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Abstract

Metabolites play important roles in brain development and their levels change rapidly in

in the prenatal period and during infancy. Metabolite levels are thought to stabilize during
childhood, but the development of neurochemistry across early-middle childhood remains
understudied. We examined the developmental changes of key metabolites (total N-
acetylaspartate, tNAA; total choline, tCho; total creatine, tCr; glutamate+glutamine, Glx; and
myo-inositol, ml) using short echo-time magnetic resonance spectroscopy (MRS) in the anterior
cingulate cortex (ACC) and the left temporo-parietal cortex (LTP) using a mixed cross-
sectional/longitudinal design in children aged 2-11 years (ACC: N=101 children, 112 observations;
LTP: N=95 children, 318 observations). We found age-related effects for all metabolites. tNAA
increased with age in both regions, while tCho decreased with age in both regions. tCr increased
with age in the LTP only, and ml decreased with age in the ACC only. Glx did not show linear age
effects in either region, but a follow-up analysis in only participants with >3 datapoints in the LTP
revealed a quadratic effect of age following an inverted U-shape. These substantial changes in
neurochemistry throughout childhood likely underlie various processes of structural and

functional brain development.
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Introduction

The preschool and early school years are marked by extensive cognitive, emotional, and
social development as children gain independence, learn to interact with peers, and begin formal
education. Substantial changes in brain structure and function occurs alongside this behavioral
maturation (Long et al., 2017; Remer et al., 2017; Reynolds et al., 2019). Less is known about the
development of the brain’s chemical make-up — specifically the metabolites that are involved in
various aspects of brain development, metabolism, and neural signaling. By characterizing the
changes in metabolites throughout childhood, we can understand the neurochemistry
underpinning healthy brain development. Such insight may be useful to identify markers and
mechanisms of disorders and disease, and to provide complementary information to our
understanding of structural and functional development.

The primary brain metabolites measured with MRS include N-acetylaspartate (NAA),
choline, creatine, glutamate/glutamine and myo-inositol, and each has a distinct developmental
pattern (BIUml et al., 2013). NAA is primarily found in mature neurons and is thus considered a
neuronal marker (Bliml et al., 2013; Ross & Sachdev, 2004). The interpretation of the NAA signal
is complex, with several roles proposed for this neurometabolite, including neuronal metabolism,
myelin lipid synthesis, synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG), and
maintaining water balance by removing water from neurons (Hirrlinger & Nave, 2014; Moffett et
al., 2007; Rae, 2014). NAA is often reported in combination with NAAG (labelled NAA+NAAG or
total NAA [tNAA]) because the signals of these metabolites are not reliably separated with
conventional MRS. tNAA development shows rapid increases in the prenatal and neonatal stages

(Bliml et al., 2013; Girard et al., 2006; Kreis et al., 1993; Vigneron, 2006), as well as gradual
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increases in childhood and adolescence (Bliml et al., 2013; Degnan et al., 2014; Holmes et al.,
2017), though data in early-mid childhood remains sparse.

Choline is related to membrane turnover, including synthesis and repair of the myelin
sheath (BlIUml et al., 2013; Rae, 2014; Ross & Sachdev, 2004). The total choline (tCho) signal
measured by MRS is primarily composed of phosphorylcholine and glycerophosphorylcholine,
with a small contribution of choline (Rae, 2014; Ross & Sachdev, 2004). tCho levels are highest
during the prenatal and neonatal stages, decrease rapidly during infancy, and are thought to
stabilize in childhood (Bluml et al., 2013; Degnan et al., 2014; Girard et al., 2006; Holmes et al.,
2017; Kreis et al., 1993). Patterns of change in tCho levels vary by tissue type, with more rapid
early decreases in gray matter than white matter (Bliml et al., 2013). Myelination may largely
account for the decreasing tCho levels during infancy, driven by the incorporation of
phosphorylcholine into myelin sheath macromolecules (Bliml et al., 1999).

Creatine contributes to the brain’s energy supply and is considered a marker of energy
use (Bliml et al., 2013; Rackayova et al., 2017; Ross & Sachdev, 2004). The total creatine (tCr)
signal consists of creatine and phosphocreatine. Developmental studies show a generally
increasing trend of tCr levels during the prenatal period and infancy (Bliml et al., 2013; Kreis et
al., 1993) which stabilizes by adolescence (Bliml et al., 2013; Degnan et al., 2014; Girard et al.,
2006; Kreis et al., 1993).

Glutamate is an excitatory neurotransmitter and serves metabolic functions in the Krebs
cycle, the glutamate-glutamine cycle, nitrogen regulation, and formation of gamma-amino-
butyric acid (GABA; Rae, 2014). Due to their overlapping peaks in the MRS spectrum, glutamate

is often reported in combination with glutamine, which is an amino acid precursor of glutamate,
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GABA, and aspartate (Bluml et al., 2013; Ross & Sachdev, 2004). The combined glutamate +
glutamine concentration is referred to as GIx. Findings regarding developmental changes in Glx
levels are mixed. Bluml and colleagues (2013) reported rapid Glx increases across infancy in gray
and white matter, with stabilization by two years of age, and Degnan (2014) reported age-related
increases in glutamate that were driven by increases in infancy. However, a longitudinal study of
5-10-year-old children points to more prolonged increases in Glx levels in both white matter and
cortical and subcortical gray matter regions (Holmes et al., 2017).

Myo-inositol (ml) is involved in cellular signaling and lipid synthesis, and is typically
considered a glial marker (Bliml et al., 2013; Ross & Sachdev, 2004). Evidence converges to show
that ml levels are highest in utero and rapidly decrease through infancy to stabilize in early
childhood (Bliiml et al., 2013; Degnan et al., 2014, Girard et al., 2006; Kreis et al., 1993).

As summarized above, prior MRS studies reveal distinct patterns of developmental
change in brain metabolite levels, predominantly in the early postnatal months (Bliml et al.,
2013; Kreis et al., 1993; Vigneron, 2006). These findings have led researchers to speculate that
metabolite levels remain relatively stable across childhood and adolescence (Bluml et al., 2013).
However, this conclusion is based largely on data from infants, with only sparse data in early-
middle childhood. Furthermore, the existing data is primarily cross-sectional, meaning that
developmental trajectories within individuals have not yet been characterized. Therefore,
metabolite changes during childhood remain largely unknown. Identifying patterns of
neurochemical changes is an important step toward understanding the mechanisms that underlie

the cognitive and behavioral changes during this crucial developmental period.
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In this study, we used a mixed cross-sectional/longitudinal design to investigate changes
in metabolite levels across childhood in the anterior cingulate cortex (ACC) and the left temporo-
parietal cortex (LTP). These regions play important roles in cognitive development and have
shown substantial structural (Norbom et al., 2020; Remer et al., 2017) and functional (Long et al.,
2017; Xiao et al., 2016) changes in this age range. The ACC plays key roles in cognitive control and
emotion regulation networks (Braver et al., 2021; Stevens et al., 2011), and the LTP is involved
in attention, social cognition, and semantic processing (Numssen et al., 2021), and supports
language and reading skills (Richlan, 2012). Both of these regions have been considered in prior
MRS studies of childhood disorders (Horowitz-Kraus et al., 2018; Kossowski et al., 2019; Puts et
al., 2020); characterizing development of metabolites in this region will provide important
context for interpreting these and future studies. We measured concentrations of tNAA, tCho,
tCr, Glx and ml using short echo MRS in 124 children ranging in age from 2-11 years (431 total
observations). We predicted that tNAA and tCr levels would increase across the age range, tCho
and ml would decrease to stabilize in middle childhood, and Glx would increase slightly or show
no clear developmental change. We expected similar patterns of change in both regions of
interest.

Methods
Participants and data collection timeline

Data was drawn from an accelerated longitudinal study of brain development across

early-middle childhood conducted in Calgary, AB, Canada (Reynolds et al., 2020). None of the

participants had diagnosed neurological, genetic, or neurodevelopmental disorders, and all were
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born full term (=37 weeks gestation). Participants were invited to return for MRI scans semi-
annually between ages 2-4 years and annually thereafter.

Ethics statement: Parents provided written informed consent and children provided verbal
assent. This study was approved by the conjoint health research ethics board (CHREB) at the
University of Calgary (REB13-0020).

The present analyses include 430 total datasets from 124 participants (61 female, mean
age = 5.47, SD = 1.92, range 2.34-11.13 y). Median household income for the sample was
$150,000 - $174,999 CAD (range: <$25,000 — >$175,000), median level of maternal education
was undergraduate degree (range: completed high school - postgraduate degree), and median
level of paternal education was undergraduate degree (range: some high school - postgraduate
degree). The full sample includes two analysis subsets: (1) data acquired from the midline ACC
(N=112 datasets, 101 participants [47 females], mean age = 4.09 years, SD = 1.11, age range: 2.34
- 7.36 years) and (2) data acquired from the LTP region in an overlapping set of participants
(N=318 datasets, 95 participants [47 female], mean age = 5.95 years, SD = 1.91, age range: 2.41 -
11.13 years). MRS scans were acquired from the ACC at visit 1 (though ACC data was acquired at
multiple time points for five subjects) and from the LTP at follow-up visits for most participants,
with up to nine longitudinal data points (Figure 1). This resulted in a primarily cross-sectional data

set for the ACC and a longitudinal dataset for the LTP.


https://doi.org/10.1101/2022.11.30.518618
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518618; this version posted December 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
8

Anterior Cingulate Cortex Left Temporo-Parietal Region

N visits N participants . " N visits N participants
1 96 :' 1 20
2 3 : 2 24 .
4 1 : 3 gl —_— .
6 1 H 4 1 S
: 5 "
: 6 10 —_—
. 7 7 PR —
:. 9 1 L]
. .
—— . — —_—
C N c .
@ H © .
2 : L2 —
o , =]
T : T —
© . ©
o . o
: =
: - Male :
: - Female ——
7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Age (years)

1 2 3 4 5 6

Age (years)
Figure 1. Age at scan acquisition for the ACC (left) and LTP (right). Each scan is represented by a circle; each
participant is shown in a different row with their scans connected by a straight line. Inset tables indicate the

number of participants who completed each number of visits.

Data Acquisition
Anatomical images and metabolite data were acquired using a 3T GE MR750w MR system with a

32-channel head coil at the Alberta Children’s Hospital. T1-weighted anatomical images were

acquired using a spoiled gradient echo sequence (210 axial slices; 0.9 x 0.9 x 0.9mm resolution,
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TR = 8.23 ms, TE = 3.76 ms, flip angle = 12°, matrix size = 512 x 512, inversion time = 540 ms).
These images were reformatted to provide axial, sagittal, and coronal views at the scanner which
were used for placement of spectroscopy voxels. MRS data were acquired using short echo time
Point RESolved spectroscopy (PRESS; TE = 30 ms, TR = 2000 ms, 128 averages, 20 x 20 x 15 mm
voxels). MRS voxels were placed in either the anterior cingulate cortex (ACC) or in the left
temporal-parietal area (LTP) by trained members of the research team according to detailed
instructions and reference images. The ACC voxel was localized anterior to and at approximately
the same level as the genu of the corpus callosum viewed on a midsagittal slice and consisted
almost entirely of gray matter (Figure 2). The LTP voxel was localized to capture the left angular
gyrus based on all three image planes, and included portions of the supramarginal gyrus, parietal
operculum, and posterior superior temporal gyrus due to the extent of the voxel (Figure 5). The

LTP voxel consisted of gray and white matter, excluding CSF to the extent possible.
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Figure 2. Example voxel placement for the anterior cingulate cortex (ACC; top) and left temporo-parietal (LTP;
bottom) and example spectra for both voxels fitted with LCModel.

MRS data processing and analysis

The PRESS acquisition was pre-processed with the FID-A toolbox (Simpson et al., 2017).
Pre-processing included coil combination, removal of bad averages, frequency alignment, and
phase correction, according to recent recommendations (Near et al., 2020). Metabolites were
then fit using LCModel v6.3 (Provencher, 1993). The metabolites of interest were: tNAA, tCr,
tCho, ml and Glx. The basis set used for quantification included alanine, ascorbate, aspartate,
choline, citrate, creatine, ethanol, GABA, GPC, glutathione, glucose, glycine, glutamine,
glutamate, water, ml, lactate, NAA, NAAG, PCh, PCr, phosphoryl ethanolamine, scyllo-inositol,
taurine and beta-Hydroxybutyrate, simulated using the FID-A toolbox (Simpson et al., 2017) with
sequence specific timings and RF pulse shapes. Fitted spectra were visually inspected for quality
and datasets with poor spectra were excluded from analysis (ACC: n=5; LTP: n=6). The Gannet

CoRegStandAlone function (Harris et al., 2015), which calls spm12 segmentation (Ashburner &
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Friston, 2005), was used to quantify tissue content within the MRS voxels by co-registering them
to the T1l-weighted image acquired during the same scanning session. Co-registration and
segmentation outputs were visually inspected to ensure accurate localization and segmentation
of the MRS voxels. Datasets in which MRS voxels were not accurately located in the ACC or LTP
were excluded from analysis (ACC: n = 3; LTP: n = 1).Absolute metabolite values are expressed in
molal units (moles/kg), corrected for tissue composition, including T1 and T2 relaxation effects,
water visibility and CSF fraction, as per Gasparovic, et al. (2006) and recommended by Near et al.
(2020). Quality metrics (signal-to-noise ratio [SNR] and linewidth [LW] for NAA) were obtained
using the “op_getLW.m"” and “op_getSNR.m"” functions in FID-A.

The gray matter tissue fraction of each MRS voxel was calculated for each participant as
the fraction of voxel volume composed of gray matter divided by total tissue within the voxel
(sum of the fractions of voxel volume for gray matter (GM) and white matter (WM; formula:
fGM/[fGM + fWM]). This tissue fraction was applied as a fixed effect in subsequent analyses to

account for individual differences in tissue composition of the voxels.

Data analysis

Prior to analysis, distributions of metabolite values were checked for outliers by visually
inspecting box plots and performing the Rosner’s Test for Outliers with the EnvStats R package
(Millard, 2013). Spectra of datasets identified as outliers were visually inspected and excluded
from analysis if artifacts were apparent around the peak value for the given metabolite (ACC: 1
dataset excluded from analysis of ml and tCho; LTP: 2 datasets excluded from all analyses, 1

excluded from tNAA, 1 excluded from Glx, 1 excluded from ml).
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Relationships between metabolite concentrations and age were investigated using linear
mixed-effects modelling with the Ime4 (Bates et al., 2015) and ImerTest (Kuznetsova et al., 2017)
packages in RStudio version 2021.9.0.351 (RStudio Team, 2020). Datasets from the ACC and LTP
voxels were analyzed independently, and separate models were fitted for each metabolite. First,
linear growth models were defined with metabolite concentration as the dependent variable,
age as a fixed effect, and participant as a random effect to account for repeated measures using
the formula: metabolite ~ age + (1 | participant). GM tissue fraction, sex, and the interaction
between age and sex were sequentially added to the linear growth models and compared to the
previous model to identify the best-fitting model for each metabolite. The best-fitting models
were selected based on the likelihood ratio test criterion with alpha set to .05, maintaining the
more parsimonious model when the likelihood ratio test did not show significant differences in
model fit. FDR correction was performed within each region (ACC and LTP) to correct for running
five models (Benjamini & Hochberg, 1995). Both corrected and uncorrected (p < 0.05) results are

reported.

Longitudinal analysis

To test for nonlinear effects of age, we conducted additional analysis of participants in
the LTP sample who had MRS data for >3 time points. This analysis included 250 datasets from
51 subjects (23 females, mean age = 5.90 years, SD = 1.91, age range: 2.49-11.13). Based on
model fitting for the full sample, we first fit mixed-effects models for each metabolite with
metabolite concentration as the dependent variable, age and GM tissue fraction as fixed effects,

and participant as a random effect using the formula: metabolite ~ age + GM tissue fraction + (1
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| participant). A quadratic age term was then added (formula: metabolite ~ age + GM tissue
fraction + age? + (1 | participant)). The best-fitting model for each metabolite was selected based
on the likelihood ratio test criterion with alpha set to .05. Multiple comparisons for running 5
models were corrected within each factor (e.g., age) using FDR (Benjamini & Hochberg, 1995).

Both corrected and uncorrected p-values are reported.

Post-hoc analysis of quality metrics

We conducted follow-up analyses to tests relationships between age and quality metrics
(SNR and LW) using mixed-effects models. Quality metrics that were significantly associated with
age were then included in post-hoc analysis of age-metabolite relationships to test whether the

effects were driven by data quality.

Data Availability: De-identified participant demographics, metabolite concentration values, and
analysis code are available at

https://osf.io/q4t8j/?view only=98430a2682b14be6a946a3984c31436f . T1-weighted

anatomical images are available through the Calgary preschool magnetic resonance imaging

dataset repository: https://osf.io/axz5r/ (Reynolds et al., 2020).

Results
Sample characteristics
Mean metabolite concentrations, GM tissue fractions, and quality metrics for each MRS

voxel are reported in Table 1.
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Table 1. Mean concentrations of metabolites (mmol/kg) and mean gray matter tissue fraction (fGM/[fGM+fWM]) in
each voxel. “N obs.” indicates total number of observations including longitudinal data within participants. Linewidth
(FWHM) and signal-to-noise ratio (SNR) are reported for NAA.

ACC LTP

Nobs. Mean SD Nobs. Mean SD

tNAA 112 15.66  1.26 318 1498 1.03

tCho 111 2.6 0.34 318 2.29 0.27

tCr 112 12.72 1.03 318 10.82 0.91
Glx 112 26.84  2.58 317 21.53  2.16
ml 111 7.65 1.62 317 6.34 1.26
GM Tissue Fraction 112 0.96 0.03 318 0.64 0.11
linewidth (Hz) 112 7.38 3.17 318 6.67 2.22
SNR 112 57.29 10.64 318 71.48 13.82

Age effects in the anterior cingulate cortex (ACC)

The best fitting model for all metabolites measured in the ACC was defined by the
formula: metabolite ~ age + (1 | participant). GM tissue fraction and sex had no significant effects
and did not improve model fit, so these variables were not included in the final models.

tNAA concentration increased with age (beta = 0.25, p = .016). Age-related decreases
were found for tCho (beta = -0.07, p = .018), and ml (beta = -.28, p = .04). The models did not
show significant age effects for tCr or Glx. Results are summarized in Table 2 and depicted in

Figure 3.

Table 2. Summary of age effects in the ACC. Significant p-values (uncorrected) are presented in bold
p-values that pass FDR correction for multiple comparisons are indicated by *; Total percent change
based on predicted values at ages 2 and 8 years.

Age effect
Region Metabolite ogs. Intercept  beta 95% Cl Std. beta Punc. ?r::iac:iz
tNAA 112 14.61 .25 [.04, .41] .23 .016* 10.10
tCho 111 2.87 -.07 [-.12, -.01] =22 .018* -14.67
ACC tCr 112 12.31 1 [-.07, .27] A1 .239 4.92
Glx 112 25.82 .25 [-.18, .68] A1 .254 5.68

ml 111 8.78 -.28 [-.54,-.01] -.19 .04 -20.32
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Figure 3. Relationships between age and metabolite concentrations (mmol/kg) in the ACC. Model fit lines shown in
black; individual participants’ fit lines shown in red and blue for participants with multiple scans.

Age effects in the left-temporo-parietal region (LTP)

The best-fitting model for all metabolites in the LTP included age and GM tissue fraction
as fixed effects, and was defined by the formula: metabolite ~ age + tissue fraction + (1 |
participant). Sex did not show any significant effects and did not improve fit of any models.

Our models showed age-related increases in tNAA (beta = 0.17, p < .001) and tCr (beta =
.05, p = .031). tCho concentration decreased with age (beta = -.05, p <.001). Age was not
significantly associated with ml or GlIx. Results are summarized in Table 3 and depicted in Figure

4,

Table 3. Summary of age effects in the LTP. Significant p-values (uncorrected) are presented in bold;
p-values that pass FDR correction for multiple comparisons are indicated by *. Total percent change
based on predicted values at ages 2 and 11 years

Age effect
Region Metabolite o:s. Intercept  beta 95% ClI Std. beta Punc. Z’r::?c:zz
tNAA 317 11.75 17 [.12,.23] .32 <.001* 12.97
tCho 318 3.07 -.05 [-.06, -.03] -.34 <.001* -14.45
LTP tCr 318 7.31 .05 [.005, .1] A1 .025% 6.38
Glx 317 12.54 .03 [-.07, .13] .03 .558 2.16

ml 317 5.07 .03 [-.05, .11] .04 484 4.87
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Figure 4. Relationships between age and metabolite concentrations in the LTP, controlling for tissue fraction. Model
fit lines shown in black; individual participants’ fit lines shown in red and blue for participants with multiple scans.

Post-hoc analysis of quality metrics

SNR of the NAA peak was added to the models testing age-metabolite relationships in the LTP.
tNAA and tCho effects remained consistent with the main analyses (tNAA: beta = .16, p < .001;
tCho: beta =-.04, p <.001), however the tCr effect was no longer significant (beta = .04, p =.138).

Statistics for age effects for models including SNR are reported in Table S1.

Analysis of nonlinear age effects in participants with LTP data from 3 or more time points

We conducted a follow-up analysis in a sub-set of participants who completed >3 scans
in the LTP (n=51 subjects; total datasets = 250) to test for nonlinear relationships between age
and metabolite concentrations. We first tested the linear age models controlling for tissue
fraction in this longitudinal sub-sample, then added a quadratic age term to see if it significantly

improved model fit.
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Table 4. Mean concentrations of metabolites (mmol/kg) and mean gray matter tissue fraction (GM/[GM+WM]) in
the participants with >3 LTP datasets. “N obs.” indicates total number of observations accounting for longitudinal
data within participants.

N obs. Mean SD
tNAA 249 14.97 1.08
tCho 250 2.29 0.28
tCr 250 10.84 0.95
Glx 249 21.62 2.18
ml 249 6.36 1.27
GM Tissue Fraction 250 0.65 0.11

For tNAA and tCr, the quadratic age term did not improve model fit, and the linear age
effects were significant and positive (tNAA: beta = .18, p <.001; tCr: beta = .07, p =.013),
consistent with the effects observed in the full sample. The quadratic age term significantly
improved model fit for tCho (betaage = -.19, page < .001; betaagerz = .01, pager2 = .007) and Glx
(betaage=1.16, page < .001; betaagerz = -.08, pager2 = .002). tCho decreased in early childhood, then
slowed and hit a predicted minimum at age 8.8 years. GIx showed a modest increase across early
childhood to peak at age 6.9 years followed by a decrease. No significant linear or quadratic
effects of age were found for ml, consistent with the full LTP sample. Results are summarized in

Table 5 and depicted in Figure 5.

Table 5. Summary of linear and quadratic age effects in sub-sample of participants with >3 scans in the LTP.
Significant p-values (uncorrected) are presented in bold; p-values that pass FDR correction for multiple comparisons
are indicated by *

Age effect Quadratic age effect
I\/(I;Ieittzb o:s. Intercept  beta 95% Cl I:::a Punc. beta 95% Cl I:::a Punc.
tNAA 249 11.64 0.18 [.11, .25] 31 <.001* NA NA NA
tCho 250 3.42 -.19 [-.29, -.09] -1.32 <.001* .01 [.003, .02] 1.0 .007*
tCr 250 6.98 .07 [.02, .13] 14 .013% NA NA NA
Glx 249 9.48 1.16 [.47,1.86] 1.01 .001* -.08 [-.14, -.03] -.98 .002*
ml 249 4,98 .02 [-.07, .11] .03 0.654 NA NA NA



https://doi.org/10.1101/2022.11.30.518618
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518618; this version posted December 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

18

S 3
. — J _ * Mal
S 17 ° % 11 ° F:n?ale
£ 164 © 101 .
S 15+ ©
b= | O 9
% 14 - 8
= 2] -
5 131 s °
L 5 7-
D 12 i)
= & 61
S 1171 = .
st o - e
£ 10- £°

= oo
8 o ol S 41
é 81 Z): 2.
< 2345678911112 ¥ 2 34567 8 9101112
N Age (years) Age (years)
S =y
= 44 & L 18-
@ S 171
— ©

o
pe < 16
7 3 154
o 34 4
= 'g 14 4
8 5 12

panl V.
= o)
= € 11+
= 2- =
£ S 10
= = 9-
o c
S § 84
-g 1- L] L] L] L] L] L] L) L] L] L] L] 5 7- L] L] L] L] L) L) L] Ll L] L] L)
Q 2345678911112 © 2 34567 8 9101112

Age (years) Age (years)

Figure 5. Linear and quadratic relationships between age and metabolite concentrations in the LTP sub-sample with
>3 scans. Model fit lines shown in black; individual participants’ fit lines shown in red and blue.

Discussion
Here, we show that multiple brain metabolites (tNAA, tCho, tCr, ml, and Glx) continue to
change substantially across early-middle childhood (age 2-11 years), indicating that maturation
continues after rapid development in infancy (Bliml et al., 2013). These changes likely underlie

ongoing structural and functional brain development during this age range.
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tNAA concentrations increased with age throughout childhood. This finding corroborates
evidence from cross-sectional studies (Bliml et al., 2013; Degnan et al., 2014) and a smaller
longitudinal study (Holmes et al., 2017), providing strong evidence that tNAA levels rise across
childhood within individuals. Increases in tNAA may be related to several aspects of fiber tract
development as well as changes in metabolic activity. NAA is highly concentrated in neuron
bodies and axons, so increasing levels of tNAA across childhood may indicate axonal development
including elongation, increasing axon diameter, and/or increasing axon packing (Bliml et al.,
2013; Ross & Sachdev, 2004). This interpretation is consistent with evidence from diffusion MRI
studies, which show increases in axon packing and fiber cross-section across childhood (Dimond
et al., 2020; Genc et al., 2017; Mah et al., 2017). Developmental increases in tNAA could also
reflect myelination, given that NAA is present at substantial levels in myelin and oligodendrocyte
cell bodies and plays a role in the synthesis of myelin (Nordengen et al., 2015; Rae, 2014). In gray
matter, increasing tNAA levels could reflect elevated metabolic activity (Rae, 2014) and/or
intracortical myelination, which continues to develop through childhood and adolescence
(Norbom et al., 2020). In addition, NAAG may account for some of the observed increase in tNAA,
and could mark metabolic activity and availability for synthesis of glutamate (Rae, 2014). Baslow
(2015) proposed a role of NAAG metabolism in complex task performance, so NAAG may increase
as children engage in more cognitively demanding tasks (e.g., reading, math). This is especially
relevant in the two regions investigated here, which are involved in executive functioning and
language/reading processes that develop throughout childhood (Braver et al., 2021; Numssen et

al., 2021; Richlan, 2012).
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tCho levels decreased with age in both regions studied. We observed a curvilinear
trajectory in the longitudinal sub-sample, such that tCho decreased most rapidly in early
childhood and stabilized in middle childhood, reaching a minimum value just before 9 years. Prior
studies have shown the most rapid tCho decreases in the first two years of life (Bliml et al., 2013;
Degnan et al., 2014; Kreis et al., 1993; Vigneron, 2006), coinciding with a period of rapid
myelination (Deoni et al., 2011). Phosphorylcholine, a main constituent of the tCho signal, is
incorporated into myelin sheath macromolecules during myelination (Bliml et al., 1999). This
process may drive developmental decreases in tCho. Cross-sectional evidence has shown that
tCho declines into early childhood, but our longitudinal analysis suggests that minimum tCho
levels are reached several years later than previously thought (Bliml et al., 2013). Much like the
rapid tCho changes in the first two years of life, decreasing tCho in childhood coincides with
ongoing myelination in major white matter tracts and within the cortex (Lebel & Deoni, 2018;
Norbom et al., 2020). The curvilinear pattern of decrease in our longitudinal sub-sample aligns
with a slowing of myelination in childhood (Lebel & Deoni, 2018). Importantly, tCho effects are
not limited to myelin, and tCho reflects turnover and content of membranes more broadly and
may be a marker of cell density (Rae, 2014). Thus, tCho decreases in gray matter could reflect
changes in cell density in addition to intracortical myelination.

We found a small, but significant, age-related increase in tCr levels in the LTP region, with
linear effects in both the full sample and longitudinal sub-sample. This is consistent with gradual
age-related changes reported in prior studies (Bliml et al., 2013; Degnan et al., 2014; Girard et
al., 2006; Holmes et al., 2017; Kreis et al., 1993). tCr is involved in maintaining energy homeostasis

in the brain and is abundant in areas of high synaptic activity (Rae, 2014); increasing tCr across
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development may reflect greater energy demands as the brain matures (Bliml et al., 2013). tCr
levels may also be related to the amount of local synaptic activity (Rae, 2014). Our result may be
associated with age-related increases in LTP activity, consistent with a prior finding from our lab
which showed increases in resting-state local activity and global connectivity across early
childhood in a corresponding region (Long et al., 2017). Age-related effects in tCr levels raise an
important methodological consideration: tCr has been used as an internal reference for
calculating metabolite ratios under the assumption that tCr levels are consistent over time and
between individuals. However, this assumption is increasingly shown to be incorrect, hence a
preference for water referencing (Near et al., 2020; Rae, 2014). The age-related increase in tCr
observed here confirm that tCr-referencing is unsuitable in children.

Our longitudinal sub-sample analysis revealed a significant nonlinear pattern of age-
related changes in Glx, even though no significant linear relationships were found in the full
sample for either voxel. In the longitudinal sample, Glx increased gradually in early childhood,
peaked at age 6.8 years, and subsequently declined. Prior studies have shown age-related
increases in Glx in infancy and childhood, but findings have been mixed with regard to the timing
of Glx fluctuation (Bliml et al., 2013; Degnan et al., 2014; Holmes et al., 2017). Our longitudinal
data provide additional power over prior cross-sectional and smaller studies, showing subtle non-
linear changes through childhood. The interpretation of developmental changes in Glx levels is
complicated due to the multifaceted role of glutamate as a metabolite and neurotransmitter,
and the contribution of glutamine to the MRS signal. GIx may reflect metabolism, excitatory
neural activity/excitability, and neuronal synchronization (Rae, 2014; Rodriguez et al., 2013;

Stagg et al., 2011). Glutamate and glutamine are also involved in the synthesis of GABA (Rae,
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2014), and could thus be associated with developmental changes in GABA (Porges et al., 2021).
Our finding of initial increase and later decrease in Glx may reflect tuning of excitability in neural
networks that support cognition and language. An optimal balance of excitatory and inhibitory
activity is needed for efficient functioning (Ferguson & Gao, 2018). Hyperexcitability due to
imbalance in the glutamatergic system has been proposed as a source of impairment in
developmental disorders including autism spectrum disorders (Rubenstein, 2010) and reading
disorder (Hancock et al., 2017). In contrast, over-inhibition has been associated with stress and
affective disorders (Page & Coutellier, 2019). The initial phase of increasing Glx observed here
coincides with our previous findings of increasing activity and connectivity of the LTP from ages
2-6 years in an overlapping sample of participants (Long et al., 2017). The decline in Glx over the
later ages of our sample (7-12 years) may reflect a phase of balancing excitatory and inhibitory
activity through pruning of excitatory glutamatergic synapses (Lieberman et al., 2019) and/or
increasing inhibitory GABA-ergic activity (Porges et al., 2021).

ml decreased with age in the ACC only. ml levels are highest in utero, and decrease rapidly
during infancy with some evidence of gradual decline into early childhood (Bliml et al., 2013;
Degnan et al., 2014; Girard et al., 2006; Kreis et al., 1993). Decreasing mlininfancy is thought to
be related to myelination and the role of ml as a phospholipid precursor (Bliml et al., 2013; Rae,
2014). Accordingly, the decrease we observed in the ACC may be associated with intracortical
myelination. Given that ml is present higher levels in astrocytes than neurons and is involved in
cell-signaling (Rae, 2014), our finding in the ACC may be related to functional tuning of cognitive

networks involving this region. ml concentration varies regionally across the brain and is higher
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in gray matter than white matter (Rae, 2014), which may explain the presence of an age-related
effect in the ACC, but not the LTP in our study.

We did not find any sex effects or interactions in our models, consistent with a previous
longitudinal study in an overlapping age range (Holmes et al., 2017). Nonetheless, the null
findings do not provide conclusive evidence for a lack of sex differences in metabolite
development and future studies should continue to examine possible sex-related effects,
especially in adolescent and adult samples, as such effects may emerge later in development.

Limitations

Our study was limited by several methodological constraints. Metabolite levels are known
to differ between gray matter and white matter (Rae, 2014), and differences in developmental
patterns have been reported based on tissue type (Bliml et al., 2013). We corrected for
cerebrospinal fluid and tissue specific relaxation effects in the calculation of metabolite
concentrations according to recommended best practice (Gasparovic et al., 2006; Near et al.,
2020). Gray matter tissue fraction was included as a covariate in our statistical models for the
LTP data to control for individual differences in the tissue content of the voxels (tissue fraction
improved model fit for the LTP data, but not for the ACC data, as the ACC voxels consisted almost
exclusively of gray matter). Nonetheless, we cannot draw conclusions about different patterns of
metabolite development in gray and white matter. In addition, the ACC and LTP datasets differed
in numbers of participants, numbers of longitudinal timepoints, and ages at data collection, so
the region-specific effects we report require replication in matched datasets. Further, we cannot
generalize our findings to other regions of the brain. Data quality is a concern in young

participants, and differences in data quality across development may have impacted results. We
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made an effort to ensure best data quality based on most recent recommendations for data
processing and analysis, including retrospective frequency and phase correction and analysis with
a customized basis set (Near et al., 2020; Simpson et al., 2017), along with visual inspection of all
fitted spectra to confirm quality.

Conclusion

This study provides novel insight to the development of brain metabolites across early-
middle childhood, building on prior work that has mainly focused on infancy. We found significant
and substantial age-related effects in levels of tNAA and tCho across early-middle childhood in
the ACC and LTP. Additional regional effects were found for ml in the ACC and for tCr and Glx in
the LTP. These developmental effects parallel the structural and functional brain development of
childhood (Faghiri et al., 2018; Frangou et al., 2021; Lebel & Deoni, 2018; Long et al., 2017;
Norbom et al.,, 2021; Reynolds et al., 2019). Future research that integrates other imaging
modalities will help to elucidate the mechanisms underlying these developmental changes. This
knowledge can further be linked to cognitive, behavioral, and clinical traits to trace the roots of
disorders and diseases that emerge in childhood and provide new directions for intervention and

treatment.
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