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Abstract
There is significant interest in pooling magnetic resonance image (MRI) data from multiple
datasets to enable mega-analysis. Harmonization is typically performed to reduce
heterogeneity when pooling MRI data across datasets. Most MRI harmonization algorithms
do not explicitly consider downstream application performance during harmonization.
However, the choice of downstream application might influence what might be considered as
study-specific confounds. Therefore, ignoring downstream applications during harmonization
might potentially limit downstream performance. Here we propose a goal-specific
harmonization framework that utilizes downstream application performance to regularize the
harmonization procedure. Our framework can be integrated with a wide variety of
harmonization models based on deep neural networks, such as the recently proposed
conditional variational autoencoder (CVAE) harmonization model. Three datasets from three
different continents with a total of 2787 participants and 10085 anatomical T1 scans were
used for evaluation. We found that cVAE removed more dataset differences than the widely
used ComBat model, but at the expense of removing desirable biological information as
measured by downstream prediction of mini mental state examination (MMSE) scores and
clinical diagnoses. On the other hand, our goal-specific cVAE (gcVAE) was able to remove
as much dataset differences as cVAE, while improving downstream cross-sectional
prediction of MMSE scores and clinical diagnoses.
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1 Introduction

Large scale MRI datasets from multiple sites have boosted the study of human brain
structure and function (Yeo et al., 2011; Van Essen et al., 2013; Miller et al., 2016; VVolkow
et al., 2018). Combining datasets from multiple sites can potentially boost statistical power,
so there is significant interest in pooling data across multiple sites (Thompson et al., 2017;
Whelan et al., 2018; Tang et al., 2020; Lu et al., 2020). However, MRI data is sensitive to
variation of scanners across different sites (Jovicich et al., 2006; Magnotta et al., 2012; Chen
et al., 2014; Hawco et al., 2018), so post-acquisition harmonization is necessary for removing
unwanted variabilities in pooling data across multiple studies.

A popular harmonization approach is the ComBat framework (Fortin et al., 2017,
2018; Yu et al., 2018) that utilizes a mixed effects regression model to remove additive and
multiplicative site effects. Other ComBat variants have since been proposed (Garcia-Dias et
al., 2020; Pomponio et al., 2020; Wachinger et al., 2021). However, most ComBat variants
remove nonlinear site differences that are distributed across brain regions.

These nonlinear distributed site differences might be more readily removed by
harmonization approaches based on deep neural networks (DNNs; (Tanno et al., 2017; Ning
et al., 2019; Blumberg et al., 2019). One popular approach is the use of the variational
autoencoder (VAE) framework (Moyer et al., 2020; Russkikh et al., 2020; Zuo et al., 2021),
which typically uses an encoder to generate site-invariant latent representations. Site
information can then be added to the latent representations to “reconstruct” the MRI data.
Another popular approach is the use of generative adversarial networks and cycle consistency
constraints (Zhu et al., 2017; Zhao et al., 2019; Dewey et al., 2019; Modanwal et al., 2020;
Bashyam et al., 2021).

However, most previously proposed harmonization approaches do not consider
downstream applications in the harmonization procedure. It is important to note that the goal
of MRI harmonization is to remove ‘unwanted’ dataset differences, while preserving relevant
biological information. However, unwanted dataset differences depend on the application.
For example, if our goal is to develop an Alzheimer’s disease (AD) dementia prediction
model that is generalizable across different racial groups, then ‘race’ might be considered an
undesirable study difference. On the other hand, if we are interested in studying AD

progression across different racial groups, then racial information needs to be preserved in the
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harmonization process. Therefore, ignoring downstream applications in the harmonization
procedure might potentially limit downstream performance.

In this study, we propose a goal-specific harmonization framework that utilizes
downstream applications to regularize the harmonization model. Our approach can be
integrated with most DNN-based harmonization approaches, such as the conditional VAE
(cVAE) harmonization model (Moyer et al., 2020), which was previously applied to diffusion
MRI data. We then compared the resulting goal-specific cVAE (gcVAE) model with cVAE
and ComBat using three datasets comprising 2787 participants and 10085 anatomical MRI
scans. The evaluation procedure tested the ability of different harmonization models to
remove dataset differences while retaining biological information as measured by
downstream cross-sectional prediction of mini mental state examination (MMSE) scores and
clinical diagnoses.
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2 Methods
2.1 Datasets

In this study, we considered T1 structural MRI data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (Jack et al., 2008, 2010), the Australian Imaging,
Biomarkers and Lifestyle (AIBL) study (Ellis et al., 2009, 2010) and the Singapore Memory
Ageing and Cognition Centre (MACC) Harmonization cohort (Hilal et al., 2015; Chong et
al., 2017; Hilal et al., 2020). Data collection was approved by the Institutional Review Board
(IRB) at each corresponding institution. The analysis in the current study is approved by the
National University of Singapore IRB. Across all three datasets, MRI data was collected at
multiple timepoints.

In the case of ADNI (Jack et al., 2008, 2010), we considered data from ADNI1 and
ADNI2/Go. For ADNI1, the MRI scans were collected from 1.5 and 3T scanners from
different vendors (see Table S1 for more details). For ADNI2/Go, the MRI scans were
collected from 3T scanners. There were 1735 participants with at least one T1 MRI scan.
There was a total of 7955 MRI scans across the different timepoints of the 1735 participants.

In the case of AIBL (Ellis et al., 2009, 2010), the MRI scans were collected from 1.5T
and 3T Siemens (Avanto, Tim Trio and Verio) scanners (see Table S2 for more details).
There were 495 participants with at least one T1 MRI scan. There was a total of 933 MRI
scans across the different timepoints of the 495 participants.

In the case of MACC (Hilal et al., 2015; Chong et al., 2017; Hilal et al., 2020), the MRI
scans were collected from a Siemens 3T Tim Trio scanner. There were 557 participants with
at least one T1 MRI scan. There was a total of 1197 MRI scans across the different

timepoints of the 557 participants.

2.2 Data Preprocessing

Our goal is to harmonize volumes of regions of interest (ROIs) across datasets. Here,
108 cortical and subcortical ROIs were defined based on the FreeSurfer software (Fischl et
al., 2002; Desikan et al., 2006). In the case of ADNI, we utilized the ROI volumes provided
by ADNI. These ROIs were generated by ADNI after several preprocessing steps
(http://adni.loni.usc.edu/methods/mri-tool/mri-pre-processing/) followed by the FreeSurfer
version 4.3 (ADNI1) and 5.1 (ADNI2/GO) recon-all pipeline. In the case of AIBL and
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MACC, FreeSurfer version 6.0 recon-all pipeline was utilized. Therefore, differences

between the datasets arose from both scanner and preprocessing differences.

2.3  Workflow overview

In this study, we sought to harmonize brain ROI volumes between ADNI and AIBL,
as well as ADNI and MACC. Figures 1 and 2 illustrate the workflow in this study using
AIBL as an illustration. The procedure is exactly the same for MACC.

In the case of AIBL, we used the Hungarian matching algorithm (Kuhn, 1955) to first
select pairs of ADNI and AIBI participants with matched number of timepoints, age, sex,
MMSE and clinical diagnosis (Figure 1A). The distributions of age, sex, MMSE and clinical
diagnosis of all participants and matched participants are shown in Figure 3.

There were 247 pairs of matched AIBI and ADNI participants with an average of 1.1
scans per participant. The same approach was applied to ADNI and MACC, yielding 277
pairs of matched MACC and ADNI participants with an average of 1.5 scans per participant.
We note that not all timepoints have corresponding MMSE and clinical diagnosis
information. Therefore, care was taken to ensure that all timepoints in the matched
participants had both MMSE and clinical diagnosis. Care was taken to ensure that all scans of
every participant were classified as either “matched” or “unmatched”, and not split between
the two categories. P values showing the quality of the matching procedure are found in
Tables S3 to S9.

The unmatched ADNI data was used to train goal-specific deep neural networks (DNN)
for predicting MMSE and clinical diagnosis (Figure 1B; details in Section 2.5). Here, clinical
diagnosis categories were normal controls, mild cognitive impairment, and Alzheimer’s
disease dementia. The clinical diagnoses from all three datasets were determined by multiple
criteria, including MRI and cognitive tests. The unmatched ADNI and AIBL participants
were also used to fit ComBat and cVAE (Figure 1C; details in Section 2.6). The unmatched
AIBL participants and goal-specific DNN (from Figure 1B) were utilized for training the
gcVAE model (Figure 1C). The same procedure was applied to ADNI and MACC.

The trained harmonization models were then applied to unharmonized brain volumes of
all matched and unmatched participants (Figure 2A). The harmonized data was evaluated
with two criteria (Figures 2B and 2C). The first criterion was dataset prediction performance,
in which a machine learning algorithm was used to predict which dataset the harmonized data
came from (Figure 2B). Lower dataset prediction performance indicates better harmonization.

More specifically, we trained a XGBoost classifier (Chen & Guestrin, 2016) using the
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harmonized ADNI and harmonized AIBL brain volumes from the unmatched participants
(Figure 2B). We then applied the classifier to the harmonized ADNI and AIBL brain volumes
from the matched participants (details in Section 2.8). The same procedure was applied to
ADNI and MACC.

/A. Matching \
unharmonized ADNI unmatched ADNI B3 unmatched AIBL
Matching
Age, Sex,
MMSE, Di i
unharmonized AIBL SE, Diagnosis matched ADNI )+( matched AIBL )
/B. Train goal-specific DNN (10 folds => 10 models) )
/,{Diagnosis predictionl
unmatched ADNI Train
(unharmonized) goal-specific DNN
MMSE prediction |

J

/C. Train harmonization models (10 folds => 10 models)

unmatched ADNI
(unharmonized)

Train harmonization baselines
(ComBat & cVAE)

unmatched AIBL
(unharmonized)

unmatched AIBL
(unharmonized)

Train gcVAE model

N\

Trained goal-specific
DNN (Figure 1B)

N /

Figure 1. Workflow of current study for data matching and model training. We illustrate
the workflow using ADNI and AIBL. The same procedure was applied to ADNI and MACC.
(A) Matching participants to derive test set for harmonization evaluation. (B) Train goal-
specific deep neural network (DNN) using unmatched unharmonized ADNI data to predict
clinical diagnosis and MMSE. (C) Train harmonization models using unmatched
unharmonized data. We note that ComBat and cVAE were trained using unmatched
unharmonized ADNI and AIBL data, while gcVAE was trained using unmatched
unharmonized AIBL data and the goal-specific DNN (from Figure 1B). Dark colors (e.g.,
dark red and dark blue) are used to indicate unmatched participants, while light colors (e.g.,
pink and light blue) are used to indicate matched participants.
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Figure 2. Workflow of current study for data harmonization and performance
evaluation. We illustrate the workflow using ADNI and AIBL. The same procedure was
applied to ADNI and MACC. (A) Harmonize data using trained harmonization models from
Figure 1C. (B) Evaluate harmonization performance using XGBoost dataset prediction
model. (C) Evaluate harmonization performance using goal-specific DNN (Figure 1B) to
predict MMSE and clinical diagnosis. We note that dark colors (e.g., dark red and dark blue)
are used to indicate unmatched participants, while light colors (e.g., pink and light blue) are
used to indicate matched participants. On the other hand, octagons are used to indicate
unharmonized data, while rectangles (with rounded corners) are used to indicate harmonized
data.

Y
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Figure 3. Age, MMSE, sex and clinical diagnosis distributions before and after matching.
(A) Distributions of age, sex, MMSE and clinical diagnosis for ADNI (blue) and AIBL (red).
Differences in the attributes between ADNI and AIBL were not significant after matching. (B)
Distributions of age, sex, MMSE and clinical diagnosis for ADNI (blue) and MACC (yellow).
Differences in the attributes between ADNI and MACC were not significant after matching. P
values showing the quality of the matching procedure are found in Tables S3 to S9.
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However, a simple way to achieve perfect dataset prediction results was to map all
brain volumes to zero, thus losing all biological information. Therefore, the second criterion
was downstream application performance (Figure 2C). Here, we applied the goal-specific
DNN (from Figure 1B) to the harmonized AIBL brain volumes from the matched
participants. To demonstrate the effects of no harmonization, the goal-specific DNN was also
applied to the unharmonized AIBL and unharmonized ADNI brain volumes from the
matched participants (Figure 2C). The same procedure was applied to ADNI and MACC.

We note that the goal-specific DNN (Figure 1B), harmonization models (Figure 1C)
and dataset prediction classifier (Figure 2B) were trained on unmatched data, while
harmonization evaluation was performed on matched data (Figures 2B and 2C). The
matching procedure was important to ensure that prediction performance was comparable
between matched ADNI and matched AIBI participants. Suppose we did the opposite: trained
a clinical diagnosis prediction model on matched ADNI participants and then tested the
model on unmatched ADNI and unmatched AIBL participants. In this scenario, the clinical
diagnosis prediction performance would not be comparable between unmatched ADNI and
unmatched AIBL participants. More specifically, suppose unmatched ADNI comprised
mostly participants with AD and healthy participants, as well as few participants with mild
cognitive impairment (MCI). On the other hand, suppose AIBL contained equal proportions
of healthy participants, participants with MCI and participants with AD. In this scenario,
because it is easier to distinguish between healthy controls and participants with AD,
compared with distinguishing participants with MCI from the other two classes (participants
with AD and healthy participants), the prediction performance would likely be better in
unmatched ADNI compared with unmatched AIBL, even if there was no scanner difference
between the two sites. By testing prediction performance on matched AIBL and matched
ADNI participants, we ensure that any drop in prediction performance was due to

unavoidable site differences, such as scanner differences.

2.4 Training, validation and test procedure

As mentioned in the previous section, the matched participants were used as the test set
for evaluation (Figure 2C). The unmatched participants were used for training the goal-
specific DNN (Figure 1B), harmonization (Figure 1C) and dataset prediction (Figure 2B)
models. More specifically, we divided the unmatched participants into 10 groups. Recall that

a participant might be scanned at multiple timepoints. Care was taken to ensure that all

10
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timepoints of any participant were assigned to be in a single group, and not split across
multiple groups.

To train the goal-specific DNN, harmonization and dataset prediction models, 9 groups
were used for training, while the remaining group was used as a validation set to tune the
hyperparameters. This procedure was repeated 10 times with a different group being the
validation set. Therefore, we ended up with 10 sets of trained models. The 10 sets of
harmonization models were applied to the unharmonized data (Figure 2A), yielding 10 sets of
harmonized data. The 10 sets of XGBoost classifiers and goal-specific DNNs were applied to

the 10 corresponding sets of harmonized data for evaluation (Figures 2B and 2C).

2.5 Goal-specific DNNs

Here we utilized DNNs to predict MMSE and clinical diagnosis (normal controls, mild
cognitive impairment or Alzheimer’s disease dementia) jointly. The goal-specific DNNs were
used to train the gcVAE model (Figure 1C) and evaluate the harmonization approaches
(Figure 2C). The inputs to the goal-specific DNNs were the brain ROI volumes. 10 DNNs
were trained with a 10-fold cross-validation procedure (Section 2.4) using the unmatched
unharmonized ADNI MRI volumes (Figure 1B). The training procedure utilized the
unharmonized ADNI data without differentiation among ADNI sites.

Recall that not all unmatched timepoints had MMSE and clinical diagnosis
information. Therefore, we used the previous timepoint with available information to fill in
the missing data (Lipton et al., 2016; Che et al., 2018; Nguyen et al., 2020). Note that this
filling in procedure was only performed during training procedure for the unmatched
participants.

The architecture of the goal-specific DNN was a generic feedforward neural network,
where every layer was fully connected with the next layer. The nonlinear activation function
ReLU (Maas et al., 2013) was utilized. The DNN loss function corresponded to the weighted
sum of the mean absolute error (MAE) for MMSE prediction and cross entropy loss for
clinical diagnosis prediction: Lgoaionn = Ammse MAE + Apx CrossEntropy. Amwmse and Apx
were two hyperparameters that were tuned on the validation set.

The metric for tuning hyperparameters in the validation set was the weighted sum of
MMSE MAE and clinical diagnosis accuracy: ¥2 MAE — Diagnosis Accuracy. The MAE
term was divided by two so the two terms had similar ranges of values. We utilized the
HORD algorithm (Regis & Shoemaker, 2013; Ilievski et al., 2017; Eriksson et al., 2020) to

11
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find the best set of hyperparameters using the validation set (Table 1). The trained DNN after

100 epochs was utilized for subsequent analyses.

Hyperparameter Search range
Initial learning rate le-4 — 1e-3
Learning rate step 10-99

Dropout rate 0-05
AmmsE 0-1
Apx 0-1
Nodes for each layer 32 -512
Number of layers 2-5

Table 1. Hyperparameters estimated from the validation set. We note that a learning rate
decay strategy was utilized. After K training epochs (where K = learning rate step), the

learning rate was reduced by a factor of 10.

At the evaluation phase (Figure 2C), the 10 goal-specific DNNs were applied to the
harmonized brain volumes from the matched AIBL participants, as well as unharmonized
brain volumes from the matched AIBL and ADNI participants. The prediction performance
was averaged across all time points of each participant and the 10 goal-specific DNNs before
averaging across participants. The same procedure was applied to ADNI and MACC

participants.

2.6 Baseline harmonization models
Here, we considered ComBat (Johnson et al., 2007) and cVAE (Moyer et al., 2020) as

baseline models.

2.6.1 ComBat
ComBat is a linear mixed effects model that controls for additive and multiplicative
site effects (Johnson et al., 2007). Here we utilized the R implementation of the algorithm
(https://github.com/Jfortin1/ComBatHarmonization). The ComBat model is as follows:
Xijp = @y + Y1 By + Vip + Si€iju ey

where i is the site index, j is the participant index and v is the brain ROl index. x;j,, is the

volume of the v-th brain ROI of subject j from site i. y;,, is the addictive site effect. &;,, is the

12
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multiplicative site effect. ¢, is the residual error term following a normal distribution with
zero mean and variance &3. Y;; are the covariates of subject j from site i.

The ComBat parameters «,, 5,, Vi» and &;,, were estimated for each brain ROI using
the unmatched unharmonized ROI volumes (Figure 1C). The estimated parameters can then
be applied to a new participant i from site j with brain volume x; ;,, and covariates Y;;
compar _ Xijp — Qy — YiBy = Piw
T 5o
where " indicates that the parameter was estimated from the unmatched unharmonized ROI
volumes from ADNI and AIBL. A separate ComBat model was fitted for ADNI and MACC

brain volumes. Observe that the equation required the covariates of the new participant.

x + @ + By, (2)

Given that we would like to predict MMSE and clinical diagnosis in the matched participants,
this implied that MMSE and clinical diagnosis information were not available in the matched
participants. Therefore, we could not utilize MMSE and clinical diagnosis as covariates in the
ComBat model. Therefore, in the main results, we only utilized age and sex as covariates.
However, as a control analysis (Section 2.9.3), we also considered a version of ComBat
where age, sex, MMSE and clinical diagnoses were used as covariates.

Furthermore, since the goal-specific DNNs were trained with unmatched
unharmonized ADNI data without distinguishing among the sites (Section 2.5), for
consistency, the ComBat procedure also treated ADNI as a single site despite the data coming
from multiple sites and scanners. This was also the case for AIBL.

Note that equation (2) mapped both ADNI and AIBL data to an “intermediate” space,
which is not an issue for the purpose of dataset prediction because the XGBoost classifier
was trained from scratch (Figure 2B; Section 2.8). However, for the purpose of predicting
MMSE and clinical diagnosis, since the goal-specific DNN was trained with unharmonized
ADNI data, we used the ref.batch option in the ComBat package to map AIBL data to
“ADNI-space” after harmonization. The same procedure was applied to ADNI and MACC.

2.6.2 cVAE

The conditional variational autoencoder (CVAE) model was proposed by Moyer and
colleagues to harmonize diffusion MRI data (Moyer et al., 2020). Here, we applied cVAE to
harmonize brain ROI volumes. The cVAE model is illustrated in Figure 4A. Input brain
volumes were passed through an encoder DNN vyielding representation z. Site index s was

concatenated with the latent representation z before feeding into the decoder DNN, resulting
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in the reconstructed brain volumes x. By incorporating the mutual information I1(z, s) in the
cost function, this encouraged the learned representation z to be independent of the site s.
The resulting lost function is as follows:

Levag = Lyecon + @Lprior — VLaav + AM(z,s), 3)
where L,...n IS the mean square error (MSE) between x and x, so this encouraged the
harmonized volumes to be similar to the unharmonized volumes. To further encourage x and
X to be similar, Moyer and colleagues added an additional term L,g4,,, which is the soft-max
cross-entropy loss of an adversarial discriminator seeking to distinguish between x and X.
Finally, L., is the standard KL divergence between representation z and the multivariate

Gaussian distribution with zero mean and identity covariance matrix (Sohn et al., 2015).
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(A) cVAE model structure
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(B) gcVAE model structure
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Figure 4. cVAE and gcVAE model structures. (A) Model structure for the cVAE model.
Encoder, decoder, and discriminator were all fully connected feedforward DNNSs. s was the
site we wanted to map the brain volumes to. (B) Model structure for the gcVAE model. The
goal-specific DNN from Section 2.5 (Figure 1B) was used to guide the cVAE harmonization
process. During training of gcVAE, the weights of the goal-specific DNN were fixed.

Both the decoder and encoder were instantiated as generic feedforward neural
networks, where every layer was fully connected with the next layer. Following Moyer and
colleagues, the nonlinear activation function tanh (Maas et al., 2013) was utilized. During the
training process, s is the true site information for input brain volumes x. After training, we
could map input x to any site by changing s. The metric for tuning hyperparameters in the
validation set was the weighted sum of the reconstruction loss (MSE between x and x) and

the subject-level dataset prediction accuracy: ¥2 MAE + Dataset Accuracy. The MAE
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reconstruction loss was divided by two so the two terms had similar ranges of values. Dataset
prediction accuracy was obtained by training a XGBoost classifier on the training set and
applying to the validation set. We utilized the HORD algorithm (Regis & Shoemaker, 2013;
Ilievski et al., 2017; Eriksson et al., 2020) to find the best set of hyperparameters using the
validation set (Table 2). The trained DNN after 1000 epochs was utilized for subsequent
analyses.

Similar to ComBat, the cVAE model was trained using unmatched unharmonized brain
volumes from ADNI and AIBL. A separate model was trained using ADNI and MACC. For
consistency, the cVAE model also treated ADNI and AIBL as single sites.

Similar to ComBat, for the purpose of dataset prediction, data were mapped to
intermediate space by setting the site s to 0 during harmonization. On the other hand, for the
purpose of predicting MMSE and clinical diagnosis, data from AIBL (and MACC) was
mapped to ADNI space by setting the site s to correspond to ADNI.

Hyperparameter Search range
Initial learning rate le-2 - le-1
Learning rate step 10 - 999

Dropout rate 0-05
a 0.01-1
y 0.01-10
A 0.01-1
Nodes for each layer 32-512
Number of layers 2-4
Node for z 32-512

Table 2. Hyperparameters estimated from the validation set. We note that a learning rate
decay strategy was utilized. After K training epochs (where K = learning rate step), the
learning rate was reduced by a factor of 10.

2.7 Goal-specific cVAE (gcVAE)

To incorporate downstream application performance in the harmonization procedure,
the outputs of the cVAE (Figure 4A) were fed into the goal-specific DNN (Section 2.5). The
resulting goal-specific cVAE (gcVAE) is illustrated in Figure 4B. The loss function of the
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gcVAE was given by corresponded to the weighted sum of the mean absolute error (MAE)
for MMSE prediction and cross entropy loss for clinical diagnosis prediction:

Locvae = aumseMAE + apxCrossEntropy, 4)
where ayuse and apy were two hyperparameters to be tuned with the validation set. The loss
function was used to finetune the trained cVAE model (Section 2.6.2) using the training set
with a relatively small learning rate. We note that the weights of the goal-specific DNN
model were frozen during this finetuning procedure.

The metric for tuning hyperparameters in the validation set was the weighted sum of
MMSE MAE and clinical diagnosis accuracy: ¥> MAE — Diagnosis Accuracy (same as
Section 2.5). Since there were only three hyperparameters (learning rate, ayysg and apy), a
grid search was performed using the validation set to find the best set of hyperparameters.

The gcVAE model was trained using unmatched unharmonized brain volumes from
AIBL. A separate model was trained using ADNI and MACC. For consistency, the gcVAE
model also treated ADNI and AIBL as single sites.

Similar to ComBat, for the purpose of dataset prediction, data were mapped to
intermediate space by setting the site s to 0 during harmonization. On the other hand, for the
purpose of predicting MMSE and clinical diagnosis, data from AIBL (and MACC) was
mapped to ADNI space by setting the site s to correspond to ADNI.

2.8 Dataset prediction model

As one evaluation criterion, we utilized XGBoost to predict which dataset the
harmonized brain volumes came from (Figure 2B). The inputs to the XGBoost model were
the brain volumes divided by the total intracranial volume (ICV) of each participant. We used
logistic regression as the objective function and ensemble of trees as the model structure.
Recall that there were 10 groups of harmonized data because of our 10-fold cross-validation
procedure (Section 2.4). Therefore, 10 XGBoost classifiers were trained using harmonized
MRI volumes from unmatched ADNI and AIBL participants (Figure 2B). For each XGBoost
classifier, we used a grid search using the validation group to find the optimal set of
hyperparameters.

For evaluation, the 10 XGBoost classifiers were applied to harmonized MRI volumes
of matched ADNI and AIBL participants (Figure 2B). The prediction accuracy was averaged
across all time points of each participant and the 10 classifiers before averaging across

participants. The same procedure was applied to ADNI and MACC participants.
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Here, we chose to use XGBoost because it is a powerful classifier for unstructured or
tabular data (Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022). Using a DNN instead of
XGBoost is unlikely to yield very different dataset prediction performance. On the other
hand, XGBoost is less sensitive to the choice of hyperparameters compared with DNN, so
hyperparameter tuning (and thus training) was a lot faster for XGBoost. Therefore, we chose
to use XGBoost for dataset prediction. By contrast, a DNN was utilized for predicting MMSE
and clinical diagnosis (i.e., goal-specific DNN), so that the gradients of the goal-specific
DNN can be backpropagated to guide the training of the gcVAE model (Section 2.7).

2.9 Further analyses
We performed four additional analyses to study the effectiveness of the proposed
gcVAE approach.

2.9.1 Effects of training set size

To investigate the effect of training set size on harmonization quality, we repeated the
previous analyses (Figures 1 & 2), except that when training harmonization models (Figure
1C), the training set size was varied by sampling 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80

or 90% from the unmatched participants. We repeated this procedure 10 times.

2.9.2 Association analyses

We further investigated the association of the harmonized brain volumes with age, sex,
MMSE and clinical diagnosis. We considered all 87 cortical and subcortical gray matter
ROls. For each continuous measure (age or MMSE) and for each ROI, we computed the
Pearson’s correlation between the harmonized ROI volume and the continuous measure
across matched ADNI and matched AIBL participants. In the case of age, we expected a
negative correlation between age and harmonized ROI volumes, so a stronger negative
correlation indicates better harmonization. In the case of MMSE, we expect a positive
correlation between MMSE and harmonized ROI volumes because lower MMSE indicates
greater cognitive decline. Therefore, a greater positive correlation indicates better
harmonization. For each discrete variable (clinical diagnosis or sex), we computed n? from
running ANOVA on the matched ADNI and matched AIBL participants. Greater n? indicates
greater differences across the groups (e.g., male versus female), suggesting better

harmonization. The same procedure was applied to ADNI and MACC.
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2.9.3 ComBat with additional covariates

As discussed previously, in our main analyses, we only used age and sex as covariates
for the ComBat baseline (Section 2.6.1). Here, we also considered a ComBat variant, where
age, sex, MMSE and clinical diagnosis were used as covariates. We note that this version of
ComBat assumed that MMSE and clinical diagnosis information were known in the test set
(matched participants). Therefore, the prediction performance of ComBat (with the additional

covariates) was corrupted by test set leakage and was not valid.

2.9.4 Reversing the roles of the matched and unmatched participants

In the original analyses (Figures 1 and 2), the harmonization models, goal-specific
DNNs and dataset prediction models were trained on unmatched participants. The evaluations
were then performed on matched participants (Figures 2B and 2C).

In this analysis, we reversed the roles of the matched and unmatched participants
(Figures S1 and S2) with two exceptions. First, the prediction performance of unmatched
unharmonized ADNI and unmatched unharmonized AIBL participants was not comparable,
so the downstream application performance was only evaluated on unmatched unharmonized
AIBL and unmatched harmonized AIBL data (compare Figure S2C and Figure 2C).

Second, given the number of matched participants were so small, the training of the
goal-specific DNN would not be effective. Therefore, the goal-specific DNN was trained
with all (both matched and unmatched) ADNI participants (compare Figure S1B and Figure
1B). We note that this is not an issue since the downstream application performance no
longer utilized any ADNI data (Figure S2C).

2.10 Deep neural network implementation

All DNNs were implemented using PyTorch (Paszke et al., 2017) and computed on
NVIDIA RTX 3090 GPUs with CUDA 11.0. To optimize the DNNs, we used the Adam
optimizer (Kingma & Ba, 2017) with default PyTorch settings.

2.11 Statistical tests

Two-sided two-sample t-tests were utilized to test for differences in age and MMSE
between matched participants of AIBI and ADNI (as well as MACC and ADNI). In the case
of sex and clinical diagnoses, we utilized chi-squared tests.

As discussed in Sections 2.5 and 2.8, prediction performance was averaged across all

time points of each participant and across the 10 sets of models, yielding a single prediction
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performance for each participant. Therefore, for each dataset, harmonization approach and
evaluation metric, we obtained a performance vector where each element represented one
participant. When comparing dataset prediction performance (or goal-specific prediction
performance) between two harmonization approaches, a permutation test with 10,000
permutations. Each permutation involves randomly swapping the entries between the
performance vectors of the two approaches. Figure S3 illustrates this permutation procedure
in more details.

Multiple comparisons were corrected with a false discovery rate (FDR) of g < 0.05.

2.12 Data and code availability

Code for the various harmonization algorithms can be found here (GITHUB_LINK).
Two co-authors (PC and CZ) reviewed the code before merging it into the GitHub repository
to reduce the chance of coding errors.

The ADNI and the AIBL datasets can be accessed via the Image & Data Archive
(https://ida.loni.usc.edu/). The MACC dataset can be obtained via a data-transfer agreement
with the MACC (http://www.macc.sg/).
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3 Results
3.1 CcVAE & gcVAE removed more dataset differences than ComBat

Figure 5A shows the dataset prediction performance for the matched ADNI and AIBL
participants. Before harmonization, the XGBoost classifier was able to predict which dataset
a participant came from with 100% accuracy. After applying ComBat, the prediction
accuracy dropped to 0.626 + 0.410 (mean = std), suggesting significant removal of dataset
differences. After applying cVAE and gcVVAE, dataset prediction performance dropped to
0.595 + 0.381 and 0.603 £ 0.382 respectively, which were significantly lower than ComBat
(Table 3). There was no statistical difference between cVAE and gcVAE. However, dataset
prediction accuracies for cVAE and gcVAE were still better than chance (p = 1e-4),
suggesting residual dataset differences.

Similar results were obtained for matched ADNI and MACC participants (Figure 5B).
Before harmonization, the XGBoost classifier was able to predict which dataset a participant
came from with 100% accuracy. Dataset prediction accuracies after ComBat, cVAE and
gcVAE were 0.721 + 0.392, 0.603 + 0.391 and 0.598 + 0.398 respectively. There was no
statistical difference between cVAE and gcVAE. Both cVAE and gcVAE had statistically
lower dataset prediction performance than ComBat (Table 4).

Overall, cVAE and gcVAE appeared to remove more dataset differences than ComBat.
However, dataset prediction accuracies for cVAE and gcVAE were still better than chance (p

= le-4), suggesting residual dataset differences.
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Figure 5. Dataset prediction accuracies. (A) Left: Dataset prediction accuracies for

matched ADNI and AIBL participants. Right: p values of differences between different
approaches. "*" indicates statistical significance after surviving FDR correction (q < 0.05).

"n.s." indicates not significant. (B) Same as (A) but for matched ADNI and MACC
participants. All p values are reported in Tables 3 and 4.

Dataset Prediction Accuracies p values
(mean + std) Unharm ComBat cVAE gcVAE
Unharmonized (1.000 £ 0.027) le-4 le-4 le-4
ComBat (0.626 + 0.410) 0.0055 0.0410
cVAE (0.595 + 0.381) 0.1754

gcVAE (0.603 + 0.382)

Table 3. Dataset prediction accuracies with p values of differences between different
approaches for matched ADNI and AIBL participants. Statistically significant p values after
FDR (g < 0.05) corrections are bolded.
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Dataset Prediction Accuracies p values
(mean + std) Unharm ComBat cVAE gcVAE
Unharmonized (1.00 + 1e-16) le-4 le-4 le-4
ComBat (0.721 £ 0.392) le-4 le-4
cVAE (0.603 £ 0.391) 0.3584
gcVAE (0.598 + 0.398)

Table 4. Dataset prediction accuracies with p values of differences between different
approaches for matched ADNI and MACC participants. Statistically significant p values after
FDR (g < 0.05) corrections are bolded.

3.2 gcVAE outperformed cVAE for clinical diagnosis prediction

Figure 6A shows the clinical diagnosis prediction accuracies for matched ADNI and
AIBL participants. Because the matched participants had similar age, sex, MMSE and
clinical diagnosis (Figure 3), comparison between unharmonized ADNI and unharmonized
AIBL participants would indicate whether there was a drop in prediction performance due to
dataset differences (e.g., scanner differences). Unexpectedly, there was no statistical
difference in clinical diagnosis prediction performance between unharmonized ADNI and
unharmonized AIBL participants (Table 5).

Applying ComBat resulted in a statistically significant drop in prediction performance
(p = 7e-4) compared with no harmonization. This suggests that ComBat removed biological
information in addition to dataset differences (Figure 5A). cVAE exhibited an even bigger
drop in prediction performance compared with ComBat (p = 1e-4), suggesting that the better
removal of dataset differences (Figure 5A) came at the expense of removing even more
biological information. gcVAE yielded the best prediction performance with statistically
significant improvements over all other approaches, including unharmonized ADNI (see p
values in Table 5).

Figure 6B shows the clinical diagnosis prediction accuracies for matched ADNI and
MACC participants. As expected, there was a significant drop in clinical diagnosis prediction
performance between unharmonized ADNI and unharmonized MACC participants (p = le-
4). The decrease in clinical diagnosis performance was worsened by ComBat and cVAE,
once again suggesting that the removal of dataset differences (Figure 5B) came at the expense

of also removing biological information. gcVAE recovered a significant portion of the
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decrease in prediction performance, such that it was not statistically different from
unharmonized MACC (Table 6). However, it was still significantly worse than unharmonized

ADNI, suggesting potential room for improvement.
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Figure 6. Clinical diagnosis prediction accuracies. (A) Left: Clinical diagnosis prediction
accuracies for matched ADNI and AIBL participants. Right: p values of differences between
different approaches. "*" indicates statistical significance after surviving FDR correction (q <
0.05). "n.s." indicates not significant. (B) Same as (A) but for matched ADNI and MACC
participants. All p values are reported in Tables 5 and 6.
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Clinical Diagnosis Prediction p values
Accuracies (mean £ std) | i ADNI | Unharm AIBL | ComBat | cVAE | goVAE
Unharm ADNI (0.48 + 0.33) 0.5171 0.0077 le-4 2e-4
Unharm AIBL (0.47 £ 0.23) 7e-4 le-4 le-4
ComBat (0.41 £ 0.34) le-4 le-4
CVAE (0.26 % 0.29) le-4
gcVAE (0.69 + 0.41)

Table 5. Clinical diagnosis prediction accuracies with p values of differences between different
approaches for matched ADNI and AIBL participants. Statistically significant p values after
FDR (g < 0.05) corrections are bolded.

Clinical Diagnosis Prediction p values
Accuracies (mean £ std) | o) ADNI [Unharm MACC| ComBat | cVAE gcVAE
Unharm ADNI (0.63 + 0.33) le-4 le-4 le-4 le-4
Unharm MACC (0.45 + 0.29) 0.0124 le-4 0.0545
ComBat (0.42 + 0.35) 2e-4 0.0065
CVAE (0.36 + 0.26) le-4
gcVAE (0.49 + 0.30)

Table 6. Clinical diagnosis prediction accuracies with p values of differences between different
approaches for matched ADNI and MACC participants. Statistically significant p values after
FDR (g < 0.05) corrections are bolded.

3.3 gcVAE outperformed cVAE in MMSE prediction

Figure 7A shows the MMSE prediction mean absolute error (MAE) for matched ADNI
and AIBL participants. Because the matched participants had similar age, sex, MMSE and
clinical diagnosis, comparison between unharmonized ADNI and unharmonized AIBL
participants would indicate whether there was a drop in prediction performance due to dataset
differences (e.g., scanner differences). As expected, there was a drop in MMSE prediction
performance (increased MAE) for unharmonized AIBL participants compared with
unharmonized ADNI participants (p = 1le-4).

There was no statistical difference between ComBat and the unharmonized AIBL

participants. cVAE had statistically worse MMSE prediction performance compared with all
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other approaches (p values in Table 7). gcVAE recovered a significant portion of the decrease
in prediction performance, such that prediction performance was not statistically different
from ComBat and unharmonized AIBL (Table 7). However, it was still statistically worse
than unharmonized ADNI, suggesting further room for improvement.

Figure 7B shows the MMSE prediction MAE for matched ADNI and MACC
participants. As expected, there was a drop in MMSE prediction performance (increased
MAE) for unharmonized MACC participants compared with unharmonized ADNI
participants (p = 1le-4). Both ComBat and cVAE caused further drop in prediction
performance (p values in Table 8). gcVAE had the best prediction performance (lowest
MAE), such that prediction performance was statistically better than unharmonized MACC

and not statistically different from unharmonized ADNI (Table 8).
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Figure 7. MMSE prediction errors as measured by mean absolute error (MAE). (A)
Left: MMSE prediction errors for matched ADNI and AIBL participants. Right: p values of
differences between different approaches. "*" indicates statistical significance after surviving
FDR correction (q < 0.05). "n.s.” indicates not significant. (B) Same as (A) but for matched
ADNI and MACC participants. All p values are reported in Tables 7 and 8.
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MMSE Prediction MAE p values
(mean £ std) Unharm ADNI | Unharm AIBL | ComBat | cVAE | gcVAE
Unharm ADNI (1.60 + 2.17) le-4 0.0061 le-4 le-4
Unharm AIBL (1.86 % 2.32) 0.4339 | 0.0054 | 0.0756
ComBat (1.82 + 2.07) 0.0322 | 0.1473
CVAE (2.09 + 3.29) 0.0023
gCVAE (1.97 +2.93)

Table 7. MMSE prediction errors with p values of differences between different approaches
for matched ADNI and AIBL participants. Statistically significant p values after FDR (g <

0.05) corrections are bolded.

MMSE Pred MAE p values
(mean £ std) Unharm ADNI | Unharm MACC | ComBat | cVAE | goVAE
Unharm ADNI (4.26 + 3.87) le-4 le-4 le-4 0.9570
Unharm MACC (5.09 + 4.66) le-4 le-4 le-4
ComBat (5.61 + 5.03) le-4 le-4
CVAE (5.96 + 5.50) le-4
gCcVAE (4.25 + 3.57)

Table 8. MMSE prediction errors with p values of differences between different approaches
for matched ADNI and MACC participants. Statistically significant p values after FDR (q <
0.05) corrections are bolded.

3.4 Further analyses
3.4.1 Effects of training set size

We investigated the effects of varying the training set size used for fitting the
harmonization models (Figure 1C). Across all sample sizes, cVAE and gcVAE generally
achieved lower dataset prediction accuracies than ComBat (Figure 8A). Across all sample
sizes, gcVAE achieved better clinical diagnosis prediction than cVAE and ComBat (Figure
8B). Across all sample sizes for MACC, gcVAE achieved better MMSE prediction than
cVAE and ComBat (Figure 8C2). Across all sample sizes for AIBL (Figure 8C1), gcVAE
achieved better MMSE prediction than cVAE; gcVAE achieved worse prediction than
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ComBat. Overall, across all sample sizes, gcVAE compared favorably with cVAE and
ComBat.

In the case of ComBat, larger sample sizes led to worse dataset prediction accuracies
(i.e., better harmonization). However, sample sizes have minimal effect on clinical diagnosis
and MMSE prediction. In the case of cVAE, greater sample sizes led to better MMSE
prediction for both AIBL and MACC participants, better clinical diagnosis prediction for
MACC participants, worse clinical diagnosis prediction for AIBL participants, and better
dataset prediction accuracies. In the case of gcVAE, greater sample sizes led to better MMSE
and clinical diagnosis prediction for both AIBL and MACC participants, as well as better
dataset prediction accuracies. Overall, for both cVAE and gcVAE, larger sample sizes
appeared to improve downstream application performance (i.e., MMSE and clinical diagnosis
prediction), but at the expense of dataset prediction performance.

28


https://doi.org/10.1101/2022.03.05.483077
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.05.483077; this version posted August 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

(A1) ADNI-AIBL (A2) ADNI-MACC
0.8
|i 0.8|§
g Y z
< . < i = 2 <
30.7 Tii S0.7 f.'}?!‘.o
o o
5 LI iﬂgﬂ o % P ﬂ
63;0.6 .!ii ﬂ : e §0.6 % * ; ;lg. ) .
: i
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Sample Size Percentage Sample Size Percentage
(B1) ADNI-AIBL (B2) ADNI-MACC
0.7 i 0.5
] et
ML TTLARL I ! ths
§0.5 E T S % 4 e
go 4'i0 * N i & T T ; g 0 4 ) ,
j=) o ‘
803 !i** i 504 !!iiii?*
+
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Sample Size Percentage Sample Size Percentage
(C1) ADNI-AIBL (C2) ADNI-MACC
2.4
w msoii*?ﬁifiio
%2.2%¥+ ﬁii %5.51&!-}7-1--1-..-_0
Q [
a &
420 T * 2°0
s ¢ =45 = i :
1.8|! ' + P d 3 28 = o 40 . ’ * !
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Sample Size Percentage Sample Size Percentage
I ComBat [ cvAE N gcVAE

Figure 8. Performance of harmonization models trained with different sample sizes.

(A1) Dataset prediction accuracies for matched ADNI-AIBL participants; (B1) The clinical
diagnosis prediction accuracies for matched AIBL participants; (C1) MMSE prediction errors
for matched AIBL participants. (A2), (B2), and (C2) are the same as (Al), (B1), and (C1), but
for matched ADNI and MACC participants.
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3.4.2 Association analyses

Figures 9 shows the association analyses between gray matter ROI volumes and four
variables (age, sex, MMSE and clinical diagnoses) among matched ADNI and AIBL
participants. Figure 10 shows the same analyses for matched ADNI and MACC participants.
For each scatter plot, more dots in the green region indicates better gcVAE performance
compared with the baseline. gcVAE clearly outperformed no harmonization (Figures 9A and
10A) and ComBat (Figures 9B and 10B) in both datasets. On the other hand, cVAE and
gcVAE exhibited comparable performance (Figures 9C and 10C) in both datasets.
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Figure 9. Association analyses between gray matter ROI volumes and four variables
(age, MMSE, sex and clinical diagnosis) for matched ADNI and AIBL participants.
First row shows association with age. Second row shows association with MMSE. Third row
shows association with sex. Fourth row shows association with clinical diagnosis. (A)
Comparison between gcVAE and no harmonization. (B) Comparison between gcVAE and
ComBat. (C) Comparison between gcVAE and cVAE. Each block dot represents one gray
matter ROI. Dots in the green area indicates better gcVVAE performance compared with
baseline. gcVAE clearly outperforms no harmonization and ComBat. gcVAE and cVAE
exhibited similar performance.
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Figure 10. Association analyses between gray matter ROI volumes and four variables
(age, MMSE, sex and clinical diagnosis) for matched ADNI and MACC participants.
First row shows association with age. Second row shows association with MMSE. Third row
shows association with sex. Fourth row shows association with clinical diagnosis. (A)
Comparison between gcVAE and no harmonization. (B) Comparison between gcVAE and
ComBat. (C) Comparison between gcVAE and cVAE. Each block dot represents one gray
matter ROI. Dots in the green area indicates better gcVAE performance compared with

baseline. gcVAE clearly outperforms no harmonization and ComBat. gcVAE and cVAE
exhibited similar performance.
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3.4.3 ComBat with additional covariates

Our main analysis utilized ComBat with age and sex as covariates. Here, we
considered ComBat with age, sex, MMSE and clinical diagnosis as covariates. We note that
this version of ComBat assumed that MMSE and clinical diagnosis information were known
in the test set (matched participants). Therefore, the prediction performance of ComBat (with
the additional covariates) was corrupted by test set leakage and was not valid.

The additional covariates led to better MMSE and clinical diagnosis prediction by
ComBat (Tables S10 and S11). In the case of AIBL, clinical diagnosis prediction remained
statistically worse than gcVAE, but MMSE prediction was now statistically better than
gcVAE. In the case of MACC, clinical diagnosis prediction was now comparable with
gcVAE, but MMSE prediction remained worse than gcVAE. Interestingly, the additional
covariates led to greater dataset prediction accuracies for both ADNI-AIBL and ADNI-

MACC, suggesting worse harmonization. Together, gcVAE remained better than ComBat.

3.4.4 Reversing the roles of the matched and unmatched participants

In this analysis, we reversed the roles of matched and unmatched participants (Section
2.9.4). Similar to the original main analyses, we found that gcVAE compared favorably with
both ComBat and cVAE (Figures S4 to S6; Tables S12 to S17).

More specifically, recall that there were six evaluation metrics (two for dataset
prediction, two for diagnosis prediction and two for MMSE prediction). gcVAE was
statistically better than ComBat for both dataset prediction metrics and two downstream
application performance metrics, while being statistically worse than ComBat in one
downstream application performance metric (Figures S4 to S6; Tables S12 to S17). On the
other hand, gcVAE was statistically worse than cVAE for the two dataset prediction metrics,
but statistically better than cVAE for the four downstream application performance metrics
(Figures S4 to S6; Tables S12 to S17). Therefore, similar to the main results, cVAE removed
more dataset differences at the expense of removing more biological information.

One interesting deviation from the main results was that in the current setup (where
harmonization models were trained on matched participants), ComBat was statistically better
than no harmonization across all six evaluation metrics. On the other hand, in the main
analysis (Figures 5 to 7; Tables 3 to 8), ComBat was statistically better than no harmonization
for both dataset prediction metrics, but statistically worse than no harmonization for all four
downstream application performance metrics. On the other hand, for the main analysis,

gcVAE was statistically better than no harmonization for both dataset prediction metrics and
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two downstream application performance metrics. In the current analysis, gcVAE was
statistically better than no harmonization for both dataset prediction metrics and three
downstream application performance metrics, but was statistically worse for one application
performance metric. Therefore, gcVAE appeared more robust than ComBat to covariate

differences during the harmonization procedure.
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4 Discussion

In this study, we proposed a flexible harmonization framework to utilize downstream
application performance to regularize the harmonization model. Our proposed approach
could be integrated with most harmonization approaches based on DNNs. Here, we integrated
our approach with the cVAE model. Using three large-scale datasets, we demonstrated that
gcVAE compared favorably with ComBat and cVAE.

We found that cVAE was able to significantly remove more dataset differences than
ComBat (Figure 5). This makes intuitive sense given that cVAE considered all brain regions
jointly, so should theoretically be able to remove multivariate site effects distributed across
brain regions. However, the removal of more dataset differences came at the expense of also
removing relevant biological information as measured by downstream application
performance (Figures 6 and 7).

Indeed, the removal of relevant biological information was an issue not just for
cVAE, but also for ComBat. In the case of predicting clinical diagnosis and MMSE, the use
of ComBat led to similar or worse performance than not harmonizing at all. By constraining
the harmonization with goal-specific DNNs, the gcVAE models were able to yield better
prediction of MMSE and clinical diagnosis (Figures 6 and 7), while removing as much
dataset differences as cVAE (Figure 5).

In the case of clinical diagnosis prediction, gcVAE was able to yield better prediction
performance than no harmonization. In the case of MMSE prediction, gcVAE was able to
yield better prediction performance than no harmonization in the MACC dataset, but was
only able to yield comparable prediction performance than no harmonization in the AIBL
dataset.

Our main analyses (Figures 6 and 7) showed that gcVAE facilitated the translation of
goal-specific DNNs from ADNI to new datasets (AIBL and MACC). Another common
application of harmonization is to facilitate the pooling of datasets for some joint analysis.
Here, we investigated the association of the brain volumes with multiple variables across the
harmonized datasets. We found that gcVAE clearly outperformed no harmonization (Figures
9A and 10A) and ComBat (Figures 9B and 10B). On the other hand, cVAE and gcVAE
exhibited comparable performance (Figures 9C and 10C).
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4.1 Matched versus unmatched participants

We note that our workflow utilized unmatched participants to train the harmonization
models, dataset prediction models and goal-specific DNNs, while evaluation was performed
on the matched participants (Figures 1 and 2). The setup allowed us to compare downstream
application performance between unharmonized data from matched ADNI participants and
matched AIBL participants. Because age, sex, MMSE and clinical diagnosis were similar
between matched ADNI and AIBL participants, the drop in downstream application
performance (clinical diagnosis or MMSE prediction) could be attributed to a lack of
harmonization. Since the goal-specific DNNs were trained on ADNI (Figure 2B), the
prediction performance on matched unharmonized ADNI participants served as an upper
bound on the prediction performance after harmonization.

Surprisingly, in the case of clinical diagnosis prediction in the AIBL dataset, gcVAE
was better than the upper bound (Figure 6A). On the other hand, in the case of MMSE
prediction in the AIBL dataset, gcVAE only achieved similar performance as no
harmonization and was worse than the upper bound (Figure 7A). One possible reason for this
discrepancy is that when tuning the hyperparameters, the weights tradeoff the prediction of
MMSE and clinical diagnosis were fixed, so in the case of AIBL, this might have
inadvertently favored clinical diagnosis prediction more than MMSE prediction.

However, we note that the current workflow of training on unmatched participants can
prove challenging for ComBat (Nygaard et al., 2016; Zindler et al., 2020) because of
covariate differences between ADNI and AIBL (as well ADNI and MACC). Therefore, we
considered a control analysis in which the roles of the matched and unmatched participants
were swapped. Consistent with the main analyses, we found that gcVAE compared favorably
with both ComBat and cVAE (Figures S4 to S6; Tables S12 to S17). Furthermore, in the
control analysis, ComBat was better than no harmonization for both dataset prediction and
downstream application performance. On the other hand, in the control analysis, gcVAE was
statistically better than no harmonization for both dataset prediction metrics and three
downstream application performance metrics, but was statistically worse for one application
performance metric. Overall, this suggests that gcVAE was more robust than ComBat to

covariate differences between datasets used for the harmonization procedure.

4.2 Sample size
Deep neural networks are often thought to be data hungry. Across different sample

sizes (Figure 8), gcVAE was better than cVAE for all four downstream application
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performance. On the other hand, across all sample sizes, gcVAE was better than ComBat for
three downstream prediction metrics. Interestingly, gcVAE was worse than ComBat for
MMSE prediction in the AIBL dataset across all sample sizes but given the rapid
improvement trajectory of gcVAE (Figure 8C1), we might expect the gap to close rapidly
with more data. Surprisingly, as the sample size increases, the downstream performance of
gcVAE improved at the expense of dataset prediction performance. However, the dataset
prediction accuracies of gcVAE continued to be worse (i.e., better harmonization) than
ComBat even with the full set of data (Figure 8A).

4.3 Methodological considerations

To illustrate the use of gcVAE, when harmonizing ADNI and a new dataset, the
researcher could validate gcVAE by repeating the same procedure as the current study
(Figures 2 and 3). Once the researcher is satisfied with the performance, the researcher could
then train the model on 90% of the data and tune the hyperparameters on the remaining 10%
of the data without the need of a 10-fold cross-validation procedure. The final model can then
be applied to the full dataset.

An interesting methodological consideration is the handling of confound variables
when using gcVAE. For example, age is likely related to clinical diagnosis. Therefore, when
training gcVAE to harmonize ADNI and AIBL, the algorithm might seek to preserve age-
related brain patterns related to clinical diagnosis. However, we note that this may or may not
be an issue depending on the study. For example, if our goal is clinical diagnosis, then it
would be counterproductive to exclude age in the diagnosis procedure. After all,
demographics are often used for differential diagnosis in actual clinical practice.

There might indeed be situations, where the related variables are indeed confounds. For
example, if a study is interested in dementia risks above and beyond aging, then age does
become a confound. In that scenario, researchers could consider regressing age from the
imaging features and/or target variables before training the goal-specific DNN. Another
approach is to include an adversarial cost when training the goal-specific DNN to ensure the
intermediate layers could not be used to predict the confound variable (e.g., age).

The theoretical advantage of gcVAE over ComBat is its multivariate nature, which
allowed cVAE to remove site differences distributed across brain regions. This advantage is
clearly demonstrated in the dataset prediction experiments (Figure 5). More recent ComBat

variants, such as CovBat (Chen et al., 2019) allowed the harmonization of inter-regional
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covariance. Given their multivariate nature, cVAE and gcVAE should also in principle
remove site variation in covariance.

Finally, our current study only demonstrated results from harmonizing pairs of datasets
(ADNI and AIBL, as well as ADNI and MACC). However, the cVAE framework is highly
flexible and the cVAE machinery can be easily extended to multiple datasets. Similarly, the
goal-specific DNN could also be trained on multiple datasets. So overall, gcVAE could in
principle be applied to harmonize multiple datasets jointly. However, this is not something

we have demonstrated in this study, which we leave for future work.

4.4 Limitations

The strength of gcVAE is also its main limitation. The reliance of goal-specific DNNs
led to better downstream performance, but the resulting improvements might not generalize
to new downstream applications. Therefore, the training procedure might have to be repeated

for each new downstream application. Future research is necessary to address this limitation.
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5 Conclusion
In this study, we proposed a goal-specific brain MR1 harmonization framework, which
took into account downstream application performance in the harmonization process. Using
three large-scale datasets, we demonstrated that our approach compared favorably with existing
approaches in terms of preserving relevant biological information, while removing site

differences.
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Supplementary Material

Vendor Scanner Model Field Strength Number of scans
Discovery 3T 595
Genesis Signa 3T 273
Signa Excite 157 838
GE 3T 30
Signa HDx 157 464
3T 42
: 1.5T 212
Signa HDxt 3T 405
. 1.5T 67
Achieva 3T 181
Gemini 3T 32
Gyroscan Intera 1.5T 12
Gyroscan NT 1.5T 2
Philips Ingenia 3T 84
Ingenuity 3T 18
Intera 1.5T 319
3T 216
: 1.5T 6
Intera Achieva 3T 1
Allegra 3T 48
Avanto 1.5T 385
Biograph 3T 12
Espree 1.5T 22
NUMARIS/4 1.5T 2
Prisma 3T 2
Prisma_fit 3T 3
Siemens Skyra 3T 274
Sonata 1.5T 371
SonataVision 1.5T 25
Symphony 1.5T 547
SymphonyTim 1.5T 88
Trio 3T 107
TrioTim 3T 1371
Verio 3T 601

Table S1. Scanner information for 7955 scans in ADNI dataset.

Vendor Scanner Model Field Strength Number of scans
Avanto 1.5T 241
Siemens TrioTim 3T 558
Verio 3T 134

Table S2. Scanner information for 933 scans in AIBL dataset.
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Timepoint ADNI value AIBL value P value
1 71.0+5.5 70.845.3 0.96
2 725455 72.615.5 0.98
AGE
3 74.245.5 73.915.6 0.93
4 75.7£5.5 75.6£5.5 0.99
1 29.3+0.9 29.2+0.9 1.00
2 29.5+0.5 29.5+0.5 1.00
MMSE
3 29.7+0.5 29.7+£0.5 1.00
4 29.5+0.8 29.5+0.8 1.00
1 100%-0%-0% 100%-0%-0% 1.00
) _ 2 100%-0%-0% 100%-0%-0% 1.00
AD diagnosis
3 100%-0%-0% 100%-0%-0% 1.00
4 100%-0%-0% 100%-0%-0% 1.00
Sex - 50% 50% 1.00

Table S3. ADNI-AIBL matching results for participants having 4 time points (scans). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI1%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test.

Timepoint ADNI value AIBL value P value
1 73.3+3.3 73.1+3.3 0.96
AGE 2 74.8+3.3 75.2+3.3 0.94
3 76.3+3.3 76.1+3.3 0.97
1 29.0+0.0 20.0+0.0 1.00
MMSE 2 30.0+0.0 30.0+0.0 1.00
3 30.0+0.0 30.0+0.0 1.00
1 100%-0%-0%  100%-0%-0% 1.00
AD diagnosis 2 100%-0%-0% 100%-0%-0% 1.00
3 100%-0%-0% 100%-0%-0% 1.00
Sex - 50% 50% 1.00

Table S4. ADNI-AIBL matching results for participants having 3 time points (scans). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test.
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Timepoint ADNI value AIBL value P value
1 74.4+£9.8 74.5+£9.8 0.99
AGE
2 76.1+9.8 76.1+9.9 0.99
1 27.942.8 27.9+2.8 1.00
MMSE
2 27.8+2.8 27.8+2.8 1.00
) _ 1 57%-43%-0%  57%-43%-0% 1.00
AD diagnosis
2 57%-43%-0% = 57%-43%-0% 1.00
Sex - 88% 88% 1.00

Table S5. ADNI-AIBL matching results for participants having 2 time points (scans). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI1%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test.

Timepoint ADNI value AIBL value P value
AGE 1 74.845.9 74.8+5.9 1.00
MMSE 1 27.3+3.9 27.3+3.9 0.98
AD diagnosis 1 68%-19%-13%  68%-19%-13% 1.00
Sex - 43% 43% 1.00

Table S6. ADNI-AIBL matching results for participants having 1 time point (scan). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test.
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Timepoint ADNI value MACC value P value
1 71.5+6.8 72.3+6.7 0.67
AGE 2 73.5+6.8 73.816.8 0.91
3 75.9+6.9 75.5+6.6 0.81
1 26.9+3.7 27.0£3.5 0.94
MMSE 2 26.1+4.5 26.1+4.5 0.98
3 24.9+6.3 25.2+6.3 0.87
1 39%-46%-15%  36%-54%-10% 0.72
AD diagnosis 2 43%-36%-21%  46%-36%-18% 0.88
3 43%-36%-21%  46%-32%-22% 0.91
Sex - 57% 57% 1.00

Table S7. ADNI-MACC matching results for participants having 3 time points (scans). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI1%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test.

Timepoint ADNI value MACC value P value
1 73.615.7 73.915.6 0.78
AGE
2 75.845.6 75.545.6 0.71
1 24.7+4.9 24.8+4.6 0.86
MMSE
2 23.416.9 23.5+6.6 0.91
) _ 1 35%-38%-27%  35%-40%-25% 0.80
AD diagnosis
2 37%-30%-33%  37%-35%-28% 0.49
Sex - 51% 58% 0.20

Table S8. ADNI-MACC matching results for participants having 2 time points (scans). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test
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Timepoint ADNI value MACC value P value
AGE 1 75.7+6.7 75.7+6.7 0.97
MMSE 1 21.0+5.9 21.0+5.9 0.94
AD diagnosis 1 14%-34%-52%  14%-38%-48% 0.64
Sex - 52% 56% 0.34

Table S9. ADNI-MACC matching results for participants having 1 time points (scans). For
clinical diagnosis in the table, the percentage is showed as CN%-MCI1%-AD%. For sex in the
table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated
from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-
square goodness of fit test.

Models to Compare

ComBat
ADNI-AIBL (AGE+SEX+MMSE+DX) A%OET-E;EtX) CVAE gcVAE
Dataset Pred Acc 0.70+0.38 0.62+0.41  0.60£0.38  0.60+0.38
(MeanzStd) p values le-4 le-4 le-4
Clinical Diagnosis Pred 0.45+0.33 041034  0.26+0.29  0.69+0.41
Acc (MeanzStd) p values 0.0014 le-4 le-4
MMSE Pred MAE 1.82+2.48 1.8242.07  2.09+329  1.97+2.93
(Mean:Std) p values 0.9582 0.0013 0.0290

Table S10. Comparison between ComBat with 4 covariates and other harmonization
models for ADNI-AIBL. The first row is dataset prediction accuracy, the second row is
clinical diagnosis prediction accuracy, and the last row is MMSE prediction mean absolute
error (MAE). Within each row, the p values correspond to the difference between ComBat
with four covariates and the other models. P values significant after FDR correction (g <
0.05) are bolded.
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ComBat
ADNEMACC  (AGE+SEX+MMSE+DX) e
Dataset Pred Acc 0.75+0.36 0.72+0.39

(MeanzStd) p values 0.0086 le-4
Clinical Diagnosis Pred 0.49+0.35 0.42+0.35 0.36+0.26

Acc (MeanStd) p values le-4 le-4
MMSE Pred MAE 4.95+4 57 5.61+5.03 6.01+5.50

(MeanzStd) p values le-4 le-4

0.05) are bolded.

Models to Compare

cVAE

0.60+0.39

gcVAE

0.60+0.40

le-4

0.49+0.30

0.7204

4.25+3.57

le-4
Table S11. Comparison between ComBat with 4 covariates and other harmonization
models for ADNI-MACC. The first row is dataset prediction accuracy, the second row is
clinical diagnosis prediction accuracy, and the last row is MMSE prediction mean absolute
error (MAE). Within each row, the p values correspond to the difference between ComBat
with four covariates and the other models. P values significant after FDR correction (g <

Dataset Prediction Accuracies
(mean + std)

p values

Unharm ComBat cVAE gcVAE
Unharmonized (0.991+0.066) le-4 le-4 le-4
ComBat (0.676+0.293) le-4 le-4
cVAE (0.467£0.174) le-4
gcVAE (0.514+0.175)

Table S12. Dataset prediction accuracies with p values of differences between different
approaches for unmatched ADNI and AIBL participants. Statistically significant p values after
FDR (q < 0.05) corrections are bolded. This is the same as Table 3, except that the roles of
matched and unmatched participants were swapped.
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Dataset Prediction Accuracies p values
(mean + std) Unharm ComBat cVAE gcVAE
Unharmonized (0.983+0.083) le-4 le-4 le-4
ComBat (0.720+0.284) le-4 le-4
cVAE (0.412+0.139) le-4
gcVAE (0.46620.176)

Table S13. Dataset prediction accuracies with p values of differences between different
approaches for unmatched ADNI and MACC participants. Statistically significant p values

after FDR (g < 0.05) corrections are bolded. This is the same as Table 4, except that the roles
of matched and unmatched participants were swapped.

Clinical Diagnosis Prediction p values
Accuracies (mean £std) | j0pa AlBL ComBat cVAE gcVAE
Unharm AIBL (0.40£0.21) le-4 0.0570 le-4
ComBat (0.48+0.31) 0.0915 le-4
CVAE (0.44+0.22) le-4
gcVAE (0.68+0.38)

Table S14. Clinical diagnosis prediction accuracies with p values of differences between
different approaches for unmatched AIBL participants. Statistically significant p values after
FDR (q < 0.05) corrections are bolded. This is the same as Table 5, except that the roles of
matched and unmatched participants were swapped.

Clinical Diagnosis Prediction p values
Accuracies (mean £ std) | oparn mace | ComBat CVAE gcVAE
Unharm MACC (0.47+0.29) 0.0021 0.2552 le-4
ComBat (0.53+0.31) 2e-4 0.1374
CVAE (0.44+0.16) le-4
gcVAE (0.56+0.27)

Table S15. Clinical diagnosis prediction accuracies with p values of differences between
different approaches for unmatched MACC participants. Statistically significant p values

after FDR (g < 0.05) corrections are bolded. This is the same as Table 6, except that the roles
of matched and unmatched participants were swapped.
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MMSE Prediction MAE p values
(mean + std) Unharm AIBL ComBat CVAE gCcVAE
Unharm AIBL (2.15+2.54) 0.0062 le-4 3e-4
ComBat (2.06+2.38) le-4 le-4
CVAE (2.58+3.44) le-4
gCVAE (2.39+3.22)

Table S16. MMSE prediction errors with p values of differences between different approaches
for unmatched AIBL participants. Statistically significant p values after FDR (q < 0.05)
corrections are bolded. This is the same as Table 7, except that the roles of matched and

unmatched participants were swapped.

MMSE Prediction MAE p values
(mean + std) Unharm MACC|  ComBat CVAE gcVAE
Unharm MACC (6.90+4.49) le-4 0.4411 le-4
ComBat (5.92+4.16) le-4 le-4
CVAE (7.00+5.43) le-4
gcVAE (5.03+3.37)

Table S17. MMSE prediction errors with p values of differences between different approaches
for unmatched MACC participants. Statistically significant p values after FDR (q < 0.05)

corrections are bolded. This is the same as Table 8, except that the roles of matched and
unmatched participants were swapped.
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/A. Matching \
unharmonized ADNI unmatched ADNI &8 unmatched AIBL
Matching
Age, Sex,
MMSE, Di [
unharmonized AIBL SE, Diagnosis matched ADNI )+( matched AIBL )
/B. Train goal-specific DNN (10 folds => 10 models) )
/,{Diagnosis predictionl
. Train
unharmonized ADNI goal-specific DNN
MMSE prediction |

J

/C. Train harmonization models (10 folds => 10 models)

unmatched ADNI
(unharmonized)

Train harmonization baselines

(ComBat & cVAE)
unmatched AIBL

(unharmonized)

unmatched AIBL
(unharmonized)

Train gcVAE model

N\

Trained goal-specific
DNN (Figure S1B)

N /

Figure S1. Workflow of control analysis for data matching and model training. We
illustrate the workflow using ADNI and AIBL. The same procedure was applied to ADNI
and MACC. The workflow is the same as Figure 1 except the role of matched and unmatched
participants are swapped in panel C. Furthermore in the case of panel B, all unharmonized
data from all ADNI participants was used to train the goal-specific DNN because there are
too few matched participants to train the goal-specific DNN.
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/A. Data harmonization (10 folds) \
unmatched ADNI | Trained harmonization unmatched ADNI
(unharmonized) models (Figure S1C) (harmonized)
unmatched AIBL Trained harmonization unmatched AIBL
(unharmonized) models (Figure S1C) (harmonized)

matched ADNI Trained harmonization [ matched ADNI ]
unharmonized models (Figure S1C) (harmonized)
matched AIBL Trained harmonization matched AIBL
(unharmonized) models (Figure S1C) (harmonized)

. J

@. Evaluation via dataset prediction accuracy (10 folds) \
« Train XGBoost

(harmonized)

Train XGBoost model
matched AIBL for dataset prediction
(harmonized)

« Testing XGBoost

unmatched ADNI —
(harmonized) Trained XGBoost model —>|Dataset prediction accuracyl

unmatched AIBL -
[ (harmonized) ]——» Trained XGBoost model —>|Dataset prediction accuracyl

-
/'

C. Evaluation via downstream applications performance (10 folds)

/
\

unmatched AIBL Trained goal-specific DNN _,_l Application performance |
(unharmonized) (Figure S1B)
unmatched AIBL Trained goal-specific DNN Application performance
[ (harmonized) I (Figure S1B) _)l ee P |
\_ J

Figure S2. Workflow of control analysis for data harmonization and performance
evaluation. We illustrate the workflow using ADNI and AIBL. The same procedure was
applied to ADNI and MACC. The workflow is the same as Figure 2 except the role of
matched and unmatched participants are swapped in panels B and C. Note that in panel C
(compared with Figure 2C), the prediction performance of unmatched unharmonized ADNI
and unmatched unharmonized AIBL participants were not comparable, so the downstream
application performance was only evaluated on unmatched unharmonized AIBL and
unmatched harmonized AIBL data.
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/~ Example for conducting permutation test N\

+ Goal: compare clinical diagnosis accuracies of and after harmonization
+ The comparison uses J] matched participants
» k represents model trained using k;; cross-validation split
+ Each participant may have multiple visits, which are colored dots in A1 and B1
» Each dot represents the clinical diagnosis accuracy using corresponding visit as
input to goal-specific DNN

(,B1. Average performance within participanﬁ
for k;;, model _

CoC -

ﬁn. Average performance within participant\
for k;;, model

CoOC O - T

Get a Jx1 vector

LS ——

Get a Jx1 vector

\ performanceA¥: | P l P¥ | Pk | P),"l )

204

(Az. Average performance across models )

e e e e e e e e e e e e,

\ performanceB: |Pf | P¥ | iy 2 | pf | )

24

(BZ. Average performance across models N

-

performanceBozl P? | p? | PP | Py |

per formanceAl: | Pl Ile | P}... | P} |
1 .
i L]
[ ]

\performanceAg: | p? | P2 | [ | Py |

performanceB*: | P} | P} | PL... | p} |

‘performanceBg: | P} |P;_9 | PP | 4 |

N ———————

R

ﬂGet a Jx1 vector ﬂGet a Jx1 vector

performanceB: | P |JP2 |---Pi I P |

04 204

(C.Run permutation test (N=10,000) )
M+1
per formanceA: | P, |p2 |...pi { P, | P=NT1
Randomly swap entries of two
vectors & compute absolute of the
mean difference
Repeat N Times
M = # times absolute mean
difference between swapped
vectors is larger than absolute
\\ mean difference of original vectors Y,

e
.

performanceA: |P1 |P2 |---Pl- l P |
\o J

pe'rjﬁ:}r'r.rzanceB:|p1 |p2 |...pi l P, |

Figure S3. Illustration of permutation test for comparing clinical diagnosis accuracies of
ComBat and gcVAE. (Al) For a given model, we averaged the clinical diagnosis accuracies
within each participant for ComBat. (B1) Same as Al but for gcVAE. (A2) Averaging the
clinical diagnosis accuracies across the 10 models within each participant. (B1 & B2) Same
as Al and A2 but for gcVAE. (C) Permute 10,000 times to obtain p value.
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Figure S4. Dataset prediction accuracies when harmonization models were trained on
matched data and evaluation was performed on unmatched data. (A) Left: Dataset
prediction accuracies for unmatched ADNI and AIBL participants. Right: p values of
differences between different approaches. "*" indicates statistical significance after surviving
FDR correction (g < 0.05). "n.s." indicates not significant. (B) Same as (A) but for unmatched
ADNI and MACC participants. All p values are reported in Tables S12 and S13. This is the
same as Figure 5, except that the roles of matched and unmatched participants were swapped.
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Figure S5. Clinical diagnosis prediction accuracies when harmonization models were
trained on matched data and evaluation was performed on unmatched data. (A) Left:
Clinical diagnosis prediction accuracies for unmatched AIBL participants. Right: p values of
differences between different approaches. "*" indicates statistical significance after surviving
FDR correction (q < 0.05). "n.s." indicates not significant. (B) Same as (A) but for unmatched
MACC participants. All p values are reported in Tables S14 and S15. This is the same as
Figure 6, except that the roles of matched and unmatched participants were swapped.
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Figure S6. MMSE prediction errors as measured by mean absolute error (MAE) when
harmonization models were trained on matched data and evaluation was performed on
unmatched data. (A) Left: MMSE prediction errors for unmatched AIBL participants.
Right: p values of differences between different approaches. "*" indicates statistical
significance after surviving FDR correction (g < 0.05). "n.s." indicates not significant. (B)
Same as (A) but for unmatched MACC participants. All p values are reported in Tables S16
and S17. This is the same as Figure 7, except that the roles of matched and unmatched
participants were swapped.

59


https://doi.org/10.1101/2022.03.05.483077
http://creativecommons.org/licenses/by-nd/4.0/

