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Multi-omics analysis identifies drivers of protein phosphorylation
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Abstract

Phosphorylation of proteins is a key step in the regulation of many cellular processes including
activation of enzymes and signaling cascades. The abundance of a phosphorylated peptide
(phosphopeptide) is determined by the abundance of its parent protein and the proportion of
target sites that are phosphorylated. We quantified phosphopeptides, proteins, and transcripts in
heart, liver, and kidney tissue samples of mice from 58 strains of the Collaborative Cross strain
panel. We mapped ~700 phosphorylation quantitative trait loci (phQTL) across the three tissues
and applied genetic mediation analysis to identify causal drivers of phosphorylation. We
identified kinases, phosphatases, cytokines, and other factors, including both known and
potentially novel interactions between target proteins and genes that regulate site-specific
phosphorylation. Our analysis highlights multiple targets of pyruvate dehydrogenase kinase 1
(PDK1), a regulator of mitochondrial function that shows reduced activity in the NZO/HILtJ

mouse, a polygenic model of obesity and type 2 diabetes.
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Introduction

Protein phosphorylation is a reversible post-translational modification (PTM) and one of the
most common mechanisms for regulating protein activity and transmitting signals in cell biology
[1-3]. Phosphorylation occurs at specific sites within a protein where kinases and phosphatases
add and remove phosphate moieties [4]. The level of activity of kinases and phosphatases is
determined by their abundance [5, 6], intracellular and extracellular stimuli [7-10], interaction
with co-factors [11], and PTMs including phosphorylation [12-14]. Therefore, the
phosphorylation level of a given site within a protein depends on multiple factors, any of which

could be influenced by genetic variation [15, 16].

Genetic variants that affect quantitative phenotypes can be identified through quantitative trait
locus (QTL) mapping in humans and in model organisms. In addition to clinical phenotypes,
QTL mapping can be applied to molecular traits such as gene expression [17-22], chromatin
accessibility [23], and protein abundance [24, 25]. QTL mapping of transcripts (eQTL) and
proteins (pQTL) has revealed how genetic variants can alter the regulatory flow from encoded
gene through transcription and translation [20, 26, 27]. However, only limited research has been
conducted on how genetic variation influences protein phosphorylation or other PTMs [18, 28,
29].

Genetically diverse model organism populations increase the scope and power of QTL
mapping. The Collaborative Cross (CC) [30, 31] is a panel of recombinant inbred mouse strains
descended from eight founder inbred strains: A/J (AJ), C57BL/6J (B6), 129S1/SvimJ (129),
NOD/ShiLtJ (NOD), NZO/HILtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK) and WSB/EiJ
(WSB). The founder strains represent traditional laboratory as well as wild-derived strains,
encompassing three subspecies of the house mouse [32, 33] and harbor ~50 million known
genetic variants [34]. The current CC panel consists of more than 60 strains that are
homozygous at most loci (> 99%). The ability to use replicate animals of CC strains is an
important feature of CC studies that improves QTL mapping power [23], and enables studies of

response to interventions [35-37] and other applications [38].

We previously reported on the genetic regulation of protein abundance in liver of CC strains
[25]. Here we expand on our earlier investigation to examine how genetic variation regulates
protein phosphorylation. We used mass spectrometry analysis to quantify the proteome and

phosphoproteome across three tissues (heart, kidney, and liver) from 116 mice representing
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female/male pairs from 58 CC strains. We performed QTL mapping to obtain pQTL and
phosphorylation QTL (phQTL). In addition, we mapped the residuals of phosphopeptide
abundance after regression on the abundance of the protein they derived from, i.e., the parent
protein abundance, to obtain adjusted phosphopeptide QTL (adj-phQTL). This approach
allowed us to differentiate between the contributions of two distinct mechanisms that determine
the abundance of phosphopeptides, the abundance of its parent protein and the proportion of
target sites that are phosphorylated, with the latter likely reflecting the activity of a catalyst
intermediate. We then applied mediation analysis and identified candidate genes that influence

phosphorylation levels through the second mechanism.

Results

Quantitative phosphoproteome profiling of heart, kidney, and liver in CC mice

Heart, kidney, and liver tissue samples were collected from 116 mice representing one male
and one female from each of 58 CC strains (Table S1). We utilized a tandem mass tag (TMT)-
based proteomics workflow (Fig. 1A) to quantify total protein abundance and the abundance of
phosphorylated peptides (phosphopeptides). We quantified 6172, 7286, and 6558 proteins, and
4975, 4236, and 4246 non-polymorphic phosphopeptides in heart, kidney, and liver tissue,
respectively. The number of proteins reported for liver differs slightly from our previous study,
where we report 6798 proteins, due to differences in the preprocessing and filtering steps.
Nearly 5,000 proteins were quantified in all three tissues and ~6,500 proteins were quantified in
at least two tissues (Fig. 1B). Fewer phosphopeptides were quantified across multiple tissues;
~1,500 were observed in all three tissues, but the majority of phosphopeptides were observed in
only one tissue (Fig. 1C). The number of phosphorylation sites identified for a given protein
ranged from 1 to 148 (TTN in heart), with fewer than 10 sites detected for most proteins (median
=1) (Fig. S1A). The abundance of most phosphopeptides was slightly correlated with the
abundance of their parent proteins (median correlation: heart = 0.32, kidney = 0.36, liver = 0.40)
(Fig. S1B). To obtain an estimate of phosphorylation that is independent of the parent protein
abundance, we computed the residual of phosphopeptide abundance after regression on the
abundance of the parent protein (adjusted phosphopeptides abundance) (Fig. 1D). For this
purpose, we modified the protein abundance estimation by excluding all peptides corresponding
to detected phosphopeptides (Methods). In some cases, we were not able to quantify the
parent protein after removing phosphorylated peptides, and we obtained 3875, 3471, and 3492

adjusted phosphopeptides in heart, kidney, and liver tissue, respectively.
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Sex differences among phosphopeptides

We estimated the effect of sex on abundance of proteins, phosphopeptides, and adjusted
phosphopeptides in all three tissues (Methods). For heart, we detected significant sex effects
(FDR < 0.01) for 323 proteins, 12 phosphopeptides, and 0 adjusted phosphopetides; for kidney,
4,499 proteins, 2,031 phosphopeptides, and 538 adjusted phosphopetides; and for liver, 2,367
proteins, 547 phosphopeptides, and 97 adjusted phosphopetides (Table S2). Sex effects are
most prevalent in kidney, followed by liver, and there are relatively few in heart (Fig. 2A).
Standardized sex effects on phosphopeptides and their parent proteins are highly correlated
(Fig. S2A). After adjustment for parent protein abundance, the magnitude of the sex effects is
reduced (Fig. 2A), but many remain significant. In addition, we see strong positive correlation of
sex effects on phosphopeptides before and after adjustment (Fig. S2B). Thus, sex effects on
phosphopeptide abundance are determined by sex effects on parent protein abundance and by

sex-specific factors that act directly on phosphorylation levels.

We illustrate how sex can influence phosphopeptide abundance with two examples (Fig. 2B).
There is a significant effect of sex on the protein LDHD, which has a higher abundance in
males. The phosphopeptide LDHD pS23 also has higher abundance in males, but the adjusted
phosphopeptide abundance shows no significant difference between the sexes. We conclude
that the sex effect on LDHD pS23 is mediated through the sex effect on the abundance of its
parent protein (Fig. 2B). The protein CGREF1 has higher abundance in males but CGREF1
pS272 has substantially lower abundance in males. This sex difference in the phosphopeptide
persists after adjusting for the parent protein abundance. We conclude that the sex effects on
CGREF1 pS272 are mediated by sex-specific processes that act independently of the parent
protein abundance (Fig. 2C).

Heritability of phosphopeptides

Heritability is the proportion of phenotypic variation explained by genetic relatedness. It reflects
the additive genetic effects on a trait relative to the precision of measurement. We estimated
heritability (h?) for the abundance of individual proteins and phosphopeptides in all three tissues.
The median heritability across tissues ranged from 0.308 to 0.332 for proteins, from 0.138 to
0.165 for phosphopeptides, and from 0.076 to 0.100 for adjusted phosphopeptides (Fig. 2D;
Table S3). Protein heritability was substantially higher than phosphopeptide heritability (Fig.
S2C), which at least in part, reflects the higher precision of protein quantification that combines

measurements across multiple peptides. The adjusted phosphopeptides are generally less
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heritable than the phosphopeptides (Fig. S2D), indicating that a dominant component of
phosphopeptide heritability is mediated through genetic effects on the parent protein.
Nonetheless, there are many adjusted phosphopeptides with non-zero heritability, indicating

that genetic factors can directly influence phosphorylation levels.

Genetic mapping of proteins and phosphopeptides

We mapped pQTL, phQTL and adj_phQTL in all three tissues. We computed a genome-wide
adjusted p-value for each trait and then applied a false discovery rate adjustment (FDR < 0.1)
to account for the number of proteins or peptides (Methods). We identified 1,608, 1,801, and
1,609 pQTL (Fig. 3A); 211, 251, and 275 phQTL (Fig. 3B); and 40, 58, and 41 adj-phQTL (Fig.
3B) in heart, kidney, and liver tissue, respectively (Table S4). We defined local QTL as being
located within 10 Mbp of the midpoint of the protein-coding gene, all others are distant QTL.
Mapping resolution of the CC panel is not uniform across the genome and we noted several
instances where QTL classified as distant were cleary local, based on the local LD structure. We
see greater sharing across tissues for local pQTL (41% are present in at least two tissues)
compared to distant pQTL (11% are present in at least two tissues) (Fig. S3A). This is
consistent with previous studies on multi-tissue gene expression QTL (eQTL) [19, 39]. The
proportion of phQTL shared across tissues is lower, with only five local and one distant phQTL
found in all three tissues and 10.5% of all phQTL present across two or more tissues (Fig.

S3B). The sharing of adj-phQTL is lower still, with only one local (EIF3B pS90; Figs. 3C, S3C)
and one distant (ATP5A1 pS53) site found across all three tissues and only 10.5% of all adj-
phQTL present in two or more tissues. The majority of adj-phQTL have a corresponding phQTL
(81.8% of all adj-phQTL) (Figs. 3B and S3D). The lower proportion of sharing across tissues for
phQTL and adj-phQTL could be due to tissue-specificity of phosphorylation but we cannot rule

out reduced mapping power for individual peptides relative to proteins.

To determine how much of the genetic contribution to phQTL is mediated through abundance of
their parent proteins, we first looked at the correlation of allele effects at concordant pQTL-
phQTL pairs. We observed high positive correlations for most pairs, consistent with shared
genetic effects (Fig. S3E). We then calculated the difference of the LOD score for each phQTL
before and after adjusting for parent protein abundance. If the LOD score drops after
adjustment, this indicates that the phQTL is mediated, at least in part, through variation in the
abundance of the parent protein. The phQTL with the greatest reduction in LOD score (Delta
LOD percentage < - 50%, FDR < 0.1) were primarily local phQTL (89.5%-95.7% across
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tissues), although a few distant phQTL (N = 21) showed a similar reduction in LOD score (Fig.
3D, Table S5). We looked at a larger set of phQTL using a less stringent multiple testing
correction (FDR < 0.5) and saw the same pattern. We conclude that local genetic effects on
phosphopeptide abundance are often mediated through parent protein abundance. However, a
substantial number of phQTL, especially those that are distant from the coding gene, show little
or no drop in LOD score after adjustment, indicating that these phQTL are responding to
genetics effects independent of their parent protein abundance. The drop in LOD scores for
many phQTL falls somewhere between these extremes, indicating that they are influenced by

parent protein abundance and by independent mechanisms.

We note that the genetic effects on phosphopeptides can be modified by sex. Our experimental
design, with one male and one female mouse from each CC strain, is well suited for mapping
QTL with genetic effects that differ between the sexes, which we refer to as sex-interactive QTL.
We mapped 2, 43, and 5 sex-interactive pQTL (FDR < 0.1) in heart, kidney, and liver,
respectively (Fig. S3F). We identified 4 sex-interactive phQTL in kidney (3 local and one
distant). We found no sex-interactive phQTL in heart or liver and no sex-interactive adj-phQTL
in any tissue. The local sex-interactive phQTL for HAO2 pS171 illustrates how sex and genetic
variation can simultaneously affect protein and phosphoprotein abundance (Fig. S3G). Female
mice generally have higher phosphorylation of HAO2 pS171 relative to their male counterparts,

but the magnitude of the sex effect is amplified for mice with the CAST allele at this QTL.

Distant phQTL effects are mediated through kinases, phosphatases, and cytokines
Phosphopeptide abundance can be driven by abundance of the parent protein (Mechanism 1),
and by factors that affect phosphorylation levels independently of protein abundance
(Mechanism 2; Fig. 4A). We set out to quantify the relative contributions of these two
mechanisms and to identify candidate mediators of Mechanism 2, which we expected to be

enriched for kinases, phosphatases, and upstream regulators of protein phosphorylation.

We observed that many phQTL have a corresponding pQTL but no correpsonding adj-phQTL,
i.e., the LOD score drops when the phosphopeptide is adjusted for the parent protein
abundance (Fig. 3D). The genetic effects at these phQTL are mediated by Mechanism 1. For
example, a pQTL on chromosome 7 at 64Mb explains 81% of variation in the abundance of the
protein GAS2 in kidney (p = 8.2e-16) (Fig. 4B-C). The abundance of GAS2 is low in animals
with the PWK allele at this locus (Fig. 4D). The abundance of GAS2 pS283 is highly correlated
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with its parent protein’s abundance (r = 0.99) (Fig. 4E). After adjusting for GAS2 abundance,
GAS2 pS283 is no longer associated with the genotype at the phQTL locus (Fig. 4G). Additional
examples of phQTL that are mediated through parent proteins include TPMT pS34 (Fig. S4A-D)
and MTX3 pS284 (Fig. S4E-H). Common features of phQTL consistent with Mechanism 1 are a
strong local pQTL for the parent protein and strong correlation between the parent protein and

the phosphopeptide.

We observed 74 distant phQTL that had no corresponding pQTL, and after adjusting for parent
protein abundance, the adj-phQTL remained significant (Fig. 3D). The genetic effects at these
QTL are mediated primarily by Mechanism 2. For example, MCAT pS41 in heart (Fig. S5) has
distant phQTL and adj-phQTL on chromosome 2 at 71.8Mb (Fig. 4H). The abundance of MCAT
pS41 is low when this Chr 2 locus carries an NZO allele (Fig. 4l). To identify the gene
candidates responsible for this effect, we applied mediation analysis to evaluate the transcripts
and proteins in the phQTL region on Chr 2 (Methods). The strongest mediation signature was
found for PDK1, pyruvate dehydrogenase kinase 1 (Fig. 4J-K). The transcript abundance of
Pdk1 was also identified as a mediator. PDK1 has a local pQTL with low expression in mice with
an NZO allele (Fig. 4L), and PDK1 abundance is tightly correlated with MCAT pS41 (Fig. 4M).
The pQTL of PDK1 explains 97% (p < 2.2e-16) of the variation in PDK1 abundance and 77% (p
< 2.2e-16) of variation in MCAT pS41 abundance. The effect of the pQTL on MCAT was not
significant and the effect of MCAT abundance on MCAT pS41 was significant but weak (Fig.
4K), confirming that the phQTL on MCAT pS41 was not mediated through MCAT abundance
but is primarily driven by PDK1 abundance. Across all three tissues, we found a total of 9 distant
phQTL (on 6 different proteins) that map to the Pdk1 locus on Chr 2 and are mediated by PDK1,
including the confirmed substrate of PDK1, pyruvate dehydrogenase E1 component subunit
alpha, PDHAL [40] (Fig. 4N). The phQTL at Chr 2 for ATP5A1 pS53 is found in all three tissues,
and the phQTL for PCCA pS248 is found in heart and liver tissues. These results indicate that

PDK1 is the upstream kinase of these phosphorylation sites.

We found 45 examples of phosphopeptides whose abundance is influenced by both
mechanisms 1 and 2 to different degrees and with genetic associations that are local, distant, or
both. For example, the protein COMT in liver has a local pQTL on Chr 16 at 18Mb, and COMT
pS261 has a distant adj-phQTL on Chr 13 at 54.8Mb (Fig. 5A). The local pQTL drives higher
expression of COMT in the presence of a CAST allele (Fig. 5B). After adjusting for COMT

abundance, the adjusted phosphopeptide shows high abundance in the presence of a WSB
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allele at the distant phQTL (Fig. 5C). Mediation analysis of the Chr 13 QTL identified the
transcript of Cdc14b as a candidate mediator of phosphorylation (Fig. 5D). We note that
CDC14B was not quantified in the proteomics analysis. The distant adj-phQTL for COMT pS261
co-maps with a local eQTL for Cdc14b on Chr 16 and exhibit mirrored allele effects, i.e., the
WSB allele confers low expression of Cdc14b but high abundance of COMT pS261, resulting in
negative correlation between COMT pS261 and Cdcl4b mRNA abundance. Regressing out the
effect of COMT protein abundance on the abundance of the COMT pS261 phosphopeptide
improves this correlation between Cdc14b mRNA and COMT pS261, which confirms that
abundance of COMT pS261 phosphopeptide is regulated by both its parent protein abundance
and the transcript abundance of Cdcl14b (Figs. 5E-G). The Chr 13 QTL explains 63% (p = 5.2e-
9) of variation in COMT and in turn, COMT explains 48% (p = 2.6e-9) of variation in COMT
pS261. The QTL on Chr 13 explains 51% (p = 4.2e-6) of variation in Cdc14b, which in turn
explains 38% (p = 2.8e-7) of variation in COMT pS261.

A second example of complex regulation, LMNA pS394 was also found to be mediated by
Cdc14b in heart (Fig. S6 I-L). Cdcl14b is a dual specificity protein phosphatase known to be
involved in DNA damage response [41] and cell cycle regulation [42], and based on this genetic
data is the likely upstream phosphatase acting on COMT pS261 and LMNA pS394 in liver and
heart, respectively. Additional examples with complex genetic regulation include PDLIM4 pS119
and NGEF pS606, both found in heart (Fig. S6). Genetic effects on PDLIM4 pS119 were
mediated through PDLIM4 abundance and II15 transcript expression (Fig. S6A-F). ll15is a
cytokine, and signaling through 1115 results in kinase SYK activation to stimulate cell
proliferation [43]. Allele effects of the phQTL (PDLIM4 pS119), the eQTL (1115), and mediation
analysis are all consistent with higher levels of 1115 leading to higher levels of PDLIM4 pS1109.
For NGEF pS606, we found that its distant phQTL was mediated through the transcript
abundance of Prkca, protein kinase C, alpha (Fig. S6G-L).

In summary, we found that most local phQTL have a corresponding pQTL and are primarily
driven by their parent protein abundance (mechanism 1), while distant phQTL with adj-phQTL
are primarily driven by factors that are independent of the parent protein abundance
(mechanism 2). We identified many examples of regulation of phosphopeptides by both
mechanisms 1 and 2 (Table S5). These include 6 kinases (Pdk1l, Mapkapk3, Nme6, Plk2,
Prkca, Sbk3), 3 phosphatases (Cdcl4a, Cdcl4b, Pxylpl) and additional genes that are known
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to be involved in cell signaling transduction and affect protein phosphorylation, including 1115,
Negrl, and Stat6.

Regulation of phosphorylation sites within a protein

We next asked whether phosphopeptides that co-occur on the same protein were coordinately
regulated. We identified 1151, 1148, and 1093 proteins with two or more phosphopeptides
quantified in heart, kidney, and liver tissues, respectively (Fig. S1A). To determine whether
phosphorylation sites on the same protein were potentially co-regulated, we looked at the
correlation of the abundances of phosphopeptides from the same protein. (Fig. S7A-B). In each
tissue, the median correlation of phosphopeptides decreased but remained significant after
adjustment based on their parent proteins, indicating that phosphopeptides from the same
protein can be co-regulated independently of parent protein abundance. For example, we
quantified 7 phosphopeptides from EGFR in liver tissue with correlations among the adjusted
phosphopeptides ranging from -0.049 and 0.598 (Fig. 6A). While only one of these sites had a
significant adj-phQTL (pS1044, Chr 9 at 107Mb), two sites had sub-threshold adj-phQTL with
allele effects that are consistent with a shared adj-phQTL, suggesting that phosphorylation sites

on EGFR can be co-regulated.

Phosphorylation sites on one protein can be regulated differently. For example, abundances of
UCKL1 pS56 and UCKL1 pS539 are not correlated (r = 0.020), and genetic mapping identifies a
local phQTL on chr 2 for UCKL1 pS539 and a distant phQTL on chr 18 for UCKL1 pS56 (Fig.
6B). The CAST allele drives the low abundance of UCKL1 pS539 (Fig. 6C), and NOD and PWK
alleles drive the low abundance of UCKL1 pS56 (Fig. 6D), presenting an example of
phosphorylation sites on one protein that are regulated by distinct mechanisms. An adj-phQTL
was identified for UCKL1 pS56 but not for UCKL1 pS539. We conclude that the local phQTL of
UCKL1 pS539 was mediated through protein abundance (Mechanism 1), whereas the phQTL of

UCKL1 pS56 was independent of protein abundance regulation (Mechanism 2).

Genetic regulation of the ATP Synthase Complex

We conclude with two examples that illustrate how these data can be used as a resource to
dissect the genetic regulation of protein and phosphopeptide abundance. The first example is
the ATP synthase complex, which is localized to the inner mitochondrial membrane where it
converts ADP to ATP as the final step of oxidative phosphorylation [44]. In heart tissue, we

guantified 15 subunits of the complex and detected 15 phosphopeptides. The complex is
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present in kidney and liver as well, but fewer proteins and phosphopeptides were detected in

these tissues.

Previously, we demonstrated that proteins that form complexes are often co-regulated [24, 25] .
The abundance of subunits from the ATP synthase complex are tightly correlated (median
correlation r = 0.83) (Fig. 6E). In heart tissue, several subunits share a significant co-mapping
distant pQTL on Chr 11 at 96Mb, which is the location of the Atp5h gene. Mediation analysis of
the distant pQTL identified ATP5H as the mediator of complex-wide protein abundance (Table
S5). The A/J allele at Atp5h is associated with low complex-wide abundance, consistent with

stoichiometric regulation of the complex by the lowest expressed subunit (Fig. 6F-G) [24, 25].

We looked at phosphorylation sites across the complex in heart tissue. The abundance of
phosphopeptides from the ATP synthase complex are less tightly correlated (median correlation
r = 0.049) compared to the proteins (Figs. 6E, 6H). Similar results were seen in liver and kidney
(Fig. S7C-F). Among the 15 phosphorylation sites detected, a cluster of sites in ATP5A1
including pS53 are highly correlated, and share a suggestive (FDR < 0.5) genetic association
with the Pdk1 locus. ATP5A1 pS53, which is quantified in all three tissues, has a distant adj-
phQTL on Chr 2 at 73 Mb that is mediated by PDK1 (Fig. 6l, S7C), and has low levels of
phosphorylation associated with the NZO allele at this locus (Fig. 6J). We also identified two
significant (FDR < 0.01) correlations between sites in different subunits: ATP5F1 pS226 and
ATP5AL pT236, and ATPF1 pS226 and ATP5C1 pS265, suggesting possible coordination of

phosphorylation activity across subunits within the Atp5 synthase complex.

Genetic regulation of propionyl-CoA carboxylase

PCCA and PCCB together make up the biotin-dependent propionyl-CoA carboxylase (PCC), a
mitochondrial enzyme involved in the catabolism of odd chain fatty acids and branched-chain
amino acids [45, 46]. A single phosphorylation site pS248 on PCCA was detected in all three
tissues, whereas no phosphopeptides were found from PCCB. The site PCCA pS248 had a
significant distant adj-phQTL on Chr 2 at 72Mb in both heart and liver. There is a suggestive
distant adj-phQTL at the same locus in kidney (LOD = 6.7). In all three tissues, the Chr 2 QTL
had a low NZO allele (Fig. 7A-B) and was mediated through PDK1 (Fig. 7C).
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We also identified a local pQTL on PCCB and PCCA has a co-mapping distant pQTL (Chr 9 at
100Mb) that is mediated by PCCB in heart tissue. Low expression of PCCA and PCCB is
associated with the NZO and PWK alleles at the Chr 9 QTL. In kidney and liver, PCCA instead
maps with the a local pQTL and PCCB has a distant pQTL (Chr 14 at 123Mb), mediated by
PCCA (Fig. 7D). Low expression at the Chr 14 QTL is associated with the NZO allele. The
protein abundances of PCCA and PCCB are tightly correlated in both tissues (r = 0.935 in
kidney to r = 0.975 in heart, p < 2.2e-16; Fig. 7E-F). We hypothesized that the switching across
tissues of the local and distant QTL for protein abundances was due to tissue-specific changes
in stoichiometric regulation. This is confirmed by looking at the mRNA level at these genes (Fig.
7G). In kidney and liver, Pcca mRNA has lower abundance and the Chr 14 QTL (local to Pcca)
is the common driver of PCCA and PCCB protein abundance. In heart, when NZO or PWK
alleles are present at the Chr 9 locus (local to Pccb), the mRNA level of Pccb is lower than
Pcca, and PCCB becomes the driver of protein abundances. This is consistent with
stoichiometric regulation in which the gene with lowest mMRNA expression becomes the genetic
driver of protein complex abundance [24]. We also note that the Chr 14 pQTL for PCCA (local)
and PCCB (distant) in the kidney is sex-specific, with low expression in the presence of the NZO

allele being most pronounced in females (Fig. 7H).

Discussion

We quantified transcripts, proteins, and phosphorylated peptides across three tissues in a
genetically diverse mouse population. Examining the adjusted phosphopeptides, we
demonstrated that phosphorylation levels are heritable and can differ between sexes. We
mapped pQTL, phQTL, and adj-phQTL and describe two distinct mechanisms for genetic
regulation of phQTL. A large proportion of phQTL are mediated through protein abundance.
Other phQTL remain significant after accounting for the effects of the parent protein abundance
on phosphopeptide abundance (adj-phQTL) suggesting that genetic factors are likely affecting
the levels of site-specific phosphorylation. We applied mediation analysis to identify proteins or
transcripts that are candidate causal intermediates underlying distant adj-phQTL. These
mediators included kinases, phosphatases, and upstream regulators involved in the
phosphorylation process. We highlighted the most significant mediation effects above. However,
there are many more examples of plausible mediation that can be mined from these data (Table
Sb5), providing experimentally testable hypotheses about the molecular interactions that mediate

site-specific phosphorylation.

11


https://doi.org/10.1101/2022.06.03.494740
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.03.494740; this version posted December 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We identified PDK1 abundance as the mediator of nine adj-phQTL across three tissues. All nine
phosphorylation sites were found in parent proteins involved in the respiratory chain, including
sites on APT5A1 and PCCA with adj-phQTL that are shared across all three tissues. Looking at
genetic variants at the Pdk1 locus, we identified a 2bp insertion (Chr 2: 71874272 — 71874274,
GRCm38) in the promoter that occurs only in NZO mice and may drive the low expression of
PDK1, leading to lower kinase activity and ultimately lower levels of phosphorylation on key
proteins involved in respiratory chain metabolism. These findings are particularly interesting
because the NZO mouse is a well-studied polygenic model for human metabolic syndrome [47,
48]. QTL mapping in the NZO mouse, has identified Tbcld1l [49], Zfp69 [50] and Lepr [51], as
genes contributing to type 2 diabetes. Here, we identify a potential role for aberrant protein
phosphorylation due to low expression of PDK1 that may further contribute to metabolic disease

phenotypes characteristic of the NZO mouse.

While investigating the protein complex formed by PCCA and PCCB, besides the adj-phQTL
identified on pS248 on PCCA, we identified two additional pQTL, one local to PCCA and the
other local to PCCB, both with low expression of the NZO allele. In heart tissue, the Cto T
(100,982,310bp) and G to A (100,987,863bp) mutations specific to the NZO and PWK alleles
potentially affect transcription and lead to the lower transcript level and protein level of PCCB
(100,864,085bp-100,916,951bp). In kidney and liver tissues, NZO specific mutations in Pcca
may cause the low abundance of PCCA and PCCB. This example illustrates the complexity and

delicacy of the mechanisms of genetic regulation of protein abundance and phosphorylation.

We also recognize some limitations of the current study. We find suggestive evidence for many
genetic effects on phosphopetides that did not reach stringent genome-wide and multiple testing
adjusted significance criteria. The CC panel is limited and it is not possible to improve mapping
power substantially by adding more strains. However, by adding more animals per strain, the
precision of protein and peptide quantification can be improved to increase mapping power [23].
There were also instances where we did not detect phosphorylated peptides that must be
present, for example, the ATP synthase complex in liver and kidney. Advanced mass
spectrometry technology, especially targeted mass spectrometry technology could be
developed and used to obtain better coverage and provide a more complete picture of the

phosphorylated proteome [52].
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This integrative multi-omics analysis in genetically diverse CC strains provides a powerful tool to
identify regulators of protein-phosphorylation. Similar approaches could be used in combination
with interventions, including mapping modifiers of transgenic models of disease [53]. The multi-
omics data generated in this study provides a resource for further exploration. The upstream
kinases, phosphatases, or other regulating factors identified here can seed hypotheses and
motivate further mechanistic studies in disease models. Moreover, it sets a precident for future
studies of regulatory mechanisms for other post translation modifications (PTMs) of proteins,
such as methylation and ubiquitination. Coupled with advanced mass spectrometry technology
for deeper coverage, we foresee this strategy being used to provide a comprehensive regulatory

map of PTMs.

METHODS
Mice

We received pairs of young mice from 58 CC strains from the UNC Systems Genetics Core
Facility between the summer of 2018 and early 2019. Mice were singly housed upon receipt
until eight weeks of age. More information regarding the CC strains can be found at
https://csbio.unc.edu/CCstatus/index.py.

Genotyping, founder haplotype reconstruction, and gene annotation

The genotyping and haplotype reconstruction for the CC mice were previously described [25].
Briefly, the 116 CC mice were genotyped on the Mini Mouse Universal Genotyping Array [54]
(MiniMUGA), which includes 11,125 markers. Founder haplotypes were reconstructed using a
Hidden Markov Model (HMM), implemented in the qtl2 R package [55], using the “risib8” option
for an eight-founder recombinant inbred panel and Genome Reference Consortium Mouse Build
38 (mm10). Heterozygous genotypes were omitted, and haplotype reconstructions are limited to
homozygous states, smoothing over a small number of residual heterozygous sites that remain
in the CC mice. Ensembl v91 gene and protein annotations were used in the CC and founder

strains.
Sample preparation for proteomics and phosphoproteomics analysis

Proteome sample preparation and data analysis for the CC liver tissue was described previously
[25]. We also collected kidney and heart tissues along with liver tissue. Singly housed CC mice

had their food removed six hours prior to euthanasia and tissue harvest. Tissues were
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dissected, weighed, and snap frozen in liquid nitrogen. Pulverized heart and kidney tissue were
syringe-lysed in 8 M urea and 200 mM EPPS pH 8.5 with protease inhibitor and phosphatase
inhibitor. BCA assay was performed to determine protein concentration of each sample.
Samples were reduced in 5 mM TCEP, alkylated with 10 mM iodoacetamide, and quenched
with 15 mM DTT. 100 pg protein was chloroform-methanol precipitated and re-suspended in
100 pL 200 mM EPPS pH 8.5. The proteins were digested by Lys-C at a 1:100 protease-to-
peptide ratio overnight at room temperature with gentle shaking. Trypsin was used for further
digestion for 6 hours at 37°C at the same ratio with Lys-C. After digestion, 50 uL of each sample
were combined in a separate tube and used as the 16" sample in all 8 tandem mass tag (TMT)
16plex, rather than the 11plex used previously for liver tissue. 50 uL of each sample were
aliquoted, and 12 L acetonitrile (ACN) was added into each sample to 30% final volume. 100
Mg TMT reagent (126, 127N, 127C, 128N, 128C, 129N, 129C, 130N, 130C, 131N, 131C, 132N,
132C, 133N, 133C, 134N) in 10 uL ACN was added to each sample. After 1 hour of labeling, 1
WL of each sample was combined, desalted, and analyzed using mass-spec. Total intensities
were determined in each channel to calculate normalization factors. After quenching using 0.3%
hydroxylamine, 16 samples were combined in 1:1 ratio of peptides based on normalization

factors.

High-Select Fe-NTA Phosphopeptide Enrichment Kit (Thermo Fisher) was used to enrich the
phosphorylated peptides (phosphopeptides) according to the manufacturer’'s protocol. Flow
through and washes from phosphopeptide enrichment were combined, dried, and fractionated
with basic pH reversed phase (BPRP) high performance liquid chromatography (HPLC) as
described before. We used an Agilent 1260 pump equipped with a degasser and a single
wavelength detector (set at 220 nm). Peptides were subjected to a 50 min linear gradient from
8% to 40% acetonitrile in 10 mM ammonium bicarbonate pH 8 at a flow rate of 0.6 mL/min over
an Agilent 300Extend C18 column (3.5 ym particles, 4.6 mm ID and 250 mm in length). The
peptide mixture was fractionated into a total of 96 fractions which were consolidated into 24.
Twelve fractions were desalted and analyzed by liquid chromatography-tandem mass
spectrometry (LC-MS/MS). Meanwhile, the eluant from the phosphopeptide enrichment was
desalted and analyzed by LC-MS/MS.

Liquid chromatography and tandem mass spectrometry

The method for proteome data collection in liver tissue was described previously [56]. Proteome

data in heart and kidney tissues were collected on an Orbitrap Eclipse mass spectrometer
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coupled to a Proxeon NanoLC-1200 UHPLC. The peptides were separated using a 100 pym
capillary column packed with ~35 cm of Accucore 150 resin (2.6 ym, 150 A; ThermoFisher
Scientific). The mobile phase was 5% acetonitrile, 0.125% formic acid (A) and 95% acetonitrile,
0.125% formic acid (B). For BPRP fractions, the data were collected using a DDA-SPS-MS3
method with online real-time database searching (RTS) [57] [58]. The data were collected using
a DDA-SPS-MS3 method. A database that included all entries from an indexed Ensembl mouse
database version 90 (downloaded:10/09/2017) was used in RTS. Each fraction was eluted
using a 90 min method over a gradient from 6% to 30% B. Peptides were ionized with a spray
voltage of 2,500 kV. The instrument method included Orbitrap MS1 scans (resolution of 1.2x10;
mass range 400-1600 m/z; automatic gain control (AGC) target 4x10°, max injection time of 50
ms and ion trap MS2 scans (CID collision energy of 35%; AGC target 7.5x10%; rapid scan mode;
max injection time of 50 ms). RTS was enabled and quantitative SPS-MS3 scans (resolution of
50,000; AGC target 2x10°; max injection time of 200 ms) were processed through Orbiter real-
time database searching. This data acquisition includes high-field asymmetric-waveform ion-
mobility spectrometry (FAIMS). The dispersion voltage (DV) for FAIMS was set at 5000V, the
compensation voltages (CVs) were set at -40V, -60V, and -80V, and TopSpeed parameter was
set at 1 sec per CV [59].

Mass spectrometric data for phosphopeptides fractions in liver tissue were collected on an
Orbitrap Lumos mass spectrometer. Mass spectrometric data were collected in HCD and CID
modes. Each fraction was eluted using a 180 min method over a gradient from 6% to 30% B.
Peptides were ionized with a spray voltage of 2,600 kV. The instrument method included
Orbitrap MS1 scans (resolution of 1.2 x10°; mass range 400-1400 m/z; automatic gain control
(AGC) target 1x10°, max injection time of 50 ms. The 10 most intense MS1 ions were selected
for MS2 analysis. Following acquisition of each MS2 spectrum, a synchronous-precursor-
selection (SPS) MS3 scan was collected on the Top 10 most intense ions in the MS2 spectrum.
The isolation width was set at 0.7 Da and isolated precursors were fragmented using two
methods. In the first method, we used collision induced dissociation (CID) at a normalized
collision energy (NCE) of 35% with MultiStage Activation (MSA), and in the second method we
used higher energy collision-induced dissociation (HCD) at a normalized collision energy (NCE)
of 33%. Following acquisition of each MS2 spectrum, a synchronous precursor selection (SPS)
MS3 scan was collected on the Top 10 most intense fragment ions in the MS2 spectrum. SPS-
MS3 precursors were fragmented by higher energy collision-induced dissociation (HCD) at an

NCE of 65% and analyzed using the Orbitrap.
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Phosphoproteome analysis in heart tissues were processed with FAIMS/hrMS2 using our
optimized workflow for multiplexed phosphorylation analysis on an Orbitrap Eclipse mass
spectrometer. Briefly, the Thermo FAIMS Pro device was operated with default parameters
(inner and outer electrode were set at 100°C, yielding a FWHM between 10 V to 15V and
dispersion voltage (DV) was set at -5000 V). Each fraction was analyzed twice by the mass
spectrometer, once with a method incorporating two CVs (CV= -45 and -70V) and again with
three CVs (CV=-40V, -60V and -80V) using a 2.5h method having a gradient of 6% to 30% B
[60].

Mass spectrometric data for phosphopeptides fractions in kidney tissue were collected on an
Orbitrap Lumos mass spectrometer. Mass spectrometric data were collected in CID mode and
then processed with FAIMS/hrMS2 using our optimized workflow for multiplexed
phosphorylation analysis with a method incorporating two CVs (CV= -45 and -70V). Detailed
parameters for MS2 and MS3 are embedded in the RAW files.

Mass spectrometry data analysis

Mass spectra data were processed using a Comet-based pipeline. Spectra were converted to
mzXML using a modified version of ReAdW.exe. Database search included all entries from an
indexed Ensembl database version 90 (downloaded:10/09/2017). This database was
concatenated with one composed of all protein sequences in the reversed order. Searches were
performed using a 50ppm precursor ion tolerance for total protein level analysis. The product
ion tolerance was set to 1.000 Da for MS3-based analysis and 50ppm for MS2-based analysis,
respectively. TMT tags on lysine residues, peptide N termini (+304.207 Da for heart and kidney
tissues and +229.163 Da for liver tissue), and carbamidomethylation of cysteine residues
(+57.021 Da) were set as static modifications, while oxidation of methionine residues (+15.995
Da) was set as a variable modification. In addition, for phosphopeptide analysis,
phosphorylation (+79.966 Da) on serine, threonine, and tyrosine were included as variable
modifications. Peptide-spectrum matches (PSMs) were adjusted to FDR < 0.01. PSM filtering
was performed using a linear discriminant analysis (LDA), as described previously, while
considering the following parameters: XCorr, ACn, missed cleavages, peptide length, charge
state, and precursor mass accuracy. For TMT-based reporter ion quantitation, we extracted the
summed signal-to-noise (S:N) ratio for each TMT channel and found the closest matching
centroid to the expected mass of the TMT reporter ion. For protein-level comparisons, PSMs
from all three tissues were identified, quantified, and collapsed to a peptide FDR < 0.01 and

then collapsed further to a final protein-level FDR < 0.01, which resulted in a final peptide level
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FDR <0.001. Moreover, protein assembly was guided by principles of parsimony to produce the
smallest set of proteins necessary to account for all observed peptides. PSMs with poor quality,
MS3 spectra with TMT reporter summed signal-to-noise of less than 100, or no MS3 spectra
were excluded from quantification. We provide an estimate for the probability of correct
localization for each phosphorylation site using AScore algorithm [61]. 84%, 89% and 90% of
the quantified phosphopetide used for analysis have an AScore greater than 13 in heart, liver,
kidney tissues, respectively (P<0.05). All the information were uploaded to figshare
(https:/ffigshare.com/projects/Multi-
omics_analysis_identifies_drivers_of_protein_phosphorylation/137673, Under the folder titled
“Raw summary of protein and phosphopeptides quantitation” - siteQuant5100.csv). The mass
spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via
the PRIDE partner repository with dataset identifiers PXD032843.

Sample preparation for transcriptomics analysis

Livers, hearts, and kidneys were dissected from each CC mouse, flash frozen, and stored at -
80°C. Once all samples were collected, frozen tissues were pulverized in liquid nitrogen, divided
into aliquots, and then sent to the Genome Technologies service (Jackson Laboratory) for RNA

extraction and RNA-seq analysis.

Total RNA was extracted and purified using the MagMAX mirVana Total RNA Isolation Kit
(ThermoFisher) and the KingFisher Flex purification system (ThermoFisher). Briefly, pulverized
tissue samples were lysed in TRIzol (ThermoFisher Scientific), chloroform was then added to
the TRIzol homogenate, and the RNA-containing agueous layer was removed for RNA isolation,
following the manufacturer’s protocol. RNA concentration and quality were assessed using the
Nanodrop 8000 spectrophotometer (Thermo Scientific) and Total RNA Nano assay (Agilent

Technologies).

Libraries were constructed using the KAPA mRNA HyperPrep Kit (Roche) following
manufacturer’s protocols. Briefly, poly-A mRNA was selected from total RNA using oligo-dT
magnetic beads, followed by RNA fragmentation, first and second strand cDNA synthesis,
ligation of lllumina-specific adapters containing unique dual index barcode sequences for each
library, and PCR amplification. Library quality was assessed using the D5000 ScreenTape
(Agilent Technologies) and concentration measured with the Qubit dSDNA HS Assay

(ThermoFisher). Finally, pooled libraries were sequenced on the NovaSeq 6000 platform
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(Ilumina) using the S1 Reagent Kit v1, yielding 20-40M (target 30M) 1 x 100bp single-end (SE)

reads per sample.
QUANTIFICATION AND STATISTICAL ANALYSIS
Filtration of peptides that contain polymorphism

Peptides that contain polymorphisms, i.e., coding variants, bias protein abundance estimation in
genetically diverse samples because peptides with differing sequences are not quantified
simultaneously. A mouse with an alternative allele with respect to the B6 reference mouse
genome will have reduced intensity or even non-detection for the reference peptide. This bias
could then be propagated to estimates of protein abundance or phosphopeptide abundance,
which can either obscure the signal of a true QTL or induce a false local QTL as a flag of the
polymorphism. Therefore, we removed all polymorphic peptides based on the genome
sequences of the founder strains. We filtered out peptides with known polymorphisms in the 8
founder strains of the CC. This is a more stringent filter than was applied in our previous study
of the liver data [25] and thus there are minor differences in the protein quantification Before
filtering, 153,856 unique peptides were quantified across 28 TMTs. 6841 (4.4%) unique

peptides were filtered out due to not being identical in all 8 strains.

For each phosphopeptide quantified, the sequences of the corresponding protein were
extracted from the founder strain genomes. To ensure that polymorphic peptides did not drive
phQTL signal, we required phosphopeptides to have sequences of three amino acids adjacent

to both sides that were present in all the founder strain genome sequences.
Peptide normalization and protein abundance estimation

Peptides, including phosphopeptides, were standardized within TMT batch. The intensity for
each peptide j from sample i was scaled by the ratio of the maximum cumulative peptide

intensity in the batch to the cumulative peptide intensity for individual i: y{j = @;y;; where

max.s

i’ € Bli] (Zl yi’j)
2 Vij

@ =

The abundance for each protein j from an individual i was estimated by summing the intensities
of its component peptides (after removal of polymorphic peptides), then scaled relative to the

!
XM Yimt+1

- ) where m =
XM Yprijm+1

abundance from the bridge sample and log transformed: y{]’- = log, (
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1, ..., M indexes the peptides that map to protein j and yl’1[i]m is the intensity of peptide m for the

corresponding bridge sample from individual i’s batch.

We pre-adjusted for the effect of TMT batch using a linear mixed effect model (LMM) to allow
strain pairs that span two TMT batches to be summarized to the strain level for downstream

QTL analysis. The following LMM was fit for each protein j:

yi”(j) =u+ Sex[i] + strain[i] + batCh[i] + &

Equation 1

where yi"(j) is the abundance of protein j for individual i, u is the shared intercept, sex[i] is the
contribution of sex for individual i (fit as a fixed effect), strain[i] is the contribution of the CC
strain of individual i (fit as a random effect), batch[i] is the contribution of individual i's TMT
batch (fit as a random effect), and ; is the error for individual i with &; ~ N(0, o2). All

downstream analyses were performed on quantities after subtracting off the batch effect:

y"P = y"Y - batchli], where batch[i] is the best linear unbiased prediction (BLUP) for the

2

TMT batch of individual i. The LMM was fit using the Ime4 R package®. Proteins that were

unobserved for 50% or more of samples were removed from further analysis.
Phosphopeptide normalization and adjustment for protein abundance

Phosphopeptides were processed similarly to protein abundance, but without the peptide-to-

. ()
protein summation step. For each phosphopeptide j, we normalized as yi"(j) = log, (y‘,(,-):>,
b[i]

which were then batch adjusted as in Equation 1. Phosphopeptides that were unobserved for

50% or more of samples were removed from further analysis.

To distinguish genetic effects on phosphopeptides independent of the proteins from which they
were derived, which we refer to as parent proteins, we also pre-adjusted for the effect of parent
protein abundance by taking residuals from a linear model: yi'"(j) = u + parent[ij] + ¢;, where
parent[ij] is the contribution of the abundance of the parent protein for phosphopeptide j for
individual i (fit as a fixed effect). The residuals for phosphopeptides were then calculated as:

y, oD — ") parent(if]. Parent protein abundances were estimated from their

component peptides as previously described, but we first filtered out any peptides with a

phosphorylation site.
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Heritability estimation

We estimated heritability for protein and phosphopeptide abundance in each of the tissues

using an LMM. For a given protein or phosphopeptide j from a specified tissue, we fit:
y"P =y + sex[i] + kinship[i] + ¢;
Equation 2

where kinship[i] is a random effect representing cumulative additive genetic effects and should
thus capture similarities due to overall relatedness, modeled across individuals as

kinship ~ N(0, Gz2). Bold text denotes vector and matrix quantities. G is a realized genomic
relationship matrix, estimated from markers across all chromosomes, and 72 is the variance

component underlying the kinship effect. Heritability is estimated as the proportion of variation

T

2
— The qtl2 R package was used to fit the LMM and extract the

due to genetic effects: h? =

72

heritability estimate®.
Sex effects on protein and phosphopeptide abundance

Proteins and phosphopeptides that exhibited differential abundance between the sexes within a
tissue, i.e., sex effects, were identified using the same LMM described in Equation 2 for
heritability estimation. We instead compared it to a null model excluding the sex term and
summarized the statistical significance with a likelihood ratio test p-value. The LMMs were fit
using the qtl2 R package, using maximum likelihood estimates (MLE) rather than restricted
maximum likelihood estimates (REML), as is appropriate for testing a fixed effect term. For a
given outcome type (proteins or phosphopeptides), summary type (averages or differences),

and tissue, significant sex effects were declared based on FDR < 0.1 using the BH method®.
QTL analysis

For QTL analysis, we first summarized CC strain pairs as averages and differences (male —
female) of the abundance of proteins and phosphopeptides. Phosphopeptides were adjusted for
parent proteins as before, but at the strain level. We mapped QTL for proteins (pQTL),
phosphopeptides (phQTL), and adjusted phosphopeptides (adj-phQTL). QTL for CC strain
differences represent sex-by-genotype interactions where QTL effects differ between sexes.
Founder haplotype probabilities for CC strain genomes were estimated by averaging the

probabilities for the male and female at marker positions from MiniMUGA.
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For each protein or phosphopeptide (unadjusted or adjusted) that was quantified in a tissue, we
performed a genome-wide QTL scan by testing a QTL effect at positions across the genome.
We fit a similar LMM to the heritability model in Equation 2 for each protein or phosphopeptide

for a given tissue:
)_/im(j) =u+ QTL,[i] + kinshipc[p] [i]+ ¢
Equation 3

where yi"'(j) is the abundance summary (average or difference) for protein or phosphopeptide j

of CC strain i and QTL,, [i] = dfpﬁQTL is the effect of putative QTL at marker p for CC strain i
with diTp representing the founder haplotype probability vector for CC strain i at marker p (e.g.,
ordering the founder strains as AJ, B6, 129, NOD, NZO, CAST, PWK, and WSB, diTp =
[01000000]fora CC strain i that is B6/B6 at marker p), and fqr. is an eight-element vector

of founder allele effects, fit as fixed effects. The kinshipc[p] [i] term is similar to the kinship effect
in the heritability model (Equation 2), though instead modeled as kinshipc[p] ~ N(O, Gc[p]rz),

where the realized genetic relationship matrix G.,; used when testing markers as QTL on

chromosome c is estimated by excluding all markers from chromosome c, i.e., the leave-one-
chromosome-out (LOCO) method, to avoid the kinship term absorbing some of the QTL effect
and reducing mapping power [62]. The kinship effect is used in mapping to account for potential
population structure [63-66]. The strength of QTL significance was summarized by comparing
the likelihood of Equation 3 to the likelihood of the null model excluding the QTL term, referred
to as the log-odds (LOD) score. Mapping QTL for adjusted phosphopeptides is analogous to
including the parent protein as a covariate in Equation 3 (and its null model). All genome scans

for protein abundance and phosphopeptides were performed in the gtl2 R package [55].
QTL significant thresholds

We estimated significance thresholds for QTL specific to individual proteins and
phosphopeptides using permutations [67]. By performing 10,000 permutations for each outcome
separately, outcome-specific thresholds account for differences in distribution, levels of missing
data, and differing kinship effects. Permutation genome scans used the model in Equation 3, but
with the data permuted by rearranging the CC strain labels on founder haplotype probabilities,

thus breaking the QTL signal but not the kinship. We used a genome-wide error rate correction
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across marker loci and then applied an FDR correction to account for multiple testing across

each outcome type within a tissue [68].

Specifically, for each outcome j within a tissue, we fit a generalized extreme value distribution
(GEV) from the 10,000 maximum LOD scores from the permutations [69, 70]. For a given tissue
and outcome type (strain averages or strain differences of proteins, phosphopeptides, and

adjusted phosphopeptides), we calculated genome-wide permutation p-values as

pi*™ =1 - F(max LOD[j])

Equation 4

where F; is cumulative density function for the GEV of outcome j and max LOD[/] is the
maximum LOD score observed for outcome j. We then used the Benjamini-Hochberg (BH)
procedure® to calculate FDR g-values from the permutation p-values for a given tissue and
outcome type. To estimate significance thresholds that are FDR-adjusted and outcome-specific,

we applied interpolation to approximate permutation p-values to g-values < 0.1. Significance

interp

thresholds on the LOD score scale were then calculated as A;°R <%' = F;* (1 — Py—o1

), where

AFPR <01 s the 10% FDR significance threshold for outcome j, F;* is the inverse cumulative

density function for the GEV of outcome j, and p;"ieorﬁ is the interpolated permutation p-value for

g-value = 0.1.
Defining local/distant status of QTL

As previously', we defined detected QTL as “local” if their genomic coordinates were within 10
Mbp upstream or downstream of the middle of the coding gene and “distant” otherwise. We use
the local/distant terminology instead of cis/trans because our definition is defined entirely by
position and not genetic mechanism (e.g., cis regulatory elements). We used the broad 10 Mbp
local window is broad, but the CC genomes have larger LD blocks than highly recombinant
populations, such as the related Diversity Outbred population. Furthermore, we compared the
effects of aligned QTL across tissues and sought to avoid aligned QTL being defined as local in
one tissue but distant in another. However, the broad local window could misclassify some

trans-acting QTL as local.

Consistency of QTL across tissues
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We evaluated the consistency of matched QTL (based on related outcomes and co-mapping to
the same genomic region) by comparing their allele effects. We compared local and distant QTL
across tissues (matching based on protein or phosphopeptide ID). We also compared co-
mapping phQTL for unadjusted phosphopeptides to the corresponding local pQTL of the
phosphorylation site’s parent protein for a given tissue. For matched local QTL, we only required
them to be detected to be defined as co-mapping; for matched distant QTL, we also required

that they were within 10 Mbp of each other.

Founder allele effects were estimated at the detected QTL marker, representing the Bqt_ term
from the model in Equation 3. To stabilize the effects, they were modeled as a random effect:
Bat.~N(0, 174 ), where I is the 8x8 identity matrix and 74y, is a variance component
underlying the allele effects. Allele effects were then estimated as BLUPs (Bqr. ), using the qtl2
R package®. The consistency of allele effects was summarized as the Pearson correlation
coefficient between matched QTL: rqri1, qTi2 = cor(BarL,, BatL,). Where QTL, and QTL,

represent a co-mapping matched pair.
Mediation of phQTL through parent protein abundance

We assessed whether detected phQTL were mediated through their parent proteins. For each

phosphopeptide j with a detected phQTL in a specified tissue, we fit the following mode:

7P = p+ QTL[i] + parent[ij] + kinship, , [i] + &;

C[p][

Equation 5

where 7' is the unadjusted abundance summary for phosphopeptide j with the phQTL for
CC strain i, QTL[{] is as defined in Equation 3 but fixed at the peak marker for the detected
phQTL being evaluated, and parent[ij] is the contribution of the abundance of parent protein of

phosphopeptide j to strain i, modeled as a fixed effect.

We expanded the set of phQTL to include leniently detected ones (FDR < 0.5) for the evaluation

of mediation through their parent proteins, providing a clearer picture of the large-scale
mediation trends. A mediation LOD score for phosphopeptide j in a specified tissue, LOD}Pare”t,

was calculated by comparing Equation 5 to a null model excluding the QTL term. To summarize
across phQTL in a tissue, a Delta LOD was calculated by taking the difference between the

mediation LOD score and the original LOD score of the phQTL. We note that a similar approach
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could be used to formally assess mediation of sex effects on phosphopeptides through parent

proteins.
Mediation of distant QTL

For each distant QTL detected in the CC tissues, we performed a mediation analysis analogous
to the QTL genome scans [22, 24, 25, 71]. Instead of scanning through genetic markers as
putative QTL, we scanned through putative mediators (from transcripts or proteins) of the

specified distant QTL. A model similar to Equation 3 was fit:
7" = p+ QTL[i] + mediator,[i] + &
Equation 6

where yi"'(t) is the abundance summary (average or difference) for the target protein or

phosphopeptide t with the distant QTL for CC strain i, QTL[{] is as defined in Equation 3 but
fixed at the peak marker for the detected distant QTL, and mediator, [{] is the contribution of the
mediator g to individual i, fit as a fixed effect. The significance of the QTL term in Equation 6 is
evaluated by comparing to the null model excluding the QTL term, producing a mediation LOD
score: LOD?ed. These summaries represent the distant QTL’s LOD score conditioned on each
candidate mediator individually. We also note that the kinship effect is excluded from Equation 6
and its null model to simplify computation. Mediation scans were performed using the

intermediate R package (https://github.com/churchill-lab/intermediate).

We assume that the vast majority of evaluated mediators for a specified distant QTL are not the
true mediator, and thus the distribution of conditional LOD scores can be used as an empirical
null distribution, approximately centered around the initially detected LOD score of the distant
QTL. We calculate the z-scores of the conditional LOD scores and define strong candidate
mediators as those with z < -8. Mediators are also expected to co-map a local QTL to the
distant QTL. For distant pQTL, we evaluated proteins as mediators, whereas for distant phQTL,

we evaluated both transcripts and proteins.

For candidate mediators highlighted in the Results, we estimated the strength of the

relationships among QTL, mediator, and target based on proportion variance explained (PVE),

RSS,

calculated as PVE =1 - RSS,

. For the relationship between the QTL and mediator, RSS; is the

residual sum of squares from the QTL model (Equation 3) for the mediator and RSS, is the

residual sum of squares for the null model excluding the QTL term. For the relationship between
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mediator and target, the effect of the mediator on the target is evaluated rather than the QTL.
We calculated a corresponding p-value for each relationship comparing the alternative and null
models using ANOVA.

Transcriptomics profiling

For each tissue, we aligned the RNA-seq reads using bowtie [72] to the pooled transcriptomes
of the eight founder strains (Ensembl v84), and the alignments input to the genome
reconstruction by RNA-Seq (GBRS) software to estimate total gene counts using EMASE. We
used a variance stabilizing transformation [73] for the total gene counts for each tissue. As with
protein and phosphopeptide abundance, the normalized expression for each gene was
summarized at the CC strain level as averages and differences. Genes with no expression in
50% or more of samples were removed from further analysis. We also mapped eQTL using a
similar approach as used for pQTL and phQTL, which we do not report here but make available
at GSE199702.

ADDITIONAL RESOURCES
All processed data and results are available for download and interactive analysis from the

QTLViewer webtool (https://churchilllab.jax.org/gtlviewer/cc_phospho peptides). Processed

data and data analysis scripts have been deposited with FigShare
(https://figshare.com/projects/Multi-

omics_analysis_identifies_drivers_of protein_phosphorylation/137673). The mass
spectrometry proteomics and phosphoproteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE [74] partner repository with the dataset

identifier PXD032843. The raw transcriptome data have been deposited at GEO repository with
the dataset identifier GSE199702.
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Figure 1. Overview of the proteome and phosphoproteome profiling of three tissues from
Collaborative Cross strains using Tandem mass tags (TMT). (A) Liver, kidney and heart
samples were collected from one male and one female mouse from 58 Collaborative Cross
(CC) inbred strains. Samples (116) were multiplexed utilizing TMT sample multiplexing
reagents. Proteome and phosphoproteome analyses were collected by mass spectrometry. (B)
Venn diagrams of the quantified proteins, (C) phosphopeptides and (D) adjusted

phosphopeptides in liver, kidney and heart tissues.
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Figure 2. Sex effect and heritability on protein and phosphopepitdes across three
tissues. (A) Histograms of standardized sex effect (difference/SE) on protein abundance
(upper), phosphopeptides (middle), and adjusted phosphopeptides (lower) in heart, kidney and
liver tissues. (B) Sex difference in the relative abundance (batch corrected log, intensity) of
phosphopeptide harboring LDHD pS23 is due to sex effect on its parent protein. (C) Sex
difference in the relative abundance of phosphopeptide harboring CGREF pS272 is not due to
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sex effect on its parent protein. (D) Histograms of heritability on protein abundance (upper),
phosphopeptides (middle) and adjusted phosphopeptides (lower) in heart, kidney and liver

tissues. Dashed vertical lines represent the median.
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Figure 3. pQTL and phQTL mapping from CC strains in heart, kidney and liver tissues.
Stringently detected (FDR < 0.1) (A) pQTL, (B) phQTL and adjusted phQTL in heart (left), liver
(middle) and kidney (right) tissues. QTL are plotted by the genomic positions of proteins against
QTL coordinates. Adjusted phQTL were highlighted in black. (C) Adjusted phQTL identified on
EIF3B pS90 co-mapped in all three tissues. Relative abundances (batch corrected log,
intensity) of EIF3B pS90 in each tissue were grouped based on founder local haplotypes. (D)
LOD scores of local and distant phQTL (FDR < 0.1 or 0.5) changed after adjusting for their
parent protein abundances in heart, kidney, and liver tissues. MCAT pS41, GAS2 pS283 and
COMT pS261 were labelled.
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Figure 4. Phosphopeptide abundance can be regulated by substrate abundance
dependent or non-substrate abundance dependent mechanisms. (A) Diagram showing
how the genetic effect resulting in phQTL detection may be regulated by either parent protein
abundance (batch corrected log, intensity) changes (Mechanism 1) or by phosphorylation
stoichiometry (Mechanism 2) or both. (B) Genome scans for GAS2 and GAS2 pS283 in kidney
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tissue. (C) Path diagram of GAS2 pS283 abundance regulation in kidney tissue. (D) The PWK
allele of the GAS2 pS283 phQTL drove low phosphopeptide abundance in kidney tissue. Data
were categorized based on the founder haplotye at the identified pQTL. (E) Abundances of
overall GAS2 and GAS2 pS283 were highly correlated (r = 0.99). Points are colored based on
founder haplotype at Gas2. (F) Overall abundance of GAS2 and adjusted abundance (residual
from regression of batch corrected log, intensity) of GAS2 pS283 were not correlated (r = 2.4e-
17). Points are colored based on founder haplotype at Gas2. (G) Abundance of GAS2 pS283
and adjusted abundance of GAS2 pS283 were not correlated (r = 0.02). Points are colored
based on founder haplotype at Gas2. (H) Genome scans for MCAT and MCAT pS41 in heart
tissue. (I) NZO alleles at Pkd1 drove the low abundances of MCAT pS41 in heart tissue. Colors
denote the founder haplotype of additive allele effects at the identified pQTL of MCAT pS41. (J)
Mediation analysis identified PDK1 expression as the mediator of MCAT pS41 abundances.
Each gray dot is a mediation score representing the MCAT pQTL LOD score conditioned on a
protein as candidate mediator. (K) Path diagram of MCAT pS41 abundance regulation in heart
tissue. (L) NZO alleles at Pkd1 drove the low abundances of PDK1 in heart tissue. Colors
denote the founder haplotype of additive allele effects at the identified pQTL of MCAT pS41. (M)
The adjusted abundances of MCAT pS41 and PDK1 were highly correlated (r = 0.86) in heart
tissue. (N) Mediation analysis identified PDK1 as the mediator of several phQTL in heart, kidney

and liver tissue, respectively.
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Figure 5. Phosphopeptide abundance can be regulated by both substrate abundance
dependent and non-substrate abundance dependent mechanisms. (A) COMT pQTL and
phQTL for COMT were mapped to different loci in liver tissue. (B) A local CAST allele at Comt
drove high abundance of COMT in liver tissue. (C) Adjusted abundance of COMT pS261
categorized according to founder haplotype at Cdcl14b. (D) Mediation analysis using
transcriptomics data identified Cdc14b as the mediator of a phQTL for COMT pS261. Each gray
dot is a mediation score representing the COMT pS261 phQTL LOD score conditioned on a
transcript as candidate mediator. (E) Abundance of Cdc14b transcripts pS261 categorized
according to founder haplotype at Cdc14b. The abundance of COMT pS261 is less correlated
with Cdc14b transcripts before adjustment (r = -0.49) (F) compared to after adjustment (G) (r = -
0.62). (H) Path diagram of COMT pS261 abundance regulation in liver tissue.
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Figure 6. Phosphorylation sites on one protein can be regulated coordinated and not
coordinated. (A) Heatmap of Pearson correlations of abundances of phosphopeptides from
parent protein ABLIM1. (B) Genome scans of pS539 and pS56 on UCKL1 in kidney tissue. (C)
A local CAST allele at Uckl1 drove low abundance of UCKL1 pS539 in kidney tissue. (D) Distant
NOD and PWK allele on chromosome 18 drove low abundance of UCKL1 pS56 in kidney
tissue. (E) Heatmap of Pearson Correlations among all proteins quantified in ATP synthase
complex in heart tissue. (F) The AJ allele at Atp5h drove low abundance of the entire ATP
synthase complex in heart tissue. All quantified ATP synthase complex subunits have low
protein abundance in CC032, CC033 and CCO044 strains, which possess the AJ allele, in heart
data. (G) Mediation analysis using proteomics data identified ATP5H as the mediator of a
phQTL for ATP5E. Each gray dot is a mediation score representing the ATP5E pQTL LOD
score conditioned on a protein as candidate mediator. ATP5H was detected as the strongest
mediator of the ATP5E distal pQTL in heart tissue. All ATP synthase complex subunits have
mediation z-scores < -8 and were highlighted in black. Other quantified ATP synthase complex
subunits, ATP5S, ATP5G2 and ATP5J, were highlighted in blue. Horizontal dashed line at LOD
of 6 was included for reference. (H) Heatmap of Pearson Correlations among all
phosphorylation events quantified from the ATP synthase complex in heart tissue. The
correlations among the five sites from ATP5AL1 are highlighted by a dashed square. Correlation
with FDR < 0.01 were highlighted using stars. (I) Genome scans of ATP5A1 pS53 in the three
tissues, revealing co-mapping phQTL in all the three tissues. (J) Allele effects of ATP5A1 pS53

phQTL were highly correlated in the three tissues.
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Figure 7. Genetic regulation of PCCA and PCCB across three tissues. (A) Co-mapping
distant phQTL of PCCA pS248 was identified in liver, heart but not kidney tissue. NZO allele
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drove the low level of this phosphorylation event. Data were categorized based on the founder
haplotye at the identified phQTL. (B) Abundances of PDK1 and PCCA pS248 were highly
correlated in heart and liver but not in kidney tissue. Abundance of PDK1 and PCCA pS248in
each individual sample (116) were categorized based on the haplotye of the phQTL on PCCA
pS248 in heart and liver tissues on Chromosome 2. (C) Genome scans for PCCA pS248 are
overlayed with mediation scores in heart and liver tissues. Each gray dot is a mediation score
representing the PCCA pS248 phQTL LOD score conditioned on a protein as candidate
mediator. (D) Genome scans of PCCA and PCCB in all the three tissues. Local-pQTL for PCCB
and distant-pQTL for PCCA co-mapped to the same locus in heart tissue. PCCB was identified
as the mediator of the PCCA distant-pQTL. Local-pQTL for PCCA and distant-pQTL for PCCB
co-mapped to the same locus in liver tissue and kidney tissues. PCCA was identified as the
mediator of the PCCB distant-pQTL. (E) Allele effects of identified pQTL for PCCA and PCCB in
the three tissues. (F) Protein abundance of PCCA and PCCB were highly correlated in each
tissue. Protein abundance in each individual sample (116) were categorized based on the
haplotye of the pQTL on PCCA in kidney and liver tissues on Chromosome 14. (G) The
transcript level of Pccb is distinctly higher than the mRNA level of Pcca in kidney and liver
tissues but not in heart tissue. mMRNA abundance of Pcca and Pccb in each individual sample
(116) were categorized based on the haplotye of the pQTL on PCCA in heart tissue on
Chromosome 9. (H) Sex interactive local pQTL on PCCA and sex-interactive distant pQTL on
PCCB co-mapped to the same locus in the kidney tissue, characterized by a distinct NZO effect
(NZO males with greater abundances than NZO females). PCCA was identified as the mediator
of PCCB sex interactive distant pQTL. Points are colored by founder haplotype at sex-

interactive phQTL. Males and females from the same CC strain were connected by a line.
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