $\sigma_W^2 \equiv \text{Var}[w_{ij}] = \rho(f\sigma_e^2 + (1-f)\sigma_i^2 + f\mu^2/(1-f))$. The mean network activity
 472 $\langle u \rangle(t)$ is defined as the average activity across all neurons

$$\langle u \rangle(t) = \sum_{i=1}^N u_i(t) . \quad (2)$$

473 4.2 Stability

474 By construction, this network subscribes to the circular law of random matrix theory [58, 73]. According
 475 to this law, the statistical distribution of eigenvalues of the network - reflecting stability - is constrained
 476 with high probability within a disk centered around the local relaxation gain d (called the spectral disk) in
 477 the complex plane, whose radius Γ can be determined analytically. The eigenvalues populating that disk
 478 are complex numbers: if the disk is bounded in the left hand side of the imaginary axis (i.e., all real parts
 479 of these eigenvalues are negative), the network is said to be stable and its activity invariably relaxes back
 480 to its equilibrium after a perturbation. In our network model, such stable equilibrium is characterized by

481 weak, asynchronous neuronal firing. If some eigenvalues cross the imaginary axis (i.e., the spectral disk is too
 482 large and some eigenvalues possess positive real parts), the network is said to be unstable, leading to activity
 483 that diverges, is synchronous and/or chaotic. In the intermediate case, when dominant eigenvalues (those
 484 possessing the largest real part) exhibit a near-zero real part, the network is said to reside at a critical point
 485 sitting between stability and instability, commonly referred to as metastable.

486 The stability of Eq. (1) may hence be characterized through the circular law [34, 36, 73]. Over a short
 487 time scale, modulatory input can be considered constant, i.e. $\mathbf{S}(t) = \mathbf{S}$, and the fixed point \mathbf{u}^o satisfies

$$-d\mathbf{u}^o - \mathbf{S} - \mathbf{B} = \mathbf{W}\mathbf{f}[\mathbf{u}^o + \mathbf{H}] . \quad (3)$$

488 The stability of these fixed points can be determined by considering the spectrum Λ of the Jacobian matrix J
 489 of Eq. (1)

$$\mathbf{J} = d\mathbf{I} + \mathbf{W}\mathbf{D}_f , \quad (4)$$

490 where \mathbf{I} is the N -dimensional identity matrix and $(\mathbf{D}_f)_{ij} = \frac{\partial f}{\partial u_j}[u_i^o] \equiv f'_{ij}[u_i^o]$ corresponds to the derivatives
 491 of the transfer function f evaluated at the fixed point \mathbf{u}^o .

492 It is well known [73] that for large N the spectrum Λ of Eq. (4) may be decomposed into an edge (Λ_e) and
 493 bulk (Λ_b) spectrum, i.e. $\Lambda = \Lambda_e + \Lambda_b$. The real eigenvalues populating the edge spectrum $\lambda_e \in \Lambda_e$ have here
 494 the mean $\lambda_e = d$. The circular law states [58, 73] that the remaining complex eigenvalues $\lambda_b \in \Lambda_b$ populating
 495 the bulk spectra are confined within a disk of radius Γ given by

$$\Gamma = \sqrt{(N-1)\rho\text{Var}[J_{ij}^o]} \quad (5)$$

496 with $J_{ij}^o = W_{ij}f'_{ij}$ evaluated at the fixed point \mathbf{u}^o . This implies the maximum eigenvalue real part is given
 497 by $\max[d, d + \Gamma]$. Since $d < 0$, the system's stability is fully determined by the bulk spectrum and the fixed
 498 point \mathbf{u}^o is stable if

$$\Gamma < |d| . \quad (6)$$

499 Used together, equations 5 and 6 are key to determining the influence of the network properties on its stability.

500 **4.3 Stability of homogeneous networks**

501 In absence of heterogeneity and modulatory input, i.e. $\mathbf{H} = 0$ and $\mathbf{S} = 0$, the fixed point \mathbf{u}^o defined in Eq. (3)
 502 has the degenerate solution $\mathbf{u}^o = \mathbf{B} = B\mathbf{1}^T$ with $\mathbf{1}^T = (1, 1, \dots, 1)^T$ and $B < 0$. Then elements of the Jacobian

503 for $\mathbf{u}^o = \mathbf{B}$ can be computed as

$$J_{ij} = d\delta_{ij} + W_{ij}f'_{ij}(B) . \quad (7)$$

504 The spectral radius (5) can readily be determined in this case by computing the variance of the Jacobian
505 as per Eq. 5 to

$$\Gamma_{\mathbf{H}=0, \mathbf{S}=0} = \sqrt{\frac{\sigma_W^2(N-1)\rho\beta^2}{\pi}} e^{-\beta^2 B^2} < |d| . \quad (8)$$

506 Whenever modulatory input is present, i.e. $\mathbf{S} = S_o \mathbf{1}^T$ with $\mathbf{1}^T = (1, 1, \dots, 1)^T$, the fixed point becomes
507 $\mathbf{u}^o = (S_o + B)\mathbf{1}^T$. For later purpose, we state in addition that the elements of the fixed point solution for
508 $\mathbf{H} = \mathbf{0}$ obeys a probability density function with mean $\mu_{\mathbf{u}^o} = S_o + B$ and vanishing variance $\sigma_{\mathbf{u}^o}^2 = 0$. The
509 stability criterion for $\mathbf{H} = \mathbf{0}$, $\mathbf{S} \neq \mathbf{0}$ now reads

$$\Gamma_{\mathbf{H}=0, \mathbf{S} \neq 0} = \sqrt{\frac{\sigma_W^2(N-1)\rho\beta^2}{\pi}} e^{-\beta^2(S_o+B)^2} < |d| . \quad (9)$$

510 Equation (9) reveals that increasing the network size N , connection probability ρ , the variance σ_W^2 of
511 synaptic weights (implying increases of the mean μ and excitatory and inhibitory variances σ_e , σ_i) as well as
512 the firing rate response gain β cause an expansion of the spectral radius Γ , as does the modulatory input
513 amplitude S_o . The dependence of Eq. (9) on these various parameters is plotted in Fig. 3. Consequently,
514 they all lead to instability of Eq. (1), in line with previous studies [37, 111].

515 4.4 Stability of heterogeneous networks

516 The heterogeneous case with modulatory input $\mathbf{H} \neq 0, \mathbf{S} \neq \mathbf{0}$ is more involved. The influence of excitability
517 heterogeneity on stability may nonetheless be exposed by investigating how diversity in excitability thresholds,
518 i.e. \mathbf{H} , impacts the spectral radius Γ . Recall that \mathbf{H} are random and sampled from a distribution $p_{\mathbf{H}}$ assumed
519 to be Gaussian with zero mean and variance $\sigma_{\mathbf{H}}^2$. The fixed point \mathbf{u}^o of Eq. (1) satisfies, instead of Eq. (3),

$$\mathbf{u}^o = \tilde{\mathbf{W}}\mathbf{f}[\mathbf{u}^o + \mathbf{H}] + \tilde{\mathbf{B}} + \tilde{\mathbf{S}} , \quad (10)$$

520 with $\tilde{\mathbf{W}} = \mathbf{W}/|d|$, $\tilde{\mathbf{B}} = \mathbf{B}/|d|$ and $\tilde{\mathbf{S}} = \mathbf{S}/|d|$. Equation (10) is a discrete version of the Hammerstein
521 equation [113], whose solution is distributed with some probability distribution $p_{\mathbf{u}^o}$. We highlight the
522 important distinction to the homogeneous case ($\mathbf{H} = 0$) in which the corresponding fixed point was degenerate.

523 Consistent with analysis steps in the previous section, stability is determined via the variance of the

524 Jacobian as per Eq. 5. The matrix elements of the Jacobian for $\mathbf{H} \neq 0, \mathbf{S} \neq 0$ are given by

$$J_{ij} = d\delta_{ij} + W_{ij}f'_{ij}(u_j^o + h_j) \quad (11)$$

525 with $h_j = (\mathbf{H})_{jj}$. Assuming independence between the fixed points \mathbf{u}^o and the synaptic weights W_{ij}

$$\text{Var}[J_{ij}^o] \approx \sigma_W^2 \text{Var}[f'_{ij}] . \quad (12)$$

526 For large N , one may approximate this variance of the Jacobian by assuming that the distribution $p_{\mathbf{u}}^o$ is
 527 independent from \mathbf{H} and Gaussian-distributed with mean $\mu_{\mathbf{u}^o}$ and yet unknown variance $\sigma_{\mathbf{u}^o}^2$. We find

$$\text{Var}[J_{ij}^o] \approx \sigma_W^2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f'^2(\nu + h) p_{\mathbf{u}^o}(\nu) p_{\mathbf{H}}(h) d\nu dh = \frac{\sigma_W^2 \beta^2}{\pi \sqrt{\gamma}} e^{-\frac{2\mu_{\mathbf{u}^o}^2 \beta^2}{\gamma}} \quad (13)$$

528 where $\gamma = 1 + 4\beta^2(\sigma_{\mathbf{u}^o}^2 + \sigma_{\mathbf{H}}^2)$. This result implies that stability depends on the mean and variance of the
 529 fixed point distribution $\mu_{\mathbf{u}^o}$ and $\sigma_{\mathbf{u}^o}^2$, respectively, and the variance of the excitability threshold distribution
 530 $\sigma_{\mathbf{H}}^2$. Since the excitability threshold variance can be chosen independently but determines the fixed point by
 531 Eq. (10), it is necessary to compute the mean $\mu_{\mathbf{u}^o}$ and variance $\sigma_{\mathbf{u}^o}^2$ of the fixed point probability density
 532 function $p_{\mathbf{u}^o}$.

533 At first, recall that homogeneous excitability, i.e. $\sigma_{\mathbf{H}}^2 = 0$ as described in section 4.3, implies $\sigma_{\mathbf{u}^o}^2 = 0$.
 534 Consequently, $\sigma_{\mathbf{u}^o}^2$ depends on $\sigma_{\mathbf{H}}^2$ implicitly for heterogeneous excitability. In the following we assume
 535 modulatory input being homogeneous over the network. Then, in line with previous calculations

$$\mu_{\mathbf{u}^o} \equiv E[\mathbf{u}^o] = (S_o + B)/|d| .$$

536 Moreover, with Eq. (10)

$$\begin{aligned} \sigma_{\mathbf{u}^o}^2 &= \sum_{j=1}^N \text{Var}[\tilde{W}_{ij}] \text{Var}[f_j] \\ &= (N/|d|) \sigma_W^2 (E[f_j^2] - E^2[f_j]) . \end{aligned} \quad (14)$$

537 with $f_j = f(u_j^o + h_j)$. Then, we find for large N

$$\begin{aligned} \mathbb{E}[f_j] &= \frac{1}{N} \sum_j f(u_j^o + h_j) \\ &= \frac{1}{2} \left(1 + \operatorname{erf} \left[\frac{(S_o + B)\beta/|d|}{\sqrt{1 + 2\beta^2(\sigma_{u^o}^2 + \sigma_H^2)}} \right] \right), \end{aligned} \quad (15)$$

538 and

$$\begin{aligned} \mathbb{E}[f_j^2] &= \frac{1}{N} \sum_j f^2(u_j^o + h_j) \\ &= I_1 + I_2 + I_3, \end{aligned} \quad (16)$$

539 with $I_1 = 1/4$, $I_2 = \mathbb{E}[f_j] - 1/2$ and

$$I_3 = \frac{1}{4} \left(1 - \frac{2}{\sqrt{\gamma'}} e^{-\frac{\beta^2 \pi^2 (S_o + B)^2}{2d^2 \gamma'}} \right)$$

540 where $\gamma' = 4 + \pi^2 \beta^2 (\sigma_{u^o}^2 + \sigma_H^2)$. Here we have used the good approximation $\operatorname{erf}^2(x) \approx 1 - e^{-(\pi^2/8)x^2}$.

541 Combining Eq. (14), (15) and (16) yields an implicit expression for the fixed point distribution variance

$$\sigma_{u^o}^2 = \frac{\sigma_W^2 N}{4|d|} \left(1 - \frac{2}{\sqrt{\gamma'}} e^{-\frac{\beta^2 \pi^2 (S_o + B)^2}{2d^2 \gamma'}} - \operatorname{erf}^2 \left(\frac{(S_o + B)\beta/|d|}{\sqrt{1 + 2\beta^2(\sigma_{u^o}^2 + \sigma_H^2)}} \right) \right). \quad (17)$$

542 Equation (17) defines $\sigma_{u^o}^2$ implicitly. In the absence of heterogeneities, i.e. $\sigma_H^2 = 0$, Eq. (10) stipulates $\mathbf{u}^0 = 0$
543 and $\sigma_{u^o}^2 = 0$ and Eq. (17) holds. Moreover, for excitability heterogeneities that are much stronger than fixed
544 point fluctuations, i.e. $\sigma_H^2 \gg \sigma_{u^o}^2$, $\gamma' \approx 4 + \pi^2 \beta^2 \sigma_H^2$ and Eq. (17) provides an explicit expression for $\sigma_{u^o}^2$.

545

546 With this result, the stability condition for the fixed point reads

$$\Gamma_{H \neq 0, S \neq 0} = \sqrt{\frac{\sigma_W^2 (N-1) \rho \beta^2}{\pi \sqrt{\gamma}}} e^{-(S_o + B)^2 \beta^2 / d^2 \gamma} < |d|, \quad (18)$$

547 where $\gamma = 1 + 4\beta^2(\sigma_{u^o}^2 + \sigma_H^2)$, using the solution of Eq. (17).

548

549 4.5 Volatility and Resilience

550 Resilience refers to the qualitative invariance of dynamical states when exposed to changes in one control
551 parameter, and the absence of stability transitions. To measure resilience and the robustness of eigenvalue

552 distributions, one may quantify the sensitivity of the spectral radius Γ to changes in a given control parameter
 553 (i.e., how much the spectral radius fluctuates when exposed to changes in a certain parameter P).

554 We define the spectral volatility by

$$\kappa_P \equiv \int_{\Omega(P)} \left| \frac{\partial \Gamma}{\partial P} \right| dP \quad (19)$$

555 The spectral volatility κ_P reflects the sensitivity of the eigenvalue distribution (the spectral disk area) to
 556 change in the parameter P over the range $\Omega(P)$ of values this parameter can take. It scales with how much
 557 Γ changes as a function of variations in the control parameter P : small volatility reflects persistence of
 558 the eigenvalue distributions and its overall resistance towards stability transitions. Specifically, if $\frac{\partial \Gamma}{\partial P} \rightarrow 0$,
 559 $\kappa_P \rightarrow 0$.

560 One can use Eq. (19) to quantify the persistence of the eigenvalue distribution and spectral radius to
 561 changes in a control parameter. We thus introduce the resilience measure \mathcal{R}_P with respect to the control
 562 parameter P by considering the reciprocal of the spectral volatility

$$\mathcal{R}_P = \frac{1}{1 + \kappa_P}. \quad (20)$$

563 Note that whenever $\kappa_P \rightarrow 0$, $\mathcal{R}_P \rightarrow 1$ and if $\kappa_P \rightarrow +\infty$, $\mathcal{R}_P \rightarrow 0$.

564 Since we have derived the spectral radius analytically in Eq. (18), we are in a position to compute the
 565 spectral volatility and resilience as a function of all model parameters. Specifically, if one considers $P = S_o$,
 566 for $\Omega(S_o) = (-\infty, +\infty)$ one obtains⁵

$$\kappa_{S_o} = 2\sigma_W \sqrt{\frac{(N-1)\rho\beta}{\pi\sqrt{\gamma}}} \quad (21)$$

567

$$\mathcal{R}_{S_o} = \frac{\sqrt{\pi\sqrt{\gamma}}}{\sqrt{\pi\sqrt{\gamma}} + 2\sigma_W \sqrt{(N-1)\rho\beta}} \quad (22)$$

568 where $\gamma = 1 + 4\beta^2(\sigma_{\mathbf{u}^o}^2 + \sigma_{\mathbf{H}}^2)$. Equations (21) and (22) show that the volatility and resilience of the network
 569 with respect to the modulatory input amplitude both depend on excitability heterogeneity through the factor
 570 γ . Whenever $\sigma_{\mathbf{H}}^2 > 0$ increases, the spectral volatility κ_{S_o} decreases and the resilience \mathcal{R}_{S_o} increases.

571 5 References

572 References

573 [1] Marder, E. & Goaillard, J.-M. Variability, compensation and homeostasis in neuron and network
574 function. *Nature Reviews Neuroscience* **7**, 563–574 (2006).

575 [2] Altschuler, S. J. & Wu, L. F. Cellular heterogeneity: do differences make a difference? *Cell* **141**,
576 559–563 (2010).

577 [3] Tripathy, S. J., Padmanabhan, K., Gerkin, R. C. & Urban, N. N. Intermediate intrinsic diversity
578 enhances neural population coding. *Proceedings of the National Academy of Sciences* **110**, 8248–8253
579 (2013).

580 [4] Moradi Chameh, H. *et al.* Diversity amongst human cortical pyramidal neurons revealed via their sag
581 currents and frequency preferences. *Nature Communications* **12** (2021).

582 [5] Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. *Nature
583 reviews neuroscience* **5**, 97–107 (2004).

584 [6] Graybiel, A. M. Neurotransmitters and neuromodulators in the basal ganglia. *Trends in neurosciences*
585 **13**, 244–254 (1990).

586 [7] Marder, E. Neuromodulation of neuronal circuits: back to the future. *Neuron* **76**, 1–11 (2012).

587 [8] Lee, S.-H. & Dan, Y. Neuromodulation of brain states. *Neuron* **76**, 209–222 (2012).

588 [9] Bargmann, C. I. & Marder, E. From the connectome to brain function. *Nature Methods* **10**, 483–490
589 (2013).

590 [10] Teles-Grilo Ruivo, L. & Mellor, J. Cholinergic modulation of hippocampal network function. *Frontiers
591 in synaptic neuroscience* **5**, 2 (2013).

592 [11] Rich, S., Zochowski, M. & Booth, V. Effects of neuromodulation on excitatory–inhibitory neural network
593 dynamics depend on network connectivity structure. *Journal of Nonlinear Science* **30**, 2171–2194
594 (2020).

595 [12] Lynch, M. A. Long-term potentiation and memory. *Physiological reviews* **84**, 87–136 (2004).

596 [13] Holling, C. S. Resilience and stability of ecological systems. *Annual review of ecology and systematics*
597 **4**, 1–23 (1973).

598 [14] McCann, K. S. The diversity–stability debate. *Nature* **405**, 228–233 (2000).

599 [15] Kitano, H. Biological robustness. *Nature Reviews Genetics* **5**, 826–837 (2004).

600 [16] Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. *science* **317**, 58–62 (2007).

601 [17] Fraccascia, L., Giannoccaro, I. & Albino, V. Resilience of complex systems: State of the art and
602 directions for future research. *Complexity* **2018** (2018).

603 [18] Scheffer, M. *et al.* Anticipating critical transitions. *Science* **338**, 344–348 (2012).

604 [19] Jasper, H. H. *Jasper's basic mechanisms of the epilepsies*, vol. 80 (OUP USA, 2012).

605 [20] Honey, C. J. & Valiante, T. Neuroscience: when a single image can cause a seizure. *Current Biology*
606 **27**, R394–R397 (2017).

607 [21] Baud, M. O. *et al.* Multi-day rhythms modulate seizure risk in epilepsy. *Nature communications* **9**,
608 1–10 (2018).

609 [22] Kramer, M. A., Kirsch, H. E. & Szeri, A. J. Pathological pattern formation and cortical propagation of
610 epileptic seizures. *Journal of the Royal Society Interface* **2**, 113–127 (2005).

611 [23] Zhang, Z., Valiante, T. & Carlen, P. Transition to seizure: from “macro”-to “micro”-mysteries. *Epilepsy*
612 *research* **97**, 290–299 (2011).

613 [24] Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I. & Bernard, C. On the nature of seizure
614 dynamics. *Brain* **137**, 2210–2230 (2014).

615 [25] Goaillard, J.-M. & Marder, E. Ion channel degeneracy, variability, and covariation in neuron and circuit
616 resilience. *Annual review of neuroscience* **44**, 335–357 (2021).

617 [26] Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological
618 control. *American Entomologist* **15**, 237–240 (1969).

619 [27] Levin, S. A. *Some mathematical questions in biology* (American Mathematical Soc., 1974).

620 [28] May, R. M. Qualitative stability in model ecosystems. *Ecology* **54**, 638–641 (1973).

621 [29] Hanski, I. & Gilpin, M. Metapopulation dynamics: brief history and conceptual domain. *Biological*
622 *journal of the Linnean Society* **42**, 3–16 (1991).

623 [30] Elmquist, T. *et al.* Response diversity, ecosystem change, and resilience. *Frontiers in Ecology and the*
624 *Environment* **1**, 488–494 (2003).

625 [31] Allesina, S. & Tang, S. Stability criteria for complex ecosystems. *Nature* **483**, 205–208 (2012).

626 [32] Stone, L. The feasibility and stability of large complex biological networks: a random matrix approach.
627 *Scientific Reports* **8**, 1–12 (2018).

628 [33] Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability
629 of adaptive ecological networks: a survey of the theory in community ecology. In *Systems analysis*
630 *approach for complex global challenges*, 209–248 (Springer, 2018).

631 [34] May, R. M. Will a large complex system be stable ? *Nature* **238**, 413–414 (1972).

632 [35] Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in
633 food webs. *Science* **325**, 747–750 (2009).

634 [36] May, R. M. Stability in multispecies community models. *Mathematical Biosciences* **12**, 59–79 (1971).

635 [37] Yan, G., Martinez, N. & Liu, Y.-Y. Degree heterogeneity and stability of ecological networks. *J. R.*
636 *Soc. Interface* **14**, 20170189 (2017).

637 [38] Markram, H. *et al.* Interneurons of the neocortical inhibitory system. *Nature Reviews Neuroscience* **5**,
638 793–807 (2004).

639 [39] Mody, I. & Pearce, R. A. Diversity of inhibitory neurotransmission through gabaa receptors. *Trends in*
640 *neurosciences* **27**, 569–575 (2004).

641 [40] Soltesz, I. *et al.* *Diversity in the neuronal machine: order and variability in interneuronal microcircuits*
642 (Oxford University Press, 2006).

643 [41] Tomassy, G. S. *et al.* Distinct profiles of myelin distribution along single axons of pyramidal neurons in
644 the neocortex. *Science* **344**, 319–324 (2014).

645 [42] Matias, I., Morgado, J. & Gomes, F. C. A. Astrocyte heterogeneity: impact to brain aging and disease.
646 *Frontiers in aging neuroscience* 59 (2019).

647 [43] Rich, S., Chameh, H. M., Lefebvre, J. & Valiante, T. A. Loss of neuronal heterogeneity in epileptogenic
648 human tissue impairs network resilience to sudden changes in synchrony. *Cell Reports* **39**, 110863
649 (2022).

650 [44] Börgers, C. & Kopell, N. Synchronization in networks of excitatory and inhibitory neurons with sparse,
651 random connectivity. *Neural computation* **15**, 509–538 (2003).

652 [45] Mejias, J. & Longtin, A. Optimal heterogeneity for coding in spiking neural networks. *Physical Review*
653 *Letters* **108**, 228102 (2012).

654 [46] Yim, M. Y., Aertsen, A. & Rotter, S. Impact of intrinsic biophysical diversity on the activity of spiking
655 neurons. *Physical Review E* **87**, 032710 (2013).

656 [47] Mejias, J. & Longtin, A. Differential effects of excitatory and inhibitory heterogeneity on the gain and
657 asynchronous state of sparse cortical networks. *Front. Comput. Neurosci.* **8**, 107 (2014).

658 [48] Gjorgjieva, J., Drion, G. & Marder, E. Computational implications of biophysical diversity and multiple
659 timescales in neurons and synapses for circuit performance. *Current opinion in neurobiology* **37**, 44–52
660 (2016).

661 [49] Gast, R., Solla, S. A. & Kennedy, A. Effects of neural heterogeneity on spiking neural network dynamics.
662 *arXiv preprint arXiv:2206.08813* (2022).

663 [50] Gast, R., Solla, S. A. & Kennedy, A. Macroscopic dynamics of neural networks with heterogeneous
664 spiking thresholds. *arXiv preprint arXiv:2209.03501* (2022).

665 [51] Cembrowski, M. S. & Menon, V. Continuous variation within cell types of the nervous system. *Trends*
666 *in Neurosciences* **41**, 337–348 (2018).

667 [52] Cembrowski, M. S. & Spruston, N. Heterogeneity within classical cell types is the rule: lessons from
668 hippocampal pyramidal neurons. *Nature Reviews Neuroscience* **20**, 193–204 (2019).

669 [53] Scala, F. *et al.* Phenotypic variation of transcriptomic cell types in mouse motor cortex. *Nature* **598**,
670 144–150 (2021).

671 [54] Zeng, H. & Sanes, J. R. Neuronal cell-type classification: challenges, opportunities and the path forward.
672 *Nature Reviews Neuroscience* **18**, 530–546 (2017).

673 [55] Zeng, H. What is a cell type and how to define it? *Cell* **185**, 2739–2755 (2022).

674 [56] Tasic, B. *et al.* Shared and distinct transcriptomic cell types across neocortical areas. *Nature* **563**,
675 72–78 (2018).

676 [57] Ma, Z., Turrigiano, G. G., Wessel, R. & Hengen, K. B. Cortical circuit dynamics are homeostatically
677 tuned to criticality in vivo. *Neuron* **104**, 655–664 (2019).

678 [58] Girko, V. L. Circular law. *Theory of Probability & Its Applications* **29**, 694–706 (1985).

679 [59] Forrester, P. J. *Log-gases and random matrices*. No. 34 in London Mathematical Society Monographs
680 Series (Princeton University Press, Princeton, NJ, 2010).

681 [60] Tang, L. S., Taylor, A. L., Rinberg, A. & Marder, E. Robustness of a rhythmic circuit to short-and
682 long-term temperature changes. *Journal of Neuroscience* **32**, 10075–10085 (2012).

683 [61] Zhang, W. & Linden, D. J. The other side of the engram: Experience-driven changes in neuronal
684 intrinsic excitability. *Nature Rev. Neurosci.* **4**, 885 (2003).

685 [62] Beck, H. & Yaari, Y. Plasticity of intrinsic neuronal properties in cns disorders. *Nature Reviews
686 Neuroscience* **9**, 357–369 (2008).

687 [63] Zenke, F., Hennequin, G. & Gerstner, W. Synaptic plasticity in neural networks needs homeostasis
688 with a fast rate detector. *PLoS computational biology* **9**, e1003330 (2013).

689 [64] Zenke, F. & Gerstner, W. Hebbian plasticity requires compensatory processes on multiple timescales.
690 *Philosophical Transactions of the Royal Society B: Biological Sciences* **372**, 20160259 (2017).

691 [65] Shadlen, M. N. & Newsome, W. T. Noise, neural codes and cortical organization. *Current opinion in
692 neurobiology* **4**, 569–579 (1994).

693 [66] Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for
694 connectivity, computation, and information coding. *Journal of neuroscience* **18**, 3870–3896 (1998).

695 [67] Kandel, E. R. *et al. Principles of neural science*, vol. 4 (McGraw-hill New York, 2000).

696 [68] van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and
697 inhibitory activity. *Science* **274**, 1724–1726 (1996).

698 [69] Freitas, C., Macau, E. & Pikovsky, A. Partial synchronization in networks of non-linearly coupled
699 oscillators: The deserter hubs model. *Chaos* **25**, 043119 (2015).

700 [70] Ng, M. C., Jing, J. & Westover, M. B. *Atlas of intensive care quantitative EEG* (Springer Publishing
701 Company, 2019).

702 [71] Padmanabhan, K. & Urban, N. N. Intrinsic biophysical diversity decorrelates neuronal firing while
703 increasing information content. *Nature neuroscience* **13**, 1276–1282 (2010).

704 [72] Di Volo, M. & Destexhe, A. Optimal responsiveness and information flow in networks of heterogeneous
705 neurons. *Sci. Rep.* **11**, 17611 (2021).

706 [73] May, R. M. *Stability and complexity in model ecosystems* (Princeton University Press, 2001).

707 [74] Ginibre, J. Statistical ensembles of complex, quaternion, and real matrices. *Journal of Mathematical*
708 *Physics* **6**, 440–449 (1965).

709 [75] Jirsa, V. K. & Ding, M. Will a large complex system with time delays be stable? *Physical review*
710 *letters* **93**, 070602 (2004).

711 [76] Rajan, K. & Abbott, L. Eigenvalue spectra of random matrices for neural networks. *Phys. Rev. Lett.*
712 **97**, 188104 (2006).

713 [77] Wang, S.-J., Hilgetag, C. C. & Zhou, C. Sustained activity in hierarchical modular neural networks:
714 self-organized criticality and oscillations. *Frontiers in computational neuroscience* **5**, 30 (2011).

715 [78] Levina, A., Herrmann, J. M. & Geisel, T. Dynamical synapses causing self-organized criticality in
716 neural networks. *Nature physics* **3**, 857–860 (2007).

717 [79] Cocchi, L., Gollo, L. L., Zalesky, A. & Breakspear, M. Criticality in the brain: A synthesis of
718 neurobiology, models and cognition. *Progress in neurobiology* **158**, 132–152 (2017).

719 [80] Ratté, S., Zhu, Y., Lee, K. Y. & Prescott, S. A. Criticality and degeneracy in injury-induced changes
720 in primary afferent excitability and the implications for neuropathic pain. *Elife* **3**, e02370 (2014).

721 [81] Abraham, W. C. Metaplasticity: tuning synapses and networks for plasticity. *Nature Reviews*
722 *Neuroscience* **9**, 387–387 (2008).

723 [82] Klein, A. M. *et al.* Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells.
724 *Cell* **161**, 1187–1201 (2015).

725 [83] Tang, F. *et al.* Rna-seq analysis to capture the transcriptome landscape of a single cell. *Nature protocols*
726 **5**, 516–535 (2010).

727 [84] Yuan, W. *et al.* Temporally divergent regulatory mechanisms govern neuronal diversification and
728 maturation in the mouse and marmoset neocortex. *Nature Neuroscience* 1–10 (2022).

729 [85] Planert, H. *et al.* Intra-individual physiomic landscape of pyramidal neurons in the human neocortex.
730 *bioRxiv* (2021).

731 [86] Berg, J. *et al.* Human neocortical expansion involves glutamatergic neuron diversification. *Nature* **598**,
732 151–158 (2021).

733 [87] Tripathy, S. J. *et al.* Transcriptomic correlates of neuron electrophysiological diversity. *PLoS computational biology* **13**, e1005814 (2017).

734

735 [88] Bomkamp, C. *et al.* Transcriptomic correlates of electrophysiological and morphological diversity within
736 and across excitatory and inhibitory neuron classes. *PLoS computational biology* **15**, e1007113 (2019).

737

738 [89] Yuste, R. From the neuron doctrine to neural networks. *Nature reviews neuroscience* **16**, 487–497
(2015).

739

740 [90] Jun, J. J. *et al.* Fully integrated silicon probes for high-density recording of neural activity. *Nature*
551, 232–236 (2017).

741

742 [91] Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits: a decade of progress.
Neuron **98**, 256–281 (2018).

743

744 [92] Lakshmanan, A. *et al.* Molecular engineering of acoustic protein nanostructures. *ACS nano* **10**,
7314–7322 (2016).

745

746 [93] Einevoll, G. T. *et al.* The scientific case for brain simulations. *Neuron* **102**, 735–744 (2019).

747

748 [94] Saggio, M. L. *et al.* A taxonomy of seizure dynamotypes. *Elife* **9**, e55632 (2020).

749

750 [95] Arendt, D. *et al.* The origin and evolution of cell types. *Nature Reviews Genetics* **17**, 744–757 (2016).

751

752 [96] Cossart, R. The maturation of cortical interneuron diversity: how multiple developmental journeys
shape the emergence of proper network function. *Current opinion in neurobiology* **21**, 160–168 (2011).

753

754 [97] Sporns, O., Kötter, R. & Friston, K. J. Motifs in brain networks. *PLoS biology* **2**, e369 (2004).

755

756 [98] Huang, Z. J. & Paul, A. The diversity of gabaergic neurons and neural communication elements. *Nature*
Reviews Neuroscience **20**, 563–572 (2019).

757

758 [99] Luo, L. Architectures of neuronal circuits. *Science* **373**, eabg7285 (2021).

759

760 [100] Mizusaki, B. E. & O'Donnell, C. Neural circuit function redundancy in brain disorders. *Current opinion*
in neurobiology **70**, 74–80 (2021).

761

762 [101] Sompolinsky, H., Crisanti, A. & Sommers, H.-J. Chaos in random neural networks. *Physical Review*
Letters **61**, 259 (1988).

763

764 [102] Louvi, A. & Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. *Nature Reviews*
Neuroscience **7**, 93–102 (2006).

760 [103] Jiruska, P. *et al.* Synchronization and desynchronization in epilepsy: controversies and hypotheses. *The*
761 *Journal of physiology* **591**, 787–797 (2013).

762 [104] Renart, A. *et al.* The asynchronous state in cortical circuits. *science* **327**, 587–590 (2010).

763 [105] Levy, M. Social phase transitions. *Journal of Economic Behavior & Organization* **57**, 71–87 (2005).

764 [106] Canny, J. A computational approach to edge detection. *IEEE Transactions on pattern analysis and*
765 *machine intelligence* 679–698 (1986).

766 [107] Scheffer, M. Critical transitions in nature and society. In *Critical Transitions in Nature and Society*
767 (Princeton University Press, 2020).

768 [108] Tang, S., Pawar, S. & Allesina, S. Correlation between interaction strengths drives stability in large
769 ecological networks. *Ecology letters* **17**, 1094–1100 (2014).

770 [109] Faisal, A. A., Selen, L. P. & Wolpert, D. M. Noise in the nervous system. *Nature Reviews Neuroscience*
771 **9**, 292–303 (2008).

772 [110] Hutt, A., Longtin, A. & Schimansky-Geier, L. Additive noise-induced Turing transitions in spatial
773 systems with application to neural fields and the Swift-Hohenberg equation. *Physica D* **237**, 755–773
774 (2008).

775 [111] Hutt, A., Lefebvre, J., Hight, D. & Kaiser, H. Phase coherence induced by additive Gaussian and
776 non-Gaussian noise in excitable networks with application to burst suppression-like brain signals. *Front.*
777 *Appl. Math. Stat.* **5**, 69 (2020).

778 [112] Rich, S., Hutt, A., Skinner, F. K., Valiante, T. A. & Lefebvre, J. Neurostimulation stabilizes spiking
779 neural networks by disrupting seizure-like oscillatory transitions. *Scientific Reports* **10**, 1–17 (2020).

780 [113] Hammerstein, A. Nichtlineare integralgleichungen nebst anwendungen. *Acta Math.* **54**, 117–176 (1930).