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) Abstract

10 The site frequency spectrum (SFS) is an important summary statistic
11 in population genetics used for inference on demographic history and
12 selection. However, estimation of the SFS from called genotypes intro-
13 duce bias when working with low-coverage sequencing data. Methods
14 exist for addressing this issue, but sometimes suffer from two problems.
15 First, they can have very high computational demands, to the point
16 that it may not be possible to run estimation for genome-scale data.
17 Second, existing methods are prone to overfitting, especially for multi-
18 dimensional SFS estimation. In this article, we present a stochastic
19 expectation-maximisation algorithm for inferring the SFS from NGS
20 data that addresses these challenges. We show that this algorithm
21 greatly reduces runtime and enables estimation with constant, trivial
22 RAM usage. Further, the algorithm reduces overfitting and thereby
23 improves downstream inference. An implementation is available at
24 github.com/malthesr/winsfs .

» 1 Introduction

26 The site frequency spectrum (SFS) is the joint distribution of allele frequencies
27 among one or more populations, and it serves as an important summary stat-
2s istic in population genetics. For instance, the SFS is sufficient for computing
20 nucleotide diversity [1], Fsr |2], and f-statistics [3]. Furthermore, the SFS
30 may be used for inferring demographic history [4H6] and selection |7H9].

31 When working with high-quality data, it is usually straightforward to
32 estimate the SFS from called genotypes. However, when genotype calls are
33 uncertain, standard methods lead to significant bias in the estimated SF'S
3¢ |10], which propagates to downstream inference |11]. In particular, this
35 situation arises when working with next-generation sequencing (NGS) data
36 at low coverage and may be compounded by additional data-quality issues.
37 Low-coverage NGS data is sometimes the only available option, for instance
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38 when working with ancient DNA [12-14]. Sequencing at low coverage is also
39 a popular choice to reduce sequencing costs, since most of the key population
a0 genetics analysis remain possible with such data [15].

a1 To estimate the SFS from low-coverage data, several methods have been
a2 proposed which account for the genotype uncertainty in estimation of the
a3 SFS |10} |16]. These are based on finding the SFS that maximises the data
42 likelihood using numeric optimisation. Two factors combine to create a
45 computational challenge for such methods. First, in order to achieve an
46 accurate estimate of the SFS, these methods usually require many iterations,
a7 each of which requires a full pass over the input data. Second, unlike most
48 genetics analyses, the SFS cannot be based on only the small subset of the
49 variable sites, but must consider all sites. Taken together, this means that
so some summary of the full data must be held in RAM and iterated over many
51 times. For genome-scale NGS data from more than a few dozen samples, or
52 in more than one dimension, this is often not computationally feasible, as
53 tens of hours of runtime and hundreds of gigabytes of RAM may be required.
sa  Current approaches for dealing with this issue restrict the analysis to fewer
ss  individuals and/or smaller regions of the genome [17], leading to less accurate
s6  results.

57 An additional problem with current methods is that they are prone to
ss overfitting. In the multi-dimensional setting in particular, there is often very
so little information available for many of the entries in the frequency spectrum.
60 Therefore, by considering the full data set, existing algorithms risk fitting
61 noise, leading to estimates with poor generalisability.

62 In this paper, we present a novel version of the stochastic expectation-
63 maximisation (EM) algorithm for estimation of the SFS from NGS data. In
62 each pass through the data, this algorithm updates the SFS estimate multiple
65 times in smaller blocks of sites. We show that for low-coverage whole-genome
66 sequencing (WGS) data, this algorithm requires only a few full passes over the
67 data. This considerably decreases running time, and means that it is possible
68 to estimate the SF'S using constant, negligible RAM usage by streaming data
6o from disk. Moreover, by only considering smaller subsets of the data at a
70 time, we show that this method reduces overfitting, which in turns leads to
71 improved downstream inference.

» 2 Methods

73 HEstimation of the SFS from low-coverage sequencing data requires pre-
72 computing site allele frequency likelihoods for each site, and these are based
75 on genotype likelihoods. We begin by briefly reviewing these concepts.

76  Genotype likelihoods Assume we have NGS data X sampled from K
77 different populations (indexed by k), with Ny, individuals in the kth population.
78 Further, say that we have M diallelic sites (indexed by m), so that Gk, €
79 {0,1,2} is the genotype of a diploid individual n at site m in population k,
go coding genotypes as the number of derived alleles. In the same way, we use
81 Xpkn to refer to the sequencing data at this location.
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82 We define the genotype likelihood p(X,kn | Gimkn) as the probability of
e3s the data given a particular genotype. Genotype likelihoods form the basis
sa of genotype calling and are calculated from aligned sequencing reads by
s various bioinformatic tools including bcftools/samtools |18, [19], GATK [20],
ss and ANGSD [21], using slightly different models. For clarity, we outline the
g7 basic GATK model below, though the choice of model is not important for our
88 pUrposes.

89 For D sequencing reads aligned to position m for individual n in population
o Kk, let by be the base call of the dth read. Assuming independence of base
o1 calls, we have

D

p(kan ‘ Gmkn = g) = Hp(bd ‘ Gmkn = g) . (1)
d=1

92 If we consider the genotype as two alleles ay, a2 € {0,1} such that G, =
03 a1 + as, then by random sampling of the parental alleles,

1 1
plba| G = 9) = 5p(ba] 1) + p(ba | a2) )
oa In turn, this probability is modelled by

ed/3 if bd#a
1—¢; else

p(ba | a) = { : (3)

o5 where €4 is the sequencing error probability associated with the dth base.

o6 Site allele frequency likelihoods Using genotype likelihoods, we can cal-
o7 culate site allele frequency (SAF) likelihoods, also sometimes known as sample
os allele frequency likelihoods. It is possible to think of the SAF likelihoods as
oo the generalisation of genotype likelihoods from individuals to populations:
100 instead of asking about the probability of the data for one individual given a
101 genotype, we ask about the probability of the data for a population given the
102 sum of their derived alleles.

103 More formally, define the sum of derived alleles for population k at site
104 M,
Ny
ka = Z Gmkn ) (4>
n=1
s with Z,, € {0,1,...,2N} each corresponding to possible sample frequencies

106 {0,1/2Np,...,1}. Now define the SAF likelihood for a single population k,

Ng
P Xk | Zoke = 31) = D29 | Zonke = G) [ [ P(Xmien | Gk = 9)»~ (5)
9€{0,1,2} "k n=1

107 where X,,;. is the data for all individuals sampled in population k at site
108 M, p(g| Zmk = jk) is the combinatorial probability of the genotype vector
100 ¢ = (g1,...,9n,) conditional on the sum of the genotypes being jj, and
110 P(Xokn | Gmkn = gn) 1s a standard genotype likelihood. Using a dynamic
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111 programming algorithm, SAF likelihoods can be calculated from the genotype
12 likelihoods of N individuals in O(N?) time per site [22], and a linear time
13 approximation has also been given [23].

114 To extend this to the multi-dimensional SFS with K populations, let J =
115 xle{O, 1,...,2Ny} be the set of possible derived allele count combinations
116 across populations, let X,,, be the data across all individuals in all populations
u7  at site m, and define Z,,, = (Zn1,..., Zmk) € J. Then

K
P(Xm | Zm) = Hp(ka | Zmk:) » (6)
k=1

us is the joint SAF likelihood for K populations.

1o Site frequency spectrum Using the definition of J above, we define the
120 SFS as a parameter ¢ = {¢; : j € J} such that ¢; is the probability that
121 Ly, = j. That is,

¢j =p(Zm=1719), (7)

122 for site m. That is, the SFS is the probability of a particular vector of derived
123 allele sums at a site chosen at random.

124 When genotypes are available, the SFS can be estimated simply by
125 counting observed allele count combinations. When genotypes cannot be
126 called, the standard approach is maximume-likelihood estimation.

127 Assuming independence of sites, we write the likelihood function

M
p(X|6) = ] p(Xm| o)
m=1

M
=] D . p(Xim |6, Zm = )p(Zm =35 | ¢)

m=1jeJ

M
= H Zp(Xm’Zm:j)¢jv (8)

m=1jeJ

128 where X, refers to all sequencing data for site m. Note that the likelihood
120 can be expressed solely in terms of joint SAF likelihoods.
130 The maximum likelihood estimate ¢ = arg max, p(X | ¢) cannot be found

131 analytically. Instead, <$ is typically estimated using some iterative procedure
132 such as BFGS [22| or an EM algorithm |16} 21]), of which the latter has
133 become the standard choice. An overview of the this algorithm is given below.
13a  For details and proof, see supplementary text [S1]

135 Standard EM algorithm Before optimization, we pre-compute the SAF
136 likelihoods for all sites, populations, and possible sample frequencies. In
137 addition, we make an arbitrary initial guess of the SFS QAS(O). The EM
138 algorithm then alternates between an E-step, and an M-step.
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139 The E-step consists of computing posterior probabilities of derived allele
140 counts conditional on the current SFS estimate,

0 = p(Zm = j | X, )
P(Xon | Zon = )6

— 9
S ireg DX | Zin = )8 ¥

11 for all sites m € {1,..., M} and possible derived allele counts j € J. Note
142 that this conditional posterior depends only on the current SFS estimate and

13 the (joint) SAF likelihoods.
144 Using the result of the E-step, the M-step updates the estimate by setting

M
a;(.tJrl) _ > m=1 q7(n)]
J t
Z%:l >ireg q’En)j’
L o
=7 2. NG (10)

s for allj eJ.

146 The EM algorithm guarantees a monotonically increasing likelihood of
147 successive values of $(t). The runtime of the algorithm is linear in the
148 number of iterations required before convergence, with each iteration taking
1o O(M HkK:1 Ni) time. In practice, the standard implementation is realSFS
150 [22] from the software suite ANGSD |21 which uses a generic EM acceleration
151 scheme [24]. The details of this acceleration will not be important in this
152 context, so we omit the details.

153 Window EM algorithm As in standard EM, we pre-compute all SAF
154 likelihoods and make an arbitrary initial guess ¢(©) of the SFS. In addition,
155 we choose two hyperparameters B (the number of blocks) and W (the window
156 size). Before starting optimization, all sites indices are randomly assigned
157 to one of B blocks B = (By,...,Bp) with |By| = [M/B] for b < B, and
158 |Bp| = M mod B. The reason for doing so is simply to break patterns of
150 linkage disequilibrium in particular blocks of input data, which will make
10 the SF'S within each block more similar to the global SF'S. Blocks are non-
161 overlapping and exhaustive, so that Ule By, ={1,...,M} and ﬂle By =9
162 After this initialisation, the window EM algorithm is defined as an iterative
163 procedure that alternates between an E-step and an M-step, where the M-step
164 in turn is split into an M1-step and an M2-step.

165 The E-step of the algorithm involves computing posteriors conditional on
166 the current estimate of the SFS, much like standard EM. The difference is
167 that we only process a single block of sites. Let f(¢t) = (¢ — 1) mod B + 1, so
18 that f(1 + xB) =1,f(2+xB)=2,... for x > 0. Then, at time step ¢, we

160 compute q ) for all m € B 7(t+1) and all possible derived allele counts j € J

170 using eq. @j[)
171 In the M1-step, the g¢s for the current block are used to give a block SFS

172 estimate 12(’5). This is analogous to the standard M-step eq. , so that for
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Figure 1: Schematic illustration of the standard and window EM algorithms for input consisting of a single population
with N = 3 individuals and M = 50 sites. Sites are shown horizontally, derived allele frequencies are shown vertically. The
pre-computed SAF likelihoods are illustrated at the bottom with blocks indicated by dashed lines. Standard EM computes
the conditional posterior derived allele counts over all sites (E-step) and uses these to update the SFS estimate (M-step).
Window EM computes the conditional posteriors for a small blocks of sites (E-step), computes a block SFS estimate after
each block (M1-step), and updates the overall estimates as sliding window average (M2-step) of the W past block estimates.
In this example, the sites have been split into B = 5 blocks with 10 sites each, and the sliding window covers W = 3 blocks.
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Algorithm 1: Window EM algorithm
Input : (1) SAF likelihoods p(Xynk | Zimk = ji) for sites m € {1,..., M} and Ny
individuals in each of populations k € {1,..., K}, with
jeJ=xE_{0,1,...,2N;}. (2) Random, non-overlapping assignment of sites
indices from 1 to M into B blocks (Bi,...,Bg). (3) Initial SFS estimate ©
Output : Estimate gg of the K-dimensional SF'S.
Parameters: Number of blocks B, number of blocks per window W.

t<0
while not converged do
by < tmod B+1 // Block index
for m € By, do
for j € J do
-\ (1)
P( X | Zm = ),
C]ﬁrtl)] | j. 0] // E-step
Zj’ej p(Xm | Zm = ]/)¢j/
Wi+ {(t —w)mod B+ 1|w e {0,...,min(t, W —1)}} // Window indices
for j € J do
S 1 Z (t) T
J Qmj -step
|Bbt’ EB
meBp,
ST ST 1By // M2-step
Sl Z
t—t+1
return ¢(*)
w3 eachj e J
1 1
%(H ) _ = Bl quj’ (11)
FEADY meBi )
174 These block estimates are then used in the M2-step to update the overall
175 SFS estimate for each j € 7,
$§t+1) _ Z¢ w)|B |
zwem Bl 2,
3 W S (12)
wEWs

176 where Wy = {f(t+1—w) | w € {0,...,min(¢t, W — 1)}} is the window of
177 the W latest block indices at time t. We use = to express equality under the
178 common special case when either M/B = 0 or B ¢ W,, so that there are no
179 issues with blocks of unequal sizes in the current window. In this case, the
180 M2-step simplifies to the mean of the past W block estimates.

181 Pseudo-code for window EM is given in algorithm [I} and an illustration
182 comparing window EM to standard EM is shown in figure
183 In the below, we are interested in comparing standard EM and window

184 EM. For clarity, we will use the term ‘epoch’ to refer to a full pass through
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185 the data for either algorithm. In the case of standard EM, an epoch is simply
186 a single iteration; for window EM, an epoch corresponds to B iterations.

157 Convergence In the standard EM algorithm, the data log-likelihood
188 can typically be evaluated with little computational overhead during the
180 E-step. Therefore, a common convergence criterion is based on the difference
100 between the log-likelihood values of successive epochs. That is, let

M
1 ~
_ 1 (1)
L Mm§llogp(X!¢ ) (13)

101 and convergence is reached when L;y1 — Ly < §, for some tolerance § decided
102 ahead of time.

103 For window EM, the same does not apply, since no full E-step is ever
102 taken. However, the likelihood for each block can be calculated cheaply during
105 each block E-step. Therefore, we define for epoch e € {1,2,...},

B
1 ~
L=) > logp(Xm| ¢ 14
= 2, 0gp(Xm [ 9 777), (14)

meBy

106 that is, the sum of log-likelihoods of SFS estimates used over the past epoch,
107 each evaluated in the block for which they were used in a block E-step, norm-
108 alised by block size for convenience. We then propose the simple convergence
100 criterion for window EM such that convergence is defined as L, ; — L, < 9.

200 3 Results

200 To test the window EM algorithm, we implemented it in the winsfs pro-
202 gram, available at github.com/malthesr/winsfs/. We compare winsfs to
203 realSFS, which implements the standard EM algorithm and serves as the
204 current state of art. We adopt two complementary approaches for evaluating
205 performance of winsfs. First, we use two different real-world WGS data
206 sets to compare winsfs to realSFS, which implements the standard EM
207 algorithm and serves as the current state of the art. realSFS has already
208 been validated on simulated data [21, [23], and use split training and test
200 data sets to evaluate any observed differences. Second, we use simulated data
210 to validate winsfs under conditions of known truth across a range of data
o1 qualities and sample sizes.

212 Real-world data sets We tested winsfs and realSFS on two real-world
213 WGS data sets of very different quality as described below. An overview is
214 shown in table [T

215 We first analyse 10 random individuals from each of the YRI (Yoruba
216 Nigerian) and CEU (Europeans in Utah) populations from the 1000 Genomes
217 Project |25]. This human data was sequenced to 3 x-8 x coverage and mapped
218 to the high quality human refence genome. We created SAF files using ANGSD
210 |21 requiring minimum base and mapping quality 30 and polarising the
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Population Individuals Sites Median depth (range) Contigs > 100 kb nso  Fsr
Human

YRI 10 1.17-10° 5.0x (3.2x 7.2x) o

CEU 10 1.17-10° 6.2x (2.9%8.0x) 52 15107 0.13
Impala

Masai Mara 12 6.34-108 2.8x (1.4x-10.2x) 5

Shangani 8 6.34-108 2.9x (2.6x16.8x) 781l 34107 0.2

Table 1: Overview of the input training data.

220 spectrum using the chimpanzee as an outgroup. We then split this input
221 data into test and training data, such that the first half of each autosome
222 was assigned to the training set, and the second half to the test set. The
223 resulting training data set contains 1.17 - 10? sites for both YRI and CEU,
224 while the test data set contains 1.35 - 107 sites for both. Training set depth
225 distributions for each individual are shown in supplementary figure [}

226 We also analyse a data set of much lower quality from 12 and 8 individuals
27 from two impala populations that we refer to as ‘Maasai Mara’ and ‘Shangani’,
28 respectively, based on their sampling locations. These populations were
29 sequenced to only 1x-3x with the addition of a single high-depth sample in
230 each population (see supplementary figure . The data was mapped to a
231 very fragmented assembly, and then we split the data into training and test
232 sets just as for the human data. However, due to the low quality assembly
233 we analysed only sites on contigs larger than 100 kb, and filtering sites based
234 on depth outliers, excess heterozygosity, mappability, and repeat regions. We
235 polarised using the impala reference itself. This process is meant to mirror
236 a realistic workflow for working with low-quality data from a non-model
237 organism. The impala input data ends up somewhat smaller than the human
238 data set, with approximately 6.3 - 10® sites in both test and training data
230 sets.

240 Broadly, the human data is meant to exemplify medium-quality data with
241 coverage towards the lower end, but with no other significant issues. The
222 impala data, on the other hand, represents low-quality data: not only is the
223 coverage low and fewer sites are available, but the impala reference genome is
244 poor quality with 7811 contigs greater than 100 kb and nsg = 3.4 - 107 (that
205 18, 50 % of the assembly bases lie on contigs of this size or greater). This serves
246 to introduce further noise in the mapping process, which amplifies the overall
227 data uncertainty. Finally, the impala populations are more distinct, with
28 Fgr ~ 0.24 compared to 0.13 between the human populations. As we will see
220 below, this creates additional challenges for estimation of the two-dimensional
250 SFS

251 Estimation Using the training data sets, we estimated the one-dimensional
252 SFS for YRI and Maasai Mara, as well as the two-dimensional SFS for
253 CEU/YRI and Shangani/Maasai Mara. We ran winsfs for 500 epochs using
254 a fixed number of blocks B = 500 and window sizes W € {100, 250, 500}.
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Figure 2: One-dimensional SFS estimation. @ YRI SFS estimates from realSFS and winsfsioo after various epochs.
Only variable sites are shown, proportion of fixed sites is shown in the legend. The final realSFS estimate is overlaid with
dots on the winsfs plot for comparison. @ YRI Tajima’s 6 estimates calculated from realSFS and winsfs over epochs.
Maasai Mara SF'S estimates from realSFS and winsfsigo after various epochs. Only variable sites are shown,
proportion of fixed sites is shown in the legend. The final realSFS estimate is overlaid with dots on the winsfs plot for
comparison. I@ Maasai Mara Tajima’s 6 estimates calculated from realSFS and winsfs over epochs.

255 We will focus on the setting with window size W = 100. For convenience,
256 we introduce the notation winsfsigg to refer to winsfs with hyperparameter
257 settings B = 500, W = 100. We return to the topic of hyperparameter
258 settings below.

259 To compare, we ran realSFS using default settings, except allowing it
260 to run for a maximum of 500 epochs rather than the default 100. We will
261 still take the 100 epochs cut-off to mark convergence, if it has not occured by
262 other criteria before then, but results past 100 will be shown in places.

263 In each case, we evaluated the full log-likelihood (eq. ) of the estimates
264 after each epoch on both the training and test data sets. In addition, we
265 computed various summary statistics from the estimates after each epoch.
266 For details, see supplementary text
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267 One-dimensional SFS Main results for the one-dimensional estimates are
268 shown in figure

269 For the human YRI population, we find that a single epoch of winsfsigg
270 produces an estimate of the SFS that is visually indistinguishable from the
a1 converged estimate of realSFS at 39 epochs (figure . Train and test set
a2 log-likelihoods (supplementary figure |3)) confirm that the likelihood at this
273 point is only very marginally lower for winsfsigg than the last realSFS. By
274 increasing the window size to 250 or 500, we get test log-likelihood values
275 equal to or above those achieved by realSFS, and still within the first 5
276 epochs.

277 As an example of a summary statistic derived from the one-dimensional
278 SF'S, figure 2D shows that winsfsjgp finds an estimate of Tajima’s 6 that
270 is very near to the final realSFS, with a difference on the order of 1-1076.
20 Increasing the window size removes this difference at the cost of a few more
281 epochs.

282 In the case of Maasai Mara, realSFS runs for the 500 epochs, so we take
283 epoch 100 to mark convergence. On this data, winsfsjgg requires two epochs
284 to give a good estimate of the SFS, as shown in figure 2d Some subtle
285 differences relative to the realSFS results remain, however, especially at the
286 middle frequencies: the realSFS estimate exhibits a ‘wobble’ such that even
287 bins are consistently higher than odd bins. Such a pattern is not biologically
288 plausible, and is not seen in the winsfs spectrum.

289 Supplementary figure [4|shows train and test log-likelihood data for Maasai
200 Mara, which again support the conclusions drawn from looking at the estimates
201 themselves. In theory, we expect that the test log-likelihood should be
202 adversely impacted by the realSFS ‘wobble’ pattern. In practice, however,
203 with more than 99.5 % fixed sites, the fixed end of the spectrum dominate
204 the likelihood to the extent that the effect is not visible. We return to this
205 point below.

206 Finally, Figure [2d| shows that Tajima’s 6 is likewise well-estimated by one
207 Or two epochs of winsfsigy on the impala data.

206 Two-dimensional SFS Overall results for the joint spectra are seen in
200 figure

300 On the human data, winsfsigg takes a single epoch for an estimate of
so1 the SFS that is near-identical to realSFS at convergence after 93 epochs.
302 Looking at the log-likelihood results, it is notable that while realSFS does
303 better than winsfs when evaluated on the training data (figure , the
304 picture is reversed when evaluated on the test data (figure . In fact, all
305 winsfs hyperparameter settings achieved better test log-likelihood values
306 in the first 10 epochs than achieved by realSFS at convergence. This is
307 likely caused by a faint ‘checkerboard’ pattern in the realSFS estimate due
308 to overfitting, as we expect the spectrum to be smooth. We note that both
300 realSFS and winsfs preserve an excess of sites where all individuals are
310 heterozygous, corresponding to the peak in the centre of the spectrum. This
su is a known issue with this data set [26], likely caused by paralogs in the
312 mapping process. It is an artefact which can be removed by filtering the data
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Figure 3: Two-dimensional SFS estimation. I@ CEU/YRI SFS estimates from realSFS after 93 epochs (converged) and
from winsfsigo after a single epoch. Fixed sites not shown for scale, total proportion indicated by arrows.
CEU/YRI SFS train and test log-likelihood over epochs for realSFS and winsfs. [(d)} CEU/YRI Hudson’s F, estimates
calculated from realSFS and winsfs over epochs Shangani/Maasai Mara SFS estimates from realSFS after 100
epochs (converged) and from winsfsigo after a single epoch. Fixed reference sites not shown for scale, proportions
indicated by arrows. Shangani/Maasai Mara SFS train and test log-likelihood over epochs for realSFS and
winsfs. Shangani/Maasai Mara Hudson’s Fgr estimates calculated from realSFS and winsfs over epochs.
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s13  before SAF calculation, which we have not done here. Given this choice, it is
314 to be expected that this peak remains.

315 In two dimensions, we compute both Hudson’s Fg, (figure and the
316 fo-statistic (supplementary figure |5) from SFS estimates after all epochs,
317 and we note similar patterns for these as we have seen before: one epoch of
318 winsfsjgg gives an estimate of the summary statistic that is almost identical
310 to the final realSFS estimate.

320 For the impalas, winsfsigg requires two epochs for a good estimate of
321 the spectrum, while realSFS again does not report convergence within the
322 first 100. What is immediately striking about the impala results, however,
323 is that the checkerboard pattern is very pronounced for realSFS, and again
324 absent for winsfs (figure . The problem for realSFS is likely exacerbated
325 by two factors: first, the sequencing depth is lower, increasing the uncertainty;
326 second, the relatively high divergence of the impala populations push most
327 of the mass in the spectrum towards the edges. Together, this means that
328 very little information is available for most of the estimated parameters. It
320 appears that realSFS therefore ends up overfitting to the particularities of
330 the training data at these bins.

331 This is also reflected in the difference between train and test log-likelihood
sz (figures B and Bg). Like in the case of the human data, the SFS estimated
333 by winsfs performs better on the test data compared to realSFS, while
33¢ realSFS performs the based on the training data. On the test data, all
335 winsfs settings again reach log-likelihood values comparable to or better
336 than realSFS in few epochs. However, the differences between realSFS and
337 winsfs remain relatively small in terms of log-likelihood, even on the test
338 set. This is somewhat surprising, given the marked checkerboarding in the
330 spectrum itself. Again, we attribute this to the fact that the log-likelihood is
30 dominated by all the mass lying in or around the zero-zero bin. We expect,
sa1  therefore, that methods that rely on the ‘interior’ of the SF'S should do better
322 when using winsfs, compared to realSFS.

343 Before turning to test this prediction, we briefly note that Fy; (figure
sas  and the fo-statistic (supplementary figure [5)) are also adequately estimated
a5 for the impalas by winsfsqgg in one epoch.

s Demographic inference All the SFS-derived summary statistics con-
37 sidered so far are heavily influenced by the bins with the fixed allele bins
sas  (that is, count 0 or 2Ny in all populations), or they are sums of alternating
320 frequency bins. In either case, this serves to mask issues with checkerboard
ss0  areas of the SFS in the lower-frequency bins. However, this will not be the
351 case for downstream methods that rely on the shape of the spectrum in more
352 detail.

353 To illustrate, we present a small case-study of inferring the demographic
354 history of the impala populations using the dadi [5| software with the es-
355 timated impala spectra shown in figure [3¢] though folded due to the lack
356 of an outgroup for proper polarisation. Briefly, based on an estimated SFS
357 and a user-specified demographic model, da0i fits a model SFS based on the
358 demographic parameters so as to maximise the likelihood of these parameters.
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Figure 4: Demographic inference results. Each row corresponds to a demographic model fitted using dadi. On the left, a
schematic of the model is shown including parameter estimates using SFS estimates from realSFS after 100 epochs or from
winsfsioo after two epochs. Time is given in years, population sizes in number of individuals, and migration rates is per
chromosome per generation. All parameters were scaled assuming a mutation rate of 1.41 - 10~ per site per generation and
a generation time of 5.7 years. On the right, the residuals of the SF'S fitted by dadi. Note that dadi folds the input SFS,
hence the residuals are likewise folded. The fixed category is omitted to avoid distorting the scale. Model with
symmetric migration and constant population size. @ Model with asymmetric migration and constant population
size. @ Model with asymmetric migration and a single, instantaneous population size change.
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350 Our approach was to fit a simple demographic model for the Shangani and
360 Maasai Mara populations, and then gradually add parameters to the model
361 as required based on the residuals of the input and model spectra. We take
32 this to be representative of a typical workflow for demographic inference.

363 For each successive demographic model [27], we ran dadi on the folded
364 spectra by performing 100 independent optimisation runs from random start-
35 ing parameters, and checking for convergence by requiring the top three
366 results to be within five likelihoods units of each other. If the optimisation did
367 not converge, we did additional optimisation runs until either they converged
38 or 500 independent runs were reached without likelihood convergence. In
360 that case, we inspected the results for the top runs, to assess whether they
s7o  were reliably reaching similar estimates and likelihoods. Results are shown in
s figure [4

372 The first, basic model assumes that the populations have had constant
373 populations sizes and a symmetric migration rate since diverging. The
374 parameter estimates based on realSFS and winsfs are similar, though the
375 winsfs model fit has significantly higher log-likelihood (figure . However,
s76  when inspecting the residuals in figure [AD] the realSFS residuals suffer from a
377 heavy checkerboard pattern, making it hard to distinguish noise from model
373 misspecification. In contrast, the winsfs residuals clearly show areas of the
370 spectrum where the model poorly fits the data.

380 In particular, the residuals along the very edge of the spectrum suggest
ss1  that a symmetric migration rate is not appropriate. Therefore, we fit a second
32 model with asymmetric migration (figure Now 0a0i finds migration rates
ss3  from Shangani to Maasai Mara an order of magnitude higher than wvice versa.
38« The results for winsfs (figure show improved residuals, while the realSFS
sss residuals remain hard to interpret.

386 Finally, an area of positive residuals in the fixed and rare-variant end of
37 the Shangani spectrum suggests that this population has recently undergone a
sss  significant bottleneck. Therefore, the third model allows for an instantaneous
380  size change in each of the impala populations (figure . At this point, the
300 winsfs residuals (figure 4f) are negligible, suggesting that no more parameters
301 should be added to the model. Once again, though, the realSFS residuals
302 leave us uncertain whether further model extensions are required.

303 When looking at the final model fits, the dadi parameter estimates from
304 realSFS and winsfs also start to differ slightly. In several instances, estimates
305 disagree by about 50 %, and the log-likelihood remains much higher for winsfs,
306 with a difference of 45000 log-likelihood units to realSFS. In addition, we
307 confirmed that the log-likelihood of the original test data set given the SFS
308 fitted by Oadi is higher for winsfs (—8.08-10%) than for realSFS (—8.38-108).
300 We stress, however, that we would have likely never found the appropriate
400 model without using winsfs, since the interpretation of the realSFS results
s01 is difficult. In relation to this point, we note that the final model results in
402 considerably different estimates for parameters of biological interest, such
403 as split times and recent population sizes, relative to the initial model. We
404 also find that the last model is supported by the literature: previous genetic
405 and fossil evidence suggests extant common impala populations derive from
206 a refugia in Southern Africa that subsequently colonised East Africa in
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a7 the middle-to-late Pleistocene [28-30|. This is broadly consistent with the
408 estimated split time, and the reduction in population size in East African
400 populations as they colonised the new habitat. The difference in effective
a0 population size between the southern Shangani population and the eastern
a1n Maasai Mara was previously also found using microsatellite data [28]|.

412 Simulations To validate these findings in conditions with a known SFS,
a13 we ran simulations using msprime [31] and tskit [32|. Briefly, we simulated
414 two populations, which we simply refer to as A and B. Populations A and
a5 B diverged 10000 generations ago and both have effective populations sizes
a16  of 10000 individuals, except for a period of 1000 generations after the split,
417 during which time B went through a bottleneck of size 1000. We simulated 22
415 independent chromosomes of 10 Mb for a total genome size of 220 Mb, using
a0 a mutation rate of 2.5- 107 and a uniform recombination rate of 1-1075.
420 To explore the consequences of varying sample sizes, we sampled 5, 10, or 20
421 individuals from the two populations. For each of these three scenarios, we
a2 calculated the true SFS from the resulting genotypes (shown in supplementary
a2 figure [6)).

424 Using the true genotypes as input, we simulated the effects of NGS
425 sequencing with error for both the variable and invariable sites. At every
426 position in the genome, including the monomorphic sites, we sample D ~
a2z Poisson(\) bases and introduce errors with a constant rate of e = 0.002
428 independently for each base. We calculate genotype likelihoods according to
420 the GATK model outlined in equations (1)) to (3) and output GLF files. Using
430 these, we create SAF files for A and B with no further filtering using ANGSD.
431 The mean depth A is set to either 2, 4, or 8 to investigate the performance
432 of winsfs at difference sequencing depths. This results in a grid of 3 x 3
433 simulated NGS data sets with three different sample sizes and three different
432 mean depth values.

435 From the simulated SAF files, we ran winsfs and realSFS as above to
436 generate the two-dimensional SFS, except for a maximum of 100 epochs.
437 For each method and each epoch e until convergence, we calculated the
a8 log-likelihood for the corresponding SF'S <$(e),

~e Mt
logp(¢| ') =log [] ¢,
JjeJ
=3 Mg\ log ¢ (15)

jeJ

430 where ¢ is the observed true SFS and M is the total number of sites. Fig-
as0 ure [5| shows how the log-likelihood evolves over epochs for winsfs (W €
aar {100, 250,500}) and realSFS for sample sizes Nj € {5, 10,20} and simulated
a2 mean depths \ € {2,4,8}. We observe that at a mean depth of 2, winsfsigg
a3 outperforms realSFS by a significant margin both in terms of speed and the
a4 final log-likelihood. At mean depth 4, the winsfs remains much faster and
ass  still achieves meaningfully better log-likelihoods, especially at higher sample
a6 sizes. Finally, at mean depth 8, winsfsigg still converges 5-10 times faster
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447 than realSFS (measured in epochs), but the methods provide estimates of
a8 similar quality.

449 The estimated spectra for realSFS and winsfsigg at their default stopping
450 points are shown in supplementary figure [7] and supplementary figure [§] and
451 respectively. These confirm that the spectra on the whole are well-estimated by
452 winsfsjgp as compared to the true SFS (supplementary figure @ Moreover,
453 we again observe that realSFS introduces a checkerboard pattern in the
454 low-information part of the spectrum at 2x—4x, which is not present in the
455 true spectrum, and which is not inferred by winsfs. The pattern is more
456 pronounced at higher sample sizes. This supports the hypothesis that realSFS
457 tends to overfit in situations where many parameters must be inferred with
458 little information.

0 Peak simulations The averaging of block estimates in the window EM
a0 algorithm appears to induce a certain ‘smoothing’ of the spectrum at low
461 depth. This smoothing effect is implicit in the sense of being nowhere explicitly
42 modelled, and each parameter is estimated independently. Nevertheless, this
463 Observation may give rise to a concern that winsfs, unlike the maximum
464 likelihood estimate from realSFS, might remove true abrupt peaks in the
465 SFS

466 To investigate, we modified the demographic simulation with sample size 20
a7 described above in the following way. In each of seven arbitrarily chosen bins
468 near to the centre of the SFS, we artificially spiked 10 000 counts into the true
60 spectrum after running the demographic simulations (supplementary figure @
470 This represents a 30-40-fold increase relative to the original count and the
471 neighbouring cells. Based on this altered spectrum, we simulated sequencing
a2 data for depth 2x, 4x, and 8x, created SAF files, and ran realSFS and
473 winsfsigg as before. The residuals of the realSFS and winsfs estimates are
474 shown in supplementary figure [10] and supplementary figure respectively.
475 In this fairly extreme scenario, the spectra inferred by both winsfs and
476 realSFS appear to have a small but noticeable downwards bias in the peak
477 region at 2x and 4x. However, compared to realSFS, winsfs has smaller
a7s  residuals in all scenarios, and the apparent bias is inversely correlated with
479 depth. These results confirm that usage the window EM algorithm does not
a0 lead to excess flattening of SF'S peaks compared with the maximum likelihood
481 estimate from the standard EM algorithm.

452 Hyperparameters The window EM algorithm requires hyperparameter
483 settings for B and W. Moreover, it requires a choice of stopping criterion.
484 For ease of use, the winsfs software ships with defaults for these settings,
485 and we briefly describe these.

486 We expect that the choice of B is less important than the term W/B,
as7  which governs the fraction of data that is directly considered in any one update
ass  step. Having analysed input data varying in size from 220 Mb (simulations)
as0 to 1.17Gb (human data), we find that fixing B = 500 works fine as a default
400 across a wide range of input sizes. Therefore, the more interesting question is
401 how to set the window size. In theory, there should be a trade-off between
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492 speed of convergence and accuracy of results, where lower window size favours
493 the former and higher window size the latter. However, in practice, based
404 on our results, we have not seen evidence that using W = 500 over W = 100
a5 leads to significantly better inference. On the other hand, the lower window
496 size has significantly faster convergence. Based on this, we feel that window
497 size of 100 makes for the best general default. By default, the winsfs software
408 uses B = 500 blocks and a window size W = 100.

499 As for stopping, winsfs implements the criterion based differences § in L,
s00 (eq. ) over successive epochs. Based on the initial analysis of the human
so0 and impala data, we chose § = 10~* (see supplementary figure [12)) as the
so2  default value and used the simulations to validate this choice. Figure [5| shows
503 the point at which stopping occurs, which is generally around the maximum
so4 log-likelihood as desired.

so5 Streaming In the main usage mode, pre-calculated SAF likelihoods are
so6 read into RAM, as in realSFS. However, it is also possible to run winsfs
so7  while keeping the data on disk and streaming through the intersecting sites
so8 in the SAF files. We refer to this as ‘streaming mode’.

509 Since the window EM algorithm requires randomly shuffling the input
si0 data, a preparation step is required in which SAF likelihoods are (jointly)
su1 shuffled into a new file. We wish to avoid loading the data into RAM in order
512 to perform a shuffle, and we also do not want multiple intermediate writes
513 to disk. To our knowledge, it is not possible to perform a true shuflie of the
s14  input data within these constraints. Instead, since we are only interested
s15 in shuffling for the purposes of breaking up blocks of LD, we perform a
s16  pseudo-shuffle according to the following scheme. We pre-allocate a file with
517 space for exactly M intersecting sites in the input data. This file is then
s18 split into S contiguous sections of roughly equal size, and we then assign
s10  input site with index m € {1,..., M} to position |(m + 1)/S]| + 1 in section
s20 (m+1) % S+ 1, where % is the remainder operation. That is, the first S
521 sites in the input end up in the first positions of each section, and the next S
522 sites in the input end up in the second positions of each section, and so on.
523 This operation can be performed with constant memory, without intermediate
524 writes to disk, and has the benefit of being reversible.

525 After preparing the pseudo-shuffled file, winsfs can be run exactly as
526 in the main mode. To confirm that this pseudo-shuflle is sufficient for the
527 purposes of the window EM algorithm, we ran 10 epochs of winsfs in
528 streaming mode for the impala and human data sets in both one and two
520 dimensions. After each epoch, we calculated the log-likelihood of the resulting
s30  SFS and compared them to the log-likelihood obtained by running in main
531 mode above. The results are shown in supplementary figure [13|and show that
532 streaming mode yields comparable results to the main, in-RAM usage: the
s33  likelihood differs slightly, but is neither systematically better or worse.

532 Benchmark To assess its performance characteristics, we benchmarked
s35 winsfs in both the main mode and streaming mode as well as realSFS on
s3s  the impala data. For each of the three, we ran estimation until convergence,
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Figure 6: Computational resource usage of winsfs and realSFS for the joint estimation of the Shangani and Maasai Mara
impala populations winsfs can be run while loading input data into RAM, or streaming through it on disk. In the latter
case, data must be shuffled on disk before hand. @ Runtime required with 20 threads for various numbers of epochs.
Results for winsfs are shown for in-memory usage and streaming mode. For streaming modes, times are given with and
without the extra time taken to shuffle data on disk before running. @ Peak memory usage (maximum resident set size).

537 as well as until various epochs before then, collecting benchmark results using
538 Snakemake [33]. Both realSFS and winsfs were given 20 cores. Results
s3 are shown in figure [6] In terms of run-time, we find that running winsfs in
se0  RAM is significantly faster than realSFS (figure @ This is true in part
521 because winsfs requires fewer epochs, but also since winsfs runs faster than
sa2 realSFS epoch-by-epoch. As expected, when switching winsfs to streaming
ss3 mode, run-time suffers as epochs increase. However, taking the number of
saa  epochs required for convergence into account, streaming winsfs remains
545 competitive with realSFS, even when including the initial overhead to shuffle
sa6  SAF likelihoods on disk.

547 Looking at memory consumption, streaming winsfs has a trivial peak
ss8 memory usage of 10 MB, including the initial pseudo-shuffle. In comparison,
s40 when reading data into RAM, realSFS and winsfs require 137 GB and
sso 107 GB, respectively, even on the fairly small impala data set.

551 The benchmarking results for the one-dimensional Maasai Mara estimation
ss2  are shown in supplementary figure [14] and support similar conclusions.

3 4 Discussion

ssa - We have presented the window EM algorithm for inferring the SFS from
ss5  low-depth data, as well as the winsfs implementation of this algorithm. The
ss6  window EM algorithm updates SFS estimates in smaller blocks of sites, and
ss7 - averages these block estimates in larger windows. We have argued that this
sss  approach has three related advantages relative to current methods. First, by
ss0  updating more often, convergence happens one to two orders of magnitude
seo faster. Due to the window averaging, this improvement in convergence times
se1  does not occur at the cost of stability. Second, due to the fast convergence, it
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se2 is feasible to run the window EM algorithm out of memory. This brings the
se3 memory requirements of the algorithm from hundreds of gigabytes of RAM to
se4 virtually nothing. Third, by optimising over different subsets of the data in
ses each iteration, the algorithm is prevented from overfitting to the input data.
ses In practice, this means we get biologically more plausible spectra.

567 On this last point, it is worth emphasising that while winsfs appears to
ses have the effect of smoothing the spectrum in a beneficial way, this smoothing
seo  effect is entirely implicit. That is, it is nowhere explicitly modelled that each
s7o  estimated bin should be similar to neighbouring bins to avoid checkerboard
s71 patterns. Rather, the apparent smoothing emerges because winsfs mitig-
572 ates some of the issues with overfitting that may otherwise manifest as a
573 checkerboard pattern. As shown in the simulations, winsfs does not remove
s74  true peaks in the SFS. In the broader setting of stochastic optimization, win-
s75 dow EM is in this way related to forms of Polyak-Ruppert iterate averaging
s76 schemes as used in stochastic gradient methods [34) 35|, variants of which
577 have also been shown to control variance and induce regularisation |36}, 37],
578 similar to what we have observed here.

579 Within the EM literature, window EM is prima facie quite similar in
sso  spirit to other versions of the stochastic EM algorithm [38-42]|. They too
ss1 - work on smaller blocks, and seek some way of controlling stability in how the
ss2 block estimate ¢ is incorporated in the overall estimate ¢. Typically, this
ss3  involves an update of the form 1) + (1 — 44)¢ for some weight +; decaying as
ssa  a function of iteration ¢. During initial experimentation, we empirically found
sss  that such methods tended to increase the noise in the spectrum, rather than
sss reduce it. This problem likely arises because estimating the multidimensional
ss7  SE'S requires estimating many parameters for which very little information is
sss available in any one batch. Therefore, by having an update step involving
sso only the current estimate and a single, small batch of sites, significant noise is
so0 introduced in the low-density part of the spectrum. In contrast, the window
so1. EM approach still optimises over smaller batches for speed, but actually
se2  considers large amounts of data in the update step by summing the entire
so3  window of batch estimates, thereby decreasing the noise.

504 For SFS inference specifically, prior work exists to improve estimation
so5 for low-depth sequencing data. For example, it has been proposed to ‘band’
so6  SAF likelihoods to make estimation scale better in the number of sampled
so7 individuals [23, 43|. Briefly, the idea is that at each site, all the mass in the
sos  SAF likelihood tends to be concentrated in a small band around the most
s00 likely sample frequency, and downstream inference can be adequately carried
s00 out by only propagating this band and setting all others to zero. By doing
601 S0, run-time and RAM can be saved by simply ignoring all the zero bins
e02 outside the chosen band. We note that such ideas are orthogonal to the work
603 presented here, since they are concerned with the representation of the input
604 data, and thereby indirectly modify all downstream optimisation methods.
605 Future work on winsfs may involve the ability to run from banded SAF
606 likelihoods. This will be important with large sample sizes, in the hundreds
607 of individuals.

608 Others have focused on the implementation details of the EM algorithm,
0o for instance using GPU acceleration [44]. Such efforts still have the typical
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610 high memory requirements, and do not address the overfitting displayed by
611 the standard EM algorithm. Moreover, we find that the presented algorithmic
612 improvements, combined with an efficient implementation, serve to make
613 winsfs more than competitive with such efforts in terms of runtime. Indeed,
614 with winsfs converging in-memory in less than an hour on genome-scale data,
615 runtime is no longer a significant bottleneck for SF'S estimation.

616 We emphasise, however, that the window EM algorithm and winsfs are
617 unlikely to yield any meaningful benefits with sequencing data at above
e18 around 10x-12x coverage. With such data, better inference of the SFS will be
610 obtained by estimation directly from genotype calls with appropriate filters.
620 Nevertheless, efficient and robust methods remain important for low-coverage
621 data. This is partly because low-coverage data may sometimes be the only
622 option, for example when working with ancient DNA. Also, such methods
623 allow intentionally sequencing at lower coverage, decreasing the sequencing
624 cost per individual.

625 In addition, we do not expect winsfs to perform better than realSFS
626 when data is not available for many sites (e.g <100 Mb) due to the fact that
627 winsfs only uses parts of the available data directly in the final estimation.
628 Finally, improvements in the SFS estimates by winsfs are unlikely to
620 Dbe significant for simple summary statistics like 0, Fgp, or f-statistics. For
630 such purposes, winsfs simply produces results similar to realSFS, although
631 much faster. However, as the number of dimensions and samples increase,
632 and as sequencing depth decreases, overfitting will start to influence the low-
633 frequency bins of the spectrum. Where this information is used downstream,
63¢ winsfs will lead to better and more interpretable results, and can potentially
635 help solve commonly known biases in parameter estimates arising from model
636 misspecification [45]. We have seen this in the dadi case study, but we
637 believe the same would be true of other popular demographic inference
38  frameworks including fastsimcoal |6, |46], moments [47], and momi [48]. It
630 may also be significant for other methods for complex inference from the
es0 multidimensional spectrum, including inference of fitness effects using fit0adi
ea1 |49, [50] or introgression using Dpg [51], though we have not explored these
6a2 methods.

«s D Code and data availability

64« The human data analysed is part of the 1000 Genomes |25| phase 3 low depth
645 sequencing data. Alignments have been made available by the 1000G project
es6 and can be accessed at ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/
ea7 . The impala data has been made available via the SRA with accession
648 PRJINA862915. Analysis and plotting code, as well as the cleaned data corres-
es0 ponding to the final results, is available at |github.com/malthesr/window
eso and the winsfs software itself at |github.com/malthesr/winsfs .
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