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Abstract

Despite advances in cancer molecular profiling, successful therapeutic development has been
hindered by challenges in identifying tumor-specific mechanisms that can be targeted without
consequence to healthy tissue. Discrimination between tumor and host cells that comprise the
tumor microenvironment remains a difficult yet important task for defining tumor cell signatures.
Correspondingly, a computational framework capable of accurately distinguishing tumor from
non-tumor cells has yet to be developed. Cell annotation algorithms are largely unable to assign
integrated genomic and transcriptional profiles to single cells on a cell-by-cell basis. To address
this, we developed the Single Cell Rule Association Mining (SCRAM) tool that integrates RNA-
inferred genomic alterations with co-occurring cell type transcriptional signatures for individual
cells. Applying our pipeline to human and mouse glioma, we identified tumor cell trajectories
that recapitulate temporally-restricted developmental paradigms and feature unique co-
occurring genomic and transcriptomic identities. Specifically, we describe and validate two
previously unreported tumor cell populations with immune and neuronal signatures as hallmarks
of human glioma subtypes. In vivo modeling revealed an immune-like tumor cell population can
direct CD8+ T cell responses and survival outcomes. In parallel, electrophysiology and Patch-
seq studies in human tumors confirmed a frequent subset of neuronal-like glioma cells that fire
action potentials but retain the morphology of glia. These collective studies report the existence
of new glioma cell types with functional properties akin to their non-tumor analogs and
demonstrate the ability of SCRAM to identify and characterize these cell types in unprecedented
detail.
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Introduction

In the era of cancer genomics, the advent of high-throughput single cell sequencing
technologies has cleared the way for examination of cellular heterogeneity in genomic,
transcriptomic and epigenomic detail'. Studies employing these technologies have
demonstrated dynamic cellular and subcellular hierarchies that are spatiotemporally distinct and
have revealed transcriptional profiles that can be utilized to classify tumors into clinically-
relevant molecular subtypes®®. While these technologies have elucidated the diverse
heterogeneity that exists within glioma tumors, the ability of sequencing pipelines to reliably
identify tumor cells and the co-occurring genomic and transcriptomic cell states that define them
has yet to be attained. Within malignant glioma, resolution of this complexity represents a
significant impediment to therapeutic development that is further compounded by a diverse
cellular constituency and a complex array of tumor-specific genetic variants. Furthermore,
diffusely infiltrating tumor cells resembling glia and associated neural progenitors pose a
considerable challenge to distinguishing between glioma and host cells, which if overcome
could enable more precise characterization of tumors and important clinical correlates. To this
end, we have developed a novel single cell computational tool, Single Cell Rule Association
Mining (SCRAM) capable of accurately identifying tumor cells and defining co-occurring cellular
states. Within our pipeline, we integrate three orthogonal tumor features to identify tumor cells in
single cell resolution: (1) cell type transcriptional profiling; (2) RNA-inferred copy number variant
(CNV) calling; and (3) RNA-inferred mutational analysis for single nucleotide variants (SNVs).
Our studies reveal that more than half of tumor cells feature transcriptional profiles matching
more than one cell type, exposing the extraordinary cellular complexity of glioma and the ability
of our SCRAM pipeline to define it with both accuracy and precision. Furthermore, we illustrate
the unique potential for tumor cells to acquire functional immune-like and neuronal-like cellular
states and highlight the utility of using our computational framework for characterization of
pseudo cell types in cancer, development and disease.

Results

SCRAM accurately identifies transcriptional states and reliably discriminates between
tumor and non-tumor cell types

To validate SCRAM as a reliable computational framework (Fig. 1A), we utilized previously
published human and mouse scRNA-seq datasets to examine whether SCRAM annotation is
consistent with established transcriptional profiles. We found that SCRAM was successful at
annotating >75% of cells across eight sScRNA-seq datasets (Fig. 1B) and uncovered that >83%
of cells possess transcriptional profiles meeting the criteria for more than one cell type (Fig. 1C).
Employing established glioma transcriptional profiles®®, we assigned our manually-curated cell
type list to these transcriptional classes and found that SCRAM-assigned identities were
concordant with previous reports. Surprisingly, our analysis found that more than two thirds of
sequenced cells exhibited co-occurring cell type annotations (Figs. 1D-G), suggesting that
glioma cells possess differentially expressed gene (DEG) transcriptional signatures consistent
with multiple cell states. Further validation using the 10X Genomics Spatial Transcriptomics
dataset of IDH1 wildtype (IDH1“") glioma unveiled that various permutations of these co-
occurring cell states exist within single cell clusters, demonstrating that clusters encompass a
heterogenous group of cell types with a variety of genomic and transcriptomic profiles (Figs.
1H-J). Exploiting the ability of SCRAM to define both transcriptional signatures and RNA-
inferred genomic CNVs, we were able to specify which cells were tumor and further characterize
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their respective cell lineages. Our results confirmed that tumor cells are spatially dispersed
throughout the non-tumor landscape and uncover diverse transcriptomic cellular profiles within a
small anatomical region. These analyses validate that SCRAM is capable of recapitulating
previously defined cell annotations and can be used to further resolve intratumoral
heterogeneity by defining both co-occurring cell identities and cellular states with higher
resolution.

Having confirmed SCRAM'’s capacity to accurately assign cell identities, we next assessed its
ability to distinguish tumor cells from non-tumor cells. Accordingly, we analyzed non-tumor
human and mouse cortex scRNA-seq datasets from the Allen Brain Atlas, finding that SCRAM
could reliably decipher between tumor and non-tumor constituents with >99% accuracy across
species. SCRAM was able to annotate >88% of cells in these datasets, replicating 60% and
86% of the same cell annotations provided by Allen Brain Atlas for human and mouse datasets,
respectively (Figs. 1K-N). Our analyses unexpectedly showed that >60% of cells in the
mammalian non-tumor brain have expression profiles that qualify as more than one cell type
and alluded to the existence of cell populations in both species that do not meet the
transcriptional requirements of known cell types. These data demonstrate that SCRAM reliably
distinguishes between tumor and non-tumor cell types and accurately assigns cell identities in
both human and mouse. Furthermore, these analyses expose previously unreported cellular
heterogeneity in the mammalian brain by defining unique co-occurring transcriptional cellular
states in which cells possess co-occurring cell signatures.

SCRAM reveals unique integrated genomic and transcriptomic signatures in human
glioma

Having validated SCRAM, we next aimed to define the genomic and transcriptomic landscape of
tumor cells in our integrated scRNA-seq dataset consisting of 195,063 cells from seven IDH1""
and IDH1 mutant (IDH1™") glioma patients. SCRAM analyses employing the CaSpER’ CNV
calling algorithm confirmed that IDH1"" tumors had increased CNV incidence (Figs. 2A-C,2F-
H) whereas chromosome 1p19q codeletions were the predominant alterations for IDH1™"
oligodendroglioma. Parallel analyses using XCVATR® to call SNVs validated that IDH1™"
tumors are marked by IDH1 mutations and that IDH1"" tumors feature EGFR, TP53 and PTEN
mutations (Figs. 2D,E,l,J). While DNA-based sequencing studies have demonstrated a higher
mutational burden in IDH1I"" tumors, our RNA-inferred analyses exposed more frequent
transcriptional penetrance of SNVs in IDH1™" tumors in our cohort, signifying that transcribed
mutations at the mRNA level are more frequently encountered in IDH1™" glioma. Of particular
interest was high incidence of mMRNA mutations in a transcript mapping to the polycomb
repressive complex 2 (PRC2) SUZ12. Further examination of the mutation-bearing region
revealed that the mutated SUZ12 sequence is identical to the SUZ12 pseudogene sequence,
SUZ12P1. This transcript is detected at high levels in all glioma patients, suggesting that either
SUZ12 mutations are the most transcribed SNVs in our cohort, or that the SUZ12P1
pseudogene is being actively transcribed in glioma patients (Figs. 2K,L). Prior reports have
observed hypermethylation of PRC2 regions in malignant tumors, which is pronounced in
IDH1™" subtypes®'°. Whether high transcriptional penetrance of SUZ12P1 or mutated SUZ12
mechanistically contributes to these hypermethylation phenotypes in glioma warrants future
mechanistic inquiries.

Using CNV and SNV annotation in conjunction with high expression of established tumor
markers (Fig. 2M), cells were assigned tumor or non-tumor cell status (Fig. 2N). Tumor cells in
both IDH1Y" and IDH1™" samples primarily mapped to one of three SCRAM-assigned cell
classes (embryonic-neural, embryonic or neural) and corresponded to one of four co-occurring
cell lineages (glial, glial-neuronal, myeloid and neurodevelopmental), emphasizing convergent
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transcriptomic features shared between glioma subtypes (Figs. 20,P). An examination of cell
types by patient sample uncovered divergent cellular heterogeneity both within and between
patients and illuminated prodigious myeloid-derived immune cell signatures within IDH1™" tumor
core samples (Fig. 2Q). Importantly, 17% of tumor cells were marked only by CNVs,
demonstrating that a population of tumor cells exists for which no corresponding cell type
signature can be assigned. Using the SCRAM de novo marker function, we were able to identify
differentially expressed markers of these tumor cells (Table S2), the function of which may
serve as the basis for future scientific endeavors. Collectively, these data demonstrate that
IDH1"Y" and IDH1™" tumors are defined by unique co-occurring genomic and transcriptomic
profiles that exist in varying proportions between glioma subtypes and highlight the utility of
SCRAM in defining transcribed mutations and integrated cell states in human glioma.

SCRAM elucidates novel developmental tumor cell trajectories and defines new
intermediate cell states in glioma

Given the former observations and prior work demonstrating that spatially-distinct tumor regions
possess unique transcriptomic and genomic signatures within individual tumors*, we sought to
identify which co-occurring cell types occur in our glioma dataset and to resolve these cell types
spatially. An analysis of each Seurat-generated cluster revealed that clusters are exceedingly
diverse and frequently feature a combination of tumor and non-tumor cells that share similar
transcriptional expression patterns (e.g., astrocyte and astrocyte-like tumor). The largest cluster
of tumor cells in our human dataset (Cluster 1) contained cells that were uniformly assigned the
cell type annotation of astrocyte and were marked by a variety of co-occurring chromosome 5p,
5qg, 7p, 7g and 17q amplifications and chromosome 10p, 10q and 22q losses (Figs. 3A-D).
Visualization of co-occurring CNVs by patient showed that IDH1"" tumor cells in the leading
edge feature less co-occurring chromosomal rearrangements than tumor cells in the core (Fig.
3E). This finding suggests that clonal tumor cells in the leading edge emerge from specific
glioma cell subclones residing in the tumor core and is further supported by lineage tracing
studies that show leading edge cells emanate from more primitive cell types in the tumor core
(Figs. 3F-H). Employing RNA velocity pseudotime analysis*?, we found that these astrocytic
tumor cells emanate from stem cell-like tumor cells found in Cluster 23 and transition through an
intermediate cell type found mainly in Cluster 3. Notably, these intermediates possess
neurodevelopmentally-restricted transcriptional profiles resembling those of embryonic
astrocytes and/or RG but retain the frequently co-occurring CNV annotations observed in
Cluster 1. In contrast, the progenitor and/or stem cell-like cells found in Cluster 23 are
characterized by the addition of more primitive co-occurring cell identities including neural stem
cell (NSC) and GSC as well as oligodendrocyte (Figs. 3I-L) but are largely marked by a single
CNV occurrence in each cell. These observations suggest that astrocyte-like tumor cells with
widespread chromosomal anomalies derive from a chromosomally-intact stem cell-like
population of cells that have transcriptional profiles resembling oligodendrocytes. These cells
transition through an intermediate cell state in which stem cell signatures are lost and pervasive
co-occurring CNVs are gain. Synchronously, SCRAM was able to identify analogous
populations of glioma cells in our scRNA-seq dataset from our piggyBac transposase-based in
utero electroporation (pB-IUE) model of glioma, which is yields GFP-labeled de novo tumors in
immunocompetent mice (Figs. 3M-P). These combined analyses elucidate a compendium of
individual cell states that parallel neurodevelopmental trajectories and define co-occurring
spatiotemporal hierarchies that are elucidated by SCRAM.

SCRAM exposes an immune-like cell population in IDH1 wildtype and IDH1 mutant
astrocytoma
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Our preceding observations uncovered that co-occurring neurodevelopmental cellular states are
found within glioma cell transcriptomes, leading us to investigate whether cell signatures
deriving from non-neural lineages also exist in these tumors. Unexpectedly, we found 229 cells
in Cluster 19 for which tumor cell, antigen presenting cell (APC) and tumor cell with co-occurring
APC annotations were detected. These cells were unique to astrocytoma tumors in both IDH"'
and IDH1™" patients and featured CNVs, cycling progenitor cell annotation and high expression
of the activated APC markers, CD83*® and major histocompatibility class | and Il genes** (Figs.
4A-D). A number of immune cell subtypes are known to actively surveil the tumor
microenvironment where they engulf and display tumor antigens through processes of antigen
presentation’; to confirm that these cells were not an artifact of immune cells phagocytosing
tumor cells, we examined expression of the immune cell lineage marker, PTPRC (CD45) finding
that 69% of APC-like tumor cells did not express PTPRC. SCRAM identified an analogous
population of Ptprc negative APC-like tumor cells in mouse glioma, which featured high GFP
expression in addition to Cd83 (Figs. 4E-H). These data suggest that a rare population of CNV-
altered tumor cells exist in high-grade astrocytoma that are endowed with APC transcriptional
signatures and confirm the existence of a parallel cell population in our pB-IUE model.

Modulation of APC-like tumor cell types directs disease progression and CD8+ T cell
responses in an immunocompetent de novo model of glioma

The former observations uncover a rare population of APC-like tumor cells in human glioma that
are similarly detected in our pB-ITUE model of murine glioma (Fig. 5A). To experimentally
discern if APC-like tumor cells can be confirmed in vivo, we exploited GFP-labeling of our
established pB-IUE model to perform multispectral imaging flow cytometry. Examination of
endogenous GFP expression alongside CD83 revealed two distinct populations of CD83+GFP+
cells. The first population consisted of cells featuring dendrite-like projections and punctate
expression of GFP that was either present intracellularly or localized adjacent to CD83 on the
cell surface (Fig. 5B). As per prior reports employing this imaging modality to examine
phagocytosis in live cells'®, this expression pattern is indicative of CD83+ immune cells actively
phagocytosing or displaying GFP+ tumor antigen on their surface. In contrast, a second
population of CD83+GFP+ cells was characterized by high, diffuse intracellular expression of
GFP, which is a hallmark feature of targeted cells in the pB-IUE model (Fig. 5C)*’. Subsequent
analysis revealed a rare number of events wherein CD83-GFP- cells were bound to GFP+
tumor cells at a CD83+ interface (Fig. 5D), further implicating CD83 as a mediator of tumor-host
cell interactions in glioma. These imaging studies confirm the existence of an endogenous
CD83+GFP+ APC-like tumor cell population in the pB-IUE glioma model that was identified by
SCRAM in both human and mice.

Insofar as CD83 is required for antigen presentation in non-tumor immune cells, we sought to
define how CD83 expression alters tumor progression in vivo. To this end, we generated CD83
gain-of-function (GOF) tumors using overexpression of murine Cd83 and CD83 loss-of-function
(LOF) tumors via CRISPR/Cas9 technology. Kaplan-Meier survival analysis revealed that tumor
loss of CD83 reduced survival times while tumor overexpression of CD83 extended survival
when compared to control tumors (Fig. 5E). Correspondingly, end-stage tumors were smaller in
CD83-GOF mice, whereas CD83-LOF tumors appeared significantly larger (Figs. 5F,G). Cell
proliferation assays using Ki67 showed that CD83-GOF end-stage tumors were less
proliferative than those of CD83-LOF and control, however, no difference was observed
between control and CD83-LOF cohorts (Figs. 5H,l). Considering worse survival outcomes in
CD83-LOF tumors, we analyzed the number of nuclei per tumor field of view finding that CD83-
LOF tumors had nearly 50% more cells than controls (Fig. 5J), raising the possibility that
impaired immune clearance of tumor cells may account for CD83-LOF phenotypes. These
collective observations demonstrate that intratumoral expression of CD83 modulates disease
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progression in mouse glioma and suggest that tumor extrinsic mechanisms may contribute to
poor survival outcomes when CD83 expression is lost.

Given that CD83 is known to direct T cell responses by enabling antigen presentation by
APCs™, we sought to characterize how changes to tumor cell CD83 expression alters T cell
responses in glioma. To this end, we derived glioma cell lines from our pB-lUE tumors and
performed coculture experiments with naive CD8+ T cells (Figs. 5K). Following one week of
coculture, T cells were harvested for imaging flow cytometry. Analysis revealed that CD83-GOF
cocultures had the highest population of CD3+CD8+ cells remaining (Figs. 5L-O). Closer
examination uncovered a subset of CD3-CD8+ cells from CD83-LOF cocultures, >90% of which
expressed the naive T cell marker CCR7 (Figs. 5L,M). Importantly, prior studies have
demonstrated that loss of CD3 can reduce T cell expansion®®? and is required for acquisition of
cytotoxic functions in CD8+ effector memory T cells*??. Additionally, a subset of CD8+CCR7+ T
cells have been implicated as potent immunosuppressive mediators®®, suggesting that CD3-
CD8+CCR7+ T cells may contribute to subpar T cell responses in CD83-LOF tumors.
Consistent with these data, ELISA analyses of cell media from cocultures revealed that while
both CD83-GOF and CD83-LOF cocultures had increased production of the T cell activating
cytokines IFNy and TNFo?*?®, cell media taken from CD83-GOF tumor cells alone had
increased IL-2 secretion, which is required for memory and effector T cell subsets (Figs. 5P,Q).
Our scRNA-seq analyses of CD83-altered tumors confirmed that CD83-GOF tumors are
enriched for T cell activating cytokines (Fig. 5R). Notably, T cells from CD83-LOF tumors
displayed increased expression of anergic and regulatory T cell markers, whereas CD83-GOF T
cells were marked by high expression of CD44, a prominent activation marker of memory and
effector T cells®® (Fig. 5S). In vitro EdU assays revealed that CD83-GOF cells are intrinsically
more proliferative than controls, having similar proliferation rates to CD83-LOF tumor cells
(Figs. 5T,U). We confirmed this through scRNA-seq cell cycle scoring of CD83-altered tumors,
which showed that CD83-GOF and CD83-LOF tumor cells have increased expression of
proliferation markers as compared to controls (Fig. 5V). When considered alongside results
from our in vivo proliferation and survival studies, these findings suggest that T cell-CD83
interactions may promote tumor cell clearance and counteract glioma cell proliferation, which
may ameliorate poor survival outcomes. These results demonstrate that modulation of CD83
expression in tumors can direct glioma progression through both cell autonomous effects on cell
proliferation and cell non-autonomous responses mediated by T cell-dependent changes to the
cytokine milieu. Moreover, these studies emphasize the ability of SCRAM to report rare, co-
occurring tumor cell populations with important and significant contributions to tumor biology in
glioma.

Functional neuronal-like tumor cells are a prominent transcriptional subset of IDH1
mutant glioma

Parallel analyses using SCRAM revealed that most tumor cells from IDH1™" samples mapped

to Cluster 4, which displayed a high density of IDH1 mutations and featured chromosome 1p19q
codeletions in oligodendroglioma patients (Figs. 41-K). Surprisingly, we found that 40% of cells
with CNV or GSC annotation had co-occurring cell type annotations of mature neurons,
GABAergic neurons and/or synaptic neurons as well as oligodendrocytes and OPCs (Fig. 4L);
in contrast, only 18 tumor cells had co-occurring neuronal signatures in IDH1"" samples.
SCRAM identified an similar population of neuronal-like tumor cells in our mouse glioma dataset
(Figs. 4M,N), which prompted us to further investigate these cell types.

To validate the existence of neuronal-like tumor cells experimentally, we performed whole-cell
patch clamp electrophysiology recordings and RNA patch-sequencing (Patch-seqg) on two
IDH1™" glioma (Grades II-1ll) specimens that were surgically resected from the tumor core
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(Figs. 6A,B). In total, we recorded from 53 cells, 31 of which were used for Patch-seq and 20
for which morphology was preserved using biocytin (Figs. 6C-H). Of the 50 cells for which
recordings were obtained, 27 had electrophysiological and morphological properties consistent
with glia or neurons found in the non-tumor brain®?®. Surprisingly, 26 cells displayed
electrophysiological properties of neurons but were morphologically consistent with glia.
Recorded cells had higher input resistances than neurons or glia (Fig. 61) and had the capacity
to fire single APs (Figs. 6J,K), signifying that these cells have acquired transcriptional
signatures that endow them with functional characteristics of neurons. Prior work has described
similar electrophysiological properties in neurogenesis and has implicated hyperexcitability, high
input resistance and firing of single APs as a defining feature of young post-mitotic neurons®.
These newborn neurons feature high levels of GABA receptors®®*!, which are similarly
expressed by neuron-like tumor cells and frequently reported by SCRAM as co-occurring
GABAergic neuron annotation in IDH1™" tumor cells. Our Patch-seq results confirmed the
presence of the IDH1 mutation in five of the six neuron-like tumor cells sequenced, which
confirms these cells are tumor in origin (Fig. 6L); transcripts mapping to either mutated SUZ12
or the SUZ12P1 pseudogene were also detected in a subset of these cells. Subsequent PCA
and cell type enrichment of Patch-seq data using the enrichR tool*** illuminated that neuronal-
like tumor cells are transcriptionally akin to glia and are enriched for embryonic astrocyte and
OPC gene sets (Figs. 6M,N). For comparison, we recorded from an IDH1""T GBM (Grade 1V)
core sample, finding that only a few cells were capable of being patched, due in part to
extensive gliosis and necrosis, but that these cells were electrophysiologically consistent with
glia. Whether neuronal-like tumor cells exist in IDH1"T glioma remains unanswered and may be
the subject of future scientific investigations.

Using in vivo modeling, whole-cell patch clamp recordings were obtained for GFP+ tumor cells
from control pB-IUE tumor mice, which revealed an analogous population of neuron-like tumor
cells, some of which also featured high input resistances (Fig. 60). To confirm these cells were
of tumor origin, we performed complementary experiments employing live in vivo 2-photon
imaging of mouse tumors to examine Synapsin-driven GCaMP-labeled calcium activity in tumor-
bearing mice. Here, the fluorescent ubiquitination-based cell cycle indicator (FUCCI) was used
to visualize actively proliferating cells and revealed a small population of FUCCI-labeled cells
exhibiting calcium transients consistent with neuronal AP firing (Figs. 6P). Taken together,
these human and mouse studies confirm the existence of neuronal-like tumor cells endowed
with transcriptional and electrophysiological properties similar to but distinct from neurons and
characterize these cells as a defining feature of human IDH1™" gliomas.

Discussion

A new computational framework for defining genomic and transcriptional states in
cancer, development and disease

By 2040 the number of new cancer cases per year will stand at 29.5 million worldwide, more
than half of which will end in cancer-related deaths®*, highlighting a need for molecular insights
that can guide therapeutic development. While advances in single-cell sequencing technologies
have given scientists the opportunity to examine individual cells in unprecedented detail, the
power of these data has yet to be harnessed by computational platforms capable of resolving
these profiles on a cell-by-cell basis. To address this unmet need, we developed SCRAM, which
we report here as the first computational algorithm of its kind capable of defining integrated co-
occurring genomic and transcriptomic features from single cell datasets. In this report, we
employ SCRAM using a curated brain tumor-specific cell type marker list to elucidate previously
unreported cellular states in glioma and validate these cell types experimentally. However, our
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pipeline can be easily modified for use in any cancer type, non-oncologic disease or
developmental context. To this end, we believe SCRAM will offer researchers a reliable and
potent tool that can be used to uncover molecular complexities in high resolution across a
multitude of disease and non-disease states and will enable new lines of scientific inquiry with
clinically relevant implications for cancer, development and disease.

A key finding of our studies is the identification of two previously unreported glioma cell types,
which we define here as APC-like and neuronal-like tumor cells. Attempts to identify ways in
which brain tumors coopt the surrounding microenvironment for continued growth and invasion
have led to the development of two highly specialized fields of cancer biology, tumor
immunology and cancer neuroscience, each of which seek to characterize tumor-host cell
interactions in exquisite detail. Using SCRAM to uncover both rare and widespread co-occurring
cell types in human glioma, we characterize two new glioma cell populations with APC-like and
neuronal-like functional properties that contribute to the immune and electrophysiological
landscapes of these tumors.

APC-like glioma cells alter CD8+ T cell responses and tumor progression

Owing in part to the existence of a highly immunosuppressive tumor microenvironment,
immunotherapy trials for the treatment of glioma has proven largely unsuccessful, conferring
little to no effect on overall survival®®=3®. Prior research in the field of tumor immunology has
sought to characterize the molecular mechanisms employed by glioma cells that mediate this
immunosuppressive constituency and has implicated anergic and regulatory T cells as important
mediators of these processes®’*. To this end, identification of a tumor cell subset with immune-
like transcriptomic signatures and functional effects on CD8+ T cell responses offers novel
insights into the ways in which glioma cells can alter the immune landscape. Accordingly, CD8+
cytotoxic T cells have been recognized as potent antitumor mediators®**°, raising the question
of whether changes to the proportions of CD8+ T cells in this study alter the ability of these cells
to recognize and destroy glioma cells. Indeed, our imaging flow cytometry studies demonstrate
that tumor cells are actively surveilled and phagocytosed by the surrounding immune
constituency, implicating downstream immunosuppressive phenotypes as a likely culprit for poor
tumor clearance that should be further explored through future scientific investigations.

Neuronal-like tumor cells can generate action potentials and are a defining feature of
IDH1 mutant glioma

Over the past decade, the emerging field of cancer neuroscience has elucidated the ways in
which glioma cells interact with surrounding neural networks to direct disease progression.
Previous work has shown that brain tumors alter peritumoral networks by engendering synaptic
dysregulation that promotes hyperexcitability and seizures, which in turn serve to enhance
tumor dissemination and growth**?. Prior studies have reported the ability of human glioma
cells to receive synaptic inputs from the surrounding neuronal circuitry in the form of excitatory
postsynaptic currents®®** and that glutamatergic inputs to glioma cells can direct disease
outcomes*. Our studies build upon these existing reports to reveal that neuronal-like tumor
cells may communicate with peritumoral neuronal networks by directing outgoing
electrochemical information in the form of APs. Our observations suggest that dysregulated
electrophysiological activity in the glioma-bearing brain may originate from tumor cells endowed
with the ability to initiate and propagate outgoing neurochemical signals. Importantly, SCRAM
predicted the existence of these neuronal-like tumor cells as a defining feature of IDH1™"
tumors representing nearly half of tumor cells in our human datasets, which we confirmed
experimentally. Notably, IDH1™" glioma frequently presents with seizures® despite a slower
disease course, raising the possibility that these neuronal-like cell types may contribute to
hyperexcitable phenotypes that present clinically. Future investigations may aim to better define
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the electrophysiological contributions of these cells to tumor progression and may seek to
characterize how modulation of electrophysiological activity originating from tumor cells alters
disease outcomes in glioma.

Figure Legends

Figure 1. SCRAM reliably assigns cell type annotations to scRNA-seq datasets on a cell-
by-cell basis. (A) Schematic representation of the SCRAM pipeline. (B) Percentages of
SCRAM-annotated cells assigned non-tumor, tumor or unknown cell types across eight
datasets. Percentages shown below dataset names indicate the total percentages of cells
assigned cell type annotation using SCRAM. (C) Percentages of SCRAM-annotated cells by
number of co-occurring cell types. Percentages shown below dataset names indicate the
percentages of cells having more than one cell type annotation. (D) Reproduction of meta-
modules published by Neftel et al.’> showing astrocyte-like (AC-like), oligodendrocyte precursor
cell-like (OPC-like), mesenchymal-like (MES-like) or neural precursor cell-like (NPC-like) cellular
states. (E) Meta-module of SCRAM-identified tumor cells from Neftel et al. dataset. (F)
Reproduction of cell state modules published by Richards et al.® showing developmental and
injury response programs. (G) SCRAM-assigned developmental and injury response cell
classes for the Richards et al. dataset. (H) H&E and corresponding Seurat clusters are shown
for the 10x Genomics Spatial Transcriptomics IDH1 wildtype GBM dataset. (I) SCRAM-assigned
tumor and non-tumor annotation for the 10x Genomics Spatial Transcriptomics IDH1 wildtype
GBM dataset shows tumor cells are embedded throughout non-tumor tissue. Seurat clusters
split by tumor and non-tumor annotation shows clusters are comprised of tumor and non-tumor
cells. (J) SCRAM cell class annotation for the 10x Genomics Spatial Transcriptomics IDH1
wildtype GBM dataset. Cells harboring RNA-inferred CNVs are outlined in black. (K) Cell type
annotation for human cortex dataset provided by Allen Brain Atlas. (L) SCRAM-assigned cell
type annotation for the Allen Brain Atlas human cortex dataset reveals co-occurring cell
identities (dark grey) and unknown transcriptional cell states (light grey). (M) Cell type
annotation for mouse cortex dataset provided by Allen Brain Atlas. (N) SCRAM-assigned cell
type annotation for the Allen Brain Atlas mouse cortex dataset reveals co-occurring cell
identities (dark grey) and unknown transcriptional cell states (light grey).

Figure 2. Integrated RNA-inferred genomic and transcriptomic cell states reveal unique
molecular sighatures in IDH1 wildtype and IDH1 mutant glioma. (A) Seurat clusters are
shown for 157,316 cells from IDH1"" glioma patients (n=4). (B) Feature plots show SCRAM
detects large-scale chromosome 7p amplifications and chromosome 10p deletions in IDH1""
glioma using CaSpER. (C) Feature plots showing total CNV calls by SCRAM for and IDH1"'
tumors. (D) Density plot showing SNV allele frequency for rare and COSMIC variants in and
IDH1"T glioma. (E) Density plot showing EGFR mutations are detected in IDH1"" samples. (F)
Seurat clusters are shown for 37,747 cells from IDH1™" glioma patients (n=3). (G) Feature plots
show SCRAM detects large-scale chromosome 1p19q codeletions in IDH1™" oligodendroglioma
using CaSpER. (H) Feature plots show total CNV calls by SCRAM for and IDH1™" tumors. (1)
Density plot showing SNV allele frequency for rare and COSMIC variants in IDH1™" glioma. (J)
Density plot showing IDH1 mutations are detected in IDH1™" samples. (K) Bar plot showing the
percentage of cells harboring rare and COSMIC SNVs in IDHIWT and IDH1mut glioma; italics
denotes genes with known pseudogenes; bold denotes known driver genes in glioma. (L)
Density plot showing either SUZ12 mutations or the SUZ12P1 pseudogene are detected in
IDH1"" and IDH1™" samples. (M) Feature plots for tumor cell markers used to assign tumor
annotation. (N) SCRAM-assigned tumor annotation is shown for IDH1"" and IDH1™" glioma.
(O) SCRAM-assigned cell classes are shown for all glioma samples. (P) SCRAM-assigned cell
lineages are shown for all glioma samples. (Q) Heatmap showing enrichment for SCRAM-
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assigned cell types by tumor type and sample location; z-score for expression of cell types is
shown.

Figure 3. SCRAM uncovers novel tumor cell states and developmental hierarchies in
glioma. (A) Dimplot and corresponding pie chart showing SCRAM-identified astrocyte-like
tumor cells for Cluster 1 in human glioma samples. CNV-harboring cells are outlined in black.
(B) Feature plots showing exemplary large-scale CNVs. (C) Density plot showing SNV allele
frequency. (D) Feature plots for select tumor cell (CDK4, EGFR) and astrocyte (ALDH1L1,
ALDOC, AQP4, GFAP, S100B, SLC1A3) markers. (E) Co-occurring CNVs for five patient-
matched IDH1"T glioma samples shows leading edge cells emanate from specific co-occurring
CNV lineages. Increased line thickness (weight) indicates more frequent co-occurrence. (F)
RNA velocity lineage tracing by SCRAM-assigned cell type shows astrocyte-like tumor cells
derive from stem-like and progenitor-like tumor cells and transition through an intermediate cell
state marked by embryonic astrocyte and RG signatures. (G) RNA velocity pseudotime plots.
(H) RNA velocity lineage tracing by tumor sample location shows leading edge cells derive from
glioma cells in the tumor core. (I) Dimplot and corresponding pie chart showing SCRAM-
identified stem-like and progenitor-like cell type annotations for Cluster 23 cells in human glioma
samples. CNV-harboring cells are outlined in black. (J) Feature plots showing exemplary large-
scale CNVs. (K) Density plot showing SNV allele frequency. (L) Feature plots for select
embryonic astrocyte (LGALS3, TIMP1), GSC (CCND2, OLIG2, SOX2), LEC (PDPN, PROX1),
NSC (HES1, NES, SOX2, SOX9), RG (CDH2, HES1, NES, SOX2, TNC) and oligodendrocyte
(OLIG2) markers. (M) Dimplot and corresponding pie chart showing analogous cell types are
detected by SCRAM in mouse glioma Cluster 0. (N) Feature plots showing GFP expression and
select tumor (Cdk4) and astrocyte (Aldhlll, Aldoc, Aqp4, S100b, Sicla3) markers. (O) Dimplot
and corresponding pie chart showing analogous cell types are detected by SCRAM in mouse
glioma Cluster 5. (N) Feature plots showing GFP expression and select RG (Cdh2, Hesl,
Fabp7), NPC (Fabp7, Sox2, Sox9) and EC (Pdpn) markers. EC: endothelial cell; GSC: glioma
stem cell; LEC: lymphatic endothelial cell; NPC: neural precursor cell; NSC: neural stem cell;
RG: radial glia.

Figure 4. Ildentification of novel immune-like and neuronal-like tumor cells in glioma
using SCRAM. (A) Dimplot and corresponding pie chart showing SCRAM-identified APC-like
tumor cells for Cluster 19 in human glioma samples. CNV-harboring cells are outlined in black.
(B) Feature plots showing exemplary large-scale CNVs. (C) Density plot showing SNV allele
frequency. (D) Feature plots for select tumor cell (CDK4, IGFBP2), cycling progenitor cells
(CDK1, CENPF, MKI67, TOP2A) and APC (CD83, HLA-DRA, HLA-DRB1) markers. (E) Dimplot
and corresponding pie chart showing SCRAM-identified APC-like tumor cells for Cluster 7 in
mouse glioma samples. (F) Feature plots showing GFP expression and select tumor cell (Cdk4,
Igfbp2), cycling progenitor cells (Cdk1, Mki67, Top2a) and APC (Cd83) markers. (G) Dimplot
and corresponding pie chart showing SCRAM-identified neuronal-like tumor cells for Cluster 4 in
human glioma samples. CNV-harboring cells are outlined in black. (H) Feature plots showing
exemplary large-scale CNVs. (I) Density plot showing SNV allele frequency. (J) Feature plots for
select GSC (CCND2, OLIG2, SOX2), oligodendrocyte (OLIG1, OLIG2), OPC (PDGFRA,
CSPG4), mature neuron (MAP2, ENO2), synaptic neuron (MAP2, ENO2, SYP) and GABAergic
neuron (DCX, NCAM1, SLC6A1) markers. (K) Dimplot and corresponding pie chart showing
SCRAM-identified neuronal-like tumor cells for Cluster 8 in mouse glioma samples. (L) Feature
plots showing GFP expression and select tumor cell (Cdk4), GSC (Ccnd2, Olig2),
oligodendrocyte (Oligl, Olig2), OPC (Pdgfra, Cspg4), mature neuron (Map2, Eno2), immature
neuron (Dcx, Ncaml) markers. APC: antigen presenting cell; GSC: glioma stem cell; OPC:
oligodendrocyte precursor cell.
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Figure 5. APC-like tumor cells are a potent mediator of disease progression and the
immune landscape in glioma. (A). Feature plots of human and mouse scRNA-seq datasets
showing APC-like tumor cells. (B) Representative images from imaging flow cytometry of
CD83+ APCs with punctate GFP; scale bar = 7 um. (C) Representative images from imaging
flow cytometry of CD83+GFP+ APC-like tumor cells demonstrating diffuse GFP expression
throughout the cell; scale bar = 7 um. (D) Representative images from imaging flow cytometry
showing GFP+ tumor cells interfacing with GFP- host cells at a CD83+ interface; scale bar = 7
um. (E) Kaplan-Meier survival analysis of control (n=17), CD83-GOF (n=16) and CD83-LOF
(n=20) tumor mice; *p<0.05. (F) Exemplary brightfield and GFP images from end-stage control,
CD83-GOF and CD83-LOF tumors. (G) Representative H&E whole brain coronal sections from
end-stage control, CD83-GOF and CD83-LOF tumors; black dotted lines denote tumor regions,
scale bar = 1 mm. (H) Representative H&E and Ki67 images from end-stage control, CD83-
GOF and CD83-LOF tumors; scale bar = 100 um. (1) Quantification of Ki67 for end-stage tumors
shows CD83-GOF tumors are less proliferative than controls (**p<0.01) and CD83-LOF
(*p<0.05) tumors. (J) Quantification of nuclei per tumor field of view (FOV) shows end-stage
CD83-LOF tumors have more cells than controls (**p<0.01) and CD83-GOF (***p<0.001)
tumors. (K) Representative images from established tumor cell lines age-matched control,
CD83-GOF and CD83-LOF tumors; scale bar = 20 um. (L) Flow cytometry plots from imaging
flow cytometry experiments showing an increased percentage of CD3+CD8+ T cells from CD83-
GOF (48.0%) cocultures as compared to controls (29.6%) and CD83-LOF (25.7%). CD3-CD8+
T cells were detected at 26.7% in CD83-LOF T cells compared to 0.2% and 0.1% in controls
and CD83-GOF, respectively. Gating on CD3-CD8+ T cells from CD83-LOF cocultures shows
two populations of T cells: CD3-CD8+CCR7+CD25- T cells and CD3-CD8+CCR7+CD25+ T
cells. (M) Representative images of CD3-CD8+CCR7+CD25- and CD3-CD8+CCR7+CD25+ T
cells from imaging flow cytometry experiments from cocultures; scale bar = 7 um. (N) Flow
cytometry plots from imaging flow cytometry experiments showing CCR7 and CD25 expression
for CD3+CD8+ gated cells. T cells from CD83-LOF cocultures show an increased percentage of
CD3+CD8+CCR7+CD25+ T cells. (O) Representative images of CD3+CD8+CCR7+CD25- and
CD3+CD8+CCR7+CD25+ T cells from imaging flow cytometry experiments; scale bar = 7 um.
(P) Box and whisker plots for ELISA assays shows IFNy production is increased in CD83-GOF
(****p<0.0001) and CD83-LOF (****p<0.0001) cocultures when tumor cells cultured with naive
CD8+ T cells. TNFa production was only increased in CD83-LOF (***p<0.001); IL-2 production
was unchanged. (Q) Box and whisker plots for ELISA assays shows IFNy production is
increased in CD83-GOF (**p<0.01) and CD83-LOF (****p<0.001) T cell cocultures when
compared to controls (***p<0.001). TNFo production was increased in CD83-LOF T cell
cocultures when compared to CD83-GOF (**p<0.01) and controls (**p<0.01). IL-2 production
was increased in CD83-GOF tumor cells cultured in the absence of T cells when compared to
controls (*p<0.05). (R) Dot plots from control, CD83-GOF and CD83-LOF tumor scRNA-seq
datasets shows T cells are enriched for Ifng (IFNy) expression in control tumors and enriched for
Tnf (TNFo), 112 (IL-2) and 1112a (IL-12) in CD83-GOF tumors, in vivo. (S) Dot plots from control,
CD83-GOF and CD83-LOF tumor scRNA-seq datasets shows T cells from CD83-GOF tumors
are enriched for effector and memory T cell markers (Cd44, ll2ra) and T cells from CD83-LOF
tumors are enriched for anergic and regulatory T cell markers (Foxp3, Il2ra, Ctla4, ltga4). (T)
Representative images from EdU proliferation assays on control, CD83-GOF and CD83-LOF
tumor cell lines in vitro. (U) Quantification of fraction of EdU+ cells shows CD83-GOF
(****p<0.0001) and CD83-LOF (****p<0.0001) tumor cells are more proliferative than controls
and that CD83-LOF tumor cells are more proliferative than CD83-GOF tumor cells (*p<0.05). (V)
Cell cycle scoring analysis for control, CD83-GOF and CD83-LOF proliferating tumor cells from
scRNA-seq datasets shows CD83-GOF (****p<0.0001) and CD83-LOF (****p<0.0001) tumor
cells are more proliferative than controls.
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Figure 6. Neuronal-like tumor cells are functionally akin to neurons and are a hallmark of
IDH1 mutant glioma. (A). Feature plots of human and mouse scRNA-seq datasets showing
neuronal-like tumor cells. (B) Experimental workflow for electrophysiology and Patch-seq
assays. (C) Images of biocytin-reconstructed cell morphologies for patched cells from an
IDH1™" diffuse astrocytoma (Grade Il); scale bar = 50 pm. (D) Matched whole-cell
electrophysiology traces for patched cells. Two voltage traces are shown: the hyperpolarization
trace obtained with the smallest current stimulation (black) and the depolarization trace showing
maximal AP firing rate. Stimulation length = 600 ms. (E) Traced cell morphologies are shown for
recorded cells. (F) Images of biocytin-reconstructed cell morphologies for patched cells from an
IDH1™" diffuse astrocytoma (Grade Ill); scale bar = 50 um. (G) Matched whole-cell
electrophysiology traces for patched cells. Two voltage traces are shown: the hyperpolarization
trace obtained with the smallest current stimulation (black) and the depolarization trace showing
maximal AP firing rate. Stimulation length = 600 ms. (H) Traced cell morphologies are shown for
recorded cells. () Bar graph showing neuron-like tumor cells have the highest input resistance
amongst recorded cells; p-values for pairwise comparisons are noted in the figure. (J) Bar graph
showing neuron-like tumor cells have reduced maximal firing rates compared to neurons; p-
values for pairwise comparisons are noted in the figure. (K) Bar graph showing neuron-like
tumor cells have reduced AP amplitude compared to neurons; p-values for pairwise
comparisons are noted in the figure. (L) Examples of Patch-seq results showing the
IDH1R132H mutation is detected in 5/6 sequenced neuron-like tumor cells and is absent in 1/6
cells. (M) PCA plot of 31 Patch-seq cells shows neuron-like tumor cells are transcriptionally
similar to each other and glia. (N) EnrichR analysis of 31 Patch-seq cells confirms neuron-like
tumor cells are enriched for gene sets corresponding to OPCs and embryonic astrocytes;
p<0.05. (O) Example traces of GFP+ tumor cells shows neuron-like tumor cells are detected in
mouse glioma. (P) 2-photon images reveal Synapsin-driven GCaMP-labeled calcium activity is
detected in select FUCCI-labeled tumor cells in mouse glioma.
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All experimental animals were treated in compliance with the US Department of Health and
Human Services, and Baylor College of Medicine IACUC guidelines. All mice were housed with
food and water available ad libitum in a 12-hour light/dark environment. Both male and female
mice were used for experiments and mice were randomly allocated to experimental groups. All
scRNA-seq studies were performed on mice of the same gender. For ex vivo and in vivo
experiments, adult mice aged >3 months were used unless otherwise described. Adult patients
at St. Luke’s Medical Center and Ben Taub General Hospital provided preoperative informed
consent to participate in these studies and were consented under Institutional Review Board
Protocol H35355. Patients were males and females. Clinical characteristics were summarized
and maintained in a deidentified patient database (Table S1).

Experimental Methods
SCRAM pipeline and methodology

SCRAM input consists of aligned scRNA-seq reads, our manually curated host cell type marker
database named BrainTumorHostCellDB and scRNA-seq clustering with cluster markers (i.e.
DEGs). Tumor and host cells are annotated independently for two reasons: (1) there is
significant overlap in expression markers in tumor and non-tumor cells. For example, EGFR and
PDGFRA genes are often used to denote tumor cells®, however, PDGFRA and EGFR are also
DEG markers of OPC and ependymal host cells, respectively. (2) We hypothesize that a
separation of tumor and host-specific features can provide more robust results. This is based on
our observation that cell-type assignment methods that jointly classify tumor and host cells fail
at assigning cell types due to overlaps between markers. Therefore, the SCRAM pipeline
employs orthogonal tumor features to identify tumor cells in single cell resolution: (1) marker-
expression modeling; (2) RNA-inferred genotyping of large-scale chromosome alterations using
a modified version of our CNV calling algorithm, CaSpER’; and (3) RNA-inferred mutational
profiling of recently developed XCVATR® tool to deduce rare deleterious SNV (COSMIC*-
reported and dbSNP* <0.1% frequency). The following sections explain how these three
features are employed systematically in our pipeline:
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Step 1. Annotation of the host cells. We annotate each single cell within each Seurat cluster
with host cell types using our manually curated host cell type marker database,
BrainTumorHostCellDB. We only consider the genes in BrainTumorHostCellDB that are in our
Seurat cluster markers. Seurat cluster markers are calculated using FindAllMarkers function
with logfc.threshold = 0.5 for human and logfc.threshold = 0.25 for mouse. Our
BrainTumorHostCellDB consists of a list of 87 host cell types and their respective markers for
gliomas that represent a diverse range of cell lineages including myeloid, lymphoid, neuronal,
embryonic, endothelial, fibroblast, tumor, hematopoietic stem cell, neurodevelopmental,
lymphatic, glial, mesenchymal, and neurovascular. Most cell types require a minimum of 2
markers to qualify for annotation. Cell types are stratified into different hierarchies including cell
lineage (e.g. neuronal, glial, lymphoid, myeloid) and cell class (e.g. neural, immune) levels. To
annotate each cell using marker list, we analyzed the enrichment of gene marker sets as “rules”
on cells. For example, to be called “CD4+ regulator T cell”, a cell must express a reliable
fraction of the following markers concurrently, {CD3E, CD3D, CD3G, CD4, IL2RA, FOXP3,
TIGIT, etc.}. Results are tabulated in brute force annotation where each cell is evaluated in
terms of a simple rule-based assignment by cell type.

Step 2. Annotation of tumor cells. Because tumor cells exhibit a wide range of transcriptional
states, we employ redundant and stringent approaches to annotate tumor cells using 3 modular
components: (1) marker-expression modeling, (2) genotyping of CNVs on all cells (3) RNA-
inferred mutational profiling of known glioma mutations (i.e. IDH1, EGFR).

a. Module 1. Marker expression-based tumor classification model. Given the expressional
heterogeneity of tumor markers in host cells, we used previously published datasets of tumor
and non-tumor cells to establish a marker expression-based tumor classification model (i.e.
thresholding requirements for “high expression” annotation) for the tumor markers PDGFRA,
EGFR, CDK4, IGFBP2, IGFBP5 and SOX2. For each tumor marker gene, an independent
classifier model is built using: (1) Allen Brain mouse and human scRNA-seq data, which is the
largest compendium of healthy brain data, as a training set for host cells; and (2) a compendium
of publicly available brain-tumor scRNA-seq datasets as a training set for tumor cells®. Finally,
the following statistical models are used to infer the class (host vs. tumor) of our in-house tumor
scRNA-seq data:

We model the expression as a mixture of Gaussian distributions for identification and
classification of host and tumor cells:

Let Xj={x;,Xz ..., X; -, Xp} be the training expression vector of normal and tumor cells for
gene j, where x; is the expression value at cell i. The distribution of every expression value is
specified by a probability density function through a finite mixture model of G=2 classes (host vs
tumor):

G

f(xi;2) = z T fi (%55 O1)

k=1

where z = {n; _mg, 64,..6g} is the parameters of the mixture model and f; (x;; 6;) is the kth
component density, which assumes to follow Gaussian distribution f;, (x;; 65) ~ N(u, 03).
{m, . m} is the vector of probabilities, non-negative values which sum to 1, known as the
mixing proportions. Mixing proportions, m, follows a multinomial distribution.

We used the above model to predict host vs. tumor class in our inhouse glioma cells. For each
gene j, z parameters are estimated by maximizing log-likelihood function via the EM algorithm.
The log-likelihood function is formulated as:
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n
1) = ) logfic(xis 7)
i=1

For each tumor marker gene, we generate a matrix with genes in the rows and cells in the
columns and cell value indices of 1 if that cell has high “tumor class” probability for the
corresponding gene. A cell is marked as “tumor” if there are at least two marker genes with
high “tumor class” probability. We used mclust R package for Gaussian mixture model (GMM)
implementation®®.

b. Module 2. Identifying CNV events from scRNA-seq data. CNVs are a hallmark feature of
tumor cells that can be used to classify tumor vs. non-tumor cells alongside or in the absence of
expression markers. However, detection of CNVs from scRNA-seq data is inherently noisy due
to a multitude of factors, including drop-outs and unmatched control sets and requires a set of
cells that are known to be tumor cells. To estimate a “clean” set of CNV calls that can provide
reliable CNV-based tumor scores, we used a pure tumor pseudobulk sample.

Estimation of CNV profiles using patient-specific pure tumor pseudobulk samples. We first use
our expression-based marker model from Module 1 to identify tumor cells. The collection of
cells that are assigned as “tumor” using Module 1 is treated as a pure tumor cell cohort.

CNV calling on patient-specific pure pseudobulk samples. We hypothesize that the pseudobulk
sample contains representative sets of CNVs with high probability and therefore should be
useful to identify a clean CNV call-set. The CNV calling on the pseudobulk samples is
performed using our CNV calling algorithm, CaSpER, for each patient. CaSpER CNV calls are
used as the ground truth large-scale CNV calls for each patient.

Genotyping of CNVs on all cells. After CNVs are identified from the pseudobulk sample, we
genotype the set of CNVs on all cells and generate a binary matrix that represents the existence
of CNVs on the cells, i.e., CNV; ;.

c. Module 3. We perform RNA-inferred rare deleterious (COSMIC*®-reported and dbSNP*’,
<0.1% frequency) mutational profiling via our recently developed XCVATR?® tool. We detected
mutations in IDH1, EGFR, TP53 and PTEN and annotated cells with those mutation harboring
cells as tumor.

Visualization of tumor cells. We calculate the accumulation of expressed rare deleterious
COSMIC reported variants in our clusters to visualize the tumor cells.

Step 3. Summarizing co-occurring cell types using maximum frequent gene set identification.

We summarized co-occurring cell types using a frequent itemset rule mining approach. CNV
and SNV calls are added to provide an integrated transcriptomic and genomic summary for
each cell. An example SCRAM output for a single cell is given as “glioma stem cell, mature
neuron, synaptic neuron, oligodendrocyte precursor cell, chrlp_deletion, chrl9q_deletion +
IDH1:2:208248389 mutation”. We use the tumor and host cell assignments of Step 1 and Step
2 to integrate co-occurring tumor and host cell features.

The simplest method for detecting maximally frequent tumor and host feature sets is a brute
force approach in which each possible subset of features is a candidate frequent set. The apriori
algorithm is an efficient implementation for finding maximally frequent sets with support above a
given threshold. In apriori algorithm minimum support threshold is set to min(50,
number_cells_in cluster*0.1) and maximum number of genes in a geneset is set to 50. Using
the apriori algorithm we identified co-occurring gene sets expressed concurrently within each
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cell and provided annotation of high-resolution cellular identities using a three-step co-
occurrence analysis. We performed our co-occurrence analysis in multiple levels: 1) gene level
(an example output of this step: {NES, SOX2, SLC1A3, CDH2} is radial glial cells), 2) cell type
level (an example output of this step: tumor AND radial glial AND mature astrocyte) 3) cell
lineage level (an example output of this step: neurodevelopmental AND tumor AND glial is
commonly upregulated) 4) cell class level (an example output of this step: tumor AND neural
cells are commonly upregulated).

In maximum frequent gene set co-occurrence analysis:

Within each cluster m and cell type t we calculate the maximum frequent gene sets using apriori
algorithm. Input is the binarized matrix E™¢ where the cell type marker genes are on the row and
the cells in cluster m are on the columns.

. mt — {1, if celltype marker geneiis a cluster marker AND expressed in cell j in cluster m
v 7o, otherwise

In maximum frequent cell type (or cell lineage or cell class) co-occurrence analysis:

Within each cluster m, we calculate the maximum frequent cell types (or cell lineage or cell
class) using apriori algorithm. Input is the binarized matrix E™ where the cell types (or cell
lineage or cell class) are on the row and the cells in cluster m are on the columns.

oM = {1, if cell type(or cell lineage or cell class) i is annotated in cell j in cluster m
Y 0, otherwise

Gene set significance estimation:
For a given frequent gene set G; on n cells with k genes, we compute the probability of selecting
more than n cells that can have the observed gene set with higher or same pattern:

Piextreme)(Gc = (91,9293 [ Hp) = Y (1) (]_[ P(ai|H0)> x (]_[ P(6i|H0)>
n/ N-nr

n’>n

n'cell with N-n'cellsw/o
pattern pattern

P(GilHo) = P(g1, G2, i | Ho) = | | PLgi > 01 Hy)

1<i<k

Single cell processing. We run samples on the 10x Chromium platform to produce next-
generation sequencing (NGS) libraries. We performed standard procedures for filtering,
mitochondrial gene removal, variable gene selection using Seurat pipeline. Criteria for cell/gene
inclusion is: include genes that are present in >3 of cells, include cells that express >300 genes,
the number of genes detected in each cell should be > 200 and < 5000 and mitochondria ratio
<10 (<20 in mouse). We integrated cells coming from different patients using Harmony
algorithm*. Next, we visualized clusters using uniform manifold approximation and projection
(UMAP) constructed from the Harmony corrected PCA. We also performed lineage tracing,
trajectory analysis, and RNA velocity assessments to create developmental hierarchies and
lineage histories of glioma cells using scvelo R package®.
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Patch-seq data processing The Patch-seq reads are mapped using STAR>® to hg38 assemblies
for human. Read count matrices are generated using FeatureCounts®® with the latest gene
annotations from GENCODE® consortia. Differentially expressed genes and transcripts
identified using DESeq2° and limma>*. Cells are clustered and visualized using PCA methods.
Cell type enrichment analysis are performed with enrichR*® using the
PanglaoDB_Augmented_2021, CellMarker_Augmented_2021 cell type marker sets. IDH
mutations are identified using our variant detection tool XCVATR® and visually confirmed using
Integrative Genomics Viewer (IGV)>>.

Human data

Tumor samples were collected during surgery and immediately placed on ice. Tissue was
divided for use in subsequent transcriptomic, histopathological, proteomic and/or biochemical
studies. Patient samples were collected separately for pathology and molecular subtyping.
Histopathology and molecular subtyping of IDH1 and 1p19q deletion status were confirmed by
board-certified pathologists. Samples for scRNA-seq and immunoprecipitation assays were
fixed in LN, and kept at -80°C.

piggyBac in utero electroporation model

Tumor mice were generated according to previously published protocols®. Briefly, in utero
electroporation and single-sided intraventricular injection of Pten, Nfl and Trp53 CRISPR/Cas9
pX330 constructs targeting Glast-expressing mouse neural precursor cells via piggyBac
transposase technology were performed on CD1 wildtype damns at E16.5. sgRNA guides
employed for these experiments are as follows:

APten sgRNA: GAGATCGTTAGCAGAAACAAAAGG
ANfl sgRNA: GCAGATGAGCCGCCACATCGAGGG
ATrp53 sgRNA: CCTCGAGCTCCCTCTGAGCCAGG
ACd83-1 sgRNA: CTGCAGCCTGGCACCCGCGA
ACd83-2 sgRNA: CTTGGCCCAGGACACTGCAT

CD83-GOF tumor mice were generated using piggyBac constructs driving overexpression of
mouse Cd83. All mice received co-electroporation of piggyBac-GFP constructs. Tumor brains
were collected from mice either at matched time points or end-stage disease. Mice were
monitored for symptoms indicative of tumor burden, including lethargy, hunched posture,
decreased appetite, poor grooming maintenance, squinting of the eyes, partial limb paralysis
and/or ataxia, denoting the IACUC permitted endpoint.

Single cell RNA sequencing

Human and GFP+ mouse tumors were prepared as single-cell suspensions. Briefly, samples
were coarsely chopped with surgical scissors and enzymatically digested with Papain
supplemented with DNase | (Worthington Biochemical Corporation, LK003150). Samples were
incubated for 15 minutes at 37°C on a thermaocycler kept at 1400 g and briefly pipetted every 5
minutes. Cells were pelleted at 13,000 g for 10 seconds and resuspended in PBS before
processing for debris and dead cell removal. Cell suspensions were processed using the MACS
Debris Removal Kit (Miltenyl, 130-109-398) and MACS Dead Cell Removal Kit (Miltenyl, 130-
090-101), per the manufacturer's instructions. Live cells were collected through negative
selection using a MS Column in the magnetic field of a MiniMACS Separator (Miltenyl, 130-042-
102). Eluted cells were spun at 300 g for 5 minutes and resuspended in Gibco Dulbecco's
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Modified Eagle Medium with GlutaMAX (DMEM; Thermofisher, 10566016) supplemented with
10% fetal bovine serum serum (FBS; Thermofisher, 16000044). Single cells were processed
with the 10X Chromium 3' Single Cell Platform using the Chromium Single Cell 3' Library, Gel
Bead and Chip Kits (10X Genomics) following the manufacturer's protocol. Briefly,
approximately 5,000-15,000 cells were added to each channel of a chip to be partitioned into
Gel Beads in Emulsion (GEMSs) in the Chromium instrument, followed by cell lysis and barcoded
reverse transcription of RNA in the droplets. GEMs were then broken and cDNA from each
single cell is pooled together. Cleanup was performed using Dynabeads MyOne Silane Beads
(Thermofisher, 37002D). Subsequent cDNA was then amplified and fragmented to optimal size
before end-repair, A-tailing, and adaptor ligation. Libraries were run individually using a NextSeq
500/550 High Output Kit v2.5 (75 Cycles) (lllumina, 20024907) and sequenced on an Illumina
NextSeq550.

Histology

Mice were humanely euthanized and brain tissue was harvested for subsequent processing.
Mouse brain samples were fixed through intracardial perfusion of 4% paraformaldehyde in PBS
and kept in solution for 12 hours at 4°C before being transferred to 70% EtOH. Human samples
were drop fixed in 4% paraformaldehyde in PBS for 12 hours at 4°C before being transferred to
70% EtOH. Paraffin embedding was performed by the Breast Cancer Pathology Core at Baylor
College of Medicine.

Hematoxylin and eosin (H&E) staining was performed on 10 um paraffin-embedded sections cut
on a microtome. Slides were deparaffinized and processed using Harris hematoxylin (Poly
Scientific R&D, S212A) and eosin (Poly Scientific R&D, S176) for 1 minute and 30 seconds,
respectively. Slides were mounted with Permount Mounting Media (Electron Microscope
Sciences, 17986-01) before cover slips were placed. Histological diagnoses of mouse tumors
were validated across n=3 tumors per experimental group by a board-certified neuropathologist.

For immunohistology, 10 um paraffin-embedded sections were cut, deparaffinized and subject
to heat-induced epitope retrieval (HIER) using antigen retrieval buffer (10 mM sodium citrate,
0.05% Tween 20, pH 6.0). Sections were blocked for 1 hour at room temperature and kept in
primary antibodies overnight at 4°C. The following primary antibodies were used in this report:
goat anti-CD83 (1:200; Novus Biologicals, AF1437). Species-specific secondary antibodies
tagged with Alexa Fluor corresponding to 568 nm emission spectra (1:1,000, Thermofisher) was
used for immunofluorescence. Hoechst nuclear counter staining (1:50,000; Thermofisher,
H3570), was performed before coverslips were mounted using Vectashield antifade mounting
medium (Vector Laboratories, H-1000).

In vivo cell proliferation assay

Tumor proliferation was assessed through quantitative immunohistochemistry using rabbit anti-
K167 (1:200; Abcam, ab16667). In total, 27 brightfield images were acquired per experimental
group (n=3) (n=3 images per coronal section x n=3 sections per animal x n=3 animals per
experimental group). Quantification was performed using the Analyze Particles plugin in
ImageJ.

Mouse tumor cell lines

Tumor cell lines from control, CD83-GOF and CD83-LOF tumors were established from P65 pB-
IUE tumor mice. Mice were humanely euthanized and brains were dissected. GFP-guided
microdissection of tumor tissue was done under a dissection microscope. Tissue was processed
into single-cell suspensions according to our scRNA-seq protocol above and seeded into T75
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flasks with Gibco Dulbecco's Modified Eagle Medium with GlutaMAX (DMEM; Thermofisher,
10566016) supplemented with 10% fetal bovine serum serum (FBS; Thermofisher, 16000044).
Cells were grown and passaged after reaching 85% confluency for two weeks before being
used for subsequent assays. Tumor cell lines were validated using a Surveyor Assay for Pten,
Trp53, Nfl and Cd83 indels according to the manufacturer’s instructions (IDT, 1075932). The
following primers were used for PCR amplification of the indel-containing locus:

Trp53 forward GCTTTCCCACCCTCGCATAA
Trp53 reverse TCACACGAAAGACAACTCCCC
Nf1 forward TCTGTACCTCTTGGACTATGCC
Nfl reverse TGAGCCTCAAAACTTGCTTGG
Pten forward AGGATTATCCGTCTTCTCCCCA
Pten reverse ACCCTCAAATGTGCACCGTC
Cd83 forward CCAAGCGCGGGTACAAGA
Cd83 reverse CTCTCTCAGAACCTCGCTGA

In vitro cell proliferation assay

In vitro cell proliferation was assessed for mouse tumor cell lines using the Click-iT EAU Assay
(Thermofisher, C10340) according to the manufacturer's guidelines. Briefly, 6x10* cells were
seeded onto poly-D-Lysine coated 12 mm coverslips in a 12-well culture dish. After 48 hours,
cells were pulsed with EdU for 2 hours before being fixed with 4% paraformaldehyde and
processed for immunostaining. Quantification was performed using 27 images per experimental
group (n=3) (n=3 images per coverslip x n=9 coverslip per experimental group). EdU positivity
was assessed as a fraction of total cells using Hoechst counterstaining. Images were processed
using the Analyze Patrticles plugin in ImageJ.

Coculture experiment

Mouse tumor cell lines were seeded into T25 flasks and grown to 50% confluency. Naive CD8+
T cells were harvested from CD1 wildtype P25 mice and processed using the EasySep™
Mouse Naive CD8+ T Cell Isolation Kit (Stemcell Technologies, 19858). Following isolation,
10x10° naive CD8+ T cells were seeded onto mouse tumor cell lines and maintained in RPMI
1640 media (Thermofisher, 11875093) supplemented with 10% fetal bovine serum (FBS;
Thermofisher, 16000044) and 1% Penicillin-streptomycin solution. Cells were left in coculture for
one week before T cell-containing media was harvested for use in imaging flow cytometry
experiments.

Multispectral imaging flow cytometry

For CD83 experiments, GFP+ tumor tissue from control pB-IUE tumor mice at P65 was
processed into single-cell suspension according to our above protocol. Briefly, cells were spun
at 400 g for 3 minutes at 4°C and washed in MACS Buffer (Miltenyi Biotec, 130-091-222)
supplemented with 4% FBS (FBS; Thermofisher, 16000044) 3x before being incubated with
APC-conjugated rat anti-CD83 antibody (1.25 upL/10x10° cells; Biolegend, 121510) for 30
minutes on ice. Cells were spun at 400 g for 3 minutes at 4°C and washed in MACS Buffer 3x
again before being resuspended in 50 yL of MACS Buffer for imaging experiments. High
expression of endogenous GFP was used to gate tumor cells.
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Image cytometry assays were acquired on an Imagestream X MKII (Luminex) equipped with a
405nm, 488nm, 561nm, 633nm and 785nm scatter laser. Collection was performed on as many
objects as feasible in two hours. The number of objects collected ranged from 100,000 -
300,000 to allow for analysis of rare CD83+ events. Objects were analyzed and gated using
IDEAS software 6.3.23.0. Cells were gated using Aspect Ratio and Area parameters for the
brightfield channel. Focused Cells were gated using the Gradient_RMS parameter for Channel
1 (Brightfield). CD83+GFP+ were gated by signal intensities for Channel 2 (GFP) and Channel
11 (CD83 APC).

For T cell experiments, T cell-containing media was harvested from cocultures, spun at 700 g
for 3 minutes at 4°C and washed in MACS Buffer 3x before being incubated with the following
antibodies: APC-conjugated rat anti-CD3 (5 uL/10x10° cells; Biolegend, 100408), PE-conjugated
rat anti-CD8b (2.5 pL/10x10° cells; Biolegend, 126608), PE/Cyanine7-conjugated rat anti-CD25
(2.5 pL/10x10° cells; Biolegend, 101916), Brilliant Violet 421-conjugated rat anti-CCR7 (5
uL/10x10° cells; Biolegend, 120120) and Cells were incubated for 30 minutes on ice, spun at
700 g for 3 minutes at 4°C and washed in MACS Buffer 3x. Cells were resuspended in
CytoFix/CytoPerm Solution (Thermofisher, 00-5523-00) and incubated for 30 minutes at 4°C in
the dark and washed 3x before being resuspended in 50 yL of MACS Buffer for imaging
experiments. 20,000 cells were acquired based on Aspect Ratio vs Area of Brightfield. Data
were analyzed by gating on Focused, Single Cells, followed by Channel 2 (CD8 PE) and
Channel 11 (CD3 APC) to determine CD3+/-CD8+/- cells. These were then analyzed using
Channel 7 (CCR7 BV421) and Channel 6 (CD25 PE-Cy7) intensities.

Representative images used for figures were exported from the IDEAS image gallery as .tif files
and inserted into manuscript. Raw data files are available upon request.

ELISA

Media was collected from mouse tumor cells either cocultured with naive CD8+ T cells for one
week or in the absence of T cells. Cells were maintained in T25 tissue culture flasks with RPMI
1640 media (Thermofisher, 11875093) supplemented with 10% fetal bovine serum (FBS;
Thermofisher, 16000044) and 1% Penicillin-streptomycin solution. Harvested media was spun
at 3000 g for 15 minutes to remove debris and cells. Supernatant was collected and used for
subsequent ELISA experiments. The following ELISA kits were used per the manufacturer’s
instructions: mouse IFNy Quantikine ELISA kit (R&D, MIF00), mouse TNFo Quantikine ELISA
kit (R&D, M2000), and mouse IL-2 Quantikine ELISA kit (R&D, M2000).

Human tumor slice preparation

Fresh tumor samples were immediately placed into a cold (0-4 °C) oxygenated NMDG solution
(93 mM NMDG, 93 mM HCI, 2.5 mM KCI, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES,
25 mM glucose, 5 mM sodium ascorbate, 2 mM Thiourea, 3 mM sodium pyruvate, 10 mM
MgS0O4 and 0.5 mM CacCl2, pH 7.35). Slices were cut at 300 um thickness with a microslicer
(Leica VT 1200) and kept at 37.0 + 0.5 °C in oxygenated NMDG solution for 10-15 minutes
before being transferred to ACSF (125 mM NaCl, 2.5 mM KCI, 1.25 nM NaH2PO4, 25 mM
NaHCO3, 1 mM MgCl2, 25 mM glucose and 2 mM CaCl2, pH 7.4) for 1 hour before recording.

Patch-seq recording procedures

Electrophysiological, morphological and transcriptomic data from the same cell were obtained
simultaneously using the Patch-seq protocol described previously®”*® . Briefly, patch pipettes
(5-7 MQ) were filled with RNase-free intracellular solution (111 potassium gluconate, 4 KCI, 10
HEPES, 0.2 EGTA, 4 MgATP, 0.3 Na3GTP, 5 sodium phosphocreatine, and 13.4 biocytin).
Whole-cell recordings were performed using 1 Quadro EPC 10 amplifiers (HEKA Electronic).
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After 5-10 minutes of the whole-cell recording of firing patterns, the nucleus is extracted using
gentle and continuous negative pressure. The contents in the pipette were ejected into a 0.2-mL
PCR tube containing 4 mL lysis buffer®. RNA in the lysis buffer was denatured and reversed
transcribed, amplified and purified following Smart-seq2-based protocol®. Only high-quality
cDNA samples (yield = 2 ng, average length = 1500 bp) were sequenced.

Sequencing libraries were constructed from the cDNA using the lllumina Nextera XT DNA
Library Preparation Kit (lllumina, FC-131-1096). The cDNA library was sequenced on the
NovaSeq 6000 instrument using 150-bp paired-end reads.

Biocytin staining and morphological reconstructions

Following slice recordings, slices were fixed by immersion in the fixation solution at 4° for at
least 48 hours, and then processed with an avidin-biotin-peroxidase method to reveal cell
morphology. The morphology of the cells was reconstructed and analyzed using a 100x oil-
immersion objective lens and camera lucida system (Neurolucida, MicroBrightField).

Mouse tumor slice preparation

Mouse tumor brain slices were obtained following previously described protocols®. In brief, the
animals were deeply anaesthetized using 3% isoflurane and decapitated. The brain was rapidly
removed and collected into cold (0—411°C) oxygenated NMDG (N-methyl-d-glucamine) solution
containing 93 mM NMDG, 93 mM HCI, 2.5 mM KCI, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20
mM HEPES, 25 mM glucose, 5 mM sodium ascorbate, 2 mM thiourea, 3 mM sodium pyruvate,
10 mM MgSO4 and 0.5 mM CacCl2, pH 7.35 (all from Sigma-Aldrich). We cut 300-um-thick
coronal slices using a Leica VT1200 microtome following coordinates provided in the Allen Brain
Atlas for adult mouse (http://atlas.brain-map.org). The slices were subsequently incubated at
34.0 £ 0.50°C in oxygenated NMDG solution for 10-15 min before being transferred to the
artificial cerebrospinal fluid (ACSF) solution containing: 125 mM NacCl, 2.5 mM KCI, 1.25 mM
NaH2PO4, 25 mM NaHCO3, 1 mM MgCI2, 11.1 mM glucose and 2 mM CacCl2, pH 7.4 (all from
Sigma-Aldrich) for about 1 h. The slices were allowed to recover in ACSF equilibrated with
C02/02 gas mixture (5% CO2, 95% 02), at room temperature (approximately 251°C) for 1 h
before experiments. During the recordings, slices were submerged in a customized chamber
continuously perfused with oxygenated physiological solution. Recorded cells were generally
located 15-60 um deep under the slice surface.

Mouse surgery for in vivo imaging studies

Tumor mice were generated using the aforementioned pB-IUE system. A piggyBac construct
containing mCherry-hGeminin (1-110), a fluorescently-labeled, ubiquitination-based, cell cycle
indicator (FUCCI) was cloned from the pRetroX-SG2M-Red Vector (Takara Bio, 631465) and
added to the pB-IUE cocktail. This FUCCI construct allows for identification of cell nuclei that
are transitioning from S to G2/M phases. Mouse surgeries were performed according to our
previously published protocols®.

Intracranial viral injections

A nanoliter injector (Nanoject Il, Drummond scientific, Broomall, USA), was used to inject AAV-
FLEX-GCaMP8m virus. Glass pipettes were pulled using a Sutter P-87 horizontal pipette puller
(Sutter Instruments) and tips were broken on the filament of a vertical puller (Narishige). The
pipette was backfilled with corn oil, and 5 uL virus solution was aspirated from a sterile piece of
parafilm using the Nanoject Il. A total of 8 or 6 (depending on the unobstructed skull area
available) equidistant injection locations were selected throughout the sensory and posterior
motor cortex. For each hemisphere, these were at [bregma —3.5 mm; 2.5 mm lateral], [bregma —
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2 mm; 1 mm lateral], [oregma —2 mm; 4 mm lateral], and [bregma —0.5 mm; 2.5 mm lateral]. At
each location, a total of 400 nL AAV-solution at 2 depths, 300 um, 600 pum, were injected into
the cortex in 9.2 nL/pulse increments separated by 10 seconds. The Nanoject was mounted at a
25-degree angle relative to the skull surface at each location and actuated by a manual and 1-
direction motorized micromanipulator (WPI) at speeds of 600 um per min. After the last
injection, the skull was covered with Vetbond and dental cement.

2-photon in vivo imaging

2-photon images of calcium reporter activity were assessed according to previously published
protocols®’. Briefly, calcium reporter activity was acquired using a Prairie Ultima IV 2-photon
microscope through a 25x objective, 1.1 NA, or a 16x objective, 0.8 NA, at 920 nm (GCaMP)
under spiral (10—-20 Hz frame rate) or resonant scan mode (30-35 Hz). A 525/70 nm emission
filter was used for GCaMP indicators, and a 620/60 nm filter for mCherry emission. Mice were
imaged while awake, head-posted in a holding frame and allowed to run freely on a circular
treadmill. FOVs for further analysis were chosen based on proximity to the primary tumor mass
as identified by FUCCI-labeled cells.

2-photon images were processed using a MATLAB pipeline modified from suite2p. Images were
acquired using the Bruker acquisition software (Prairieview 5.3), and converted into 4GB “.hdf5”-
stacks in ImageJ. DF/F calcium traces were resampled to the original sampling rate, and
detrended DF/F traces were deconvolved using the suite2p/OASIS approach®® to compute
activity traces equivalent to action potential firing rates, integrated over time scales of 30-100
ms. All further analysis were conducted using these deconvolved traces.

Statistical analysis

Sample sizes and statistical tests are provided in the figure legends. The following tests were
used for statistical analysis, unless otherwise noted. For Kaplan—Meier survival analysis, the
log-rank test was used to compare survival differences across groups. For quantified results,
one-way ANOVA was used followed by Welch's t test to compare individual means. For
electrophysiology analyses, a Kruskal-Wallis test or two-way ANOVA was used followed by
unpaired t tests with a two-stage step-up (Benjamini, Krieger, and Yekutieli). For RT-gPCR, a
two-tailed Student’s t test was used to determine statistical significance. Significant differences
are denoted by asterisks in associated the graphs. Data are presented as the mean + SEM.
Levels of statistical significance are indicated as follows: ns: not significant, *p<0.05, **p<0.01,
***n<0.001, and ****p<0.0001.
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Table S1. Characteristics of patient samples included in this study.

Patient Tumor IDH1 1p19 WHO Samples Experiments
Identity Type Status Codeletion Grade p P
A diffuse astrocytoma mutant no \% .core scRNA-seq
leading edge
core
B BM il n [\ . RNA-
G wildtype [¢] leading edge sc seq
. core
C GBM wildtype no v . scRNA-se
vp leading edge 4
D oligodendroglioma mutant yes 1l core sCRNA-seq
core
E BM il n [\ . RNA-
G wildtype [¢] leading edge sc seq
F GBM wildtype no \Y core scRNA-seq
. r
G diffuse astrocytoma mutant no v ?0 e scRNA-seq
leading edge
H diffuse astrocytoma mutant no 1l core whole-cell patch clamp
. Patch-seq
| f f m mutan n \Y r
diffuse astrocytoma utant 0 core SCRNA-seq
J GBM wildtype no \ core whole-cell patch clamp
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