

Pharmacogenetic and whole-brain activity analyses uncover integration of distinct molecular and circuit programs that drive learning

Jessica C. Nelson^{1,2,✉}, Hannah M. Shoenhard¹, and Michael Granato^{1,✉}

¹Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

²Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus, Aurora, CO, USA

1 **Habituation is a foundational learning process critical for an-**
2 **imals to adapt their behavior to changes in their sensory en-**
3 **vironment. Although habituation is considered a simple form**
4 **of learning, the identification of a multitude of molecular path-**
5 **ways including several neurotransmitter systems that regulate**
6 **this process suggests an unexpected level of complexity. How**
7 **the vertebrate brain integrates these various pathways to ac-**
8 **complish habituation learning, whether they act independently**
9 **or intersect with one another, and whether they act via divergent**
10 **or overlapping neural circuits has remained unclear. To address**
11 **these questions, we combined pharmacogenetic pathway analy-**
12 **sis with unbiased whole-brain activity mapping using the larval**
13 **zebrafish. This approach revealed five distinct molecular and**
14 **circuit modules that regulate habituation learning and identi-**
15 **fied a set of molecularly defined brain regions associated with**
16 **four of the five modules. Moreover, we find that in module 1**
17 **the palmitoyltransferase Hip14 cooperates with dopamine and**
18 **NMDA signaling to drive plasticity, while in module 3 the adaptor**
19 **protein complex subunit Ap2s1 drives habituation by antagonizing**
20 **dopamine signaling, revealing two distinct and opposing**
21 **roles for dopaminergic neuromodulation in the regulation**
22 **of learning. Combined, our results define a core set of distinct**
23 **modules that act in concert to regulate learning-associated plas-**
24 **ticity, and provide compelling evidence that even seemingly sim-**
25 **ple learning behaviors in a compact vertebrate brain are regu-**
26 **lated by a complex and overlapping set of molecular and circuit**
27 **mechanisms.**

28 **Keywords:** habituation learning, plasticity, zebrafish

29 **Correspondence:**
30 granatom@pennmedicine.upenn.edu
31 jessica.c.nelson@cuanschutz.edu

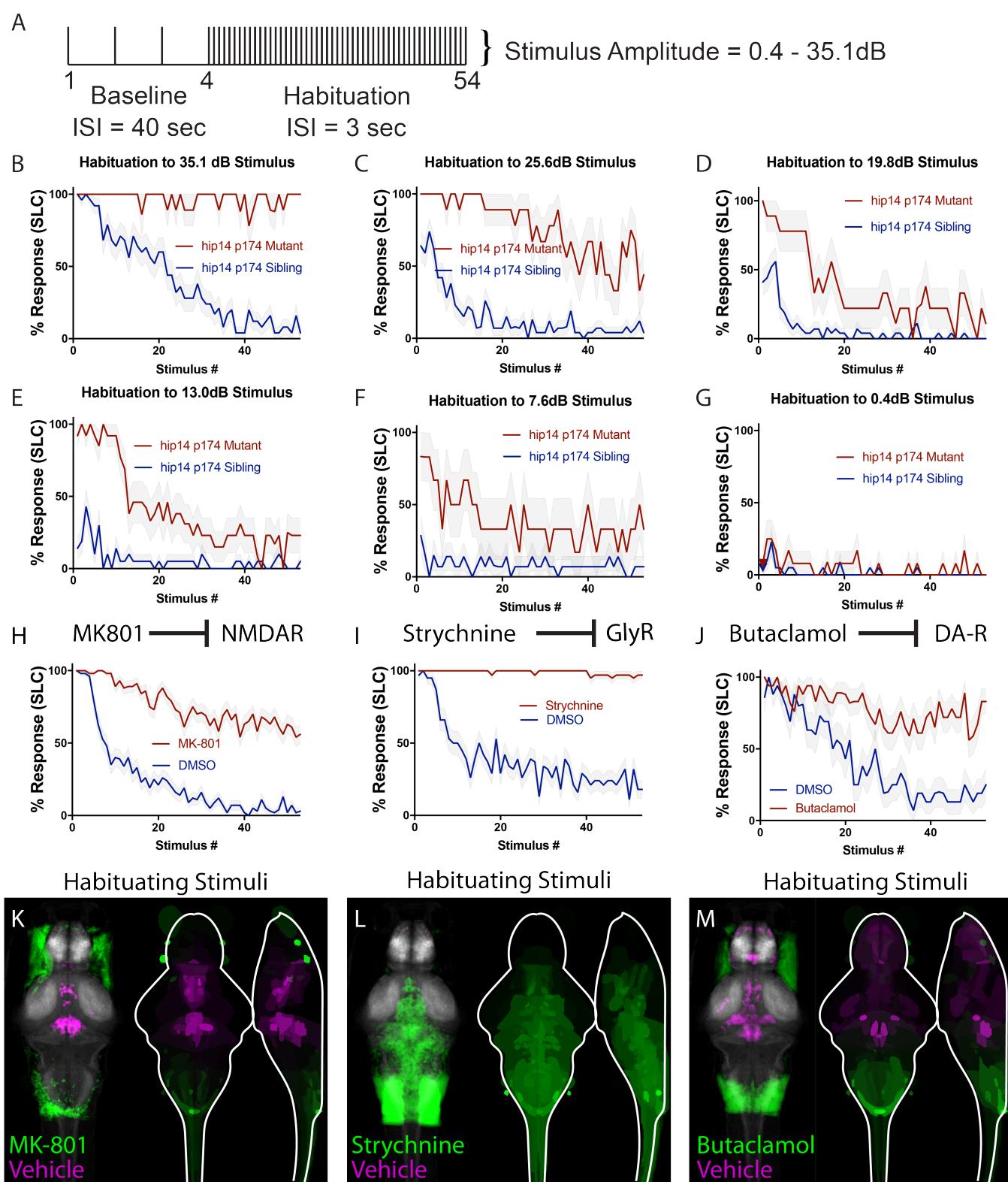
32 **Introduction**

33 Learning enables animals to modify their responses to stim-
34 **uli based on prior experience. One of the simplest forms of**
35 **learning is a non-associative plasticity mechanism termed ha-**
36 **bituation, which is defined by a gradual decrease in respond-**
37 **ing to repeated stimuli ^{1–3}. Habituation represents a founda-**
38 **tion for more complex forms of plasticity and is observed in**
39 **all animals. Habituation learning is also a pervasive feature of**
40 **the nervous system, regulating response rates to stimuli span-**
41 **ning sensory modalities and including complex responses**
42 **such as fear responses and feeding ^{4–6}. We previously es-**

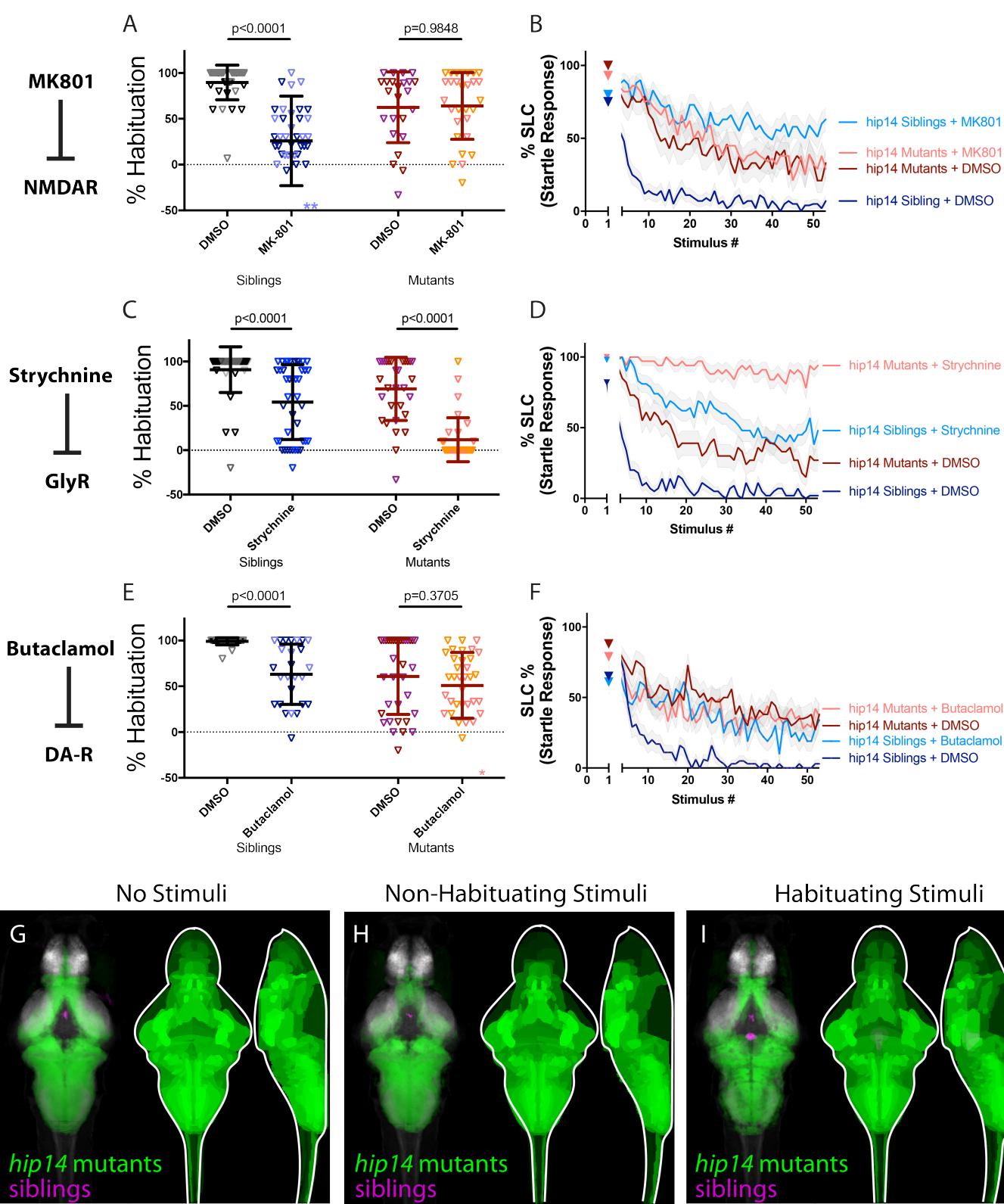
43 **tablished larval zebrafish as a model to study short term ha-**
44 **bituation learning ⁷. In response to a sudden acoustic stimu-**
45 **lus zebrafish perform a stereotyped acoustic startle response**
46 **(ASR), comprised of a short-latency C-bend (SLC) escape re-**
47 **sponse regulated by well-described hindbrain circuitry ^{8–10}.**
48 **Repeated acoustic stimuli modulate sensory thresholds and**
49 **result in habituation learning characterized by a gradual de-**
50 **cline in response frequency ^{7,11–14}. Although this learning**
51 **process appears simple at first glance, previous work revealed**
52 **that at least long-term habituation learning is regulated by**
53 **multiple mechanisms that operate on distinct time scales ^{2,15}.**
54 **Similarly, numerous molecular-genetic mechanisms also reg-**
55 **ulate short-term habituation learning ^{16–26}. Moreover, phar-**
56 **macological screens have identified multiple neurotransmit-**
57 **ter and neuromodulatory systems contributing to habitua-**
58 **tion ⁷. Despite their known relevance for learning, how indi-**
59 **vidual habituation-regulatory pathways relate to one another,**
60 **whether they act sequentially or regulate plasticity in parallel,**
61 **and whether they are distributed over multiple brain areas or**
62 **function within a common circuit is unclear.**

63 Here, we first employed a pharmacogenetic approach to
64 determine whether individual molecular regulators of habitua-
65 tion learning can be modulated by habituation-relevant
66 neurotransmitter systems. To complement this pharmaco-
67 genetic approach, we then performed unbiased whole-brain
68 imaging to define activity signatures for each pharmacoge-
69 netic manipulation, and to identify candidate brain regions
70 in which habituation-regulatory modules exert their func-
71 tion. We identify five distinct molecular-circuit modules
72 that regulate learning. Module 1 consists of the palmitoyl-
73 transferase Hip14, as well as NMDA and dopamine signal-
74 ing, while module 2 consists of Hip14 and one of its iden-
75 tified substrates, the voltage-gated Potassium channel sub-
76 unit Kv1.1. Module 3 consists of the *pregnancy-associated*
77 *plasma protein A* (PAPP-AA) and the AP2 adaptor complex
78 subunit AP2S1, which together act to oppose dopamine
79 signaling. Glycine signaling constitutes module 4, and the *volt-*
80 *age dependent calcium channel alpha2/delta subunit 3* gene
81 (*cacna2d3*) defines module 5. Two of these modules reveal
82 a critical role for dopamine signaling in the bi-directional
83 modulation of habituation learning. Specifically, while the
84 palmitoyltransferase Hip14 cooperates with neurotransmit-

85 ter signaling through NMDA and dopamine receptors to 141
86 drive habituation (module 1), the AP2 adaptor complex sub- 142
87 unit AP2S1 promotes learning by opposing dopamine sig- 143
88 naling (module 3). Moreover, while we find that three of 144
89 the habituation-regulatory modules intersect mechanistically 145
90 (modules 1, 2 and 3), modules 4 and 5 appear functionally in- 146
91 dependent from each other and from the other three intercon- 147
92 nected modules, suggesting multiple habituation-regulatory 148
93 mechanisms that act in parallel. Taken together, our find- 149
94 ings highlight the strength of an integrative approach com- 149
95 bining genetic and pharmacological manipulation of habitua- 150
96 tion learning with unbiased whole-brain activity mapping and 151
97 reveal a more complete picture of the molecular and circuit 152
98 mechanisms that drive vertebrate habituation learning. 153
154


99 Results

100 **A sensitized habituation assay to uncover pharmacogenetic interactions.** From an unbiased genetic screen we 157
101 previously identified a set of five genes required for habit- 158
102 uation learning^{21,24,27,28}. To determine whether the identi- 159
103 fied molecular and circuit mechanisms regulate habituation 160
104 learning independently of each other, or whether these ge- 161
105 netic mechanisms converge at a common bottleneck, we set 162
106 out to perform pathway analysis by exposing habituation mu- 163
107 tants to pharmacological inhibitors of habituation-regulatory 164
108 neurotransmitter signaling pathways. We reasoned that ge- 165
109 netic and pharmacological manipulations that impinge upon 166
110 components of independent or parallel pathways would en- 167
111 hance learning deficits while multiple insults to components 168
112 of a common pathway would fail to produce additive deficits. 169
113 However, impeding our ability to perform such analyses, we 170
114 observed that genetic mutations that affect habituation learn- 172
115 ing, such as presumptive null mutations in the *zinc finger* 173
116 *DHHC-type palmitoyltransferase gene zdhc17*, encoding 174
117 the palmitoyltransferase Hip14, result in a near complete loss 175
118 of habituation at our standard stimulus intensities of 35.1dB 176
119 (Figure 1A-B)²⁴. This ceiling effect interferes with the abil- 177
120 ity to detect additive learning deficits, preventing us from de- 178
121 tecting a further reduction in learning and thus preventing 179
122 us from interpreting the results of the proposed pharmaco- 180
123 genetic pathway analysis. We therefore wondered whether 181
124 reducing stimulus intensity might provide a sensitized assay 182
125 in which mutant animals retain some capacity for habitua- 183
126 tion, and application of a pharmacological inhibitor of learn- 184
127 ing might reveal more severe habituation deficits. Consistent 185
128 with previous findings that habituation learning is modulated 186
129 by stimulus intensity², we find that although still impaired 187
130 relative to their siblings, *hip14* mutant animals are capable 188
131 of habituation learning under conditions of reduced stimulus 188
132 intensity (i.e. 0.4dB-25.6dB, Figure 1C-G). Moreover, these 189
133 data reveal that presumptive null mutations in *hip14* fail to 190
134 fully abolish habituation, and that when presented with lower 191
135 intensity stimuli *hip14* mutant animals are capable of learn- 192
136 ing, albeit at a reduced level relative to their siblings. We 193
137 conclude that at lower intensity, further learning impairments 194
138 in *hip14* mutants induced by pharmacological inhibitors of 195
139 learning might be readily detectable. We therefore selected 196


19.8dB for our sensitized learning assay and utilized this stimulus intensity to test five genetic mutants in combination with individual inhibitors of three neurotransmitter systems.

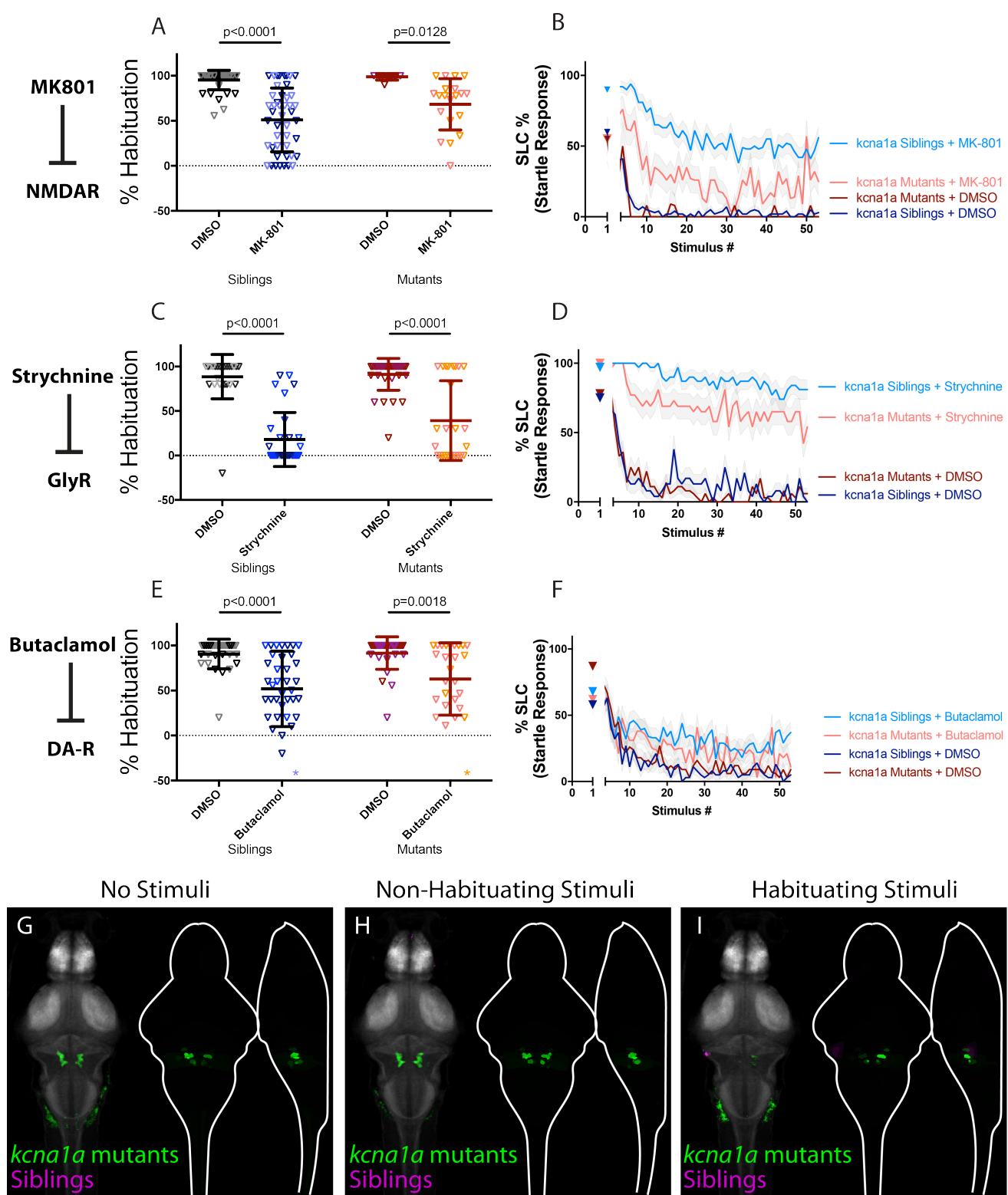
Pharmacological inhibitors of habituation learning produce distinct patterns of neuronal activity. For the pharmacogenetic pathway analysis we selected the NMDA receptor inhibitor MK-801, the glycine receptor inhibitor Strychnine, and the dopamine receptor inhibitor Butaclamol. As previously reported, in 5-day old larval zebrafish, application of MK-801 results in significant impairments in habituation learning (Figure 1H)^{7,29}. Whereas vehicle-exposed animals rapidly learn to ignore repeated acoustic stimuli, i.e. habituate, animals exposed acutely to the NMDA inhibitor continue to respond at a high rate (they fail to habituate). Similar effects are observed when animals are exposed to Strychnine²⁹, (Figure 1I) or Butaclamol⁷ (Figure 1J). Despite their similar effects on habituation learning, we hypothesized that given their regulation of different neurotransmitter systems, these pharmacological agents might regulate learning through distinct effects on neuronal activity. In order to broadly assess brain activity signatures associated with each pharmacological treatment, we performed unbiased whole-brain activity mapping (MAP-mapping)³⁰ for each of the three pharmacological inhibitors under three different acoustic stimulation conditions: “No Stimuli,” “Non-Habituating Stimuli,” and “Habituating Stimuli.” We find that each pharmacological agent produces a distinct activity pattern (Figure 1K-M, S1A-F). We find furthermore that the distinct patterns of activity induced by each inhibitor of learning are largely maintained across stimulation conditions (Figure 1K-M, S1A-F, Supplemental Table S1). In particular, MK-801 suppresses activity within the subpallium, habenula, and hypothalamus (Figure 1K, S1A,D), Strychnine produces widespread hyperactivation (Figure 1L, S1B,E), and Butaclamol treatment results in hindbrain hyperactivation and forebrain and diencephalic suppression relative to vehicle controls (Figure 1M, S1C,F). Our results that differences between inhibitor conditions, but not stimulation conditions, were readily detected reflects the design of our experiments, which were optimized to detect differences between drug conditions at the expense of sensitivity to differences in stimulation conditions. Together, these data suggest two possibilities: either that the neurotransmitter systems that regulate learning impinge upon different sets of circuit loci, which separately regulate habituation learning, or that their effects on learning are mediated through the limited regions that show overlapping activity changes.

Hip14 acts through NMDA and dopamine signaling and produces broad hyperactivity of neuronal circuits. Having identified a sensitized habituation assay, and having established that pharmacological inhibitors of learning impinge upon activity within distinct brain regions, we set out to perform our pharmacogenetic analysis to examine all possible interactions between three neurotransmitter signaling inhibitors and five habituation mutants. We first tested whether Hip14 and NMDA receptors act together to regulate

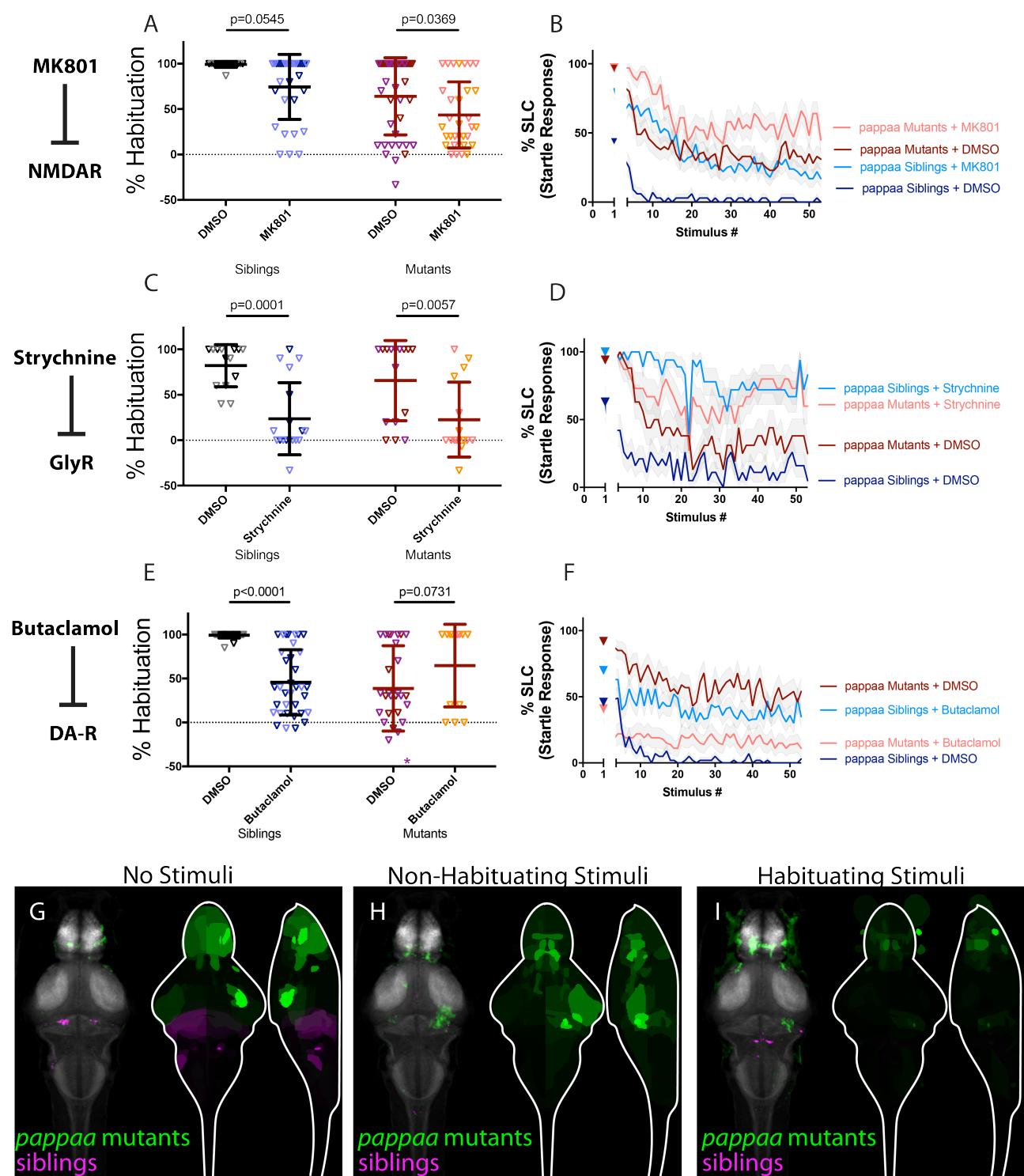
Fig. 1. Sensitized learning assay and unbiased whole-brain imaging to examine impact of pharmacological inhibitors of habituation learning. (A) Stimulus paradigm used. ISI for baseline phase is 40 seconds, ISI for habituation phase is 3 seconds. (B) *hip14* mutants exhibit a complete failure to habituate to 35.1 dB acoustic stimuli. (C-G) Reduction in stimulus intensity as indicated results in a gradual increase in the ability of *hip14* mutants to habituate. (H) MK-801 is an NMDA inhibitor that strongly reduces habituation learning in 5-day old zebrafish larvae (n=58 DMSO-treated, n=57 MK-801-treated, stimulus intensity = 35.1dB). (I) Strychnine is a glycine receptor antagonist that strongly reduces habituation learning in 5-day old zebrafish larvae (n=38 DMSO-treated, n=38 Strychnine-treated, stimulus intensity = 35.1dB). (J) Butaclamol is a dopamine inhibitor that strongly reduces habituation learning in 5-day old zebrafish larvae (n=16 DMSO-treated, n=18 Butaclamol-treated, stimulus intensity = 35.1 dB). (K-M) Regions upregulated by the specified drug treatment under "Habituating Stimuli" conditions are indicated in green; regions downregulated are indicated in magenta. In all images, the left panel is a summed z-projection of the whole-brain activity changes. The right panel is a z-projection and x-projection of the analyzed MAP-map. Molecular targets of pharmacological agents are indicated with diagrams above each column. See S1 for brain activity maps under "No Stimulus" condition and "Non-Habituating Stimuli" condition. Also see **Supplemental Table S1** for ROIs identified in the experiments presented as well as in an independent replicate of each drug condition.

Fig. 2. Hip14 acts through NMDA and dopamine signaling and produces broad hyperactivity of neuronal circuits. (A-B) MK-801 impairs learning in siblings, ($p<0.0001$ Sidak's test for multiple comparisons, $n=38$ DMSO, $n=38$ MK-801), but does not enhance habituation learning deficits observed in *hip14* mutant larvae ($p=0.9848$, $n=24$ DMSO, $n=29$ MK-801, these and all subsequent statistical analyses use Sidak's multiple comparisons test unless otherwise indicated). **indicate sibling+MK801 individuals with % hab values below y-axis limit at -100% and -180%. (C-D) Strychnine significantly enhances habituation learning deficits observed in *hip14* mutant larvae, indicating that glycine signaling and *hip14* may act within parallel molecular or circuit pathways to regulate learning ($p<0.0001$, $n=40$ DMSO-siblings, $n=42$ Strychnine-siblings, $n=32$ DMSO-mutants, $n=32$ Strychnine-mutants). (E-F) Butaclamol impairs learning in siblings ($p<0.0001$, $n=33$ DMSO, $n=26$ Butaclamol), but does not enhance habituation learning deficits observed in *hip14* mutant larvae ($p=0.3705$, $n=34$ DMSO, $n=35$ Butaclamol), indicating that dopamine receptor signaling and *hip14* may act within the same molecular or circuit pathway to regulate learning. *indicates a mutant+butaclamol individual with % hab value below y-axis limit at -60%. (G-I) Regions upregulated in *hip14* mutants are indicated in green; regions downregulated in *hip14* mutants are indicated in magenta. In all images, the left panel is a summed z-projection of the whole-brain activity changes. The right panel is a z-projection and x-projection of the analyzed MAP-map. Patterns of neuronal activity are similar between "No Stimuli" vs "Non-Habituating Stimuli" vs "Habituating Stimuli" (restricted diencephalic downregulation of activity; nearly global upregulation of activity across the telencephalon, diencephalon, and rhombencephalon). See also **Supplemental Table S1** for ROIs up- and down-regulated in each condition, as well as in independent replicates.

197 habituation learning by exposing mutant and sibling animals 254
198 to either vehicle (DMSO) or the NMDA inhibitor MK-801 255
199 and then performing the sensitized habituation assay (Figure 256
200 1A,D). We found that while MK-801 severely reduced habit- 257
201 uation in sibling animals, the same pharmacological manipu- 258
202 lation in *hip14* mutant animals did not further reduce habitu- 259
203 ation learning (Figure 2A). This is consistent with a model 260
204 in which Hip14 and NMDA act in a common pathway to 261
205 drive habituation learning. When we plotted response fre- 262
206 quency versus stimulus number in order to analyze the kinet- 263
207 ics of learning (learning curves), we found that compared to 264
208 MK-801-treated mutants, sibling animals treated with MK- 265
209 801 exhibited more severe learning deficits (Figure 2B). This 266
210 raises the possibility that compensatory, NMDA-independent 267
211 learning mechanisms may be upregulated in *hip14* mutant an- 268
212 imals. When we performed the same sensitized protocol in 269
213 the presence of the glycine-receptor inhibitor Strychnine, we 270
214 observed further reductions in learning in both siblings and 271
215 *hip14* mutants, consistent with independent roles for glycine 272
216 and Hip14 in the regulation of learning (Figure 2C-D). Fi- 273
217 nally, we performed our sensitized learning assay in the con- 274
218 text of the dopamine receptor inhibitor Butaclamol. Here 275
219 we found that dopamine receptor inhibition significantly im- 276
220 paired learning in sibling animals. However, the same ma- 277
221 nipulation did not reduce habituation learning in *hip14* mu- 278
222 tant animals (Figure 2E-F). Taken together, our data provide 279
223 strong evidence that Hip14 acts in a common pathway with 280
224 dopamine and NMDA receptor signaling yet independently 281
225 of glycine receptor signaling to drive habituation learning. 282


226 In light of the finding that Hip14, dopamine, and NMDA 283
227 signaling act in a common pathway to regulate habitua- 284
228 tion, we wondered whether *hip14* mutant animals and lar- 285
229 vae treated with NMDA and dopamine inhibitors might dis- 286
230 play overlap in their activity signatures. To address this ques- 287
231 tion, we performed whole-brain activity mapping in animals 288
232 lacking *hip14*, analyzed the resultant MAP-maps, and com- 289
233 pared them with those obtained from NMDA and dopamine 290
234 inhibitor treated animals. In *hip14* mutant brains we observed 291
235 broad hyperexcitability across the forebrain and hindbrain 291
236 (Figure 2G-I). Despite this being a distinct pattern from that 292
237 observed in NMDA- and dopamine-inhibited animals, we ob- 293
238 served commonalities in the activity signatures. In particular, 294
239 activity in the diencephalon was reduced, and a handful of 295
240 rhombencephalic areas were upregulated by all three manipu- 296
241 lations (Figure 2G-I, Supplemental Table S1). These overlap- 297
242 ping activity changes, observed across multiple treatments, 298
243 represent potential habituation-regulating loci through which 299
244 these putative regulatory modules exert their function. 300

245 **Kv1.1 exhibits a unique activity signature and acts 302**
246 **independently of NMDA, glycine, and dopamine sig- 303**
247 **naling.** We have previously shown that Hip14 acts in part 304
248 through the voltage-gated Potassium channel subunit Kv1.1, 305
249 which is encoded by the *potassium voltage-gated channel*, 306
250 *shaker-related subfamily member 1a gene*, *kcna1a*²⁴. We 307
251 performed pharmacogenetic pathway analysis in *kcna1a* mu- 308
252 tantants and found no evidence that Kv1.1 functions in a path- 309
253 way with NMDA receptor signaling. Rather, the NMDA re- 310


ceptor inhibitor MK-801 induced significant learning deficits in both *kcna1a* siblings and mutants (Figure 3A-B). Similarly, glycine receptor inhibition induced significant learning deficits in both *kcna1a* mutants and siblings (Figure 3C-D). Finally, we observed significant enhancement of learning deficits through inhibition of dopamine signaling in both *kcna1a* siblings and mutants (Figure 3E-F). Taken together, these data are consistent with a model in which *kcna1a* acts independently of NMDA, dopamine, and glycine receptor signaling to regulate habituation learning.

Next, we performed whole-brain activity mapping to identify where *kcna1a* might exert its function, and to assess whether its activity signature might overlap with that of other regulators of learning. We found a remarkably specific and unique pattern of activity induced by the loss of *kcna1a*. In particular, two populations known to express Kv1.1^{24,31} and involved in the execution of the escape response were found to be hyperactive: spiral fiber neurons and RoM3 excitatory reticulospinal (V2a) neurons (Figure 3G-I). We previously showed that Kv1.1 requires Hip14 for proper synaptic localization and hence likely acts downstream of Hip14 to regulate habituation learning. Consistent with these findings, we now find that the same populations that are hyperactive in *kcna1a* mutants are also hyperactive in *hip14* mutants in all conditions except for one (Non-Habituating Stimuli Replicate 2 of 3). Moreover, the observation that activity changes are more restricted in *kcna1a* mutant brains compared to those observed in *hip14* mutant brains is consistent with our prior observation of more severe learning deficits in *hip14* mutants as compared to *kcna1a*²⁴. These data lend further support to our hypothesis that Hip14 acts through other substrates besides Kv1.1 to regulate habituation. Combining these results with the findings of our pharmacogenetic analysis, we conclude that Kv1.1 likely functions in a restricted set of hindbrain neurons to carry out NMDA- and dopamine-independent functions downstream from Hip14.

PAPP-AA promotes habituation by limiting endogenous dopamine signaling. The previous genetic screen²¹ additionally identified the *pregnancy-associated plasma protein A* (*pappa*) gene as a critical regulator of habituation learning. PAPP-AA has been shown to act through regulation of Insulin Growth Factor Receptor (IGFR) signaling to regulate learning²¹, yet it is not known whether PAPP-AA interacts with any of the other identified habituation regulatory pathways. In order to investigate this question, we performed our pharmacogenetic pathway analysis in *pappa* mutants. Compared to DMSO treated *pappa* mutants, application of MK-801 or Strychnine to mutant animals resulted in further reduction of habituation learning, providing compelling evidence that PAPP-AA promotes habituation learning independent of NMDA (Figure 4A-B), and glycine receptor signaling (Figure 4C-D). In contrast, treatment of *pappa* mutants with the dopamine receptor antagonist Butaclamol failed to enhance learning deficits in *pappa* mutants when compared to DMSO treated mutants, and in fact trended toward ameliorating learning deficits in *pappa* mutants ($p=0.0731$) (Figure 4E-F). These data suggest that PAPP-AA may be required to

Fig. 3. Kv1.1 exhibits a unique activity signature and acts independently of NMDA, glycine, and dopamine signaling. (A-B) MK-801 significantly enhances habituation learning deficits in *kcna1a* mutants and siblings ($p<0.0001$, $n=42$ DMSO-siblings, $n=46$ MK-801-siblings, $p=0.0128$, $n=8$ DMSO-mutants, $n=20$ MK-801 mutants). (C-D) Strychnine significantly enhances habituation learning deficits in *kcna1a* mutants and siblings ($p<0.0001$, $n=24$ DMSO-siblings, $n=31$ Strychnine-siblings, $p<0.0001$, $n=35$ DMSO-mutants, $n=26$ Strychnine-mutants). (E-F) Butaclamol significantly enhances habituation learning deficits in *kcna1a* mutants and siblings ($p<0.0001$, $n=30$ DMSO-siblings, $n=37$ Butaclamol-siblings, $p=0.0018$, $n=30$ DMSO-mutants, $n=27$ Butaclamol-mutants). *indicate a sibling+butaclamol and a mutant+butaclamol individual with % hab values below y-axis limit at -100% and -60% respectively. (G-I) Regions upregulated in *kcna1a* mutants are indicated in green; regions downregulated in *kcna1a* mutants are indicated in magenta. In all images, the left panel is a summed z-projection of the whole-brain activity changes. The right panel is a z-projection and x-projection of the analyzed MAP-map. Note the similar patterns of neuronal activity induced by “no stimuli” vs “non-habituating stimuli” vs. “habituating stimuli”: highly restricted upregulation of activity in the spiral fiber neuron clusters as well as in V2A (including Rom3) neurons. See also **Supplemental Table S1** for ROIs up- and down-regulated in each condition, as well as in independent replicates.

Fig. 4. PAPP-AA promotes habituation by limiting endogenous dopamine signaling. (A-B) MK-801 significantly enhances habituation learning deficits observed in *pappaa* mutant larvae, indicating that NMDA signaling and *pappaa* may act within parallel molecular or circuit pathways to regulate learning ($p=0.0369$, $n=39$ DMSO-mutants, $n=32$ MK-801 mutants; $p=0.0545$, $n=16$ DMSO-siblings, $n=16$ MK-801 siblings). (C-D) Strychnine significantly enhances habituation learning deficits observed in *pappaa* mutant larvae, indicating that glycine signaling and *pappaa* may act within parallel molecular or circuit pathways to regulate learning ($p=0.0057$, $n=16$ DMSO-mutants, $n=15$ Strychnine-mutants; $p=0.0001$, $n=14$ DMSO-Siblings, $n=18$ Strychnine-siblings). (E-F) Butaclamol does not significantly enhance habituation learning deficits observed in *pappaa* mutant larvae, but rather trends toward significantly restoring learning ($p<0.0001$, $n=31$ DMSO-siblings, $n=35$ Butaclamol-siblings; $p=0.0731$, $n=28$ DMSO mutants, $n=13$ Butaclamol mutants). *indicates a mutant+DMSO individual with % hab value below y-axis limit at -100% (G-I) Regions upregulated in *pappaa* mutants are indicated in green; regions downregulated in *pappaa* mutants are indicated in magenta. In all images, the left panel is a summed z-projection of the whole-brain activity changes. The right panel is a z-projection and x-projection of the analyzed MAP-map. Patterns of neuronal activity are similar between “no stimuli” vs “non-habituating stimuli” vs “habituating stimuli” (increased activity within the telencephalon and hypothalamus; decreased activity within multiple rhombencephalic loci). Note that this pattern is somewhat inverted relative to that observed in Butaclamol-treated animals, consistent with a role for *pappaa* in regulating dopamine signaling. See also **Supplemental Table S1** for ROIs up- and down-regulated in each condition, as well as in independent replicates.

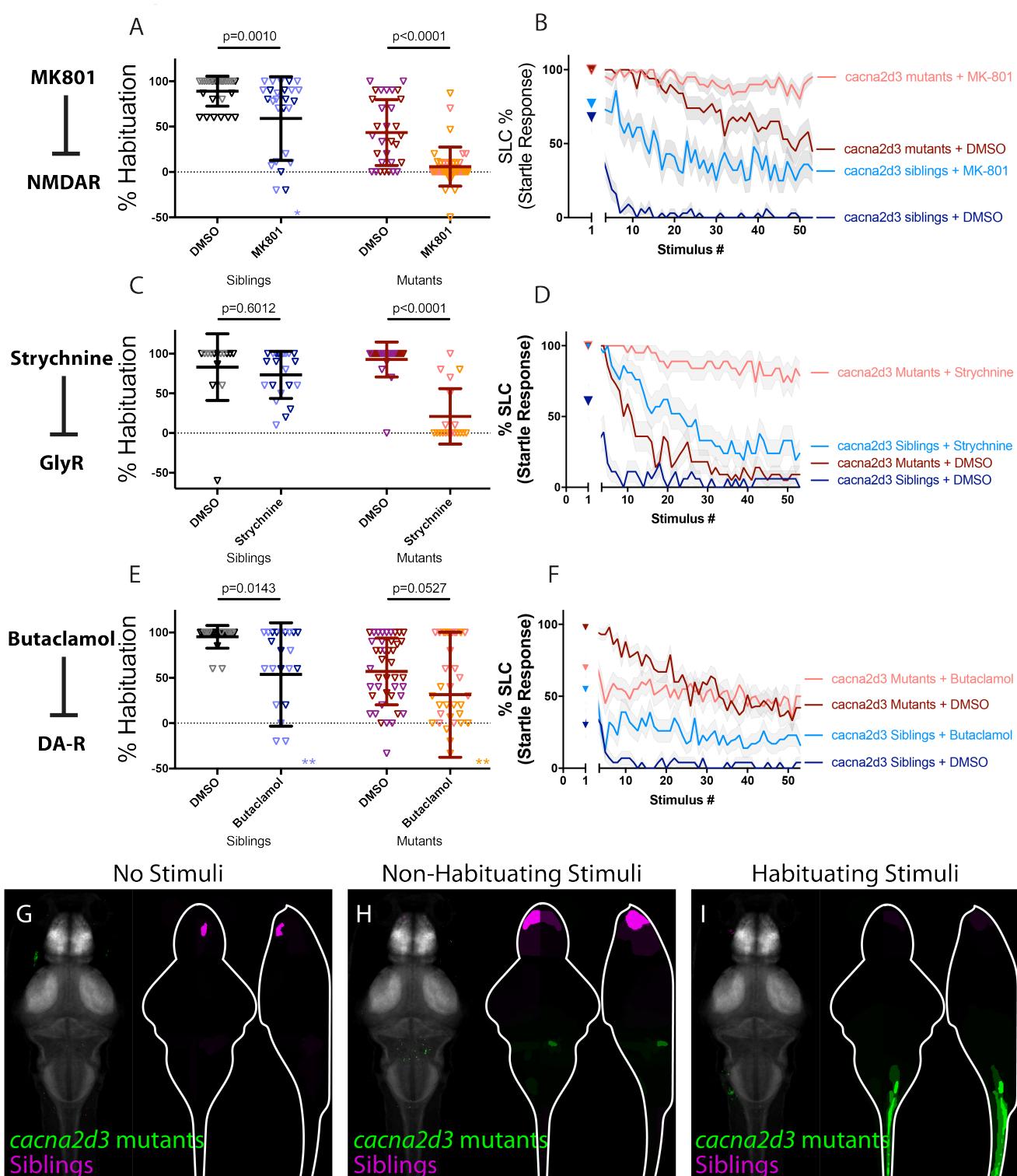
311 suppress dopamine signaling and are consistent with a sce- 367
312 nario in which dopaminergic inhibition somewhat normalizes 368
313 behavioral deficits in *pappa* mutants. 369

314 Finally, we performed whole-brain activity mapping in 370
315 *pappa* mutant animals. Upon analyzing the resultant MAP- 371
316 maps, we observed a subtle downregulation of neuronal ac- 372
317 tivity particularly in the hindbrain, as well as upregulation of 373
318 activity particularly in the pallium, subpallium, and hypotha- 374
319 lamus (Figure 4G-I). These activity patterns are inverted 375
320 when compared to those obtained by treatment of wild type 376
321 animals with the dopamine antagonist Butaclamol, where 377
322 activity in the hindbrain is increased and activity within 378
323 the pallium, subpallium, and hypothalamus are decreased. 379
324 These opposing activity signatures in *pappa* mutants and 380
325 dopamine-inhibited animals, together with the finding that 381
326 Butaclamol restores learning in *pappa* mutants, are consis- 382
327 tent with a scenario in which PAPP-AA regulates habituation 383
328 learning by limiting endogenous dopamine signaling. 384
329
330

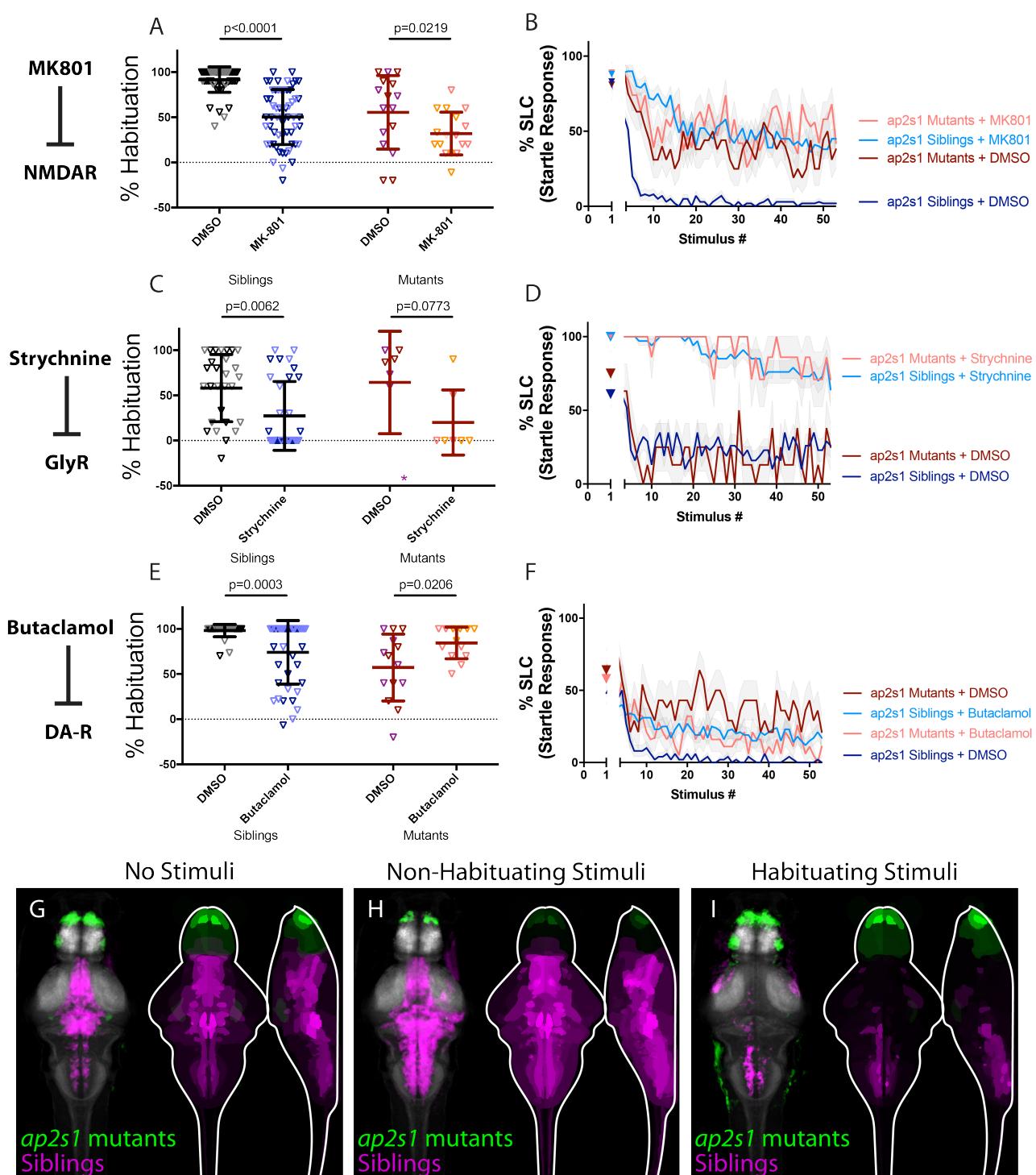
CACNA2D3 acts independently of other regulators of habituation learning. We recently identified the *cal- 387*
331 *ciunum channel voltage dependent alpha2/delta subunit 3 gene, 388*
332 *cacna2d3*, encoding an auxiliary subunit of the voltage-gated 389
333 calcium channel (VGCC) complex, as a genetic regulator of 390
334 habituation learning²⁸. We wondered how this VGCC sub- 391
335 unit cooperates with the other regulators of habituation learn- 392
336 ing and therefore repeated our pharmacogenetic screen in 393
337 the *cacna2d3* mutant background. We found that like *pap- 394*
338 *paa* and *kcna1a*, treatment of *cacna2d3* mutants with either 395
339 the NMDA inhibitor MK801 or the glycine signaling in- 396
340 hibitor Strychnine further reduced habituation learning when 397
341 compared to DMSO treated *cacna2d3* mutants (Figure 5A- 398
342 D), consistent with a model in which *cacna2d3* regulates 399
343 habituation independently of NMDA and glycine signal- 400
344 ing. We next examined the interaction between *cacna2d3* 401
345 and dopamine signaling (Figure 5E). Analysis of the learning 402
346 curves for this experiment revealed an almost flat learning 403
347 curve for Butaclamol-treated siblings (Figure 5F), consistent 404
348 with a strong effect of dopaminergic inhibition on learning 405
349 in *cacna2d3* mutants, and consistent with a model in which 406
350 dopamine and *cacna2d3* function in parallel to regulate learn- 407
351 ing. Although this effect did not reach statistical signifi- 408
352 cance, the impact of Butaclamol on *cacna2d3* mutant learn- 409
353 ing curves suggests that *cacna2d3* functions independently 410
354 from NMDA, glycine, and dopamine signaling. 411

355 When we performed whole-brain imaging in *cacna2d3* 412
356 mutants, we observed inconsistent activity changes across 413
357 all stimulus conditions (Figures 5G-I). This lack of a de- 414
358 fined whole-brain activity signature is unique to *cacna2d3* 415
359 among the three pharmacological and five genetic manipula- 416
360 tions that we tested. We interpret these results to reflect that 417
361 CACNA2D3 may induce only subtle changes in neuronal ac- 418
362 tivity or that it may simultaneously upregulate and downreg- 419
363 ulate activity within physically commingled neuronal popu- 420
364 lations. 419

365 **AP2S1 promotes habituation by limiting endogenous 421**
366 **dopamine signaling.** We recently identified a splice site 422


mutation in the *adaptor related protein complex 2 subunit sigma 1 (ap2s1)* gene, positioning the AP-2 adaptor complex as a fifth genetic regulator of habituation learning. We previously demonstrated that besides its role in habituation learning, AP-2 modulates sensorimotor decision-making via the Calcium-Sensing Receptor, CaSR²⁷. Yet whether AP-2 also modulates NMDA, dopamine, or glycine signaling to regulate habituation learning has not been examined. We therefore performed our sensitized learning assay in *ap2s1* mutants and siblings and found that NMDA-receptor inhibition by MK-801 significantly impaired learning in *ap2s1* mutants, indicating that these two regulators of learning function in parallel (Figure 6A-B). Although not statistically significant (p=0.0773), glycine signaling in the context of *ap2s1* mutations also revealed a clear and dramatic trend toward enhancement of learning deficits (Figure 6C-D). Finally, while Butaclamol-mediated inhibition of dopamine signaling led to significantly impaired learning in *ap2s1* siblings, Butaclamol treatment of *ap2s1* mutants significantly restored learning (p=0.0206; Figure 6E-F).

Finally, we performed whole-brain activity mapping in *ap2s1* mutants. Given that inhibition of dopamine partially restored habituation in both *pappa* and *ap2s1* mutants, we predicted that *ap2s1* mutants would exhibit a similar activity pattern to that observed in *pappa* mutants, and an inverted pattern with respect to dopamine receptor-inhibited animals. Indeed, analysis of whole-brain activity maps in *ap2s1* mutants revealed activity patterns similar to those we observed in *pappa* mutants (Figure 6G-I), characterized by a marked downregulation in areas of the hindbrain that were observed to be upregulated in Butaclamol-treated animals, including a small hindbrain cluster of Tyrosine Hydroxylase (th, the enzyme required for dopamine synthesis) positive neurons (**Supplemental Table S1**). Moreover, we noted significant upregulation of activity in the subpallium, pallium, and intermediate hypothalamus, all areas that saw significant upregulation in *pappa* mutant brains and downregulation in Butaclamol-treated animals (**Supplemental Table S1**). Combined, these results suggest a model in which AP2S1, like PAPP-AA, is involved in the suppression of dopamine signaling. As in the case of *pappa*, loss of *ap2s1* results in a dysregulation of dopaminergic signaling that can be restored through its pharmacological inhibition via Butaclamol.


In summary, comparing pharmacogenetic analyses and brain activity signatures across five different habituation genes and three inhibitors of habituation-regulatory neurotransmitter pathways reveals distinct molecular and circuit modules that regulate habituation learning and identifies molecularly defined brain regions associated with each of the modules.

Discussion

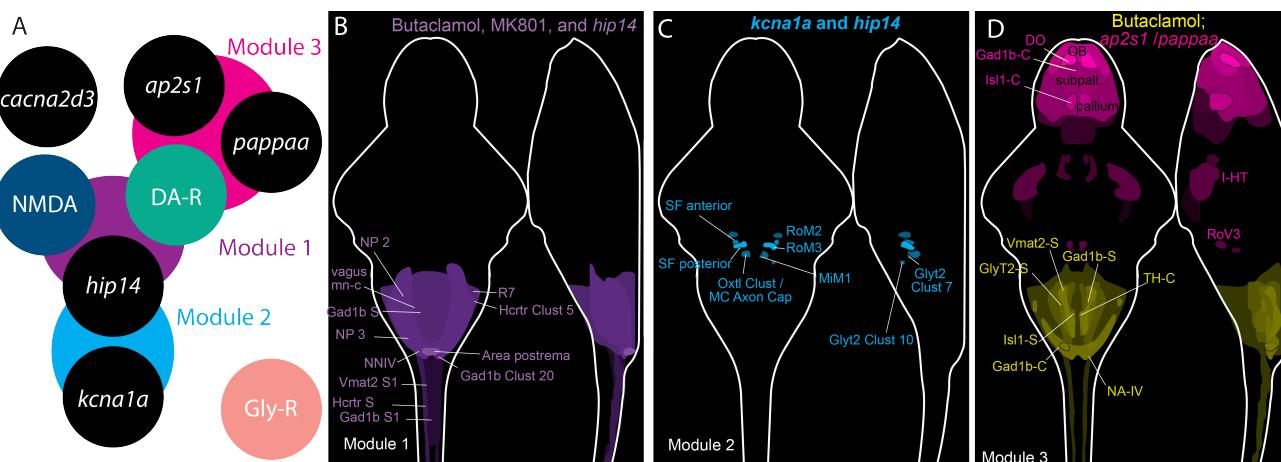

We set out to map genetic regulators onto the circuit / neurotransmitter systems that drive habituation learning. We employed two complementary strategies. First, we developed a sensitized habituation learning assay, utilizing an acoustic

Fig. 5. CACNA2D3 acts independently of other regulators of habituation learning. (A-B) MK-801 significantly enhances habituation learning deficits observed in *cacna2d3* mutant larvae, indicating that NMDA signaling and *cacna2d3* may act within parallel molecular or circuit pathways to regulate learning ($p=0.0010$, $n=28$ DMSO siblings, $n=27$ MK-801 siblings, vs. $p<0.0001$, $n=31$ DMSO mutants, $n=41$ MK-801 mutants). *indicates a sibling+MK801 individual with a % hab value below y-axis limit at -60%. (C-D) Strychnine significantly enhances habituation learning deficits observed in *cacna2d3* mutant larvae, indicating that glycine signaling and *cacna2d3* may act within parallel molecular or circuit pathways to regulate learning ($p=0.6012$, $n=15$ DMSO siblings, $n=21$ Strychnine siblings vs. $p<0.0001$, $n=22$ DMSO mutants, $n=19$ Strychnine mutants). (E-F) Butaclamol does not significantly enhance habituation learning deficits observed in *cacna2d3* mutant larvae ($p=0.0143$, $n=20$ DMSO siblings, $n=24$ Butaclamol siblings, vs. $p=0.0527$, $n=43$ DMSO mutants, $n=35$ Butaclamol mutants). However, inspection of the learning curves (F) reveals a dramatic difference in the learning curves of mutants with or without drug. *indicate 2 sibling+Butaclamol and 2 mutant + butaclamol individuals with % hab value below y-axis limit at -100%, -60%, -256%, and -80% respectively. (G-I) Regions upregulated in *cacna2d3* mutants are indicated in green; regions downregulated in *cacna2d3* mutants are indicated in magenta. In all images, the left panel is a summed z-projection of the whole-brain activity changes. The right panel is a z-projection and x-projection of the analyzed MAP-map. Unlike other mutants, *cacna2d3* mutants do not exhibit reproducible changes in neuronal activity relative to their siblings in any stimulation condition. See also **Supplemental Table S1** for ROIs up- and down-regulated in each condition, as well as in independent replicates.

Fig. 6. AP2S1 promotes habituation by limiting endogenous dopamine signaling. (A-B) MK-801 significantly enhances habituation learning deficits observed in *ap2s1* mutant larvae, indicating that NMDA signaling and *ap2s1* may act within parallel molecular or circuit pathways to regulate learning ($p<0.0001$, $n=54$ DMSO Siblings, $n=58$ MK-801 siblings; $p=0.0219$, $n=16$ DMSO mutants, $n=17$ MK-801 mutants). (C-D) Strychnine trends toward enhancing habituation learning deficits observed in *ap2s1* mutant larvae ($p=0.0062$, $n=29$ DMSO siblings, $n=33$ Strychnine siblings; $p=0.0773$, $n=7$ DMSO mutants, $n=7$ Strychnine mutants). Inspection of learning curves in (D) shows dramatic differences between sibling and *ap2s1* mutant larvae, indicating that glycine signaling and *ap2s1* act within parallel molecular or circuit pathways to regulate learning. *indicates a mutant+DMSO individual with a % hab value below y-axis limit at -60% (E-F) While Butaclamol inhibits learning in siblings ($p=0.0003$, $n=36$ DMSO siblings, $n=42$ Butaclamol siblings) it does not significantly enhance habituation learning deficits in *ap2s1* mutant larvae. Rather, *ap2s1* mutant animals learn significantly more robustly in the presence of the normally habituation-blocking Butaclamol ($p=0.0206$, $n=14$ DMSO mutants, $n=13$ Butaclamol mutants). (G-I) Regions upregulated in *ap2s1* mutants are indicated in green; regions downregulated in *ap2s1* mutants are indicated in magenta. In all images, the left panel is a summed z-projection of the whole-brain activity changes. The right panel is a z-projection and x-projection of the analyzed MAP-map. Consistent with the even stronger effect of Butaclamol in driving learning in *ap2s1* mutants relative to *pappa* mutants, *ap2s1* mutant animals exhibit an even more dramatically inverted pattern relative to Butaclamol-treated animals. *ap2s1* mutant animals exhibit robust upregulation in the telencephalon (while Butaclamol-treated animals show downregulation here). Similarly, *ap2s1* mutants show dramatically downregulated activity within the rhombencephalon, while our Butaclamol results indicate that dopamine inhibition upregulates activity here. See also **Supplemental Table S1** for ROIs up- and down-regulated in each condition, as well as in independent replicates.

Fig. 7. Cluster analysis identifies habituation regulatory modules. (A) Module 1 (purple) comprises *hip14*, NMDA, and dopamine receptors. Module 2 (aqua) comprises *hip14* and *kcna1a*. Module 3 (pink) comprises *ap2s1*, *pappa*, and dopamine receptors. Modules 4 and 5 are comprised of *cacna2d3* and glycine receptor signaling acting in parallel to all other modules. (B) Regions commonly upregulated by dopamine inhibition, NMDA inhibition, and mutations in *hip14* are indicated in purple. (C) Regions upregulated by mutations in *kcna1a* and *hip14* are indicated in blue. (D) Regions downregulated by dopamine receptor inhibition and upregulated by mutations in *ap2s1* or *pappa* are indicated in pink. Regions upregulated by dopamine receptor inhibition and downregulated by mutations in *pappa* or *ap2s1* are indicated in yellow. See also S2 for cluster analysis heat map and correlations between pharmacogenetic treatments. In (B-D), signal intensity is proportional to the sum of the absolute intensity values. Abbreviations in (B): NP2 = Rhombencephalon - Neuropil Region 2, X vagus mn cluster = Rhombencephalon - X Vagus motorneuron cluster, Gad1b S = Rhombencephalon Gad1b Stripe 2, NP3 = Rhombencephalon Neuropil Region 3, NNIV = Rhombencephalon - Noradrenergic neurons of the Interfascicular and Vagal areas, Vmat2 S1 = Spinal Cord - Vmat2 Stripe1, Hcrtr S = Spinal Cord - 6.7FDhcrtr-Gal4 Stripe, Gad1b S1 = Spinal Cord - Gad1b Stripe 1, R7 = Rhombomere 7, Hcrtr Clust 5 = Rhombencephalon - 6.7FDhcrtr-Gal4 Cluster 5, Area postrema = Rhombencephalon Area Postrema, Gad1b Clust 20 = Rhombencephalon - Gad1b Cluster 20. Abbreviations in (C): SF anterior = Rhombencephalon - Spiral Fiber Neuron Anterior cluster, SF posterior = Rhombencephalon - Spiral Fiber Neuron Posterior cluster, Oxtl Clust MC Axon Cap = Rhombencephalon - Oxtl Cluster 2 Near MC axon cap, RoM2 = Rhombencephalon - RoM2, RoM3 = Rhombencephalon - RoM3, MiM1 = Rhombencephalon - MiM1. Abbreviations in (D): DO = Telencephalon - Olfactory bulb dopaminergic neuron areas, Gad1b-C = Telencephalon - Subpallial Gad1b cluster, Isl1-C = Telencephalon - Isl1 clusters 1 and 2, OB = Telencephalon - Olfactory Bulb, Subpall = Telencephalon - Subpallial, Pallium = Telencephalon - Pallium, Vmat2-S = Rhombencephalon - Vmat2 Stripe2, GlyT2-S = Rhombencephalon - GlyT2 Stripe 2, Isl1b-S = Rhombencephalon Isl1 Stripe1, Gad1b-C = Rhombencephalon - Gad1b Cluster 20, Gad1b-S = Rhombencephalon - Gad1b Stripe 2, TH-C = Rhombencephalon - Small cluster of TH stained neurons.

423 stimulus of intermediate intensity, in which additive learning 452 deficits caused by combining genetic and pharmacological 453 regulators of habituation can readily be detected and quan- 454 tified. We reasoned that the habituation deficits caused by 455 a given genetic mutation would be enhanced by pharmaco- 456 logical manipulations of independent or parallel habituation- 457 regulatory mechanisms in the same pathway module. This 459 approach has been utilized in previous studies in which ma- 460 nipulations that increase dopaminergic signaling render ani- 461 mals hypo-responsive to dopamine receptor agonism³². Sim- 462 ilarly, manipulations that decrease NMDA receptor localiza- 463 tion render animals hypo-responsive to NMDA receptor an- 464 tagonism³³.

467 Second, we performed MAP-mapping in the context of 466 each pharmacological or genetic manipulation, resulting in 468 a unique set of brain activity maps, all of which reflect habit- 469 uation learning deficient patterns of activity. We are struck by 470 the diversity of brain activity patterns associated with deficits 471 in habituation learning. Although overlapping patterns were 472 observed for *hip14*, MK-801, and Butaclamol, as well as for 473 *pappa* and *ap2s1*, we note that these two putative modules 474 differ from one another, and from the patterns observed for 475 Strychnine and *kcna1a*, as well as from the observed lack of 476 activity changes in *cacna2d3* mutants. Taken together, these 477 results are consistent with at least two potential interpreta- 478 tions. First, it is possible that although each perturbation 479 broadly impacts brain activity in distinct ways, brain activ- 480 ity maps for regulators of habituation learning overlap within

481 a handful of critical regions that drive learning. A second in- 482 terpretation is that habituation learning is heavily regulated 483 and involves the cooperation of multiple parallel genetic- 484 circuit modules. The latter interpretation is consistent with 485 our observation that some genetic regulators of habituation 486 learning show a significant interaction with NMDA and/or 487 dopamine signaling, while others do not. Moreover, the ex- 488 istence of parallel short-term habituation-regulatory modules 489 mirrors the previous finding that long-term habituation learn- 490 ing in the larval zebrafish is regulated by multiple parallel 491 processes¹⁵.

492 Our work reveals five habituation regulatory modules (Figure 493 7A). The first module consists of *Hip14*, as well as 494 NMDA and dopamine signaling (Figure 7B). Our pharma- 495 cological screen uncovered significant pharmacogenetic in- 496 teractions between *hip14* and inhibitors of both NMDA and 497 dopamine receptor signaling. Additionally, an unbiased clus- 498 tering algorithm identified that brain activity patterns pro- 499 duced by the NMDA inhibitor MK-801 and the dopamine 500 receptor antagonist Butaclamol are similar, and the relative 501 strengths of activity changes from these treatments are highly 502 correlated ($R^2=0.71$, $p<0.05$; S2A-B). Although both 503 Strychnine and mutations in *hip14* broadly upregulate neu- 504 ronal activity, the specific regions that they upregulate are 505 only weakly correlated ($R^2=0.24$, $p<0.05$, S2C). This 506 finding is consistent with the results from our pharmacoge- 507 netic approach, which placed these two regulators into path- 508 ways independent of each other.

509 Our second module consists of *Hip14* and *Kv1.1* (Figure

7C). Mutations in both *hip14* and *kcna1a* strongly upregulate activity in the spiral fiber neuron clusters as well as in V2a neurons (S2D). Dysfunction of V2a neurons within the spinal cord was previously proposed as a potential mechanism underlying the kinematic deficits observed in *kcna1a* mutants³¹, and we now hypothesize that hyperactivation of V2a neurons within the hindbrain could contribute to the habituation deficits observed in *kcna1a* mutants. Spiral fibers also constitute an attractive locus for Kv1.1's activity in regulating learning. We previously found that Hip14 can palmitoylate Kv1.1 and regulates its localization to the spiral fiber terminals²⁴. Moreover spiral fibers are known to undergo plasticity during habituation learning³⁴. Interestingly, these neurons were not reliably identified as showing differential activity in MK-801 or Butaclamol-treated animals (Module 1). It is possible that changes within spiral fibers are subtle enough to be missed by our MAP-mapping analysis. Alternatively, Hip14, NMDA, and dopamine signaling could regulate habituation learning in a pathway that is parallel to the role of Hip14 and Kv1.1 within spiral fibers. This explanation is consistent with *hip14*'s stronger habituation deficit relative to *kcna1a*, as well as the finding that Hip14 acts in a common pathway with dopaminergic and NMDA signaling while Kv1.1 does not.

The third module includes PAPP-AA and AP2S1 and is further defined by its unique relationship to dopamine signaling (Figure 7D). While Hip14 seems to promote dopaminergic signaling (impinging upon both pathways results in no enhancement of learning deficits), our data are consistent with PAPP-AA and AP2S1 opposing dopamine signaling (inhibition of signaling through dopamine receptors normalizes habituation learning in *ap2s1* and *pappa* mutants). Moreover, our MAP-mapping analysis revealed regions whose activity is oppositely regulated by Butaclamol and *ap2s1/pappa*, particularly in the telencephalon (upregulated by *ap2s1* and *pappa* and downregulated by Butaclamol) and hindbrain (upregulated by Butaclamol and downregulated by *ap2s1*) (S2E-F). We hypothesize that the opposing function of D1 and D2/D3-type dopamine receptors in regulating the startle response may help to explain these surprising results³⁵. While dopamine acts to drive habituation learning (reducing stimulus responsiveness) through D1-type dopamine receptors, it is known that it additionally promotes stimulus responsiveness through D2/D3-type dopamine receptors in mice³⁵. We propose that AP2S1 and PAPP-AA are required to limit signaling through D2/D3-type dopamine receptors. In this scenario, mutations in either gene would result in excessive D2/D3 signaling and hyperresponsive larvae that fail to habituate to acoustic stimuli. Under these conditions, applying a dopamine receptor antagonist might normalize D2/D3 signaling and stimulus responsiveness, allowing animals to habituate. In support of these findings, work in zebrafish has found that high doses of the D2 receptor antagonist amisulpride can promote habituation learning³⁶, and that the D2 antagonist haloperidol promotes long-term habituation of the O-bend or visual startle¹⁵.

We additionally note that the brain activity patterns ob-

served for AP2S1 resemble the brain activity maps recently published for low-habituating populations obtained through breeding selection, showing increased neuronal activity in the forebrain, and decreased activity in the hindbrain³⁷. Moreover, our data suggest that dopaminergic neuromodulation is an important driver of activity in the larval telencephalon and are supported by recent optogenetic experiments performed in Th2-expressing neurons³⁸. However, in contrast to our findings, previous work found that ablating dopaminergic neurons of the caudal hypothalamus did not alter habituation and that dopamine neuron activity was actually elevated in high-habituating populations relative to low³⁷. Our opposing results underscore the complex roles that dopamine plays in regulating acoustic startle sensitivity and habituation. Additionally, we note that chemogenetic ablation was restricted to Th1-positive dopamine neurons, and that this approach is chronic, in contrast to our transient pharmacological inhibition, and eliminates dopaminergic neurons while potentially having no immediate effect on neurotransmitter levels³⁹. Given these differences, it is perhaps not surprising that these approaches yield somewhat differing results. Further work will be required to understand the role of dopamine in regulating habituation learning.

Finally, our work is consistent with glycine signaling (Module 4) and *cacna2d3* (Module 5) functioning in parallel to one another and to the other three modules described. We find no evidence that *cacna2d3* acts to regulate dopaminergic, glycinergic, or NMDA signaling, and likewise find no pharmacogenetic interactions between Strychnine and *hip14*, *kcna1a*, *pappa*, or *ap2s1*. Although it is possible that a weak interaction between these and the other modules went undetected by our approach, we look forward to investigating potential interactions between these pathways and other pharmacogenetic regulators of learning.

One striking and unexpected finding that arose from our data is that each pharmacological manipulation or genetic mutation induced a brain activity pattern that was remarkably consistent across stimulation conditions (S2A). This finding is consistent with previously published work examining whole-brain activity changes in animals selectively bred for high versus low habituation rates³⁷. Moreover, our data are consistent with a model in which our pharmacogenetic perturbations lead to broad impacts on brain activity. We propose that habituation-influencing manipulations may impact an animal's internal state, resulting in baseline brain activity changes that are observable via activity mapping, but that manifest at the behavioral level as habituation deficits. Taken together our results support a model in which multiple circuit mechanisms regulated by parallel molecular-genetic pathways cooperate to drive habituation learning *in vivo*.

Materials and Methods

Resource Availability. Additional information and requests for resources and reagents reported in this manuscript should be directed to the Lead Contact, Michael Granato (granatom@pennmedicine.upenn.edu).

All data reported in this paper will be shared by the lead

594 contact upon request. All original code is available in this 649
595 paper's supplemental information. Any additional informa- 650
596 tion required to reanalyze the data reported in this paper is 651
597 available from the lead contact upon request. 652
598

Experimental Model and Subject Details. All animal pro- 654
599 tocols were approved by the University of Pennsylvania In- 655
600 stitutional Animal Care and Use Committee (IACUC). 656
601

hip14^{p174}, pappa^{p170}, cacna2d3^{sa16189}, and ap2s1^{p172} 657
602 mutants were maintained in the TLF background. 658
kcna1a^{p410} was maintained in the WIK background. 659
603 Among these, *cacna2d3^{sa16189}* is homozygous viable, and 660
604 crosses were performed between heterozygous carriers and 661
605 homozygous mutants to obtain clutches of 50% heterozy- 662
606 gous, and 50% homozygous mutant offspring. All other 663
607 crosses were established between heterozygous carriers. 664
608

609 Pharmacogenetic behavior testing was performed on day 5 665
610 as previously described⁷. Stimulation and fixation for MAP- 666
611 mapping analysis was performed on day 6 to standardize with 667
612 the reference brain utilized for registration, as previously de- 668
613 scribed³⁰. 669

614 Clutches were enriched prior to behavior testing or MAP- 670
615 mapping by selecting for animals based on the exaggerated 671
616 spontaneous movement phenotype (*kcna1a^{p410}*) or swim 672
617 bladder defects (*pappa^{p170}, hip14^{p174}*). To enrich for 673
618 mutant animals in the absence of such phenotypes, *ap2s1* 674
619 clutches were subjected to live genotyping on Day 3 as pre- 675
620 viously described⁴⁰. After genotyping, mutant and sibling 676
621 animals were mixed together in 10cm petri dishes and tested 677
622 on Day 5 (pharmacogenetic behavior analysis) or stimulated 678
623 and fixed on Day 6 (MAP-mapping). 679

624 For all experiments, behavior was performed and analyzed 680
625 blind to genotype; genotyping was performed after behavior 681
626 testing and/or imaging, and mutant animals were compared 682
627 to siblings from the same clutches. 683
684

628 **Pharmacogenetic Behavior Testing.** A 200x (100mM) 685
629 stock of MK-801 (Sigma M107) was prepared by dissolv- 686
630 ing a new vial of 25mg of MK-801 powder in 750ul of 100% 687
631 DMSO. The stock solution was then further dissolved in E3 688
632 to a final concentration of 500uM (0.5% DMSO final concen- 689
633 tration). MK-801 was applied to a 10cm petri dish containing 690
634 n=45 5 dpf larvae 30 minutes prior to the first presentation 691
635 of baseline acoustic stimuli. Control larvae received 0.5% 692
636 DMSO in E3. The 200x stock of MK-801 was freeze-thawed 693
637 a maximum of one time and then disposed of. 694

638 A 200x (10mM) stock of Strychnine (Sigma S0532) was 695
639 prepared by dissolving 33.4mg of Strychnine powder in 696
640 10mL of 100% DMSO. The stock solution was then fur- 697
641 ther dissolved in E3 to a final concentration of 50uM (0.5% 698
642 DMSO final concentration). Strychnine was applied to a 699
643 10cm petri dish containing n=45 5 dpf larvae 15 minutes prior 700
644 to the first presentation of baseline acoustic stimuli. Con- 701
645 trol larvae received 0.5% DMSO in E3. The 200x stock of 702
646 Strychnine was frozen at -20. We observed no reduction in 703
647 the effectiveness of our Strychnine stock solution on WT an- 704
648 imals over the course of several months of testing. 705

A 630x (63mM) stock of Butaclamol (Sigma D033) was prepared by dissolving 25mg of Butaclamol in 1mL of DMSO. The stock solution was further dissolved in E3, and DMSO supplemented to a final concentration of 0.5% DMSO, 100uM Butaclamol. Butaclamol was applied to a 10cm petri dish containing n=45 5 dpf larvae 30 minutes prior to the presentation of baseline acoustic stimuli. Control larvae received 0.5% DMSO in E3. The 630x stock of Butaclamol was freeze-thawed a maximum of one time and then disposed of.

All larvae were acclimated to testing room conditions (light, temperature, etc.) for 30 minutes prior to the application of pharmacological agents. Assays for habituation of the acoustic startle response (ASR) were performed on 5 dpf larvae arrayed in a 36-well dish, fabricated by laser-cutting a 6x6 grid of holes into an acrylic sheet, and affixing it to an uncut sheet of the same dimensions using acrylic glue. The dish was mounted on a vibrational exciter (4810; Brüel and Kjaer, Norcross, GA) via an aluminum rod. Acoustic stimuli (2ms duration, 1000Hz waveforms) were delivered during the baseline phase of the assay with an interstimulus interval (ISI) of 40 seconds. During the habituation phase, stimuli were presented with a 3-second ISI.

MAP-mapping. Larvae were acclimated to testing room conditions (light, temperature, etc.) in a 10cm petri dish with n=45 6 dpf larvae for 30 minutes prior to transfer to the testing arena. Following acclimation, 25 larvae were transferred from the petri dish to a cell strainer with 40um pores (Neta Scientific 431750) nested inside a 6cm petri dish, submerged in E3. The entire cell strainer was then removed and immediately submerged in a 4cm petri dish glued to a circular acrylic base, affixed via a titanium arm to the vibrational exciter (4810; Brüel and Kjaer, Norcross, GA). Larvae were acclimated to the testing arena for 30 minutes with no stimuli. "No Stimuli" runs then proceeded with 17 minutes of additional run time. "Non-Habituating Stimuli" runs proceeded with 10 35.1dB acoustic stimuli with a 90-second ISI, followed by 2 minutes of rest. "Habituating Stimuli" runs proceeded with 180 35.1dB acoustic stimuli with 5-second ISI followed by 2 minutes of rest. Immediately following the completion of the behavior testing protocol, the cell strainer was removed from the testing arena and dropped into a 6-well dish (VWR 10861-554) containing 4% PFA in 1x PBT (1x PBS + 0.25% TritonX100). After 2 minutes, cell strainers were transferred to a second 6-well dish containing cold 4% PFA in 1x PBS, and incubated at 4 degrees overnight. Next, the immunostaining procedure described in³⁰ was carried out as described with the following modifications: immediately after washing PFA, larvae were bleached for approximately 12 minutes in 1.5% hydrogen peroxide; 0.5% KOH; larvae were then washed twice (quickly) and then once for 5 minutes in PBT; larvae were then incubated in 150mM of Tris-HCl pH 9.0 for 5 minutes at room temperature, followed by 15 minutes at 70 degrees Celcius. Following immunostaining, all larvae for a single experiment were mounted in 1.5% low-melt agarose (Lonza Bioscience 50101) in a 50mm petri dish with a 30mm diameter glass bottom (Mattek P50G-1.5-

706 30-F). Confocal images were acquired using a 20x objective 761
707 lens on a Zeiss LSM880 confocal microscope using Zen Soft- 762
708 ware. The “tiles” function was used to acquire and stitch to- 763
709 gether two images of each brain (one centered on the rostral 764
710 and one on the caudal portion of the head). 765
711

712 Behavior Analysis. Behavior videos were background sub- 769
713 tracted by computing a max projection of the entire image 770
714 series using FIJI. Max projections were then subtracted from 771
715 each image within the series using FIJI. Subtracted image se- 772
716 ries were tracked using FLOTE software as previously de- 773
717 scribed^{7,8}. In the case of Strychnine-treated larvae, the pre- 774
718 viously described “accordion-like” shape⁴¹ of the SLC re- 775
719 sponse precluded acceptable tracking via FLOTE. Therefore, 780
720 behavioral responses were manually scored blind to genotype 781
721 as SLCs or No-Response by isolating the 17ms of video fol- 782
722 lowing the delivery of the acoustic pulse, and scoring body 783
723 bends within this interval as SLCs. 784
724 % Habituation was quantified by the following formula: 785
725
$$[\% \text{ Habituation} = (1 - [\text{response frequency Stimuli 45-54}] \div [\text{response frequency baseline}]) * 100].$$
 786

726 Quantification and Statistical Analysis. Computation of 793
727 means, SD, SE, and data set normality were performed using 794
728 GraphPad Prism. Effects of each drug condition were as- 795
729 sessed using Two-Way ANOVA with Sidak’s Multiple Com- 796
730 parisons Test. 797
731

For MAP-mapping, image registration and positive and 801
732 negative significant delta median signals in each brain region 802
733 across mutant vs. sibling and drug vs. DMSO controls were 803
734 calculated using the standard MAP-mapping pipeline as de- 804
735 scribed in³⁰. 805
736

For cluster analysis, positive and negative significant delta 806
737 median signals were imported into R^{42,43}. Signal for each ex- 807
738 perimental replicate was normalized according to the highest 808
739 absolute value in that condition, such that the highest mag- 809
740 nitude signal for each condition was either -1 or 1. Dis- 810
741 tances were calculated using the Canberra method, which 811
742 disregards data when both conditions have a value of 0; this 812
743 prevented overestimation of similarity between conditions in 813
744 which many brain regions had zero signal. The factoextra 814
745 package⁴⁴ was used to visualize distances and clusters. 815
746

For pairwise plots, normalized negative signal in a given 816
747 brain region was subtracted from normalized positive signal 817
748 to obtain a single signal value for that region. We then aver- 818
749 aged signal values for each condition (either drug or mutant 819
750 allele) over all replicate data sets and behavioral stimulation 820
751 paradigms. After confirming via cluster analysis that these 821
752 average values captured the general patterns of similarity ob- 822
753 served among individual replicates, we then plotted pairwise 823
754 comparisons between conditions. Module maps (Figure 7B- 824
755 D) were created using a modified version of the ZBrainAnal- 825
756 ysisOfMAPMaps function³⁰. Colors were adjusted in Adobe 826
757 Illustrator. 827

758 **References**

1. Richard F. Thompson and William A. Spencer. Habituation: A model phenomenon for the study of neuronal substrates of behavior. *Psychological Review*, 73(1):16, January 1966. 845

ISSN 1939-1471. doi: 10.1037/h0022681.

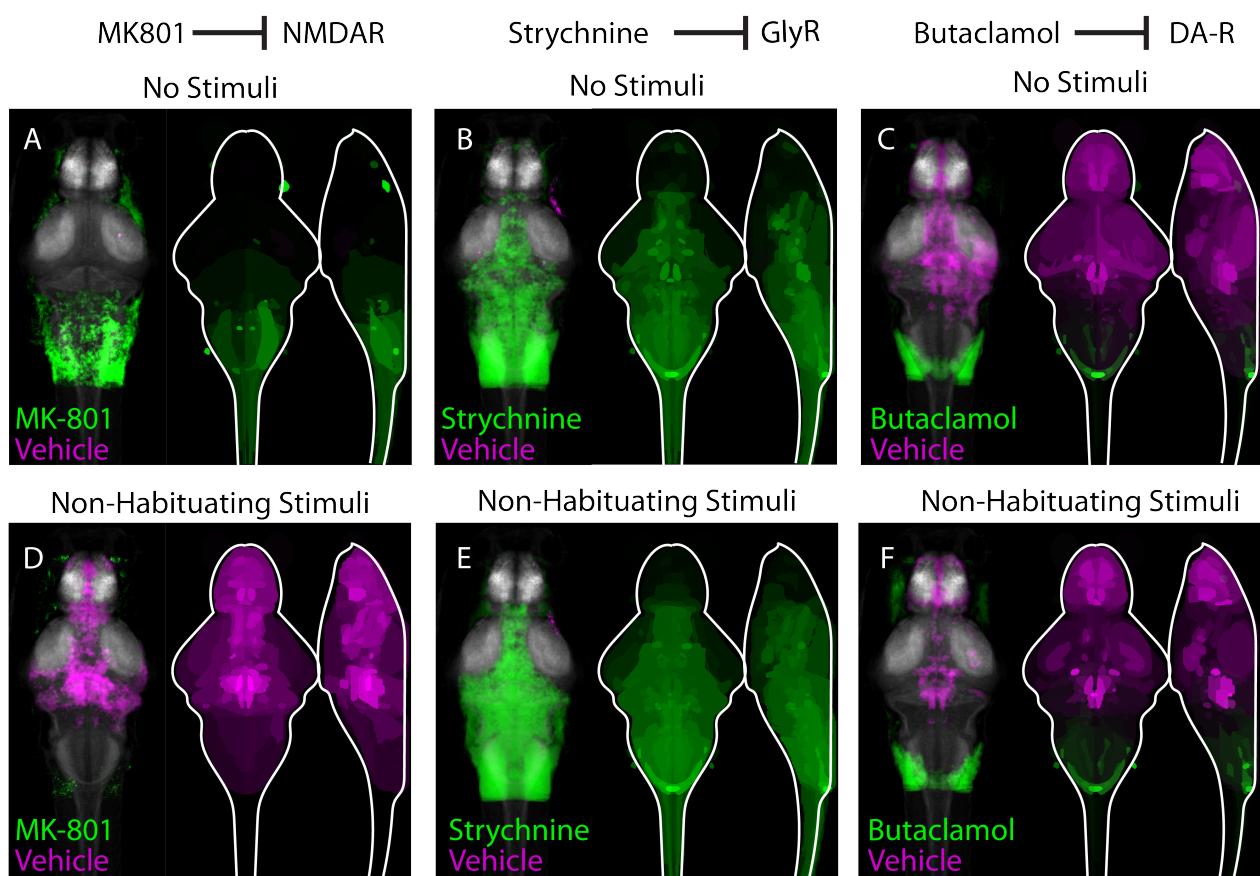
2. Catharine H. Rankin, Thomas Abrams, Robert J. Barry, Seema Bhatnagar, David F. Clayton, John Colombo, Gianluca Coppola, Mark A. Geyer, David L. Glanzman, Stephen Marsland, Frances K. McSweeney, Donald A. Wilson, Chun-Fang Wu, and Richard F. Thompson. Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. *Neurobiology of Learning and Memory*, 92(2):135–138, September 2009. ISSN 10747427. doi: 10.1016/j.nlm.2008.09.012.
3. Philip M. Groves and Richard F. Thompson. Habituation: A dual-process theory. *Psychological Review*, 77(5):419, January 1970. ISSN 1939-1471. doi: 10.1037/h0029810.
4. Leonard H. Epstein, Jennifer L. Temple, James N. Roemmich, and Mark E. Bouton. Habituation as a determinant of human food intake. *Psychological review*, 116(2):384–407, April 2009. ISSN 0033-295X. doi: 10.1037/a0015074.
5. Harold Pinsker, Irving Kupfermann, Vincent Castellucci, and Eric Kandel. Habituation and dishabituation of the gill-withdrawal reflex in Aplysia. *Science*, 167(3926):1740–2, March 1970.
6. Ye Ji Kim, Sanne J.H. van Rooij, Timothy D. Ely, Negar Fani, Kerry J. Ressler, Tanja Jovanovic, and Jennifer S. Stevens. Association between posttraumatic stress disorder severity and amygdala habituation to fearful stimuli. *Depression and anxiety*, 36(7):647–658, July 2019. ISSN 1091-4269. doi: 10.1002/da.22928.
7. M. A. Wolman, R. A. Jain, L. Liss, and M. Granato. Chemical modulation of memory formation in larval zebrafish. *Proceedings of the National Academy of Sciences*, 108(37):15468–15473, September 2011. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1107156108.
8. Harold A. Burgess and Michael Granato. Sensorimotor gating in larval zebrafish. *The Journal of Neuroscience*, 27(18):4984–4994, May 2007. ISSN 1529-2401. doi: 10.1523/JNEUROSCI.0615-07.2007.
9. Charles B. Kimmel, Jill Patterson, and Richard O. Kimmel. The development and behavioral characteristics of the startle response in the zebra fish. *Developmental Psychobiology*, 7(1):47–60, 1974. ISSN 1098-2302. doi: 10.1002/dev.420070109.
10. J. R. Fetcho and D. L. McLean. Startle Response. In Larry R. Squire, editor, *Encyclopedia of Neuroscience*, pages 375–379. Academic Press, Oxford, January 2009. ISBN 978-0-08-045046-9. doi: 10.1016/B978-008045046-9.01973-2.
11. Marc Wolman and Michael Granato. Behavioral genetics in larval zebrafish: learning from the young. *Developmental Neurobiology*, 72(3):366–372, March 2012. ISSN 1932-846X. doi: 10.1002/dneu.20872.
12. Jonathan D. Best, Stéphanie Berghmans, Julia J. F. G. Hunt, Samantha C. Clarke, Angeleen Fleming, Paul Goldsmith, and Alan G. Roach. Non-associative learning in larval zebrafish. *Neuropsychopharmacology*, 33(5):1206–1215, April 2008. ISSN 0893-133X. doi: 10.1038/sj.npp.1301489.
13. Adam C. Roberts, Jun Reichl, Monica Y. Song, Amanda D. Dearinger, Naseem Moridzadeh, Elaine D. Lu, Kaycey Pearce, Joseph Esdin, and David L. Glanzman. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. *Plos One*, 6(12):e29132, 2011. ISSN 1932-6203. doi: 10.1371/journal.pone.0029132.
14. Adam C. Roberts, Julia Chornak, Joseph B. Alzagatit, Duy T. Ly, Brent R. Bill, Janie Trinkeller, Kaycey C. Pearce, Ronny C. Choe, C. S. Campbell, Dustin Wong, Emily Deutsch, Sarah Hernandez, and David L. Glanzman. Rapid habituation of a touch-induced escape response in Zebrafish (Danio rerio) Larvae. *PLOS ONE*, 14(4):e0214374, April 2019. ISSN 1932-6203. doi: 10.1371/journal.pone.0214374.
15. Owen Randlett, Martin Haesemeyer, Greg Forkin, Hannah Shoenhard, Alexander F. Schier, Florian Engert, and Michael Granato. Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish. *Current biology: CB*, 29(8):1337–1345.e4, April 2019. ISSN 1879-0445. doi: 10.1016/j.cub.2019.02.039.
16. Jeff E. Engel and Chun-Fang Wu. Altered Habituation of an Identified Escape Circuit in *Drosophila* Memory Mutants. *The Journal of Neuroscience*, 16(10):3486–3499, May 1996. ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.16-10-03486.1996.
17. Jeff E. Engel and Chun-Fang Wu. Genetic Dissection of Functional Contributions of Specific Potassium Channel Subunits in Habituation of an Escape Circuit in *Drosophila*. *The Journal of Neuroscience*, 18(6):2254–2267, March 1998. ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.18-06-02254.1998.
18. M A Castro-Alamancos and I Torres-Aleman. Learning of the conditioned eye-blink response is impaired by an antisense insulin-like growth factor I oligonucleotide. *Proceedings of the National Academy of Sciences of the United States of America*, 91(21):10203–10207, October 1994. ISSN 0027-8424.
19. F. W. Wolf, M. Eddison, S. Lee, W. Cho, and U. Heberlein. GSK-3/Shaggy regulates olfactory habituation in *Drosophila*. *Proceedings of the National Academy of Sciences*, 104(11):4653–4657, March 2007. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.0700493104.
20. Akane Ohta, Tomoyo Ujisawa, Satoru Sonoda, and Atsushi Kuhara. Light and pheromone-sensing neurons regulates cold habituation through insulin signalling in *Caenorhabditis elegans*. *Nature Communications*, 5, July 2014. ISSN 2041-1723. doi: 10.1038/ncomms5412.
21. Marc A. Wolman, Roshan A. Jain, Kurt C. Marsden, Hannah Bell, Julianne Skinner, Katharina E. Hayer, John B. Hogenesch, and Michael Granato. A Genome-wide Screen Identifies PAPP-AA-Mediated IGFR Signaling as a Novel Regulator of Habituation Learning. *Neuron*, 85(6):1200–1211, March 2015. ISSN 08966273. doi: 10.1016/j.neuron.2015.02.025.
22. Catharine H. Rankin and Stephen R. Wicks. Mutations of the *Caenorhabditis elegans* Brain-Specific Inorganic Phosphate Transporter *eat-4* Affect Habituation of the Tap-Withdrawal Response without Affecting the Response Itself. *The Journal of Neuroscience*, 20(11):4337–4344, June 2000. ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.20-11-04337.2000.
23. Nicholas A Swierczek, Andrew C Giles, Catharine H Rankin, and Rex A Kerr. High-throughput behavioral analysis in *C. elegans*. *Nature Methods*, 8(7):592–598, June 2011. ISSN 1548-7091, 1548-7105. doi: 10.1038/nmeth.1625.
24. Jessica C. Nelson, Eric Witze, Zhongming Ma, Francesca Ciocco, Abigale Frerotte, Owen Randlett, J. Kevin Foskett, and Michael Granato. Acute Regulation of Habituation Learning via Posttranslational Palmitoylation. *Current Biology*, 30:2729–2738, July 2020. ISSN 09690822. doi: 10.1016/j.cub.2020.05.016.
25. Troy A. McDiarmid, Manuel Belmadani, Joseph Liang, Fabian Meili, Eleanor A. Mathews,

847 Gregory P. Mullen, Ardalan Hendi, Wan-Rong Wong, James B. Rand, Kota Mizumoto, Kurt 931
848 Haas, Paul Pavlidis, and Catharine H. Rankin. Systematic phenomics analysis of autism- 932
849 associated genes reveals parallel networks underlying reversible impairments in habitua- 933
850 tion. *Proceedings of the National Academy of Sciences*, 117(1):656–667, January 2020. 933
851 ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1912049116. 933
852 26. G. E. Morrison and D. van der Kooy. A mutation in the AMPA-type glutamate receptor, 934
853 glr-1, blocks olfactory associative and nonassociative learning in *Caenorhabditis elegans*. 935
854 *Behavioral Neuroscience*, 115(3):640–649, June 2001. ISSN 0735-7044. doi: 10.1037/ 936
855 /0735-7044.115.3.640. 937
856 27. Roshan A. Jain, Marc A. Wolman, Kurt C. Marsden, Jessica C. Nelson, Hannah Shoenhard, 938
857 Fabio A. Echeverry, Christina Szi, Hannah Bell, Julianne Skinner, Emilia N. Cobbs, Keisuke 939
858 Sawada, Amy D. Zamora, Alberto E. Pereda, and Michael Granato. A Forward Genetic 940
859 Screen in Zebrafish Identifies the G-Protein-Coupled Receptor CaSR as a Modulator of 941
860 Sensorimotor Decision Making. *Current Biology*, 28(9):1357–1369.e5, May 2018. ISSN 941
861 09609822. doi: 10.1016/j.cub.2018.03.025. 942
862 28. Nicholas J. Santistevan, Jessica C. Nelson, Elelbin A. Ortiz, Andrew H. Miller, Dima Kenj 938
863 Halabi, Zoë A. Sippl, Michael Granato, and Yevgenya Grinblat. *caacna2d3*, a voltage-gated 939
864 calcium channel subunit, functions in vertebrate habituation learning and the startle sensi- 940
865 tivity threshold. *bioRxiv*, December 2021. doi: 10.1101/2021.12.02.470952. 941
866 29. Kurt C. Marsden and Michael Granato. In Vivo Ca²⁺ Imaging Reveals that Decreased 938
867 Dendritic Excitability Drives Startle Habituation. *Cell Reports*, 13(9):1733–1740, December 939
868 2015. ISSN 22111247. doi: 10.1016/j.celrep.2015.10.060. 940
869 30. Owen Randlett, Caroline L. Lee, Eva A Naumann, Onyeka Nnaemeka, David Schoppik, 938
870 James E Fitzgerald, Ruben Portugues, Alix M B Lacoste, Clemens Riegler, Florian Engert, 939
871 and Alexander F Schier. Whole-brain activity mapping onto a zebrafish brain atlas. *Nature 940
872 Methods*, 12(11):1039–1046, November 2015. ISSN 1548-7091, 1548-7105. doi: 10.1038/ 938
873 nmeth.3581. 939
874 31. Joy H. Meserve, Jessica C. Nelson, Kurt C. Marsden, Jerry Hsu, Fabio A. Echeverry, 938
875 Roshan A. Jain, Marc A. Wolman, Alberto E. Pereda, and Michael Granato. A forward 939
876 genetic screen identifies Dolk as a regulator of startle magnitude through the potassium 940
877 channel subunit Kv1.1. *PLOS Genetics*, 17(6):e1008943, June 2021. ISSN 1553-7404. 941
878 doi: 10.1371/journal.pgen.1008943. 942
879 32. Merlin Lange, Cynthia Froc, Hannah Grunwald, William H.J. Norton, and Laure Bally-Cuif. 938
880 Pharmacological analysis of zebrafish *iphn3.1* morphant larvae suggests that saturated 939
881 dopaminergic signaling could underlie the ADHD-like locomotor hyperactivity. *Progress in 940
882 Neuro-Psychopharmacology & Biological Psychiatry*, 84(Pt A):181–189, June 2018. ISSN 938
883 0278-5846. doi: 10.1016/j.pnpbp.2018.02.010. 941
884 33. Javier Fierro, Dylan R. Haynes, and Philip Washbourne. 4.1Ba is necessary for glutamater- 938
885 gic synapse formation in the sensorimotor circuit of developing zebrafish. *PLoS One*, 13(10): 939
886 e0205255, 2018. ISSN 1932-6203. doi: 10.1371/journal.pone.0205255. 940
887 34. Dániel Bátor, Aron Zsigmond, István Z. Lőrincz, Gábor Szegvári, Máté Varga, and András 938
888 Málnási-Csizmadia. Subcellular Dissection of a Simple Neural Circuit: Functional Domains 939
889 of the Mauthner-Cell During Habituation. *Frontiers in Neural Circuits*, 15, March 2021. ISSN 940
890 1662-5110. doi: 10.3389/fncir.2021.648487. 941
891 35. Adam L. Halberstadt and Mark A. Geyer. Habituation and sensitization of acoustic startle: 938
892 opposite influences of dopamine D1 and D2-family receptors. *Neurobiology of Learning and 939
893 Memory*, 92(2):243–248, September 2009. ISSN 1095-9564. doi: 10.1016/j.nlm.2008.05. 940
894 015. 941
895 36. Judit García-González, Alistair J Brock, Matthew O Parker, Riva J Riley, David Joliffe, 938
896 Ari Sudwarts, Muy-Tek Teh, Elisabeth M Busch-Nentwich, Derek L Stemple, Adrian R 939
897 Martineau, Jaakkko Kaprio, Teemu Palvainen, Valerie Kuan, Robert T Walton, and Caro- 940
898 line H Brennan. Identification of *slit3* as a locus affecting nicotine preference in zebrafish 941
899 human smoking behaviour. *eLife*, 9:e51295, March 2020. ISSN 2050-084X. doi: 900
900 10.7554/eLife.51295. 942
901 37. Carlos Pantoja, Johannes Lorsch, Eva Laurell, Greg Marquart, Michael Kunst, and Herwig 938
902 Baier. Rapid Effects of Selection on Brain-wide Activity and Behavior. *Current Biology*, 30 939
903 (18):3647–3656.e3, September 2020. ISSN 0960-9822. doi: 10.1016/j.cub.2020.06.086. 940
904 38. Joshua P. Barrios, Wei-Chun Wang, Roman England, Erica Reifenberg, and Adam D. Dou- 938
905 glass. Hypothalamic Dopamine Neurons Control Sensorimotor Behavior by Modulating 939
906 Brainstem Premotor Nuclei in Zebrafish. *Current Biology: CB*, 30(23):4606–4618.e4, 940
907 December 2020. ISSN 1879-0445. doi: 10.1016/j.cub.2020.09.002. 941
908 39. Rafael Godoy, Khang Hua, Michael Kalyn, Victoria-Maria Cusson, Hymie Anisman, and 938
909 Marc Ekker. Dopaminergic neurons regenerate following chemogenetic ablation in the ol- 939
910factory bulb of adult Zebrafish (*Danio rerio*). *Scientific Reports*, 10(1):1–12, July 2020. ISSN 940
911 2045-2322. doi: 10.1038/s41598-020-69734-0. 941
912 40. Xue Zhang, Zhaojunji Zhang, Qinshun Zhao, and Xin Lou. Rapid and Efficient Live Ze- 938
913 brafish Embryo Genotyping. *Zebrafish*, 17(1):56–58, February 2020. ISSN 1557-8542. doi: 914
913 10.1089/zeb.2019.1796. 942
915 41. Michael Granato, Makoto Furutani-Seiki, Pascal Haffter, Matthias Hammerschmidt, Carl- 938
916 Philipp Heisenberg, Yun-Jin Jiang, Donald A Kane, Robert N Kelsh, Mary C Mullins, Jörn 939
917 Odenthal, and Christiane Nüsslein-Volhard. Genes controlling and mediating locomotion 940
918 behavior of the zebrafish embryo and larva. *Development*, 123(3):399–413, 1996. 941
919 42. R Core Team. R: A language and environment for statistical computing, 2021. 942
920 43. Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino Mc- 938
921 Gowan, Romain François, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester, Max 939
922 Kuhn, Thomas Lin Pedersen, Evan Miller, Stephan Milton Bache, Kirill Müller, Jeroen Ooms, 940
923 David Robinson, Dana Paige Seidel, Vitalie Spinu, Kohske Takahashi, Davis Vaughan, 941
924 Claus Wilke, Kara Woo, and Hiroaki Yutani. Welcome to the Tidyverse. *Journal of Open 942
925 Source Software*, 4(43):1686, November 2019. ISSN 2475-9066. doi: 10.21105/joss.01686. 943
926 44. Alboukadel Kassambara and Fabian Mundt. factoextra: Extract and Visualize the Results 944
927 of Multivariate Data Analyses, 2020. 945

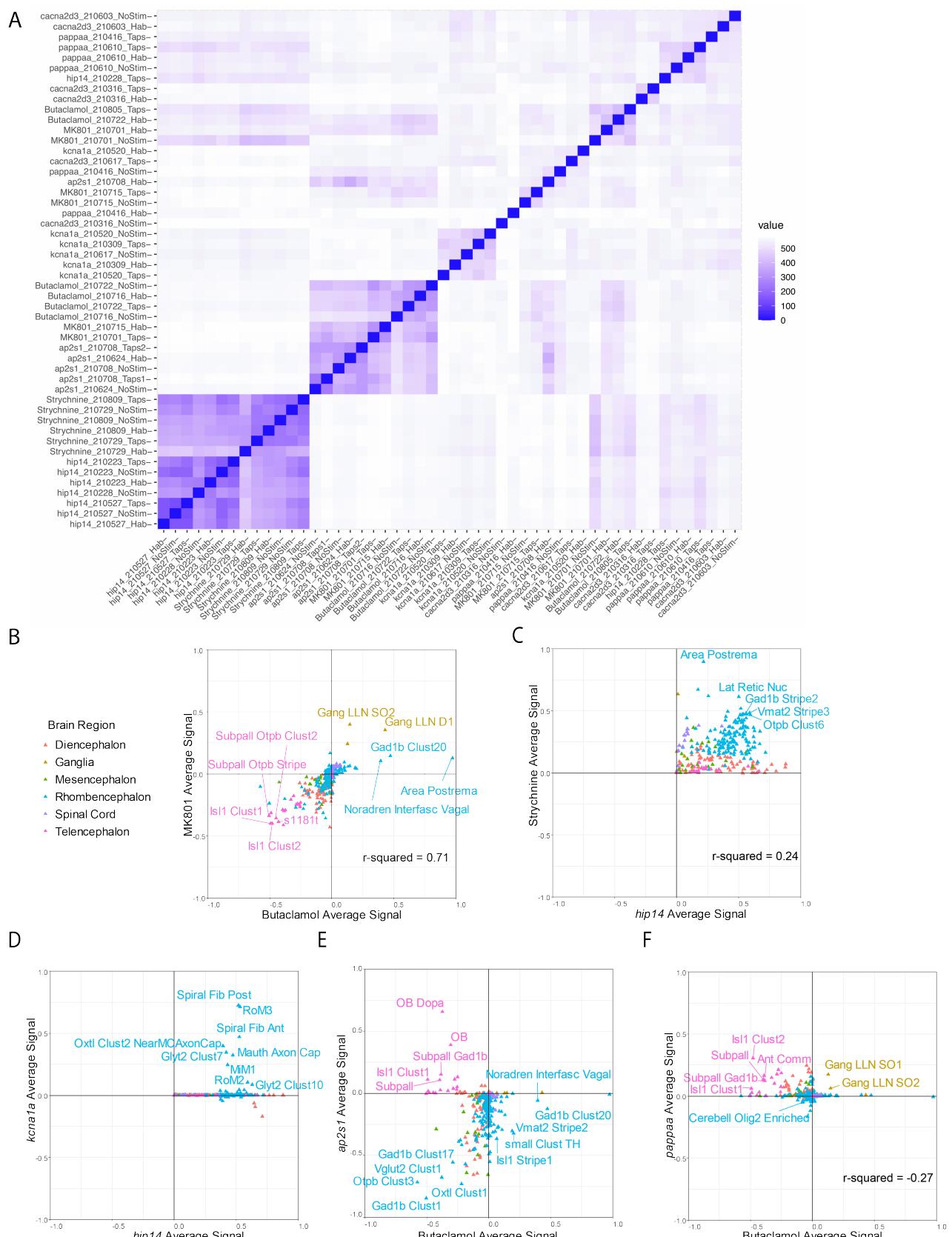
928 Resources: M.G. Funding Acquisition: J.C.N. and M.G.

ACKNOWLEDGEMENTS

The authors would like to thank the Granato lab members, as well as Dr. Owen Randlett and Dr. Roshan Jain for technical advice and feedback on our findings. The authors would also like to acknowledge Drs. Roshan Jain, Marc Wolman and Nik Santistevan for sharing *ap2s1*, *pappa*, and *caacna2d3* mutant zebrafish respectively. The authors would also like to acknowledge the Cell and Developmental Biology Microscopy Core. This work was supported by grants to M.G. (NIH 9R01NS118921) and J.C.N. (1K99NS111736). This article was typeset in Overleaf using the Henriques Lab BioRxiv template with minor modifications.


COMPETING INTERESTS STATEMENT

The authors declare that no competing interests exist.


AUTHOR CONTRIBUTIONS

929 Conceptualization, Writing, Review, and Editing: J.C.N., H.M.S. and M.G. In- 930 vestigation and Writing-Original Draft: J.C.N. Formal Analysis: J.C.N. and H.M.S.

943 **Supplementary Figures**

Fig. S1. Pharmacological inhibitors of habituation learning induce distinct patterns of brain activity changes. (A-C) Regions upregulated by the specified drug treatment under “No Stimulus” conditions are indicated in green; regions downregulated are indicated in magenta. (D-F) Regions upregulated by the specified drug treatment under “Non-Habituating Stimuli” conditions are indicated in green; regions downregulated are indicated in magenta. In all images, the left panel is a summed z-projection of the whole-brain activity changes. The right panel is a z-projection and x-projection of the analyzed MAP-map. Molecular targets of pharmacological agents are indicated with diagrams above each column. Note that the patterns of neuronal activity induced by a given pharmacological agent are relatively consistent across stimulation condition (i.e. “no stimuli”, vs. “non-habituation stimuli”, vs “habituation stimuli” in Figure 1K-M). Moreover, although all pharmacological agents reduce habituation learning, patterns of neuronal activity are highly dissimilar between individual pharmacological treatments.

Fig. S2. Cluster analysis identifies regions of interest. (A) Heat map indicating replicability across stimulus conditions for each mutant and drug condition. Note an intermingled cluster containing Butaclamol and MK-801. (B-E) Plots of pairwise comparisons between drugs and or genotypes. Color legend in (B) applies to all. R-square values are indicated when $p < 0.05$. (B) Plot indicating positive correlation between MK-801 and Butaclamol signal changes. (C) Plot indicating a weak positive correlation between *hip14* and Strychnine signal changes. (D) Plot showing correlated changes in the rhombencephalon between *hip14* and *Kcn1a*. (E) Plot showing 3 populations in Butaclamol vs. *ap2s1* changes. Largely telencephalic regions, upregulated by *ap2s1* and downregulated by Butaclamol; largely rhombencephalic regions, upregulated (Caption continues next page.)

Fig. S2. (Continued from previous page.) by Butaclamol and downregulated by *ap2s1*; and a large number of regions downregulated by both manipulations. **(F)** Plot showing signal changes in *pappa* as compared to Butaclamol. Multiple telencephalic as well as diencephalic regions to a lesser degree, are anti-correlated (up-regulated in *pappa* but downregulated in Butaclamol). Brain region abbreviations in **(B)**: s1181t = Telencephalon - S1181t Cluster, Gang LLN SO2 = Ganglia - Lateral Line Neuromast SO2, Gang LLN D1 = Ganglia - Lateral Line Neuromast D1, Noradren Interfasc Vagal = Rhombencephalon - Noradrenergic neurons of the Interfascicular and Vagal areas. Brain region abbreviations in **(C)**: Lat Retic Nuc = Rhombencephalon - Lateral Reticular Nucleus. Brain region abbreviations in **(D)**: Spiral Fib Post and Ant = Rhombencephalon - Spiral Fiber Neuron Posterior and Anterior clusters, Mauth Axon Cap = Rhombencephalon - Mauthner Cell Axon Cap. Brain region abbreviations in **(E)**: DO = Telencephalon - Olfactory bulb dopaminergic neuron areas, OB = Telencephalon - Olfactory Bulb, Subpall Gad1b = Telencephalon - Subpallial Gad1b cluster, Subpall = Telencephalon - Subpallium, Oxtl Clust 1 = Rhombencephalon - Oxtl Cluster 1 Sparse, Noradren Interfasc Vagal = Rhombencephalon - Noradrenergic neurons of the Interfascicular and Vagal areas, TH-C = Rhombencephalon - Small cluster of TH stained neurons. Brain region abbreviations in **(F)**: Ant Comm = Telencephalon - Anterior Commissure, Cerebell Olig2 Enriched = Rhombencephalon - Olig2 enriched areas in cerebellum, Gang LLN SO1 and SO2 = Ganglia - Lateral Line Neuromast SO1 and SO2.

944 **Supplementary Tables**

945 **Supplementary Table S1:** Raw values for signal change in each ROI within each mutant and drug condition across 2-3
946 replicates.

947 **Supplementary Table S2:** Normalized values for signal change in each ROI within each mutant and drug condition
948 across 2-3 replicates. These values were used for cluster analysis.