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Ensembles of neurons are thought to be co-active when participating
in brain computations. However, it is unclear what principles deter-
mine whether an ensemble remains localised within a single brain re-
gion, or spans multiple brain regions. To address this, we analysed
electrophysiological neural population data from hundreds of neu-
rons recorded simultaneously across nine brain regions in awake
mice. At fast sub-second timescales, spike count correlations be-
tween pairs of neurons in the same brain region were stronger than
for pairs of neurons spread across different brain regions. In con-
trast at slower timescales, within- and between-region spike count
correlations were similar. Correlations between high-firing-rate neu-
ron pairs showed a stronger dependence on timescale than low-
firing-rate neuron pairs. We applied an ensemble detection algo-
rithm to the neural correlation data and found that at fast timescales
each ensemble was mostly contained within a single brain region,
whereas at slower timescales ensembles spanned multiple brain re-
gions. These results suggest that the mouse brain performs fast-
local and slow-global computations in parallel.
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The brain is traditionally parcellated into anatomical re-1

gions that perform distinct computations (1). However2

these regions do not operate independently: successful brain3

function must also involve computations spread over multiple4

regions (2–4). It is unclear how local computations within a5

single brain region are coordinated with global computations6

spread across many brain regions. Several possibilities have7

been proposed: synchronous oscillatory activity may bind8

together spatially separated neural signals (5–8); travelling9

waves may propagate signals across the cortex (9); or a hier-10

archy of timescales may separate low-level sensory processing11

from higher-level cognitive computations in the brain (10–12).12

Here we tested the hypothesis that computations are local13

to single brain regions at fast timescales, but spread across14

multiple regions at slower timescales.15

Results16

Spatial extent of neural correlations varies with timescale.17

We first characterised the magnitudes of within- and between-18

region neural spike count correlations by analysing previously19

published data from ∼500 neurons recorded simultaneously20

across 9 brain regions (frontal, sensorimotor, visual, and ret-21

rosplenial cortex, hippocampus, striatum, thalamus, and mid-22

brain) in awake mice (13, 14). We calculated spike count23

correlations for each pair of neurons in the dataset over a24

range of different time bin widths, from 10 milliseconds to 325

seconds.26

Figure 1C shows example 10-second raster plots and corre-27

sponding spike count time series from a pair of neurons within28

Fig. 1. Within- and between-region neural correlations are more similar at slow
timescales than fast timescales. a: Neuropixel probe locations in the three mouse
brains (adapted from (13)). b: Raster plot of spikes from 198 sample units from
one mouse. Scale bar corresponds to 1 s. c: Spike-count time series from pair of
neurons recorded in the same brain region (top) and pair recorded from different
regions (bottom). e, f: Correlation matrix for spike counts from 494 neurons recorded
from one animal with a time bin of 100 ms (c) or 1 second (d). g, h: Histograms of
pairwise correlations from matrices in c and d for within- and between-region pairs of
neurons (colours blue and red respectively) for 100 ms (g) or 1 second (h) time bins. i:
Mean pairwise correlations as a function of time bin. j: Jensen-Shannon divergence
of within vs between-region correlation distributions as a function of time bin.
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the same brain region (light and dark blue, top) and a pair29

of neurons from two different brain regions (red and black,30

bottom) for both 100 ms and 1 s time bins. Figure 1D shows31

scatter plots of the spike counts for the same neuron pairs. The32

within-region cell pair showed the same high spike count corre-33

lation of ρ ≈ 0.4 at both 100 ms and 1 s time bins. In contrast,34

the between-region pair showed a low spike count correlation35

of 0.07 at fast 100 ms time bins, but a high correlation of 0.436

at slower 1 second time bins. This general pattern held up37

across the dataset: Figure 1E shows the pairwise correlation38

matrices for all 494 neurons analysed from this animal for both39

the 100 ms and 1 second time bin sizes. The rows and columns40

of these matrices are ordered by brain region, so within-region41

correlations are inside the coloured boxes along the main di-42

agonal (each colour represents a different brain region). With43

100 ms bins, the within-region correlations appear stronger44

than the between-region correlations. However with 1 second45

time bins, the within- and between-region correlations appear46

visually similar. To explore this phenomenon, we separately47

histogrammed the within- and between-region values from the48

correlation matrices (Figure 1G,H). Both the mean (Figure 1I)49

and the width of correlation histograms increased with time50

bin size, for both within- and between-region correlations (15).51

However, the within-region correlations had a heavier positive52

tail than the between-region correlations at fast timescales,53

but markedly less so at slow timescales (Figure 1G,H). To54

quantify this effect, we calculated the Jensen-Shannon (JS)55

divergence between the two distributions. High divergence56

values imply greater differences in the distributions. Indeed57

the JS divergence decreased as a function of time bin size,58

consistently for the data from all three animals (Figure 1J).59

These results imply that at fast timescales, correlations are60

high only between neurons within brain regions, but at slow61

timescales within- and between-region neural correlations are62

similar.63

Low firing rate neurons preferentially correlate within brain64

region. Low- and high-firing rate neurons have previously been65

shown to serve different functions in neural circuits (16). To66

test whether this dissociation is also visible in the within- vs67

between-region correlation structure, we plotted correlation68

values against geometric mean firing rate for each pair of69

neurons in the dataset (Figure 2a–d). Most pairs of neurons70

had geometric mean firing rates between 1–10 Hz (Figure 2e).71

Correlations tended to get stronger as a function of firing72

rate, for both within- and between-region pairs (Figure 2a–d)73

(17). We binned pairs by their geometric mean firing rate and74

calculated the JS divergence between the within- and between-75

region correlations as a function of firing rate bin (Figure76

2f). At both fast and slow timescales, low-firing rate pairs77

had stronger within-region correlations than between-region78

correlations. In contrast, high firing rate pairs had moderate79

divergence at 100 ms timebins and almost zero divergence80

at 1 second time bins. This implies that high-firing rate81

neurons correlate almost equally strongly within- and between-82

regions, but low-firing rate pairs have similarly low within-83

and between-region correlations at all timescales. Therefore84
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Fig. 2. Low firing rate neurons preferentially correlate within brain regions. a–d:
Pairwise neural correlations vs geometric mean of firing rate for many pairs from one
animal, for within (a,c) and between (b,d) region neuron pairs, with time bin interval
shown in panel insets. Solid line shows mean correlation, dashed lines are ± 2
s.d. from mean. e: Histograms of all pairwise geometric mean firing rates for all
three animals. f: Jensen-Shannon divergence between within and between-region
correlations as a function of geometric mean firing rate, for all three animals. Dark
green corresponds to spikes binned at 100 ms intervals, light green is 1000 ms
intervals.

the phenomenon seen in Figure 1 is mainly due to high-firing 85

rate neuron pairs. 86

Detected ensembles align with anatomical regions at short 87

time bins, but not long time bins. To test if neural ensembles 88

also showed different structure at fast and slow timescales, we 89

ran a community detection algorithm from network science on 90

the correlation matrices to detect ensembles (Figure 3a) (18). 91

The algorithm splits the neurons into non-overlapping subsets 92

based on their correlations, trying to discover ensembles of 93

neurons with strong positive correlations between the members 94

of each ensemble, but weaker correlations with neurons in 95

other ensembles (Methods). Figure 3b and c shows the same 96

example correlation matrices from Figure 1e, but with the 97

rows and columns reordered by ensemble membership. In all 98

three animals we found fewer ensembles at longer time bin 99

sizes (Figure 3f). Crucially, the ensemble detection algorithm 100

did not know anything about which brain regions each neuron 101

belonged to. To visualise the brain region membership of 102

each ensemble, we plotted a small square for each neuron 103

coloured according to its brain region (Figure 3d,e). At 100 104

ms time bins, most ensembles contained neurons from only 105

a small number of brain regions, whereas at 1 second time 106

bins almost all ensembles contained neurons from several brain 107

regions. To quantify this effect, we asked the questions: what 108

is the probability that any arbitrary neuron pair is in the same 109

ensemble? And does this differ for pairs of neurons within the 110

same brain region vs pairs across two brain regions? 20–30% of 111

same-region pairs were in the same ensemble, but only 10–20% 112

of different-region pairs were in the same ensemble (Figure 3g). 113

The difference between these two fractions decreased towards 114
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Fig. 3. Neural ensembles are within-region at fast
timescales but multi-region at slow timescales. a:
Schematic diagram of community detection algorithm
steps. b, c: Same correlation matrices as fig 1 sorted
by ensemble. d, e: Example ensembles at short (d) and
long (e) timescales. f: Number of detected ensembles
vs time bin size. g: Fraction of same and different region
neuron pairs being in same community, vs time bin size.
h: Difference in fraction of same and different region neu-
ron pairs being in same community (same data as panel
g). i: Variation of information (measure of dissimilarity of
anatomical vs ensemble partitions) vs time bin size.

zero as a function of time bin size (Figure 3h), implying that115

at fast time scales neurons in the same brain region had a116

higher chance of being in the same ensemble than two neurons117

in different brain regions, but this distinction got weaker at118

slower time scales. To further quantify the effect, we used a119

distance measure from information theory to ask the question:120

what is the difference between the brain region partition and121

ensemble partition of the set of all recorded neurons? This122

‘variation of information’ measure increased as a function of123

time bin size in all three animals (Figure 3i), again implying124

that anatomical regions and neural activity ensembles are125

more similar at fast timescales than slow timescales.126

Discussion127

Although previous studies have compared within- and between-128

region neural correlations, to our knowledge none have de-129

scribed the fast-local vs slow-global ensembles phenomenon130

we presented here. There are a few possible reasons for this131

gap: most electrophysiological studies either looked at small132

numbers of neurons where the phenomenon may not be sta-133

tistically detectable, or looked at aggregate neural activity134

measures such as local field potentials (8) which would miss135

the single-neuron-resolution ensembles we discovered. Modern136

large-scale two-photon imaging methods do enable simultane-137

ous recordings from single neurons in multiple brain regions,138

but with poorer signal-to-noise and slow sampling rate so also139

may not be able detect the phenomenon we described.140

Why might the fast-local vs slow-global dissociation exist?141

From a mechanistic point of view, one explanation may be142

that the energetic and space constraints on brain wiring imply143

that long-range, between-region signals can be transmitted144

only at low-bandwidth and with some latency (19). There145

are typically fewer long-range synaptic connections than lo-146

cal connections, between-region signalling is low-dimensional 147

(20), and mammalian axons transmit action potentials be- 148

tween brain regions with latencies of 10–100 ms (21). These 149

bandwidth and latency constraints will limit the speed of any 150

computations that require back-and-forth recurrent signalling 151

between neurons. This issue is well known in human-made 152

computers, where the ‘von Neumann bottleneck’ for trans- 153

ferring data between memory and CPU via low-bandwidth 154

and high-latency databuses constrains computation speed (22). 155

From a functional point of view, a separation of timescales 156

between local and global computations may allow for less in- 157

terference between processes, and allow local neural circuits 158

to complete their tasks quickly before broadcasting the results 159

to other brain regions (8). 160

We examined this phenomenon only for 9 particular brain 161

regions, which despite all exhibiting the effect, differed in 162

their mean firing rates and correlations (13). It would be 163

interesting to try to understand if and how each brain region 164

adapts variations of the general fast-local, slow-global principle 165

depending on its activity statistics and computational role in 166

the brain at large. 167

Materials and Methods 168

All data analysed were sourced from a publicly available dataset (14) 169

with experimental procedures described previously (13). Briefly, 170

eight Neuropixel probes were used to record electrophysiological 171

activity simultaneously from nine brain areas: frontal, sensorimotor, 172

visual, and retrosplenial cortex, hippocampus, striatum, thalamus, 173

and midbrain, in each of three 10–16 week-old mice. The mice 174

were awake but head-fixed. We wrote Python code to compute 175

the correlation matrices and implement the community detection 176

algorithm (18). Further details are provided in the Supporting 177

Information. 178
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