
Identification of functional immune and neuronal tumor cells in glioma 

Rachel Naomi Curry, B.A.1,2, Malcolm F. McDonald, B.S. 3,4,+, Qianqian Ma, Ph.D. 5+, Jochen 
Meyer, Ph.D.6, Isamu Aiba, Ph.D.6, Brittney Lozzi 2, Alexis Cervantes 2, Yeunjung Ko, M.S. 2, 
Estefania Luna-Figuera 2, Dong-Joo Choi, Ph.D. 2, Zhung-Fu Lee 2, Junzhan Jing, Ph.D. 2, Arif 
O. Harmanci, Ph.D. 7, Anna Rosenbaum 2, Peihao He 2, Carrie Mohila, M.D. Ph.D. 8, Ali Jalali, 
M.D. Ph.D. 9, Jeffrey Noebels, M.D., Ph.D. 5,6,11, Xiaolong Jiang, Ph.D. 5,10, Benjamin Deneen, 
Ph.D.2,5,9,*,‡, Ganesh Rao, M.D.9,*,‡, Akdes Serin Harmanci, Ph.D.9,*, ‡ 
1 Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX 
2 Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 
3 Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 
4 Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX 
5 Department of Neuroscience, Baylor College of Medicine, Houston, TX 
6 Department of Neurology, Baylor College of Medicine, Houston, TX 
7 School of Biomedical Informatics, Center for Precision Health, University of Texas Health 
Science Center, Houston, TX  
8 Department of Pathology, Texas Children's Hospital, Houston, TX 
9 Department of Neurosurgery, Baylor College of Medicine, Houston, TX 
10 Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, 
TX 
11 Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 
+ These authors contributed equally to this work 
* These authors contributed equally to this work 
‡ Corresponding Author 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.11.05.515316doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.05.515316
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Abstract 
 
Despite advances in cancer molecular profiling, successful therapeutic development has been 
hindered by challenges in identifying tumor-specific mechanisms that can be targeted without 
consequence to healthy tissue. Discrimination between tumor and host cells that comprise the 
tumor microenvironment remains a difficult yet important task for defining tumor cell signatures. 
Correspondingly, a computational framework capable of accurately distinguishing tumor from 
non-tumor cells has yet to be developed. Cell annotation algorithms are largely unable to assign 
integrated genomic and transcriptional profiles to single cells on a cell-by-cell basis. To address 
this, we developed the Single Cell Rule Association Mining (SCRAM) tool that integrates RNA-
inferred genomic alterations with co-occurring cell type transcriptional signatures for individual 
cells. Applying our pipeline to human and mouse glioma, we identified tumor cell trajectories 
that recapitulate temporally-restricted developmental paradigms and feature unique co-
occurring genomic and transcriptomic identities. Specifically, we describe and validate two 
previously unreported tumor cell populations with immune and neuronal signatures as hallmarks 
of human glioma subtypes. In vivo modeling revealed an immune-like tumor cell population can 
direct CD8+ T cell responses and survival outcomes. In parallel, electrophysiology and Patch-
seq studies in human tumors confirmed a frequent subset of neuronal-like glioma cells that fire 
action potentials but retain the morphology of glia. These collective studies report the existence 
of new glioma cell types with functional properties akin to their non-tumor analogs and 
demonstrate the ability of SCRAM to identify and characterize these cell types in unprecedented 
detail. 
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Introduction 
 
In the era of cancer genomics, the advent of high-throughput single cell sequencing 
technologies has cleared the way for examination of cellular heterogeneity in genomic, 
transcriptomic and epigenomic detail1. Studies employing these technologies have 
demonstrated dynamic cellular and subcellular hierarchies that are spatiotemporally distinct and 
have revealed transcriptional profiles that can be utilized to classify tumors into clinically-
relevant molecular subtypes2–5. While these technologies have elucidated the diverse 
heterogeneity that exists within glioma tumors, the ability of sequencing pipelines to reliably 
identify tumor cells and the co-occurring genomic and transcriptomic cell states that define them 
has yet to be attained. Within malignant glioma, resolution of this complexity represents a 
significant impediment to therapeutic development that is further compounded by a diverse 
cellular constituency and a complex array of tumor-specific genetic variants. Furthermore, 
diffusely infiltrating tumor cells resembling glia and associated neural progenitors pose a 
considerable challenge to distinguishing between glioma and host cells, which if overcome 
could enable more precise characterization of tumors and important clinical correlates. To this 
end, we have developed a novel single cell computational tool, Single Cell Rule Association 
Mining (SCRAM) capable of accurately identifying tumor cells and defining co-occurring cellular 
states. Within our pipeline, we integrate three orthogonal tumor features to identify tumor cells in 
single cell resolution: (1) cell type transcriptional profiling; (2) RNA-inferred copy number variant 
(CNV) calling; and (3) RNA-inferred mutational analysis for single nucleotide variants (SNVs). 
Our studies reveal that more than half of tumor cells feature transcriptional profiles matching 
more than one cell type, exposing the extraordinary cellular complexity of glioma and the ability 
of our SCRAM pipeline to define it with both accuracy and precision. Furthermore, we illustrate 
the unique potential for tumor cells to acquire functional immune-like and neuronal-like cellular 
states and highlight the utility of using our computational framework for characterization of 
pseudo cell types in cancer, development and disease. 

Results 

SCRAM accurately identifies transcriptional states and reliably discriminates between 
tumor and non-tumor cell types 

To validate SCRAM as a reliable computational framework (Fig. 1A), we utilized previously 
published human and mouse scRNA-seq datasets to examine whether SCRAM annotation is 
consistent with established transcriptional profiles. We found that SCRAM was successful at 
annotating >75% of cells across eight scRNA-seq datasets (Fig. 1B) and uncovered that >83% 
of cells possess transcriptional profiles meeting the criteria for more than one cell type (Fig. 1C). 
Employing established glioma transcriptional profiles5,6, we assigned our manually-curated cell 
type list to these transcriptional classes and found that SCRAM-assigned identities were 
concordant with previous reports. Surprisingly, our analysis found that more than two thirds of 
sequenced cells exhibited co-occurring cell type annotations (Figs. 1D-G), suggesting that 
glioma cells possess differentially expressed gene (DEG) transcriptional signatures consistent 
with multiple cell states. Further validation using the 10X Genomics Spatial Transcriptomics 
dataset of IDH1 wildtype (IDH1WT) glioma unveiled that various permutations of these co-
occurring cell states exist within single cell clusters, demonstrating that clusters encompass a 
heterogenous group of cell types with a variety of genomic and transcriptomic profiles (Figs. 
1H-J). Exploiting the ability of SCRAM to define both transcriptional signatures and RNA-
inferred genomic CNVs, we were able to specify which cells were tumor and further characterize 
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their respective cell lineages. Our results confirmed that tumor cells are spatially dispersed 
throughout the non-tumor landscape and uncover diverse transcriptomic cellular profiles within a 
small anatomical region. These analyses validate that SCRAM is capable of recapitulating 
previously defined cell annotations and can be used to further resolve intratumoral 
heterogeneity by defining both co-occurring cell identities and cellular states with higher 
resolution. 

Having confirmed SCRAM’s capacity to accurately assign cell identities, we next assessed its 
ability to distinguish tumor cells from non-tumor cells. Accordingly, we analyzed non-tumor 
human and mouse cortex scRNA-seq datasets from the Allen Brain Atlas, finding that SCRAM 
could reliably decipher between tumor and non-tumor constituents with >99% accuracy across 
species. SCRAM was able to annotate >88% of cells in these datasets, replicating 60% and 
86% of the same cell annotations provided by Allen Brain Atlas for human and mouse datasets, 
respectively (Figs. 1K-N). Our analyses unexpectedly showed that >60% of cells in the 
mammalian non-tumor brain have expression profiles that qualify as more than one cell type 
and alluded to the existence of cell populations in both species that do not meet the 
transcriptional requirements of known cell types. These data demonstrate that SCRAM reliably 
distinguishes between tumor and non-tumor cell types and accurately assigns cell identities in 
both human and mouse. Furthermore, these analyses expose previously unreported cellular 
heterogeneity in the mammalian brain by defining unique co-occurring transcriptional cellular 
states in which cells possess co-occurring cell signatures. 

SCRAM reveals unique integrated genomic and transcriptomic signatures in human 
glioma 

Having validated SCRAM, we next aimed to define the genomic and transcriptomic landscape of 
tumor cells in our integrated scRNA-seq dataset consisting of 195,063 cells from seven IDH1WT 
and IDH1 mutant (IDH1mut) glioma patients. SCRAM analyses employing the CaSpER7 CNV 
calling algorithm confirmed that IDH1WT tumors had increased CNV incidence (Figs. 2A-C,2F-
H) whereas chromosome 1p19q codeletions were the predominant alterations for IDH1mut 
oligodendroglioma.  Parallel analyses using XCVATR8 to call SNVs validated that IDH1mut 
tumors are marked by IDH1 mutations and that IDH1WT tumors feature EGFR, TP53 and PTEN 
mutations (Figs. 2D,E,I,J). While DNA-based sequencing studies have demonstrated a higher 
mutational burden in IDH1WT tumors, our RNA-inferred analyses exposed more frequent 
transcriptional penetrance of SNVs in IDH1mut tumors in our cohort, signifying that transcribed 
mutations at the mRNA level are more frequently encountered in IDH1mut glioma. Of particular 
interest was high incidence of mRNA mutations in a transcript mapping to the polycomb 
repressive complex 2 (PRC2) SUZ12. Further examination of the mutation-bearing region 
revealed that the mutated SUZ12 sequence is identical to the SUZ12 pseudogene sequence, 
SUZ12P1. This transcript is detected at high levels in all glioma patients, suggesting that either 
SUZ12 mutations are the most transcribed SNVs in our cohort, or that the SUZ12P1 
pseudogene is being actively transcribed in glioma patients (Figs. 2K,L). Prior reports have 
observed hypermethylation of PRC2 regions in malignant tumors, which is pronounced in 
IDH1mut subtypes9,10. Whether high transcriptional penetrance of SUZ12P1 or mutated SUZ12 
mechanistically contributes to these hypermethylation phenotypes in glioma warrants future 
mechanistic inquiries. 

Using CNV and SNV annotation in conjunction with high expression of established tumor 
markers (Fig. 2M), cells were assigned tumor or non-tumor cell status (Fig. 2N). Tumor cells in 
both IDH1WT and IDH1mut samples primarily mapped to one of three SCRAM-assigned cell 
classes (embryonic-neural, embryonic or neural) and corresponded to one of four co-occurring 
cell lineages (glial, glial-neuronal, myeloid and neurodevelopmental), emphasizing convergent 
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transcriptomic features shared between glioma subtypes (Figs. 2O,P). An examination of cell 
types by patient sample uncovered divergent cellular heterogeneity both within and between 
patients and illuminated prodigious myeloid-derived immune cell signatures within IDH1mut tumor 
core samples (Fig. 2Q). Importantly, 17% of tumor cells were marked only by CNVs, 
demonstrating that a population of tumor cells exists for which no corresponding cell type 
signature can be assigned. Using the SCRAM de novo marker function, we were able to identify 
differentially expressed markers of these tumor cells (Table S2), the function of which may 
serve as the basis for future scientific endeavors. Collectively, these data demonstrate that 
IDH1WT and IDH1mut tumors are defined by unique co-occurring genomic and transcriptomic 
profiles that exist in varying proportions between glioma subtypes and highlight the utility of 
SCRAM in defining transcribed mutations and integrated cell states in human glioma. 

SCRAM elucidates novel developmental tumor cell trajectories and defines new 
intermediate cell states in glioma 

Given the former observations and prior work demonstrating that spatially-distinct tumor regions 
possess unique transcriptomic and genomic signatures within individual tumors11, we sought to 
identify which co-occurring cell types occur in our glioma dataset and to resolve these cell types 
spatially. An analysis of each Seurat-generated cluster revealed that clusters are exceedingly 
diverse and frequently feature a combination of tumor and non-tumor cells that share similar 
transcriptional expression patterns (e.g., astrocyte and astrocyte-like tumor). The largest cluster 
of tumor cells in our human dataset (Cluster 1) contained cells that were uniformly assigned the 
cell type annotation of astrocyte and were marked by a variety of co-occurring chromosome 5p, 
5q, 7p, 7q and 17q amplifications and chromosome 10p, 10q and 22q losses (Figs. 3A-D). 
Visualization of co-occurring CNVs by patient showed that IDH1WT tumor cells in the leading 
edge feature less co-occurring chromosomal rearrangements than tumor cells in the core (Fig. 
3E). This finding suggests that clonal tumor cells in the leading edge emerge from specific 
glioma cell subclones residing in the tumor core and is further supported by lineage tracing 
studies that show leading edge cells emanate from more primitive cell types in the tumor core 
(Figs. 3F-H). Employing RNA velocity pseudotime analysis12, we found that these astrocytic 
tumor cells emanate from stem cell-like tumor cells found in Cluster 23 and transition through an 
intermediate cell type found mainly in Cluster 3. Notably, these intermediates possess 
neurodevelopmentally-restricted transcriptional profiles resembling those of embryonic 
astrocytes and/or RG but retain the frequently co-occurring CNV annotations observed in 
Cluster 1. In contrast, the progenitor and/or stem cell-like cells found in Cluster 23 are 
characterized by the addition of more primitive co-occurring cell identities including neural stem 
cell (NSC) and GSC as well as oligodendrocyte (Figs. 3I-L) but are largely marked by a single 
CNV occurrence in each cell. These observations suggest that astrocyte-like tumor cells with 
widespread chromosomal anomalies derive from a chromosomally-intact stem cell-like 
population of cells that have transcriptional profiles resembling oligodendrocytes. These cells 
transition through an intermediate cell state in which stem cell signatures are lost and pervasive 
co-occurring CNVs are gain. Synchronously, SCRAM was able to identify analogous 
populations of glioma cells in our scRNA-seq dataset from our piggyBac transposase-based in 
utero electroporation (pB-IUE) model of glioma, which is yields GFP-labeled de novo tumors in 
immunocompetent mice (Figs. 3M-P). These combined analyses elucidate a compendium of 
individual cell states that parallel neurodevelopmental trajectories and define co-occurring 
spatiotemporal hierarchies that are elucidated by SCRAM. 

SCRAM exposes an immune-like cell population in IDH1 wildtype and IDH1 mutant 
astrocytoma 
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Our preceding observations uncovered that co-occurring neurodevelopmental cellular states are 
found within glioma cell transcriptomes, leading us to investigate whether cell signatures 
deriving from non-neural lineages also exist in these tumors. Unexpectedly, we found 229 cells 
in Cluster 19 for which tumor cell, antigen presenting cell (APC) and tumor cell with co-occurring 
APC annotations were detected. These cells were unique to astrocytoma tumors in both IDHWT 
and IDH1mut patients and featured CNVs, cycling progenitor cell annotation and high expression 
of the activated APC markers, CD8313 and major histocompatibility class I and II genes14 (Figs. 
4A-D). A number of immune cell subtypes are known to actively surveil the tumor 
microenvironment where they engulf and display tumor antigens through processes of antigen 
presentation15; to confirm that these cells were not an artifact of immune cells phagocytosing 
tumor cells, we examined expression of the immune cell lineage marker, PTPRC (CD45) finding 
that 69% of APC-like tumor cells did not express PTPRC. SCRAM identified an analogous 
population of Ptprc negative APC-like tumor cells in mouse glioma, which featured high GFP 
expression in addition to Cd83 (Figs. 4E-H). These data suggest that a rare population of CNV-
altered tumor cells exist in high-grade astrocytoma that are endowed with APC transcriptional 
signatures and confirm the existence of a parallel cell population in our pB-IUE model. 

Modulation of APC-like tumor cell types directs disease progression and CD8+ T cell 
responses in an immunocompetent de novo model of glioma 

The former observations uncover a rare population of APC-like tumor cells in human glioma that 
are similarly detected in our pB-IUE model of murine glioma (Fig. 5A). To experimentally 
discern if APC-like tumor cells can be confirmed in vivo, we exploited GFP-labeling of our 
established pB-IUE model to perform multispectral imaging flow cytometry. Examination of 
endogenous GFP expression alongside CD83 revealed two distinct populations of CD83+GFP+ 
cells. The first population consisted of cells featuring dendrite-like projections and punctate 
expression of GFP that was either present intracellularly or localized adjacent to CD83 on the 
cell surface (Fig. 5B). As per prior reports employing this imaging modality to examine 
phagocytosis in live cells16, this expression pattern is indicative of CD83+ immune cells actively 
phagocytosing or displaying GFP+ tumor antigen on their surface. In contrast, a second 
population of CD83+GFP+ cells was characterized by high, diffuse intracellular expression of 
GFP, which is a hallmark feature of targeted cells in the pB-IUE model (Fig. 5C)17. Subsequent 
analysis revealed a rare number of events wherein CD83-GFP- cells were bound to GFP+ 
tumor cells at a CD83+ interface (Fig. 5D), further implicating CD83 as a mediator of tumor-host 
cell interactions in glioma. These imaging studies confirm the existence of an endogenous 
CD83+GFP+ APC-like tumor cell population in the pB-IUE glioma model that was identified by 
SCRAM in both human and mice. 

Insofar as CD83 is required for antigen presentation in non-tumor immune cells, we sought to 
define how CD83 expression alters tumor progression in vivo. To this end, we generated CD83 
gain-of-function (GOF) tumors using overexpression of murine Cd83 and CD83 loss-of-function 
(LOF) tumors via CRISPR/Cas9 technology. Kaplan-Meier survival analysis revealed that tumor 
loss of CD83 reduced survival times while tumor overexpression of CD83 extended survival 
when compared to control tumors (Fig. 5E). Correspondingly, end-stage tumors were smaller in 
CD83-GOF mice, whereas CD83-LOF tumors appeared significantly larger (Figs. 5F,G). Cell 
proliferation assays using Ki67 showed that CD83-GOF end-stage tumors were less 
proliferative than those of CD83-LOF and control, however, no difference was observed 
between control and CD83-LOF cohorts (Figs. 5H,I). Considering worse survival outcomes in 
CD83-LOF tumors, we analyzed the number of nuclei per tumor field of view finding that CD83-
LOF tumors had nearly 50% more cells than controls (Fig. 5J), raising the possibility that 
impaired immune clearance of tumor cells may account for CD83-LOF phenotypes. These 
collective observations demonstrate that intratumoral expression of CD83 modulates disease 
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progression in mouse glioma and suggest that tumor extrinsic mechanisms may contribute to 
poor survival outcomes when CD83 expression is lost. 

Given that CD83 is known to direct T cell responses by enabling antigen presentation by 
APCs18, we sought to characterize how changes to tumor cell CD83 expression alters T cell 
responses in glioma. To this end, we derived glioma cell lines from our pB-IUE tumors and 
performed coculture experiments with naïve CD8+ T cells (Figs. 5K). Following one week of 
coculture, T cells were harvested for imaging flow cytometry. Analysis revealed that CD83-GOF 
cocultures had the highest population of CD3+CD8+ cells remaining (Figs. 5L-O). Closer 
examination uncovered a subset of CD3-CD8+ cells from CD83-LOF cocultures, >90% of which 
expressed the naïve T cell marker CCR7 (Figs. 5L,M). Importantly, prior studies have 
demonstrated that loss of CD3 can reduce T cell expansion19,20 and is required for acquisition of 
cytotoxic functions in CD8+ effector memory T cells21,22. Additionally, a subset of CD8+CCR7+ T 
cells have been implicated as potent immunosuppressive mediators23, suggesting that CD3-
CD8+CCR7+ T cells may contribute to subpar T cell responses in CD83-LOF tumors. 
Consistent with these data, ELISA analyses of cell media from cocultures revealed that while 
both CD83-GOF and CD83-LOF cocultures had increased production of the T cell activating 
cytokines IFNγ and TNFα24,25, cell media taken from CD83-GOF tumor cells alone had 
increased IL-2 secretion, which is required for memory and effector T cell subsets (Figs. 5P,Q). 
Our scRNA-seq analyses of CD83-altered tumors confirmed that CD83-GOF tumors are 
enriched for T cell activating cytokines (Fig. 5R). Notably, T cells from CD83-LOF tumors 
displayed increased expression of anergic and regulatory T cell markers, whereas CD83-GOF T 
cells were marked by high expression of CD44, a prominent activation marker of memory and 
effector T cells26 (Fig. 5S). In vitro EdU assays revealed that CD83-GOF cells are intrinsically 
more proliferative than controls, having similar proliferation rates to CD83-LOF tumor cells 
(Figs. 5T,U). We confirmed this through scRNA-seq cell cycle scoring of CD83-altered tumors, 
which showed that CD83-GOF and CD83-LOF tumor cells have increased expression of 
proliferation markers as compared to controls (Fig. 5V). When considered alongside results 
from our in vivo proliferation and survival studies, these findings suggest that T cell-CD83 
interactions may promote tumor cell clearance and counteract glioma cell proliferation, which 
may ameliorate poor survival outcomes. These results demonstrate that modulation of CD83 
expression in tumors can direct glioma progression through both cell autonomous effects on cell 
proliferation and cell non-autonomous responses mediated by T cell-dependent changes to the 
cytokine milieu. Moreover, these studies emphasize the ability of SCRAM to report rare, co-
occurring tumor cell populations with important and significant contributions to tumor biology in 
glioma. 

Functional neuronal-like tumor cells are a prominent transcriptional subset of IDH1 
mutant glioma 

Parallel analyses using SCRAM revealed that most tumor cells from IDH1mut samples mapped 
to Cluster 4, which displayed a high density of IDH1 mutations and featured chromosome 1p19q 
codeletions in oligodendroglioma patients (Figs. 4I-K). Surprisingly, we found that 40% of cells 
with CNV or GSC annotation had co-occurring cell type annotations of mature neurons, 
GABAergic neurons and/or synaptic neurons as well as oligodendrocytes and OPCs (Fig. 4L); 
in contrast, only 18 tumor cells had co-occurring neuronal signatures in IDH1WT samples. 
SCRAM identified an similar population of neuronal-like tumor cells in our mouse glioma dataset 
(Figs. 4M,N), which prompted us to further investigate these cell types. 

To validate the existence of neuronal-like tumor cells experimentally, we performed whole-cell 
patch clamp electrophysiology recordings and RNA patch-sequencing (Patch-seq) on two 
IDH1mut glioma (Grades II-III) specimens that were surgically resected from the tumor core 
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(Figs. 6A,B). In total, we recorded from 53 cells, 31 of which were used for Patch-seq and 20 
for which morphology was preserved using biocytin (Figs. 6C-H). Of the 50 cells for which 
recordings were obtained, 27 had electrophysiological and morphological properties consistent 
with glia or neurons found in the non-tumor brain27,28. Surprisingly, 26 cells displayed 
electrophysiological properties of neurons but were morphologically consistent with glia. 
Recorded cells had higher input resistances than neurons or glia (Fig. 6I) and had the capacity 
to fire single APs (Figs. 6J,K), signifying that these cells have acquired transcriptional 
signatures that endow them with functional characteristics of neurons. Prior work has described 
similar electrophysiological properties in neurogenesis and has implicated hyperexcitability, high 
input resistance and firing of single APs as a defining feature of young post-mitotic neurons29. 
These newborn neurons feature high levels of GABA receptors30,31, which are similarly 
expressed by neuron-like tumor cells and frequently reported by SCRAM as co-occurring 
GABAergic neuron annotation in IDH1mut tumor cells. Our Patch-seq results confirmed the 
presence of the IDH1 mutation in five of the six neuron-like tumor cells sequenced, which 
confirms these cells are tumor in origin (Fig. 6L); transcripts mapping to either mutated SUZ12 
or the SUZ12P1 pseudogene were also detected in a subset of these cells. Subsequent PCA 
and cell type enrichment of Patch-seq data using the enrichR tool32,33 illuminated that neuronal-
like tumor cells are transcriptionally akin to glia and are enriched for embryonic astrocyte and 
OPC gene sets (Figs. 6M,N). For comparison, we recorded from an IDH1WT GBM (Grade IV) 
core sample, finding that only a few cells were capable of being patched, due in part to 
extensive gliosis and necrosis, but that these cells were electrophysiologically consistent with 
glia. Whether neuronal-like tumor cells exist in IDH1WT glioma remains unanswered and may be 
the subject of future scientific investigations.  
 
Using in vivo modeling, whole-cell patch clamp recordings were obtained for GFP+ tumor cells 
from control pB-IUE tumor mice, which revealed an analogous population of neuron-like tumor 
cells, some of which also featured high input resistances (Fig. 6O). To confirm these cells were 
of tumor origin, we performed complementary experiments employing live in vivo 2-photon 
imaging of mouse tumors to examine Synapsin-driven GCaMP-labeled calcium activity in tumor-
bearing mice. Here, the fluorescent ubiquitination-based cell cycle indicator (FUCCI) was used 
to visualize actively proliferating cells and revealed a small population of FUCCI-labeled cells 
exhibiting calcium transients consistent with neuronal AP firing (Figs. 6P). Taken together, 
these human and mouse studies confirm the existence of neuronal-like tumor cells endowed 
with transcriptional and electrophysiological properties similar to but distinct from neurons and 
characterize these cells as a defining feature of human IDH1mut gliomas. 
 
Discussion 

A new computational framework for defining genomic and transcriptional states in 
cancer, development and disease 

By 2040 the number of new cancer cases per year will stand at 29.5 million worldwide, more 
than half of which will end in cancer-related deaths34, highlighting a need for molecular insights 
that can guide therapeutic development. While advances in single-cell sequencing technologies 
have given scientists the opportunity to examine individual cells in unprecedented detail, the 
power of these data has yet to be harnessed by computational platforms capable of resolving 
these profiles on a cell-by-cell basis. To address this unmet need, we developed SCRAM, which 
we report here as the first computational algorithm of its kind capable of defining integrated co-
occurring genomic and transcriptomic features from single cell datasets. In this report, we 
employ SCRAM using a curated brain tumor-specific cell type marker list to elucidate previously 
unreported cellular states in glioma and validate these cell types experimentally. However, our 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2022. ; https://doi.org/10.1101/2022.11.05.515316doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.05.515316
http://creativecommons.org/licenses/by-nc-nd/4.0/


pipeline can be easily modified for use in any cancer type, non-oncologic disease or 
developmental context. To this end, we believe SCRAM will offer researchers a reliable and 
potent tool that can be used to uncover molecular complexities in high resolution across a 
multitude of disease and non-disease states and will enable new lines of scientific inquiry with 
clinically relevant implications for cancer, development and disease. 

A key finding of our studies is the identification of two previously unreported glioma cell types, 
which we define here as APC-like and neuronal-like tumor cells. Attempts to identify ways in 
which brain tumors coopt the surrounding microenvironment for continued growth and invasion 
have led to the development of two highly specialized fields of cancer biology, tumor 
immunology and cancer neuroscience, each of which seek to characterize tumor-host cell 
interactions in exquisite detail. Using SCRAM to uncover both rare and widespread co-occurring 
cell types in human glioma, we characterize two new glioma cell populations with APC-like and 
neuronal-like functional properties that contribute to the immune and electrophysiological 
landscapes of these tumors. 

APC-like glioma cells alter CD8+ T cell responses and tumor progression 

Owing in part to the existence of a highly immunosuppressive tumor microenvironment, 
immunotherapy trials for the treatment of glioma has proven largely unsuccessful, conferring 
little to no effect on overall survival35,36. Prior research in the field of tumor immunology has 
sought to characterize the molecular mechanisms employed by glioma cells that mediate this 
immunosuppressive constituency and has implicated anergic and regulatory T cells as important 
mediators of these processes37,38. To this end, identification of a tumor cell subset with immune-
like transcriptomic signatures and functional effects on CD8+ T cell responses offers novel 
insights into the ways in which glioma cells can alter the immune landscape. Accordingly, CD8+ 
cytotoxic T cells have been recognized as potent antitumor mediators39,40, raising the question 
of whether changes to the proportions of CD8+ T cells in this study alter the ability of these cells 
to recognize and destroy glioma cells. Indeed, our imaging flow cytometry studies demonstrate 
that tumor cells are actively surveilled and phagocytosed by the surrounding immune 
constituency, implicating downstream immunosuppressive phenotypes as a likely culprit for poor 
tumor clearance that should be further explored through future scientific investigations. 

Neuronal-like tumor cells can generate action potentials and are a defining feature of 
IDH1 mutant glioma 

Over the past decade, the emerging field of cancer neuroscience has elucidated the ways in 
which glioma cells interact with surrounding neural networks to direct disease progression. 
Previous work has shown that brain tumors alter peritumoral networks by engendering synaptic 
dysregulation that promotes hyperexcitability and seizures, which in turn serve to enhance 
tumor dissemination and growth41,42. Prior studies have reported the ability of human glioma 
cells to receive synaptic inputs from the surrounding neuronal circuitry in the form of excitatory 
postsynaptic currents43,44 and that glutamatergic inputs to glioma cells can direct disease 
outcomes44. Our studies build upon these existing reports to reveal that neuronal-like tumor 
cells may communicate with peritumoral neuronal networks by directing outgoing 
electrochemical information in the form of APs. Our observations suggest that dysregulated 
electrophysiological activity in the glioma-bearing brain may originate from tumor cells endowed 
with the ability to initiate and propagate outgoing neurochemical signals. Importantly, SCRAM 
predicted the existence of these neuronal-like tumor cells as a defining feature of IDH1mut 
tumors representing nearly half of tumor cells in our human datasets, which we confirmed 
experimentally. Notably, IDH1mut glioma frequently presents with seizures45 despite a slower 
disease course, raising the possibility that these neuronal-like cell types may contribute to 
hyperexcitable phenotypes that present clinically. Future investigations may aim to better define 
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the electrophysiological contributions of these cells to tumor progression and may seek to 
characterize how modulation of electrophysiological activity originating from tumor cells alters 
disease outcomes in glioma. 

Figure Legends 

Figure 1. SCRAM reliably assigns cell type annotations to scRNA-seq datasets on a cell-
by-cell basis. (A) Schematic representation of the SCRAM pipeline. (B) Percentages of 
SCRAM-annotated cells assigned non-tumor, tumor or unknown cell types across eight 
datasets. Percentages shown below dataset names indicate the total percentages of cells 
assigned cell type annotation using SCRAM. (C) Percentages of SCRAM-annotated cells by 
number of co-occurring cell types. Percentages shown below dataset names indicate the 
percentages of cells having more than one cell type annotation. (D) Reproduction of meta-
modules published by Neftel et al.5 showing astrocyte-like (AC-like), oligodendrocyte precursor 
cell-like (OPC-like), mesenchymal-like (MES-like) or neural precursor cell-like (NPC-like) cellular 
states. (E) Meta-module of SCRAM-identified tumor cells from Neftel et al. dataset. (F) 
Reproduction of cell state modules published by Richards et al.6 showing developmental and 
injury response programs. (G) SCRAM-assigned developmental and injury response cell 
classes for the Richards et al. dataset. (H) H&E and corresponding Seurat clusters are shown 
for the 10x Genomics Spatial Transcriptomics IDH1 wildtype GBM dataset. (I) SCRAM-assigned 
tumor and non-tumor annotation for the 10x Genomics Spatial Transcriptomics IDH1 wildtype 
GBM dataset shows tumor cells are embedded throughout non-tumor tissue. Seurat clusters 
split by tumor and non-tumor annotation shows clusters are comprised of tumor and non-tumor 
cells. (J) SCRAM cell class annotation for the 10x Genomics Spatial Transcriptomics IDH1 
wildtype GBM dataset. Cells harboring RNA-inferred CNVs are outlined in black. (K) Cell type 
annotation for human cortex dataset provided by Allen Brain Atlas. (L) SCRAM-assigned cell 
type annotation for the Allen Brain Atlas human cortex dataset reveals co-occurring cell 
identities (dark grey) and unknown transcriptional cell states (light grey). (M) Cell type 
annotation for mouse cortex dataset provided by Allen Brain Atlas. (N) SCRAM-assigned cell 
type annotation for the Allen Brain Atlas mouse cortex dataset reveals co-occurring cell 
identities (dark grey) and unknown transcriptional cell states (light grey). 

Figure 2. Integrated RNA-inferred genomic and transcriptomic cell states reveal unique 
molecular signatures in IDH1 wildtype and IDH1 mutant glioma. (A) Seurat clusters are 
shown for 157,316 cells from IDH1WT glioma patients (n=4). (B) Feature plots show SCRAM 
detects large-scale chromosome 7p amplifications and chromosome 10p deletions in IDH1WT 
glioma using CaSpER. (C) Feature plots showing total CNV calls by SCRAM for and IDH1WT 
tumors. (D) Density plot showing SNV allele frequency for rare and COSMIC variants in and 
IDH1WT glioma. (E) Density plot showing EGFR mutations are detected in IDH1WT samples. (F) 
Seurat clusters are shown for 37,747 cells from IDH1mut glioma patients (n=3). (G) Feature plots 
show SCRAM detects large-scale chromosome 1p19q codeletions in IDH1mut oligodendroglioma 
using CaSpER. (H) Feature plots show total CNV calls by SCRAM for and IDH1mut tumors. (I) 
Density plot showing SNV allele frequency for rare and COSMIC variants in IDH1mut glioma. (J) 
Density plot showing IDH1 mutations are detected in IDH1mut samples. (K) Bar plot showing the 
percentage of cells harboring rare and COSMIC SNVs in IDH1WT and IDH1mut glioma; italics 
denotes genes with known pseudogenes; bold denotes known driver genes in glioma. (L) 
Density plot showing either SUZ12 mutations or the SUZ12P1 pseudogene are detected in 
IDH1WT and IDH1mut samples. (M) Feature plots for tumor cell markers used to assign tumor 
annotation. (N) SCRAM-assigned tumor annotation is shown for IDH1WT and IDH1mut glioma. 
(O) SCRAM-assigned cell classes are shown for all glioma samples. (P) SCRAM-assigned cell 
lineages are shown for all glioma samples. (Q) Heatmap showing enrichment for SCRAM-
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assigned cell types by tumor type and sample location; z-score for expression of cell types is 
shown. 

Figure 3. SCRAM uncovers novel tumor cell states and developmental hierarchies in 
glioma. (A) Dimplot and corresponding pie chart showing SCRAM-identified astrocyte-like 
tumor cells for Cluster 1 in human glioma samples. CNV-harboring cells are outlined in black. 
(B) Feature plots showing exemplary large-scale CNVs. (C) Density plot showing SNV allele 
frequency. (D) Feature plots for select tumor cell (CDK4, EGFR) and astrocyte (ALDH1L1, 
ALDOC, AQP4, GFAP, S100B, SLC1A3) markers. (E) Co-occurring CNVs for five patient-
matched IDH1WT glioma samples shows leading edge cells emanate from specific co-occurring 
CNV lineages. Increased line thickness (weight) indicates more frequent co-occurrence. (F) 
RNA velocity lineage tracing by SCRAM-assigned cell type shows astrocyte-like tumor cells 
derive from stem-like and progenitor-like tumor cells and transition through an intermediate cell 
state marked by embryonic astrocyte and RG signatures. (G) RNA velocity pseudotime plots. 
(H) RNA velocity lineage tracing by tumor sample location shows leading edge cells derive from 
glioma cells in the tumor core. (I) Dimplot and corresponding pie chart showing SCRAM-
identified stem-like and progenitor-like cell type annotations for Cluster 23 cells in human glioma 
samples. CNV-harboring cells are outlined in black. (J) Feature plots showing exemplary large-
scale CNVs. (K) Density plot showing SNV allele frequency. (L) Feature plots for select 
embryonic astrocyte (LGALS3, TIMP1), GSC (CCND2, OLIG2, SOX2), LEC (PDPN, PROX1), 
NSC (HES1, NES, SOX2, SOX9), RG (CDH2, HES1, NES, SOX2, TNC) and oligodendrocyte 
(OLIG2) markers. (M) Dimplot and corresponding pie chart showing analogous cell types are 
detected by SCRAM in mouse glioma Cluster 0. (N) Feature plots showing GFP expression and 
select tumor (Cdk4) and astrocyte (Aldh1l1, Aldoc, Aqp4, S100b, Slc1a3) markers. (O) Dimplot 
and corresponding pie chart showing analogous cell types are detected by SCRAM in mouse 
glioma Cluster 5. (N) Feature plots showing GFP expression and select RG (Cdh2, Hes1, 
Fabp7), NPC (Fabp7, Sox2, Sox9) and EC (Pdpn) markers. EC: endothelial cell; GSC: glioma 
stem cell; LEC: lymphatic endothelial cell; NPC: neural precursor cell; NSC: neural stem cell; 
RG: radial glia. 

Figure 4. Identification of novel immune-like and neuronal-like tumor cells in glioma 
using SCRAM. (A) Dimplot and corresponding pie chart showing SCRAM-identified APC-like 
tumor cells for Cluster 19 in human glioma samples. CNV-harboring cells are outlined in black. 
(B) Feature plots showing exemplary large-scale CNVs. (C) Density plot showing SNV allele 
frequency. (D) Feature plots for select tumor cell (CDK4, IGFBP2), cycling progenitor cells 
(CDK1, CENPF, MKI67, TOP2A) and APC (CD83, HLA-DRA, HLA-DRB1) markers. (E) Dimplot 
and corresponding pie chart showing SCRAM-identified APC-like tumor cells for Cluster 7 in 
mouse glioma samples. (F) Feature plots showing GFP expression and select tumor cell (Cdk4, 
Igfbp2), cycling progenitor cells (Cdk1, Mki67, Top2a) and APC (Cd83) markers. (G) Dimplot 
and corresponding pie chart showing SCRAM-identified neuronal-like tumor cells for Cluster 4 in 
human glioma samples. CNV-harboring cells are outlined in black. (H) Feature plots showing 
exemplary large-scale CNVs. (I) Density plot showing SNV allele frequency. (J) Feature plots for 
select GSC (CCND2, OLIG2, SOX2), oligodendrocyte (OLIG1, OLIG2), OPC (PDGFRA, 
CSPG4), mature neuron (MAP2, ENO2), synaptic neuron (MAP2, ENO2, SYP) and GABAergic 
neuron (DCX, NCAM1, SLC6A1) markers. (K) Dimplot and corresponding pie chart showing 
SCRAM-identified neuronal-like tumor cells for Cluster 8 in mouse glioma samples. (L) Feature 
plots showing GFP expression and select tumor cell (Cdk4), GSC (Ccnd2, Olig2), 
oligodendrocyte (Olig1, Olig2), OPC (Pdgfra, Cspg4), mature neuron (Map2, Eno2), immature 
neuron (Dcx, Ncam1) markers. APC: antigen presenting cell; GSC: glioma stem cell; OPC: 
oligodendrocyte precursor cell. 
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Figure 5. APC-like tumor cells are a potent mediator of disease progression and the 
immune landscape in glioma. (A). Feature plots of human and mouse scRNA-seq datasets 
showing APC-like tumor cells. (B) Representative images from imaging flow cytometry of 
CD83+ APCs with punctate GFP; scale bar = 7 μm. (C) Representative images from imaging 
flow cytometry of CD83+GFP+ APC-like tumor cells demonstrating diffuse GFP expression 
throughout the cell;  scale bar = 7 μm. (D) Representative images from imaging flow cytometry 
showing GFP+ tumor cells interfacing with GFP- host cells at a CD83+ interface; scale bar = 7 
μm. (E) Kaplan-Meier survival analysis of control (n=17), CD83-GOF (n=16) and CD83-LOF 
(n=20) tumor mice; *p<0.05. (F) Exemplary brightfield and GFP images from end-stage control, 
CD83-GOF and CD83-LOF tumors. (G) Representative H&E whole brain coronal sections from 
end-stage control, CD83-GOF and CD83-LOF tumors; black dotted lines denote tumor regions, 
scale bar = 1 mm. (H) Representative H&E and Ki67 images from end-stage control, CD83-
GOF and CD83-LOF tumors; scale bar = 100 μm. (I) Quantification of Ki67 for end-stage tumors 
shows CD83-GOF tumors are less proliferative than controls (**p<0.01) and CD83-LOF 
(*p<0.05) tumors. (J) Quantification of nuclei per tumor field of view (FOV) shows end-stage 
CD83-LOF tumors have more cells than controls (**p<0.01) and CD83-GOF (***p<0.001) 
tumors. (K) Representative images from established tumor cell lines age-matched control, 
CD83-GOF and CD83-LOF tumors; scale bar = 20 μm. (L) Flow cytometry plots from imaging 
flow cytometry experiments showing an increased percentage of CD3+CD8+ T cells from CD83-
GOF (48.0%) cocultures as compared to controls (29.6%) and CD83-LOF (25.7%). CD3-CD8+ 
T cells were detected at 26.7% in CD83-LOF T cells compared to 0.2% and 0.1% in controls 
and CD83-GOF, respectively. Gating on CD3-CD8+ T cells from CD83-LOF cocultures shows 
two populations of T cells: CD3-CD8+CCR7+CD25- T cells and CD3-CD8+CCR7+CD25+ T 
cells. (M) Representative images of CD3-CD8+CCR7+CD25- and CD3-CD8+CCR7+CD25+ T 
cells from imaging flow cytometry experiments from cocultures; scale bar = 7 μm. (N) Flow 
cytometry plots from imaging flow cytometry experiments showing CCR7 and CD25 expression 
for CD3+CD8+ gated cells. T cells from CD83-LOF cocultures show an increased percentage of 
CD3+CD8+CCR7+CD25+ T cells. (O) Representative images of CD3+CD8+CCR7+CD25- and 
CD3+CD8+CCR7+CD25+ T cells from imaging flow cytometry experiments; scale bar = 7 μm. 
(P) Box and whisker plots for ELISA assays shows IFNγ production is increased in CD83-GOF 
(****p<0.0001) and CD83-LOF (****p<0.0001) cocultures when tumor cells cultured with naïve 
CD8+ T cells. TNFα production was only increased in CD83-LOF (***p<0.001); IL-2 production 
was unchanged. (Q) Box and whisker plots for ELISA assays shows IFNγ production is 
increased in CD83-GOF (**p<0.01) and CD83-LOF (****p<0.001) T cell cocultures when 
compared to controls (***p<0.001).  TNFα production was increased in CD83-LOF T cell 
cocultures when compared to CD83-GOF (**p<0.01) and controls (**p<0.01). IL-2 production 
was increased in CD83-GOF tumor cells cultured in the absence of T cells when compared to 
controls (*p<0.05). (R) Dot plots from control, CD83-GOF and CD83-LOF tumor scRNA-seq 
datasets shows T cells are enriched for Ifng (IFNγ) expression in control tumors and enriched for 
Tnf (TNFα), Il2 (IL-2) and Il12a (IL-12) in CD83-GOF tumors, in vivo. (S) Dot plots from control, 
CD83-GOF and CD83-LOF tumor scRNA-seq datasets shows T cells from CD83-GOF tumors 
are enriched for effector and memory T cell markers (Cd44, Il2ra) and T cells from CD83-LOF 
tumors are enriched for anergic and regulatory T cell markers (Foxp3, Il2ra, Ctla4, Itga4). (T) 
Representative images from EdU proliferation assays on control, CD83-GOF and CD83-LOF 
tumor cell lines in vitro. (U) Quantification of fraction of EdU+ cells shows CD83-GOF 
(****p<0.0001) and CD83-LOF (****p<0.0001) tumor cells are more proliferative than controls 
and that CD83-LOF tumor cells are more proliferative than CD83-GOF tumor cells (*p<0.05). (V) 
Cell cycle scoring analysis for control, CD83-GOF and CD83-LOF proliferating tumor cells from 
scRNA-seq datasets shows CD83-GOF (****p<0.0001) and CD83-LOF (****p<0.0001) tumor 
cells are more proliferative than controls.  
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Figure 6. Neuronal-like tumor cells are functionally akin to neurons and are a hallmark of 
IDH1 mutant glioma. (A). Feature plots of human and mouse scRNA-seq datasets showing 
neuronal-like tumor cells. (B) Experimental workflow for electrophysiology and Patch-seq 
assays. (C) Images of biocytin-reconstructed cell morphologies for patched cells from an 
IDH1mut diffuse astrocytoma (Grade II); scale bar = 50 μm. (D) Matched whole-cell 
electrophysiology traces for patched cells. Two voltage traces are shown: the hyperpolarization 
trace obtained with the smallest current stimulation (black) and the depolarization trace showing 
maximal AP firing rate. Stimulation length = 600 ms. (E) Traced cell morphologies are shown for 
recorded cells. (F) Images of biocytin-reconstructed cell morphologies for patched cells from an 
IDH1mut diffuse astrocytoma (Grade III); scale bar = 50 μm. (G) Matched whole-cell 
electrophysiology traces for patched cells. Two voltage traces are shown: the hyperpolarization 
trace obtained with the smallest current stimulation (black) and the depolarization trace showing 
maximal AP firing rate. Stimulation length = 600 ms. (H) Traced cell morphologies are shown for 
recorded cells. (I) Bar graph showing neuron-like tumor cells have the highest input resistance 
amongst recorded cells; p-values for pairwise comparisons are noted in the figure. (J) Bar graph 
showing neuron-like tumor cells have reduced maximal firing rates compared to neurons; p-
values for pairwise comparisons are noted in the figure.  (K) Bar graph showing neuron-like 
tumor cells have reduced AP amplitude compared to neurons; p-values for pairwise 
comparisons are noted in the figure.  (L) Examples of Patch-seq results showing the 
IDH1R132H mutation is detected in 5/6 sequenced neuron-like tumor cells and is absent in 1/6 
cells. (M) PCA plot of 31 Patch-seq cells shows neuron-like tumor cells are transcriptionally 
similar to each other and glia. (N) EnrichR analysis of 31 Patch-seq cells confirms neuron-like 
tumor cells are enriched for gene sets corresponding to OPCs and embryonic astrocytes; 
p<0.05. (O) Example traces of GFP+ tumor cells shows neuron-like tumor cells are detected in 
mouse glioma. (P) 2-photon images reveal Synapsin-driven GCaMP-labeled calcium activity is 
detected in select FUCCI-labeled tumor cells in mouse glioma. 
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Experimental model and subject details  

All experimental animals were treated in compliance with the US Department of Health and 
Human Services, and Baylor College of Medicine IACUC guidelines.  All mice were housed with 
food and water available ad libitum in a 12-hour light/dark environment. Both male and female 
mice were used for experiments and mice were randomly allocated to experimental groups. All 
scRNA-seq studies were performed on mice of the same gender. For ex vivo and in vivo 
experiments, adult mice aged >3 months were used unless otherwise described. Adult patients 
at St. Luke’s Medical Center and Ben Taub General Hospital provided preoperative informed 
consent to participate in these studies and were consented under Institutional Review Board 
Protocol H35355. Patients were males and females. Clinical characteristics were summarized 
and maintained in a deidentified patient database (Table S1). 

Experimental Methods 

SCRAM pipeline and methodology 

SCRAM input consists of aligned scRNA-seq reads, our manually curated host cell type marker 
database named BrainTumorHostCellDB and scRNA-seq clustering with cluster markers (i.e. 
DEGs). Tumor and host cells are annotated independently for two reasons: (1) there is 
significant overlap in expression markers in tumor and non-tumor cells. For example, EGFR and 
PDGFRA genes are often used to denote tumor cells5, however, PDGFRA and EGFR  are also 
DEG markers of OPC and ependymal host cells, respectively. (2) We hypothesize that a 
separation of tumor and host-specific features can provide more robust results. This is based on 
our observation that cell-type assignment methods that jointly classify tumor and host cells fail 
at assigning cell types due to overlaps between markers. Therefore, the SCRAM pipeline 
employs orthogonal tumor features to identify tumor cells in single cell resolution: (1) marker-
expression modeling; (2) RNA-inferred genotyping of large-scale chromosome alterations using 
a modified version of our CNV calling algorithm, CaSpER7

; and (3) RNA-inferred mutational 
profiling of recently developed XCVATR8 tool  to deduce rare deleterious SNV (COSMIC46-
reported and dbSNP47 <0.1% frequency). The following sections explain how these three 
features are employed systematically in our pipeline: 
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Step 1. Annotation of the host cells. We annotate each single cell within each Seurat cluster 
with host cell types using our manually curated host cell type marker database, 
BrainTumorHostCellDB. We only consider the genes in BrainTumorHostCellDB that are in our 
Seurat cluster markers. Seurat cluster markers are calculated using FindAllMarkers function 
with logfc.threshold = 0.5 for human and logfc.threshold = 0.25 for mouse. Our 
BrainTumorHostCellDB consists of a list of 87 host cell types and their respective markers for 
gliomas that represent a diverse range of cell lineages including myeloid, lymphoid, neuronal, 
embryonic, endothelial, fibroblast, tumor, hematopoietic stem cell, neurodevelopmental, 
lymphatic, glial, mesenchymal, and neurovascular. Most cell types require a minimum of 2 
markers to qualify for annotation. Cell types are stratified into different hierarchies including cell 
lineage (e.g. neuronal, glial, lymphoid, myeloid) and cell class (e.g. neural, immune) levels. To 
annotate each cell using marker list, we analyzed the enrichment of gene marker sets as “rules” 
on cells. For example, to be called “CD4+ regulator T cell”, a cell must express a reliable 
fraction of the following markers concurrently, {CD3E, CD3D, CD3G, CD4, IL2RA, FOXP3, 
TIGIT, etc.}. Results are tabulated in brute force annotation where each cell is evaluated in 
terms of a simple rule-based assignment by cell type.  

Step 2. Annotation of tumor cells. Because tumor cells exhibit a wide range of transcriptional 
states, we employ redundant and stringent approaches to annotate tumor cells using 3 modular 
components: (1) marker-expression modeling, (2) genotyping of CNVs on all cells (3) RNA-
inferred mutational profiling of known glioma mutations (i.e. IDH1, EGFR).  

a. Module 1. Marker expression-based tumor classification model. Given the expressional 
heterogeneity of tumor markers in host cells, we used previously published datasets of tumor 
and non-tumor cells to establish a marker expression-based tumor classification model (i.e. 
thresholding requirements for “high expression” annotation) for the tumor markers PDGFRA, 
EGFR, CDK4, IGFBP2, IGFBP5 and SOX2. For each tumor marker gene, an independent 
classifier model is built using: (1) Allen Brain mouse and human scRNA-seq data, which is the 
largest compendium of healthy brain data, as a training set for host cells; and (2) a compendium 
of publicly available brain-tumor scRNA-seq datasets as a training set for tumor cells5. Finally, 
the following statistical models are used to infer the class (host vs. tumor) of our in-house tumor 
scRNA-seq data: 

We model the expression as a mixture of Gaussian distributions for identification and 
classification of host and tumor cells: 

Let   X� � � x�, x� , … , x�, … , x�� be the training expression vector of normal and tumor cells for 
gene j, where x� is the expression value at cell  i. The distribution of every expression value is 
specified by a probability density function through a finite mixture model of G=2 classes (host vs 
tumor):  

f�x�; z� �  � π�f� �x�;  θ��
�

�	�

 

where z � �π�,….,π�, θ�, … θ� �   is the parameters of the mixture model and �
 ��� ;  �
� is the kth 
component density, which assumes to follow Gaussian distribution �
 ��� ;  �
� ~ ���
 , �
�. ���,….,���  is the vector of probabilities, non-negative values which sum to 1, known as the 
mixing proportions. Mixing proportions, π, follows a multinomial distribution.  

We used the above model to predict host vs. tumor class in our inhouse glioma cells. For each 
gene j, z parameters are estimated by maximizing log-likelihood function via the EM algorithm. 
The log-likelihood function is formulated as:  
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l�z; x� �  � log f� �x�;  z�
�

�	�

 

For each tumor marker gene, we generate a matrix with genes in the rows and cells in the 
columns and cell value indices of 1 if that cell has high “tumor class” probability for the 
corresponding gene. A cell is marked as “tumor” if there are at least two marker genes with 
high “tumor class” probability. We used mclust R package for Gaussian mixture model (GMM) 
implementation48. 

b. Module 2. Identifying CNV events from scRNA-seq data. CNVs are a hallmark feature of 
tumor cells that can be used to classify tumor vs. non-tumor cells alongside or in the absence of 
expression markers. However, detection of CNVs from scRNA-seq data is inherently noisy due 
to a multitude of factors, including drop-outs and unmatched control sets and requires a set of 
cells that are known to be tumor cells. To estimate a “clean” set of CNV calls that can provide 
reliable CNV-based tumor scores, we used a pure tumor pseudobulk sample. 

Estimation of CNV profiles using patient-specific pure tumor pseudobulk samples. We first use 
our expression-based marker model from Module 1 to identify tumor cells. The collection of 
cells that are assigned as “tumor” using Module 1 is treated as a pure tumor cell cohort.  

CNV calling on patient-specific pure pseudobulk samples. We hypothesize that the pseudobulk 
sample contains representative sets of CNVs with high probability and therefore should be 
useful to identify a clean CNV call-set. The CNV calling on the pseudobulk samples is 
performed using our CNV calling algorithm, CaSpER, for each patient. CaSpER CNV calls are 
used as the ground truth large-scale CNV calls for each patient.  

Genotyping of CNVs on all cells. After CNVs are identified from the pseudobulk sample, we 
genotype the set of CNVs on all cells and generate a binary matrix that represents the existence 
of CNVs on the cells, i.e., ����,�. 

c. Module 3. We perform RNA-inferred rare deleterious (COSMIC46-reported and dbSNP47, 
<0.1% frequency) mutational profiling via our recently developed XCVATR8 tool.  We detected 
mutations in IDH1, EGFR, TP53 and PTEN and annotated cells with those mutation harboring 
cells as tumor.  

Visualization of tumor cells. We calculate the accumulation of expressed rare deleterious 
COSMIC reported variants in our clusters to visualize the tumor cells.  

Step 3. Summarizing co-occurring cell types using maximum frequent gene set identification.  

We summarized co-occurring cell types using a frequent itemset rule mining approach. CNV 
and SNV calls are added to provide an integrated transcriptomic and genomic summary for 
each cell. An example SCRAM output for a single cell is given as “glioma stem cell, mature 
neuron, synaptic neuron, oligodendrocyte precursor cell, chr1p_deletion, chr19q_deletion + 
IDH1:2:208248389 mutation”. We use the tumor and host cell assignments of Step 1 and Step 
2 to integrate co-occurring tumor and host cell features. 

The simplest method for detecting maximally frequent tumor and host feature sets is a brute 
force approach in which each possible subset of features is a candidate frequent set. The apriori 
algorithm is an efficient implementation for finding maximally frequent sets with support above a 
given threshold. In apriori algorithm minimum support threshold is set to min(50, 
number_cells_in cluster*0.1) and maximum number of genes in a geneset is set to 50. Using 
the apriori algorithm we identified co-occurring gene sets expressed concurrently within each 
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cell and provided annotation of high-resolution cellular identities using a three-step co-
occurrence analysis. We performed our co-occurrence analysis in multiple levels: 1) gene level 
(an example output of this step: {NES, SOX2, SLC1A3, CDH2} is radial glial cells), 2) cell type 
level (an example output of this step: tumor AND radial glial AND mature astrocyte) 3) cell 
lineage level (an example output of this step: neurodevelopmental AND tumor AND glial is 
commonly upregulated) 4) cell class level (an example output of this step: tumor AND neural 
cells are commonly upregulated).  

In maximum frequent gene set co-occurrence analysis: 

Within each cluster m and cell type t we calculate the maximum frequent gene sets using apriori 
algorithm. Input is the binarized matrix ��� where the cell type marker genes are on the row and 
the cells in cluster m are on the columns.  

����� � �1, ��  	�

 ��
�  ������ ���� � �� � 	
����� ������ ��� ��
������ �� 	�

 � �� 	
����� �
0, ���������   

In maximum frequent cell type (or cell lineage or cell class) co-occurrence analysis:  

Within each cluster m, we calculate the maximum frequent cell types (or cell lineage or cell 
class) using apriori algorithm. Input is the binarized matrix �� where the cell types (or cell 
lineage or cell class) are on the row and the cells in cluster m are on the columns.  

���� � �1, ��  	�

 ��
�!�� 	�

 
������ �� 	�

 	
���" � �� ��������� �� 	�

 � �� 	
����� �
0, otherwise   

 

Gene set significance estimation: 
For a given frequent gene set  � on ! cells with " genes, we compute the probability of selecting 
more than ! cells that can have the observed gene set with higher or same pattern: 

#���������� � � �$�, $�, … , $
� | &�� � � '�!�
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����
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Single cell processing. We run samples on the 10x Chromium platform to produce next-
generation sequencing (NGS) libraries. We performed standard procedures for filtering, 
mitochondrial gene removal, variable gene selection using Seurat pipeline. Criteria for cell/gene 
inclusion is: include genes that are present in >3 of cells, include cells that express >300 genes, 
the number of genes detected in each cell should be > 200 and < 5000 and mitochondria ratio 
<10 (<20 in mouse). We integrated cells coming from different patients using Harmony 
algorithm49. Next, we visualized clusters using uniform manifold approximation and projection 
(UMAP) constructed from the Harmony corrected PCA. We also performed lineage tracing, 
trajectory analysis, and RNA velocity assessments to create developmental hierarchies and 
lineage histories of glioma cells using scvelo R package12.  
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Patch-seq data processing The Patch-seq reads are mapped using STAR50 to hg38  assemblies 
for human. Read count matrices are generated using FeatureCounts51 with the latest gene 
annotations from GENCODE52 consortia. Differentially expressed genes and transcripts 
identified using DESeq253 and limma54. Cells are clustered and visualized using PCA methods. 
Cell type enrichment analysis are performed with enrichR33 using the 
PanglaoDB_Augmented_2021, CellMarker_Augmented_2021 cell type marker sets. IDH 
mutations are identified using our variant detection tool XCVATR8 and visually confirmed using 
Integrative Genomics Viewer (IGV)55.  

Human data 

Tumor samples were collected during surgery and immediately placed on ice. Tissue was 
divided for use in subsequent transcriptomic, histopathological, proteomic and/or biochemical 
studies. Patient samples were collected separately for pathology and molecular subtyping. 
Histopathology and molecular subtyping of IDH1 and 1p19q deletion status were confirmed by 
board-certified pathologists. Samples for scRNA-seq and immunoprecipitation assays were 
fixed in LN2 and kept at -80°C. 

piggyBac in utero electroporation model 

Tumor mice were generated according to previously published protocols56. Briefly, in utero 
electroporation and single-sided intraventricular injection of Pten, Nf1 and Trp53 CRISPR/Cas9 
pX330 constructs targeting Glast-expressing mouse neural precursor cells via piggyBac 
transposase technology were performed on CD1 wildtype damns at E16.5. sgRNA guides 
employed for these experiments are as follows: 

ΔPten sgRNA: GAGATCGTTAGCAGAAACAAAAGG 

ΔNfI sgRNA: GCAGATGAGCCGCCACATCGAGGG 

ΔTrp53 sgRNA: CCTCGAGCTCCCTCTGAGCCAGG 

ΔCd83-1 sgRNA: CTGCAGCCTGGCACCCGCGA 

ΔCd83-2 sgRNA: CTTGGCCCAGGACACTGCAT 

CD83-GOF tumor mice were generated using piggyBac constructs driving overexpression of 
mouse Cd83. All mice received co-electroporation of piggyBac-GFP constructs. Tumor brains 
were collected from mice either at matched time points or end-stage disease. Mice were 
monitored for symptoms indicative of tumor burden, including lethargy, hunched posture, 
decreased appetite, poor grooming maintenance, squinting of the eyes, partial limb paralysis 
and/or ataxia, denoting the IACUC permitted endpoint. 

Single cell RNA sequencing 

Human and GFP+ mouse tumors were prepared as single-cell suspensions. Briefly, samples 
were coarsely chopped with surgical scissors and enzymatically digested with Papain 
supplemented with DNase I (Worthington Biochemical Corporation, LK003150). Samples were 
incubated for 15 minutes at 37°C on a thermocycler kept at 1400 g and briefly pipetted every 5 
minutes. Cells were pelleted at 13,000 g for 10 seconds and resuspended in PBS before 
processing for debris and dead cell removal. Cell suspensions were processed using the MACS 
Debris Removal Kit (Miltenyl, 130-109-398) and MACS Dead Cell Removal Kit (Miltenyl, 130-
090-101), per the manufacturer’s instructions. Live cells were collected through negative 
selection using a MS Column in the magnetic field of a MiniMACS Separator (Miltenyl, 130-042-
102). Eluted cells were spun at 300 g for 5 minutes and resuspended in Gibco Dulbecco's 
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Modified Eagle Medium with GlutaMAX (DMEM; Thermofisher, 10566016) supplemented with 
10% fetal bovine serum serum (FBS; Thermofisher, 16000044). Single cells were processed 
with the 10X Chromium 3′ Single Cell Platform using the Chromium Single Cell 3′ Library, Gel 
Bead and Chip Kits (10X Genomics) following the manufacturer’s protocol. Briefly, 
approximately 5,000-15,000 cells were added to each channel of a chip to be partitioned into 
Gel Beads in Emulsion (GEMs) in the Chromium instrument, followed by cell lysis and barcoded 
reverse transcription of RNA in the droplets. GEMs were then broken and cDNA from each 
single cell is pooled together. Cleanup was performed using Dynabeads MyOne Silane Beads 
(Thermofisher, 37002D). Subsequent cDNA was then amplified and fragmented to optimal size 
before end-repair, A-tailing, and adaptor ligation. Libraries were run individually using a NextSeq 
500/550 High Output Kit v2.5 (75 Cycles) (Illumina, 20024907) and sequenced on an Illumina 
NextSeq550.  
 
Histology 

Mice were humanely euthanized and brain tissue was harvested for subsequent processing. 
Mouse brain samples were fixed through intracardial perfusion of 4% paraformaldehyde in PBS 
and kept in solution for 12 hours at 4°C before being transferred to 70% EtOH. Human samples 
were drop fixed in 4% paraformaldehyde in PBS for 12 hours at 4°C before being transferred to 
70% EtOH. Paraffin embedding was performed by the Breast Cancer Pathology Core at Baylor 
College of Medicine. 

Hematoxylin and eosin (H&E) staining was performed on 10 μm paraffin-embedded sections cut 
on a microtome. Slides were deparaffinized and processed using Harris hematoxylin (Poly 
Scientific R&D, S212A) and eosin (Poly Scientific R&D, S176) for 1 minute and 30 seconds, 
respectively. Slides were mounted with Permount Mounting Media (Electron Microscope 
Sciences, 17986-01) before cover slips were placed. Histological diagnoses of mouse tumors 
were validated across n≥3 tumors per experimental group by a board-certified neuropathologist. 

For immunohistology, 10 μm paraffin-embedded sections were cut, deparaffinized and subject 
to heat-induced epitope retrieval (HIER) using antigen retrieval buffer (10 mM sodium citrate, 
0.05% Tween 20, pH 6.0). Sections were blocked for 1 hour at room temperature and kept in 
primary antibodies overnight at 4°C. The following primary antibodies were used in this report: 
goat anti-CD83 (1:200; Novus Biologicals, AF1437). Species-specific secondary antibodies 
tagged with Alexa Fluor corresponding to 568 nm emission spectra (1:1,000, Thermofisher) was 
used for immunofluorescence. Hoechst nuclear counter staining (1:50,000; Thermofisher, 
H3570), was performed before coverslips were mounted using Vectashield antifade mounting 
medium (Vector Laboratories, H-1000).  

In vivo cell proliferation assay 

Tumor proliferation was assessed through quantitative immunohistochemistry using rabbit anti-
KI67 (1:200; Abcam, ab16667). In total, 27 brightfield images were acquired per experimental 
group (n=3) (n=3 images per coronal section × n=3 sections per animal × n=3 animals per 
experimental group). Quantification was performed using the Analyze Particles plugin in 
ImageJ. 

Mouse tumor cell lines 

Tumor cell lines from control, CD83-GOF and CD83-LOF tumors were established from P65 pB-
IUE tumor mice. Mice were humanely euthanized and brains were dissected. GFP-guided 
microdissection of tumor tissue was done under a dissection microscope. Tissue was processed 
into single-cell suspensions according to our scRNA-seq protocol above and seeded into T75 
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flasks with Gibco Dulbecco's Modified Eagle Medium with GlutaMAX (DMEM; Thermofisher, 
10566016) supplemented with 10% fetal bovine serum serum (FBS; Thermofisher, 16000044). 
Cells were grown and passaged after reaching 85% confluency for two weeks before being 
used for subsequent assays. Tumor cell lines were validated using a Surveyor Assay for Pten, 
Trp53, Nf1 and Cd83 indels according to the manufacturer’s instructions (IDT, 1075932). The 
following primers were used for PCR amplification of the indel-containing locus: 

Trp53 forward  GCTTTCCCACCCTCGCATAA 

Trp53 reverse  TCACACGAAAGACAACTCCCC 

Nf1 forward  TCTGTACCTCTTGGACTATGCC 

Nf1 reverse  TGAGCCTCAAAACTTGCTTGG 

Pten forward  AGGATTATCCGTCTTCTCCCCA 

Pten reverse  ACCCTCAAATGTGCACCGTC 

Cd83 forward  CCAAGCGCGGGTACAAGA 

Cd83 reverse  CTCTCTCAGAACCTCGCTGA 

In vitro cell proliferation assay 

In vitro cell proliferation was assessed for mouse tumor cell lines using the Click-iT EdU Assay 
(Thermofisher, C10340) according to the manufacturer’s guidelines. Briefly, 6x104 cells were 
seeded onto poly-D-Lysine coated 12 mm coverslips in a 12-well culture dish. After 48 hours, 
cells were pulsed with EdU for 2 hours before being fixed with 4% paraformaldehyde and 
processed for immunostaining. Quantification was performed using 27 images per experimental 
group (n=3) (n=3 images per coverslip × n=9 coverslip per experimental group). EdU positivity 
was assessed as a fraction of total cells using Hoechst counterstaining. Images were processed 
using the Analyze Particles plugin in ImageJ. 

Coculture experiment 

Mouse tumor cell lines were seeded into T25 flasks and grown to 50% confluency. Naïve CD8+ 
T cells were harvested from CD1 wildtype P25 mice and processed using the EasySep™ 
Mouse Naïve CD8+ T Cell Isolation Kit (Stemcell Technologies, 19858). Following isolation, 
10x105 naïve CD8+ T cells were seeded onto mouse tumor cell lines and maintained in RPMI 
1640 media (Thermofisher, 11875093) supplemented with 10% fetal bovine serum (FBS; 
Thermofisher, 16000044) and 1% Penicillin-streptomycin solution. Cells were left in coculture for 
one week before T cell-containing media was harvested for use in imaging flow cytometry 
experiments. 

Multispectral imaging flow cytometry 

For CD83 experiments, GFP+ tumor tissue from control pB-IUE tumor mice at P65 was 
processed into single-cell suspension according to our above protocol. Briefly, cells were spun 
at 400 g for 3 minutes at 4°C and washed in MACS Buffer (Miltenyi Biotec, 130-091-222) 
supplemented with 4% FBS (FBS; Thermofisher, 16000044) 3× before being incubated with 
APC-conjugated rat anti-CD83 antibody (1.25 μL/10x106 cells; Biolegend, 121510) for 30 
minutes on ice. Cells were spun at 400 g for 3 minutes at 4°C and washed in MACS Buffer 3× 
again before being resuspended in 50 μL of MACS Buffer for imaging experiments. High 
expression of endogenous GFP was used to gate tumor cells. 
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Image cytometry assays were acquired on an Imagestream X MKII (Luminex) equipped with a 
405nm, 488nm, 561nm, 633nm and 785nm scatter laser. Collection was performed on as many 
objects as feasible in two hours. The number of objects collected ranged from 100,000 - 
300,000 to allow for analysis of rare CD83+ events. Objects were analyzed and gated using 
IDEAS software 6.3.23.0. Cells were gated using Aspect Ratio and Area parameters for the 
brightfield channel. Focused Cells were gated using the Gradient_RMS parameter for Channel 
1 (Brightfield). CD83+GFP+ were gated by signal intensities for Channel 2 (GFP) and Channel 
11 (CD83 APC). 

For T cell experiments, T cell-containing media was harvested from cocultures, spun at 700 g 
for 3 minutes at 4°C and washed in MACS Buffer 3× before being incubated with the following 
antibodies: APC-conjugated rat anti-CD3 (5 μL/10x106 cells; Biolegend, 100408), PE-conjugated 
rat anti-CD8b (2.5 μL/10x106 cells; Biolegend, 126608),  PE/Cyanine7-conjugated rat anti-CD25 
(2.5 μL/10x106 cells; Biolegend, 101916), Brilliant Violet 421-conjugated rat anti-CCR7 (5 
μL/10x106 cells; Biolegend, 120120) and Cells were incubated for 30 minutes on ice, spun at 
700 g for 3 minutes at 4°C and washed in MACS Buffer 3×. Cells were resuspended in 
CytoFix/CytoPerm Solution (Thermofisher, 00-5523-00) and incubated for 30 minutes at 4°C in 
the dark and washed 3× before being resuspended in 50 μL of MACS Buffer for imaging 
experiments. 20,000 cells were acquired based on Aspect Ratio vs Area of Brightfield. Data 
were analyzed by gating on Focused, Single Cells, followed by Channel 2 (CD8 PE) and 
Channel 11 (CD3 APC) to determine CD3+/-CD8+/- cells. These were then analyzed using 
Channel 7 (CCR7 BV421) and Channel 6 (CD25 PE-Cy7) intensities. 

Representative images used for figures were exported from the IDEAS image gallery as .tif files 
and inserted into manuscript. Raw data files are available upon request. 

ELISA 

Media was collected from mouse tumor cells either cocultured with naïve CD8+ T cells for one 
week or in the absence of T cells. Cells were maintained in T25 tissue culture flasks with RPMI 
1640 media (Thermofisher, 11875093) supplemented with 10% fetal bovine serum (FBS; 
Thermofisher, 16000044) and 1% Penicillin-streptomycin solution. Harvested media was spun 
at 3000 g for 15 minutes to remove debris and cells. Supernatant was collected and used for 
subsequent ELISA experiments. The following ELISA kits were used per the manufacturer’s 
instructions: mouse IFNγ Quantikine ELISA kit (R&D, MIF00), mouse TNFα Quantikine ELISA 
kit (R&D, M2000), and mouse IL-2 Quantikine ELISA kit (R&D, M2000).  

Human tumor slice preparation 

Fresh tumor samples were immediately placed into a cold (0−4 °C) oxygenated NMDG solution 
(93 mM NMDG, 93 mM HCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 
25 mM glucose, 5 mM sodium ascorbate, 2 mM Thiourea, 3 mM sodium pyruvate, 10 mM 
MgSO4 and 0.5 mM CaCl2, pH 7.35). Slices were cut at 300 μm thickness with a microslicer 
(Leica VT 1200) and kept at 37.0 ± 0.5 °C in oxygenated NMDG solution for 10-15 minutes 
before being transferred to ACSF (125 mM NaCl, 2.5 mM KCl, 1.25 nM NaH2PO4, 25 mM 
NaHCO3, 1 mM MgCl2, 25 mM glucose and 2 mM CaCl2, pH 7.4) for 1 hour before recording.  

Patch-seq recording procedures 

Electrophysiological, morphological and transcriptomic data from the same cell were obtained 
simultaneously using the Patch-seq protocol described previously57,58 . Briefly, patch pipettes 
(5−7 MΩ) were filled with RNase-free intracellular solution (111 potassium gluconate, 4 KCl, 10 
HEPES, 0.2 EGTA, 4 MgATP, 0.3 Na3GTP, 5 sodium phosphocreatine, and 13.4 biocytin). 
Whole-cell recordings were performed using 1 Quadro EPC 10 amplifiers (HEKA Electronic). 
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After 5-10 minutes of the whole-cell recording of firing patterns, the nucleus is extracted using 
gentle and continuous negative pressure. The contents in the pipette were ejected into a 0.2-mL 
PCR tube containing 4 mL lysis buffer58. RNA in the lysis buffer was denatured and reversed 
transcribed, amplified and purified following Smart-seq2-based protocol59. Only high-quality 
cDNA samples (yield ≥ 2 ng, average length ≥ 1500 bp) were sequenced.  

Sequencing libraries were constructed from the cDNA using the Illumina Nextera XT DNA 
Library Preparation Kit (Illumina, FC-131-1096). The cDNA library was sequenced on the 
NovaSeq 6000 instrument using 150-bp paired-end reads. 

Biocytin staining and morphological reconstructions 

Following slice recordings, slices were fixed by immersion in the fixation solution at 4° for at 
least 48 hours, and then processed with an avidin-biotin-peroxidase method to reveal cell 
morphology. The morphology of the cells was reconstructed and analyzed using a 100× oil-
immersion objective lens and camera lucida system (Neurolucida, MicroBrightField). 

Mouse tumor slice preparation 

Mouse tumor brain slices were obtained following previously described protocols60. In brief, the 
animals were deeply anaesthetized using 3% isoflurane and decapitated. The brain was rapidly 
removed and collected into cold (0–4�°C) oxygenated NMDG (N-methyl-d-glucamine) solution 
containing 93 mM NMDG, 93 mM HCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 
mM HEPES, 25 mM glucose, 5 mM sodium ascorbate, 2 mM thiourea, 3 mM sodium pyruvate, 
10 mM MgSO4 and 0.5 mM CaCl2, pH 7.35 (all from Sigma-Aldrich). We cut 300-μm-thick 
coronal slices using a Leica VT1200 microtome following coordinates provided in the Allen Brain 
Atlas for adult mouse (http://atlas.brain-map.org). The slices were subsequently incubated at 
34.0 ± 0.5�°C in oxygenated NMDG solution for 10–15 min before being transferred to the 
artificial cerebrospinal fluid (ACSF) solution containing: 125 mM NaCl, 2.5 mM KCl, 1.25 mM 
NaH2PO4, 25 mM NaHCO3, 1 mM MgCl2, 11.1 mM glucose and 2 mM CaCl2, pH 7.4 (all from 
Sigma-Aldrich) for about 1 h. The slices were allowed to recover in ACSF equilibrated with 
CO2/O2 gas mixture (5% CO2, 95% O2), at room temperature (approximately 25�°C) for 1 h 
before experiments. During the recordings, slices were submerged in a customized chamber 
continuously perfused with oxygenated physiological solution. Recorded cells were generally 
located 15–60 μm deep under the slice surface. 

Mouse surgery for in vivo imaging studies 

Tumor mice were generated using the aforementioned pB-IUE system. A piggyBac construct 
containing mCherry-hGeminin (1–110), a fluorescently-labeled, ubiquitination-based, cell cycle 
indicator (FUCCI) was cloned from the pRetroX-SG2M-Red Vector (Takara Bio, 631465) and 
added to the pB-IUE cocktail. This FUCCI construct allows for identification of cell nuclei that 
are transitioning from S to G2/M phases. Mouse surgeries were performed according to our 
previously published protocols61.  

Intracranial viral injections 

A nanoliter injector (Nanoject II, Drummond scientific, Broomall, USA), was used to inject AAV-
FLEX-GCaMP8m virus. Glass pipettes were pulled using a Sutter P-87 horizontal pipette puller 
(Sutter Instruments) and tips were broken on the filament of a vertical puller (Narishige). The 
pipette was backfilled with corn oil, and 5 µL virus solution was aspirated from a sterile piece of 
parafilm using the Nanoject II. A total of 8 or 6 (depending on the unobstructed skull area 
available) equidistant injection locations were selected throughout the sensory and posterior 
motor cortex. For each hemisphere, these were at [bregma –3.5 mm; 2.5 mm lateral], [bregma –
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2 mm; 1 mm lateral], [bregma –2 mm; 4 mm lateral], and [bregma –0.5 mm; 2.5 mm lateral]. At 
each location, a total of 400 nL AAV-solution at 2 depths, 300 µm, 600 µm, were injected into 
the cortex in 9.2 nL/pulse increments separated by 10 seconds. The Nanoject was mounted at a 
25-degree angle relative to the skull surface at each location and actuated by a manual and 1-
direction motorized micromanipulator (WPI) at speeds of 600 µm per min. After the last 
injection, the skull was covered with Vetbond and dental cement. 

2-photon in vivo imaging 

2-photon images of calcium reporter activity were assessed according to previously published 
protocols61. Briefly, calcium reporter activity was acquired using a Prairie Ultima IV 2-photon 
microscope through a 25× objective, 1.1 NA, or a 16× objective, 0.8 NA, at 920 nm (GCaMP) 
under spiral (10–20 Hz frame rate) or resonant scan mode (30-35 Hz). A 525/70 nm emission 
filter was used for GCaMP indicators, and a 620/60 nm filter for mCherry emission. Mice were 
imaged while awake, head-posted in a holding frame and allowed to run freely on a circular 
treadmill. FOVs for further analysis were chosen based on proximity to the primary tumor mass 
as identified by FUCCI-labeled cells. 

2-photon images were processed using a MATLAB pipeline modified from suite2p. Images were 
acquired using the Bruker acquisition software (Prairieview 5.3), and converted into 4GB “.hdf5”-
stacks in ImageJ. DF/F calcium traces were resampled to the original sampling rate, and 
detrended DF/F traces were deconvolved using the suite2p/OASIS approach62  to compute 
activity traces equivalent to action potential firing rates, integrated over time scales of 30-100 
ms. All further analysis were conducted using these deconvolved traces. 

Statistical analysis 

Sample sizes and statistical tests are provided in the figure legends. The following tests were 
used for statistical analysis, unless otherwise noted. For Kaplan–Meier survival analysis, the 
log-rank test was used to compare survival differences across groups. For quantified results, 
one-way ANOVA was used followed by Welch’s t test to compare individual means. For 
electrophysiology analyses, a Kruskal-Wallis test or two-way ANOVA was used followed by 
unpaired t tests with a two-stage step-up (Benjamini, Krieger, and Yekutieli). For RT-qPCR, a 
two-tailed Student’s t test was used to determine statistical significance. Significant differences 
are denoted by asterisks in associated the graphs. Data are presented as the mean ± SEM. 
Levels of statistical significance are indicated as follows: ns: not significant, *p<0.05, **p<0.01, 
***p<0.001, and ****p<0.0001. 
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Table S1. Characteristics of patient samples included in this study. 

 

Patient
Identity

Tumor
Type

IDH1
Status

1p19
Codeletion

WHO 
Grade

Samples Experiments

A diffuse astrocytoma mutant no IV
core

leading edge
scRNA-seq

B GBM wildtype no IV
core

leading edge
scRNA-seq

C GBM wildtype no IV
core

leading edge
scRNA-seq

D oligodendroglioma mutant yes II core scRNA-seq

E GBM wildtype no IV
core

leading edge
scRNA-seq

F GBM wildtype no IV core scRNA-seq

G diffuse astrocytoma mutant no IV
core

leading edge
scRNA-seq

H diffuse astrocytoma mutant no III core whole-cell patch clamp

I diffuse astrocytoma mutant no IV core
Patch-seq

scRNA-seq
J GBM wildtype no IV core whole-cell patch clamp
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