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Abstract1

Heterogeneity is the norm in biology. The brain is no different: neuronal cell-types are myriad, reflected2

through their cellular morphology, type, excitability, connectivity motifs and ion channel distributions.3

While this biophysical diversity enriches neural systems’ dynamical repertoire, it remains challenging4

to reconcile with the robustness and persistence of brain function over time. To better understand5

the relationship between heterogeneity and resilience, we analyzed both analytically and numerically a6

non-linear sparse neural network with balanced excitatory and inhibitory connections evolving over long7

time scales. We examined how neural diversity expressed as excitability heterogeneity in this network8

influences its dynamic volatility (i.e., its susceptibility to critical transitions). We exposed this network to9

slowly-varying modulatory fluctuations, continuously interrogating its stability and resilience. Our results10

show that excitability heterogeneity implements a homeostatic control mechanism tuning network stability11

in a context-dependent way. Such diversity was also found to enhance network resilience, quenching12

the volatility of its dynamics, effectively making the system independent of changes in many control13

parameters, such as population size, connection probability, strength and variability of synaptic weights as14

well as modulatory drive. Taken together, these results highlight the fundamental role played by cell-type15

heterogeneity in the robustness of brain function in the face of change.16

Significance Statement17

Contemporary research has identified widespread cell-to-cell intrinsic diversity in the brain, manifest through18

variations in biophysical features such as neuronal excitability. A natural question that arises from this19

phenomenon is what functional role, if any, this heterogeneity might serve. Combining computational and20

mathematical techniques, this interdisciplinary research shows that intrinsic cell-to-cell diversity, far from21

mere developmental noise, represents a homeostatic control mechanism, promoting the resilience of neuronal22

circuits. These results highlight the importance of diversity in the robustness and persistence of brain function23

over time and in the face of change.24

1 INTRODUCTION25

Neural systems exhibit surprisingly reliable behavior across a lifespan. Despite high phenotypic variability [1–4],26

learning related plasticity changes [5], and constant alterations in neuromodulatory tone [6–11] and circuit27

topology [7, 12], neural dynamics remain qualitatively invariant in healthy brains over extended time scales.28

This is a signature of the brain’s manifest resilience, where its dynamics persist despite changes in intrinsic29

and/or extrinsic control parameters, preserving associated function [13–17]. In contrast, the failure to regulate30
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such perturbations may predispose neural systems to dynamic volatility: qualitatively distinct dynamics31

following changes in stability, resulting from critical transitions [18]. Such volatile dynamics in neural systems32

often arise from disease states: for example, changes associated with epilepsy [19], stimuli [20], or modulatory33

fluctuations associated with circadian and/or multidien rhythms [21] may cause these systems to slip towards34

critical transitions, such as recurrent seizures [22–24].35

The resilience of neural circuits has been thoroughly studied through pioneering experiments in the crab36

and lobster stomatogastric ganglia (STG) network [1, 25]. These experiments revealed highly stable, robust37

and invariant rhythmic activity despite pervasive phenotype heterogeneity, even when exposed to severe38

environmental perturbations [1]. These discoveries in neuroscience echo a long history, primarily in the field39

of macroecology, of experimental and theoretical studies examining the relationship between biodiversity,40

stability, and the resilience of ecosystems and food webs over time (see [14, 16, 26–32] and references therein),41

which typify the well known ‘stability-diversity’ debate [14, 16,30, 33]. In this setting, resilience is a system’s42

propensity for invariance and ability to retain its (in)stability in response to changing control parameters.43

In contrast, volatile systems are associated with changes in stability and critical transitions, also called44

bifurcations [13,15,18,30]. A confluence of theoretical studies in macroecology have explored this question and45

shown (see [33] and references therein) that diversity often renders a system volatile. Combined graph-theoretic46

and spectral approaches have shown that complex networks tend to lose stability when population sizes47

increase [14, 32, 34], coupling weights are too strong and/or diverse [14, 26–28,31, 35], connection probability48

is too dense [14,31,34–36], or when connectivity motifs become too heterogeneous [37].49

These questions have been examined by neuroscientists as well: numerous experimental [1, 4, 25,38–43]50

and theoretical [43–50] studies have explored the influence of cellular heterogeneity, seemingly the norm in51

the brain [51–56], on neural dynamics and communication. Furthermore in the context of disease states,52

excitability heterogeneity can stabilize neural dynamics away from pathological brain states [43]. Collectively,53

these studies have shown that cell-to-cell diversity stabilizes “healthy” dynamics to optimize responses,54

learning, information flow and coding capacity by tuning neural networks towards criticality [57], a regime55

that balances quiescence and excitability while residing between stability and instability. Despite these56

advances, linking single neuron attributes with emergent physiological activity that undergirds the persistence57

of brain function remains inaccessible by current experimental techniques.58

Inspired by decades of theoretical work in macroecology, we extended spectral theory of random networks59

[34, 58, 59] and applied it to neuroscience to study the impact of phenotype diversity on the brain’s resilience60

over extended time scales. We considered a generic large-scale non-linear neural network with sparse balanced61

excitatory and inhibitory connections, over time scales spanning minutes, hours and/or days to examine62

the persistence of its dynamics. We exposed this network to a slowly fluctuating modulatory input, a63

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.08.25.505270doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505270
http://creativecommons.org/licenses/by-nc-nd/4.0/


control parameter that is continuously interrogating the system’s stability. Over such time scales, slow64

modulation influences neural activity in a manner mimicking fluctuations during the resting state resulting65

from modulatory [6–11], environmental [1, 25, 60], and/or stimuli-induced perturbations, for instance. To66

quantitatively determine a system’s resilience or volatility, we leveraged spectral theory for large random67

systems [34,58,59], commonly used in macroecology to examine the stability of complex natural systems, such68

as food webs [14,16,26–32]. Through this framework, we analyzed the statistical properties of eigenvalues69

resulting from changes in network size, synaptic weights, connectivity motifs, modulatory drive, and cell-to-cell70

intrinsic diversity amongst neurons. In so doing, we looked beyond the stability of the system to how this71

stability responds to intrinsic and/or extrinsic changes, in order to understand how excitability heterogeneity72

predisposes balanced neural systems to stability transitions.73

We begin these explorations by showing that excitability heterogeneity, one of many types of intrinsic74

phenotypic diversity (see Discussion), renders networks less prone to sudden shifts in stability. Excitability75

heterogeneity refers to cell-to-cell variability in firing rate thresholds (see Methods). We specifically focused76

on excitability heterogeneity, given that neuronal excitability is a primary mechanism targeted by intrinsic77

plasticity mechanisms in learning [61], and which is altered in pathological states like epilepsy [43] and78

neuropsychiatric conditions [62]. We leveraged spectral theory for large random systems to reveal that79

excitability heterogeneity implements a generic control mechanism promoting: 1) homeostasis, by tuning the80

distribution of eigenvalues complex plane in a context-dependent way; and 2) resilience, by anchoring this81

eigenvalue distribution and gradually making it less dependent on modulatory influences. We explored how82

excitability heterogeneity can influence system resilience to ”insults” like increases in network size, connection83

probability, strength and variability of synaptic weights, and modulatory fluctuations which promote stability84

transitions. We found that intrinsic excitability heterogeneity rendered the network more resilient to these85

insults, a generic feature that was further preserved across a wide range of network topologies. These findings86

are particularly relevant to learning where synaptic plasticity, unless stabilized by homeostatic mechanisms,87

would lead to runaway (i.e., unstable) activity [5, 63, 64]. Taken together, these results provide new vistas on88

the role of a fundamental organizing principle of the brain - neural diversity [51–53] - in brain resilience.89
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Figure 1. Intrinsic neural diversity promotes the resilience of balanced networks A. Homogeneous
networks are composed of neurons with the same biophysical properties, yielding identical excitability profiles (left).
Mean network activity (see MATERIALS AND METHODS) displays recurring sudden shifts in stability (i.e.
bifurcations) characterized by transitions between states of low- and high-frequency activity. B Intrinsic excitability
heterogeneity results in variability in the excitability profile of neurons (left) while suppressing shifts in stability.
Low-frequency activity persists. C. The distribution of excitability thresholds in homogeneous networks (σ2

H = 0.0;
grey histogram) displays zero variance, while intrinsic diversity in heterogeneous networks increases excitability
threshold variability (σ2

H > 0; blue histogram). Thresholds were sampled from a normal distribution of mean zero and
variance σ2

H > 0 (see main text). D Such heterogeneity is reflected in the firing rate response functions which
encapsulates the excitability profile of each neuron. In the homogeneous case (black lines; indistinguishable from each
other), response functions are identical, but differ in presence of heterogeneity (blue lines). E Homogeneous neurons
exhibit both the same baseline activity and response to perturbations (black lines; indistinguishable from each other).
In contrast, heterogeneous networks exhibiting diversity in excitability yield diversified baseline activities and
responses to perturbations (blue lines). The perturbation applied (i.e. S(t)) is plotted in red (top). The input applied
is a filtered step function i.e. Ṡ(t) = −S(t) + I(t) with I(t) = 0.05 at t = 150 and I(t) = 0 otherwise. Other
parameters are given by d = −1, β = 15 and σ2

H = 0.05.
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2 RESULTS90

Neural systems display activity that remains qualitatively invariant over extended time scales highlighting91

their resilience in the face of changes in connectivity, development and ageing, pathological insults, and92

exposure to perturbations such as stimuli and/or modulatory influences [6–11]. To better understand the93

mechanisms underlying such resilience and how it is influenced by excitability heterogeneity, we developed a94

mathematical framework in which long term stability can be analytically quantified (see MATERIALS AND95

METHODS). We built and analyzed a large-scale, balanced and sparse network with excitatory and inhibitory96

connections (see Fig. 1) whose dynamics extend over time scales spanning minutes, hours and/or days. This97

model is both flexible and general, encompassing a wide range of population-based models involving excitatory98

and inhibitory interactions. It relates network size, the mean activity of neurons, their mutual synaptic99

connectivity, their individual level of excitability, and the influence of slowly varying modulatory inputs. We100

required that neurons were exposed to balanced synaptic connectivity such as seen experimentally [65,66],101

in which the net sum of excitatory and inhibitory synaptic weights is zero. We further selected connection102

probabilities reflecting those observed experimentally [67].103

Within this framework, we can tune the intrinsic excitability of each individual neuron, resulting in104

increasingly heterogeneous networks; without such variability, the network remain homogeneous. It is105

well-known that balanced networks are prone to volatility, i.e., susceptible to stability transitions [68, 69].106

To confirm this, neurons in the network were collectively exposed to a random, slowly varying modulatory107

input, mimicking excitability changes in neural activity arising from endogenous and/or exogenenous control108

parameter changes (i.e., neuromoduation, temperature, etc.) [6–11]. Such a slowly varying modulatory input109

continuously interrogates network stability and therefore is an ideal tool to expose the system’s resilience.110

As expected from this context, the homogeneous network (Fig. 1A) was predisposed to volatility through111

recurring changes in stability. Frequent sharp transitions between states of low- and high-frequency dynamics112

could be observed in the network’s mean activity (see MATERIALS AND METHODS), and confirmed using113

power spectral analysis. Such transitions index states of instability, characterized by elevated high-frequency114

activity, and are reminiscent of dynamics seen in electrophysiological recordings during seizures [70].115

However, heterogeneous networks did not exhibit such transitions in response to an identical modulatory116

input (Fig. 1B). Instead, intrinsic excitability variability was found to suppress these transitions, and low-117

frequency activity persisted throughout. Intrinsic variability amongst neurons was implemented by varying the118

effective firing rate response functions, reflecting diverse degrees of cellular excitability. We randomized firing119

rate response thresholds in which excitability is sampled from a normal distribution of mean 0 and variance120

σ2
H (Fig. 1C; see MATERIALS AND METHODS). This way of characterizing heterogeneity is well aligned121
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with experimental evidence that excitability is a key target for intrinsic plasticity mechanism [3,43,61,62,71],122

and echoes numerous previous studies on heterogeneous networks [43, 47, 49, 50, 72]. This heterogeneity123

leads to differing response functions for the individual neurons (Fig. 1D) as well as variable responses to124

perturbations like those ocurring due to fluctuations in modulatory input (Fig. 1 E).125

Figure 2. Dynamic volatility of homogeneous networks when exposed to modulatory input over long
time scales. A Dynamics of a homogeneous network where all neurons possess the same level of excitability.
Averaged neuron activity over an extended time scale. A slowly varying modulatory input (S(t), red line) continuously
interrogates the network stability, leading the network through alternating epochs of stability and instability which
typifies high volatility. Individual nodes (ui; black curves) display transient unstable dynamics, alternating with
periods of stability. B Lyapunov exponents (li) – computed numerically based on time series of each neuron across
time - delineate periods of stability and instability. The network is unstable whenever Lyapunov exponents are
positive, and stable otherwise. This behavior exemplifies volatile (frequently changed) stability. C. For some epochs,
the network is stable and exhibits dynamics smoothly driven by the modulatory input. Such dynamics corresponds to
regimes in which neural activity relaxes back to the equilibrium after a perturbation. These stable periods alternate
with epochs of instability in which the activity of the neurons diverge: Such dynamics are characterized by diverging,
synchronous and/or chaotic neural activity, and do not relax back to the equilibrium after a perturbation. Fast
noise-like fluctuations commonly observed in neural signals are here absent, being averaged out at these slow time
scales. D Network mean Lyapunov exponent ⟨l⟩ over independent network configurations, realized using identical
parameters but different net connectivity. Fluctuations overlapping the horizontal line (⟨l⟩ = 0; black dashed line)
indicate volatility. Gray shading indicates ± SD computed over independent trials of duration T = 3000a.u.. Other
parameters are N = 100, ρ = 0.05, f = 0.8, µe = 0.08,β = 50,d = −1 µi =

f
f−1

µe, σ
2
W,e = σ2

W,i = 0.005, B = −0.05.
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2.1 Resilience to modulation across time scales126

We further characterized the dynamic volatility of our homogeneous network in Fig. 2A.For the parameters127

chosen, neuronal activity was characterized by alternating epochs of stability and instability, as portrayed in128

Fig. 1A. This volatility was further confirmed by numerically computing Lyapunov exponents, which we129

found repeatedly changed sign (Fig 2B), as expected from the theory of nonlinear balanced networks [68, 69].130

Slowly driven by the modulatory input, the network dynamics displayed seemingly stable behavior over short131

time scales. The activity of individual neurons appears smoothly driven by the modulatory input. Such stable132

dynamics indexes states in which neural activity is stable, and relaxes back to equilibrium after perturbations;133

at these temporal scales, this corresponds to asynchronous neural firing. We emphasize that fast noise-like134

fluctuations, commonly present and expected in neural recordings, are here absent, as a consequence of the135

slow time scale considered. In contrast, other periods were characterized by unstable neural activity (Fig136

2C) in which the activity of individual neurons diverge away from equilibrium. Such periods of instability137

result from modulation-driven critical transitions [18] in which neural activity departs from stability, and may138

diverge, become synchronous and/or chaotic. To confirm the robustness of these results, we computed the139

mean Lyapunov exponent across independent realizations of the network connectivity and independent trials,140

in which the system possesses the same parameters (i.e. connection probability, synaptic weights, proportions141

of excitatory and inhibitory couplings) but exhibit different configurations and exposed to variable modulatory142

input. As shown in Fig. 2D, persistent positive mean Lyapunov exponent with large variance could be143

observed, confirming volatility. Collectively, these observations show that slowly fluctuating modulatory input144

may expose the volatility of homogeneous networks by revealing sudden stability transitions and dynamical145

regimes that are qualitatively distinct. This exemplifies non-resilient behavior.146

2.2 Dynamic volatility of homogeneous networks147

To better understand the dynamics observed in Fig 2 and the underlying mechanisms hindering the resilience148

of homogeneous networks (i.e., where neurons possess the same level of excitability), we harnessed spectral149

theory for large-scale random systems [59, 73]. By construction, our network model is subject to the circular150

law of random matrix theory [58,73] in which the complex eigenvalues are constrained with high probability151

in a disk in the complex plane, with a spectral radius Γ centered around the local relaxation gain d (see152

MATERIALS AND METHODS). Changes in the spectral radius Γ result either in the clustering or dispersion153

of eigenvalues around the center of the spectral disk (i.e., d). As such, whenever the spectral radius Γ becomes154

larger (resp. smaller) than |d|, the network is said to become unstable (resp. stable) with high probability:155

eigenvalues cross the imaginary axis and exhibit positive (resp. negative) real parts [34, 36, 58, 74–76]. If the156
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Figure 3. Spectral analysis of homogeneous networks exposed to modulatory input. Modulatory inputs
influence the statistical properties and distributions of eigenvalues for homogeneous networks, which may be
quantified by the spectral radius Γ. A. The network eigenvalues (λj , computed for one instance of the network
connectivity; gray dots) are complex and distributed in the complex plane within a disk (black circle), centered
around the linear relaxation gain d (yellow vertical line) and delineated by a circle of radius Γ. Whenever Γ matches
or exceeds the stability threshold (vertical black dashed line located at 0), the system is considered unstable (gray
shaded area) with high probability. The slowly fluctuating modulatory input S(t) ≈ So influences the system’s
stability by expanding or contracting the spectral radius, and hence the spectral disk containing eigenvalues. As the
modulatory input amplitude |So| increases (horizontal red arrows) the spectral disk and radius increases, resulting in
instability. Here, three examples are plotted for So = 0 (small black circle), So = 0.025 (medium black circle) and
So = 0.05 (large black circle). B.When S(t) fluctuates slowly in time (top red line), the spectral radius Γ expands and
contracts above or below the stability threshold (Γ = d = 1; orange horizontal line) leading to alternating epochs of
stability and instability (gray shaded area) as exemplified in Figure 2. Aside from changes in the amplitude So, other
parameters remained fixed. C. Spectral radius Γ as a function of So. At baseline (i.e. So = 0), the spectral radius is
small and hence the network is stable. As |So| increases, the spectral radius increases, exposing the system to stability
transitions as eigenvalues cross the imaginary axis. As the modulatory input increases further, the spectral radius
starts to decrease as the neurons reach saturation. The threshold of stability is plotted for Γ = |d| = 1 (see
MATERIALS AND METHODS; orange horizontal line), alongside both numerically (grey) and theoretically (black)
computed spectral radius Γ. Instability region is shaded in gray. D. Changes in connection probability (ρ; orange
line), network size (N ; cyan line), firing rate response gain (β; green line) and mean synaptic strength (µ; red line) are
all collectively destabilizing and increase monotonically the spectral radius Γ. In this panel, So = |B|. Each parameter
was varied independently within the range specified, while other parameters were set to their default value i.e.
N = 100, ρ = 0.05, d = −1, µe = µ = 0.08, β = 50, f = 0.8, µi = fµ/(f − 1), σ2

W,e = σ2
W,i = 0.005, B = −0.05.

spectral radius remains commensurate with |d|, then the network is considered metastable and in the vicinity157

of a critical point. This framework has been used extensively in macroecology to examine the stability of158

complex natural systems, such as food webs [14,16,26–32].159

While the net size of the spectral radius determines the system’s stability, how this spectral radius changes160

with respect to a control parameter (e.g., modulatory input amplitude So) reflects the system’s resilience161

or volatility. That is, changes in spectral radius illustrate the system’s susceptibility to stability transitions162

due to changes in a control parameter. We thus subjected the homogeneous network to a thorough spectral163

analysis (cf. section 4.3). By virtue of having identical excitability, individual neurons’ steady states were164

found to be identical across the network and entirely dependent on the modulatory input amplitude (i.e.165

uo
j = B + So), as expected. This is fully consistent with the dynamics observed in Fig. 2. Over short time166
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scales, the modulatory input S(t) ≈ So can be considered constant: its influence on the spectral radius Γ167

may thus be quantified. Indeed, as can be seen in Fig. 3A both numerically and analytically, the spectral168

radius was found be highly sensitive to modulatory input: changes in So resulted in high amplitude clustering169

and/or dispersion of the eigenvalues around the relaxation gain, causing frequent transitions between stability170

and instability. The spectral radius Γ was found to increase with the modulatory input amplitude (So),171

indicating that such fluctuations generally lead to instability.172

We confirmed this volatility in Fig. 3B, alongside the alignment between our numerical and analytical173

calculations. Time-dependent changes in the amplitude of the modulatory input (such as those exemplified174

in Fig 2) significantly contract and/or expand spectral radius Γ, whose value intermittently crosses the175

stability threshold, leading to an alternation between stability and instability. As So fluctuates, the network176

undergoes epochs of instability, alternating with periods where neural activity is either suppressed (So strongly177

inhibiting) and/or saturated (So strongly exciting). We note that fast changes in S(t) might cause the network178

to cross the unstable regime briefly; instability is then difficult to observe since the system does not evolve179

sufficiently fast to exhibit unstable observable dynamics. Results plotted in Fig. 3C show a high dependence180

of the spectral radius on modulatory input amplitude (So). Stability (i.e., relaxing neural activity, small Γ)181

characterizes inhibitory and/or low amplitude modulatory input, while higher amplitudes lead to instability182

(i.e., divergent, chaotic and/or synchronous neural activity, large Γ) and eventually saturation (i.e., neural183

activity plateaus, small Γ).184

What must be concluded from these observations is that the spectral radius size is a context- and185

modulation-dependent metric for stability. Indeed, as neural systems can reside in both stable (relaxation)186

and/or unstable (oscillations, synchrony, chaos) functionally meaningful dynamic regimes, the spectral radius187

evaluated at a given moment in time conveys little information about the network dynamic volatility and188

resilience. It is instead how it changes that reflects resilience or volatility. As shown in Fig. 3D, our189

analysis also revealed that the spectral radius Γ - and hence the dispersion of eigenvalues in the complex190

plane - increases with network size (N), connection probability (ρ), firing rate response gain (β) as well191

as net synaptic strength (µ); individually or collectively, all these network features diminish the system’s192

resilience. This is in line with previous results [28,34] notably on balanced networks [68,69], highlighting that193

homogeneous networks are generically prone to instability. Taken together, our analysis indicates that, in194

sparse balanced and homogeneous networks, the spectral radius’ high sensitivity to modulatory input and195

other control parameters underlies the system’s changing stability, and thus its volatility.196
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2.3 Intrinsic excitability heterogeneity tunes stability and resilience197

Numerous previous studies [45, 47, 57, 72] have shown that heterogeneous neural systems adapt and converge198

towards a regime of metastability to optimize responses and coding properties. Such metastability manifests199

itself through critical-like neural activity [77–79] and/or dynamics residing in the vicinity of a state transition200

[80]. From the perspective of the aforementioned circular law, such dynamical properties emerge whenever201

these networks are brought towards and operate in dynamical regimes resulting from a spectral disk of202

intermediate size, neither too small (i.e., strong stability leading to quiescence) nor too large (i.e., strong203

instability leading to divergence, chaos and/or synchrony).204

Our previous findings [43] suggest that excitability heterogeneity should improve network resilience, as205

does the result presented in Fig. 1B. To further explore this we first repeated the numerical experiment206

in Fig. 2 in which network response to slow-varying modulatory input is examined over long time scales,207

but now in presence of excitability heterogeneity (i.e., σ2
H > 0). We exposed the network to the same208

connectivity statistics and modulatory input as before, while examining the difference in its behavior. In209

contrast to the homogeneous case, the long term dynamics of the network were found to be resilient: robust,210

invariant stability replaced the intermittent behavior seen in the homogeneous case. As can be seen for the211

simulations in Fig. 4A, no transitions between stability and/or instability occurred, and neuronal responses212

were qualitatively similar, smoothly driven by modulatory input amplitude. Neural activity remained in a213

regime in which perturbations relax back to equilibrium. As a direct consequence of heterogeneity, degeneracy214

in the neurons’ equilibria is broken: neuron fixed points were now distributed with a mean µuo = B + So215

and variance σ2
uo ( Fig. 4C; see MATERIALS AND METHODS). Lyapunov exponents remained bounded216

below zero throughout, as can be seen in Fig. 4B. This behavior was also found to persist over independent217

realizations of the network connectivity (Fig. 4D). Take together, these confirm persistent stability and218

suggest enhanced resilience in presence of excitability heterogeneity.219

To better understand the mechanism behind these dynamics, we adapted the spectral theory for large-scale220

random systems [59,73] to expose the influence of excitability heterogeneity on the distribution of eigenvalues.221

We specifically explored the susceptibility of the spectral radius Γ - and hence the dispersion of eigenvalues in222

the complex plane - to modulation across various degrees of heterogeneity (σ2
H > 0) (see MATERIALS AND223

METHODS). Our analysis revealed two main roles played by diversity on network dynamics: a) homeostatic224

control on network stability; and b) the promotion of its resilience.225

Indeed, we found that excitability heterogeneity is a homeostatic mechanism exerting bidirectional and226

context-dependent control on network stability: enriching the dynamics whenever they are too poor, or227

conversely, stabilizing network activity whenever it is too unstable. Indeed, as shown in Fig. 5A, heterogeneity228
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Figure 4. Heterogeneity quenches volatility and promotes resilience to modulatory drive over long
time scales. A. Long time scale dynamics of an heterogeneous network (σ2

H = 10) exposed to the same slowly
varying drive (S(t); red line) as in Fig. 2. Individual neuron activity (ui; blue shaded lines) are now distributed
around a mean activity µuo = B + So and variance σ2

uo . The network stability is preserved throughout: neuronal
activity sits in a regime where it relaxes back to equilibrium under perturbations, and supervene to modulatory input.
B. Lyapunov exponents (li) – computed numerically based on time series of each neuron across time. Compared to
the homogeneous case, stability persists as the Lyapunov exponents remain negative throughout. C. For all epochs,
the network is stable and exhibits dynamics smoothly driven by the modulatory input. D. Network mean Lyapunov
exponent ⟨l⟩ over independent network configurations, realized using identical parameters but different net
connectivity. Fluctuations below the horizontal line (⟨l⟩ = 0; black dashed line) indicate resilient dynamics, in which
no stability transition occurs. Gray shading indicates ± SD computed over independent trials of duration
T = 3000a.u..Parameters are N = 100, ρ = 0.05, β = 50, d = −1, f = 0.8, µe = µ = 0.08 σ2

H = 10, µi = fµ/(f − 1),
σ2
W,e = σ2

W,i = 0.005, and B = −0.05.

increased the spectral radius (Γ) for small values modulatory input amplitudes (So). For such low amplitudes229

of modulation, lack of heterogeneity yields highly stable neural activity that invariably relaxes back to230

equilibrium whenever perturbed: the spectral radius is infinitesimal and eigenvalues are clustered around231

the relaxation gain d. Introducing excitability heterogeneity expanded the spectral disk, enriching network232

dynamics towards instability. Surprisingly, higher modulatory input amplitudes, for which the system is233

highly unstable, led to the opposite. Indeed, heterogeneity was found to here instead contract the spectral234

disk and stabilize the dynamics (Fig. 5B). This contextual control of excitability heterogeneity on stability235

which depends on modulatory fluctuations (cf. Figs. 5A, B) suggests that heterogeniety tunes the spectral236

disk - and hence eigenvalue dispersion - towards an optimal intermediate size.237

To confirm the alignment of our mathematical analysis and numerical simulations, we computed the238

variance of the neuron’s fixed point distribution (i.e., σ2
uo), which was also found to depend on the degree of239

heterogeneity (Fig. 5C). Introducing heterogeneity also consistently prevented stability transitions, rendering240
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Figure 5. Heterogeneity-induced homeostatic control on stability. Increasing the degree of heterogeneity in
the network strongly influences the network’s response to modulatory input. A. When modulatory input amplitude
(So) is small, increased diversity results in an enrichment of neural activity. As heterogeneity increases, the spectral
disk (Γ) expands (σ2

H = 0.01, 0.025, 1; blue shaded circles) compared to the homogeneous case (σ2
H = 0; black circle).

Modulatory input is here So = 0. B. In contrast, when modulatory input amplitude is large, heterogeneity stabilizes
neural activity by contracting the spectral disk compared to the homogeneous case (circle colors as in Panel A),
causing a clustering of the eigenvalues around the linear relaxation gain d (vertical yellow line). Modulatory input is
here So = |B|. C Variance of the steady state distribution σ2

uo as a function of heterogeneity σ2
H. As heterogeneity

increases, the variance of the steady state distribution increases. The dotted line corresponds to the numerically
computed steady state distribution variance averaged over 50 independent network realizations. The bold blue line
represents the analytical calculations in which the approximation σ2

uo ≪ σ2
H was used. Error bars reflect standard

deviations over trials. D Stability transition rate as a function of excitability heterogeneity. This rate corresponds to
the number of bifurcations per unit time over independent realizations of the network, for 10 trials of duration 50 a.u..
Error bars reflect standard deviations over trials. E. Spectral radius Γ as a function of excitability heterogeneity
(colors as in Panel A). Diversity has an enrichment effect for low modulatory input, while being stabilizing whenever
modulatory input is strong and/or saturating. F. The homeostatic influence of heterogeneity on the spectral radius
depends on modulatory input. Diversity will invariably stabilize the network (i.e. decrease Γ) whenever So is high
(bold red curve), while enrichment (i.e. increased Γ) will occur for weak So (pale red curve). High levels of
heterogeneity are always stabilizing as Γ decreases to zero. Other parameters are given by N = 100, ρ = 0.05, d = −1,
f = 0.8, µe = µ = 0.08, β = 15, µi = fµ/(f − 1), σ2

W,e = σ2
W,i = 0.005 and B = −0.05 .

the system more resilient. Indeed, as can be seen Fig. 5D, the transition rate - corresponding to the number241

of bifurcations observed in the network per unit time - decreased monotonically, confirming the trend seen in242
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Fig. 4. We systematically quantified how excitability heterogeneity shapes the spectral radius in presence243

of modulatory fluctuations. As plotted in Fig. 5E, the contextual influence of excitability heterogeneity244

on network stability stems from a damping of spectral radius sensitivity with respect to modulatory input.245

Indeed, sharp changes in Γ caused by So (such as those seen in Fig. 3B, C) were evened out by heterogeneity,246

resulting in an enrichment or stabilization of the dynamics as the spectral radius is increased or decreased,247

respectively. Specifically, heterogeneity increased the spectral radius for low and/or saturating modulatory248

amplitudes, and did the opposite for high amplitudes and decreased the spectral radius. The homeostatic249

influence of heterogeneity on network stability could be confirmed in Fig. 5F. Irrespective of modulatory250

input amplitude So, heterogeneity was found to tune the spectral radius - through either enrichment or251

stabilization - towards the same intermediate radius.252

Another important conclusion stemming from our analysis is that excitability heterogeneity generically253

enhances network resilience. As can be seen from Fig. 6A, increasing excitability heterogeneity significantly254

damped spectral radius changes resulting from modulatory input. Indeed, excitability heterogeneity made255

Γ less sensitive to changes in So, and by doing do, quenched volatility. This was confirmed in Fig. 6B by256

systematically varying modulatory input amplitude and the degree of heterogeneity while measuring the257

spectral radius. We found that heterogeneity damped the sensitivity of the network stability on So, as the258

spectral radius gradually radius becomes effectively independent of So beyond a given degree of heterogeneity259

(dashed box in Fig. 6B). This implies that excitability heterogeneity anchors eigenvalue distributions in260

the complex plane, while making eigenvalues independent of modulatory input. An important consequence261

of this anchoring is that the network stability remains fixed, preventing stability transitions, confirming262

resilience. To encapsulate the effect of excitability heterogeneity on the network’s resilience, we computed263

both the spectral volatility (κ)- which measures the effective sensitivity of the spectral radius on a given264

control parameter - as well as the resilience parameter (R) - which is the reciprocal of the spectral volatility -265

as a function of modulatory input amplitude (i.e. So). These metrics quantify how invariant to changes in a266

given control parameter the eigenvalue distribution is. This is done by looking at variations of the spectral267

radius, cf. section 4.5. As shown in Fig. 6C, heterogeneity optimized resilience to modulatory input, and the268

spectral volatility decreased. Collectively, these results demonstrate that excitability heterogeneity, greatly269

enhances the resilience of sparse balanced networks by anchoring the eigenvalues in the complex plane and270

decreasing the sensitivity of their distribution to modulatory input.271
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Figure 6. Heterogeneity enhances the resilience of balanced networks. A. Diversity limits variations of the
spectral disk. Increasing heterogeneity (σ2

H = 0.1; blue shaded circles) constrains changes in the spectral radius Γ
resulting from changes in modulatory input amplitude (So = 0,0.025 and 0.05; red arrows; right). Without
heterogeneity, the same fluctuations in modulatory input (red arrows; left) result in much wider changes in Γ (σ2

H = 0,
black circles). While both heterogeneous and homogeneous cases result in an expansion of the spectral disk, these
variations are much smaller whenever σ2

H > 0; B. Spectral radius (Γ) as a function of the degree of heterogeneity and
the amplitude of the modulatory input (So). Increasing heterogeneity (dashed box) suppresses the system’s
dependence on the modulatory input as the spectral radius Γ becomes constant despite changes in So (dashed box).
C. Resilience (RSo ; red curve) and spectral volatility (κSo ; grey curve) measures with respect to the modulatory
input amplitude (So) as a function of the degree of heterogeneity. Resilience increases with heterogeneity while the
spectral radius sensitivity (i.e. volatility) decreases with σ2

uo . Other parameters are given by N = 100, ρ = 0.05,
d = −1, f = 0.8, µe = µ = 0.08, β = 15, µi = fµ/(f − 1), σ2

W,e = σ2
W,i = 0.005 and B = −0.05 .

2.4 Heterogeneity may stabilize networks across changes in connectivity272

Our results so far indicate that excitability heterogeneity implements a long time-scale homeostatic control273

mechanism that promotes resilience in networks exposed to modulatory inputs. However, other control274

parameters might influence the neural systems’ stability over these time scales. Neural systems are subjected275

to perpetual change, even in the absence of modulatory fluctuations and/or stimuli. Synaptic plasticity is276

a salient example: during learning, the number of synapses and/or the effective synaptic weights increase,277

as a consequence of processes such as long-term potentiation (LTP) and depression (LTD) [12]. Networks278

undergoing such plasticity-induced structural modifications of their connectivity tend to be weakly resilient.279

Indeed, most forms of synaptic plasticity lead to the development of instability, in which run-away neural280

activity departs from baseline and needs to be compensated/stabilized through various homeostatic feedback281

processes [5, 63,64], a few of which have found experimental support [81].282

We asked whether excitability heterogeneity, on its own, could prevent stability transitions in neural283

systems undergoing plasticity-induced changes in connectivity. Our previous analysis demonstrates that the284
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spectral radius Γ - and hence the dispersion of eigenvalues in the complex plane - increases with connection285

probability (ρ) as well as net synaptic strength (µ). This suggests that long time-scale changes in these control286

parameters - prone to increase together or independently during learning - generically promote instability and287

volatility. As can be seen in Fig.7, this is confirmed numerically: increasing both the connection probability288

(Fig.7A) and synaptic strength (Fig.7B) over a physiologically realistic range resulted in instability, as289

measured with the mean Lyapunov exponent. However, this only occurred in the homogeneous case (σ2
H = 0).290

Indeed, increasing the heterogeneity suppressed this instability with the mean Lyapunov exponent remaining291

negative over the range of values of explored, i.e. the system did not experience any stability transitions.292

Figure 7. Heterogeneity compensates the destabilizing effect of changes in connection probability and
synaptic strength. A. Increasing the connection probability generically destabilizes sparse balanced networks. In
the homogeneous case (σ2

H = 0; black curve), increasing the connection probability from ρ = 0 to 0.2 leads the
network into an unstable regime. Lyapunov exponents li increase and become positive. In contrast, in the presence of
heterogeneity (σ2

H = 1; blue curve), they remain more or less constant, and stability persists. Here µe = µ = 0.08,
µi = fµ (f − 1) B. The same trend is observed whenever the synaptic strength is increased from µ = 0 to µ = 0.2.
Here ρ = 0.05. C. The spectral radius Γ increases with both connection probability (ρ) and synaptic strength (µ),
suggestive of instability. The instability threshold (Γ(ρ, µ) = |d|) is shown as a black dashed line. Introducing
excitability heterogeneity shifts the instability threshold in parameter space (blue shaded dashed lines), promoting
stability. Illustrative curves representing a trajectory in parameter space occuring during plasticity(grey curves),
connecting the network state before (ρ = 0, µ = 0; a) and after learning (ρ > 0, µ > 0;b). D. Resilience measure,
computed as a function of connection probability (ρ;Rρ; orange curve) and synaptic strength (µ; Rµ; yellow curve),
shown along modulatory input amplitude (So;RSo ; red curve) for reference. All these increase with increaseing degree
of heterogeneity. Other parameters are given by N = 100, d = −1, β = 50, f = 0.8, σ2

W,e = σ2
W,i = 0.005. In panel D,

B = 0.
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Mathematical analysis affirms this finding. Figure7C shows that the spectral radius Γ increases monotoni-293

cally with connection probability (ρ) and synaptic strength (µ) interchangeably, underlying such systems’294

volatility and associated vulnerability to stability transitions. Slow time scale changes in connectivity resulting295

from plasticity (illustrated by the gray curves linking points a and b in Fig.7C) result in stability transitions.296

Introducing heterogeneity moved the effective stability threshold (i.e., Γ(ρ, µ) = |d|) further in parameter297

space, resulting in overall compensation for the destabilizing influence of increases in connection probability298

and synaptic strength (c.f., 3D). In this case, slow time scale changes in connectivity cause stability transitions299

to become increasingly unlikely as the net size of the stability region increases. In addition to this stabilizing300

influence, heterogeneity was also found to promote resilience by enhancing the persistence of stability via301

anchoring the eigenvalue distribution/spectral disk in the complex plane. We thus computed the resilience302

metric, now as a function of connection probability (ρ; Rρ) and synaptic strength (µ; Rµ). As shown in Fig.7D,303

increasing the degree of excitability heterogeneity enhanced resilience for both these control parameters304

i.e., promoting the persistence of stability by decreasing the spectral volatility and the susceptibility of the305

spectral radius on changes in connection probability (ρ) and synaptic strength (µ).306

3 DISCUSSION307

In the last several years, with continued advancements in high throughput [82] single cell RNA sequencing308

(scRNAseq) [83], and with the very recent addition of spatially resolved scRNAseq [84], it is abundantly309

clear that within cell-types there is a transcriptomic continuum rather than discrete sub-types [56]. This310

within cell-type transcriptomic diversity is also reflected in functional diversity in excitability features311

in human [4, 43, 85, 86] and rodent neurons [53, 56, 84] and likely a direct manifestation of the observed312

transcriptomic variability, given the correlation between the transcriptome and electrophysiological properties313

of neurons [87,88]. In light of these technical advances in describing the properties of individual neurons at314

scale, a major challenge for neuroscience is to bridge across the divide between individual neuronal properties315

and network function [89]. While bridging this gap remains a significant challenge experimentally, although316

advances in imaging technologies (NeuroPixels [90], Ca2+ [91], ultrasound [92]) are continually closing it, it317

is the promise of computational and mathematical analyses to simplify the complexity of the brain while318

addressing this critical divide between brain structure and function [93].319

It is within this context of bridging scales that we here bridge between neuronal diversity - a seemingly320

fundamental design principle of the brain - and the stability of cortical dynamics. We have been in part321

biased by our initial work in the context of epilepsy which is a pathological condition where individuals slip322

in and out of pathological dynamical brain states [24,94] called seizures, and how excitability homogenization323
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renders circuits more prone to such seizure-like states [43]. However, we have also have been greatly influenced324

by computational and mathematical work in macroecology that argue that not all types of diversity are325

stabilizing. Indeed, there is decades of research in the fields of macroecology and food webs, examining the326

relationship between complex systems’ stability, biodiversity and resilience: the so-called ”stability-diversity”327

debate [14,16,30,33]. Fascinatingly, large scale random networks are more prone to volatility and stability328

transitions in response to increased size [14, 32, 34], connection probability [14, 31, 34–36], and connection329

strength [14,26–28,31,35], and/or when connectivity motifs become too heterogeneous [26–28,31,32,34–37].330

Thus, within this stability-diversity debate and the myriad of heterogenities that could be explored,331

our choice to explore excitability heterogeneity is not haphazard, and for four reasons it is not surprising332

that we find that it has profound effects on resiliency of brain circuits. Firstly as discussed above, cellular333

diversity is the norm in the brain, and thus appears to be a clear “design principle” of neuronal circuits,334

which we accept at face value to be beneficial to the brain, and for which the biological machinery clearly335

exists [84,95]. Secondly, there is ample evidence both experimentally and computationally that excitability336

heterogeneity is helpful for information coding in the brain, decorrelating brain networks while expanding their337

informational content [3, 71]. Thirdly, we have shown that amongst a number of experimentally determined338

electrophysiolgical features of human neurons, it is the loss of excitability heterogeneity that accompanies339

epilepsy [43]. Our mathematical and computational work showed that excitability heterogeneity prevents340

sudden transitions to highly correlated information poor brain activity. Lastly, neuronal excitability is highly341

malleable. This malleability arises from the process of intrinsic plasticity, where neuronal excitability is342

modulated by the neuron’s past activity [5,61]. Indeed learning is accompanied by changes in voltage and343

calcium activated channels that are principally involved in setting resting membrane potential, input resistance,344

and rheobase [61]. It is these kinds of channels as well that are altered in a number of neuropsychiatric345

conditions, including epilepsy [62]. Excitability thus represents a local parameter tuned to the complexities,346

or lack thereof of activity of each neuron in the sea of activity it is embedded in.347

Furthermore, in light of the ubiquity of various forms of neuronal [4, 40, 96–99] and glial [41, 42] diversity,348

that could render neural circuits unstable (i.e., the stability-diversity debate above), they are in fact highly349

resilient, and qualitatively invariant across extended time scales in part likely due to excitability heterogeneity.350

This of course holds true in healthy brains despite continuous external and internal changes, driven by351

factors including modulatory inputs [6–11], environmental fluctuations and/or stimuli [1, 25, 60], and changes352

in connectivity like those resulting from synaptic plasticity [63, 64]. The robustness of neural dynamics353

and function - the persistence of its dynamics - with respect to changing control parameters epitomizes354

resilience [13–17,30].355

This also holds true for process that continuously change the brain during development and ageing, where356
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brain dynamics remain stable over many decades despite the structural changes that accompany time, and357

pathological processes, where failure to regulate brain activity in the face of pathological insults predispose358

the brain to dynamic volatility [18, 21]. A confluence of both experimental [1, 4, 25, 38–43] and theoretical359

studies [43–50] have highlighted the role of heterogeneity in brain dynamics and stability. Notably, phenotypic360

diversity has been shown to promote the stability of brain function and its associated dynamics through361

degeneracy, redundancy and covariation [1, 25,100].362

Our initial results confirmed [68,69,101] that networks with homogeneous excitability exhibit volatility363

in response to modulatory input. Increases in network size, synaptic strength, and connection probability364

all led to stability transitions. These observations highlight that the spectral radius size itself, evaluated365

at a given moment in time, conveys limited information about a network’s volatility and susceptibility366

to critical transitions, which remains high in the absence of phenotype diversity. Introducing excitability367

heterogeneity changed the portrait completely: our joint numerical and analytical results revealed that368

excitability heterogeneity: 1) implements a homeostatic control mechanism tuning the distribution of369

eigenvalues in the complex plane in a context-dependent way; and 2) enhances network resilience by fixing370

this distribution and making it independent of modulatory input(s). We extended our analysis to connection371

probability and synaptic strength, parameters that are prone to change over long time scales during processes372

such as plasticity [63, 64] and development [102]. Excitability heterogeneity also promoted resilience here by373

preserving network stability.374

This formalism also facilitates insightful observations about the role played by various forms of diversity375

in neural circuits, and complex natural systems generally. In [37], the authors provided a comprehensive376

overview of the destabilizing influence of motif heterogeneity - the variability in the connection degree, or377

alternatively a lack of redundancy in connectivity - on complex random graphs. Recontextualized from the378

perspective of neural systems, these results and ours suggest that networks exhibiting redundant connectivity379

motifs alongside node heterogeneity will generically exhibit enhanced stability and resilience, corroborating380

numerous experimental findings [1].381

As a corollary to our results, less heterogeneous systems should be more vulnerable [18, 43] to critical382

transitions [18]. Epilepsy is a revealing example in which seizures, which are transitory events typified by383

hyper-active and -synchronous brain activity [103], seemingly occur paroxysmally. The occurrence of such384

seizures has been shown to depend on modulatory factors, such as stimuli [20] and circadian and/or multidien385

cycles [21]. While asynchronous activity relies on a controlled balance between excitation and inhibition [104],386

the transition to pathologically synchronous activity in epilepsy has largely been conceptualized as a disruption387

of this balance [19]. Our recent study [43] adds a new dimension to this mechanistic conceptualization of388

epilepsy, where we observed a decrease in excitability heterogeneity of layer 5 pyramidal neurons in seizure389

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.08.25.505270doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505270
http://creativecommons.org/licenses/by-nc-nd/4.0/


generating areas (epilepetogenic zone) in individuals with medically refractory epilepsy. When implemented390

computationally, this experimentally observed reduction in excitability heterogeneity rendered neural circuits391

prone to sudden dynamical transitions into synchronous states with increased firing activity, paralleling392

ictogenesis. These observations suggest an important contribution of neural heterogeneity - or lack thereof -393

in the disease’s etiologies.394

Collectively, our results suggest that excitability heterogeneity make balanced sparse neural networks395

insensitive to changes in many key control parameters, quenching volatility preventing transitions in stability396

that typify a lack of resilience. This phenomenon is far from being exclusive to neural systems: the role of397

diversity in ecosystem resilience in the face of change has been extensively studied [14–16,26–32], and extended398

across environmental science, ecology, engineering, operation research, management science, business, social399

sciences, and computer science [13, 14,16, 17,105]. The instrumental role of diversity at promoting resilience400

is reminiscent of the Gaussian blur effect observed in data analysis, in which high frequency gradients (i.e,401

“noise”) are filtered out to preserve the smoothness of data by suppressing non-linearity [106]. In the context402

of our work, such heterogeneous “blurring” occurs in control parameter space, resulting in a smooth (and403

eventually flat and decoupled) relationship between the spectral radius size and given control parameter(s).404

We thus argue that its not the spectral radius size itself, but how it changes in response to modulation,405

that reflects whether a system is resilient or not. Indeed, as neural systems (and complex natural systems406

generally) can reside in both stable (e.g., relaxation) and/or unstable (e.g., oscillations, synchrony, chaos)407

functionally meaningful dynamic regimes [18, 107], the spectral radius remains a context-dependent measure408

of stability that has little to do with the actual function of these systems. Dynamical invariance, robustness409

and resilience are consequences of the persistence of the spectral radius size over time and in the face of410

change, resulting from a heterogeneity-induced decoupling between spectral radius size and system’s control411

parameter(s) (e.g., modulation).412

We highlight that our analyses and results can be generalized across a wide range of network sizes,413

connectivity profiles, topologies, types of heterogeneity, dynamics (e.g., asynchronous, rhythmic), and414

individual neuron response properties. Indeed, while we have focused here on Erdős–Rényi - type topology,415

our results may be easily extended to other graph structures (e.g., multi-modal, scale-free, cascade models)416

through a proper rescaling of the spectral radius [33, 37], and can also be modified to study time delayed417

systems [75]. In particular, the circular spectral disk resulting from the connectivity matrix considered418

here might adopt a different shape whenever predator-prey, competition and/or mutualistic interactions are419

introduced, yet are fully amenable to a node diversity considerations [60,108].420

Like all computational and theoretical work, there are limitations to the contexts in which these results421

are applicable. First, our model represents a balance between neurophysiological relevance and mathematical422
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tractability. More detailed and biophysically rich models are certainly required to provide a more comprehen-423

sive understanding of the role of diversity on network stability. Second, phenotype diversity certainly impacts424

neural activity beyond excitability. A more thorough characterization of neural variability is surely warranted425

to reinforce the alignment between our model and experimental data, notably to improve the scope of our426

predictions. Third, our model does not consider stochastic fluctuations that are known to be ubiquitous in427

neural systems [109] and to influence their stability [110–112]. We have neglected this source of variation due428

to the long time scales considered here, and the moderate non-linearity of the system (i.e., parameterized by429

the firing rate response gain β). Future work is required to incorporate noise in both our simulations and430

analyses.431

In summary, our results position excitability heterogeneity, and possibly more generally, neuronal diversity432

(from transcriptomic and functional studies), as a critical design feature of the brain to ensure its rich433

dynamics are preserved in the face of a wide set of network parameters. Furthermore, resilience of dynamics434

to scale (physical scale as in number of neurons, or connectivity as in the strength of connections) is of course435

critically important for a growing developing brain, as well as an ageing brain. However even more generally436

as a design principle, excitability heterogeneity provides dynamical resilience to brains of all sizes across the437

phylogenetic tree, allowing the freeness from scale in a scale-free system.438

4 MATERIALS AND METHODS439

4.1 Network model440

We consider a large network of N neurons whose activity evolves according to the interplay between local441

relaxation, recurrent synaptic connectivity and slowly varying modulatory input. This model provides a442

description of dynamics unfolding over extended time scales, hence quantifying mean neuronal activity. The443

mean somatic membrane potential of neurons ui(t), i ∈ [1, N ] obeys the following set of non-linear differential444

equations445

τ
d

dt
u = L[u] +Wf [u+H] +B+ S(t) (1)

where τ scales the slow time scale at which the dynamics occur. In the following we re-scale time by t → tτ446

for convenience. The model in Eq. 1 is both flexible and general, encompassing the mean behavior of a447

wide scope of interconnected neurons models involving excitatory and inhibitory interactions, such as the448

celebrated Wilson-Cowan and Jansen-Rit models, for instance. Depending on the spatial scale considered,449

which remains here undefined, such models can be either be considered to be neuron-based (where nodes450

represent individual neurons - the perspective we adopt here) or populations (where nodes represent assemblies451
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of such neurons), geared towards the characterization of neuronal mean activity across extended time scales.452

The term L[u] = du is a linear local relaxation term with rate d < 0 and (f [u])i = f(ui) =
1
2 (1 + erf[βui])453

represents the firing rate response function of neurons with the Gaussian error function erf[·]. This function454

relates the membrane potential activity to the firing rate of the neuron. The vector-valued term H implements455

node diversity through spatially heterogeneous neuronal excitability, i.e. variable firing rate thresholds456

between neurons. The entries of H are sampled from a zero-mean Gaussian distribution of variance σ2
H. The457

neuron’s baseline activity B < 0 is a scaling factor used to set the neurons in a subthreshold regime in the458

absence of input. Lastly, the network in Eq. 1 is further subjected to a slow modulatory input S(t).459

The connectivity matrix W in Eq. (1) specifies synaptic coupling between any pair of neurons. We460

assume randomly distributed excitatory and inhibitory coupling [76], with connection probability ρ. This461

connectivity motif corresponds to a weighted Erdős–Rényi random graph; we emphasize, however, that the462

following results may be easily extended to other topologies (e.g., [37]). The strength of these synaptic463

connections are individually Gaussian-distributed with mean µe and µi, variance σ2
e and σ2

i and with464

probability density functions pe and pi, respectively. We ensure that there are no self-connections i.e.465

Wii = 0 ∀i. In addition, we parametrize the relative density of excitatory versus inhibitory connections466

by a coefficient f , 0 ≤ f ≤ 1. Consequently, the probability density function of synaptic weights Wij467

may be written as p = ρfpe − ρ(1 − f)pi. Moreover, we choose a balanced connection connectivity with468 ∑N
j=1 Wij = 0, i.e. the sum over excitatory and inhibitory synaptic connections vanishes at each node. Given469

these constraints, the mean connectivity of the network is µW ≡ E[Wij ] = 0 and the variance of the synaptic470

connectivity becomes [76] σ2
W ≡ Var[wij ] = ρ(fσ2

e + (1− f)σ2
i + fµ2/(1− f)). The mean network activity471

⟨u⟩(t) is defined as the average activity across all neurons472

⟨u⟩(t) =
N∑
i=1

ui(t) . (2)

4.2 Stability473

By construction, this network subscribes to the circular law of random matrix theory [58, 73]. According474

to this law, the statistical distribution of eigenvalues of the network - reflecting stability - is constrained475

with high probability within a disk centered around the local relaxation gain d (called the spectral disk) in476

the complex plane, whose radius Γ can be determined analytically. The eigenvalues populating that disk477

are complex numbers: if the disk is bounded in the left hand side of the imaginary axis (i.e., all real parts478

of these eigenvalues are negative), the network is said to be stable and its activity invariably relaxes back479

to its equilibrium after a perturbation. In our network model, such stable equilibrium is characterized by480
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weak, asynchronous neuronal firing. If some eigenvalues cross the imaginary axis (i.e., the spectral disk is too481

large and some eigenvalues possess positive real parts), the network is said to be unstable, leading to activity482

that diverges, is synchronous and/or chaotic. In the intermediate case, when dominant eigenvalues (those483

possessing the largest real part) exhibit a near-zero real part, the network is said to reside at a critical point484

sitting between stability and instability, commonly referred to as metastable.485

The stability of Eq. (1) may hence be characterized through the circular law [34, 36, 73]. Over a short486

time scale, modulatory input can be considered constant, i.e. S(t) = S, and the fixed point uo satisfies487

−duo − S−B = Wf [uo +H] . (3)

The stability of these fixed points can be determined by considering the spectrum Λ of the Jacobian matrix J488

of Eq. (1)489

J = dI+WDf , (4)

where I is the N -dimensional identity matrix and (Df )ij =
∂f
∂uj

[uo
i ] ≡ f ′

ij [u
o
i ] corresponds to the derivatives490

of the transfer function f evaluated at the fixed point uo.491

It is well known [73] that for large N the spectrum Λ of Eq. (4) may be decomposed into an edge (Λe) and492

bulk (Λb) spectrum, i.e. Λ = Λe + Λb. The real eigenvalues populating the edge spectrum λe ∈ Λe have here493

the mean λe = d. The circular law states [58, 73] that the remaining complex eigenvalues λb ∈ Λb populating494

the bulk spectra are confined within a disk of radius Γ given by495

Γ =
√
(N − 1)ρVar[Jo

ij ] (5)

with Jo
ij = Wijf

′
ij evaluated at the fixed point uo. This implies the maximum eigenvalue real part is given496

by max[d, d+ Γ]. Since d < 0, the system’s stability is fully determined by the bulk spectrum and the fixed497

point uo is stable if498

Γ < |d| . (6)

Used together, equations 5 and 6 are key to determining the influence of the network properties on its stability.499

4.3 Stability of homogeneous networks500

In absence of heterogeneity and modulatory input, i.e. H = 0 and S = 0, the fixed point uo defined in Eq. (3)501

has the degenerate solution uo = B = B1T with 1T = (1, 1, .., 1)T and B < 0. Then elements of the Jacobian502

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.08.25.505270doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505270
http://creativecommons.org/licenses/by-nc-nd/4.0/


for uo = B can be computed as503

Jij = dδij +Wijf
′
ij(B) . (7)

The spectral radius (5) can readily be determined in this case by computing the variance of the Jacobian504

as per Eq. 5 to505

ΓH=0,S=0 =

√
σ2
W (N − 1)ρβ2

π
e−β2B2

< |d| . (8)

Whenever modulatory input is present, i.e. S = So1
T with 1T = (1, 1, .., 1)T , the fixed point becomes506

uo = (So +B)1T . For later purpose, we state in addition that the elements of the fixed point solution for507

H = 0 obeys a probability density function with mean µuo = So + B and vanishing variance σ2
uo=0. The508

stability criterion for H = 0, S ̸= 0 now reads509

ΓH=0,S≠0 =

√
σ2
W (N − 1)ρβ2

π
e−β2(So+B)2 < |d| . (9)

Equation (9) reveals that increasing the network size N , connection probability ρ, the variance σ2
W of510

synaptic weights (implying increases of the mean µ and excitatory and inhibitory variances σe, σi) as well as511

the firing rate response gain β cause an expansion of the spectral radius Γ, as does the modulatory input512

amplitude So. The dependence of Eq. (9) on these various parameters is plotted in Fig. 3. Consequently,513

they all lead to instability of Eq. (1), in line with previous studies [37,111].514

4.4 Stability of heterogeneous networks515

The heterogeneous case with modulatory input H ̸= 0,S ̸= 0 is more involved. The influence of excitability516

heterogeneity on stability may nonetheless be exposed by investigating how diversity in excitability thresholds,517

i.e. H, impacts the spectral radius Γ. Recall that H are random and sampled from a distribution pH assumed518

to be Gaussian with zero mean and variance σ2
H. The fixed point uo of Eq. (1) satisfies, instead of Eq. (3),519

uo = W̃f [uo +H] + B̃+ S̃ , (10)

with W̃ = W/|d|, B̃ = B/|d| and S̃ = S/|d|. Equation (10) is a discrete version of the Hammerstein520

equation [113], whose solution is distributed with some probability distribution puo . We highlight the521

important distinction to the homogeneous case (H = 0) in which the corresponding fixed point was degenerate.522

Consistent with analysis steps in the previous section, stability is determined via the variance of the523
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Jacobian as per Eq. 5. The matrix elements of the Jacobian for H ̸= 0, S ̸= 0 are given by524

Jij = dδij +Wijf
′
ij(u

o
j + hj) (11)

with hj = (H)j . Assuming independence between the fixed points uo and the synaptic weights Wij525

Var[Jo
ij ] ≈ σ2

WVar[f ′
ij ] . (12)

For large N , one may approximate this variance of the Jacobian by assuming that the distribution pou is526

independent from H and Gaussian-distributed with mean µuo and yet unknown variance σ2
uo . We find527

Var[Jo
ij ] ≈ σ2

W

∫ ∞

−∞

∫ ∞

−∞
f ′2(ν + h)puo(ν)pH(h)dνdh =

σ2
Wβ2

π
√
γ
e−

2µ2
uoβ2

γ (13)

where γ = 1 + 4β2(σ2
uo + σ2

H). This result implies that stability depends on the mean and variance of the528

fixed point distribution µuo and σ2
uo , respectively, and the variance of the excitability threshold distribution529

σ2
H. Since the excitability threshold variance can be chosen independently but determines the fixed point by530

Eq. (10), it is necessary to compute the mean µuo and variance σ2
uo of the fixed point probability density531

function puo .532

At first, recall that homogeneous excitability, i.e. σ2
H = 0 as described in section 4.3, implies σ2

uo = 0.533

Consequently, σ2
uo depends on σ2

H implicitly for heterogeneous excitability. In the following we assume534

modulatory input being homogeneous over the network. Then, in line with previous calculations535

µuo ≡ E[uo] = (So +B)/|d| .

Moreover, with Eq. (10)536

σ2
uo =

N∑
j=1

Var[W̃ij ]Var[fj ]

= (N/|d|)σ2
W

(
E[f2

j ]− E2[fj ]
)
. (14)

with fj = f(uo
j + hj) . Then, we find for large N537
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E[fj ] =
1

N

∑
j

f(uo
j + hj)

=
1

2

(
1 + erf

[
(So +B)β/|d|√

1 + 2β2(σ2
uo + σ2

H)

])
, (15)

and538

E[f2
j ] =

1

N

∑
j

f2(uo
j + hj)

= I1 + I2 + I3, (16)

with I1 = 1/4, I2 = E[fj ]− 1/2 and539

I3 =
1

4

(
1− 2√

γ′ e
− β2π2(So+B)2

2d2γ′

)

where γ′ = 4 + π2β2(σ2
uo + σ2

H). Here we have used the good approximation erf2(x) ≈ 1− e−(π2/8)x2

.540

Combining Eq. (14), (15) and (16) yields an implicit expression for the fixed point distribution variance541

σ2
uo =

σ2
WN

4|d|

(
1− 2√

γ′ e
− β2π2(So+B)2

2d2γ′ − erf2

(
(So +B)β/|d|√

1 + 2β2(σ2
uo + σ2

H)

))
. (17)

Equation (17) defines σ2
uo implicitly. In the absence of heterogeneities, i.e. σ2

H = 0, Eq. (10) stipulates u0 = 0542

and σ2
u0 = 0 and Eq. (17) holds. Moreover, for excitability heterogeneities that are much stronger than fixed543

point fluctuations, i.e. σ2
H ≫ σ2

uo
, γ′ ≈ 4 + π2β2σ2

H and Eq. (17) provides an explicit expression for σ2
u0 .544

545

With this result, the stability condition for the fixed point reads546

ΓH ̸=0,S ̸=0 =

√
σ2
W (N − 1)ρβ2

π
√
γ

e−(So+B)2β2/d2γ < |d|, (18)

where γ = 1 + 4β2(σ2
uo + σ2

H), using the solution of Eq. (17).547

548

4.5 Volatility and Resilience549

Resilience refers to the qualitative invariance of dynamical states when exposed to changes in one control550

parameter, and the absence of stability transitions. To measure resilience and the robustness of eigenvalue551
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distributions, one may quantify the sensitivity of the spectral radius Γ to changes in a given control parameter552

(i.e., how much the spectral radius fluctuates when exposed to changes in a certain parameter P ).553

We define the spectral volatility by554

κP ≡
∫
Ω(P )

∣∣∣∣ ∂Γ∂P
∣∣∣∣ dP (19)

The spectral volatility κP reflects the sensitivity of the eigenvalue distribution (the spectral disk area) to555

change in the parameter P over the range Ω(P ) of values this parameter can take. It scales with how much556

Γ changes as a function of variations in the control parameter P : small volatility reflects persistence of557

the eigenvalue distributions and its overall resistance towards stability transitions. Specifically, if ∂Γ
∂P → 0,558

κp → 0.559

One can use Eq. (19) to quantify the persistence of the eigenvalue distribution and spectral radius to560

changes in a control parameter. We thus introduce the resilience measure RP with respect to the control561

parameter P by considering the reciprocal of the spectral volatility562

RP =
1

1 + κP
. (20)

Note that whenever κP → 0, RP → 1 and if κP → +∞, RP → 0.563

Since we have derived the spectral radius analytically in Eq. (18), we are in a position to compute the564

spectral volatility and resilience as a function of all model parameters. Specifically, if one considers P = So,565

for Ω(So) = (−∞,+∞) one obtains,566

κSo
= 2σW

√
(N − 1)ρβ

π
√
γ

(21)

567

RSo =

√
π
√
γ√

π
√
γ + 2σW

√
(N − 1)ρβ

(22)

where γ = 1 + 4β2(σ2
uo + σ2

H). Equations (21) and (22) show that the volatility and resilience of the network568

with respect to the modulatory input amplitude both depend on excitability heterogeneity through the factor569

γ. Whenever σ2
H > 0 increases, the spectral volatility κSo decreases and the resilience RSo increases.570
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