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Abstract  

Phosphorylation of proteins is a key step in the regulation of many cellular processes including 

activation of enzymes and signaling cascades. The abundance of a phosphorylated peptide 

(phosphopeptide) is determined by the abundance of its parent protein and the proportion of 

target sites that are phosphorylated. We quantified phosphopeptides, proteins, and transcripts in 

heart, liver, and kidney tissue samples of mice from 58 strains of the Collaborative Cross strain 

panel. We mapped ~700 phosphorylation quantitative trait loci (phQTL) across the three tissues 

and applied genetic mediation analysis to identify causal drivers of phosphorylation. We 

identified kinases, phosphatases, cytokines, and other factors, including both known and 

potentially novel interactions between target proteins and genes that regulate site-specific 

phosphorylation. Our analysis highlights multiple targets of pyruvate dehydrogenase kinase 1 

(PDK1), a regulator of mitochondrial function that shows reduced activity in the NZO/HILtJ 

mouse, a polygenic model of obesity and type 2 diabetes. 
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Introduction 

Protein phosphorylation is a reversible post-translational modification (PTM) and one of the 

most common mechanisms for regulating protein activity and transmitting signals in cell biology 

[1-3]. Phosphorylation occurs at specific sites within a protein where kinases and phosphatases 

add and remove phosphate moieties [4]. The level of activity of kinases and phosphatases is 

determined by their abundance [5, 6], intracellular and extracellular stimuli [7-10], interaction 

with co-factors [11], and PTMs including phosphorylation [12-14]. Therefore, the 

phosphorylation level of a given site within a protein depends on multiple factors, any of which 

could be influenced by genetic variation [15, 16]. 

 

Genetic variants that affect quantitative phenotypes can be identified through quantitative trait 

locus (QTL) mapping in humans and in model organisms. In addition to clinical phenotypes, 

QTL mapping can be applied to molecular traits such as gene expression [17-22], chromatin 

accessibility [23], and protein abundance [24, 25]. QTL mapping of transcripts (eQTL) and 

proteins (pQTL) has revealed how genetic variants can alter the regulatory flow from encoded 

gene through transcription and translation [20, 26, 27]. However, only limited research has been 

conducted on how genetic variation influences protein phosphorylation or other PTMs [18, 28, 

29]. 

 

Genetically diverse model organism populations increase the scope and power of QTL 

mapping. The Collaborative Cross (CC) [30, 31] is a panel of recombinant inbred mouse strains 

descended from eight founder inbred strains: A/J (AJ), C57BL/6J (B6), 129S1/SvImJ (129), 

NOD/ShiLtJ (NOD), NZO/HlLtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK) and WSB/EiJ 

(WSB). The founder strains represent traditional laboratory as well as wild-derived strains, 

encompassing three subspecies of the house mouse [32, 33] and harbor ~50 million known 

genetic variants [34]. The current CC panel consists of more than 60 strains that are 

homozygous at most loci (> 99%). The ability to use replicate animals of CC strains is an 

important feature of CC studies that improves QTL mapping power [23], and enables studies of 

response to interventions [35-37] and other applications [38].  

 

We previously reported on the genetic regulation of protein abundance in liver of CC strains 

[25]. Here we expand on our earlier investigation to examine how genetic variation regulates 

protein phosphorylation. We used mass spectrometry analysis to quantify the proteome and 

phosphoproteome across three tissues (heart, kidney, and liver) from 116 mice representing 
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female/male pairs from 58 CC strains. We performed QTL mapping to obtain pQTL and 

phosphorylation QTL (phQTL). In addition, we mapped the residuals of phosphopeptide 

abundance after regression on the abundance of the protein they derived from, i.e., the parent 

protein abundance, to obtain adjusted phosphopeptide QTL (adj-phQTL). This approach 

allowed us to differentiate between the contributions of two distinct mechanisms that determine 

the abundance of phosphopeptides, the abundance of its parent protein and the proportion of 

target sites that are phosphorylated, with the latter likely reflecting the activity of a catalyst 

intermediate. We then applied mediation analysis and identified candidate genes that influence 

phosphorylation levels through the second mechanism.  

 

Results 

Quantitative phosphoproteome profiling of heart, kidney, and liver in CC mice 

Heart, kidney, and liver tissue samples were collected from 116 mice representing one male 

and one female from each of 58 CC strains (Table S1). We utilized a tandem mass tag (TMT)-

based proteomics workflow (Fig. 1A) to quantify total protein abundance and the abundance of 

phosphorylated peptides (phosphopeptides). We quantified 6172, 7286, and 6558 proteins, and 

4975, 4236, and 4246 non-polymorphic phosphopeptides in heart, kidney, and liver tissue, 

respectively. The number of proteins reported for liver differs slightly from our previous study, 

where we report 6798 proteins, due to differences in the preprocessing and filtering steps. 

Nearly 5,000 proteins were quantified in all three tissues and ~6,500 proteins were quantified in 

at least two tissues (Fig. 1B). Fewer phosphopeptides were quantified across multiple tissues; 

~1,500 were observed in all three tissues, but the majority of phosphopeptides were observed in 

only one tissue (Fig. 1C). The number of phosphorylation sites identified for a given protein 

ranged from 1 to 148 (TTN in heart), with fewer than 10 sites detected for most proteins (median 

= 1) (Fig. S1A). The abundance of most phosphopeptides was slightly correlated with the 

abundance of their parent proteins (median correlation: heart = 0.32, kidney = 0.36, liver = 0.40) 

(Fig. S1B). To obtain an estimate of phosphorylation that is independent of the parent protein 

abundance, we computed the residual of phosphopeptide abundance after regression on the 

abundance of the parent protein (adjusted phosphopeptides abundance) (Fig. 1D). For this 

purpose, we modified the protein abundance estimation by excluding all peptides corresponding 

to detected phosphopeptides (Methods). In some cases, we were not able to quantify the 

parent protein after removing phosphorylated peptides, and we obtained 3875, 3471, and 3492 

adjusted phosphopeptides in heart, kidney, and liver tissue, respectively.  
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Sex differences among phosphopeptides 

We estimated the effect of sex on abundance of proteins, phosphopeptides, and adjusted 

phosphopeptides in all three tissues (Methods). For heart, we detected significant sex effects 

(FDR < 0.01) for 323 proteins, 12 phosphopeptides, and 0 adjusted phosphopetides; for kidney, 

4,499 proteins, 2,031 phosphopeptides, and 538 adjusted phosphopetides; and for liver, 2,367 

proteins, 547 phosphopeptides, and 97 adjusted phosphopetides (Table S2). Sex effects are 

most prevalent in kidney, followed by liver, and there are relatively few in heart (Fig. 2A). 

Standardized sex effects on phosphopeptides and their parent proteins are highly correlated 

(Fig. S2A). After adjustment for parent protein abundance, the magnitude of the sex effects is 

reduced (Fig. 2A), but many remain significant. In addition, we see strong positive correlation of 

sex effects on phosphopeptides before and after adjustment (Fig. S2B).  Thus, sex effects on 

phosphopeptide abundance are determined by sex effects on parent protein abundance and by 

sex-specific factors that act directly on phosphorylation levels. 

 

We illustrate how sex can influence phosphopeptide abundance with two examples (Fig. 2B). 

There is a significant effect of sex on the protein LDHD, which has a higher abundance in 

males. The phosphopeptide LDHD pS23 also has higher abundance in males, but the adjusted 

phosphopeptide abundance shows no significant difference between the sexes.  We conclude 

that the sex effect on LDHD pS23 is mediated through the sex effect on the abundance of its 

parent protein (Fig. 2B).  The protein CGREF1 has higher abundance in males but CGREF1 

pS272 has substantially lower abundance in males.  This sex difference in the phosphopeptide 

persists after adjusting for the parent protein abundance. We conclude that the sex effects on 

CGREF1 pS272 are mediated by sex-specific processes that act independently of the parent 

protein abundance (Fig. 2C). 

 

Heritability of phosphopeptides 

Heritability is the proportion of phenotypic variation explained by genetic relatedness. It reflects 

the additive genetic effects on a trait relative to the precision of measurement. We estimated 

heritability (h2) for the abundance of individual proteins and phosphopeptides in all three tissues. 

The median heritability across tissues ranged from 0.308 to 0.332 for proteins, from 0.138 to 

0.165 for phosphopeptides, and from 0.076 to 0.100 for adjusted phosphopeptides (Fig. 2D; 

Table S3). Protein heritability was substantially higher than phosphopeptide heritability (Fig. 

S2C), which at least in part, reflects the higher precision of protein quantification that combines 

measurements across multiple peptides.  The adjusted phosphopeptides are generally less 
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heritable than the phosphopeptides (Fig. S2D), indicating that a dominant component of 

phosphopeptide heritability is mediated through genetic effects on the parent protein. 

Nonetheless, there are many adjusted phosphopeptides with non-zero heritability, indicating 

that genetic factors can directly influence phosphorylation levels. 

 

Genetic mapping of proteins and phosphopeptides  

We mapped pQTL, phQTL and adj_phQTL in all three tissues. We computed a genome-wide 

adjusted p-value for each trait and then applied a false discovery rate  adjustment (FDR < 0.1) 

to account for the number of proteins or peptides (Methods). We identified 1,608, 1,801, and 

1,609 pQTL (Fig. 3A);  211, 251, and 275 phQTL (Fig. 3B); and 40, 58, and 41 adj-phQTL (Fig. 

3B) in heart, kidney, and liver tissue, respectively (Table S4). We defined local QTL as being 

located within 10 Mbp of the midpoint of the protein-coding gene, all others are distant QTL. 

Mapping resolution of the CC panel is not uniform across the genome and we noted several 

instances where QTL classified as distant were cleary local, based on the local LD structure. We 

see greater sharing across tissues for local pQTL (41% are present in at least two tissues) 

compared to distant pQTL (11% are present in at least two tissues) (Fig. S3A). This is 

consistent with previous studies on multi-tissue gene expression QTL (eQTL)  [19, 39]. The 

proportion of phQTL shared across tissues is lower, with only five local and one distant phQTL 

found in all three tissues and 10.5% of all phQTL present across two or more tissues (Fig. 

S3B). The sharing of adj-phQTL is lower still, with only one local (EIF3B pS90; Figs. 3C, S3C) 

and one distant (ATP5A1 pS53) site found across all three tissues and only 10.5% of all adj-

phQTL present in two or more tissues. The majority of adj-phQTL have a corresponding phQTL 

(81.8% of all adj-phQTL) (Figs. 3B and S3D). The lower proportion of sharing across tissues for 

phQTL and adj-phQTL could be due to tissue-specificity of phosphorylation but we cannot rule 

out reduced mapping power for individual peptides relative to proteins.  

 

To determine how much of the genetic contribution to phQTL is mediated through abundance of 

their parent proteins, we first looked at the correlation of allele effects at concordant pQTL-

phQTL pairs. We observed high positive correlations for most pairs, consistent with shared 

genetic effects (Fig. S3E).  We then calculated the difference of the LOD score for each phQTL 

before and after adjusting for parent protein abundance. If the LOD score drops after 

adjustment, this indicates that the phQTL is mediated, at least in part, through variation in the 

abundance of the parent protein. The phQTL with the greatest reduction in LOD score (Delta 

LOD percentage < - 50%, FDR < 0.1) were primarily local phQTL (89.5%-95.7% across 
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tissues), although a few distant phQTL (N = 21) showed a similar reduction in LOD score (Fig. 

3D, Table S5). We looked at a larger set of phQTL using a less stringent multiple testing 

correction (FDR < 0.5) and saw the same pattern. We conclude that local genetic effects on 

phosphopeptide abundance are often mediated through parent protein abundance. However, a 

substantial number of phQTL, especially those that are distant from the coding gene, show little 

or no drop in LOD score after adjustment, indicating that these phQTL are responding to 

genetics effects independent of their parent protein abundance. The drop in LOD scores for 

many phQTL falls somewhere between these extremes, indicating that they are influenced by 

parent protein abundance and by independent mechanisms.  

 

We note that the genetic effects on phosphopeptides can be modified by sex. Our experimental 

design, with one male and one female mouse from each CC strain, is well suited for mapping 

QTL with genetic effects that differ between the sexes, which we refer to as sex-interactive QTL. 

We mapped 2, 43, and 5 sex-interactive pQTL (FDR < 0.1) in heart, kidney, and liver, 

respectively (Fig. S3F). We identified 4 sex-interactive phQTL in kidney (3 local and one 

distant). We found no sex-interactive phQTL in heart or liver and no sex-interactive adj-phQTL 

in any tissue. The local sex-interactive phQTL for HAO2 pS171 illustrates how sex and genetic 

variation can simultaneously affect protein and phosphoprotein abundance (Fig. S3G). Female 

mice generally have higher phosphorylation of HAO2 pS171 relative to their male counterparts, 

but the magnitude of the sex effect is amplified for mice with the CAST allele at this QTL.   

 

Distant phQTL effects are mediated through kinases, phosphatases, and cytokines 

Phosphopeptide abundance can be driven by abundance of the parent protein (Mechanism 1), 

and by factors that affect phosphorylation levels independently of protein abundance 

(Mechanism 2; Fig. 4A). We set out to quantify the relative contributions of these two 

mechanisms and to identify candidate mediators of Mechanism 2, which we expected to be 

enriched for kinases, phosphatases, and upstream regulators of protein phosphorylation.  

 

We observed that many phQTL have a corresponding pQTL but no correpsonding adj-phQTL, 

i.e., the LOD score drops when the phosphopeptide is adjusted for the parent protein 

abundance (Fig. 3D). The genetic effects at these phQTL are mediated by Mechanism 1.  For 

example, a pQTL on chromosome 7 at 64Mb explains 81% of variation in the abundance of the 

protein GAS2 in kidney (p = 8.2e-16) (Fig. 4B-C). The abundance of GAS2 is low in animals 

with the PWK allele at this locus (Fig. 4D). The abundance of GAS2 pS283 is highly correlated 
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with its parent protein’s abundance (r = 0.99) (Fig. 4E). After adjusting for GAS2 abundance, 

GAS2 pS283 is no longer associated with the genotype at the phQTL locus (Fig. 4G). Additional 

examples of phQTL that are mediated through parent proteins include TPMT pS34 (Fig. S4A-D) 

and MTX3 pS284 (Fig. S4E-H). Common features of phQTL consistent with Mechanism 1 are a 

strong local pQTL for the parent protein and strong correlation between the parent protein and 

the phosphopeptide.  

 

We observed 74 distant phQTL that had no corresponding pQTL, and after adjusting for parent 

protein abundance, the adj-phQTL remained significant (Fig. 3D). The genetic effects at these 

QTL are mediated primarily by Mechanism 2. For example, MCAT pS41 in heart (Fig. S5) has 

distant phQTL and adj-phQTL on chromosome 2 at 71.8Mb (Fig. 4H). The abundance of MCAT 

pS41 is low when this Chr 2 locus carries an NZO allele (Fig. 4I). To identify the gene 

candidates responsible for this effect, we applied mediation analysis to evaluate the transcripts 

and proteins in the phQTL region on Chr 2 (Methods). The strongest mediation signature was 

found for PDK1, pyruvate dehydrogenase kinase 1 (Fig. 4J-K). The transcript abundance of 

Pdk1 was also identified as a mediator. PDK1 has a local pQTL with low expression in mice with 

an NZO allele (Fig. 4L), and PDK1 abundance is tightly correlated with MCAT pS41 (Fig. 4M). 

The pQTL of PDK1 explains 97% (p < 2.2e-16) of the variation in PDK1 abundance and 77% (p 

< 2.2e-16) of variation in MCAT pS41 abundance. The effect of the pQTL on MCAT was not 

significant and the effect of MCAT abundance on MCAT pS41 was significant but weak (Fig. 

4K), confirming that the phQTL on MCAT pS41 was not mediated through MCAT abundance 

but is primarily driven by PDK1 abundance. Across all three tissues, we found a total of 9 distant 

phQTL (on 6 different proteins) that map to the Pdk1 locus on Chr 2 and are mediated by PDK1, 

including the confirmed substrate of PDK1, pyruvate dehydrogenase E1 component subunit 

alpha, PDHA1 [40] (Fig. 4N). The phQTL at Chr 2 for ATP5A1 pS53 is found in all three tissues, 

and the phQTL for PCCA pS248 is found in heart and liver tissues. These results indicate that 

PDK1 is the upstream kinase of these phosphorylation sites. 

 

We found 45 examples of phosphopeptides whose abundance is influenced by both 

mechanisms 1 and 2 to different degrees and with genetic associations that are local, distant, or 

both. For example, the protein COMT in liver has a local pQTL on Chr 16 at 18Mb, and COMT 

pS261 has a distant adj-phQTL on Chr 13 at 54.8Mb (Fig. 5A). The local pQTL drives higher 

expression of COMT in the presence of a CAST allele (Fig. 5B). After adjusting for COMT 

abundance, the adjusted phosphopeptide shows high abundance in the presence of a WSB 
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allele at the distant phQTL (Fig. 5C). Mediation analysis of the Chr 13 QTL identified the 

transcript of Cdc14b as a candidate mediator of phosphorylation (Fig. 5D). We note that 

CDC14B was not quantified in the proteomics analysis. The distant adj-phQTL for COMT pS261 

co-maps with a local eQTL for Cdc14b on Chr 16 and exhibit mirrored allele effects, i.e., the 

WSB allele confers low expression of Cdc14b but high abundance of COMT pS261, resulting in 

negative correlation between COMT pS261 and Cdc14b mRNA abundance. Regressing out the 

effect of COMT protein abundance on the abundance of the COMT pS261 phosphopeptide 

improves this correlation between Cdc14b mRNA and COMT pS261, which confirms that 

abundance of COMT pS261 phosphopeptide is regulated by both its parent protein abundance 

and the transcript abundance of Cdc14b (Figs. 5E-G). The Chr 13 QTL explains 63% (p = 5.2e-

9) of variation in COMT and in turn, COMT explains 48% (p = 2.6e-9) of variation in COMT 

pS261. The QTL on Chr 13 explains 51% (p = 4.2e-6) of variation in Cdc14b, which in turn 

explains 38% (p = 2.8e-7) of variation in COMT pS261.  

 

A second example of complex regulation, LMNA pS394 was also found to be mediated by 

Cdc14b in heart (Fig. S6 I-L). Cdc14b is a dual specificity protein phosphatase known to be 

involved in DNA damage response [41] and cell cycle regulation [42], and based on this genetic 

data is the likely upstream phosphatase acting on COMT pS261 and LMNA pS394 in liver and 

heart, respectively. Additional examples with complex genetic regulation include PDLIM4 pS119 

and NGEF pS606, both found in heart (Fig. S6). Genetic effects on PDLIM4 pS119 were 

mediated through PDLIM4 abundance and Il15 transcript expression (Fig. S6A-F). Il15 is a 

cytokine, and signaling through Il15 results in kinase SYK activation to stimulate cell 

proliferation [43]. Allele effects of the phQTL (PDLIM4 pS119), the eQTL (Il15), and mediation 

analysis are all consistent with higher levels of Il15 leading to higher levels of PDLIM4 pS119. 

For NGEF pS606, we found that its distant phQTL was mediated through the transcript 

abundance of Prkca, protein kinase C, alpha (Fig. S6G-L).  

 

In summary, we found that most local phQTL have a corresponding pQTL and are primarily 

driven by their parent protein abundance (mechanism 1), while distant phQTL with adj-phQTL 

are primarily driven by factors that are independent of the parent protein abundance 

(mechanism 2).  We identified many examples of regulation of phosphopeptides by both 

mechanisms 1 and 2 (Table S5). These include 6 kinases (Pdk1, Mapkapk3, Nme6, Plk2, 

Prkca, Sbk3), 3 phosphatases (Cdc14a, Cdc14b, Pxylp1) and additional genes that are known 
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to be involved in cell signaling transduction and affect protein phosphorylation, including Il15, 

Negr1, and Stat6. 

 

Regulation of phosphorylation sites within a protein  

We next asked whether phosphopeptides that co-occur on the same protein were coordinately 

regulated. We identified 1151, 1148, and 1093 proteins with two or more phosphopeptides 

quantified in heart, kidney, and liver tissues, respectively (Fig. S1A). To determine whether 

phosphorylation sites on the same protein were potentially co-regulated, we looked at the 

correlation of the abundances of phosphopeptides from the same protein. (Fig. S7A-B). In each 

tissue, the median correlation of phosphopeptides decreased but remained significant after 

adjustment based on their parent proteins, indicating that phosphopeptides from the same 

protein can be co-regulated independently of parent protein abundance. For example, we 

quantified 7 phosphopeptides from EGFR in liver tissue with correlations among the adjusted 

phosphopeptides ranging from -0.049 and 0.598 (Fig. 6A). While only one of these sites had a 

significant adj-phQTL (pS1044, Chr 9 at 107Mb), two sites had sub-threshold adj-phQTL with 

allele effects that are consistent with a shared adj-phQTL, suggesting that phosphorylation sites 

on EGFR can be co-regulated. 

Phosphorylation sites on one protein can be regulated differently. For example, abundances of 

UCKL1 pS56 and UCKL1 pS539 are not correlated (r = 0.020), and genetic mapping identifies a 

local phQTL on chr 2 for UCKL1 pS539 and a distant phQTL on chr 18 for UCKL1 pS56 (Fig. 

6B). The CAST allele drives the low abundance of UCKL1 pS539 (Fig. 6C), and NOD and PWK 

alleles drive the low abundance of UCKL1 pS56 (Fig. 6D), presenting an example of 

phosphorylation sites on one protein that are regulated by distinct mechanisms. An adj-phQTL 

was identified for UCKL1 pS56 but not for UCKL1 pS539. We conclude that the local phQTL of 

UCKL1 pS539 was mediated through protein abundance (Mechanism 1), whereas the phQTL of 

UCKL1 pS56 was independent of protein abundance regulation (Mechanism 2). 

 

Genetic regulation of the ATP Synthase Complex 

We conclude with two examples that illustrate how these data can be used as a resource to 

dissect the genetic regulation of protein and phosphopeptide abundance. The first example is 

the ATP synthase complex, which is localized to the inner mitochondrial membrane where it 

converts ADP to ATP as the final step of oxidative phosphorylation [44]. In heart tissue, we 

quantified 15 subunits of the complex and detected 15 phosphopeptides. The complex is 
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present in kidney and liver as well, but fewer proteins and phosphopeptides were detected in 

these tissues. 

 

Previously, we demonstrated that proteins that form complexes are often co-regulated [24, 25] . 

The abundance of subunits from the ATP synthase complex are tightly correlated (median 

correlation r = 0.83) (Fig. 6E). In heart tissue, several subunits share a significant co-mapping 

distant pQTL on Chr 11 at 96Mb, which is the location of the Atp5h gene. Mediation analysis of 

the distant pQTL identified ATP5H as the mediator of complex-wide protein abundance (Table 

S5). The A/J allele at Atp5h is associated with low complex-wide abundance, consistent with 

stoichiometric regulation of the complex by the lowest expressed subunit (Fig. 6F-G)  [24, 25]. 

 

We looked at phosphorylation sites across the complex in heart tissue. The abundance of 

phosphopeptides from the ATP synthase complex are less tightly correlated (median correlation 

r = 0.049) compared to the proteins (Figs. 6E, 6H). Similar results were seen in liver and kidney 

(Fig. S7C-F). Among the 15 phosphorylation sites detected, a cluster of sites in ATP5A1 

including pS53 are highly correlated, and share a suggestive (FDR < 0.5) genetic association 

with the Pdk1 locus. ATP5A1 pS53, which is quantified in all three tissues, has a distant adj-

phQTL on Chr 2 at 73 Mb that is mediated by PDK1 (Fig. 6I, S7C), and has low levels of 

phosphorylation associated with the NZO allele at this locus (Fig. 6J). We also identified two 

significant (FDR < 0.01) correlations between sites in different subunits: ATP5F1 pS226 and 

ATP5A1 pT236, and ATPF1 pS226 and ATP5C1 pS265, suggesting possible coordination of 

phosphorylation activity across subunits within the Atp5 synthase complex.  

 

Genetic regulation of propionyl-CoA carboxylase 

PCCA and PCCB together make up the biotin-dependent propionyl-CoA carboxylase (PCC), a 

mitochondrial enzyme involved in the catabolism of odd chain fatty acids and branched-chain 

amino acids [45, 46]. A single phosphorylation site pS248 on PCCA was detected in all three 

tissues, whereas no phosphopeptides were found from PCCB. The site PCCA pS248 had a 

significant distant adj-phQTL on Chr 2 at 72Mb in both heart and liver.  There is a suggestive 

distant adj-phQTL at the same locus in kidney (LOD = 6.7). In all three tissues, the Chr 2 QTL 

had a low NZO allele (Fig. 7A-B) and was mediated through PDK1 (Fig. 7C).  
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We also identified a local pQTL on PCCB and PCCA has a co-mapping distant pQTL (Chr 9 at 

100Mb) that is mediated by PCCB in heart tissue. Low expression of PCCA and PCCB is 

associated with the NZO and PWK alleles at the Chr 9 QTL. In kidney and liver, PCCA instead 

maps with the a local pQTL and PCCB has a distant pQTL (Chr 14 at 123Mb), mediated by 

PCCA (Fig. 7D). Low expression at the Chr 14 QTL is associated with the NZO allele. The 

protein abundances of PCCA and PCCB are tightly correlated in both tissues (r = 0.935 in 

kidney to r = 0.975 in heart, p < 2.2e-16; Fig. 7E-F). We hypothesized that the switching across 

tissues of the local and distant QTL for protein abundances was due to tissue-specific changes 

in stoichiometric regulation. This is confirmed by looking at the mRNA level at these genes (Fig. 

7G). In kidney and liver, Pcca mRNA has lower abundance and the Chr 14 QTL (local to Pcca) 

is the common driver of PCCA and PCCB protein abundance. In heart, when NZO or PWK 

alleles are present at the Chr 9 locus (local to Pccb), the mRNA level of Pccb is lower than 

Pcca, and PCCB becomes the driver of protein abundances. This is consistent with 

stoichiometric regulation in which the gene with lowest mRNA expression becomes the genetic 

driver of protein complex abundance [24]. We also note that the Chr 14 pQTL for PCCA (local) 

and PCCB (distant) in the kidney is sex-specific, with low expression in the presence of the NZO 

allele being most pronounced in females (Fig. 7H).  

 

Discussion 

We quantified transcripts, proteins, and phosphorylated peptides across three tissues in a 

genetically diverse mouse population. Examining the adjusted phosphopeptides, we 

demonstrated that phosphorylation levels are heritable and can differ between sexes. We 

mapped pQTL, phQTL, and adj-phQTL and describe two distinct mechanisms for genetic 

regulation of phQTL. A large proportion of phQTL are mediated through protein abundance. 

Other phQTL remain significant after accounting for the effects of the parent protein abundance 

on phosphopeptide abundance (adj-phQTL) suggesting that genetic factors are likely affecting 

the levels of site-specific phosphorylation. We applied mediation analysis to identify proteins or 

transcripts that are candidate causal intermediates underlying distant adj-phQTL. These 

mediators included kinases, phosphatases, and upstream regulators involved in the 

phosphorylation process. We highlighted the most significant mediation effects above. However, 

there are many more examples of plausible mediation that can be mined from these data (Table 

S5), providing experimentally testable hypotheses about the molecular interactions that mediate 

site-specific phosphorylation.  
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We identified PDK1 abundance as the mediator of nine adj-phQTL across three tissues. All nine 

phosphorylation sites were found in parent proteins involved in the respiratory chain, including 

sites on APT5A1 and PCCA with adj-phQTL that are shared across all three tissues. Looking at 

genetic variants at the Pdk1 locus, we identified a 2bp insertion (Chr 2: 71874272 – 71874274, 

GRCm38) in the promoter that occurs only in NZO mice and may drive the low expression of 

PDK1, leading to lower kinase activity and ultimately lower levels of phosphorylation on key 

proteins involved in respiratory chain metabolism. These findings are particularly interesting 

because the NZO mouse is a well-studied polygenic model for human metabolic syndrome [47, 

48]. QTL mapping in the NZO mouse, has identified Tbc1d1 [49], Zfp69 [50] and Lepr [51], as 

genes contributing to type 2 diabetes. Here, we identify a potential role for aberrant protein 

phosphorylation due to low expression of PDK1 that may further contribute to metabolic disease 

phenotypes characteristic of the NZO mouse.  

 

While investigating the protein complex formed by PCCA and PCCB, besides the adj-phQTL 

identified on pS248 on PCCA, we identified two additional pQTL, one local to PCCA and the 

other local to PCCB, both with low expression of the NZO allele. In heart tissue, the C to T 

(100,982,310bp) and G to A (100,987,863bp) mutations specific to the NZO and PWK alleles 

potentially affect transcription and lead to the lower transcript level and protein level of PCCB 

(100,864,085bp-100,916,951bp). In kidney and liver tissues, NZO specific mutations in Pcca 

may cause the low abundance of PCCA and PCCB. This example illustrates the complexity and 

delicacy of the mechanisms of genetic regulation of protein abundance and phosphorylation.  

 

We also recognize some limitations of the current study. We find suggestive evidence for many 

genetic effects on phosphopetides that did not reach stringent genome-wide and multiple testing 

adjusted significance criteria.  The CC panel is limited and it is not possible to improve mapping 

power substantially by adding more strains.  However, by adding more animals per strain, the 

precision of protein and peptide quantification can be improved to increase mapping power [23]. 

There were also instances where we did not detect phosphorylated peptides that must be 

present, for example, the ATP synthase complex in liver and kidney. Advanced mass 

spectrometry technology, especially targeted mass spectrometry technology could be 

developed and used to obtain better coverage and provide a more complete picture of the 

phosphorylated proteome [52]. 
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This integrative multi-omics analysis in genetically diverse CC strains provides a powerful tool to 

identify regulators of protein-phosphorylation. Similar approaches could be used in combination 

with interventions, including mapping modifiers of transgenic models of disease [53]. The multi-

omics data generated in this study provides a resource for further exploration. The upstream 

kinases, phosphatases, or other regulating factors identified here can seed hypotheses and 

motivate further mechanistic studies in disease models. Moreover, it sets a precident for future 

studies of regulatory mechanisms for other post translation modifications (PTMs) of proteins, 

such as methylation and ubiquitination. Coupled with advanced mass spectrometry technology 

for deeper coverage, we foresee this strategy being used to provide a comprehensive regulatory 

map of PTMs. 

 

METHODS 

Mice 

We received pairs of young mice from 58 CC strains from the UNC Systems Genetics Core 

Facility between the summer of 2018 and early 2019. Mice were singly housed upon receipt 

until eight weeks of age. More information regarding the CC strains can be found at 

https://csbio.unc.edu/CCstatus/index.py. 

Genotyping, founder haplotype reconstruction, and gene annotation 

The genotyping and haplotype reconstruction for the CC mice were previously described [25]. 

Briefly, the 116 CC mice were genotyped on the Mini Mouse Universal Genotyping Array [54] 

(MiniMUGA), which includes 11,125 markers. Founder haplotypes were reconstructed using a 

Hidden Markov Model (HMM), implemented in the qtl2 R package [55], using the “risib8” option 

for an eight-founder recombinant inbred panel and Genome Reference Consortium Mouse Build 

38 (mm10). Heterozygous genotypes were omitted, and haplotype reconstructions are limited to 

homozygous states, smoothing over a small number of residual heterozygous sites that remain 

in the CC mice. Ensembl v91 gene and protein annotations were used in the CC and founder 

strains.  

Sample preparation for proteomics and phosphoproteomics analysis 

Proteome sample preparation and data analysis for the CC liver tissue was described previously 

[25]. We also collected kidney and heart tissues along with liver tissue. Singly housed CC mice 

had their food removed six hours prior to euthanasia and tissue harvest. Tissues were 
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dissected, weighed, and snap frozen in liquid nitrogen. Pulverized heart and kidney tissue were 

syringe-lysed in 8 M urea and 200 mM EPPS pH 8.5 with protease inhibitor and phosphatase 

inhibitor. BCA assay was performed to determine protein concentration of each sample. 

Samples were reduced in 5 mM TCEP, alkylated with 10 mM iodoacetamide, and quenched 

with 15 mM DTT. 100 μg protein was chloroform-methanol precipitated and re-suspended in 

100 μL 200 mM EPPS pH 8.5. The proteins were digested by Lys-C at a 1:100 protease-to-

peptide ratio overnight at room temperature with gentle shaking. Trypsin was used for further 

digestion for 6 hours at 37°C at the same ratio with Lys-C. After digestion, 50 μL of each sample 

were combined in a separate tube and used as the 16th sample in all 8 tandem mass tag (TMT) 

16plex, rather than the 11plex used previously for liver tissue. 50 μL of each sample were 

aliquoted, and 12 μL acetonitrile (ACN) was added into each sample to 30% final volume. 100 

μg TMT reagent (126, 127N, 127C, 128N, 128C, 129N, 129C, 130N, 130C, 131N, 131C, 132N, 

132C, 133N, 133C, 134N) in 10 μL ACN was added to each sample. After 1 hour of labeling, 1 

μL of each sample was combined, desalted, and analyzed using mass-spec. Total intensities 

were determined in each channel to calculate normalization factors. After quenching using 0.3% 

hydroxylamine, 16 samples were combined in 1:1 ratio of peptides based on normalization 

factors.  

High-Select Fe-NTA Phosphopeptide Enrichment Kit (Thermo Fisher) was used to enrich the 

phosphorylated peptides (phosphopeptides) according to the manufacturer’s protocol. Flow 

through and washes from phosphopeptide enrichment were combined, dried, and fractionated 

with basic pH reversed phase (BPRP) high performance liquid chromatography (HPLC) as 

described before. We used an Agilent 1260 pump equipped with a degasser and a single 

wavelength detector (set at 220 nm). Peptides were subjected to a 50 min linear gradient from 

8% to 40% acetonitrile in 10 mM ammonium bicarbonate pH 8 at a flow rate of 0.6 mL/min over 

an Agilent 300Extend C18 column (3.5 μm particles, 4.6 mm ID and 250 mm in length). The 

peptide mixture was fractionated into a total of 96 fractions which were consolidated into 24. 

Twelve fractions were desalted and analyzed by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). Meanwhile, the eluant from the phosphopeptide enrichment was 

desalted and analyzed by LC-MS/MS. 

 

Liquid chromatography and tandem mass spectrometry 

The method for proteome data collection in liver tissue was described previously [56]. Proteome 

data in heart and kidney tissues were collected on an Orbitrap Eclipse mass spectrometer 
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coupled to a Proxeon NanoLC-1200 UHPLC. The peptides were separated using a 100 μm 

capillary column packed with ~35 cm of Accucore 150 resin (2.6 μm, 150 Å; ThermoFisher 

Scientific). The mobile phase was 5% acetonitrile, 0.125% formic acid (A) and 95% acetonitrile, 

0.125% formic acid (B). For BPRP fractions, the data were collected using a DDA-SPS-MS3 

method with online real-time database searching (RTS)  [57] [58]. The data were collected using 

a DDA-SPS-MS3 method. A database that included all entries from an indexed Ensembl mouse 

database version 90 (downloaded:10/09/2017) was used in RTS. Each fraction was eluted 

using a 90 min method over a gradient from 6% to 30% B. Peptides were ionized with a spray 

voltage of 2,500 kV. The instrument method included Orbitrap MS1 scans (resolution of 1.2x105; 

mass range 400−1600 m/z; automatic gain control (AGC) target 4x105, max injection time of 50 

ms and ion trap MS2 scans (CID collision energy of 35%; AGC target 7.5x103; rapid scan mode; 

max injection time of 50 ms). RTS was enabled and quantitative SPS-MS3 scans (resolution of 

50,000; AGC target 2x105; max injection time of 200 ms) were processed through Orbiter real-

time database searching. This data acquisition includes high-field asymmetric-waveform ion-

mobility spectrometry (FAIMS). The dispersion voltage (DV) for FAIMS was set at 5000V, the 

compensation voltages (CVs) were set at -40V, -60V, and -80V, and TopSpeed parameter was 

set at 1 sec per CV [59].  

Mass spectrometric data for phosphopeptides fractions in liver tissue were collected on an 

Orbitrap Lumos mass spectrometer. Mass spectrometric data were collected in HCD and CID 

modes. Each fraction was eluted using a 180 min method over a gradient from 6% to 30% B. 

Peptides were ionized with a spray voltage of 2,600 kV. The instrument method included 

Orbitrap MS1 scans (resolution of 1.2 x105; mass range 400−1400 m/z; automatic gain control 

(AGC) target 1x106, max injection time of 50 ms. The 10 most intense MS1 ions were selected 

for MS2 analysis. Following acquisition of each MS2 spectrum, a synchronous-precursor-

selection (SPS) MS3 scan was collected on the Top 10 most intense ions in the MS2 spectrum. 

The isolation width was set at 0.7 Da and isolated precursors were fragmented using two 

methods. In the first method, we used collision induced dissociation (CID) at a normalized 

collision energy (NCE) of 35% with MultiStage Activation (MSA), and in the second method we 

used higher energy collision-induced dissociation (HCD) at a normalized collision energy (NCE) 

of 33%. Following acquisition of each MS2 spectrum, a synchronous precursor selection (SPS) 

MS3 scan was collected on the Top 10 most intense fragment ions in the MS2 spectrum. SPS-

MS3 precursors were fragmented by higher energy collision-induced dissociation (HCD) at an 

NCE of 65% and analyzed using the Orbitrap.  
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Phosphoproteome analysis in heart tissues were processed with FAIMS/hrMS2 using our 

optimized workflow for multiplexed phosphorylation analysis on an Orbitrap Eclipse mass 

spectrometer. Briefly, the Thermo FAIMS Pro device was operated with default parameters 

(inner and outer electrode were set at 100°C, yielding a FWHM between 10 V to 15 V and 

dispersion voltage (DV) was set at -5000 V). Each fraction was analyzed twice by the mass 

spectrometer, once with a method incorporating two CVs (CV= -45 and -70V) and again with 

three CVs (CV= -40V, -60V and -80V) using a 2.5h method having a gradient of 6% to 30% B 

[60].  

Mass spectrometric data for phosphopeptides fractions in kidney tissue were collected on an 

Orbitrap Lumos mass spectrometer. Mass spectrometric data were collected in CID mode and 

then processed with FAIMS/hrMS2 using our optimized workflow for multiplexed 

phosphorylation analysis with a method incorporating two CVs (CV= -45 and -70V). Detailed 

parameters for MS2 and MS3 are embedded in the RAW files.  

Mass spectrometry data analysis 

Mass spectra data were processed using a Comet-based pipeline. Spectra were converted to 

mzXML using a modified version of ReAdW.exe. Database search included all entries from an 

indexed Ensembl database version 90 (downloaded:10/09/2017). This database was 

concatenated with one composed of all protein sequences in the reversed order. Searches were 

performed using a 50ppm precursor ion tolerance for total protein level analysis. The product 

ion tolerance was set to 1.000 Da for MS3-based analysis and 50ppm for MS2-based analysis, 

respectively. TMT tags on lysine residues, peptide N termini (+304.207 Da for heart and kidney 

tissues and +229.163 Da for liver tissue), and carbamidomethylation of cysteine residues 

(+57.021 Da) were set as static modifications, while oxidation of methionine residues (+15.995 

Da) was set as a variable modification. In addition, for phosphopeptide analysis, 

phosphorylation (+79.966 Da) on serine, threonine, and tyrosine were included as variable 

modifications. Peptide-spectrum matches (PSMs) were adjusted to FDR < 0.01. PSM filtering 

was performed using a linear discriminant analysis (LDA), as described previously, while 

considering the following parameters: XCorr, ΔCn, missed cleavages, peptide length, charge 

state, and precursor mass accuracy. For TMT-based reporter ion quantitation, we extracted the 

summed signal-to-noise (S:N) ratio for each TMT channel and found the closest matching 

centroid to the expected mass of the TMT reporter ion. For protein-level comparisons, PSMs 

from all three tissues were identified, quantified, and collapsed to a peptide FDR < 0.01 and 

then collapsed further to a final protein-level FDR < 0.01, which resulted in a final peptide level 
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FDR <0.001. Moreover, protein assembly was guided by principles of parsimony to produce the 

smallest set of proteins necessary to account for all observed peptides. PSMs with poor quality, 

MS3 spectra with TMT reporter summed signal-to-noise of less than 100, or no MS3 spectra 

were excluded from quantification. We provide an estimate for the probability of correct 

localization for each phosphorylation site using AScore algorithm [61]. 84%, 89% and 90% of 

the quantified phosphopetide used for analysis have an AScore greater than 13 in heart, liver, 

kidney tissues, respectively (P<0.05). All the information were uploaded to figshare 

(https://figshare.com/projects/Multi-

omics_analysis_identifies_drivers_of_protein_phosphorylation/137673, Under the folder titled 

“Raw summary of protein and phosphopeptides quantitation” - siteQuant5100.csv). The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 

the PRIDE partner repository with dataset identifiers PXD032843. 

Sample preparation for transcriptomics analysis 

Livers, hearts, and kidneys were dissected from each CC mouse, flash frozen, and stored at -

80°C. Once all samples were collected, frozen tissues were pulverized in liquid nitrogen, divided 

into aliquots, and then sent to the Genome Technologies service (Jackson Laboratory) for RNA 

extraction and RNA-seq analysis.  

Total RNA was extracted and purified using the MagMAX mirVana Total RNA Isolation Kit 

(ThermoFisher) and the KingFisher Flex purification system (ThermoFisher). Briefly, pulverized 

tissue samples were lysed in TRIzol (ThermoFisher Scientific), chloroform was then added to 

the TRIzol homogenate, and the RNA-containing aqueous layer was removed for RNA isolation, 

following the manufacturer’s protocol. RNA concentration and quality were assessed using the 

Nanodrop 8000 spectrophotometer (Thermo Scientific) and Total RNA Nano assay (Agilent 

Technologies). 

Libraries were constructed using the KAPA mRNA HyperPrep Kit (Roche) following 

manufacturer’s protocols. Briefly, poly-A mRNA was selected from total RNA using oligo-dT 

magnetic beads, followed by RNA fragmentation, first and second strand cDNA synthesis, 

ligation of Illumina-specific adapters containing unique dual index barcode sequences for each 

library, and PCR amplification. Library quality was assessed using the D5000 ScreenTape 

(Agilent Technologies) and concentration measured with the Qubit dsDNA HS Assay 

(ThermoFisher). Finally, pooled libraries were sequenced on the NovaSeq 6000 platform 
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(Illumina) using the S1 Reagent Kit v1, yielding 20-40M (target 30M) 1 x 100bp single-end (SE) 

reads per sample. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Filtration of peptides that contain polymorphism 

Peptides that contain polymorphisms, i.e., coding variants, bias protein abundance estimation in 

genetically diverse samples because peptides with differing sequences are not quantified 

simultaneously. A mouse with an alternative allele with respect to the B6 reference mouse 

genome will have reduced intensity or even non-detection for the reference peptide. This bias 

could then be propagated to estimates of protein abundance or phosphopeptide abundance, 

which can either obscure the signal of a true QTL or induce a false local QTL as a flag of the 

polymorphism. Therefore, we removed all polymorphic peptides based on the genome 

sequences of the founder strains. We filtered out peptides with known polymorphisms in the 8 

founder strains of the CC.  This is a more stringent filter than was applied in our previous study 

of the liver data [25] and thus there are minor differences in the protein quantification Before 

filtering, 153,856 unique peptides were quantified across 28 TMTs. 6841 (4.4%) unique 

peptides were filtered out due to not being identical in all 8 strains.  

For each phosphopeptide quantified, the sequences of the corresponding protein were 

extracted from the founder strain genomes. To ensure that polymorphic peptides did not drive 

phQTL signal, we required phosphopeptides to have sequences of three amino acids adjacent 

to both sides that were present in all the founder strain genome sequences.  

Peptide normalization and protein abundance estimation 

Peptides, including phosphopeptides, were standardized within TMT batch. The intensity for 

each peptide � from sample � was scaled by the ratio of the maximum cumulative peptide 

intensity in the batch to the cumulative peptide intensity for individual �: ���
� �  ����� where 

�� �  ���
�� � ����

�∑ 	
���	 


∑ 	��	
.  

The abundance for each protein � from an individual � was estimated by summing the intensities 

of its component peptides (after removal of polymorphic peptides), then scaled relative to the 

abundance from the bridge sample and log transformed: ���
�� �  log� � ∑ 	�


�
� �


∑ 	����

�

� �
� where 	 �
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1, … , 
 indexes the peptides that map to protein � and ������
�  is the intensity of peptide 	 for the 

corresponding bridge sample from individual �’s batch.  

We pre-adjusted for the effect of TMT batch using a linear mixed effect model (LMM) to allow 

strain pairs that span two TMT batches to be summarized to the strain level for downstream 

QTL analysis. The following LMM was fit for each protein �: 
��

����� � � �  sex��� � strain��� �  batch��� � �� 

Equation 1 

where ��
����� is the abundance of protein � for individual �, � is the shared intercept, sex��� is the 

contribution of sex for individual � (fit as a fixed effect), strain��� is the contribution of the CC 

strain of individual � (fit as a random effect), batch��� is the contribution of individual �’s TMT 

batch (fit as a random effect), and �� is the error for individual � with ��  ~ N�0, ���. All 

downstream analyses were performed on quantities after subtracting off the batch effect: 

��
������ �  ��

����� - batch� ���, where batch� ��� is the best linear unbiased prediction (BLUP) for the 

TMT batch of individual �. The LMM was fit using the lme4 R package4. Proteins that were 

unobserved for 50% or more of samples were removed from further analysis. 

Phosphopeptide normalization and adjustment for protein abundance 

Phosphopeptides were processed similarly to protein abundance, but without the peptide-to-

protein summation step. For each phosphopeptide �, we normalized as ��
����� �  log� �	�

�
���

	

����

�
���

�, 

which were then batch adjusted as in Equation 1. Phosphopeptides that were unobserved for 

50% or more of samples were removed from further analysis. 

To distinguish genetic effects on phosphopeptides independent of the proteins from which they 

were derived, which we refer to as parent proteins, we also pre-adjusted for the effect of parent 

protein abundance by taking residuals from a linear model: ��
������ � � � parent���� � ��, where 

parent���� is the contribution of the abundance of the parent protein for phosphopeptide � for 

individual � (fit as a fixed effect). The residuals for phosphopeptides were then calculated as: 

��
����resid �� �  ��

������ - parent� ����. Parent protein abundances were estimated from their 

component peptides as previously described, but we first filtered out any peptides with a 

phosphorylation site. 
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Heritability estimation 

We estimated heritability for protein and phosphopeptide abundance in each of the tissues 

using an LMM. For a given protein or phosphopeptide � from a specified tissue, we fit: 

��
������ � � �  sex��� � kinship��� � �� 

Equation 2 

where kinship��� is a random effect representing cumulative additive genetic effects and should 

thus capture similarities due to overall relatedness, modeled across individuals as 

kinship ~ N(0, G��). Bold text denotes vector and matrix quantities. G is a realized genomic 

relationship matrix, estimated from markers across all chromosomes, and �� is the variance 

component underlying the kinship effect. Heritability is estimated as the proportion of variation 

due to genetic effects: �� �  ��

��� ��. The qtl2 R package was used to fit the LMM and extract the 

heritability estimate3. 

Sex effects on protein and phosphopeptide abundance 

Proteins and phosphopeptides that exhibited differential abundance between the sexes within a 

tissue, i.e., sex effects, were identified using the same LMM described in Equation 2 for 

heritability estimation. We instead compared it to a null model excluding the sex term and 

summarized the statistical significance with a likelihood ratio test p-value. The LMMs were fit 

using the qtl2 R package, using maximum likelihood estimates (MLE) rather than restricted 

maximum likelihood estimates (REML), as is appropriate for testing a fixed effect term. For a 

given outcome type (proteins or phosphopeptides), summary type (averages or differences), 

and tissue, significant sex effects were declared based on FDR < 0.1 using the BH method5.  

QTL analysis 

For QTL analysis, we first summarized CC strain pairs as averages and differences (male – 

female) of the abundance of proteins and phosphopeptides. Phosphopeptides were adjusted for 

parent proteins as before, but at the strain level. We mapped QTL for proteins (pQTL), 

phosphopeptides (phQTL), and adjusted phosphopeptides (adj-phQTL). QTL for CC strain 

differences represent sex-by-genotype interactions where QTL effects differ between sexes. 

Founder haplotype probabilities for CC strain genomes were estimated by averaging the 

probabilities for the male and female at marker positions from MiniMUGA. 
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For each protein or phosphopeptide (unadjusted or adjusted) that was quantified in a tissue, we 

performed a genome-wide QTL scan by testing a QTL effect at positions across the genome. 

We fit a similar LMM to the heritability model in Equation 2 for each protein or phosphopeptide 

for a given tissue: 

���
������ � � � QTL���� � kinship������� � �� 

Equation 3 

where ���
������ is the abundance summary (average or difference) for protein or phosphopeptide � 

of CC strain � and QTL���� � ���
�  QTL is the effect of putative QTL at marker ! for CC strain � 

with ���
�  representing the founder haplotype probability vector for CC strain � at marker ! (e.g., 

ordering the founder strains as AJ, B6, 129, NOD, NZO, CAST, PWK, and WSB, ���
� �

�0 1 0 0 0 0 0 0� for a CC strain � that is B6/B6 at marker !), and  QTL is an eight-element vector 

of founder allele effects, fit as fixed effects. The kinship������� term is similar to the kinship effect 

in the heritability model (Equation 2), though instead modeled as kinship���� ~ N(0, "������), 

where the realized genetic relationship matrix "���� used when testing markers as QTL on 

chromosome # is estimated by excluding all markers from chromosome #, i.e., the leave-one-

chromosome-out (LOCO) method, to avoid the kinship term absorbing some of the QTL effect 

and reducing mapping power [62]. The kinship effect is used in mapping to account for potential 

population structure [63-66]. The strength of QTL significance was summarized by comparing 

the likelihood of Equation 3 to the likelihood of the null model excluding the QTL term, referred 

to as the log-odds (LOD) score. Mapping QTL for adjusted phosphopeptides is analogous to 

including the parent protein as a covariate in Equation 3 (and its null model). All genome scans 

for protein abundance and phosphopeptides were performed in the qtl2 R package [55]. 

QTL significant thresholds 

We estimated significance thresholds for QTL specific to individual proteins and 

phosphopeptides using permutations [67]. By performing 10,000 permutations for each outcome 

separately, outcome-specific thresholds account for differences in distribution, levels of missing 

data, and differing kinship effects. Permutation genome scans used the model in Equation 3, but 

with the data permuted by rearranging the CC strain labels on founder haplotype probabilities, 

thus breaking the QTL signal but not the kinship. We used a genome-wide error rate correction 
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across marker loci and then applied an FDR correction to account for multiple testing across 

each outcome type within a tissue [68]. 

Specifically, for each outcome � within a tissue, we fit a generalized extreme value distribution 

(GEV) from the 10,000 maximum LOD scores from the permutations [69, 70]. For a given tissue 

and outcome type (strain averages or strain differences of proteins, phosphopeptides, and 

adjusted phosphopeptides), we calculated genome-wide permutation p-values as 

!�
perm � 1 $  %��max LOD���� 

Equation 4 

where %� is cumulative density function for the GEV of outcome � and max LOD��� is the 

maximum LOD score observed for outcome �. We then used the Benjamini-Hochberg (BH) 

procedure5 to calculate FDR q-values from the permutation p-values for a given tissue and 

outcome type. To estimate significance thresholds that are FDR-adjusted and outcome-specific, 

we applied interpolation to approximate permutation p-values to q-values < 0.1. Significance 

thresholds on the LOD score scale were then calculated as &�
FDR < 0.1 � %�

�
 '1 $ !���.

interp (, where 

&�
FDR < 0.1 is the 10% FDR significance threshold for outcome �, %�

�
 is the inverse cumulative 

density function for the GEV of outcome �, and !���.

interp  is the interpolated permutation p-value for  

q-value = 0.1. 

Defining local/distant status of QTL 

As previously1, we defined detected QTL as “local” if their genomic coordinates were within 10 

Mbp upstream or downstream of the middle of the coding gene and “distant” otherwise. We use 

the local/distant terminology instead of cis/trans because our definition is defined entirely by 

position and not genetic mechanism (e.g., cis regulatory elements). We used the broad 10 Mbp 

local window is broad, but the CC genomes have larger LD blocks than highly recombinant 

populations, such as the related Diversity Outbred population. Furthermore, we compared the 

effects of aligned QTL across tissues and sought to avoid aligned QTL being defined as local in 

one tissue but distant in another. However, the broad local window could misclassify some 

trans-acting QTL as local.  

Consistency of QTL across tissues 
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We evaluated the consistency of matched QTL (based on related outcomes and co-mapping to 

the same genomic region) by comparing their allele effects. We compared local and distant QTL 

across tissues (matching based on protein or phosphopeptide ID). We also compared co-

mapping phQTL for unadjusted phosphopeptides to the corresponding local pQTL of the 

phosphorylation site’s parent protein for a given tissue. For matched local QTL, we only required 

them to be detected to be defined as co-mapping; for matched distant QTL, we also required 

that they were within 10 Mbp of each other.  

Founder allele effects were estimated at the detected QTL marker, representing the  QTL term 

from the model in Equation 3. To stabilize the effects, they were modeled as a random effect: 

 QTL~N�), *+QTL
� �, where * is the 8,8 identity matrix and +QTL

�  is a variance component 

underlying the allele effects. Allele effects were then estimated as BLUPs ( -QTL), using the qtl2 

R package3. The consistency of allele effects was summarized as the Pearson correlation 

coefficient between matched QTL: .QTL1, QTL2 � cor� -QTL�
,  -QTL�

�, where QTL
 and QTL� 

represent a co-mapping matched pair. 

Mediation of phQTL through parent protein abundance 

We assessed whether detected phQTL were mediated through their parent proteins. For each 

phosphopeptide � with a detected phQTL in a specified tissue, we fit the following mode: 

���
������ � � �  QTL��� � parent���� � kinship������� � �� 

Equation 5 

where ���
������ is the unadjusted abundance summary for phosphopeptide � with the phQTL for 

CC strain �, QTL��� is as defined in Equation 3 but fixed at the peak marker for the detected 

phQTL being evaluated, and parent���� is the contribution of the abundance of parent protein of 

phosphopeptide � to strain �, modeled as a fixed effect. 

We expanded the set of phQTL to include leniently detected ones (FDR < 0.5) for the evaluation 

of mediation through their parent proteins, providing a clearer picture of the large-scale 

mediation trends. A mediation LOD score for phosphopeptide � in a specified tissue, LOD�
parent, 

was calculated by comparing Equation 5 to a null model excluding the QTL term. To summarize 

across phQTL in a tissue, a Delta LOD was calculated by taking the difference between the 

mediation LOD score and the original LOD score of the phQTL. We note that a similar approach 
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could be used to formally assess mediation of sex effects on phosphopeptides through parent 

proteins. 

Mediation of distant QTL  

For each distant QTL detected in the CC tissues, we performed a mediation analysis analogous 

to the QTL genome scans [22, 24, 25, 71]. Instead of scanning through genetic markers as 

putative QTL, we scanned through putative mediators (from transcripts or proteins) of the 

specified distant QTL. A model similar to Equation 3 was fit: 

���
������ � � �  QTL��� � mediator���� � �� 

Equation 6 

where ���
������ is the abundance summary (average or difference) for the target protein or 

phosphopeptide / with the distant QTL for CC strain �, QTL��� is as defined in Equation 3 but 

fixed at the peak marker for the detected distant QTL, and mediator���� is the contribution of the 

mediator 0 to individual �, fit as a fixed effect. The significance of the QTL term in Equation 6 is 

evaluated by comparing to the null model excluding the QTL term, producing a mediation LOD 

score: LOD�
med. These summaries represent the distant QTL’s LOD score conditioned on each 

candidate mediator individually. We also note that the kinship effect is excluded from Equation 6 

and its null model to simplify computation. Mediation scans were performed using the 

intermediate R package (https://github.com/churchill-lab/intermediate). 

We assume that the vast majority of evaluated mediators for a specified distant QTL are not the 

true mediator, and thus the distribution of conditional LOD scores can be used as an empirical 

null distribution, approximately centered around the initially detected LOD score of the distant 

QTL. We calculate the z-scores of the conditional LOD scores and define strong candidate 

mediators as those with z < -8. Mediators are also expected to co-map a local QTL to the 

distant QTL. For distant pQTL, we evaluated proteins as mediators, whereas for distant phQTL, 

we evaluated both transcripts and proteins. 

For candidate mediators highlighted in the Results, we estimated the strength of the 

relationships among QTL, mediator, and target based on proportion variance explained (PVE), 

calculated as PVE = 1 - 
RSS�

RSS�
. For the relationship between the QTL and mediator, RSS
 is the 

residual sum of squares from the QTL model (Equation 3) for the mediator and RSS� is the 

residual sum of squares for the null model excluding the QTL term. For the relationship between 
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mediator and target, the effect of the mediator on the target is evaluated rather than the QTL. 

We calculated a corresponding p-value for each relationship comparing the alternative and null 

models using ANOVA.  

Transcriptomics profiling 

For each tissue, we aligned the RNA-seq reads using bowtie [72] to the pooled transcriptomes 

of the eight founder strains (Ensembl v84), and the alignments input to the genome 

reconstruction by RNA-Seq (GBRS) software to estimate total gene counts using EMASE. We 

used a variance stabilizing transformation [73] for the total gene counts for each tissue. As with 

protein and phosphopeptide abundance, the normalized expression for each gene was 

summarized at the CC strain level as averages and differences. Genes with no expression in 

50% or more of samples were removed from further analysis. We also mapped eQTL using a 

similar approach as used for pQTL and phQTL, which we do not report here but make available 

at GSE199702.  

 

 

ADDITIONAL RESOURCES 

All processed data and results are available for download and interactive analysis from the 

QTLViewer webtool (https://churchilllab.jax.org/qtlviewer/cc_phospho_peptides). Processed 

data and data analysis scripts have been deposited with FigShare 

(https://figshare.com/projects/Multi-

omics_analysis_identifies_drivers_of_protein_phosphorylation/137673).  The mass 

spectrometry proteomics and phosphoproteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE [74] partner repository with the dataset 

identifier PXD032843. The raw transcriptome data have been deposited at GEO repository with 

the dataset identifier GSE199702. 
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Supplemental information 

Supplemental tables 

Table S1. Information about the 58 CC strains included in this study. 

Table S2. Sex effect for proteins and phosphorylation sites in three tissues in CC strains. 

Table S3. Heritability of proteins and phosphorylation sites in three tissues in CC strains. 

Table S4. pQTL and phQTL summaries for three tissues in CC strains. 

Table S5. Mediation analysis summaries for distant phQTL in three tissues in CC strains. 
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Figure 1. Overview of the proteome and phosphoproteome profiling of three tissues from 

Collaborative Cross strains using Tandem mass tags (TMT). (A) Liver, kidney and heart 

samples were collected from one male and one female mouse from 58 Collaborative Cross 

(CC) inbred strains. Samples (116) were multiplexed utilizing TMT sample multiplexing 

reagents. Proteome and phosphoproteome analyses were collected by mass spectrometry. (B) 

Venn diagrams of the quantified proteins, (C) phosphopeptides and (D) adjusted 

phosphopeptides in liver, kidney and heart tissues.  
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Figure 2. Sex effect and heritability on protein and phosphopepitdes across three 

tissues. (A) Histograms of standardized sex effect (difference/SE) on protein abundance 

(upper), phosphopeptides (middle), and adjusted phosphopeptides (lower) in heart, kidney and 

liver tissues. (B) Sex difference in the relative abundance (batch corrected log2 intensity) of 

phosphopeptide harboring LDHD pS23 is due to sex effect on its parent protein. (C) Sex 

difference in the relative abundance of phosphopeptide harboring CGREF pS272 is not due to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.06.03.494740doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494740
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

sex effect on its parent protein. (D) Histograms of heritability on protein abundance (upper), 

phosphopeptides (middle) and adjusted phosphopeptides (lower) in heart, kidney and liver 

tissues. Dashed vertical lines represent the median.  
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Figure 3. pQTL and phQTL mapping from CC strains in heart, kidney and liver tissues. 

Stringently detected (FDR < 0.1) (A) pQTL, (B) phQTL and adjusted phQTL in heart (left), liver 

(middle) and kidney (right) tissues. QTL are plotted by the genomic positions of proteins against 

QTL coordinates. Adjusted phQTL were highlighted in black. (C) Adjusted phQTL identified on 

EIF3B pS90 co-mapped in all three tissues. Relative abundances (batch corrected log2 

intensity) of EIF3B pS90 in each tissue were grouped based on founder local haplotypes. (D) 

LOD scores of local and distant phQTL (FDR < 0.1 or 0.5) changed after adjusting for their 

parent protein abundances in heart, kidney, and liver tissues. MCAT pS41, GAS2 pS283 and 

COMT pS261 were labelled. 
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Figure 4. Phosphopeptide abundance can be regulated by substrate abundance 

dependent or non-substrate abundance dependent mechanisms. (A) Diagram showing 

how the genetic effect resulting in phQTL detection may be regulated by either parent protein 

abundance (batch corrected log2 intensity) changes (Mechanism 1) or by phosphorylation 

stoichiometry (Mechanism 2) or both. (B) Genome scans for GAS2 and GAS2 pS283 in kidney 
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tissue. (C) Path diagram of GAS2 pS283 abundance regulation in kidney tissue. (D) The PWK 

allele of the GAS2 pS283 phQTL drove low phosphopeptide abundance in kidney tissue. Data 

were categorized based on the founder haplotye at the identified pQTL. (E) Abundances of 

overall GAS2 and GAS2 pS283 were highly correlated (r = 0.99). Points are colored based on 

founder haplotype at Gas2. (F) Overall abundance of GAS2 and adjusted abundance (residual 

from regression of batch corrected log2 intensity)  of GAS2 pS283 were not correlated (r = 2.4e-

17). Points are colored based on founder haplotype at Gas2. (G) Abundance of GAS2 pS283 

and adjusted abundance of GAS2 pS283 were not correlated (r = 0.02). Points are colored 

based on founder haplotype at Gas2. (H) Genome scans for MCAT and MCAT pS41 in heart 

tissue. (I) NZO alleles at Pkd1 drove the low abundances of MCAT pS41 in heart tissue. Colors 

denote the founder haplotype of additive allele effects at the identified pQTL of MCAT pS41.  (J) 

Mediation analysis identified PDK1 expression as the mediator of MCAT pS41 abundances. 

Each gray dot is a mediation score representing the MCAT pQTL LOD score conditioned on a 

protein as candidate mediator. (K) Path diagram of MCAT pS41 abundance regulation in heart 

tissue. (L) NZO alleles at Pkd1 drove the low abundances of PDK1 in heart tissue. Colors 

denote the founder haplotype of additive allele effects at the identified pQTL of MCAT pS41. (M) 

The adjusted abundances of MCAT pS41 and PDK1 were highly correlated (r = 0.86) in heart 

tissue. (N) Mediation analysis identified PDK1 as the mediator of several phQTL in heart, kidney 

and liver tissue, respectively. 
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Figure 5. Phosphopeptide abundance can be regulated by both substrate abundance 

dependent and non-substrate abundance dependent mechanisms. (A) COMT pQTL and 

phQTL for COMT were mapped to different loci in liver tissue. (B) A local CAST allele at Comt 

drove high abundance of COMT in liver tissue. (C) Adjusted abundance of COMT pS261 

categorized according to founder haplotype at Cdc14b. (D) Mediation analysis using 

transcriptomics data identified Cdc14b as the mediator of a phQTL for COMT pS261. Each gray 

dot is a mediation score representing the COMT pS261 phQTL LOD score conditioned on a 

transcript as candidate mediator. (E) Abundance of Cdc14b transcripts pS261 categorized 

according to founder haplotype at Cdc14b. The abundance of COMT pS261 is less correlated 

with Cdc14b transcripts before adjustment (r = -0.49) (F) compared to after adjustment (G) (r = -

0.62). (H) Path diagram of COMT pS261 abundance regulation in liver tissue. 
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Figure 6. Phosphorylation sites on one protein can be regulated coordinated and not 

coordinated. (A) Heatmap of Pearson correlations of abundances of phosphopeptides from 

parent protein ABLIM1. (B) Genome scans of pS539 and pS56 on UCKL1 in kidney tissue. (C) 

A local CAST allele at Uckl1 drove low abundance of UCKL1 pS539 in kidney tissue. (D) Distant 

NOD and PWK allele on chromosome 18 drove low abundance of UCKL1 pS56 in kidney 

tissue. (E) Heatmap of Pearson Correlations among all proteins quantified in ATP synthase 

complex in heart tissue. (F) The AJ allele at Atp5h drove low abundance of the entire ATP 

synthase complex in heart tissue. All quantified ATP synthase complex subunits have low 

protein abundance in CC032, CC033 and CC044 strains, which possess the AJ allele, in heart 

data. (G) Mediation analysis using proteomics data identified ATP5H as the mediator of a 

phQTL for ATP5E. Each gray dot is a mediation score representing the ATP5E pQTL LOD 

score conditioned on a protein as candidate mediator. ATP5H was detected as the strongest 

mediator of the ATP5E distal pQTL in heart tissue. All ATP synthase complex subunits have 

mediation z-scores < -8 and were highlighted in black. Other quantified ATP synthase complex 

subunits, ATP5S, ATP5G2 and ATP5J, were highlighted in blue. Horizontal dashed line at LOD 

of 6 was included for reference. (H) Heatmap of Pearson Correlations among all 

phosphorylation events quantified from the ATP synthase complex in heart tissue. The 

correlations among the five sites from ATP5A1 are highlighted by a dashed square. Correlation 

with FDR < 0.01 were highlighted using stars. (I) Genome scans of ATP5A1 pS53 in the three 

tissues, revealing co-mapping phQTL in all the three tissues. (J) Allele effects of ATP5A1 pS53 

phQTL were highly correlated in the three tissues. 
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Figure 7. Genetic regulation of PCCA and PCCB across three tissues. (A) Co-mapping 

distant phQTL of PCCA pS248 was identified in liver, heart but not kidney tissue. NZO allele 
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drove the low level of this phosphorylation event. Data were categorized based on the founder 

haplotye at the identified phQTL. (B) Abundances of PDK1 and PCCA pS248 were highly 

correlated in heart and liver but not in kidney tissue. Abundance of PDK1 and PCCA pS248 in 

each individual sample (116) were categorized based on the haplotye of the phQTL on PCCA 

pS248 in heart and liver tissues on Chromosome 2. (C) Genome scans for PCCA pS248 are 

overlayed with mediation scores in heart and liver tissues. Each gray dot is a mediation score 

representing the PCCA pS248 phQTL LOD score conditioned on a protein as candidate 

mediator. (D) Genome scans of PCCA and PCCB in all the three tissues. Local-pQTL for PCCB 

and distant-pQTL for PCCA co-mapped to the same locus in heart tissue. PCCB was identified 

as the mediator of the PCCA distant-pQTL. Local-pQTL for PCCA and distant-pQTL for PCCB 

co-mapped to the same locus in liver tissue and kidney tissues. PCCA was identified as the 

mediator of the PCCB distant-pQTL. (E) Allele effects of identified pQTL for PCCA and PCCB in 

the three tissues. (F) Protein abundance of PCCA and PCCB were highly correlated in each 

tissue. Protein abundance in each individual sample (116) were categorized based on the 

haplotye of the pQTL on PCCA in kidney and liver tissues on Chromosome 14. (G) The 

transcript level of Pccb is distinctly higher than the mRNA level of Pcca in kidney and liver 

tissues but not in heart tissue. mRNA abundance of Pcca and Pccb in each individual sample 

(116) were categorized based on the haplotye of the pQTL on PCCA in heart tissue on 

Chromosome 9. (H) Sex interactive local pQTL on PCCA and sex-interactive distant pQTL on 

PCCB co-mapped to the same locus in the kidney tissue, characterized by a distinct NZO effect 

(NZO males with greater abundances than NZO females). PCCA was identified as the mediator 

of PCCB sex interactive distant pQTL. Points are colored by founder haplotype at sex-

interactive phQTL. Males and females from the same CC strain were connected by a line. 
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