

1 **Melanization of *Candida auris* is Associated with Alteration of Extracellular pH**
2

3 Daniel F. Q. Smith^{#1}, Nathan J. Mudrak^{#1,2}, Daniel Zamith-Miranda^{#3,4}, Leandro Honorato⁵, Leonardo
4 Nimrichter⁵, Christine Chrissian⁶, Barbara Smith⁷, Gary Gerfen⁸, Ruth E. Stark⁶, Joshua D.
5 Nosanchuk^{#3,4}, Arturo Casadevall^{#1}

6
7 ¹ W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins
8 Bloomberg School of Public Health, Baltimore, MD, USA

9 ² Krieger School of Arts & Science, Johns Hopkins University, Baltimore, MD, USA

10 ³ Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York,
11 USA

12 ⁴ Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx,
13 New York, USA

14 ⁵ Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de
15 Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
16 Brazil

17 ⁶ Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for
18 Macromolecular Assemblies, New York, New York 10031, The City University of New York

19 ⁷ Microscope Facility, The Johns Hopkins School of Medicine, Baltimore, MD, USA

20 ⁸ Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA

21 [#] DFQS, NJM, and DZM contributed equally to this work

22 [#] JDN and AC contributed equally to this work

23

24

25

26 **Abstract**
27 *Candida auris* is a recently emerged global fungal pathogen, which causes life-threatening
28 infections, often in healthcare settings. *C. auris* infections are worrisome because the fungus is often
29 resistant to multiple antifungal drug classes. Furthermore, *C. auris* forms durable and difficult to remove
30 biofilms. Due to the relatively recent, resilient, and resistant nature of *C. auris*, we investigated whether it
31 produces the common fungal virulence factor melanin. Melanin is a black-brown pigment typically
32 produced following enzymatic oxidation of aromatic precursors, which promotes fungal virulence through
33 oxidative stress resistance, mammalian immune response evasion, and antifungal peptide and
34 pharmaceutical inactivation. We found that certain strains of *C. auris* oxidized L-DOPA and
35 catecholamines into melanin. Melanization occurred extracellularly in a process mediated by alkalinization
36 of the extracellular environment, resulting in granule-like structures that adhere to the fungus' external
37 surface. *C. auris* had relatively high cell surface hydrophobicity, but there was no correlation between
38 hydrophobicity and melanization. Melanin protected the fungus from oxidative damage, but we did not
39 observe a protective role during infection of macrophages or *Galleria mellonella* larvae. In summary, *C.*
40 *auris* alkalinizes the extracellular medium, which promotes the non-enzymatic oxidation of L-DOPA to
41 melanin that attaches to its surface, thus illustrating a novel mechanism for fungal melanization.

42
43 Keywords: Melanin; *Candida auris*; alkalinization; ammonia; hydrophobicity
44

45 **Introduction**

46 *Candida auris* is an emerging fungal pathogen that is believed to have originated in marine
47 wetlands and marshes (1,2). *C. auris* was first described in a clinical setting in 2009, but patient samples
48 as early as 1996 have been retrospectively determined to be *C. auris* (3–5). Since its discovery, *C. auris*
49 has caused outbreaks in at least 47 countries (3). *C. auris* is often acquired in healthcare settings and is
50 believed to cause infections via biofilms formed on medical equipment such as intravenous catheters,
51 leading to bloodstream infection (candidemia) and dissemination to organs (6). The emergence of *C.*
52 *auris* as a human fungal pathogen is particularly concerning due to its remarkably high resistance to
53 known antifungal therapies. This pathogen displays especially high resistance to azole and echinocandin
54 classes of antifungal drugs (3,7), posing a major concern for clinicians treating fungal infections, since
55 many of the commonly used and most efficacious antifungal therapeutics belong to these two drug
56 classes. Hence, a deeper understanding of the physical properties of *C. auris* and how they contribute to
57 virulence is urgently needed.

58 One unexplored aspect of *C. auris* physiology is whether it can produce the virulence factor
59 melanin. Other *Candida* species, such as *C. albicans* and *C. glabrata*, produce this virulence factor (8–
60 11). Melanin is a black-brown, insoluble, acid resistant pigment found throughout a plethora of life forms,
61 and it has particular importance in the context of fungal virulence in mammals (12,13). In fungi, melanin is
62 typically produced through either the oxidation of catecholamines (DOPA melanin), the Tyrosine
63 degradation pathway (pyomelanin), or polyketide synthase pathways (DHN melanin) (12). Genes
64 controlling melanization are affected by temperature, nutrient stress and copper/metal ion concentration
65 (14–16); the biochemical processes can also be altered by the environmental antioxidant balance and pH
66 (17,18). Melanin is formed either within the cell in organelles termed “melanosomes” and then exported to
67 the cell wall, or in the cell wall itself (19,20). Once located within the cell wall, the pigment can be
68 anchored through interactions with chitin, chitosan, and other cell wall components (9,21–23). In some
69 melanizing fungi such as *C. neoformans*, melanin interacts strongly with polysaccharides, lipids, and
70 proteins, many of which are still intact following boiling in acid, lipid extraction, and enzymatic
71 degradation. These fungi are thought to use such molecules as a scaffold for melanin deposition in the
72 cell wall (19,24,25). This melanin can also be released from the cell wall, as seen in *C. neoformans*,
73 where melanin granules are shed into the extracellular space during cell wall remodeling and can be
74 recovered from the supernatant (19,26).

75 Functionally, fungal melanin pigments have strong antioxidant properties that allow them to resist
76 oxidative damage caused by the host immune cells, such as macrophage and neutrophil oxidative bursts
77 (27). Additionally, melanin can bind and inactivate antimicrobial peptides and antimicrobial enzymes that
78 the host typically uses to degrade and kill fungi during infection, as well as antifungal drugs used to treat
79 infections (28–30). Fungal melanins located in the cell wall can alter cell wall composition and physically
80 mask pathogen-associated molecular patterns (PAMPs) that would otherwise be recognized and bound
81 by pathogen recognition receptors (PRRs). These changes may lead to diminished recognition by host
82 immune cells. Conversely, one subtype of melanin – DHN melanin – can be recognized by the melanin
83 sensing C-type lectin (MeLec) receptor, which is part of the human innate immune response and can
84 enhance fungal clearance (31). Melanin could also be presented to lymphocytes in a stimulatory context,
85 which results in melanin-specific antibody production, which can inevitably lead to fungal opsonization,
86 phagocytosis, and complement deposition (28,32,33).

87 In this study, we investigated the ability of 18 *C. auris* strains to produce melanin. The presence
88 of melanin was confirmed through detection of a stable free-radical structure via electron paramagnetic
89 resonance spectroscopy, a characteristic feature of this group of pigments. Like other fungi, we found that
90 *C. auris* produces a black melanin pigment, which was located on the surface of the cell wall. However,
91 we found that, unlike other fungi, the melanization occurs extracellularly, in the supernatant. In liquid
92 culture, the cell-free melanin can adhere to the surface of the cell and cause pigmentation of the fungus.
93 Next, we found this process to be mediated by the ability of *C. auris* to neutralize the pH of the media it is

94 grown in, resulting in enhanced autoxidation of the L-DOPA and catecholamine melanin substrates. This
95 method of melanin production differs greatly from what is reported in other fungi. Lastly, we evaluated the
96 functional properties of *C. auris* melanin, finding that it protected the fungus from oxidative stress and
97 reduced cell surface hydrophobicity but was not protective *in vitro* in the context of interactions with
98 macrophages, or in an *in vivo* challenge of *Galleria mellonella* larvae. Further studies are required to
99 identify the unique features of *C. auris* that make it particularly resistant to antifungal therapeutics.

100

101 **Results**

102 **Temperature dependence of melanization on *Candida auris* strain**

103 To evaluate the ideal temperature for *Candida auris* melanization, we tested the degree of
104 melanization at both 30°C and 37°C of several strains across five *C. auris* clades. We found that all
105 strains melanized to a greater extent at the higher temperature compared to the lower temperature
106 (Figure 1A-C). The melanin-capable strains of *C. auris* were CDC 385, CDC 386, CDC 387, CDC 388,
107 CDC 389, CDC 390, CDC 931, CDC 1097, CDC 1104, and MMC1 (Table 1). Strain CDC 382 exhibited
108 an intermediate melanin phenotype. Additionally, we note that certain strains, namely CDC 388, CDC
109 390, CDC 1097, and MMC1, melanized significantly more at 37 °C and not at the lower temperature. This
110 trend has interesting implications for understanding regulation of melanization and the role it has in warm
111 environmental niches, as well as during infections of humans, who have a normal core body temperature
112 of ~37 °C.

113 Further, the capacity of individual strains to melanize was associated with their evolutionary
114 clade, with strains belonging to Clades I and IV – associated with South Asia and South America,
115 respectively – demonstrating melanization activity, while those strains belonging to Clades II and III –
116 associated with East Asia and Africa, respectively – did not (Table 1). In addition, the single
117 representative of Clade V – associated with Iran – melanized, but the lack of additional Clade V isolates
118 for testing hinders the generalization of this finding.

119

120 **Electron paramagnetic resonance (EPR)**

121 Melanin is characterized by a stable free-radical structure, which lends to its antioxidant
122 properties. Stable free radicals can be detected by electron paramagnetic resonance (EPR), making this
123 biophysical technique the 'gold standard' for the identification of melanin pigments. Melanin from 7-day
124 cultures was extracted from 12 strains of *C. auris* and analyzed by EPR, where melanin extracted from *C.*
125 *neoformans* H99 was used as a standard (Figure 1D-F). The EPR spectra from the non-melanizing
126 strains did not display the melanin-distinctive EPR peak (Figure 1E), but the EPR spectra from the
127 pigment extracted from the melanin-producing strains (Figure 1F) was similar to the *C. neoformans*
128 melanin profile (Figure 1D).

129

130 **Time and cell density**

131 To understand the optimal conditions for melanin production by *C. auris*, yeast cells were
132 incubated with L-DOPA starting with different cell densities, and the production of pigment was analyzed
133 every 2 to 3 days over a 13-day period and compared to cells incubated in the absence of L-DOPA
134 (Figure 2). *C. neoformans* was also cultured under the same conditions and compared to the *C. auris*
135 melanization profile. Melanin production was optimal by cells in high density (10⁷ cells/mL). In this
136 condition, melanin was visible from day 3, and intensified over a period of days, reaching its peak
137 between days 7 and 10. Some strains melanized in a delayed fashion when grown at a medium cell
138 density (10⁶ cells/mL), whereas none of the low density (10⁵ cell/mL) cultures produced visible pigment.
139 The cell density-associated phenotype presented by *C. neoformans* was different from that presented by
140 *C. auris*, as melanin production by low cell density *C. neoformans* cells was equally or more effective than
141 in the high-density conditions.

142

143 ***Candida auris* strains melanize using substrates associated with DOPA melanin**

144 We examined various known melanin precursors to evaluate which of them the *C. auris* strains
145 could use as substrates for melanization, and if there are any strain-specific differences between the
146 substrates used. We found that at a starting inoculum of 10^7 cells/mL, melanin-capable *C. auris* strains
147 were able to use L-3,4-dihydroxyphenylalanine (L-DOPA), D-3,4-dihydroxyphenylalanine (D-DOPA), L-
148 methyl-3,4-dihydroxyphenylalanine (Methyl-DOPA), dopamine, norepinephrine, epinephrine, and a
149 mixture of catecholamine neurotransmitters (dopamine, epinephrine, and norepinephrine; 'brain mix') at
150 the ratios found in the mammalian brain (34). We found that in general, all melanin-capable *C. auris*
151 strains were able to use the same substrates (Figure 3A). Some strains, namely CDC 385 and CDC 386,
152 were less able to produce pigment when grown with dopamine. Whereas the L-DOPA, D-DOPA, Methyl-
153 DOPA, dopamine, brain mix, and norepinephrine resulted in the formation of pigments that were dark
154 brown to black in color, the epinephrine precursor resulted in reddish-brown or amber colored
155 melanization (Figure 3B).

156 Notably, all the *C. auris* strains tested were unable to use L-Tyrosine, homogentisic acid (HGA),
157 or 4-hydroxyphenylpyruvic acid (4-HPP) as precursors for melanization. First, this indicates that *C. auris*
158 does not have a tyrosinase enzyme that can convert L-Tyrosine into a diphenolic precursor suitable for
159 DOPA melanin synthesis. Second, this indicates that *C. auris* cannot produce pyomelanin, which is
160 synthesized from intermediate products generated along the Tyrosine Degradation Pathway (in which 4-
161 HPP and HGA participate) and typically involves laccase-mediated polymerization (35). Additionally, the
162 strains were also unable to oxidize ABTS, a laccase-specific substrate, further indicating that the
163 melanization agent is not a laccase (Figure 3C).

164

165 **Melanin is primarily found in the supernatant**

166 During collection of the melanized cells, we noted that the supernatants of the cultures were
167 notably darker than expected given our work with another melanizing fungus, *C. neoformans* (Figure 4A,
168 B). Similarly, when cells were grown on agar plates with L-DOPA as a substrate for melanization, there
169 was a distinct halo of pigment surrounding the melanin-producing strains of *C. auris* (Figure 4C). Notably,
170 there was little to no pigmentation of the yeast colony itself. This observation strongly suggested that the
171 melanization of the cells was primarily extracellular and did not originate within the cells themselves.

172 To evaluate whether the supernatant of the cells had melanin-producing enzymatic activity, we
173 added L-DOPA to the isolated supernatant. We found that the supernatants of melanizing strains, namely
174 the supernatant of MMC1, CDC 387 (B8441), and CDC 388 (B11098), were capable of oxidizing L-
175 DOPA, whereas the supernatant of the non-melanizing strain CDC 381 (B11220) and minimal media
176 alone were not. This capability supported the hypothesis that the melanin-producing components of the
177 *C. auris* were secreted (Figure 4D).

178 Using ultracentrifugation, we collected small particles and extracellular vesicles found within the
179 melanized supernatant of the liquid cultures. We found that a substantial amount of the pigment was in
180 this supernatant pellet. Using negative staining transmission electron microscopy (TEM), we found that
181 the pelleted melanin was organized within granule structures, comparable to what was seen at the cell
182 wall periphery of the melanized culture (Figure 4E, F). These structures measured 20-40 nm (Figure 4E)
183 and were similar in appearance to melanin granules secreted by *C. neoformans* (19). Figure 4F illustrates
184 that the granules from CDC 381 had the smallest mean diameter (~20 nm) and CDC 387 had the largest
185 value (~40 nm).

186

187 **Cell-bound melanin is localized to the periphery of the cell wall**

188 To visualize the localization of melanin on the *C. auris* cells grown in liquid media, we used light
189 microscopy, TEM, and scanning electron microscopy (SEM). Under the light microscope, dark
190 pigmentation of the cells appeared to be located primarily within or proximal to the cell wall. Some cells
191 were observed to have additional intracellular pigmentation, possibly due to oxidation of L-DOPA within a

192 large vacuole (Figure 5A). Comparing TEM micrographs of melanized and non-melanized cultures, we
193 found electron-dense structures exclusively in the melanized cultures, primarily on the periphery of the
194 cell wall. These electron-dense structures are likely to be melanin that appeared to be rounded and
195 granular. The extracellular melanin granules were also unbound to the cell wall (Figure 5B). These
196 extracellular melanin granules were similar to the secreted melanin granules previously reported in *C.*
197 *neoformans* (19), and were roughly 20-40 nm in diameter (Figure 5B, 4E-F). Similarly, samples imaged
198 with SEM showed that melanized cells had raised structures on their surface, consistent with the
199 structures observed by TEM (Figure 5C). Further, in the case of CDC 387, 388, and MMC1, the melanin
200 granules appeared to hold the cells together in large, aggregated clumps.

201 To determine the directionality of the cell-bound melanin deposition (i.e., if melanin was formed in
202 the cell wall and then released into the media, or if the pigment was formed primarily in the media and
203 then attached to the cell-wall periphery), we performed a series of 'add-back' experiments, in which we
204 added melanized supernatant to the cells from the same *C. auris* strain grown without L-DOPA. We found
205 that the cells became pigmented by three hours of incubation with the melanized supernatant (Figure 6A-
206 D). Additionally, when we added melanized supernatant from the CDC 388 strain to the non-melanizing
207 CDC 381 strain, the CDC 381 strain accumulated pigment (Figure 6D). First, since CDC 381 cannot
208 readily produce pigment, this experiment showed that the pigment accumulation in these add-back
209 experiments was due to adhesion of already synthesized pigment in the supernatant rather than the
210 production of new pigment from unreacted L-DOPA in the supernatant. Second, it indicated that the
211 melanin-deficient cells did not have a cell wall difference that made them intrinsically unable to bind
212 extracellular melanin. These add-back experiment data, along with the secretion data of Figure 4 and
213 Figure 5, point to the conclusion that *C. auris* cell wall melanization occurs extracellularly and then sticks
214 to the outside of the cell wall.

215 216 **Effects of altering cell wall structures on the melanization of *C. auris***

217 To determine what cell wall components were important for adherence of the melanin to the *C.*
218 *auris* cell wall, we grew CDC 387 and CDC 388 with L-DOPA in the presence of compounds known to
219 enhance or block the proper formation of cell-wall components (9,36), either through direct
220 supplementation of these cell wall components that bind and block proper structure formation, or by
221 inhibition of the enzyme responsible for producing that cell wall component. This strategy allowed us, in
222 theory, to evaluate which components of the cell wall were important for extracellular melanin adherence.
223 Culture conditions that resulted in a darker supernatant than the control condition indicated the lack of
224 melanin adherence to the cell wall, and those with lighter supernatant indicated that the compound
225 enhanced melanin adherence to the cell wall.

226 The cell-wall polysaccharide chitin, a polymer of β -1,4-linked N-acetylglucosamine (GlcNAc)
227 units, has been demonstrated to play a role in melanization in *C. neoformans* and *C. albicans* (9,37). In
228 these organisms, supplemental GlcNAc provided in the cell-culture media was used as a substrate for
229 chitin formation. This in turn increased the overall content of chitin in the cell wall, which in *C. albicans*
230 results in increased melanin production, externalization and cell-wall adhesion, and in *C. neoformans*
231 results in increased cell-wall melanin deposition and retention. To determine whether a similar
232 relationship exists between chitin synthesis and melanization in *C. auris*, cells grown in culture
233 medium supplemented with GlcNAc that was enriched in the NMR-active ^{15}N -isotope were examined
234 using solid-state NMR spectroscopy (ssNMR) to determine the metabolic fate of the labeled exogenous
235 substrate. The observation of an ^{15}N NMR signal corresponding to the amide nitrogen of chitin verified
236 that *C. auris* is indeed capable of taking up exogenously provided GlcNAc and subsequently using it as a
237 precursor for chitin synthesis (Supplementary Fig. S1). In CDC 387 and CDC 388, addition of 5 mM
238 GlcNAc did not enhance cell wall melanin adhesion and instead resulted in darker supernatant, perhaps
239 indicating less adhesion (Figure 6E, F). In TEM micrographs, the melanin located at the cell wall exterior
240 did not appear appreciably different for the control and the GlcNAc treated cultures (Figure 6G, H).

241 Conversely, we added 100 μ M Calcofluor White (CFW), a fluorescent dye which forms hydrogen
242 bonds with chitin polymers as they grow and thus disrupts proper formation of chitin microfibrils (38,39).
243 Adding this dye led to markedly decreased supernatant pigmentation (Figure 6E, F). Intriguingly, under
244 microscopic analysis, the CFW appeared to precipitate and form crystals that bound the melanin. Thus,
245 the adhesion of melanin to the CFW crystals was the likely cause of the lack of pigmented supernatant.
246 This resulted in black crystals that had the fluorescent properties of the CFW, along with the expected
247 CFW-stained cell walls (Supplementary Figure 2A). The CFW crystals were also visible under electron
248 microscopy (Figure 6H, Supplementary Figure 2B). The crystallization persisted despite filter sterilization.
249 In an assay of cell-free supernatant with CFW and with/without L-DOPA, we confirmed that the
250 synthesized melanin bound to the CFW crystals and precipitated out of solution (Supplementary Figure
251 2C). We also noticed that the CDC 387 and CDC 388 strain supernatants without L-DOPA formed a
252 smaller population of CFW crystals compared to the CDC 381 non-melanizing strains (Supplementary
253 Figure 2D). This finding may indicate a correlation between the factor responsible for melanization and
254 formation of CFW crystal fragments with a smaller size, which could indicate better solubility.

255 Further, we grew the CDC 387 and CDC 388 strains in the presence of the antifungal compound
256 caspofungin at half of the concentration reported by the Centers for Disease Control and Prevention
257 (CDC) (40) to inhibit the enzymes responsible for cell wall β -glucan synthesis. Caspofungin treatment
258 resulted in high levels of supernatant melanization (Figure 6E, F). Upon light microscopic and electron
259 microscopic analysis, the treatment appeared to reduce the amount of melanin present on the cell wall,
260 with nearly no melanin visible on the cell wall via TEM (Figure 6G, H). Additionally, for the CDC 388
261 strain, caspofungin treatment resulted in what appeared to be pseudohyphal growth (Supplementary
262 Figure 2E). Although the cells were able to grow in culture with this concentration of caspofungin, in the
263 electron micrographs, the cells appeared to have a deformed morphology, and their cytoplasmic contents
264 looked condensed and abnormal, potentially due to antifungal stress and cell-wall defects (Figure 6G, H).
265

266 **Melanization affects the hydrophobicity of some *C. auris* strains**

267 Since melanin is a hydrophobic molecule, we investigated whether melanization had a correlation
268 with the cell surface hydrophobicity (CSH) of the *C. auris* strains. With *C. auris* strains grown in the
269 nutrient rich Yeast Peptone Dextrose (YPD) media and minimal media, 7 of 12 strains had CSH that was
270 greater than 80% (Figure 6I, J). There was no correlation between the strain hydrophobicity and its ability
271 to melanize: the strongly melanizing strain CDC 387 and the weak/no melanizing strains CDC 381 and
272 MMC2 all had low hydrophobicities. Conversely, the non-melanizing strain CDC 383 and melanizing
273 strain CDC 388 had high hydrophobicity. Additionally, since hydrophobicity is known to play roles in host-
274 pathogen interactions (41–43), we investigated whether melanization affected the CSH of the *C. auris*
275 strains. Surprisingly, we found that in the CDC 387 strain (and to a lesser extent in the non-melanizing
276 strain CDC 381), growth in L-DOPA for 7 days resulted in decreased CSH compared to the controls
277 grown without L-DOPA (Figure 6K). In CDC 388 and MMC1, we did not see a change in CSH following
278 melanization, although these strains had notably high levels of hydrophobicity at ~90%.
279

280 **Melanin adherence is correlated with a higher cell-wall polysaccharide content.**

281 To further assess a potential role for the cell wall in *C. auris* melanization, we used ^{13}C solid-state
282 NMR (ssNMR) to determine whether the proportion of cell-wall polysaccharides in these cell samples
283 differs between the two melanizing *C. auris* strains evaluated in this study CDC 387 and CDC 388, and
284 with respect to the non-melanizing strain CDC 381. To circumvent the need to hydrolyze and purify the
285 cell-wall material for quantitation, we took the more direct approach of conducting direct-polarization
286 magic-angle spinning (DPMAS) experiments on intact heat-killed *C. auris* cells. The experiments were
287 carried out using parameters optimized to generate quantitatively reliable spectra, in which the integrated
288 peak intensities represent the relative amounts of the different carbon types present in the various
289 samples (Figure 7A). Thus, the relative number of polysaccharides present in each *C. auris* whole-cell

290 sample could be estimated by measuring the integrated signal intensity within the spectral region where
291 polysaccharide carbons resonate (~54-110 ppm) and comparing it to the total integrated signal intensity
292 across the spectrum. To determine whether the process of melanization elicits changes in cell-wall
293 composition, we examined cells from the three strains, each grown in the presence and absence of L-
294 DOPA. Since melanin pigments have been reported previously to comprise only a minor fraction (1-
295 15.4%) of the total dry mass of melanizing fungal cells (44,45) and are likely to have large molar masses,
296 the NMR signals that arise from pigment carbons make a negligible contribution to the overall spectral
297 intensity. Consequently, we were able to make quantitative estimates of relative polysaccharide content
298 regardless of whether melanin was present.

299 Our analysis revealed that cells from the CDC 387 strain, which produce melanin that attaches
300 robustly to the exterior cell wall, display a moderate difference in relative polysaccharide content
301 depending on whether the cells are grown with or without L-DOPA (59% vs. 67% for melanized and non-
302 melanized cells, respectively) (Figure 7B). In contrast, the relative polysaccharide content in CDC 388,
303 where melanin is primarily found in the supernatant, differed by only 2% between cells grown with or
304 without L-DOPA (52% vs. 54%). Polysaccharide content was also constant at 52% for the non-melanizing
305 CDC 381 strain in cultures grown with and without L-DOPA. Interestingly, the most significant difference
306 in relative polysaccharide content emerges if we compare the three strains rather than focusing on
307 whether L-DOPA is present in any of their growth media. The average relative polysaccharide content of
308 the CDC 387 cells (with and without L-DOPA) is 63%; the corresponding quantities for CDC 388 and CDC
309 381 cells are 53% and 52%, respectively. Taken together, our data suggest that the cells from the CDC
310 387 strain have an overall greater relative polysaccharide content in comparison to CDC 388 and CDC
311 381 cells, regardless of whether L-DOPA is present in the culture medium. This trend could potentially
312 account for the robust cell-wall melanin binding ability of the CDC 387 strain.
313

314 **Supernatant melanization is resistant to denaturing conditions**

315 To further elucidate the identity of the melanin-producing components, we sought to characterize
316 properties and constraints on supernatant melanization. We first assessed the supernatant's melanization
317 activity after exposure to high temperatures. We observed a modest reduction in the supernatant's
318 capacity to melanize after a 1 h incubation at 100°C, and no significant difference between the
319 melanization activity of the precipitate or supernatant that formed after boiling (Figure 8A). After treating
320 samples with the serine proteinases Trypsin or Proteinase K, we assessed the supernatant melanization
321 activity and observed no reduction in the capacity for melanization (Figure 8B-D). Further, melanization
322 activity was unaffected by treatment with 1% w/v SDS or methanol; however, melanization was increased
323 after treatment with 6 M urea under all conditions, indicating that urea affected the melanization reaction
324 irrespective of the melanizing strain-specific factor in the supernatant (Figure 8E). These observations
325 argue against the melanization factor being a protein.

326 We sought to characterize the size of the melanin-producing components. After passing the
327 supernatant through a 3 kDa protein cut-off filter, we found that melanization activity was partially
328 conserved in the flowthrough of the concentrator, suggesting that the melanization factor was not larger
329 than 3 kDa (Figure 8F).

330 To check whether a melanin-producing component was being protected from denaturation within
331 Extracellular Vesicles (EVs), we treated the supernatant with Triton X-100 and SDS in combination with
332 proteinases. If the melanization factor were protected within EVs, adding detergent would likely
333 compromise EV integrity and allow the protease to degrade the protein contents within (46-48). We did
334 not find that EVs protected a melanizing factor from proteolytic degradation (Figure 8G). This finding was
335 further supported by the absence of enhanced melanization activity for an EV-enriched ultracentrifuged
336 pellet (Supplementary Figure 3).

337 **Melanization genes in the *C. auris* genome**

339 We searched the *C. auris* genome for enzymes that have been associated with melanin synthesis
340 in other fungi such as laccases, phenol oxidases and tyrosinases. We found a number of hypothetical
341 multicopper oxidase and ferroxidase genes reported in the *C. auris* genome. However, we have no
342 evidence that these have laccase or tyrosinase-like functions; they appear similar to metal ion
343 transporters, peroxisomal membrane components, and ergosterol synthesis (Supplementary Tables 1
344 and 2). Hence, the absence of tyrosinase and laccase activity in *C. auris* is in accord with the absence of
345 a clearly identifiable enzyme in the genome.

346

347 **Supernatant neutral pH correlates with ability of *C. auris* strains to melanize**

348 Due to the smaller crystal size of the CFW in the supernatants from the melanizing strains, we
349 measured the pH of their supernatants, since alkaline pH can enhance the solubility of CFW solutions
350 (49,50). Additionally, the urea treatment, which produced an alkaline environment, increased supernatant
351 melanization in all the strains. We found a strong correlation between the pH of the conditioned media
352 and the degree to which the cultures melanized (Figure 9A). We found that the melanizing strains have a
353 supernatant of about pH 6.5, whereas the non-melanizing strains tended to have a supernatant closer to
354 pH 5.75. The higher values of supernatant pH fall in the range at which L-DOPA and other
355 catecholamines auto-oxidize to melanin (Figure 9B).

356 We altered the supernatant pHs to obtain values of either pH 5.5 or 7 by adding hydrochloric acid
357 or potassium hydroxide, respectively. We found that melanization activity was halted at pH 5.5, including
358 the supernatants of CDC 387 and CDC 388, but was enhanced at pH 7 (Figure 9C, D). Most notably, the
359 supernatant from CDC 381 – a non-melanizing strain – achieved melanization activity at higher pH that
360 was statistically indistinguishable from that of the melanizing strains – CDC 387 and CDC 388 at the
361 same pH. This observation strongly suggests that the pH of the supernatant is a major contributor to the
362 observed extracellular melanization activity.

363 As endogenous production of ammonia has been reported in *C. albicans* under stress conditions
364 (51), we assessed the ammonia concentrations of the supernatants using a commercially available
365 colorimetric assay that specifically detects ammonia (52). We observed higher ammonia concentrations in
366 supernatants from *C. auris* strains that melanized and had higher pH (Figure 9E,F).

367 To determine if the melanin structures that form in the cell-free supernatant from the cultures had
368 similar ultrastructural characteristics as autopolymerized L-DOPA, we collected the oxidized L-DOPA from
369 the supernatants of CDC 381, CDC 387, CDC 388, and minimal media alone at their baseline pH values
370 (~5.75, 6.5, 6.5, and 5.5, respectively) and at pH 7. We imaged these melanized particles using negative
371 staining TEM. Interestingly, we found that the melanized particles from CDC 387 and CDC 388 had
372 structural differences compared with the oxidized L-DOPA in the minimal media at pH 7 (Figure 9G). The
373 pigment particles collected from the cell-free supernatant incubated with L-DOPA were similar to those
374 collected from melanized cultures, whereas the minimal media with auto-oxidized L-DOPA alone had
375 smaller irregular particles and rougher clumps of electron dense material (Figure 9G). This suggested that
376 there is some component in the supernatant that may help in structuring the auto-polymerized L-DOPA,
377 by acting as a scaffold, allowing it to form spherical and linear structures like beads on a string. Melanin is
378 known to bind strongly to carbohydrates, lipids, and proteins, which could be such factors (19,24).

379

380 **Melanin protects *C. auris* from oxidative damage**

381 *C. auris* cultures incubated, or not, with L-DOPA for 7 days were treated with hydrogen peroxide
382 (H_2O_2), and yeast viability was evaluated (Figure 10A). The incubation with H_2O_2 reduced the viability of
383 all evaluated strains of *C. auris*. The melanin-producing strains (CDC 387 and CDC 388) incubated with
384 L-DOPA were partially protected from the H_2O_2 , when compared to cells from the same strain grown in
385 the absence of L-DOPA. Strain CDC 381 showed similar viability in the presence and in the absence of L-
386 DOPA, indicating that melanin protects *C. auris* yeast cells against oxidative attack by H_2O_2 .

387

388 **Melanin does not protect *C. auris* against macrophage killing**

389 Melanized and control *C. auris* yeast cells were incubated with murine bone marrow-derived
390 macrophages (BMDM) for 2 and 24 hours and yeast killing was assessed. Under these conditions
391 melanin did not confer protection to the yeast cells against macrophage killing (Figure 10B). It was
392 interesting to observe that whereas the killing after 2 hours was similar among the strains, after 24 hours
393 CDC 381 was shown to be partially resistant against macrophage killing, as opposed to the susceptible
394 phenotype exhibited by strains CDC 387 and CDC 388.

395

396 **Melanin does not affect *C. auris* virulence during *Galleria mellonella* *in vivo* infection**

397 Larvae of *G. mellonella* were infected with yeast cells from melanized and control *C. auris* and
398 survival was evaluated. As seen for the killing experiment with mouse macrophages, the presence of
399 melanin did not impact the survival of *Galleria mellonella* larvae (Figure 10C), suggesting that
400 melanization of *C. auris* prior to infection did not confer protection to the fungus in this invertebrate model.

401

402 **Discussion:**

403 In this work, we have investigated the ability of *C. auris* to produce melanin, a multifunctional
404 pigment found across all biological kingdoms and contributes to the virulence of numerous pathogenic
405 fungal species. Some of the functions of melanin include the ability to neutralize reactive oxygen species
406 during immune activation, inactivate antimicrobial peptides, and inactivate antifungal drugs (12,13,53).
407 Due to these immunity- and therapeutic-evasive properties, our findings that *C. auris* can melanize may
408 have clinical relevance, particularly in regard to our understanding of how *C. auris* fungal infections are
409 treated and considering this organism's exceptionally high resistance to most common anti-fungal
410 therapeutics. We evaluated whether *C. auris* can produce melanin, which strains produced the pigment,
411 what substrates can be used for this melanization, where the melanin was localized, and the mechanism
412 by which the melanin was produced.

413

414 **Characterization of melanin production and localization**

415 We evaluated the ability of 18 *C. auris* strains to melanize when grown in the presence of L-
416 DOPA, a commonly used substrate in fungal melanin research, and a common substrate for fungi that do
417 not endogenously produce melanin. We found that most but not all of the strains melanized, which
418 manifested by darkening of cultures, and that the ability to melanize was enhanced at higher
419 temperatures (37°C compared to 30°C). We had anticipated that melanization would occur similarly in all
420 strains, so it was surprising that only some strains had the ability to melanize. Further, based on our
421 understanding of fungal melanization, we expected melanization to occur more at 30°C rather than 37°C,
422 as it does in other fungi such as *Cryptococcus neoformans* (54). This trend also has relevancy for
423 pathogenesis in humans, as human body temperature is 37°C and thus more conducive to ideal *C. auris*
424 melanization conditions. Interestingly, the pattern of melanization correlated with the clade to which the
425 strain belonged: *C. auris* strains from Clades I and IV, which are associated with South Asia and South
426 America, respectively, are the melanizing strains, while the non-melanizing strains are from Clades II and
427 III, which are typically associated with East Asia and South Africa, respectively. This demarcation could
428 point to some lineage-specific genetic or epigenetic differences that are responsible for the melanization
429 phenotype or are regulating the melanization process. Another aspect that differed from the pigmentation
430 observed in other fungi was the impact of cell density on melanization by *C. auris* (55). We observed that
431 melanization in *C. auris* required high cell density (10^7 cells/mL). However, at an intermediate cell density
432 (10^6 cells/mL) only some strains of *C. auris* (CDC 382, 385, 386, and 389) were able to produce melanin,
433 and in a delayed fashion. This observation could indicate the need of a quorum sensing molecule to
434 trigger effective melanization in *C. auris*.

435

436 Fungi have been shown to produce DHN-melanin, DOPA-melanin, and pyomelanin. DHN-

melanin is produced from endogenous precursors formed through the polyketide synthesis pathway and

437 not through exogenously added precursors (12). Thus, we tested the production of melanin following
438 addition of various DOPA-melanin and pyomelanin substrates. We found that *C. auris* produces melanins
439 consistent with typical DOPA-melanins using substrates such as L-DOPA, D-DOPA, Methyl-DOPA,
440 dopamine, epinephrine, and norepinephrine. *C. auris* was unable to produce melanin from L-Tyrosine,
441 indicating there is no tyrosinase present to convert L-Tyrosine into L-DOPA and downstream melanin
442 intermediates. Neither are there enzymes of the Tyrosine Degradation Pathway that would be needed for
443 pyomelanin production, an observation supported by the inability to convert 4-HPP into pyomelanin
444 pigment. The *C. auris* genome has hypothetical genes related to tyrosinase, as annotated by FungiDB,
445 the online bioinformatics database for fungi, but these genes appear more related to ergosterol synthesis
446 or magnesium/zinc ion transport. Similarly, *C. auris* was unable to form pyomelanin from homogentisic
447 acid (HGA) and was unable to oxidize ABTS into its blue form. Laccases, such as those in *C.*
448 *neoformans*, are able to produce a brown pyomelanin-like pigment from HGA and convert colorless ABTS
449 into its blue oxidized form (35,56). These results in *C. auris* suggest that a laccase does not exist as it
450 does in *C. neoformans*, or at least none with as wide of a substrate range. Melanization in other DOPA-
451 melanin producing fungi is often catalyzed by laccases (57) or multicopper ferroxidases (11). Current
452 annotation of the *C. auris* genome indicates there are hypothetical laccases, oxidoreductase, and
453 ferroxidases (Ontology Groups OG6_100257 and OG6_100380), however these appear to be related to
454 metal ion homeostasis and part of the peroxisomal membrane. Since we do not know the function or
455 expression pattern of these hypothetical genes, we cannot rule out that their products are capable of
456 oxidizing catecholamines under certain conditions. However, our current body of evidence points to a
457 non-laccase, non-tyrosinase, and general non-enzymatic mechanism as the responsible melanin-
458 producing factor.

459 We investigated the cellular localization of the melanin in three selected *C. auris* strains: CDC
460 381 which is a non-melanizing strain, CDC 387 which is a strongly melanizing strain, and CDC 388 which
461 is a moderately melanizing strain that produces pigment primarily at 37°C. For some experiments, we
462 included the MMC1 strain that, like CDC 388, is a moderately melanizing strain. Using light microscopy,
463 we observed numerous dark aggregates on the outside of the melanized CDC 388, MMC1, and
464 particularly CDC 387 cells, which tended to have a fluffy appearance and appeared in between areas
465 where cells were clumped together. In addition, the cells themselves appeared darker, and some had
466 large intracellular melanized spots which would appear to correspond to a vacuole. Based on our
467 evidence that melanization occurs extracellularly due to the alkalinization of the supernatant, we believe
468 these dark spots within the vacuole are due to L-DOPA autoxidation within the vacuole following storage
469 under nutrient-deprived conditions. In the CDC 381 strain, these features were minimal to non-existent.
470 To gain further understanding of the melanin on an ultrastructural level, we used TEM and SEM. In
471 essence, we found that there were electron dense spherical structures on the surface of the melanized *C.*
472 *auris*, which were bound to or associated with polysaccharides in the outermost layer of the cell wall,
473 likely β -glucans or mannoproteins, as indicated by the lack of melanin adhesion following the inhibition of
474 β -glucan synthesis with caspofungin. These structures were only present in melanized cells, and they
475 were consistent with previously reported melanin granules (9,19). Interestingly, these structures were not
476 reliably seen intracellularly, and they were significantly smaller than the extracellular melanin structures
477 seen during *C. albicans* melanization (9). Using SEM, we also saw these spherical particles on the
478 surface of the melanized *C. auris* strains, especially the CDC 387 strains where the surface was heavily
479 decorated in these structures. The CDC 387 cells had a distinctive phenotype featuring many
480 multivesicular bodies (MVBs) within the cell and merging with the plasma membrane, resulting in
481 secretion of extracellular vesicles. Extracellular vesicles contain protein, lipid, polysaccharide, and nucleic
482 acid cargo that could be important for extracellular functions; secretion could be associated with *C. auris*
483 resistance to amphotericin B, adhesion to epithelial cells, and survival within macrophages (58,59).

484 We noticed that the supernatants of the melanized cultures were quite dark, particularly for the
485 CDC 388 and MMC1 strains, which indicated there was secreted melanin. We also made this observation

486 on solid agar, where all the melanizing strains had a halo of melanin around the colonies and the non-
487 melanizing strains did not. The strongly melanizing strains CDC 385, CDC 386, CDC 387, and CDC 389
488 had the darkest halos of melanin surrounding the colonies. The fungal colonies themselves remained
489 white with no change in pigmentation after 7 days of growth. The notion that the melanin is extracellular
490 and secreted is supported by TEM and SEM results that show melanized structures on the surface of the
491 cells. Using negative staining TEM of the isolated melanin from the supernatant, we saw melanin
492 granules similar to those seen in TEM of whole cells, where the CDC 387 granules were the largest,
493 followed by MMC1 and CDC 388. The CDC 381 granules were the smallest and fewest. When we added
494 the melanized supernatant to non-melanized cells, including to CDC 381, we found that the melanin
495 adhered to the cells and took on the appearance of a melanized cell pellet. These findings indicated that
496 the extracellular melanin could adhere to the outside of the cell wall, suggesting a scheme whereby
497 melanization occurred externally and aggregates of the polymer adhered to the cell wall.
498

499 **Mechanism of melanin production**

500 Although our data point to a role for the cell wall in melanin adherence, they also show that the
501 ability of the cell wall to host adhering melanin is unrelated to melanin production itself, which appears to
502 be an exclusively extracellular process. First, when L-DOPA was added to the cell-free supernatant of the
503 cultures, we saw that the supernatants from CDC 388 and CDC 387 had melanizing activity whereas the
504 supernatant from CDC 381 did not, indicating that the component responsible for melanization was
505 extracellular. Second, melanin isolated from the culture supernatant of the melanizing CDC 388 strain can
506 adhere to the cell wall of CDC 381 strain cells, which themselves are unable to produce melanin. Third,
507 our ssNMR studies suggest that cell wall melanin adherence is related to the relative proportion of
508 polysaccharides that are found in the cell wall. CDC 387 strain cells, which display robust cell-wall
509 melanin adhesion, were found to have a greater proportion of polysaccharides in comparison to CDC 388
510 or 381 cells, which were determined to have a similar relative polysaccharide content and also display a
511 similar degree of cell-wall melanin adhesion. Taken together, these findings demonstrate that melanin
512 production and cell-wall melanin adherence are two unrelated processes and that the lack of melanization
513 activity of the CDC 381 strain is not due to an inherent deficiency of the cell wall.

514 To determine the extracellular factor responsible for melanization, we did a series of assays on
515 the cell-free supernatant. First, we determined that the melanization factor was stable at 100°C, was
516 resistant to proteolytic degradation by trypsin and Proteinase K and was smaller than 3 kDa. These
517 observations together indicated that the melanization component was not a protein, but could potentially
518 be a small molecule. Further, the melanizing ability of the supernatant is not enriched in the extracellular
519 vesicles collected through ultracentrifugation, nor is it protected by EVs. We cannot exclude the possibility
520 that EVs are used as scaffolding for the melanization, as previously found in *C. neoformans* (60).
521 However, melanization activity is not lost after treatment with methanol, urea, or SDS detergents.

522 Interestingly, we found that the ability of a strain to melanize correlated directly with the pH of the
523 supernatant within minimal media, where non-melanizing strains had a supernatant pH of ~5.75 and
524 melanizing strains had a pH ~6.5. This strong correlation also corresponds to the steep increase in
525 autoxidation of L-DOPA between those pH ranges. We additionally found that artificially adjusting the pH
526 of the supernatant to pH 7 caused all of the supernatants to melanize, whereas adjusting the pH to 5.5
527 prevented all the supernatants from melanizing, even those from the melanizing strains. These data
528 suggest that the melanization trends reflect the ability of some strains to alter the acidity of the
529 surrounding environment more than others. L-DOPA autoxidation is highly dependent on pH (17,18). L-
530 DOPA has an isoelectric point of pH 6.0, meaning that at pH 6 or above, the L-DOPA is more likely to
531 have a deprotonated amine group, which results in more energetically favorable oxidation, cyclization,
532 and dopachrome formation (18). We found strong evidence that this ability to neutralize the media was
533 due to the production of ammonia by some of the strains. Fungi including *C. albicans* and *C. neoformans*
534 are known to produce ammonia to boost their persistence under pH stress (51,61,62). *C. auris* has been

535 found in environmental reservoirs within marine saltwater marshes (2). Microbes found in marine wetland
536 environmental niches are faced with alkaline stress and, as a result, may be naturally more alkaliphilic
537 (63).

538 Whereas the autoxidation of catecholamines could occur in the absence of any fungus, we found
539 that the oxidized L-DOPA from the supernatant of the *C. auris* strains had a different ultrastructure than
540 the autoxidized L-DOPA from the minimal media alone at a neutral pH. This indicated that there are some
541 properties of the supernatant that encourage the autoxidized L-DOPA to organize into specific spherical
542 structures. Based on previous understanding of how melanin interacts with other biological molecules, we
543 hypothesize this melanin scaffold to be polysaccharide, protein aggregates, or perhaps even lipids. The
544 structure of the melanin polymer around this scaffolding could change its biophysical properties. This
545 hypothesis could help to explain why there is significantly more melanin associated with the CDC 387
546 strain – the strain changes the pH of the supernatant the same as the other strains, but the electron
547 micrographs also show a large number of MVBs and organelles fusing with the plasma membrane of
548 these cells, which would indicate a relative hypersecretion of polysaccharides, proteins, and extracellular
549 vesicles that can subsequently serve as a scaffold for the melanization. Interestingly, the supernatant of
550 the non-melanized CDC 387 strain has a yellow tint to it, which indicates that some molecules are being
551 released in higher amounts compared with the CDC 381 and CDC 388 strains. This pH-based
552 mechanism of fungal melanization differs greatly from other ways in which fungi such as *C. albicans*
553 produce melanin (9–11). In *C. albicans*, melanization is mediated by ferroxidases, a class of enzymes
554 that is genetically similar to the melanin-producing enzyme laccase in *C. neoformans*. The knockout of
555 some ferroxidase genes (*FET* genes) results in a loss of melanization phenotype.

556

557 **Implications of *C. auris* melanization**

558 We found that the *C. auris* strains, generally, were remarkably hydrophobic, with the cell surface
559 hydrophobicity (CSH) of most strains in the 90–100% range. Comparatively, the CSH of clinical isolates of
560 *C. albicans* strains ranges from about 2 to 41% (41). In *C. albicans*, CSH is reportedly associated with
561 increased adhesion to epithelial cells, biofilm formation, resistance to neutrophil-mediated killing, and
562 increased overall virulence (42,64–66). The current findings have implications for how *C. auris* interacts
563 with hydrophobic surfaces, and how hydrophobicity may contribute to durable biofilm formations within
564 hospital environments and medical equipment. We do not find an association between CSH and ability of
565 the strain to melanize. Since melanin is a hydrophobic polymer, we anticipated that melanization of
566 cultures would enhance CSH. Surprisingly, we found that growth in minimal media with L-DOPA reduced
567 the hydrophobicity of the non-melanizing strain CDC 381 and the strong melanizing strain CDC 387, while
568 the CSH of CDC 388 and MMC1 were virtually unchanged. We hypothesize that the hydrophobic melanin
569 is comparatively less hydrophobic than the hydrophobicity-mediators on the surface of the *C. auris* cells,
570 so that when the melanin binds to the cell wall, it results in a relative decrease of CSH. In *C. albicans*,
571 CSH is believed to be mediated by exposure of hydrophobic cell wall mannoproteins (43,67), which could
572 correspond to areas in which melanin is deposited in *C. auris* (68).

573 One notable observed feature of the heavily melanized *C. auris* CDC 387 strain is that it tended
574 to form large aggregates of cells, which were melded together by extracellular melanin, as indicated by
575 light and electron microscopy. This aggregation is notable, as aggregation is a known physical property in
576 some strains of *C. auris*, outside of the context of melanin. The aggregate phenotype has been
577 hypothesized to function as a way for the fungus to remain within tissues and evade immune clearance,
578 and it may play a role in biofilm formation and maintenance (69–71). If melanization is inducing a sort of
579 aggregative phenotype as our data suggest, this could have similar implications in understanding the role
580 of *C. auris* melanin in pathogenesis.

581 The antioxidant properties of melanin are partially responsible for its protective properties (72).
582 Melanized *C. auris* yeast cells were partially protected against hydrogen peroxide, and this protection was
583 stronger in the strain where melanization is more efficient (CDC 387). This observation is in accordance

584 with the expected properties of melanin pigments (12,53). However, melanin did not confer any protection
585 to *C. auris* in an *in vitro* challenge with BMDM. The *in vitro* killing of *C. auris* by BMDM was tested at
586 distinct times and, under the evaluated conditions, melanin played no role on protecting the fungus from
587 the phagocytes. The previously described degree of protection from killing of pathogenic fungi conferred
588 by melanin varies considerably (18 % to > 36 %) (73), so it is possible that the pattern observed for *C.*
589 *auris* is similar to *C. albicans*, for which there is no clear association between ability to produce melanin
590 and virulence in mice (9). Supporting the *in vitro* findings, *in vivo* experiments using the invertebrate *G.*
591 *mellonella* showed that melanin produced by *C. auris* might not protect the fungus against innate
592 immunity, but we cannot rule out a potential action of melanin to interfere in processes that lead to
593 acquired immunity.

594

595 **Conclusions**

596 In summary, we found that Clade I, IV, and V strains of *C. auris* grown with L-DOPA and
597 catecholamine substrates produce melanin extracellularly by alkalinizing the media with ammonia, which
598 promotes non-enzymatic catecholamine oxidation. This extracellular melanin aggregates and binds to
599 the outside of the *C. auris* cell wall (Summarized in Figure 11). We did not find evidence that the melanin
600 formed by *C. auris* interferes with the effector mechanisms of innate immune cells, nor does it exhibit an
601 active melanization process. However, our findings leave open the possibility that extracellular
602 alkalinization could be a new mechanism by which fungi can drive the production of melanin in the
603 environment. Not much is known about the environmental niche of *C. auris*, however, the first
604 environmental isolates have been uncovered and described in the neutral pH marine marshlands off the
605 Andaman Islands in India, and on the surface of non-freshly picked apples in Northern India, all of which
606 have been members of the South Asian Clade I (2,74). It is possible that melanization may play a role in
607 the environmental survival of *C. auris*, where the fungus is likely to encounter oxidative stressors.
608 Ammonia is produced by other fungal species and namely in *C. albicans*: ammonia de-acidifies the
609 extracellular space, is produced during nutrient deprivation, and auto-induces morphologic and metabolic
610 changes (51,62). The production of ammonia and alkalinization of the extracellular milieu in *C. auris* might
611 have similar roles. *C. auris* extracellular alkalinization might be the result of adaptations to acidic or
612 stressful environments and aid in fungal survival uncoupled from the melanization process. With future
613 investigations uncovering global environmental niches of *C. auris* from all strains, better insight can be
614 gained into the biological significance of our findings of clade-specific *C. auris* ammonia production,
615 alkalinization, and melanization.

616

617 **Materials and Methods**

618

619 ***Candida auris* strains and media**

620 All isolates of *Candida auris* strains were received from the Centers of Disease Control and Prevention
621 Food and Drug Administration Antimicrobial Resistance Isolate Bank
622 (<https://www.cdc.gov/arislolatebank/Panel/PanelDetail?ID=2>), with the exceptions of MMC1 and MMC2,
623 which were previously described clinical isolates (75). CDC 381 is also known as B11220, CDC 387 is
624 also known as B8441, and CDC 388 is also known as B11098. All *C. auris* strains were first grown in
625 Yeast Peptone Dextrose (YPD) broth at 30°C until they reached stationary phase. Cultures were washed
626 twice and put into Minimal Media (15.0 mM glucose, 10.0 mM MgSO₄, 29.4 mM KH₂PO₄, 13.0 mM
627 glycine, 3.0 M vitamin B₁, pH 5.5) at 37°C at 10⁷ cells/ml unless otherwise noted. Cells were grown for 7
628 days under continuous shaking.

629

630 ***C. auris* Melanization in liquid media**

631 All *C. auris* strains were grown in minimal media as described above, with the addition of melanin
632 precursors to be tested. All compounds used for the melanization substrate assay and ABTS (2,2'-azino-

633 bis(3-ethylbenzothiazoline-6-sulfonic acid) laccase assay were prepared in concentrated stock solutions
634 and added to the culture at a final concentration of 1 mM except for caspofungin, which was added at 0.5
635 µg/ml final concentration. For the experiments evaluating the temperature dependence of the *C. auris*
636 strain melanization, cultures were also grown at 30°C for 7 days in minimal media. After 7 d, cultures were
637 scanned with a CanoScan9000F scanner at 600 dpi. Mean Gray Value for each well of culture was
638 determined using the Measure tool on FIJI image processing software (76).

639
640 For experiments where cultures were grown on solid agar petri dishes, 20 µl of stationary washed culture
641 were added to minimal media agar with 1 mM of L-3,4-dihydroxyphenylalanine (L-DOPA). Plates were
642 incubated at 37°C for 7 days and imaged with a CanoScan9000F scanner at 600 dpi.

643
644 **Melanin extraction and electron paramagnetic resonance (EPR)**

645 Melanin was extracted from selected strains of *C. auris* and one strain of *C. neoformans* (H99) as
646 described (77). Briefly, after growing for 7 days in minimal medium containing L-DOPA (1 mM), cells were
647 washed with sorbitol/sodium citrate solution and incubated with Novozyme 234 for 1 hour at 30°C.
648 Samples were incubated with guanidine thiocyanate for 1 hour, followed by an incubation with 6 M HCl.
649 After boiling the solution for 1 hour, the pellets were washed and suspended in PBS. Extracted melanin
650 was examined using a Varian E112 X-Band model spectrometer with a TE102 resonator and a liquid
651 nitrogen finger Dewar vessel to obtain EPR spectra of the collected dark particles suspended in PBS and
652 frozen with liquid nitrogen. The EPR runs were performed with the following parameters that were
653 standardized for our fungal melanin studies as described previously (8): modulation frequency of 9.07
654 GHz, modulation amplitude of 1.6 G, center field of 3,250.0 G, sweep width of 100.0 G, microwave
655 frequency of 9.1 GHz, microwave power of 1.0 mW, time constant of 0.5 s, and temperature of 77 K.
656

657 **Extracellular melanin isolation**

658 Cultures grown for 7 days with or without L-DOPA as a substrate for melanization were centrifuged at
659 4,000 x g for 5 minutes. The supernatant was removed and sterilized through a 0.8 µm syringe filter
660 (Corning, Corning, NY). To measure the melanization of the supernatant, absorbance measurements
661 were performed at 492 nm using a SpectraMax iD5 spectrophotometer. For experiments collecting and
662 analyzing the extracellular melanin particles, the supernatants were then ultracentrifuged at 100,000 x g
663 for 1 hour at 4°C in a Beckman Coulter Optima L-90K UltraCentrifuge. Supernatants were decanted and
664 the melanized pellet was suspended in PBS.

665
666 **Supernatant melanization activity**
667 To assess phenoloxidase activity of the supernatant, L-DOPA was added to cell-free supernatant from
668 non-melanized cultures. Subsequently, the supernatant was left to incubate for 72 hours at 37°C in
669 darkness. Activity was determined through SpectraMax iD5 spectrophotometer readings at 492 nm taken
670 at 0 and 72 hours, and images were taken using a CanoScan9000F flatbed scanner at a resolution of 600
671 dpi. For the proteinase assays, supernatants were pre-treated with 1:10 Trypsin (Corning) at 37°C, or with
672 approximately 200 µg/ml Proteinase K (New England BioLabs) at 60°C prior to the addition of L-DOPA.
673 To measure the degree of protection conferred by extracellular vesicles against degradation of potential
674 melanin-producing components, supernatants were pre-treated with 0.01% w/v SDS or 0.1% v/v Triton X-
675 100 (Sigma) with or without Proteinase K. Supernatants were then incubated for one hour at 60°C as
676 described. Heat degradation assays were performed by heating supernatant samples to 100°C for one
677 hour prior to testing for melanization activity.

678
679 **Light microscopy**
680 *C. auris* strains were imaged using light microscopy using an Olympus AX70 microscope and 100x
681 objective.

682

683 **Transmission Electron Microscopy (TEM)**

684 *C. auris* melanized and non-melanized cells were imaged using TEM as described (26). Briefly, samples
685 were fixed with 2% (w/v) glutaraldehyde in 0.1 M cacodylate at room temperature for 2 h, followed by
686 overnight incubation in 4% (w/v) formaldehyde, 1% (w/v) glutaraldehyde, and 0.1% PBS overnight at 4
687 °C. Samples were washed, fixed with 1% osmium tetroxide for 90 minutes, washed with dH₂O, serially
688 dehydrated in ethanol, and embedded in SPURRS resin. Thin sections, 60 to 90 nm, were cut with a
689 diamond knife on a Leica Ultracut E Ultramicrotome and picked up with 2x1 mm formvar coated copper
690 slot grids. Grids were stained with 2% uranyl acetate (aq) and 0.4% lead citrate before imaging on a
691 Hitachi 7600 TEM at 80 kV. Images were captured with an AMT XR80 CCD (8 megapixels, 16
692 bit). Secreted melanin was visualized using negative staining, in which 8 µl of sample was placed on
693 negative glow discharged 400 mesh ultra-thin carbon-coated grids (EMS CF400-CU-UL) for 30 s,
694 followed by three quick rinses of Tris-buffered Saline (TBS) and staining with 2.5% uranyl acetate.
695 Samples were imaged using a Hitachi 7600 TEM Electron Microscope at 80 kV. Images were captured
696 with an AMT XR80 CCD (8 megapixels, 16 bit). Following image acquisition, diameter measurements of
697 the secreted melanin particles were performed using the measurement tool of FIJI image processing
698 software (76).

699

700 **Scanning Electron Microscopy (SEM)**

701 Briefly, samples were fixed in 2.5% (v/v) glutaraldehyde in 0.1 M sodium phosphate buffer (pH 7.3)
702 overnight at 4 °C. Samples were placed on a poly-L-lysine coated coverslip (0.01 mg/ml, coated for 5
703 minutes, and rinsed twice in dH₂O) for 1 hour, then washed, serially dehydrated in ethanol, chemically
704 dried using hexamethyldisilazane (HMDS) and dried overnight in a desiccator. Samples were then placed
705 on a metal sample stub (EMS aluminum 6mm pin, 12.7 mm diameter) with double sided carbon tape
706 (EMS standard carbon adhesive tabs, 12 mm diameter) and the underside of the coverslip coated with
707 silver paint (EMS silver conductive coating). Samples were coated with 15 nm gold palladium (AuPd), on
708 a Denton Desk III sputter coater before imaging on a ThermoFisher Helios FIB-SEM at 5 kV using an Ion
709 Conversion and Electron (ICE) detector.

710

711 **Extracellular melanin add-back**

712 Cell-free melanized supernatant was added to a pellet of non-melanized cells from the corresponding
713 strain of *C. auris*. Samples were mixed at 37°C for 3 h and pelleted at 4,000 x g for 5 minutes. Pelleted
714 cells were imaged compared to control cells treated for 3 hours with the non-melanized supernatant.

715

716 **Cell wall disruption assays**

717 All cultures were grown in minimal media for 7 days with 1 mM L-DOPA. In addition to the L-DOPA, either
718 5 mM N-acetylglucosamine (GlcNAc) as previously described (9), 100 µg/ml Calcofluor White as
719 previously described (9), or 50% MIC of Caspofungin based on the CDC resistance profile (40) (Antibiotic
720 Resistance Isolate Bank, Centers for Disease Control and Prevention, Atlanta, GA, USA) were added to
721 the culture at the beginning of the 7 d incubation. Cultures were collected after 7 d; the supernatant and
722 cells were examined under light and electron microscopy as described above.

723

724 **Preparation of fungal cells for ssNMR analysis**

725 *C. auris* cells from each of the CDC 387, CDC 388 and CDC 381 strains were grown with and without L-
726 DOPA in separate flasks using the same culture conditions as described above. To verify the ability of *C.*
727 *auris* to take up and utilize exogenous GlcNAc for chitin synthesis, an additional culture of CDC 388 cells
728 was prepared in growth medium supplemented with 5 mM ¹⁵N-enriched GlcNAc. The cells from all
729 cultures were harvested via centrifugation and the resulting pellets were resuspended in 25 mL deionized
730 water. To heat-kill the cells, the tubes containing these cell suspensions were immersed in a water bath at

731 65°C for 1 hour. When cooled to room temperature, the heat-killed cells were centrifuged at 3,700 rpm for
732 30 min at 4°C. The pellets were resuspended in another 25 mL aliquot of deionized water, vortexed
733 vigorously, and again centrifuged. This process was repeated four more times to remove any residual
734 metabolites, cellular debris, or other small molecules. After the fifth wash, the cell pellets were lyophilized
735 for 3 days and subsequently analyzed by ssNMR.

736

737 **Solid-State NMR spectroscopy**

738 All measurements were carried out on a Varian (Agilent) DirectDrive2 (DD2) instrument operating at a ¹H
739 frequency of 600 MHz and equipped with a 1.6-mm T3 HXY fastMAS probe (Agilent Technologies, Santa
740 Clara, CA). The data were acquired on 6-8 mg of lyophilized cell material using a MAS rate of 15.00 ±
741 0.02 kHz at a spectrometer-set temperature of 25 °C. The ¹³C DPMAS experiments were conducted with
742 90° pulse lengths of 1.2 and 1.4 µs for ¹H and ¹³C, respectively; 104-kHz heteronuclear decoupling using
743 the small phase incremental alternation pulse sequence (SPINAL) was applied during signal acquisition.
744 Long recycle delays (50 s) were implemented to obtain spectra with quantitatively reliable signal
745 intensities that allowed the integration of defined spectral regions using the GNU image manipulation
746 program (GIMP) to estimate the relative amounts of carbon-containing constituents in heat-killed intact *C.*
747 *auris* cell samples. To verify the uptake of ¹⁵N-enriched GlcNAc, ¹⁵N cross-polarization (CPMAS)
748 experiments were conducted using pulse lengths of 1.6 and 2.9 µs for ¹H and ¹⁵N, respectively, a 1.5-ms
749 cross polarization period with a 10% linear ramp, and 78-kHz SPINAL decoupling during acquisition.

750

751

752 **pH measurements and supernatant pH alteration**

753 Cultures were grown for 7 days in minimal media at 37°C. Cultures were centrifuged at 4,000 x g for 4
754 minutes, and the supernatant was filter sterilized with a 0.22 µm PES Filter (Millipore-Sigma). The
755 supernatant pH was determined using a calibrated Fisher Scientific Accumet AB150 pH meter.

756

757 Cell-free supernatants were isolated and their pH values measured using a calibrated Fisher Scientific
758 Accumet AB150 pH meter. Samples were split into three groups: unaltered supernatant, supernatant
759 manually adjusted to pH 5.5 with hydrochloric acid (HCl), and supernatant manually adjusted to pH 7 with
760 potassium hydroxide (KOH). Titrations with HCl and KOH were performed using the same pH meter set to
761 continuously read pH. Each sample's three groups were then treated with 1 mM L-DOPA and incubated
762 at 37°C for 72 hours in darkness. Melanization activity was determined through SpectraMax iD5
763 spectrophotometer readings at 492 nm and images were taken using the CanoScan9000F flatbed
764 scanner at a resolution of 600 dpi.

765

766 **Ammonia quantification**

767 Supernatant ammonia concentration was quantified using the commercially available API Ammonia Test
768 Kit (API) according to the manufacturer's protocol, using the Solutions 1 and 2 from the kit. The sample
769 volumes were scaled down in proportion to the small volumes tested to maintain the established test
770 solution concentrations. A standard curve of ammonia concentrations from 16 ppm to 0.25 ppm was
771 constructed by serially diluting 28% ammonium hydroxide (Sigma) in PBS to enable validation of this
772 modification and colorimetric correlation to known ppm values. In a 48-well plate, 1 drop of both Solution
773 1 (>60% w/v polyethylene glycol, 1-10% w/v sodium nitroprusside solution, 1-10% w/v sodium salicylate)
774 and Solution 2 (<10% w/v sodium hydroxide, <1% sodium hypochlorite) were added to 625 µL of cell-free
775 supernatant, after which the plate was agitated and left to sit for 5 minutes with a lid on. The color
776 change, from yellow to dark blue-green during the formation of indophenol blue dye, was quantified by
777 reading the absorbance at 680 nm using a SpectraMax iD5 spectrophotometer. In addition, plates were
778 imaged at 600 dpi using a CanoScan9000F flatbed scanner.

779

780 **Cell Surface Hydrophobicity**

781 Cell surface hydrophobicity was measured by Microbial Adhesion to Hexadecane (MATH) assay as
782 described (78). Briefly, cells were resuspended in PBS to an optical density of 0.2 - 0.4 at 600 nm using a
783 SpectraMax iD5 spectrophotometer. These values were measured in triplicate and recorded as the initial
784 optical density. 3 mL of cells in PBS were added to a glass test tube followed by 400 μ L of n-hexadecane.
785 Tubes were covered with parafilm and vortexed on high for 45 seconds each and left to settle for 2
786 minutes. Aliquots of the aqueous (bottom) layer were carefully removed, and the absorbance at 600 nm
787 was measured as the final optical density value. Hydrophobicity was calculated as: 100*(Initial Value –
788 Final Value)/(Initial Value).

789

790 **Oxidative stress**

791 Yeast cells grown in the presence or absence of L-DOPA for 7 days at 37 °C were incubated and shaken
792 in RPMI medium buffered with MOPS, with or without 5mM hydrogen peroxide (H_2O_2) for 3 hours at 37
793 °C. Cell suspensions were diluted and plated onto Sabouraud-agar plates for colony-forming units (CFU)
794 counting. The cytotoxic effect of H_2O_2 in each strain was calculated as the number of yeast cells in the
795 presence of H_2O_2 , divided by the yeast count in the absence of H_2O_2 , multiplied by 100 to be expressed
796 as a percentage.

797

798 **Killing by bone marrow-derived macrophages**

799 Bone marrow cells isolated from C57BL/6 mice were cultivated in RPMI containing 10% of FBS and 20%
800 of L929 supernatant for 7 days with media addition on day 3. At the end of the differentiation time, cells
801 were plated in 96-well plates (10^5 cells per well) and incubated at 37 °C to achieve adherence.
802 Macrophages were challenged with *C. auris* (0.5×10^5 yeast cells per well) that were grown in the
803 presence or absence of 1 mM L-DOPA. In parallel, *C. auris* was added to wells under the same
804 conditions but without macrophages. After 2 or 24 h, the plates were centrifuged, the supernatant
805 discarded, and the pellets suspended in sterile distilled H_2O . The suspensions were diluted and plated
806 onto Sabouraud-agar plates and incubated at 30 °C for 24 h for CFU counting. For each experimental
807 group, the percentage of yeast killing was calculated as: yeast + macrophage group divided by yeast in
808 the absence of macrophages.

809

810 ***Galleria mellonella* infection**

811 Groups of 10 insects (250-300 mg) in the final instar larval stage were used. Larvae were injected with
812 melanized or non-melanized yeasts of *C. auris* (2×10^6 cells in 10 μ L) into the haemocoel through the last
813 left pro-leg strains using a Hamilton syringe. For these experiments the strains CDC 381, CDC 387 and
814 CDC 388 were selected. PBS was used as a control. The insects were then placed in sterile Petri dishes
815 and maintained in the dark at 37 °C. The numbers of living larvae were monitored twice daily and
816 recorded for a period of 7 days. Larvae were considered dead if no response to physical stimulus was
817 observed.

818

819 **Funding:**

820 DFQS, NM, and AC were supported by National Institute of Allergy and Infection Disease R01 AI052733,
821 R01 AI152078, and the National Heart, Lung, and Blood Institute R01 HL059842. DFQS, NJM, AC, CC,
822 and RES were supported by National Institute of Allergy and Infection Disease R01 AI052733. DFQS
823 was funded by National Institutes of Health 5T32GM008752-18 and 1T32AI138953-01A1. DZM and JDN
824 were supported by National Institutes of Health (NIH)–National Institute of Allergy and Infectious Diseases
825 grant R21 AI124797. CC was supported by the Brescia Fund of the CCNY Department of Chemistry and
826 Biochemistry. LN and LH were supported by grants from the Brazilian agency Conselho Nacional de
827 Desenvolvimento Científico e Tecnológico (CNPq; grants 311179/2017-7 and 408711/2017-7) and

828 FAPERJ (E-26/202.809/2018). The funders had no role in study design, data collection and analysis,
829 decision to publish, or preparation of the manuscript.
830

831 **Author contributions:**

832 Conceptualization, DFQS, NJM, DZM, CC, RES, JDN, AC; Methodology, DFQS, NJM, DZM, BS, CC,
833 GG, LN, LH, RES, JDN, AC; Software, DFQS, DZM, BS, CC, GG, RES; Formal Analysis, DFQS, NJM,
834 DZM, BS, CC, LN, LH, RES, JDN, AC; Investigation, DFQS, NJM, DZM, BS, CC, GG, LN, LH;
835 Resources, BS, CC, GG, LN, LH, RES, JDN, AC; Data Curation, DFQS, DZM, BS, CC, LN, LH, RES;
836 Writing – Original Draft Preparation, DFQS, NJM, DZM, JDN, AC.; Writing – Review & Editing, DFQS,
837 NJM, DZM, BS, CC, GG, LN, LH, RES, JDN, AC; Visualization, DFQS, NJM, DZM, BS, CC, LN, LH, RES,
838 JDN, AC; Supervision, LN, RES, JDN, AC; Project Administration, DFQS, NJM, DZM, JDN, AC; Funding
839 Acquisition, BS, LN, RES, JDN, AC.
840

841 **Conflict of Interest:**

842 The authors declare no conflicts of interest.
843

844 **Data availability:**

845 Data will be made publicly available through Figshare
846 (https://figshare.com/projects/Melanization_of_Candida_auris_is_Associated_with_Alteration_of_Extracellular_pH/146688). Links to the underlying data can also be found in Supplementary Table 3.
847

848 **Acknowledgements:**

849 We would like to thank the Johns Hopkins University School of Medicine Microscope Facility for their
850 assistance with the electron microscopy experiments, and Rosanna Baker for her suggestions and
851 assistance with the ammonia experiments. The 600 MHz NMR facilities used in this work are operated by
852 The City College (CCNY) and the CUNY Institute for Macromolecular Assemblies. The illustration in
853 Figure 11 was made using Biorender.com.
854

855 **References**

- 856 1. Casadevall A, Kontoyiannis DP, Robert V. On the Emergence of *Candida auris*: Climate Change, Azoles, Swamps, and Birds. *mBio* [Internet]. 2019 Aug 27 [cited 2020 Sep 29];10(4). Available from: <https://mbio.asm.org/content/10/4/e01397-19>
- 857 2. Arora P, Singh P, Wang Y, Yadav A, Pawar K, Singh A, et al. Environmental Isolation of *Candida auris* from the Coastal Wetlands of Andaman Islands, India. *mBio* [Internet]. 2021 Mar 16 [cited 2022 Jan 23]; Available from: <https://journals.asm.org/doi/abs/10.1128/mBio.03181-20>
- 858 3. Ahmad S, Alfouzan W. *Candida auris*: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. *Microorganisms*. 2021 Apr;9(4):807.
- 859 4. Lee WG, Shin JH, Uh Y, Kang MG, Kim SH, Park KH, et al. First Three Reported Cases of Nosocomial Fungemia Caused by *Candida auris*. *Journal of Clinical Microbiology* [Internet]. 2011 Sep [cited 2022 Jan 24]; Available from: <https://journals.asm.org/doi/abs/10.1128/JCM.00319-11>
- 860 5. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. *Candida auris* sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. *Microbiol Immunol*. 2009 Jan;53(1):41–4.

873 6. Horton MV, Nett JE. *Candida auris* infection and biofilm formation: going beyond the surface. *Curr*
874 *Clin Microbiol Rep.* 2020 Sep;7(3):51–6.

875 7. Garcia-Bustos V, Cabanero-Navalon MD, Ruiz-Saurí A, Ruiz-Gaitán AC, Salavert M, Tormo MÁ, et
876 al. What Do We Know about *Candida auris*? State of the Art, Knowledge Gaps, and Future
877 Directions. *Microorganisms*. 2021 Oct 19;9(10):2177.

878 8. Almeida-Paes R, Figueiredo-Carvalho MH, da Silva LB, Gerfen G, S Araújo GR de, Frases S, et al.
879 *Candida glabrata* produces a melanin-like pigment that protects against stress conditions
880 encountered during parasitism. *Future Microbiology*. 2021 May 1;16(7):509–20.

881 9. Walker CA, Gómez BL, Mora-Montes HM, Mackenzie KS, Munro CA, Brown AJP, et al. Melanin
882 Externalization in *Candida albicans* Depends on Cell Wall Chitin Structures. *Eukaryotic Cell*
883 [Internet]. 2010 Sep [cited 2022 Jan 19]; Available from:
884 <https://journals.asm.org/doi/abs/10.1128/EC.00051-10>

885 10. Morris-Jones R, Gomez BL, Diez S, Uran M, Morris-Jones SD, Casadevall A, et al. Synthesis of
886 Melanin Pigment by *Candida albicans* In Vitro and during Infection. *Infection and Immunity*. 2005
887 Sep 1;73(9):6147–50.

888 11. Dai B, Xu Y, Gao N, Chen J. Wor1-regulated ferroxidases contribute to pigment formation in opaque
889 cells of *Candida albicans*. *FEBS Open Bio*. 2021;11(3):598–621.

890 12. Smith DFQ, Casadevall A. The Role of Melanin in Fungal Pathogenesis for Animal Hosts. In:
891 Rodrigues ML, editor. *Fungal Physiology and Immunopathogenesis* [Internet]. Cham: Springer
892 International Publishing; 2019 [cited 2020 Sep 24]. p. 1–30. (Current Topics in Microbiology and
893 Immunology). Available from: https://doi.org/10.1007/82_2019_173

894 13. Nosanchuk JD, Casadevall A. The contribution of melanin to microbial pathogenesis. *Cellular*
895 *Microbiology*. 2003;5(4):203–23.

896 14. Jiang N, Sun N, Xiao D, Pan J, Wang Y, Zhu X. A copper-responsive factor gene CUF1 is required
897 for copper induction of laccase in *Cryptococcus neoformans*. *FEMS Microbiology Letters*. 2009 Jul
898 1;296(1):84–90.

899 15. Mauch RM, Cunha V de O, Dias ALT. THE COPPER INTERFERENCE WITH THE
900 MELANOGENESIS OF *Cryptococcus neoformans*. *Rev Inst Med trop S Paulo*. 2013 Apr;55:117–
901 20.

902 16. Cordero RJB, Camacho E, Casadevall A. Melanization in *Cryptococcus neoformans* Requires
903 Complex Regulation. *mBio* [Internet]. 2020 Feb 4 [cited 2022 Jan 25]; Available from:
904 <https://journals.asm.org/doi/abs/10.1128/mBio.03313-19>

905 17. Chen Y chieh, Kendall T, Yip P, Davy A, Sefcik J, Sutter JU. Influence of Ions and pH on the
906 Formation of Solid- and Liquid-like Melanin. *ACS Omega*. 2020 Oct 6;5(39):25059–68.

907 18. Eslami M, Zare HR, Namazian M. Thermodynamic Parameters of Electrochemical Oxidation of I-
908 DOPA: Experimental and Theoretical Studies. *J Phys Chem B*. 2012 Oct 18;116(41):12552–7.

909 19. Camacho E, Vij R, Chrissian C, Prados-Rosales R, Gil D, O'Meally RN, et al. The structural unit of
910 melanin in the cell wall of the fungal pathogen *Cryptococcus neoformans*. *Journal of Biological*
911 *Chemistry*. 2019 Jul 5;294(27):10471–89.

912 20. Franzen AJ, Cunha MML, Miranda K, Hentschel J, Plattner H, da Silva MB, et al. Ultrastructural
913 characterization of melanosomes of the human pathogenic fungus Fonsecaea pedrosoi. *Journal of*
914 *Structural Biology*. 2008 Apr 1;162(1):75–84.

915 21. Baker LG, Specht CA, Donlin MJ, Lodge JK. Chitosan, the Deacetylated Form of Chitin, Is Necessary
916 for Cell Wall Integrity in *Cryptococcus neoformans*. *Eukaryotic Cell* [Internet]. 2007 May [cited 2022
917 Jan 24]; Available from: <https://journals.asm.org/doi/abs/10.1128/EC.00399-06>

918 22. Walton FJ, Idnurm A, Heitman J. Novel gene functions required for melanization of the human
919 pathogen *Cryptococcus neoformans*. *Molecular Microbiology*. 2005;57(5):1381–96.

920 23. Bull AT. Chemical composition of wild-type and mutant *Aspergillus nidulans* cell walls. The nature of
921 polysaccharide and melanin constituents. *J Gen Microbiol*. 1970 Sep;63(1):75–94.

922 24. Chrissian C, Camacho E, Kelly JE, Wang H, Casadevall A, Stark RE. Solid-state NMR spectroscopy
923 identifies three classes of lipids in *Cryptococcus neoformans* melanized cell walls and whole fungal
924 cells. *Journal of Biological Chemistry*. 2020 Oct 30;295(44):15083–96.

925 25. Chrissian C, Lin CPC, Camacho E, Casadevall A, Neiman AM, Stark RE. Unconventional
926 Constituents and Shared Molecular Architecture of the Melanized Cell Wall of *C. neoformans* and
927 Spore Wall of *S. cerevisiae*. *Journal of Fungi*. 2020 Dec;6(4):329.

928 26. Eisenman HC, Nosanchuk JD, Webber JBW, Emerson RJ, Camesano TA, Casadevall A.
929 Microstructure of Cell Wall-Associated Melanin in the Human Pathogenic Fungus *Cryptococcus*
930 *neoformans*. *Biochemistry*. 2005 Mar 1;44(10):3683–93.

931 27. Jacobson ES, Tinnell SB. Antioxidant function of fungal melanin. *Journal of Bacteriology*. 1993 Nov
932 1;175(21):7102–4.

933 28. Alviano DS, Franzen AJ, Travassos LR, Holandino C, Rozental S, Ejzemberg R, et al. Melanin from
934 *Fonsecaea pedrosoi* Induces Production of Human Antifungal Antibodies and Enhances the
935 Antimicrobial Efficacy of Phagocytes. *Infection and Immunity* [Internet]. 2004 Jan [cited 2022 Jan
936 24]; Available from: <https://journals.asm.org/doi/abs/10.1128/IAI.72.1.229-237.2004>

937 29. Doering TL, Nosanchuk JD, Roberts WK, Casadevall A. Melanin as a potential cryptococcal defence
938 against microbicidal proteins. *Med Mycol*. 1999 Jun;37(3):175–81.

939 30. Rosas ÁL, Casadevall A. Melanization decreases the susceptibility of *Cryptococcus neoformans* to
940 enzymatic degradation. *Mycopathologia*. 2001 Aug 1;151(2):53–6.

941 31. Stappers MHT, Clark AE, Aimanianda V, Bidula S, Reid DM, Asamaphan P, et al. Recognition of
942 DHN-melanin by MelLec, is required for protective immunity to *Aspergillus*. *Nature*. 2018 Mar
943 15;555(7696):382–6.

944 32. Nosanchuk JD, Rosas AL, Casadevall A. The Antibody Response to Fungal Melanin in Mice. *The*
945 *Journal of Immunology*. 1998 Jun 15;160(12):6026–31.

946 33. Rosas ÁL, Nosanchuk JD, Casadevall A. Passive Immunization with Melanin-Binding Monoclonal
947 Antibodies Prolongs Survival of Mice with Lethal *Cryptococcus neoformans* Infection. *Infection and*
948 *Immunity* [Internet]. 2001 May 1 [cited 2022 Jan 24]; Available from:
949 <https://journals.asm.org/doi/abs/10.1128/IAI.69.5.3410-3412.2001>

950 34. Baker RP, Chrissian C, Stark RE, Casadevall A. *Cryptococcus neoformans* melanization incorporates
951 multiple catecholamines to produce polytypic melanin. *Journal of Biological Chemistry* [Internet].

952 2022 Jan 1 [cited 2022 Jan 25];298(1). Available from: [https://www.jbc.org/article/S0021-9258\(21\)01329-6/abstract](https://www.jbc.org/article/S0021-953 9258(21)01329-6/abstract)

954 35. Frases S, Salazar A, Dadachova E, Casadevall A. Cryptococcus neoformans Can Utilize the
955 Bacterial Melanin Precursor Homogentisic Acid for Fungal Melanogenesis. *Applied and*
956 *Environmental Microbiology* [Internet]. 2007 Jan [cited 2022 Jan 20]; Available from:
957 <https://journals.asm.org/doi/abs/10.1128/AEM.01947-06>

958 36. Perez-Dulzaides R, Camacho E, Cordero RJB, Casadevall A. Cell-wall dyes interfere with
959 Cryptococcus neoformans melanin deposition. *Microbiology (Reading)*. 2018 Aug;164(8):1012–22.

960 37. Camacho E, Chrissian C, Cordero RJB, Liporagi-Lopes L, Stark RE, Casadevall A. N-
961 acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin
962 architecture. *Microbiology (Reading)*. 2017 Nov;163(11):1540–56.

963 38. Herth W. Calcofluor white and Congo red inhibit chitin microfibril assembly of *Poterioochromonas*:
964 evidence for a gap between polymerization and microfibril formation. *Journal of Cell Biology*. 1980
965 Nov 1;87(2):442–50.

966 39. Elorza MV, Rico H, Sentandreu R. Calcofluor white alters the assembly of chitin fibrils in
967 *Saccharomyces cerevisiae* and *Candida albicans* cells. *J Gen Microbiol*. 1983 May;129(5):1577–82.

968 40. Panel Details | Antimicrobial Resistance Isolate Bank | Antibiotic/Antimicrobial Resistance | CDC
969 [Internet]. [cited 2022 Jan 19]. Available from:
970 <https://www.cdc.gov/ARIsolateBank/Panel/PanelDetail?ID=2>

971 41. Raut J, Rathod V, Karuppayil SM. Cell Surface Hydrophobicity and Adhesion: A Study on Fifty
972 Clinical Isolates of *Candida albicans*. *Nippon Ishinkin Gakkai Zasshi*. 2010;51(3):131–6.

973 42. Danchik C, Casadevall A. Role of Cell Surface Hydrophobicity in the Pathogenesis of Medically-
974 Significant Fungi. *Frontiers in Cellular and Infection Microbiology* [Internet]. 2021 [cited 2022 Jan
975 24];10. Available from: <https://www.frontiersin.org/article/10.3389/fcimb.2020.594973>

976 43. Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human
977 needs? *Frontiers in Cellular and Infection Microbiology* [Internet]. 2014 [cited 2022 Jan 24];4.
978 Available from: <https://www.frontiersin.org/article/10.3389/fcimb.2014.00112>

979 44. Heidrich D, Corbellini VA, Mendes SDC, Fernandes EK, Lazzarotto L, Ribeiro AC, et al. Melanin:
980 Quantification and protection against oxidative stress in chromoblastomycosis agents. *Medical
981 Mycology*. 2019 Feb 1;57(2):260–3.

982 45. Wang Y, Aisen P, Casadevall A. Melanin, melanin “ghosts,” and melanin composition in
983 *Cryptococcus neoformans*. *Infection and Immunity*. 1996 Jul;64(7):2420–4.

984 46. Wolf JM, Rivera J, Casadevall A. Serum albumin disrupts *Cryptococcus neoformans* and *Bacillus
985 anthracis* extracellular vesicles. *Cell Microbiol*. 2012 May;14(5):762–73.

986 47. Coelho C, Vij R, Smith DQ, Brady NR, Hamacher-Brady A, Casadevall A. Study of Microbial
987 Extracellular Vesicles: Separation by Density Gradients, Protection Assays and Labelling for Live
988 Tracking. *Bio Protoc*. 2020 Jan 20;10(2):e3502.

989 48. Coelho C, Brown L, Maryam M, Vij R, Smith DFQ, Burnet MC, et al. Listeria monocytogenes
990 virulence factors, including listeriolysin O, are secreted in biologically active extracellular vesicles. *J
991 Biol Chem*. 2019 Jan 25;294(4):1202–17.

992 49. Kim S, Inglett GE. Molecular weight and ionic strength dependence of fluorescence intensity of the
993 Calcofluor/β-glucan complex in flow-injection analysis. *Journal of Food Composition and Analysis*.
994 2006 Aug 1;19(5):466–72.

995 50. Wu J, Deng X, Tian B, Wang L, Xie B. Interactions between Oat β-Glucan and Calcofluor
996 Characterized by Spectroscopic Method. *J Agric Food Chem*. 2008 Feb 1;56(3):1131–7.

997 51. Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC. The Fungal Pathogen Candida
998 albicans Autoinduces Hyphal Morphogenesis by Raising Extracellular pH. *mBio* [Internet]. 2011 Jul
999 1 [cited 2020 Sep 26];2(3). Available from: <https://mbio.asm.org/content/2/3/e00055-11>

1000 52. Zadorojny C, Saxton S, Finger R. Spectrophotometric Determination of Ammonia. *Journal (Water
1001 Pollution Control Federation)*. 1973;45(5):905–12.

1002 53. Liu S, Youngchim S, Zamith-Miranda D, Nosanchuk JD. Fungal Melanin and the Mammalian Immune
1003 System. *Journal of Fungi*. 2021 Apr;7(4):264.

1004 54. Jacobson ES, Emery HS. Temperature regulation of the cryptococcal phenoloxidase. *Journal of
1005 Medical and Veterinary Mycology*. 1991 Jan 1;29(2):121–4.

1006 55. Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR, Silva-Pereira I, et al. Quorum
1007 Sensing-Mediated, Cell Density-Dependent Regulation of Growth and Virulence in *Cryptococcus*
1008 *neoformans*. *mBio*. 2013 Dec 31;5(1):e00986-13.

1009 56. Martinez LR, Ntiamoah P, Gácsér A, Casadevall A, Nosanchuk JD. Voriconazole Inhibits
1010 Melanization in *Cryptococcus neoformans*. *Antimicrobial Agents and Chemotherapy*. 2007
1011 Dec;51(12):4396–400.

1012 57. Salas SD, Bennett JE, Kwon-Chung KJ, Perfect JR, Williamson PR. Effect of the laccase gene
1013 CNLAC1, on virulence of *Cryptococcus neoformans*. *J Exp Med*. 1996 Aug 1;184(2):377–86.

1014 58. Chan W, Chow FWN, Tsang CC, Liu X, Yao W, Chan TTY, et al. Induction of amphotericin B
1015 resistance in susceptible *Candida auris* by extracellular vesicles. *Emerging Microbes & Infections*.
1016 2022 Jul 4;0(ja):1–40.

1017 59. Zamith-Miranda D, Heyman HM, Couvillion SP, Cordero RJB, Rodrigues ML, Nimrichter L, et al.
1018 Comparative Molecular and Immunoregulatory Analysis of Extracellular Vesicles from *Candida*
1019 *albicans* and *Candida auris*. *mSystems*. 2021 Aug 24;6(4):e00822-21.

1020 60. Eisenman HC, Frases S, Nicola AM, Rodrigues ML, Casadevall A. Vesicle-associated melanization
1021 in *Cryptococcus neoformans*. *Microbiology (Reading)*. 2009 Dec;155(Pt 12):3860–7.

1022 61. Fu MS, Coelho C, Leon-Rodriguez CMD, Rossi DCP, Camacho E, Jung EH, et al. *Cryptococcus*
1023 *neoformans* urease affects the outcome of intracellular pathogenesis by modulating
1024 phagolysosomal pH. *PLOS Pathogens*. 2018 Jun 15;14(6):e1007144.

1025 62. Vylkova S, Lorenz MC. Modulation of Phagosomal pH by *Candida albicans* Promotes Hyphal
1026 Morphogenesis and Requires Stp2p, a Regulator of Amino Acid Transport. *PLOS Pathogens*. 2014
1027 Mar 13;10(3):e1003995.

1028 63. Meena B, Rajan LA, Vinithkumar NV, Kirubagaran R. Novel marine actinobacteria from emerald
1029 Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts.
1030 *BMC Microbiol*. 2013 Jun 22;13:145.

1031 64. Singleton DR, Fidel PL Jr, Wozniak KL, Hazen KC. Contribution of cell surface hydrophobicity protein
1032 1 (Csh1p) to virulence of hydrophobic *Candida albicans* serotype A cells. *FEMS Microbiology*
1033 Letters. 2005 Mar 1;244(2):373–7.

1034 65. Hazen KC, Brawner DL, Riesselman MH, Jutila MA, Cutler JE. Differential adherence of hydrophobic
1035 and hydrophilic *Candida albicans* yeast cells to mouse tissues. *Infection and Immunity* [Internet].
1036 1991 Mar [cited 2022 Jan 24]; Available from: <https://journals.asm.org/doi/abs/10.1128/iai.59.3.907-912.1991>

1038 66. Silva-Dias A, Miranda IM, Branco J, Monteiro-Soares M, Pina-Vaz C, Rodrigues AG. Adhesion,
1039 biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship
1040 among *Candida* spp. *Front Microbiol* [Internet]. 2015 [cited 2020 Sep 28];6. Available from:
1041 https://www.frontiersin.org/articles/10.3389/fmicb.2015.00205/full?utm_source=newsletter&utm_medium=web&utm_campaign=Microbiology-w15-2015

1043 67. Fukazawa Y, Kagaya K. Molecular bases of adhesion of *Candida albicans*. *Journal of Medical and*
1044 *Veterinary Mycology*. 1997 Jan 1;35(2):87–99.

1045 68. Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP. Adherence mechanisms in human pathogenic
1046 fungi. *Med Mycol*. 2008 Dec 1;46(8):749–72.

1047 69. Ben-Ami R, Berman J, Novikov A, Bash E, Shachor-Meyouhas Y, Zakin S, et al. Multidrug-Resistant
1048 *Candida haemulonii* and *C. auris*, Tel Aviv, Israel. *Emerg Infect Dis*. 2017 Feb;23(2):195–203.

1049 70. Rossato L, Colombo AL. *Candida auris*: What Have We Learned About Its Mechanisms of
1050 Pathogenicity? *Frontiers in Microbiology* [Internet]. 2018 [cited 2022 Jan 20];9. Available from:
1051 <https://www.frontiersin.org/article/10.3389/fmicb.2018.03081>

1052 71. Bravo Ruiz G, Lorenz A. What do we know about the biology of the emerging fungal pathogen of
1053 humans *Candida auris*? *Microbiological Research*. 2021 Jan 1;242:126621.

1054 72. Mattoon ER, Cordero RJB, Casadevall A. Fungal Melanins and Applications in Healthcare,
1055 Bioremediation and Industry. *J Fungi (Basel)*. 2021 Jun 18;7(6):488.

1056 73. Nosanchuk JD, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to
1057 antimicrobial compounds. *Antimicrob Agents Chemother*. 2006 Nov;50(11):3519–28.

1058 74. Yadav A, Jain K, Wang Y, Pawar K, Kaur H, Sharma KK, et al. *Candida auris* on Apples: Diversity
1059 and Clinical Significance. *mBio*. 2022 Mar 31;13(2):e00518-22.

1060 75. Zamith-Miranda D, Heyman HM, Cleare LG, Couvillion SP, Clair GC, Bredeweg EL, et al. Multi-omics
1061 Signature of *Candida auris*, an Emerging and Multidrug-Resistant Pathogen. *mSystems* [Internet].
1062 2019 Jun 11 [cited 2022 Jan 19]; Available from:
1063 <https://journals.asm.org/doi/abs/10.1128/mSystems.00257-19>

1064 76. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source
1065 platform for biological-image analysis. *Nature Methods*. 2012 Jul;9(7):676–82.

1066 77. Chatterjee S, Prados-Rosales R, Itin B, Casadevall A, Stark RE. Solid-state NMR Reveals the
1067 Carbon-based Molecular Architecture of *Cryptococcus neoformans* Fungal Eumelanins in the Cell
1068 Wall. *J Biol Chem*. 2015 May 29;290(22):13779–90.

1069 78. Vij R, Danchik C, Crawford C, Dragotakes Q, Casadevall A. Variation in Cell Surface Hydrophobicity
1070 among *Cryptococcus neoformans* Strains Influences Interactions with Amoebas. *mSphere*

1071 [Internet]. 2020 Apr 29 [cited 2020 Sep 21];5(2). Available from:
1072 <https://msphere.asm.org/content/5/2/e00310-20>

1073
1074
1075
1076

Figure Legends:

1077 **Figure 1. *Candida auris* produces melanin pigment in a strain and temperature-dependent manner.**
1078 Melanization occurs in only some of the *C. auris* strains and the extent of melanization is variable. This
1079 melanization can be quantified (A). Melanization occurs less at 30°C (B) than at 37 °C (C), particularly for
1080 the melanizing strains CDC 388, CDC 390, and MMC1. Experiments were performed in three biological
1081 replicates. Panels (B) and (C) are representative images. (D-F) Electronic paramagnetic resonance (EPR)
1082 of melanin isolated from *Cryptococcus neoformans* (D), non-melanizing *C. auris* strains (E) and
1083 melanizing *C. auris* strains (F) grown in minimal media with L-DOPA. Error bars represent standard
1084 deviations from three independent experiments.

1085 **Figure 2. Cell density and time course.** *C. auris* yeast cells were incubated at increasing cell densities
1086 in minimal media in the presence or absence of L-DOPA. Melanin formation was monitored through the
1087 course of 13 days and quantified using ImageJ. The graphs show means and standard deviation from 3
1088 independent experiments.

1089 **Figure 3. Melanization by substrate.** (A) *C. auris* melanizing strains use catecholamines such as L-
1090 DOPA, D-DOPA, Methyl-DOPA, dopamine, epinephrine, and norepinephrine as substrates for
1091 melanization. Overall, there are few differences between the melanizing strains' abilities to oxidize these
1092 substrates. (B) The color of the pigments formed was typically brown-black, with the exception of the
1093 orange produced with epinephrine. Red dotted lines represent the baseline mean gray value of the
1094 background. Values above the line (closer to 0) signify wells darker than the background. (C) Strains of *C.*
1095 *auris*, CDC 381, 387, and 388 do not have laccase activity when grown with the laccase-specific
1096 substrate ABTS, whereas the positive control – the H99 strain of *Cryptococcus neoformans* – does have
1097 laccase activity, as indicated by the blue color formed in culture. Data represent biological triplicates, with
1098 Panels (B,C) showing representative images of the melanized cultures. Abbreviations: L-Tyrosine (TYR),
1099 Methyl-DOPA (M-DOPA), dopamine (DA), epinephrine (EPI), norepinephrine (NOR), Brain mixture
1100 (BRAIN), homogentisic acid (HGA), 4-hydroxyphenylpyruvic acid (4-HPP), Caspofungin (CASPO). Error
1101 bars indicate standard deviation from the mean.

1102 **Figure 2. Melanization primarily occurs extracellularly in *C. auris*.** (A-B) Melanized cultures have
1103 darker supernatants than their non-melanized counterparts, particularly the supernatant from the CDC
1104 388 strain. (C) When grown on solid agar, all melanizing strains have a dark halo surrounding their
1105 colony, with darker color around strong melanizing strains. The colonies of the strains themselves are
1106 notably white. (D) The cell-free supernatant from CDC 387 and CDC 388 (melanin-capable strains) have
1107 the ability to melanize, indicating a melanization factor is present. (E-F) Cultures grown with L-DOPA
1108 have melanin particles in the supernatant that can be collected and visualized via electron microscopy.
1109 The strongly melanizing CDC 387 strain has the largest population of these particles, the moderate
1110 melanizing strains CDC 388 and MMC1 have moderately sized populations of these particles, and the
1111 weak melanizing strain CDC 381 has the smallest population. All experiments were done in biological
1112 triplicate. Panels (A), (C) and (F) are representative images. Scale Bar indicates 500 nm. Error bars
1113 indicate standard deviation.

1114 **Figure 5. Melanin is primarily deposited on the cell wall surface.** (A) Light Microscopy shows that the
1115 387, 388, and MMC1 cells have darker color when grown in minimal media with L-DOPA, while there is

1116 little color change in the CDC 381 cell color. Some of the pigmented cells have dark pigmentation within
1117 the cell. CDC 387 in particular appears to have large pigmented extracellular structures. Scale bars
1118 represent 10 μ m. Images representative of three biological replicates. **(B)** Transmission electron
1119 microscopy shows electron dense particles on the outside of only the 387, 388, and MMC1 cells grown in
1120 the presence of L-DOPA, which is indicative of melanin pigment. These dark particles are found on the
1121 external cell wall and in the extracellular space; they are especially visible in the CDC 387 and MMC1
1122 micrographs. Scale bars represent 500 nm. **(C)** Similar external granule structures on the surface of CDC
1123 387, 388, and MMC1 cells grown with L-DOPA can be seen in scanning electron micrographs. Scale bars
1124 represent 5 μ m.

1125 **Figure 6. Extracellular melanin adheres to cell wall and is blocked following β -Glucan inhibition.**
1126 **(A-C)** Adding non-melanized cells to the melanized supernatant from its corresponding strain resulted in
1127 pigmented cells after 3 hours of incubation. **(D)** The melanized supernatant from the CDC 388 strain
1128 causes the non-melanizing CDC 381 strain to become pigmented. Adding the building block for chitin,
1129 GlcNAc, to the CDC 387 **(E)** and CDC 388 **(F)** strains resulted in increased supernatant melanization,
1130 blocking chitin synthesis with CFW resulted in less melanin in supernatant but also caused melanin-
1131 coated CFW crystals on the fungal surface. Blocking beta-Glucan synthesis with caspofungin resulted in
1132 increased supernatant melanization in both strains. **(G-H)** Electron microscopy revealed no major
1133 differences in melanin adherence to the cell wall in either the CDC 387 **(G)** and CDC 388 **(H)** strains
1134 treated with GlcNAc. There were clear electron-dense crystal structures on the cell walls of CFW
1135 conditions, and the caspofungin-treated conditions had little to no melanin on the cell surface. While
1136 caspofungin-treated cells grew in culture, they look atypical in TEM with a condensed cytoplasm. All scale
1137 bars represent 500 nm. **(I,J)** There is no association between the hydrophobicity of a *C. auris* strain and
1138 its ability to melanize. **(K)** Although the melanization of certain strains, namely CDC 387, results in a
1139 significant reduction of CSH compared to its non-melanized control, no statistically reduction occurs in
1140 CDC 381, 388, or MMC1 strains. All experiments are representative of three biological replicates.
1141 Statistical differences were tested with a Two-Way ANOVA with multiple comparisons using Prism
1142 GraphPad, with $p < 0.0001 = \text{****}$. Error bars indicate standard deviation.

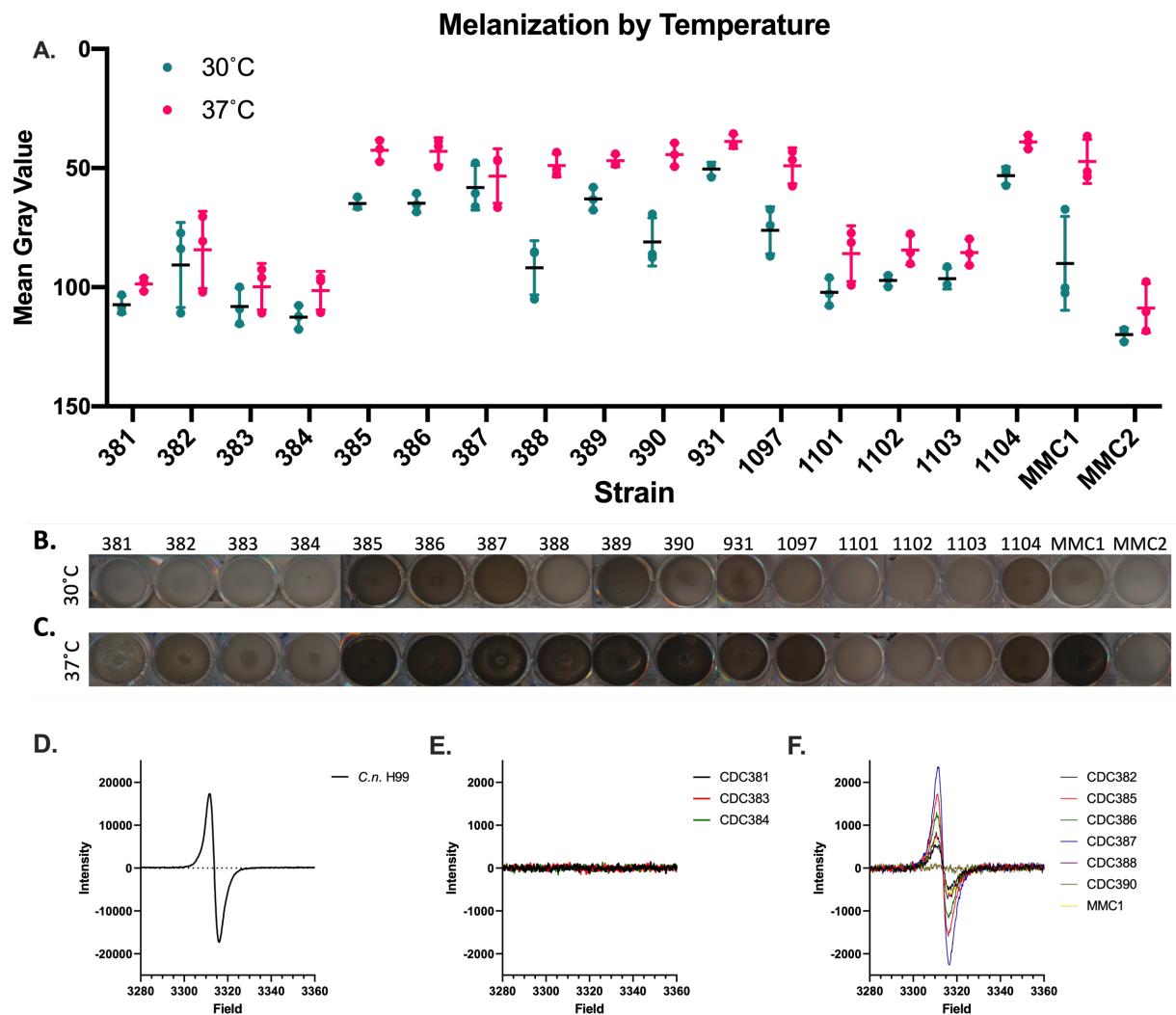
1143 **Figure 7. Relative cell-wall polysaccharide content varies by strain independent of melanization**
1144 **(A)** Quantitatively reliable direct-polarization solid-state ^{13}C NMR spectra of intact heat-killed *C. auris* cells
1145 from the melanizing strains CDC 387 (top) and CDC 388 (middle), and the non-melanizing strain CDC
1146 381 (bottom) grown with and without L-DOPA. The spectral regions are shaded according to the
1147 predominant type of molecular structure: yellow (12–37 ppm), aliphatic carbons of lipids; blue (54–110
1148 ppm), polysaccharide ring carbons; pink (110–166 ppm), aromatic carbons of protein side chains, nucleic
1149 acids, and melanin pigments plus C=C from lipids (130 ppm). The signals in the unshaded regions arise
1150 from carbon types found in many different molecules rather than a single group of cellular constituents:
1151 37–54 ppm, tertiary carbons, amino acid carbons and methoxy carbons; 166–182 ppm, carbonyl carbons
1152 within various carboxyl groups. **(B)** Bar graph displaying estimates of the relative content of
1153 polysaccharides and other groups of cellular constituents with respect to their respective total content in
1154 intact heat-killed *C. auris* cells. The data represent the mean estimates from three independent sets of
1155 quantitative measurements; the standard deviation from the mean was less than 0.04% for these
1156 measurements.

1157
1158 **Figure 8. *C. auris* melanization factor is resistant to denaturing conditions.** **(A)** Heating the
1159 supernatant to 100°C slightly reduces the melanizing ability of the supernatant but does not completely
1160 abolish melanizing ability of the supernatant or the precipitate that forms following boiling (inset). Adding
1161 proteinase K **(B)** or Trypsin **(C)** does not reduce the melanizing ability of the supernatant. **(D)** Images of
1162 the oxidation after 72 h within the samples treated with proteinase K and trypsin **(E)**. Similarly, 33%

1163 methanol and 1% SDS did not reduce melanization activity, whereas 6M urea uniformly enhanced DOPA
1164 oxidation in all groups. **(F)** Filtration through a 3 kDa filter indicates that the melanizing factor is smaller
1165 than 3 kDa. **(G)** The melanizing factor is not protected from proteolytic degradation by being shielded
1166 within extracellular vesicles (EV), as addition of detergent to disturb EVs does not render the melanization
1167 factor more susceptible to proteolytic degradation. Error bars indicate standard deviation.

1168 **Figure 9. Supernatant pH correlates to melanization ability.** **(A)** The pH of the supernatant from the *C.*
1169 *auris* cultures corresponds to the ability of that strain to melanize, with two distinct clusters that
1170 correspond to melanizing versus non-melanizing strains. **(B)** The correlation between pH and
1171 melanization from the *C. auris* strains corresponds to a similar increase in autoxidation of L-DOPA in the
1172 same range of pH. **(C)** Reducing the pH of the supernatants to 5.5 abolished melanization ability in the
1173 CDC 387 and 388 strains, while raising the pH of the supernatants to 7 enhanced melanization in all the
1174 supernatants, including CDC 381. **(D)** Images of the L-DOPA oxidation in the supernatant following pH
1175 alteration. **(E,F)** *C. auris* strains that melanize are associated with increased ammonia concentration in
1176 the supernatant, with a concentration of approximately 16 ppm, whereas non-melanizing strains have
1177 ammonia concentrations between 8 and 5 ppm. **(G)** Aggregates from pH 7 melanized cell-free
1178 supernatant from CDC 387 and CDC 388 look similar to those produced in cultures (Figure 4F), whereas
1179 the pigment collected from the pH 7 minimal media looks more amorphous and lacks structure. The Scale
1180 Bar represents 500 nm. Error bars indicate standard deviation from the mean value.

1181 **Figure 10. Melanin from *C. auris* during interaction with the host.** **(A)** Melanized and control yeast
1182 cells were incubated with, or without, 5 mM hydrogen peroxide (H_2O_2) for 3 hours at 37° C. Yeast viability
1183 was addressed by CFU counting, and values of H_2O_2 -treated *C. auris* were expressed as a percentage of
1184 cells in the absence of H_2O_2 . Each symbol in the graph represents one experiment performed in triplicate.
1185 Data was treated by One-way ANOVA followed by Sidak's multiple comparison test. *** represents p
1186 =0.0003, **** represents p<0.0001. **(B)** Bone marrow-derived macrophages (BMDM) were challenged
1187 with melanized or control *C. auris* yeast cells for 2 or 24 hours. After macrophage lysis, fungal viability
1188 was addressed by CFU counting. The killing percentage was expressed as the amount of viable yeast in
1189 the presence of macrophages, divided by the amount of yeast in the absence of macrophages for each
1190 strain and condition. Each symbol represents one experiment performed in triplicate. **(C)** Melanized and
1191 control *C. auris* yeast cells were inoculated into the haemocoel of *G. mellonella* larvae (n = 10/group). The
1192 number of living larvae was monitored for 7 days after inoculation.


1193
1194 **Figure 11. Proposed model for *C. auris* melanization.** *C. auris* from Clades I and IV can neutralize the
1195 pH of their surrounding environment by secreting either ammonia, an alkalinizing enzyme, or some other
1196 pH modulator. The neutralized pH encourages oxidation of catecholamines that are present, which begin
1197 to form a pigment. The oxidized catecholamines may aggregate on secreted proteins, polysaccharides, or
1198 lipids to form melanin granules. These melanin granules are deposited on the surface of the fungi. In
1199 cases of high degrees of melanization, nearly all of the extracellular melanin ends up adhering to the
1200 surface of the fungus, leaving a relatively light-colored supernatant.

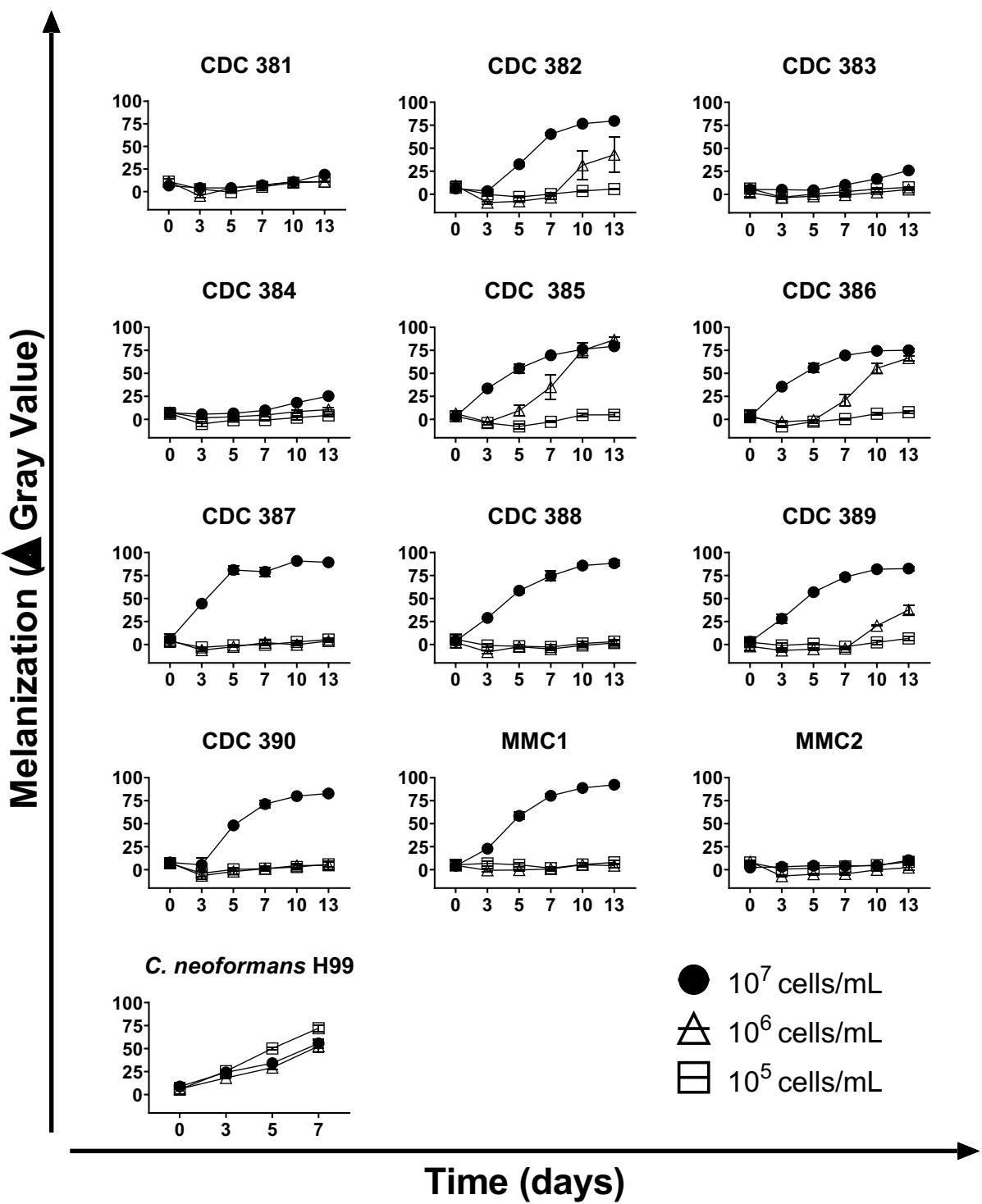
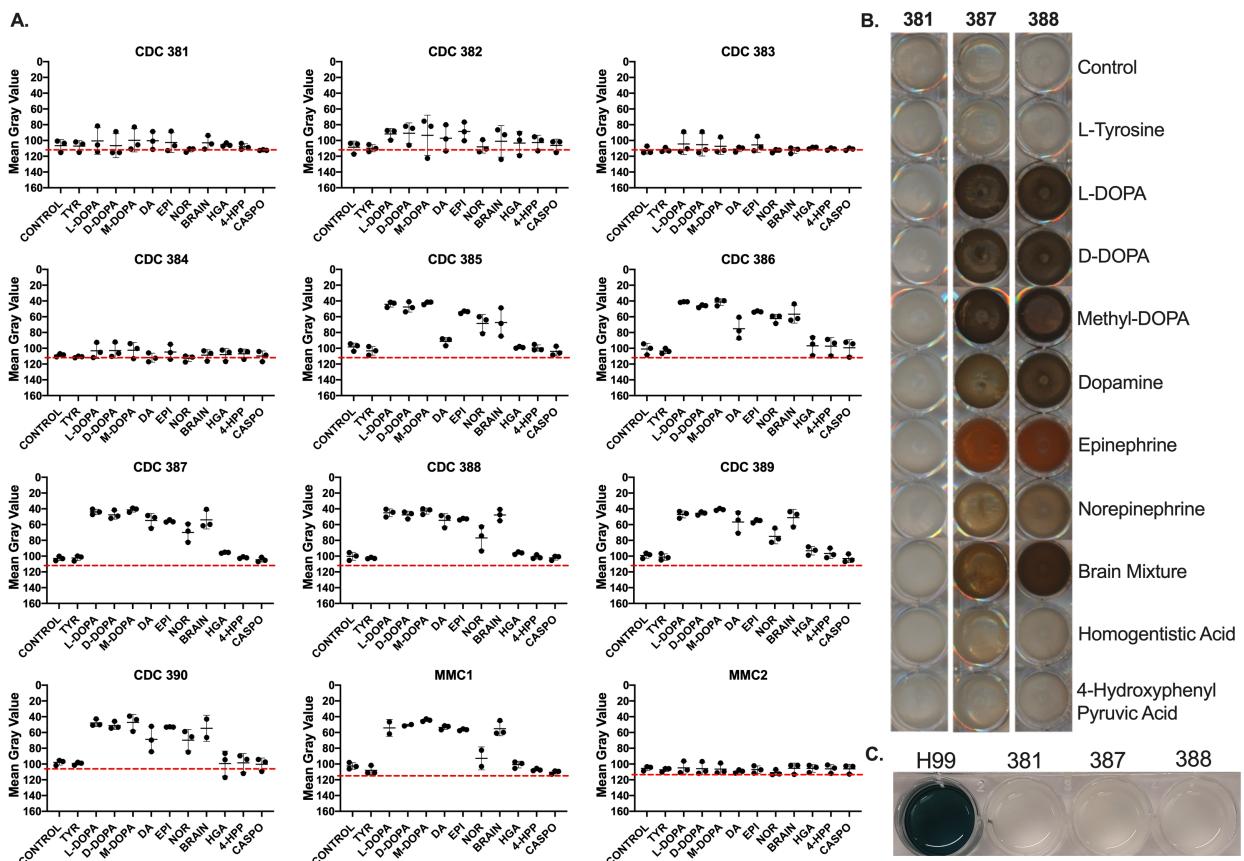
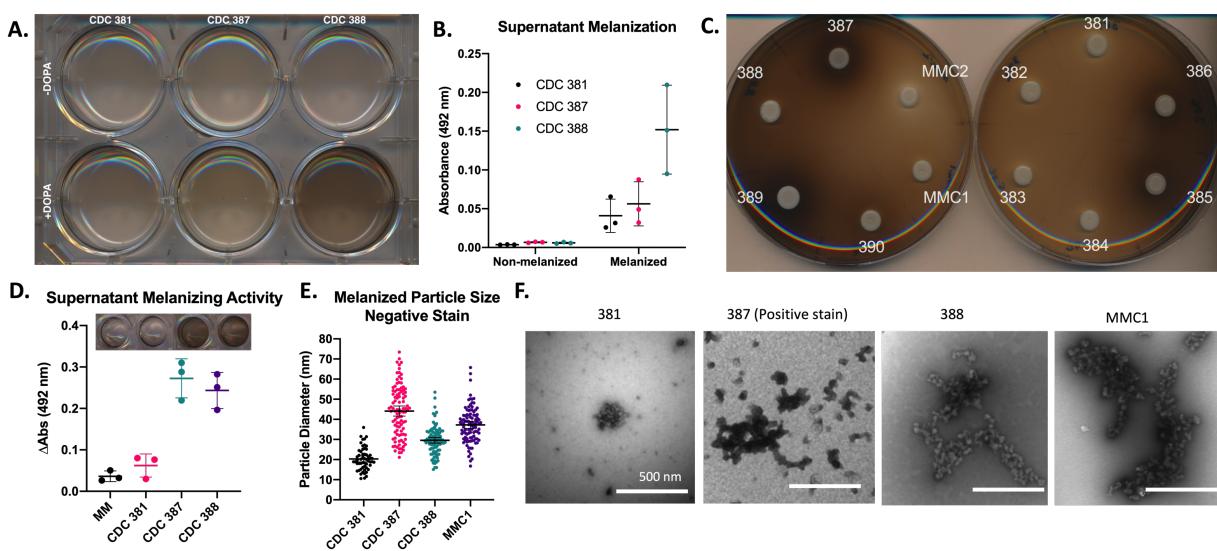
1201 **Supplementary Figure 1. *C. auris* takes up exogenous GlcNAc and uses it for chitin synthesis.** ¹⁵N
1202 cross-polarization solid-state NMR spectra of intact heat-killed *C. auris* cells from the melanizing strain
1203 CDC 388 grown with (A) 5 mM ¹⁴N-GlcNAc or (B) 5 mM ¹⁵N-GlcNAc; (C) spectrum of a ¹⁵N-GlcNAc
1204 standard compound. All data were acquired with 64 scans (~3 minute experimental time). The absence of
1205 signal in the spectrum of ¹⁴N-GlcNAc supplemented cells (A) after the acquisition of only 64 scans is
1206 consistent with the low natural abundance (0.4%) of the NMR-active ¹⁵N isotope. The presence of signal
1207 in the spectrum of ¹⁵N-GlcNAc supplemented cells (B) after the acquisition of only 64 scans is consistent
1208 with the uptake of substrate enriched in the ¹⁵N-isotope. The ¹⁵N chemical shift (~123 ppm) of the

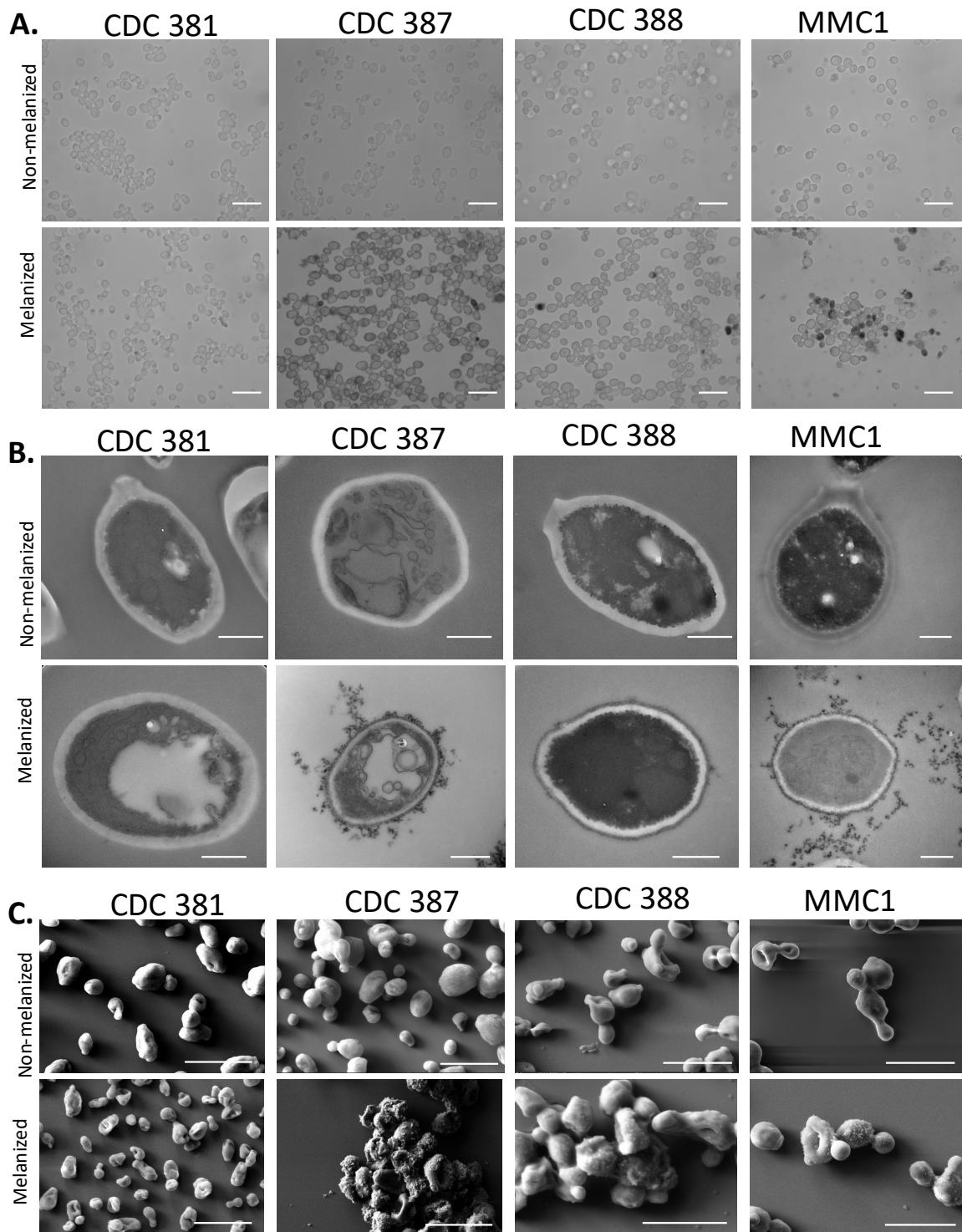
1209 observed signal is consistent with the amide nitrogen within an acetyl group; its relatively broad linewidth
1210 in comparison to that of the peak in spectrum (C) is typical of large macromolecules, indicating that the
1211 taken-up exogenous GlcNAc was subsequently used for chitin synthesis.

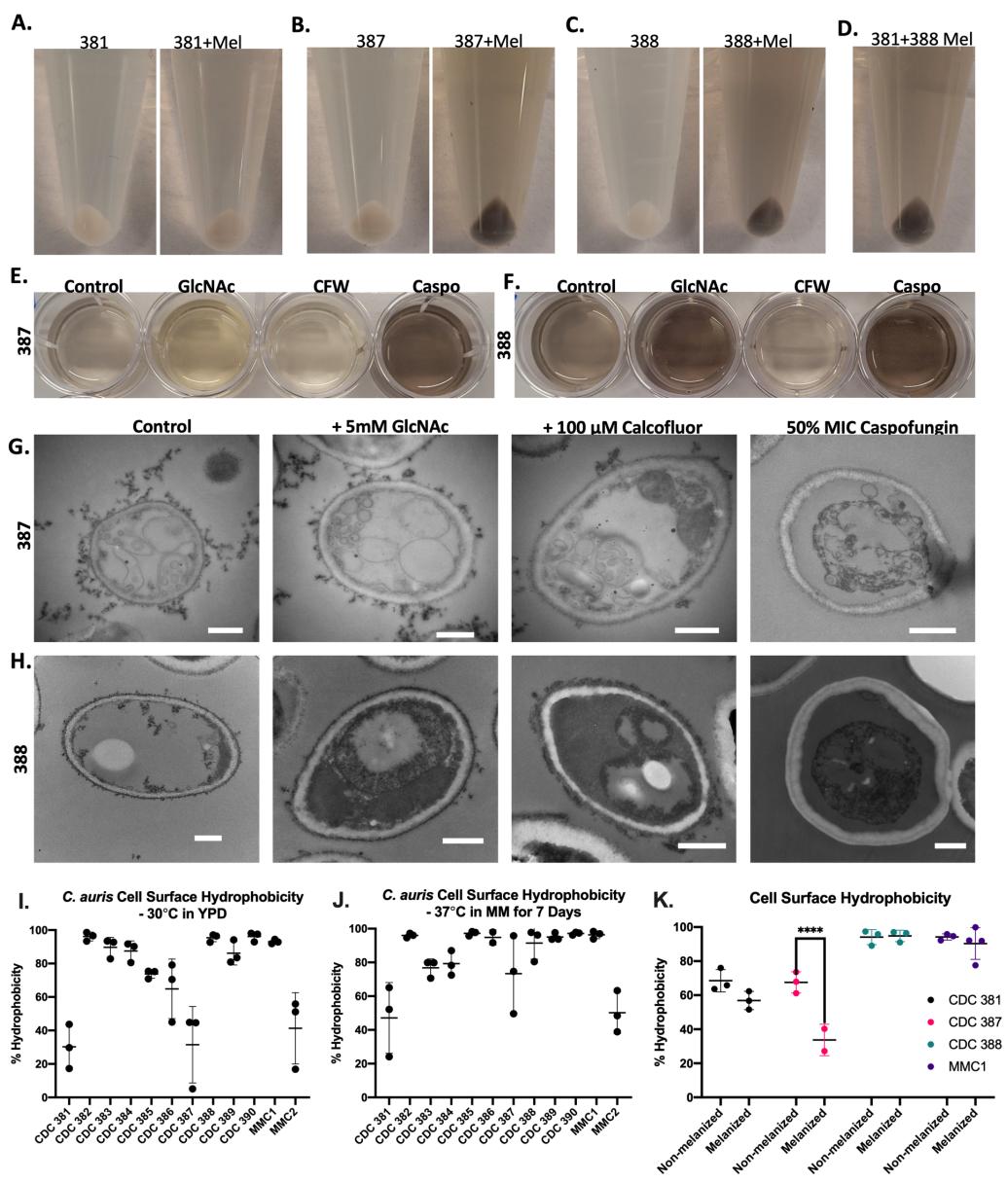
1212
1213 **Supplementary Figure 2. Interactions of Calcofluor White and melanin.** (A) Melanizing *C. auris*
1214 strains (CDC 387) grown with L-DOPA and Calcofluor White (CFW) have visible crystal formation under
1215 light microscopy. These crystals are dark in color, suggesting the presence of melanin or polymerized L-
1216 DOPA, and they are fluorescent under a 405 nm wavelength laser, indicating they also contain CFW. (B)
1217 These crystals can also be seen with transmission electron microscopy. (C) Adding L-DOPA and CFW to
1218 non-melanized cell-free supernatant resulted in the formation of black crystals, which under the
1219 fluorescent microscope have signal, indicating that the crystals are a combination of both CFW and
1220 melanin/autopolymerized L-DOPA. (D) Additionally, when CFW is added to supernatant, the crystals that
1221 form in CDC 381 strain are large and settle quickly, leaving few crystals in suspension, whereas CDC 387
1222 and 388 form smaller crystals that do not settle rapidly and remain in the suspension. Inset is an image of
1223 the falcon tube containing the supernatant with CFW, and micrographs show a sample taken from the
1224 non-settled suspension. Scale bars in A, C, D, and E represent 10 μ m, and scale bars in B represent 500
1225 nm.

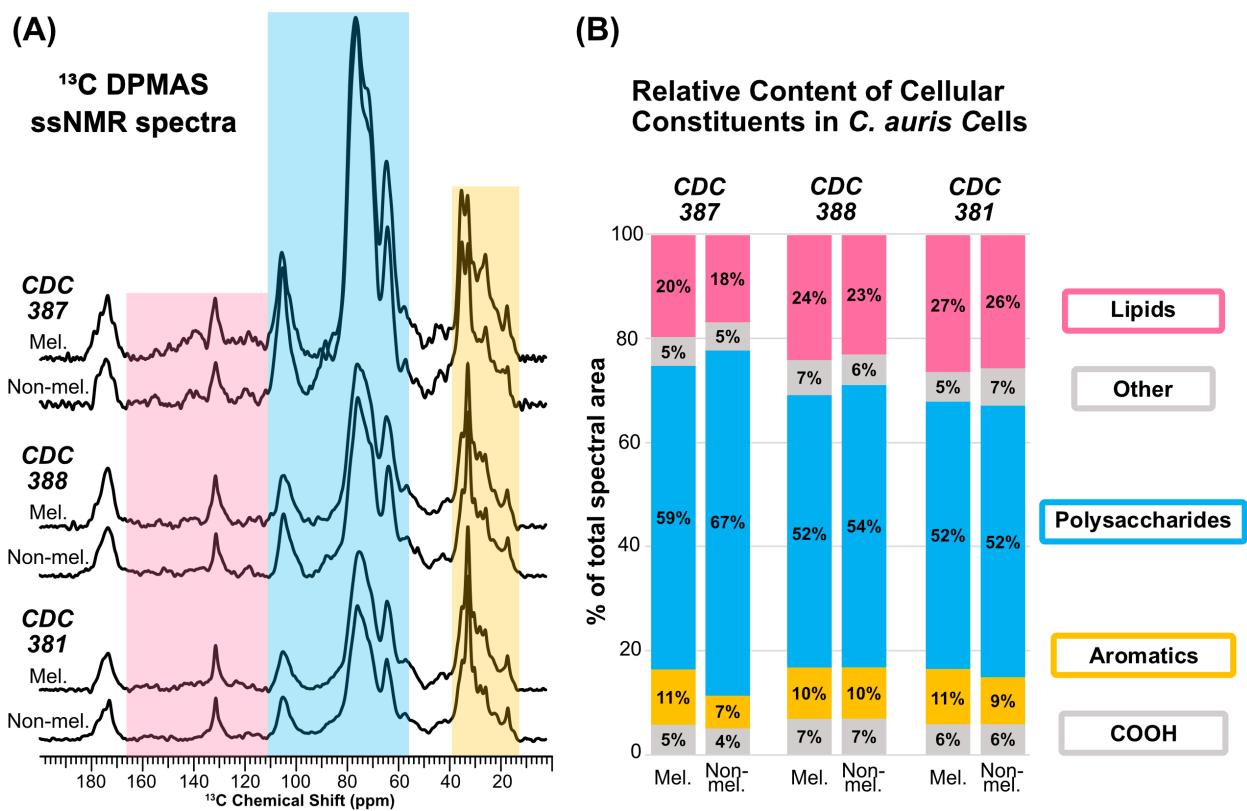
1226
1227 **Supplementary Figure 3. Melanization activity is not associated with extracellular vesicles.**
1228 Following ultracentrifugation of the *C. auris*-conditioned media, there is comparable melanization activity
1229 in both the supernatant and the pellet (containing extracellular vesicles) resuspended in 200 μ l of
1230 supernatant, which represents a ~200x concentration.

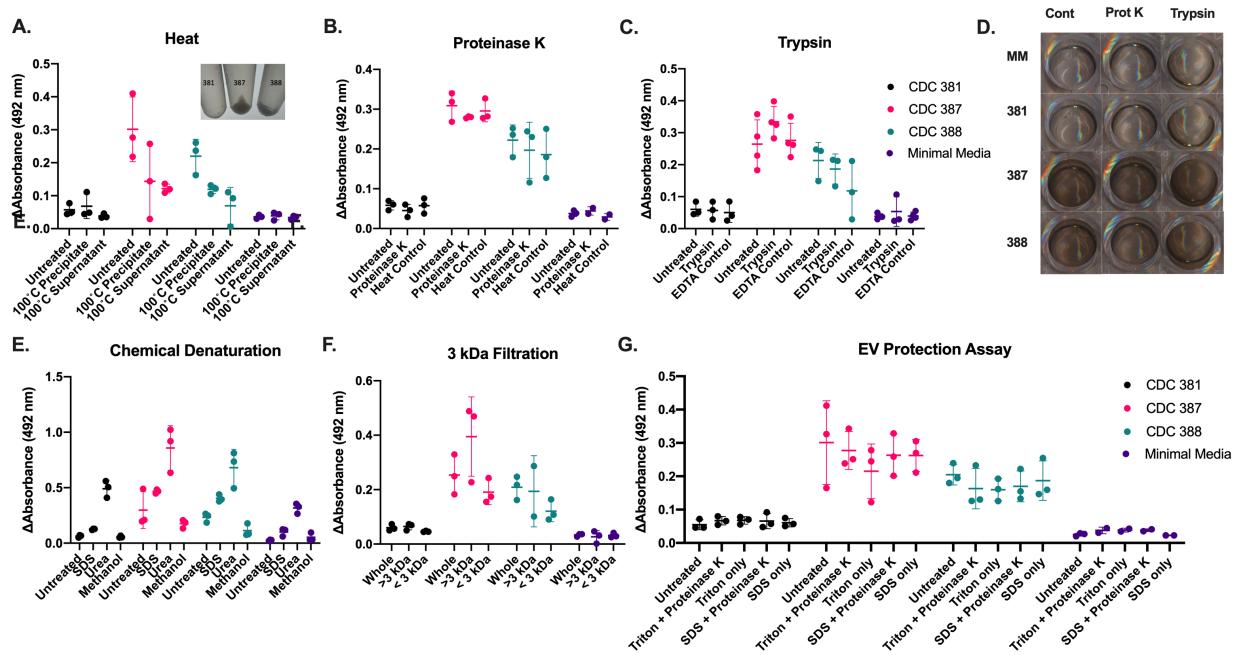
Figure 1. *Candida auris* produces melanin pigment in a strain and temperature-dependent manner.

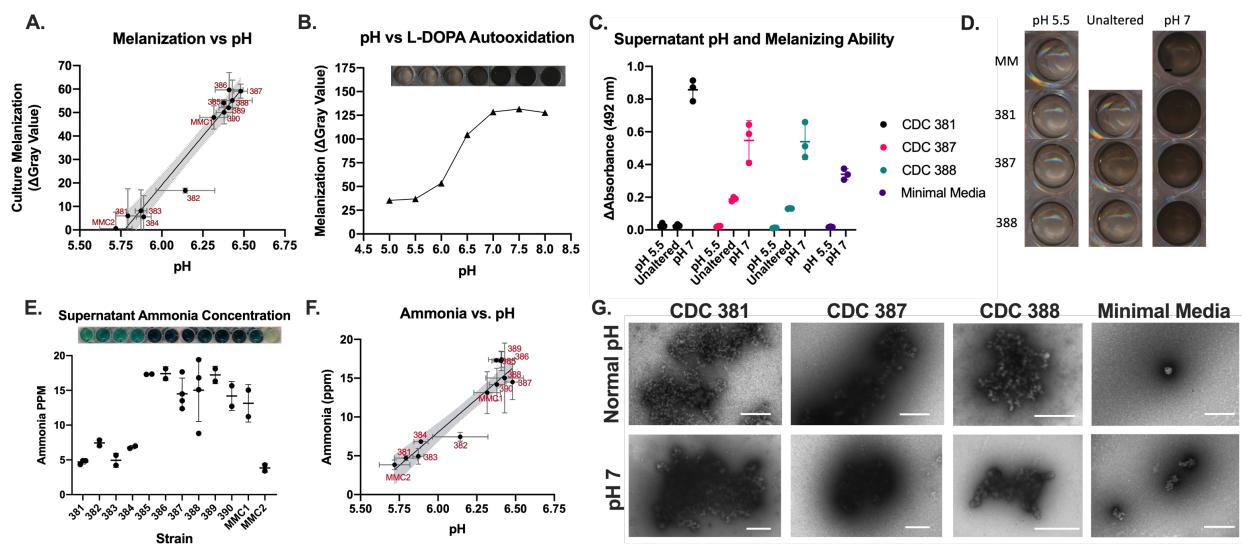





Figure 2. Cell density and timecourse.


Figure 3. Melanization by substrate


Figure 2. Melanization primarily occurs extracellularly in *C. auris*.


Figure 5. Melanin is primarily deposited on the cell wall surface.


Figure 6. Extracellular melanin adheres to cell wall and is blocked following β -Glucan inhibition.

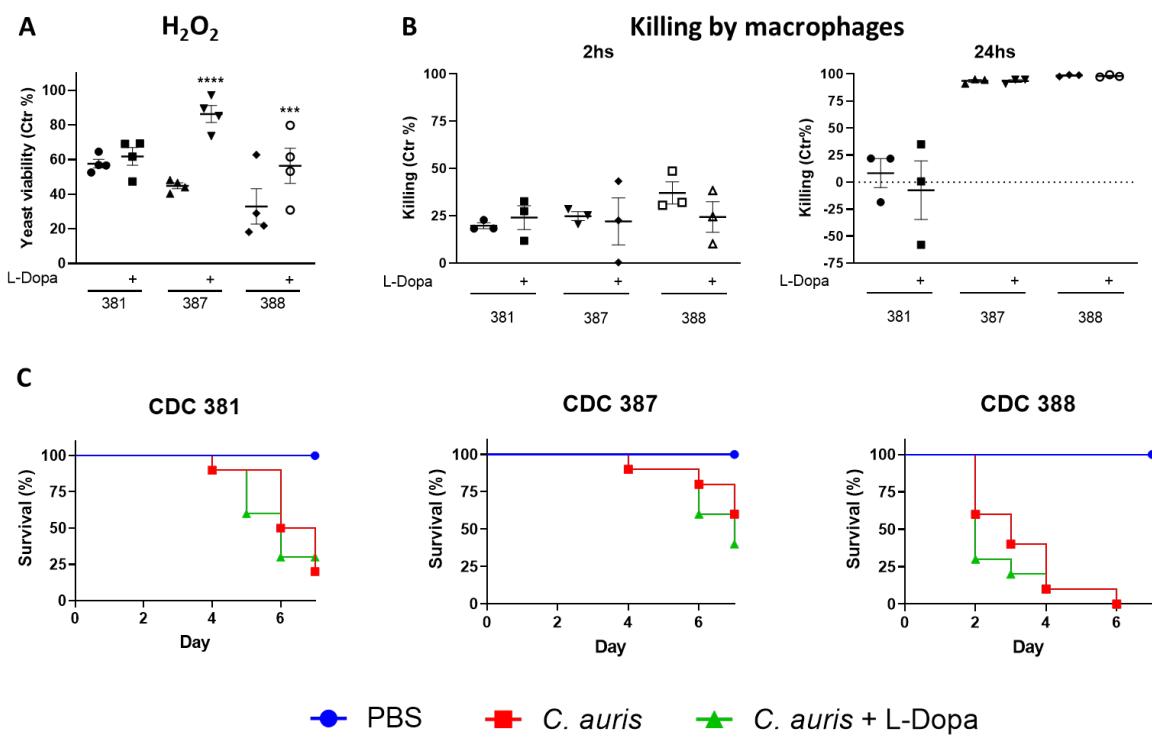
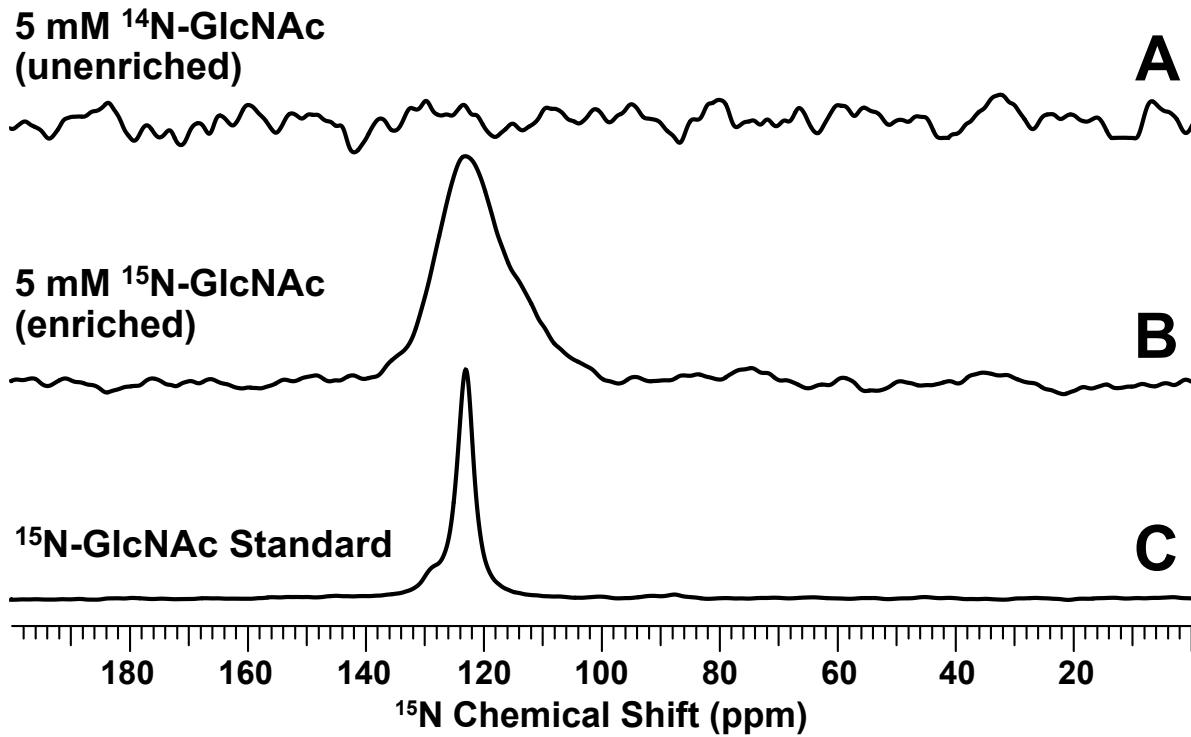

Figure 7. Relative cell-wall polysaccharide content varies by strain independent of melanization

Figure 8. *C. auris* melanization factor is resistant to denaturing conditions..

Figure 9. Supernatant pH correlates to melanization ability.


Figure 10. Melanin from *C. auris* during interaction with the host.

Proposed Model of *Candida auris* Melanization

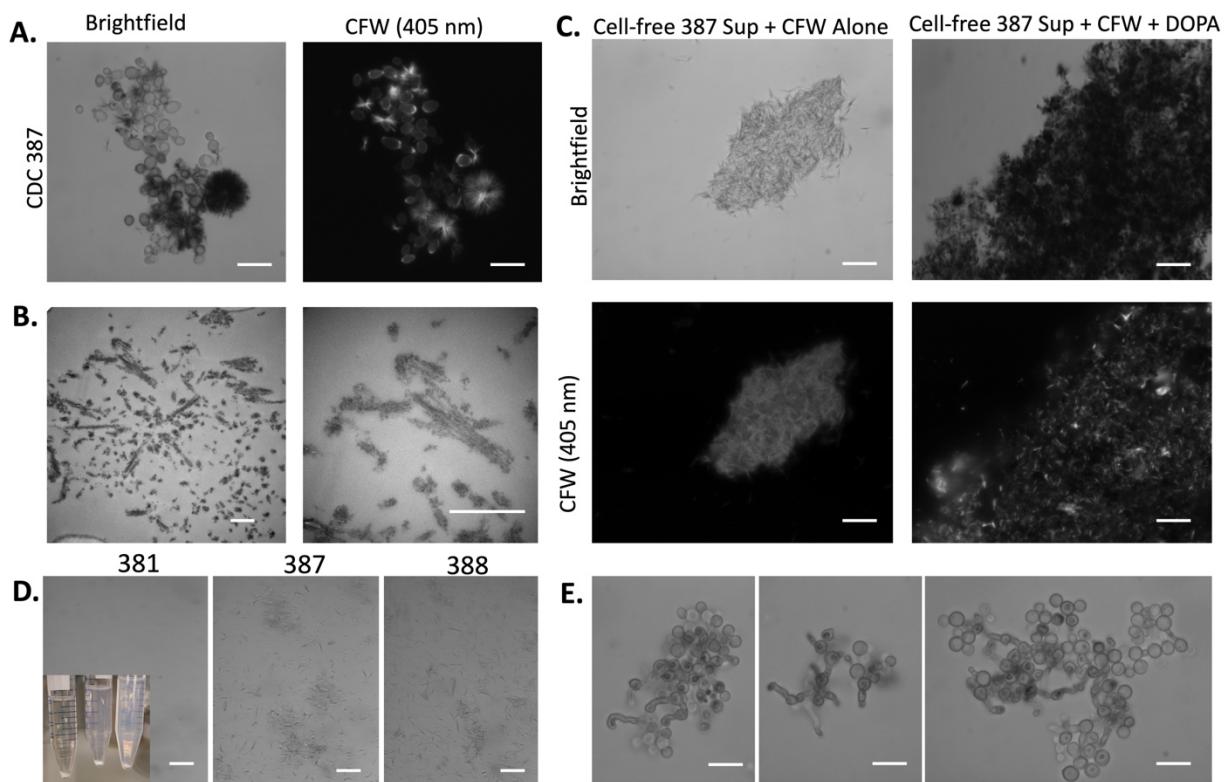


Figure 11. Proposed model for *C. auris* melanization

^{15}N CPMAS ssNMR of *C. auris* cells non-melanized, CDC 388

Supplementary Figure 1. C. auris takes up exogenous GlcNAc and uses it for chitin synthesis.

Supplementary Figure 2. Interactions of Calcofluor White and melanin.

Ultracentrifugation

Supplementary Figure 3. Melanization activity is not associated with extracellular vesicles.

Strain	Alias	Clade	Melanin
CDC 381	B11220	Clade II (East Asian)	No
CDC 382	B11109	Clade I (South Asian)	Partially
CDC 383	B11221	Clade III (African)	No
CDC 384	B11222	Clade III (African)	No
CDC 385	B11244	Clade IV (South American)	Yes
CDC 386	B11245	Clade IV (South American)	Yes
CDC 387	B8441	Clade I (South Asian)	Yes
CDC 388	B11098	Clade I (South Asian)	Yes
CDC 389	B11203	Clade I (South Asian)	Yes
CDC 390	B11205	Clade I (South Asian)	Yes
CDC 931	B11243	Clade IV (South American)	Yes
CDC 1097	IFRC2087	Clade V (Iranian)	Yes
CDC 1101	B18678	Clade II (East Asian)	No
CDC 1102	B17835	Clade III (African)	No
CDC 1103	B18683	Clade III (African)	No
CDC 1104	B18017	Clade IV (South American)	Yes
MMC1	N/A	Clade I (South Asian)	Yes
MMC2	N/A	Unknown	No