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Abstract9

The site frequency spectrum (SFS) is an important summary statistic10

in population genetics used for inference on demographic history and11

selection. However, estimation of the SFS from called genotypes intro-12

duce bias when working with low-coverage sequencing data. Methods13

exist for addressing this issue, but sometimes suffer from two problems.14

First, they can have very high computational demands, to the point15

that it may not be possible to run estimation for genome-scale data.16

Second, existing methods are prone to overfitting, especially for multi-17

dimensional SFS estimation. In this article, we present a stochastic18

expectation-maximisation algorithm for inferring the SFS from NGS19

data that addresses these challenges. We show that this algorithm20

greatly reduces runtime and enables estimation with constant, trivial21

RAM usage. Further, the algorithm reduces overfitting and thereby22

improves downstream inference. An implementation is available at23

github.com/malthesr/winsfs .24

1 Introduction25

The site frequency spectrum (SFS) is the joint distribution of allele frequencies26

among one or more populations, and it serves as an important summary stat-27

istic in population genetics. For instance, the SFS is sufficient for computing28

nucleotide diversity [1], Fst [2], and f -statistics [3]. Furthermore, the SFS29

may be used for inferring demographic history [4–6] and selection [7–9].30

When working with high-quality data, it is usually straightforward to31

estimate the SFS from called genotypes. However, when genotype calls are32

uncertain, standard methods lead to significant bias in the estimated SFS33

[10], which propagates to downstream inference [11]. In particular, this34

situation arises when working with next-generation sequencing (NGS) data35

at low coverage and may be compounded by additional data-quality issues.36

Low-coverage NGS data is sometimes the only available option, for instance37
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when working with ancient DNA [12–14]. Sequencing at low coverage is also38

a popular choice to reduce sequencing costs, since most of the key population39

genetics analysis remain possible with such data [15].40

To estimate the SFS from low-coverage data, several methods have been41

proposed which account for the genotype uncertainty in estimation of the42

SFS [10, 16]. These are based on finding the SFS that maximises the data43

likelihood using numeric optimisation. Two factors combine to create a44

computational challenge for such methods. First, in order to achieve an45

accurate estimate of the SFS, these methods usually require many iterations,46

each of which requires a full pass over the input data. Second, unlike most47

genetics analyses, the SFS cannot be based on only the small subset of the48

variable sites, but must consider all sites. Taken together, this means that49

some summary of the full data must be held in RAM and iterated over many50

times. For genome-scale NGS data from more than a few dozen samples, or51

in more than one dimension, this is often not computationally feasible, as52

tens of hours of runtime and hundreds of gigabytes of RAM may be required.53

Current approaches for dealing with this issue restrict the analysis to fewer54

individuals and/or smaller regions of the genome [17], leading to less accurate55

results.56

An additional problem with current methods is that they are prone to57

overfitting. In the multi-dimensional setting in particular, there is often very58

little information available for many of the entries in the frequency spectrum.59

Therefore, by considering the full data set, existing algorithms risk fitting60

noise, leading to estimates with poor generalisability.61

In this paper, we present a novel version of the stochastic expectation-62

maximisation (EM) algorithm for estimation of the SFS from NGS data. In63

each pass through the data, this algorithm updates the SFS estimate multiple64

times in smaller blocks of sites. We show that for low-coverage whole-genome65

sequencing (WGS) data, this algorithm requires only a few full passes over the66

data. This considerably decreases running time, and means that it is possible67

to estimate the SFS using constant, negligible RAM usage by streaming data68

from disk. Moreover, by only considering smaller subsets of the data at a69

time, we show that this method reduces overfitting, which in turns leads to70

improved downstream inference.71

2 Methods72

Estimation of the SFS from low-coverage sequencing data requires pre-73

computing site allele frequency likelihoods for each site, and these are based74

on genotype likelihoods. We begin by briefly reviewing these concepts.75

Genotype likelihoods Assume we have NGS data X sampled from K76

different populations (indexed by k), withNk individuals in the kth population.77

Further, say that we have M diallelic sites (indexed by m), so that Gmkn ∈78

{0, 1, 2} is the genotype of a diploid individual n at site m in population k,79

coding genotypes as the number of derived alleles. In the same way, we use80

Xmkn to refer to the sequencing data at this location.81
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We define the genotype likelihood p(Xmkn |Gmkn) as the probability of82

the data given a particular genotype. Genotype likelihoods form the basis83

of genotype calling and are calculated from aligned sequencing reads by84

various bioinformatic tools including bcftools/samtools [18, 19], GATK [20],85

and ANGSD [21], using slightly different models. For clarity, we outline the86

basic GATK model below, though the choice of model is not important for our87

purposes.88

ForD sequencing reads aligned to positionm for individual n in population89

k, let bd be the base call of the dth read. Assuming independence of base90

calls, we have91

p(Xmkn |Gmkn = g) =
D∏

d=1

p(bd |Gmkn = g) . (1)

If we consider the genotype as two alleles a1, a2 ∈ {0, 1} such that Gmkn =92

a1 + a2, then by random sampling of the parental alleles,93

p(bd |Gmkn = g) =
1

2
p(bd | a1) +

1

2
p(bd | a2) . (2)

In turn, this probability is modelled by94

p(bd | a) =
{
ϵd/3 if bd ̸= a

1− ϵd else
, (3)

where ϵd is the sequencing error probability associated with the dth base.95

Site allele frequency likelihoods Using genotype likelihoods, we can cal-96

culate site allele frequency (SAF) likelihoods, also sometimes known as sample97

allele frequency likelihoods. It is possible to think of the SAF likelihoods as98

the generalisation of genotype likelihoods from individuals to populations:99

instead of asking about the probability of the data for one individual given a100

genotype, we ask about the probability of the data for a population given the101

sum of their derived alleles.102

More formally, define the sum of derived alleles for population k at site103

m,104

Zmk =

Nk∑

n=1

Gmkn , (4)

with Zmk ∈ {0, 1, . . . , 2Nk} each corresponding to possible sample frequencies105

{0, 1/2Nk, . . . , 1}. Now define the SAF likelihood for a single population k,106

p(Xmk | Zmk = jk) =
∑

g∈{0,1,2}Nk

p(g | Zmk = jk)

Nk∏

n=1

p(Xmkn |Gmkn = gn) , (5)

where Xmk is the data for all individuals sampled in population k at site107

m, p(g | Zmk = jk) is the combinatorial probability of the genotype vector108

g = (g1, . . . , gNk
) conditional on the sum of the genotypes being jk, and109

p(Xmkn | Gmkn = gn) is a standard genotype likelihood. Using a dynamic110
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programming algorithm, SAF likelihoods can be calculated from the genotype111

likelihoods of N individuals in O(N2) time per site [22], and a linear time112

approximation has also been given [23].113

To extend this to the multi-dimensional SFS with K populations, let J =114

×K
k=1{0, 1, . . . , 2Nk} be the set of possible derived allele count combinations115

across populations, let Xm be the data across all individuals in all populations116

at site m, and define Zm = (Zm1, . . . , ZmK) ∈ J . Then117

p(Xm | Zm) =
K∏

k=1

p(Xmk | Zmk) , (6)

is the joint SAF likelihood for K populations.118

Site frequency spectrum Using the definition of J above, we define the119

SFS as a parameter ϕ = {ϕj : j ∈ J } such that ϕj is the probability that120

Zm = j. That is,121

ϕj = p(Zm = j | ϕ) , (7)

for site m. That is, the SFS is the probability of a particular vector of derived122

allele sums at a site chosen at random.123

When genotypes are available, the SFS can be estimated simply by124

counting observed allele count combinations. When genotypes cannot be125

called, the standard approach is maximum-likelihood estimation.126

Assuming independence of sites, we write the likelihood function127

p(X | ϕ) =
M∏

m=1

p(Xm | ϕ)

=
M∏

m=1

∑

j∈J
p(Xm | ϕ,Zm = j)p(Zm = j | ϕ)

=

M∏

m=1

∑

j∈J
p(Xm | Zm = j)ϕj , (8)

where Xm refers to all sequencing data for site m. Note that the likelihood128

can be expressed solely in terms of joint SAF likelihoods.129

The maximum likelihood estimate ϕ̂ = argmaxϕ p(X |ϕ) cannot be found130

analytically. Instead, ϕ̂ is typically estimated using some iterative procedure131

such as BFGS [22] or an EM algorithm [16, 21]), of which the latter has132

become the standard choice. An overview of the this algorithm is given below.133

For details and proof, see supplementary text S1.134

Standard EM algorithm Before optimization, we pre-compute the SAF135

likelihoods for all sites, populations, and possible sample frequencies. In136

addition, we make an arbitrary initial guess of the SFS ϕ̂(0). The EM137

algorithm then alternates between an E-step, and an M-step.138

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.05.24.493190doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.24.493190
http://creativecommons.org/licenses/by-nc/4.0/


The E-step consists of computing posterior probabilities of derived allele139

counts conditional on the current SFS estimate,140

q
(t)
mj = p(Zm = j |Xm, ϕ̂

(t)
j )

=
p(Xm | Zm = j)ϕ̂

(t)
j∑

j′∈J p(Xm | Zm = j′)ϕ̂
(t)
j′

, (9)

for all sites m ∈ {1, . . . ,M} and possible derived allele counts j ∈ J . Note141

that this conditional posterior depends only on the current SFS estimate and142

the (joint) SAF likelihoods.143

Using the result of the E-step, the M-step updates the estimate by setting144

ϕ̂
(t+1)
j =

∑M
m=1 q

(t)
mj∑M

m=1

∑
j′∈J q

(t)
mj′

=
1

M

M∑

m=1

q
(t)
mj , (10)

for all j ∈ J .145

The EM algorithm guarantees a monotonically increasing likelihood of146

successive values of ϕ̂(t). The runtime of the algorithm is linear in the147

number of iterations required before convergence, with each iteration taking148

O(M
∏K

k=1Nk) time. In practice, the standard implementation is realSFS149

[22] from the software suite ANGSD [21] which uses a generic EM acceleration150

scheme [24]. The details of this acceleration will not be important in this151

context, so we omit the details.152

Window EM algorithm As in standard EM, we pre-compute all SAF153

likelihoods and make an arbitrary initial guess ϕ̂(0) of the SFS. In addition,154

we choose two hyperparameters B (the number of blocks) and W (the window155

size). Before starting optimization, all sites indices are randomly assigned156

to one of B blocks B = (B1, . . . ,BB) with |Bb| = ⌊M/B⌋ for b < B, and157

|BB| = M mod B. The reason for doing so is simply to break patterns of158

linkage disequilibrium in particular blocks of input data, which will make159

the SFS within each block more similar to the global SFS. Blocks are non-160

overlapping and exhaustive, so that
⋃B

b=1 Bb = {1, . . . ,M} and
⋂B

b=1 Bb = ∅.161

After this initialisation, the window EM algorithm is defined as an iterative162

procedure that alternates between an E-step and an M-step, where the M-step163

in turn is split into an M1-step and an M2-step.164

The E-step of the algorithm involves computing posteriors conditional on165

the current estimate of the SFS, much like standard EM. The difference is166

that we only process a single block of sites. Let f(t) = (t− 1) mod B + 1, so167

that f(1 + xB) = 1, f(2 + xB) = 2, . . . for x ≥ 0. Then, at time step t, we168

compute q(t)mj for all m ∈ Bf(t+1) and all possible derived allele counts j ∈ J169

using eq. (9).170

In the M1-step, the qs for the current block are used to give a block SFS171

estimate ψ̂(t). This is analogous to the standard M-step eq. (10), so that for172
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p(X | Z)
p(X1 | Z1 = 0)

p(X2 | Z2 = 4))

p(X50 | Z50 = 2)

Pre-computed SAF likelihoods

p(Z |X, ϕ̂(t))
p(Z1 = 6 |X1, ϕ̂

(t))

p(Z49 = 1 |X49, ϕ̂
(t))

ϕ̂(t) ϕ̂(t+1)
E-step M-step

Standard EM step

p(Z |X, ϕ̂(t))

ψ̂(t) ϕ̂(t)

p(Z |X, ϕ̂(t+1))

ψ̂(t+1) ϕ̂(t+1)

p(Z |X, ϕ̂(t+2))

ψ̂(t+2) ϕ̂(t+2) ψ̂(t+3) ϕ̂(t+3)

E-step M1-step

M2-step
Window EM step
(B = 5, W = 3)

Notation:
X: Sequencing data
Z: Derived allele count
ϕ̂: SFS estimate
ψ̂: Block SFS estimate

Figure 1: Schematic illustration of the standard and window EM algorithms for input consisting of a single population
with N = 3 individuals and M = 50 sites. Sites are shown horizontally, derived allele frequencies are shown vertically. The
pre-computed SAF likelihoods are illustrated at the bottom with blocks indicated by dashed lines. Standard EM computes
the conditional posterior derived allele counts over all sites (E-step) and uses these to update the SFS estimate (M-step).
Window EM computes the conditional posteriors for a small blocks of sites (E-step), computes a block SFS estimate after
each block (M1-step), and updates the overall estimates as sliding window average (M2-step) of the W past block estimates.
In this example, the sites have been split into B = 5 blocks with 10 sites each, and the sliding window covers W = 3 blocks.
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Algorithm 1: Window EM algorithm
Input : (1) SAF likelihoods p(Xmk | Zmk = jk) for sites m ∈ {1, . . . ,M} and Nk

individuals in each of populations k ∈ {1, . . . ,K}, with
j ∈ J = ×K

k=1{0, 1, . . . , 2Nk}. (2) Random, non-overlapping assignment of sites
indices from 1 to M into B blocks (B1, . . . ,BB). (3) Initial SFS estimate ϕ̂(0).

Output : Estimate ϕ̂ of the K-dimensional SFS.
Parameters : Number of blocks B, number of blocks per window W .

t← 0
while not converged do

bt ← t mod B + 1 // Block index
for m ∈ Bbt do

for j ∈ J do

q
(t)
mj ←

p(Xm | Zm = j)ϕ̂
(t)
j∑

j′∈J p(Xm | Zm = j′)ϕ̂
(t)
j′

// E-step

Wt ← {(t− w) mod B + 1 | w ∈ {0, . . . ,min(t,W − 1)}} // Window indices
for j ∈ J do

ψ̂
(t+1)
j ← 1

|Bbt |
∑

m∈Bbt

q
(t)
mj // M1-step

ϕ̂
(t+1)
j ← 1∑

w∈Wt
|Bw|

∑

w∈Wt

ψ̂
(w)
j |Bw| // M2-step

t← t+ 1

return ϕ̂(t)

each j ∈ J173

ψ̂
(t+1)
j =

1

|Bf(t+1)|
∑

m∈Bf(t+1)

q
(t)
mj , (11)

These block estimates are then used in the M2-step to update the overall174

SFS estimate for each j ∈ J ,175

ϕ̂
(t+1)
j =

1∑
w∈Wt

|Bw|
∑

w∈Wt

ψ̂
(w)
j |Bw|

∗
=

1

W

∑

w∈Wt

ψ̂
(w)
j . (12)

where Wt = {f(t + 1 − w) | w ∈ {0, . . . ,min(t,W − 1)}} is the window of176

the W latest block indices at time t. We use ∗
= to express equality under the177

common special case when either M/B = 0 or B /∈ Wt, so that there are no178

issues with blocks of unequal sizes in the current window. In this case, the179

M2-step simplifies to the mean of the past W block estimates.180

Pseudo-code for window EM is given in algorithm 1, and an illustration181

comparing window EM to standard EM is shown in figure 1.182

In the below, we are interested in comparing standard EM and window183

EM. For clarity, we will use the term ‘epoch’ to refer to a full pass through184
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the data for either algorithm. In the case of standard EM, an epoch is simply185

a single iteration; for window EM, an epoch corresponds to B iterations.186

Convergence In the standard EM algorithm, the data log-likelihood (8)187

can typically be evaluated with little computational overhead during the188

E-step. Therefore, a common convergence criterion is based on the difference189

between the log-likelihood values of successive epochs. That is, let190

Lt =
1

M

M∑

m=1

log p(X | ϕ̂(t)) , (13)

and convergence is reached when Lt+1 −Lt < δ, for some tolerance δ decided191

ahead of time.192

For window EM, the same does not apply, since no full E-step is ever193

taken. However, the likelihood for each block can be calculated cheaply during194

each block E-step. Therefore, we define for epoch e ∈ {1, 2, . . . },195

L′
e =

B∑

b=1

1

|Bb|
∑

m∈Bb

log p(Xm | ϕ̂(eB−b)) , (14)

that is, the sum of log-likelihoods of SFS estimates used over the past epoch,196

each evaluated in the block for which they were used in a block E-step, norm-197

alised by block size for convenience. We then propose the simple convergence198

criterion for window EM such that convergence is defined as L′
e+1 − L′

e < δ.199

3 Results200

To test the window EM algorithm, we implemented it in the winsfs pro-201

gram, available at github.com/malthesr/winsfs . We compare winsfs to202

realSFS, which implements the standard EM algorithm and serves as the203

current state of art. We adopt two complementary approaches for evaluating204

performance of winsfs. First, we use two different real-world WGS data205

sets to compare winsfs to realSFS, which implements the standard EM206

algorithm and serves as the current state of the art. realSFS has already207

been validated on simulated data [21, 23], and use split training and test208

data sets to evaluate any observed differences. Second, we use simulated data209

to validate winsfs under conditions of known truth across a range of data210

qualities and sample sizes.211

Real-world data sets We tested winsfs and realSFS on two real-world212

WGS data sets of very different quality as described below. An overview is213

shown in table 1.214

We first analyse 10 random individuals from each of the YRI (Yoruba215

Nigerian) and CEU (Europeans in Utah) populations from the 1000 Genomes216

Project [25]. This human data was sequenced to 3 x–8 x coverage and mapped217

to the high quality human refence genome. We created SAF files using ANGSD218

[21] requiring minimum base and mapping quality 30 and polarising the219
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Population Individuals Sites Median depth (range) Contigs ≥ 100 kb n50 Fst

Human
YRI 10 1.17 · 109 5.0 x (3.2 x–7.2 x)
CEU 10 1.17 · 109 6.2 x (2.9 x–8.0 x) 52 1.5 · 108 0.13

Impala
Masai Mara 12 6.34 · 108 2.8 x (1.4 x–10.2 x)
Shangani 8 6.34 · 108 2.9 x (2.6 x–16.8 x) 7811 3.4 · 105 0.24

Table 1: Overview of the input training data.

spectrum using the chimpanzee as an outgroup. We then split this input220

data into test and training data, such that the first half of each autosome221

was assigned to the training set, and the second half to the test set. The222

resulting training data set contains 1.17 · 109 sites for both YRI and CEU,223

while the test data set contains 1.35 · 109 sites for both. Training set depth224

distributions for each individual are shown in supplementary figure 1.225

We also analyse a data set of much lower quality from 12 and 8 individuals226

from two impala populations that we refer to as ‘Maasai Mara’ and ‘Shangani’,227

respectively, based on their sampling locations. These populations were228

sequenced to only 1 x–3 x with the addition of a single high-depth sample in229

each population (see supplementary figure 2). The data was mapped to a230

very fragmented assembly, and then we split the data into training and test231

sets just as for the human data. However, due to the low quality assembly232

we analysed only sites on contigs larger than 100 kb, and filtering sites based233

on depth outliers, excess heterozygosity, mappability, and repeat regions. We234

polarised using the impala reference itself. This process is meant to mirror235

a realistic workflow for working with low-quality data from a non-model236

organism. The impala input data ends up somewhat smaller than the human237

data set, with approximately 6.3 · 108 sites in both test and training data238

sets.239

Broadly, the human data is meant to exemplify medium-quality data with240

coverage towards the lower end, but with no other significant issues. The241

impala data, on the other hand, represents low-quality data: not only is the242

coverage low and fewer sites are available, but the impala reference genome is243

poor quality with 7811 contigs greater than 100 kb and n50 = 3.4 · 10−5 (that244

is, 50 % of the assembly bases lie on contigs of this size or greater). This serves245

to introduce further noise in the mapping process, which amplifies the overall246

data uncertainty. Finally, the impala populations are more distinct, with247

Fst ≈ 0.24 compared to 0.13 between the human populations. As we will see248

below, this creates additional challenges for estimation of the two-dimensional249

SFS.250

Estimation Using the training data sets, we estimated the one-dimensional251

SFS for YRI and Maasai Mara, as well as the two-dimensional SFS for252

CEU/YRI and Shangani/Maasai Mara. We ran winsfs for 500 epochs using253

a fixed number of blocks B = 500 and window sizes W ∈ {100, 250, 500}.254
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Figure 2: One-dimensional SFS estimation. (a): YRI SFS estimates from realSFS and winsfs100 after various epochs.
Only variable sites are shown, proportion of fixed sites is shown in the legend. The final realSFS estimate is overlaid with
dots on the winsfs plot for comparison. (b): YRI Tajima’s θ estimates calculated from realSFS and winsfs over epochs.

(c): Maasai Mara SFS estimates from realSFS and winsfs100 after various epochs. Only variable sites are shown,
proportion of fixed sites is shown in the legend. The final realSFS estimate is overlaid with dots on the winsfs plot for

comparison. (d): Maasai Mara Tajima’s θ estimates calculated from realSFS and winsfs over epochs.

We will focus on the setting with window size W = 100. For convenience,255

we introduce the notation winsfs100 to refer to winsfs with hyperparameter256

settings B = 500, W = 100. We return to the topic of hyperparameter257

settings below.258

To compare, we ran realSFS using default settings, except allowing it259

to run for a maximum of 500 epochs rather than the default 100. We will260

still take the 100 epochs cut-off to mark convergence, if it has not occured by261

other criteria before then, but results past 100 will be shown in places.262

In each case, we evaluated the full log-likelihood (eq. (8)) of the estimates263

after each epoch on both the training and test data sets. In addition, we264

computed various summary statistics from the estimates after each epoch.265

For details, see supplementary text S2.266
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One-dimensional SFS Main results for the one-dimensional estimates are267

shown in figure 2.268

For the human YRI population, we find that a single epoch of winsfs100269

produces an estimate of the SFS that is visually indistinguishable from the270

converged estimate of realSFS at 39 epochs (figure 2a). Train and test set271

log-likelihoods (supplementary figure 3) confirm that the likelihood at this272

point is only very marginally lower for winsfs100 than the last realSFS. By273

increasing the window size to 250 or 500, we get test log-likelihood values274

equal to or above those achieved by realSFS, and still within the first 5275

epochs.276

As an example of a summary statistic derived from the one-dimensional277

SFS, figure 2b shows that winsfs100 finds an estimate of Tajima’s θ that278

is very near to the final realSFS, with a difference on the order of 1 · 10−6.279

Increasing the window size removes this difference at the cost of a few more280

epochs.281

In the case of Maasai Mara, realSFS runs for the 500 epochs, so we take282

epoch 100 to mark convergence. On this data, winsfs100 requires two epochs283

to give a good estimate of the SFS, as shown in figure 2c. Some subtle284

differences relative to the realSFS results remain, however, especially at the285

middle frequencies: the realSFS estimate exhibits a ‘wobble’ such that even286

bins are consistently higher than odd bins. Such a pattern is not biologically287

plausible, and is not seen in the winsfs spectrum.288

Supplementary figure 4 shows train and test log-likelihood data for Maasai289

Mara, which again support the conclusions drawn from looking at the estimates290

themselves. In theory, we expect that the test log-likelihood should be291

adversely impacted by the realSFS ‘wobble’ pattern. In practice, however,292

with more than 99.5 % fixed sites, the fixed end of the spectrum dominate293

the likelihood to the extent that the effect is not visible. We return to this294

point below.295

Finally, Figure 2d shows that Tajima’s θ is likewise well-estimated by one296

or two epochs of winsfs100 on the impala data.297

Two-dimensional SFS Overall results for the joint spectra are seen in298

figure 3.299

On the human data, winsfs100 takes a single epoch for an estimate of300

the SFS that is near-identical to realSFS at convergence after 93 epochs.301

Looking at the log-likelihood results, it is notable that while realSFS does302

better than winsfs when evaluated on the training data (figure 3b), the303

picture is reversed when evaluated on the test data (figure 3c). In fact, all304

winsfs hyperparameter settings achieved better test log-likelihood values305

in the first 10 epochs than achieved by realSFS at convergence. This is306

likely caused by a faint ‘checkerboard’ pattern in the realSFS estimate due307

to overfitting, as we expect the spectrum to be smooth. We note that both308

realSFS and winsfs preserve an excess of sites where all individuals are309

heterozygous, corresponding to the peak in the centre of the spectrum. This310

is a known issue with this data set [26], likely caused by paralogs in the311

mapping process. It is an artefact which can be removed by filtering the data312
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Figure 3: Two-dimensional SFS estimation. (a): CEU/YRI SFS estimates from realSFS after 93 epochs (converged) and
from winsfs100 after a single epoch. Fixed sites not shown for scale, total proportion indicated by arrows. (b), (c):

CEU/YRI SFS train and test log-likelihood over epochs for realSFS and winsfs. (d): CEU/YRI Hudson’s Fst estimates
calculated from realSFS and winsfs over epochs (e): Shangani/Maasai Mara SFS estimates from realSFS after 100
epochs (converged) and from winsfs100 after a single epoch. Fixed reference sites not shown for scale, proportions

indicated by arrows. (f), (g): Shangani/Maasai Mara SFS train and test log-likelihood over epochs for realSFS and
winsfs. (h): Shangani/Maasai Mara Hudson’s Fst estimates calculated from realSFS and winsfs over epochs.
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before SAF calculation, which we have not done here. Given this choice, it is313

to be expected that this peak remains.314

In two dimensions, we compute both Hudson’s Fst (figure 3d) and the315

f2-statistic (supplementary figure 5) from SFS estimates after all epochs,316

and we note similar patterns for these as we have seen before: one epoch of317

winsfs100 gives an estimate of the summary statistic that is almost identical318

to the final realSFS estimate.319

For the impalas, winsfs100 requires two epochs for a good estimate of320

the spectrum, while realSFS again does not report convergence within the321

first 100. What is immediately striking about the impala results, however,322

is that the checkerboard pattern is very pronounced for realSFS, and again323

absent for winsfs (figure 3e). The problem for realSFS is likely exacerbated324

by two factors: first, the sequencing depth is lower, increasing the uncertainty;325

second, the relatively high divergence of the impala populations push most326

of the mass in the spectrum towards the edges. Together, this means that327

very little information is available for most of the estimated parameters. It328

appears that realSFS therefore ends up overfitting to the particularities of329

the training data at these bins.330

This is also reflected in the difference between train and test log-likelihood331

(figures 3f and 3g). Like in the case of the human data, the SFS estimated332

by winsfs performs better on the test data compared to realSFS, while333

realSFS performs the based on the training data. On the test data, all334

winsfs settings again reach log-likelihood values comparable to or better335

than realSFS in few epochs. However, the differences between realSFS and336

winsfs remain relatively small in terms of log-likelihood, even on the test337

set. This is somewhat surprising, given the marked checkerboarding in the338

spectrum itself. Again, we attribute this to the fact that the log-likelihood is339

dominated by all the mass lying in or around the zero-zero bin. We expect,340

therefore, that methods that rely on the ‘interior’ of the SFS should do better341

when using winsfs, compared to realSFS.342

Before turning to test this prediction, we briefly note that Fst (figure 3h)343

and the f2-statistic (supplementary figure 5) are also adequately estimated344

for the impalas by winsfs100 in one epoch.345

Demographic inference All the SFS-derived summary statistics con-346

sidered so far are heavily influenced by the bins with the fixed allele bins347

(that is, count 0 or 2Nk in all populations), or they are sums of alternating348

frequency bins. In either case, this serves to mask issues with checkerboard349

areas of the SFS in the lower-frequency bins. However, this will not be the350

case for downstream methods that rely on the shape of the spectrum in more351

detail.352

To illustrate, we present a small case-study of inferring the demographic353

history of the impala populations using the ∂a∂i [5] software with the es-354

timated impala spectra shown in figure 3e, though folded due to the lack355

of an outgroup for proper polarisation. Briefly, based on an estimated SFS356

and a user-specified demographic model, ∂a∂i fits a model SFS based on the357

demographic parameters so as to maximise the likelihood of these parameters.358
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Figure 4: Demographic inference results. Each row corresponds to a demographic model fitted using ∂a∂i. On the left, a
schematic of the model is shown including parameter estimates using SFS estimates from realSFS after 100 epochs or from
winsfs100 after two epochs. Time is given in years, population sizes in number of individuals, and migration rates is per
chromosome per generation. All parameters were scaled assuming a mutation rate of 1.41 · 10−8 per site per generation and
a generation time of 5.7 years. On the right, the residuals of the SFS fitted by ∂a∂i. Note that ∂a∂i folds the input SFS,
hence the residuals are likewise folded. The fixed category is omitted to avoid distorting the scale. (a), (b): Model with
symmetric migration and constant population size. (c), (d): Model with asymmetric migration and constant population

size. (e), (f): Model with asymmetric migration and a single, instantaneous population size change.
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Our approach was to fit a simple demographic model for the Shangani and359

Maasai Mara populations, and then gradually add parameters to the model360

as required based on the residuals of the input and model spectra. We take361

this to be representative of a typical workflow for demographic inference.362

For each successive demographic model [27], we ran ∂a∂i on the folded363

spectra by performing 100 independent optimisation runs from random start-364

ing parameters, and checking for convergence by requiring the top three365

results to be within five likelihoods units of each other. If the optimisation did366

not converge, we did additional optimisation runs until either they converged367

or 500 independent runs were reached without likelihood convergence. In368

that case, we inspected the results for the top runs, to assess whether they369

were reliably reaching similar estimates and likelihoods. Results are shown in370

figure 4.371

The first, basic model assumes that the populations have had constant372

populations sizes and a symmetric migration rate since diverging. The373

parameter estimates based on realSFS and winsfs are similar, though the374

winsfs model fit has significantly higher log-likelihood (figure 4a). However,375

when inspecting the residuals in figure 4b, the realSFS residuals suffer from a376

heavy checkerboard pattern, making it hard to distinguish noise from model377

misspecification. In contrast, the winsfs residuals clearly show areas of the378

spectrum where the model poorly fits the data.379

In particular, the residuals along the very edge of the spectrum suggest380

that a symmetric migration rate is not appropriate. Therefore, we fit a second381

model with asymmetric migration (figure 4c) Now ∂a∂i finds migration rates382

from Shangani to Maasai Mara an order of magnitude higher than vice versa.383

The results for winsfs (figure 4d) show improved residuals, while the realSFS384

residuals remain hard to interpret.385

Finally, an area of positive residuals in the fixed and rare-variant end of386

the Shangani spectrum suggests that this population has recently undergone a387

significant bottleneck. Therefore, the third model allows for an instantaneous388

size change in each of the impala populations (figure 4e). At this point, the389

winsfs residuals (figure 4f) are negligible, suggesting that no more parameters390

should be added to the model. Once again, though, the realSFS residuals391

leave us uncertain whether further model extensions are required.392

When looking at the final model fits, the ∂a∂i parameter estimates from393

realSFS and winsfs also start to differ slightly. In several instances, estimates394

disagree by about 50 %, and the log-likelihood remains much higher for winsfs,395

with a difference of 45 000 log-likelihood units to realSFS. In addition, we396

confirmed that the log-likelihood of the original test data set given the SFS397

fitted by ∂a∂i is higher for winsfs (−8.08 ·108) than for realSFS (−8.38 ·108).398

We stress, however, that we would have likely never found the appropriate399

model without using winsfs, since the interpretation of the realSFS results400

is difficult. In relation to this point, we note that the final model results in401

considerably different estimates for parameters of biological interest, such402

as split times and recent population sizes, relative to the initial model. We403

also find that the last model is supported by the literature: previous genetic404

and fossil evidence suggests extant common impala populations derive from405

a refugia in Southern Africa that subsequently colonised East Africa in406

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.05.24.493190doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.24.493190
http://creativecommons.org/licenses/by-nc/4.0/


the middle-to-late Pleistocene [28–30]. This is broadly consistent with the407

estimated split time, and the reduction in population size in East African408

populations as they colonised the new habitat. The difference in effective409

population size between the southern Shangani population and the eastern410

Maasai Mara was previously also found using microsatellite data [28].411

Simulations To validate these findings in conditions with a known SFS,412

we ran simulations using msprime [31] and tskit [32]. Briefly, we simulated413

two populations, which we simply refer to as A and B. Populations A and414

B diverged 10 000 generations ago and both have effective populations sizes415

of 10 000 individuals, except for a period of 1000 generations after the split,416

during which time B went through a bottleneck of size 1000. We simulated 22417

independent chromosomes of 10 Mb for a total genome size of 220 Mb, using418

a mutation rate of 2.5 · 10−8 and a uniform recombination rate of 1 · 10−8.419

To explore the consequences of varying sample sizes, we sampled 5, 10, or 20420

individuals from the two populations. For each of these three scenarios, we421

calculated the true SFS from the resulting genotypes (shown in supplementary422

figure 6).423

Using the true genotypes as input, we simulated the effects of NGS424

sequencing with error for both the variable and invariable sites. At every425

position in the genome, including the monomorphic sites, we sample D ∼426

Poisson(λ) bases and introduce errors with a constant rate of ε = 0.002427

independently for each base. We calculate genotype likelihoods according to428

the GATK model outlined in equations (1) to (3) and output GLF files. Using429

these, we create SAF files for A and B with no further filtering using ANGSD.430

The mean depth λ is set to either 2, 4, or 8 to investigate the performance431

of winsfs at difference sequencing depths. This results in a grid of 3 × 3432

simulated NGS data sets with three different sample sizes and three different433

mean depth values.434

From the simulated SAF files, we ran winsfs and realSFS as above to435

generate the two-dimensional SFS, except for a maximum of 100 epochs.436

For each method and each epoch e until convergence, we calculated the437

log-likelihood for the corresponding SFS ϕ̂(e),438

log p(ϕ | ϕ̂(e)) = log
∏

j∈J
ϕ
Mϕ̂

(e)
j

j

=
∑

j∈J
Mϕ̂

(e)
j log ϕj (15)

where ϕ is the observed true SFS and M is the total number of sites. Fig-439

ure 5 shows how the log-likelihood evolves over epochs for winsfs (W ∈440

{100, 250, 500}) and realSFS for sample sizes Nk ∈ {5, 10, 20} and simulated441

mean depths λ ∈ {2, 4, 8}. We observe that at a mean depth of 2, winsfs100442

outperforms realSFS by a significant margin both in terms of speed and the443

final log-likelihood. At mean depth 4, the winsfs remains much faster and444

still achieves meaningfully better log-likelihoods, especially at higher sample445

sizes. Finally, at mean depth 8, winsfs100 still converges 5–10 times faster446
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Figure 5: Log-likelihood over epochs of the true observed SFS given the two-dimensional SFS estimated by winsfs
(W ∈ {100, 250, 500}) and realSFS. Different simulated scenarios (mean depth 2, 4, or 8; sample size 5, 10, or 20) shown.
For each method, the epoch at which the default stopping criterion is triggered is shown. Note that the y-scale varies across
sample sizes and depths in order to show the full range of data (main plot) and the difference between realSFS and winsfs

(zoom plot). For each column of plots, corresponding to a simulated sample size, the y-scale in the zoom plot is held
constant to allow for comparison across depths.
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than realSFS (measured in epochs), but the methods provide estimates of447

similar quality.448

The estimated spectra for realSFS and winsfs100 at their default stopping449

points are shown in supplementary figure 7 and supplementary figure 8 and450

respectively. These confirm that the spectra on the whole are well-estimated by451

winsfs100 as compared to the true SFS (supplementary figure 6). Moreover,452

we again observe that realSFS introduces a checkerboard pattern in the453

low-information part of the spectrum at 2 x–4 x, which is not present in the454

true spectrum, and which is not inferred by winsfs. The pattern is more455

pronounced at higher sample sizes. This supports the hypothesis that realSFS456

tends to overfit in situations where many parameters must be inferred with457

little information.458

Peak simulations The averaging of block estimates in the window EM459

algorithm appears to induce a certain ‘smoothing’ of the spectrum at low460

depth. This smoothing effect is implicit in the sense of being nowhere explicitly461

modelled, and each parameter is estimated independently. Nevertheless, this462

observation may give rise to a concern that winsfs, unlike the maximum463

likelihood estimate from realSFS, might remove true abrupt peaks in the464

SFS.465

To investigate, we modified the demographic simulation with sample size 20466

described above in the following way. In each of seven arbitrarily chosen bins467

near to the centre of the SFS, we artificially spiked 10 000 counts into the true468

spectrum after running the demographic simulations (supplementary figure 9).469

This represents a 30–40-fold increase relative to the original count and the470

neighbouring cells. Based on this altered spectrum, we simulated sequencing471

data for depth 2 x, 4 x, and 8 x, created SAF files, and ran realSFS and472

winsfs100 as before. The residuals of the realSFS and winsfs estimates are473

shown in supplementary figure 10 and supplementary figure 11, respectively.474

In this fairly extreme scenario, the spectra inferred by both winsfs and475

realSFS appear to have a small but noticeable downwards bias in the peak476

region at 2 x and 4 x. However, compared to realSFS, winsfs has smaller477

residuals in all scenarios, and the apparent bias is inversely correlated with478

depth. These results confirm that usage the window EM algorithm does not479

lead to excess flattening of SFS peaks compared with the maximum likelihood480

estimate from the standard EM algorithm.481

Hyperparameters The window EM algorithm requires hyperparameter482

settings for B and W . Moreover, it requires a choice of stopping criterion.483

For ease of use, the winsfs software ships with defaults for these settings,484

and we briefly describe these.485

We expect that the choice of B is less important than the term W/B,486

which governs the fraction of data that is directly considered in any one update487

step. Having analysed input data varying in size from 220 Mb (simulations)488

to 1.17 Gb (human data), we find that fixing B = 500 works fine as a default489

across a wide range of input sizes. Therefore, the more interesting question is490

how to set the window size. In theory, there should be a trade-off between491
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speed of convergence and accuracy of results, where lower window size favours492

the former and higher window size the latter. However, in practice, based493

on our results, we have not seen evidence that using W = 500 over W = 100494

leads to significantly better inference. On the other hand, the lower window495

size has significantly faster convergence. Based on this, we feel that window496

size of 100 makes for the best general default. By default, the winsfs software497

uses B = 500 blocks and a window size W = 100.498

As for stopping, winsfs implements the criterion based differences δ in L′
e499

(eq. (14)) over successive epochs. Based on the initial analysis of the human500

and impala data, we chose δ = 10−4 (see supplementary figure 12) as the501

default value and used the simulations to validate this choice. Figure 5 shows502

the point at which stopping occurs, which is generally around the maximum503

log-likelihood as desired.504

Streaming In the main usage mode, pre-calculated SAF likelihoods are505

read into RAM, as in realSFS. However, it is also possible to run winsfs506

while keeping the data on disk and streaming through the intersecting sites507

in the SAF files. We refer to this as ‘streaming mode’.508

Since the window EM algorithm requires randomly shuffling the input509

data, a preparation step is required in which SAF likelihoods are (jointly)510

shuffled into a new file. We wish to avoid loading the data into RAM in order511

to perform a shuffle, and we also do not want multiple intermediate writes512

to disk. To our knowledge, it is not possible to perform a true shuffle of the513

input data within these constraints. Instead, since we are only interested514

in shuffling for the purposes of breaking up blocks of LD, we perform a515

pseudo-shuffle according to the following scheme. We pre-allocate a file with516

space for exactly M intersecting sites in the input data. This file is then517

split into S contiguous sections of roughly equal size, and we then assign518

input site with index m ∈ {1, . . . ,M} to position ⌊(m+ 1)/S⌋+ 1 in section519

(m + 1) % S + 1, where % is the remainder operation. That is, the first S520

sites in the input end up in the first positions of each section, and the next S521

sites in the input end up in the second positions of each section, and so on.522

This operation can be performed with constant memory, without intermediate523

writes to disk, and has the benefit of being reversible.524

After preparing the pseudo-shuffled file, winsfs can be run exactly as525

in the main mode. To confirm that this pseudo-shuffle is sufficient for the526

purposes of the window EM algorithm, we ran 10 epochs of winsfs in527

streaming mode for the impala and human data sets in both one and two528

dimensions. After each epoch, we calculated the log-likelihood of the resulting529

SFS and compared them to the log-likelihood obtained by running in main530

mode above. The results are shown in supplementary figure 13 and show that531

streaming mode yields comparable results to the main, in-RAM usage: the532

likelihood differs slightly, but is neither systematically better or worse.533

Benchmark To assess its performance characteristics, we benchmarked534

winsfs in both the main mode and streaming mode as well as realSFS on535

the impala data. For each of the three, we ran estimation until convergence,536
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Figure 6: Computational resource usage of winsfs and realSFS for the joint estimation of the Shangani and Maasai Mara
impala populations winsfs can be run while loading input data into RAM, or streaming through it on disk. In the latter
case, data must be shuffled on disk before hand. (a): Runtime required with 20 threads for various numbers of epochs.

Results for winsfs are shown for in-memory usage and streaming mode. For streaming modes, times are given with and
without the extra time taken to shuffle data on disk before running. (b): Peak memory usage (maximum resident set size).

as well as until various epochs before then, collecting benchmark results using537

Snakemake [33]. Both realSFS and winsfs were given 20 cores. Results538

are shown in figure 6. In terms of run-time, we find that running winsfs in539

RAM is significantly faster than realSFS (figure 6a). This is true in part540

because winsfs requires fewer epochs, but also since winsfs runs faster than541

realSFS epoch-by-epoch. As expected, when switching winsfs to streaming542

mode, run-time suffers as epochs increase. However, taking the number of543

epochs required for convergence into account, streaming winsfs remains544

competitive with realSFS, even when including the initial overhead to shuffle545

SAF likelihoods on disk.546

Looking at memory consumption, streaming winsfs has a trivial peak547

memory usage of 10 MB, including the initial pseudo-shuffle. In comparison,548

when reading data into RAM, realSFS and winsfs require 137 GB and549

107 GB, respectively, even on the fairly small impala data set.550

The benchmarking results for the one-dimensional Maasai Mara estimation551

are shown in supplementary figure 14 and support similar conclusions.552

4 Discussion553

We have presented the window EM algorithm for inferring the SFS from554

low-depth data, as well as the winsfs implementation of this algorithm. The555

window EM algorithm updates SFS estimates in smaller blocks of sites, and556

averages these block estimates in larger windows. We have argued that this557

approach has three related advantages relative to current methods. First, by558

updating more often, convergence happens one to two orders of magnitude559

faster. Due to the window averaging, this improvement in convergence times560

does not occur at the cost of stability. Second, due to the fast convergence, it561
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is feasible to run the window EM algorithm out of memory. This brings the562

memory requirements of the algorithm from hundreds of gigabytes of RAM to563

virtually nothing. Third, by optimising over different subsets of the data in564

each iteration, the algorithm is prevented from overfitting to the input data.565

In practice, this means we get biologically more plausible spectra.566

On this last point, it is worth emphasising that while winsfs appears to567

have the effect of smoothing the spectrum in a beneficial way, this smoothing568

effect is entirely implicit. That is, it is nowhere explicitly modelled that each569

estimated bin should be similar to neighbouring bins to avoid checkerboard570

patterns. Rather, the apparent smoothing emerges because winsfs mitig-571

ates some of the issues with overfitting that may otherwise manifest as a572

checkerboard pattern. As shown in the simulations, winsfs does not remove573

true peaks in the SFS. In the broader setting of stochastic optimization, win-574

dow EM is in this way related to forms of Polyak-Ruppert iterate averaging575

schemes as used in stochastic gradient methods [34, 35], variants of which576

have also been shown to control variance and induce regularisation [36, 37],577

similar to what we have observed here.578

Within the EM literature, window EM is prima facie quite similar in579

spirit to other versions of the stochastic EM algorithm [38–42]. They too580

work on smaller blocks, and seek some way of controlling stability in how the581

block estimate ψ̂ is incorporated in the overall estimate ϕ̂. Typically, this582

involves an update of the form γtψ̂+ (1− γt)ϕ̂ for some weight γt decaying as583

a function of iteration t. During initial experimentation, we empirically found584

that such methods tended to increase the noise in the spectrum, rather than585

reduce it. This problem likely arises because estimating the multidimensional586

SFS requires estimating many parameters for which very little information is587

available in any one batch. Therefore, by having an update step involving588

only the current estimate and a single, small batch of sites, significant noise is589

introduced in the low-density part of the spectrum. In contrast, the window590

EM approach still optimises over smaller batches for speed, but actually591

considers large amounts of data in the update step by summing the entire592

window of batch estimates, thereby decreasing the noise.593

For SFS inference specifically, prior work exists to improve estimation594

for low-depth sequencing data. For example, it has been proposed to ‘band’595

SAF likelihoods to make estimation scale better in the number of sampled596

individuals [23, 43]. Briefly, the idea is that at each site, all the mass in the597

SAF likelihood tends to be concentrated in a small band around the most598

likely sample frequency, and downstream inference can be adequately carried599

out by only propagating this band and setting all others to zero. By doing600

so, run-time and RAM can be saved by simply ignoring all the zero bins601

outside the chosen band. We note that such ideas are orthogonal to the work602

presented here, since they are concerned with the representation of the input603

data, and thereby indirectly modify all downstream optimisation methods.604

Future work on winsfs may involve the ability to run from banded SAF605

likelihoods. This will be important with large sample sizes, in the hundreds606

of individuals.607

Others have focused on the implementation details of the EM algorithm,608

for instance using GPU acceleration [44]. Such efforts still have the typical609
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high memory requirements, and do not address the overfitting displayed by610

the standard EM algorithm. Moreover, we find that the presented algorithmic611

improvements, combined with an efficient implementation, serve to make612

winsfs more than competitive with such efforts in terms of runtime. Indeed,613

with winsfs converging in-memory in less than an hour on genome-scale data,614

runtime is no longer a significant bottleneck for SFS estimation.615

We emphasise, however, that the window EM algorithm and winsfs are616

unlikely to yield any meaningful benefits with sequencing data at above617

around 10 x–12 x coverage. With such data, better inference of the SFS will be618

obtained by estimation directly from genotype calls with appropriate filters.619

Nevertheless, efficient and robust methods remain important for low-coverage620

data. This is partly because low-coverage data may sometimes be the only621

option, for example when working with ancient DNA. Also, such methods622

allow intentionally sequencing at lower coverage, decreasing the sequencing623

cost per individual.624

In addition, we do not expect winsfs to perform better than realSFS625

when data is not available for many sites (e.g <100 Mb) due to the fact that626

winsfs only uses parts of the available data directly in the final estimation.627

Finally, improvements in the SFS estimates by winsfs are unlikely to628

be significant for simple summary statistics like θ, Fst, or f -statistics. For629

such purposes, winsfs simply produces results similar to realSFS, although630

much faster. However, as the number of dimensions and samples increase,631

and as sequencing depth decreases, overfitting will start to influence the low-632

frequency bins of the spectrum. Where this information is used downstream,633

winsfs will lead to better and more interpretable results, and can potentially634

help solve commonly known biases in parameter estimates arising from model635

misspecification [45]. We have seen this in the ∂a∂i case study, but we636

believe the same would be true of other popular demographic inference637

frameworks including fastsimcoal [6, 46], moments [47], and momi [48]. It638

may also be significant for other methods for complex inference from the639

multidimensional spectrum, including inference of fitness effects using fit∂a∂i640

[49, 50] or introgression using DFS [51], though we have not explored these641

methods.642

5 Code and data availability643

The human data analysed is part of the 1000 Genomes [25] phase 3 low depth644

sequencing data. Alignments have been made available by the 1000G project645

and can be accessed at ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/646

. The impala data has been made available via the SRA with accession647

PRJNA862915. Analysis and plotting code, as well as the cleaned data corres-648

ponding to the final results, is available at github.com/malthesr/window649

and the winsfs software itself at github.com/malthesr/winsfs .650
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