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Fast-local and slow-global neural ensembles in the
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Ensembles of neurons are thought to be co-active when participating
in brain computations. However, it is unclear what principles deter-
mine whether an ensemble remains localised within a single brain re-
gion, or spans multiple brain regions. To address this, we analysed
electrophysiological neural population data from hundreds of neu-
rons recorded simultaneously across nine brain regions in awake
mice. At fast sub-second timescales, spike count correlations be-
tween pairs of neurons in the same brain region were stronger than
for pairs of neurons spread across different brain regions. In con-
trast at slower timescales, within- and between-region spike count
correlations were similar. Correlations between high-firing-rate neu-
ron pairs showed a stronger dependence on timescale than low-
firing-rate neuron pairs. We applied an ensemble detection algo-
rithm to the neural correlation data and found that at fast timescales
each ensemble was mostly contained within a single brain region,
whereas at slower timescales ensembles spanned multiple brain re-
gions. These results suggest that the mouse brain performs fast-
local and slow-global computations in parallel.

neural ensembles | neural correlations | whole-brain computation | neural

data science

he brain is traditionally parcellated into anatomical re-
gions that perform distinct computations (1). However
these regions do not operate independently: successful brain
function must also involve computations spread over multiple
regions (2—4). It is unclear how local computations within a
single brain region are coordinated with global computations
spread across many brain regions. Several possibilities have
been proposed: synchronous oscillatory activity may bind
together spatially separated neural signals (5-8); travelling
waves may propagate signals across the cortex (9); or a hier-
archy of timescales may separate low-level sensory processing
from higher-level cognitive computations in the brain (10-12).
Here we tested the hypothesis that computations are local
to single brain regions at fast timescales, but spread across
multiple regions at slower timescales.

Results

Spatial extent of neural correlations varies with timescale.
We first characterised the magnitudes of within- and between-
region neural spike count correlations by analysing previously
published data from ~500 neurons recorded simultaneously
across 9 brain regions (frontal, sensorimotor, visual, and ret-
rosplenial cortex, hippocampus, striatum, thalamus, and mid-
brain) in awake mice (13, 14). We calculated spike count
correlations for each pair of neurons in the dataset over a
range of different time bin widths, from 10 milliseconds to 3
seconds.

Figure 1C shows example 10-second raster plots and corre-
sponding spike count time series from a pair of neurons within
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Fig. 1. Within- and between-region neural correlations are more similar at slow
timescales than fast timescales. a: Neuropixel probe locations in the three mouse
brains (adapted from (13)). b: Raster plot of spikes from 198 sample units from
one mouse. Scale bar corresponds to 1 s. ¢: Spike-count time series from pair of
neurons recorded in the same brain region (top) and pair recorded from different
regions (bottom). e, f: Correlation matrix for spike counts from 494 neurons recorded
from one animal with a time bin of 100 ms (c) or 1 second (d). g, h: Histograms of
pairwise correlations from matrices in ¢ and d for within- and between-region pairs of
neurons (colours blue and red respectively) for 100 ms (g) or 1 second (h) time bins. i:
Mean pairwise correlations as a function of time bin. j: Jensen-Shannon divergence
of within vs between-region correlation distributions as a function of time bin.
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the same brain region (light and dark blue, top) and a pair
of neurons from two different brain regions (red and black,
bottom) for both 100 ms and 1 s time bins. Figure 1D shows
scatter plots of the spike counts for the same neuron pairs. The
within-region cell pair showed the same high spike count corre-
lation of p &~ 0.4 at both 100 ms and 1 s time bins. In contrast,
the between-region pair showed a low spike count correlation
of 0.07 at fast 100 ms time bins, but a high correlation of 0.4
at slower 1 second time bins. This general pattern held up
across the dataset: Figure 1E shows the pairwise correlation
matrices for all 494 neurons analysed from this animal for both
the 100 ms and 1 second time bin sizes. The rows and columns
of these matrices are ordered by brain region, so within-region
correlations are inside the coloured boxes along the main di-
agonal (each colour represents a different brain region). With
100 ms bins, the within-region correlations appear stronger
than the between-region correlations. However with 1 second
time bins, the within- and between-region correlations appear
visually similar. To explore this phenomenon, we separately
histogrammed the within- and between-region values from the
correlation matrices (Figure 1G,H). Both the mean (Figure 1I)
and the width of correlation histograms increased with time
bin size, for both within- and between-region correlations (15).
However, the within-region correlations had a heavier positive
tail than the between-region correlations at fast timescales,
but markedly less so at slow timescales (Figure 1G,H). To
quantify this effect, we calculated the Jensen-Shannon (JS)
divergence between the two distributions. High divergence
values imply greater differences in the distributions. Indeed
the JS divergence decreased as a function of time bin size,
consistently for the data from all three animals (Figure 1J).
These results imply that at fast timescales, correlations are
high only between neurons within brain regions, but at slow
timescales within- and between-region neural correlations are
similar.

Low firing rate neurons preferentially correlate within brain
region. Low- and high-firing rate neurons have previously been
shown to serve different functions in neural circuits (16). To
test whether this dissociation is also visible in the within- vs
between-region correlation structure, we plotted correlation
values against geometric mean firing rate for each pair of
neurons in the dataset (Figure 2a—d). Most pairs of neurons
had geometric mean firing rates between 1-10 Hz (Figure 2e).
Correlations tended to get stronger as a function of firing
rate, for both within- and between-region pairs (Figure 2a—d)
(17). We binned pairs by their geometric mean firing rate and
calculated the JS divergence between the within- and between-
region correlations as a function of firing rate bin (Figure
2f). At both fast and slow timescales, low-firing rate pairs
had stronger within-region correlations than between-region
correlations. In contrast, high firing rate pairs had moderate
divergence at 100 ms timebins and almost zero divergence
at 1 second time bins. This implies that high-firing rate
neurons correlate almost equally strongly within- and between-
regions, but low-firing rate pairs have similarly low within-
and between-region correlations at all timescales. Therefore
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Fig. 2. Low firing rate neurons preferentially correlate within brain regions. a-d:
Pairwise neural correlations vs geometric mean of firing rate for many pairs from one
animal, for within (a,c) and between (b,d) region neuron pairs, with time bin interval
shown in panel insets. Solid line shows mean correlation, dashed lines are + 2
s.d. from mean. e: Histograms of all pairwise geometric mean firing rates for all
three animals. f: Jensen-Shannon divergence between within and between-region
correlations as a function of geometric mean firing rate, for all three animals. Dark
green corresponds to spikes binned at 100 ms intervals, light green is 1000 ms
intervals.

the phenomenon seen in Figure 1 is mainly due to high-firing
rate neuron pairs.

Detected ensembles align with anatomical regions at short
time bins, but not long time bins. To test if neural ensembles
also showed different structure at fast and slow timescales, we
ran a community detection algorithm from network science on
the correlation matrices to detect ensembles (Figure 3a) (18).
The algorithm splits the neurons into non-overlapping subsets
based on their correlations, trying to discover ensembles of
neurons with strong positive correlations between the members
of each ensemble, but weaker correlations with neurons in
other ensembles (Methods). Figure 3b and ¢ shows the same
example correlation matrices from Figure le, but with the
rows and columns reordered by ensemble membership. In all
three animals we found fewer ensembles at longer time bin
sizes (Figure 3f). Crucially, the ensemble detection algorithm
did not know anything about which brain regions each neuron
belonged to. To visualise the brain region membership of
each ensemble, we plotted a small square for each neuron
coloured according to its brain region (Figure 3d,e). At 100
ms time bins, most ensembles contained neurons from only
a small number of brain regions, whereas at 1 second time
bins almost all ensembles contained neurons from several brain
regions. To quantify this effect, we asked the questions: what
is the probability that any arbitrary neuron pair is in the same
ensemble? And does this differ for pairs of neurons within the
same brain region vs pairs across two brain regions? 20-30% of
same-region pairs were in the same ensemble, but only 10-20%
of different-region pairs were in the same ensemble (Figure 3g).
The difference between these two fractions decreased towards
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zero as a function of time bin size (Figure 3h), implying that
at fast time scales neurons in the same brain region had a
higher chance of being in the same ensemble than two neurons
in different brain regions, but this distinction got weaker at
slower time scales. To further quantify the effect, we used a
distance measure from information theory to ask the question:
what is the difference between the brain region partition and
ensemble partition of the set of all recorded neurons? This

‘variation of information’ measure increased as a function of

time bin size in all three animals (Figure 3i), again implying
that anatomical regions and neural activity ensembles are
more similar at fast timescales than slow timescales.

Discussion

Although previous studies have compared within- and between-
region neural correlations, to our knowledge none have de-
scribed the fast-local vs slow-global ensembles phenomenon
we presented here. There are a few possible reasons for this
gap: most electrophysiological studies either looked at small
numbers of neurons where the phenomenon may not be sta-
tistically detectable, or looked at aggregate neural activity
measures such as local field potentials (8) which would miss
the single-neuron-resolution ensembles we discovered. Modern
large-scale two-photon imaging methods do enable simultane-
ous recordings from single neurons in multiple brain regions,
but with poorer signal-to-noise and slow sampling rate so also
may not be able detect the phenomenon we described.

Why might the fast-local vs slow-global dissociation exist?
From a mechanistic point of view, one explanation may be
that the energetic and space constraints on brain wiring imply
that long-range, between-region signals can be transmitted
only at low-bandwidth and with some latency (19). There
are typically fewer long-range synaptic connections than lo-
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cal connections, between-region signalling is low-dimensional
(20), and mammalian axons transmit action potentials be-
tween brain regions with latencies of 10-100 ms (21). These
bandwidth and latency constraints will limit the speed of any
computations that require back-and-forth recurrent signalling
between neurons. This issue is well known in human-made
computers, where the ‘von Neumann bottleneck’ for trans-
ferring data between memory and CPU via low-bandwidth
and high-latency databuses constrains computation speed (22).
From a functional point of view, a separation of timescales
between local and global computations may allow for less in-
terference between processes, and allow local neural circuits
to complete their tasks quickly before broadcasting the results
to other brain regions (8).

We examined this phenomenon only for 9 particular brain
regions, which despite all exhibiting the effect, differed in
their mean firing rates and correlations (13). It would be
interesting to try to understand if and how each brain region
adapts variations of the general fast-local, slow-global principle
depending on its activity statistics and computational role in
the brain at large.

Materials and Methods

All data analysed were sourced from a publicly available dataset (14)
with experimental procedures described previously (13). Briefly,
eight Neuropixel probes were used to record electrophysiological
activity simultaneously from nine brain areas: frontal, sensorimotor,
visual, and retrosplenial cortex, hippocampus, striatum, thalamus,
and midbrain, in each of three 10-16 week-old mice. The mice
were awake but head-fixed. We wrote Python code to compute
the correlation matrices and implement the community detection
algorithm (18). Further details are provided in the Supporting
Information.
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