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Abstract 

There is significant interest in pooling magnetic resonance image (MRI) data from multiple 

datasets to enable mega-analysis. Harmonization is typically performed to reduce 

heterogeneity when pooling MRI data across datasets. Most MRI harmonization algorithms 

do not explicitly consider downstream application performance during harmonization. 

However, the choice of downstream application might influence what might be considered as 

study-specific confounds. Therefore, ignoring downstream applications during harmonization 

might potentially limit downstream performance. Here we propose a goal-specific 

harmonization framework that utilizes downstream application performance to regularize the 

harmonization procedure.  Our framework can be integrated with a wide variety of 

harmonization models based on deep neural networks, such as the recently proposed 

conditional variational autoencoder (cVAE) harmonization model. Three datasets from three 

different continents with a total of 2787 participants and 10085 anatomical T1 scans were 

used for evaluation. We found that cVAE removed more dataset differences than the widely 

used ComBat model, but at the expense of removing desirable biological information as 

measured by downstream prediction of mini mental state examination (MMSE) scores and 

clinical diagnoses. On the other hand, our goal-specific cVAE (gcVAE) was able to remove 

as much dataset differences as cVAE, while improving downstream cross-sectional 

prediction of MMSE scores and clinical diagnoses.  
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1 Introduction 

            Large scale MRI datasets from multiple sites have boosted the study of human brain 

structure and function (Yeo et al., 2011; Van Essen et al., 2013; Miller et al., 2016; Volkow 

et al., 2018). Combining datasets from multiple sites can potentially boost statistical power, 

so there is significant interest in pooling data across multiple sites (Thompson et al., 2017; 

Whelan et al., 2018; Tang et al., 2020; Lu et al., 2020). However, MRI data is sensitive to 

variation of scanners across different sites (Jovicich et al., 2006; Magnotta et al., 2012;  Chen 

et al., 2014; Hawco et al., 2018), so post-acquisition harmonization is necessary for removing 

unwanted variabilities in pooling data across multiple studies.  

A popular harmonization approach is the ComBat framework (Fortin et al., 2017, 

2018; Yu et al., 2018) that utilizes a mixed effects regression model to remove additive and 

multiplicative site effects. Other ComBat variants have since been proposed (Garcia-Dias et 

al., 2020; Pomponio et al., 2020; Wachinger et al., 2021). However, most ComBat variants 

consider each brain region separately (but see Chen et al., 2019), so might not be able to 

remove nonlinear site differences that are distributed across brain regions.   

These nonlinear distributed site differences might be more readily removed by 

harmonization approaches based on deep neural networks (DNNs; (Tanno et al., 2017; Ning 

et al., 2019; Blumberg et al., 2019). One popular approach is the use of the variational 

autoencoder (VAE) framework (Moyer et al., 2020; Russkikh et al., 2020; Zuo et al., 2021), 

which typically uses an encoder to generate site-invariant latent representations. Site 

information can then be added to the latent representations to “reconstruct” the MRI data. 

Another popular approach is the use of generative adversarial networks and cycle consistency 

constraints (Zhu et al., 2017; Zhao et al., 2019; Dewey et al., 2019; Modanwal et al., 2020; 

Bashyam et al., 2021).  

However, most previously proposed harmonization approaches do not consider 

downstream applications in the harmonization procedure. It is important to note that the goal 

of MRI harmonization is to remove ‘unwanted’ dataset differences, while preserving relevant 

biological information. However, unwanted dataset differences depend on the application. 

For example, if our goal is to develop an Alzheimer’s disease (AD) dementia prediction 

model that is generalizable across different racial groups, then ‘race’ might be considered an 

undesirable study difference. On the other hand, if we are interested in studying AD 

progression across different racial groups, then racial information needs to be preserved in the 
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harmonization process. Therefore, ignoring downstream applications in the harmonization 

procedure might potentially limit downstream performance. 

In this study, we propose a goal-specific harmonization framework that utilizes 

downstream applications to regularize the harmonization model. Our approach can be 

integrated with most DNN-based harmonization approaches, such as the conditional VAE 

(cVAE) harmonization model (Moyer et al., 2020), which was previously applied to diffusion 

MRI data. We then compared the resulting goal-specific cVAE (gcVAE) model with cVAE 

and ComBat using three datasets comprising 2787 participants and 10085 anatomical MRI 

scans. The evaluation procedure tested the ability of different harmonization models to 

remove dataset differences while retaining biological information as measured by 

downstream cross-sectional prediction of mini mental state examination (MMSE) scores and 

clinical diagnoses.  

 

  

 

 

 

 

 

 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2022.03.05.483077doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.05.483077
http://creativecommons.org/licenses/by-nd/4.0/


5 
 

 

2 Methods 

2.1 Datasets 

In this study, we considered T1 structural MRI data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) (Jack et al., 2008, 2010), the Australian Imaging, 

Biomarkers and Lifestyle (AIBL) study (Ellis et al., 2009, 2010) and the Singapore Memory 

Ageing and Cognition Centre (MACC) Harmonization cohort (Hilal et al., 2015; Chong et 

al., 2017; Hilal et al., 2020). Data collection was approved by the Institutional Review Board 

(IRB) at each corresponding institution. The analysis in the current study is approved by the 

National University of Singapore IRB. Across all three datasets, MRI data was collected at 

multiple timepoints.  

In the case of ADNI (Jack et al., 2008, 2010), we considered data from ADNI1 and 

ADNI2/Go. For ADNI1, the MRI scans were collected from 1.5 and 3T scanners from 

different vendors (see Table S1 for more details). For ADNI2/Go, the MRI scans were 

collected from 3T scanners. There were 1735 participants with at least one T1 MRI scan. 

There was a total of 7955 MRI scans across the different timepoints of the 1735 participants. 

 In the case of AIBL (Ellis et al., 2009, 2010), the MRI scans were collected from 1.5T 

and 3T Siemens (Avanto, Tim Trio and Verio) scanners (see Table S2 for more details). 

There were 495 participants with at least one T1 MRI scan. There was a total of 933 MRI 

scans across the different timepoints of the 495 participants. 

In the case of MACC (Hilal et al., 2015; Chong et al., 2017; Hilal et al., 2020), the MRI 

scans were collected from a Siemens 3T Tim Trio scanner. There were 557 participants with 

at least one T1 MRI scan. There was a total of 1197 MRI scans across the different 

timepoints of the 557 participants. 

 

2.2 Data Preprocessing 

Our goal is to harmonize volumes of regions of interest (ROIs) across datasets. Here, 

108 cortical and subcortical ROIs were defined based on the FreeSurfer software (Fischl et 

al., 2002; Desikan et al., 2006). In the case of ADNI, we utilized the ROI volumes provided 

by ADNI. These ROIs were generated by ADNI after several preprocessing steps 

(http://adni.loni.usc.edu/methods/mri-tool/mri-pre-processing/) followed by the FreeSurfer 

version 4.3 (ADNI1) and 5.1 (ADNI2/GO) recon-all pipeline. In the case of AIBL and 
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MACC, FreeSurfer version 6.0 recon-all pipeline was utilized. Therefore, differences 

between the datasets arose from both scanner and preprocessing differences.  

 

2.3 Workflow overview 

In this study, we sought to harmonize brain ROI volumes between ADNI and AIBL, 

as well as ADNI and MACC. Figures 1 and 2 illustrate the workflow in this study using 

AIBL as an illustration. The procedure is exactly the same for MACC.  

In the case of AIBL, we used the Hungarian matching algorithm (Kuhn, 1955) to first 

select pairs of ADNI and AIBI participants with matched number of timepoints, age, sex, 

MMSE and clinical diagnosis (Figure 1A). The distributions of age, sex, MMSE and clinical 

diagnosis of all participants and matched participants are shown in Figure 3.  

There were 247 pairs of matched AIBI and ADNI participants with an average of 1.1 

scans per participant. The same approach was applied to ADNI and MACC, yielding 277 

pairs of matched MACC and ADNI participants with an average of 1.5 scans per participant. 

We note that not all timepoints have corresponding MMSE and clinical diagnosis 

information. Therefore, care was taken to ensure that all timepoints in the matched 

participants had both MMSE and clinical diagnosis. Care was taken to ensure that all scans of 

every participant were classified as either “matched” or “unmatched”, and not split between 

the two categories. P values showing the quality of the matching procedure are found in 

Tables S3 to S9.  

The unmatched ADNI data was used to train goal-specific deep neural networks (DNN) 

for predicting MMSE and clinical diagnosis (Figure 1B; details in Section 2.5). Here, clinical 

diagnosis categories were normal controls, mild cognitive impairment, and Alzheimer’s 

disease dementia. The clinical diagnoses from all three datasets were determined by multiple 

criteria, including MRI and cognitive tests. The unmatched ADNI and AIBL participants 

were also used to fit ComBat and cVAE (Figure 1C; details in Section 2.6). The unmatched 

AIBL participants and goal-specific DNN (from Figure 1B) were utilized for training the 

gcVAE model (Figure 1C). The same procedure was applied to ADNI and MACC.  

The trained harmonization models were then applied to unharmonized brain volumes of 

all matched and unmatched participants (Figure 2A). The harmonized data was evaluated 

with two criteria (Figures 2B and 2C). The first criterion was dataset prediction performance, 

in which a machine learning algorithm was used to predict which dataset the harmonized data 

came from (Figure 2B). Lower dataset prediction performance indicates better harmonization. 

More specifically, we trained a XGBoost classifier (Chen & Guestrin, 2016) using the 
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harmonized ADNI and harmonized AIBL brain volumes from the unmatched participants 

(Figure 2B). We then applied the classifier to the harmonized ADNI and AIBL brain volumes 

from the matched participants (details in Section 2.8). The same procedure was applied to 

ADNI and MACC. 

Figure 1. Workflow of current study for data matching and model training. We illustrate 

the workflow using ADNI and AIBL. The same procedure was applied to ADNI and MACC. 

(A) Matching participants to derive test set for harmonization evaluation. (B) Train goal-

specific deep neural network (DNN) using unmatched unharmonized ADNI data to predict 

clinical diagnosis and MMSE. (C) Train harmonization models using unmatched 

unharmonized data. We note that ComBat and cVAE were trained using unmatched 

unharmonized ADNI and AIBL data, while gcVAE was trained using unmatched 

unharmonized AIBL data and the goal-specific DNN (from Figure 1B). Dark colors (e.g., 

dark red and dark blue) are used to indicate unmatched participants, while light colors (e.g., 

pink and light blue) are used to indicate matched participants. 
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Figure 2. Workflow of current study for data harmonization and performance 

evaluation. We illustrate the workflow using ADNI and AIBL. The same procedure was 

applied to ADNI and MACC. (A) Harmonize data using trained harmonization models from 

Figure 1C. (B) Evaluate harmonization performance using XGBoost dataset prediction 

model. (C) Evaluate harmonization performance using goal-specific DNN (Figure 1B) to 

predict MMSE and clinical diagnosis. We note that dark colors (e.g., dark red and dark blue) 

are used to indicate unmatched participants, while light colors (e.g., pink and light blue) are 

used to indicate matched participants. On the other hand, octagons are used to indicate 

unharmonized data, while rectangles (with rounded corners) are used to indicate harmonized 

data. 
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Figure 3. Age, MMSE, sex and clinical diagnosis distributions before and after matching. 

(A) Distributions of age, sex, MMSE and clinical diagnosis for ADNI (blue) and AIBL (red). 

Differences in the attributes between ADNI and AIBL were not significant after matching. (B) 

Distributions of age, sex, MMSE and clinical diagnosis for ADNI (blue) and MACC (yellow). 

Differences in the attributes between ADNI and MACC were not significant after matching. P 

values showing the quality of the matching procedure are found in Tables S3 to S9.  
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However, a simple way to achieve perfect dataset prediction results was to map all 

brain volumes to zero, thus losing all biological information. Therefore, the second criterion 

was downstream application performance (Figure 2C). Here, we applied the goal-specific 

DNN (from Figure 1B) to the harmonized AIBL brain volumes from the matched 

participants. To demonstrate the effects of no harmonization, the goal-specific DNN was also 

applied to the unharmonized AIBL and unharmonized ADNI brain volumes from the 

matched participants (Figure 2C). The same procedure was applied to ADNI and MACC. 

We note that the goal-specific DNN (Figure 1B), harmonization models (Figure 1C) 

and dataset prediction classifier (Figure 2B) were trained on unmatched data, while 

harmonization evaluation was performed on matched data (Figures 2B and 2C). The 

matching procedure was important to ensure that prediction performance was comparable 

between matched ADNI and matched AIBI participants. Suppose we did the opposite: trained 

a clinical diagnosis prediction model on matched ADNI participants and then tested the 

model on unmatched ADNI and unmatched AIBL participants. In this scenario, the clinical 

diagnosis prediction performance would not be comparable between unmatched ADNI and 

unmatched AIBL participants. More specifically, suppose unmatched ADNI comprised 

mostly participants with AD and healthy participants, as well as few participants with mild 

cognitive impairment (MCI). On the other hand, suppose AIBL contained equal proportions 

of healthy participants, participants with MCI and participants with AD. In this scenario, 

because it is easier to distinguish between healthy controls and participants with AD, 

compared with distinguishing participants with MCI from the other two classes (participants 

with AD and healthy participants), the prediction performance would likely be better in 

unmatched ADNI compared with unmatched AIBL, even if there was no scanner difference 

between the two sites. By testing prediction performance on matched AIBL and matched 

ADNI participants, we ensure that any drop in prediction performance was due to 

unavoidable site differences, such as scanner differences. 

 

2.4 Training, validation and test procedure 

As mentioned in the previous section, the matched participants were used as the test set 

for evaluation (Figure 2C). The unmatched participants were used for training the goal-

specific DNN (Figure 1B), harmonization (Figure 1C) and dataset prediction (Figure 2B) 

models. More specifically, we divided the unmatched participants into 10 groups. Recall that 

a participant might be scanned at multiple timepoints. Care was taken to ensure that all 
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timepoints of any participant were assigned to be in a single group, and not split across 

multiple groups.  

To train the goal-specific DNN, harmonization and dataset prediction models, 9 groups 

were used for training, while the remaining group was used as a validation set to tune the 

hyperparameters. This procedure was repeated 10 times with a different group being the 

validation set. Therefore, we ended up with 10 sets of trained models. The 10 sets of 

harmonization models were applied to the unharmonized data (Figure 2A), yielding 10 sets of 

harmonized data. The 10 sets of XGBoost classifiers and goal-specific DNNs were applied to 

the 10 corresponding sets of harmonized data for evaluation (Figures 2B and 2C).  

 

2.5 Goal-specific DNNs 

Here we utilized DNNs to predict MMSE and clinical diagnosis (normal controls, mild 

cognitive impairment or Alzheimer’s disease dementia) jointly. The goal-specific DNNs were 

used to train the gcVAE model (Figure 1C) and evaluate the harmonization approaches 

(Figure 2C). The inputs to the goal-specific DNNs were the brain ROI volumes. 10 DNNs 

were trained with a 10-fold cross-validation procedure (Section 2.4) using the unmatched 

unharmonized ADNI MRI volumes (Figure 1B). The training procedure utilized the 

unharmonized ADNI data without differentiation among ADNI sites.  

Recall that not all unmatched timepoints had MMSE and clinical diagnosis 

information. Therefore, we used the previous timepoint with available information to fill in 

the missing data (Lipton et al., 2016; Che et al., 2018; Nguyen et al., 2020). Note that this 

filling in procedure was only performed during training procedure for the unmatched 

participants.  

 The architecture of the goal-specific DNN was a generic feedforward neural network, 

where every layer was fully connected with the next layer. The nonlinear activation function 

ReLU (Maas et al., 2013) was utilized. The DNN loss function corresponded to the weighted 

sum of the mean absolute error (MAE) for MMSE prediction and cross entropy loss for 

clinical diagnosis prediction: LgoalDNN =  λMMSE MAE + λDX CrossEntropy. λMMSE and λDX 

were two hyperparameters that were tuned on the validation set.  

The metric for tuning hyperparameters in the validation set was the weighted sum of 

MMSE MAE and clinical diagnosis accuracy:  ½ MAE  – Diagnosis Accuracy. The MAE 

term was divided by two so the two terms had similar ranges of values. We utilized the 

HORD algorithm (Regis & Shoemaker, 2013; Ilievski et al., 2017; Eriksson et al., 2020) to 
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find the best set of hyperparameters using the validation set (Table 1). The trained DNN after 

100 epochs was utilized for subsequent analyses.   

 

Hyperparameter Search range 

Initial learning rate 1e-4 – 1e-3 

Learning rate step 10 – 99 

Dropout rate 0 – 0.5 

𝜆𝑀𝑀𝑆𝐸  0 – 1 

𝜆𝐷𝑋 0 – 1 

Nodes for each layer 32 – 512 

Number of layers 2 – 5 

Table 1. Hyperparameters estimated from the validation set. We note that a learning rate 

decay strategy was utilized. After K training epochs (where K = learning rate step), the 

learning rate was reduced by a factor of 10.  

 

 At the evaluation phase (Figure 2C), the 10 goal-specific DNNs were applied to the 

harmonized brain volumes from the matched AIBL participants, as well as unharmonized 

brain volumes from the matched AIBL and ADNI participants. The prediction performance 

was averaged across all time points of each participant and the 10 goal-specific DNNs before 

averaging across participants. The same procedure was applied to ADNI and MACC 

participants. 

 

2.6 Baseline harmonization models 

Here, we considered ComBat (Johnson et al., 2007) and cVAE (Moyer et al., 2020) as 

baseline models. 

 

2.6.1 ComBat 

ComBat is a linear mixed effects model that controls for additive and multiplicative 

site effects (Johnson et al., 2007). Here we utilized the R implementation of the algorithm 

(https://github.com/Jfortin1/ComBatHarmonization). The ComBat model is as follows: 

𝑥𝑖𝑗𝑣 = 𝛼𝑣 + 𝑌𝑖𝑗
𝑇𝛽𝑣 + 𝛾𝑖𝑣 + 𝛿𝑖𝑣𝜖𝑖𝑗𝑣 , (1) 

where 𝑖 is the site index, 𝑗 is the participant index and 𝑣 is the brain ROI index.  𝑥𝑖𝑗𝑣 is the 

volume of the 𝑣-th brain ROI of subject 𝑗 from site 𝑖. 𝛾𝑖𝑣 is the addictive site effect. 𝛿𝑖𝑣 is the 
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multiplicative site effect. 𝜖𝑖𝑗𝑣 is the residual error term following a normal distribution with 

zero mean and variance δv
2. 𝑌𝑖𝑗 are the covariates of subject 𝑗 from site 𝑖.  

 The ComBat parameters 𝛼𝑣, 𝛽𝑣, 𝛾𝑖𝑣 and 𝛿𝑖𝑣 were estimated for each brain ROI using 

the unmatched unharmonized ROI volumes (Figure 1C). The estimated parameters can then 

be applied to a new participant 𝑖 from site 𝑗 with brain volume 𝑥𝑖𝑗𝑣 and covariates 𝑌𝑖𝑗  

𝑥𝑖𝑗𝑣
𝐶𝑜𝑚𝐵𝐴𝑇 =

𝑥𝑖𝑗𝑣 −  𝛼̂𝑣 − 𝑌𝑖𝑗
𝑇𝛽̂𝑣 − 𝛾𝑖𝑣 

𝛿𝑖𝑣

 +  𝛼̂𝑣 + 𝑌𝑖𝑗
𝑇𝛽̂𝑣, (2) 

where  ̂ indicates that the parameter was estimated from the unmatched unharmonized ROI 

volumes from ADNI and AIBL. A separate ComBat model was fitted for ADNI and MACC 

brain volumes. Observe that the equation required the covariates of the new participant. 

Given that we would like to predict MMSE and clinical diagnosis in the matched participants, 

this implied that MMSE and clinical diagnosis information were not available in the matched 

participants. Therefore, we could not utilize MMSE and clinical diagnosis as covariates in the 

ComBat model. Therefore, in the main results, we only utilized age and sex as covariates. 

However, as a control analysis (Section 2.9.3), we also considered a version of ComBat 

where age, sex, MMSE and clinical diagnoses were used as covariates. 

 Furthermore, since the goal-specific DNNs were trained with unmatched 

unharmonized ADNI data without distinguishing among the sites (Section 2.5), for 

consistency, the ComBat procedure also treated ADNI as a single site despite the data coming 

from multiple sites and scanners. This was also the case for AIBL. 

 Note that equation (2) mapped both ADNI and AIBL data to an “intermediate” space, 

which is not an issue for the purpose of dataset prediction because the XGBoost classifier 

was trained from scratch (Figure 2B; Section 2.8). However, for the purpose of predicting 

MMSE and clinical diagnosis, since the goal-specific DNN was trained with unharmonized 

ADNI data, we used the ref.batch option in the ComBat package to map AIBL data to 

“ADNI-space” after harmonization. The same procedure was applied to ADNI and MACC. 

 

2.6.2 cVAE 

The conditional variational autoencoder (cVAE) model was proposed by Moyer and 

colleagues to harmonize diffusion MRI data (Moyer et al., 2020). Here, we applied cVAE to 

harmonize brain ROI volumes. The cVAE model is illustrated in Figure 4A. Input brain 

volumes were passed through an encoder DNN yielding representation 𝑧. Site index 𝑠 was 

concatenated with the latent representation 𝑧 before feeding into the decoder DNN, resulting 
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in the reconstructed brain volumes 𝑥̂. By incorporating the mutual information 𝐼(𝑧, 𝑠) in the 

cost function, this encouraged the learned representation 𝑧 to be independent of the site 𝑠. 

The resulting lost function is as follows:  

𝐿𝑐𝑉𝐴𝐸 = 𝐿𝑟𝑒𝑐𝑜𝑛 +  𝛼𝐿𝑝𝑟𝑖𝑜𝑟 −  𝛾𝐿𝑎𝑑𝑣 +  𝜆𝐼(𝑧, 𝑠), (3) 

where 𝐿𝑟𝑒𝑐𝑜𝑛 is the mean square error (MSE) between 𝑥 and 𝑥̂, so this encouraged the 

harmonized volumes to be similar to the unharmonized volumes. To further encourage 𝑥 and 

𝑥̂ to be similar, Moyer and colleagues added an additional term 𝐿𝑎𝑑𝑣, which is the soft-max 

cross-entropy loss of an adversarial discriminator seeking to distinguish between 𝑥 and 𝑥̂. 

Finally, 𝐿𝑝𝑟𝑖𝑜𝑟 is the standard KL divergence between representation 𝑧 and the multivariate 

Gaussian distribution with zero mean and identity covariance matrix (Sohn et al., 2015). 
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Figure 4. cVAE and gcVAE model structures. (A) Model structure for the cVAE model. 

Encoder, decoder, and discriminator were all fully connected feedforward DNNs. 𝑠 was the 

site we wanted to map the brain volumes to. (B) Model structure for the gcVAE model. The 

goal-specific DNN from Section 2.5 (Figure 1B) was used to guide the cVAE harmonization 

process. During training of gcVAE, the weights of the goal-specific DNN were fixed.  

 

Both the decoder and encoder were instantiated as generic feedforward neural 

networks, where every layer was fully connected with the next layer. Following Moyer and 

colleagues, the nonlinear activation function tanh (Maas et al., 2013) was utilized. During the 

training process, 𝑠 is the true site information for input brain volumes 𝑥. After training, we 

could map input 𝑥 to any site by changing 𝑠. The metric for tuning hyperparameters in the 

validation set was the weighted sum of the reconstruction loss (MSE between 𝑥 and 𝑥̂) and 

the subject-level dataset prediction accuracy: ½ MAE + Dataset Accuracy. The MAE 
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reconstruction loss was divided by two so the two terms had similar ranges of values. Dataset 

prediction accuracy was obtained by training a XGBoost classifier on the training set and 

applying to the validation set. We utilized the HORD algorithm (Regis & Shoemaker, 2013; 

Ilievski et al., 2017; Eriksson et al., 2020) to find the best set of hyperparameters using the 

validation set (Table 2). The trained DNN after 1000 epochs was utilized for subsequent 

analyses. 

Similar to ComBat, the cVAE model was trained using unmatched unharmonized brain 

volumes from ADNI and AIBL. A separate model was trained using ADNI and MACC. For 

consistency, the cVAE model also treated ADNI and AIBL as single sites.  

Similar to ComBat, for the purpose of dataset prediction, data were mapped to 

intermediate space by setting the site 𝑠 to 0 during harmonization. On the other hand, for the 

purpose of predicting MMSE and clinical diagnosis, data from AIBL (and MACC) was 

mapped to ADNI space by setting the site 𝑠 to correspond to ADNI. 

 

Hyperparameter Search range 

Initial learning rate 1e-2 – 1e-1 

Learning rate step 10 - 999 

Dropout rate 0 – 0.5 

𝛼 0.01 - 1 

𝛾 0.01 - 10 

𝜆 0.01 - 1 

Nodes for each layer 32 - 512 

Number of layers 2 - 4 

Node for z 32 - 512 

Table 2. Hyperparameters estimated from the validation set. We note that a learning rate 

decay strategy was utilized. After K training epochs (where K = learning rate step), the 

learning rate was reduced by a factor of 10.  

 

2.7 Goal-specific cVAE (gcVAE) 

To incorporate downstream application performance in the harmonization procedure, 

the outputs of the cVAE (Figure 4A) were fed into the goal-specific DNN (Section 2.5). The 

resulting goal-specific cVAE (gcVAE) is illustrated in Figure 4B. The loss function of the 
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gcVAE was given by corresponded to the weighted sum of the mean absolute error (MAE) 

for MMSE prediction and cross entropy loss for clinical diagnosis prediction: 

LgcVAE = 𝛼𝑀𝑀𝑆𝐸MAE + 𝛼𝐷𝑋CrossEntropy, (4) 

where 𝛼𝑀𝑀𝑆𝐸  and 𝛼𝐷𝑋 were two hyperparameters to be tuned with the validation set. The loss 

function was used to finetune the trained cVAE model (Section 2.6.2) using the training set 

with a relatively small learning rate. We note that the weights of the goal-specific DNN 

model were frozen during this finetuning procedure.  

The metric for tuning hyperparameters in the validation set was the weighted sum of 

MMSE MAE and clinical diagnosis accuracy:  ½ MAE  – Diagnosis Accuracy (same as 

Section 2.5). Since there were only three hyperparameters (learning rate, 𝛼𝑀𝑀𝑆𝐸  and 𝛼𝐷𝑋), a 

grid search was performed using the validation set to find the best set of hyperparameters. 

The gcVAE model was trained using unmatched unharmonized brain volumes from 

AIBL. A separate model was trained using ADNI and MACC. For consistency, the gcVAE 

model also treated ADNI and AIBL as single sites.  

Similar to ComBat, for the purpose of dataset prediction, data were mapped to 

intermediate space by setting the site 𝑠 to 0 during harmonization. On the other hand, for the 

purpose of predicting MMSE and clinical diagnosis, data from AIBL (and MACC) was 

mapped to ADNI space by setting the site 𝑠 to correspond to ADNI. 

 

2.8 Dataset prediction model 

As one evaluation criterion, we utilized XGBoost to predict which dataset the 

harmonized brain volumes came from (Figure 2B). The inputs to the XGBoost model were 

the brain volumes divided by the total intracranial volume (ICV) of each participant. We used 

logistic regression as the objective function and ensemble of trees as the model structure. 

Recall that there were 10 groups of harmonized data because of our 10-fold cross-validation 

procedure (Section 2.4). Therefore, 10 XGBoost classifiers were trained using harmonized 

MRI volumes from unmatched ADNI and AIBL participants (Figure 2B). For each XGBoost 

classifier, we used a grid search using the validation group to find the optimal set of 

hyperparameters.  

For evaluation, the 10 XGBoost classifiers were applied to harmonized MRI volumes 

of matched ADNI and AIBL participants (Figure 2B). The prediction accuracy was averaged 

across all time points of each participant and the 10 classifiers before averaging across 

participants. The same procedure was applied to ADNI and MACC participants. 
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Here, we chose to use XGBoost because it is a powerful classifier for unstructured or 

tabular data (Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022). Using a DNN instead of 

XGBoost is unlikely to yield very different dataset prediction performance. On the other 

hand, XGBoost is less sensitive to the choice of hyperparameters compared with DNN, so 

hyperparameter tuning (and thus training) was a lot faster for XGBoost. Therefore, we chose 

to use XGBoost for dataset prediction. By contrast, a DNN was utilized for predicting MMSE 

and clinical diagnosis (i.e., goal-specific DNN), so that the gradients of the goal-specific 

DNN can be backpropagated to guide the training of the gcVAE model (Section 2.7). 

 

2.9 Further analyses 

We performed four additional analyses to study the effectiveness of the proposed 

gcVAE approach.  

 

2.9.1 Effects of training set size 

To investigate the effect of training set size on harmonization quality, we repeated the 

previous analyses (Figures 1 & 2), except that when training harmonization models (Figure 

1C), the training set size was varied by sampling 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80 

or 90% from the unmatched participants. We repeated this procedure 10 times.  

 

2.9.2 Association analyses 

We further investigated the association of the harmonized brain volumes with age, sex, 

MMSE and clinical diagnosis. We considered all 87 cortical and subcortical gray matter 

ROIs. For each continuous measure (age or MMSE) and for each ROI, we computed the 

Pearson’s correlation between the harmonized ROI volume and the continuous measure 

across matched ADNI and matched AIBL participants. In the case of age, we expected a 

negative correlation between age and harmonized ROI volumes, so a stronger negative 

correlation indicates better harmonization. In the case of MMSE, we expect a positive 

correlation between MMSE and harmonized ROI volumes because lower MMSE indicates 

greater cognitive decline. Therefore, a greater positive correlation indicates better 

harmonization. For each discrete variable (clinical diagnosis or sex), we computed 𝜂2 from 

running ANOVA on the matched ADNI and matched AIBL participants. Greater 𝜂2 indicates 

greater differences across the groups (e.g., male versus female), suggesting better 

harmonization. The same procedure was applied to ADNI and MACC. 
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2.9.3 ComBat with additional covariates  

As discussed previously, in our main analyses, we only used age and sex as covariates 

for the ComBat baseline (Section 2.6.1). Here, we also considered a ComBat variant, where 

age, sex, MMSE and clinical diagnosis were used as covariates. We note that this version of 

ComBat assumed that MMSE and clinical diagnosis information were known in the test set 

(matched participants). Therefore, the prediction performance of ComBat (with the additional 

covariates) was corrupted by test set leakage and was not valid. 

 

2.9.4 Reversing the roles of the matched and unmatched participants  

In the original analyses (Figures 1 and 2), the harmonization models, goal-specific 

DNNs and dataset prediction models were trained on unmatched participants. The evaluations 

were then performed on matched participants (Figures 2B and 2C). 

In this analysis, we reversed the roles of the matched and unmatched participants 

(Figures S1 and S2) with two exceptions. First, the prediction performance of unmatched 

unharmonized ADNI and unmatched unharmonized AIBL participants was not comparable, 

so the downstream application performance was only evaluated on unmatched unharmonized 

AIBL and unmatched harmonized AIBL data (compare Figure S2C and Figure 2C).  

Second, given the number of matched participants were so small, the training of the 

goal-specific DNN would not be effective. Therefore, the goal-specific DNN was trained 

with all (both matched and unmatched) ADNI participants (compare Figure S1B and Figure 

1B). We note that this is not an issue since the downstream application performance no 

longer utilized any ADNI data (Figure S2C).  

 

2.10 Deep neural network implementation 

All DNNs were implemented using PyTorch (Paszke et al., 2017) and computed on 

NVIDIA RTX 3090 GPUs with CUDA 11.0. To optimize the DNNs, we used the Adam 

optimizer (Kingma & Ba, 2017) with default PyTorch settings.  

 

2.11 Statistical tests 

Two-sided two-sample t-tests were utilized to test for differences in age and MMSE 

between matched participants of AIBI and ADNI (as well as MACC and ADNI). In the case 

of sex and clinical diagnoses, we utilized chi-squared tests.  

As discussed in Sections 2.5 and 2.8, prediction performance was averaged across all 

time points of each participant and across the 10 sets of models, yielding a single prediction 
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performance for each participant. Therefore, for each dataset, harmonization approach and 

evaluation metric, we obtained a performance vector where each element represented one 

participant. When comparing dataset prediction performance (or goal-specific prediction 

performance) between two harmonization approaches, a permutation test with 10,000 

permutations. Each permutation involves randomly swapping the entries between the 

performance vectors of the two approaches. Figure S3 illustrates this permutation procedure 

in more details.   

Multiple comparisons were corrected with a false discovery rate (FDR) of q < 0.05. 

 

2.12 Data and code availability 

Code for the various harmonization algorithms can be found here (GITHUB_LINK). 

Two co-authors (PC and CZ) reviewed the code before merging it into the GitHub repository 

to reduce the chance of coding errors. 

The ADNI and the AIBL datasets can be accessed via the Image & Data Archive 

(https://ida.loni.usc.edu/). The MACC dataset can be obtained via a data-transfer agreement 

with the MACC (http://www.macc.sg/).   
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3 Results 

3.1 cVAE & gcVAE removed more dataset differences than ComBat 

Figure 5A shows the dataset prediction performance for the matched ADNI and AIBL 

participants. Before harmonization, the XGBoost classifier was able to predict which dataset 

a participant came from with 100% accuracy. After applying ComBat, the prediction 

accuracy dropped to 0.626 ± 0.410 (mean ± std), suggesting significant removal of dataset 

differences. After applying cVAE and gcVAE, dataset prediction performance dropped to 

0.595 ± 0.381 and 0.603 ± 0.382 respectively, which were significantly lower than ComBat 

(Table 3). There was no statistical difference between cVAE and gcVAE. However, dataset 

prediction accuracies for cVAE and gcVAE were still better than chance (p = 1e-4), 

suggesting residual dataset differences.   

Similar results were obtained for matched ADNI and MACC participants (Figure 5B). 

Before harmonization, the XGBoost classifier was able to predict which dataset a participant 

came from with 100% accuracy. Dataset prediction accuracies after ComBat, cVAE and 

gcVAE were 0.721 ± 0.392, 0.603 ± 0.391 and 0.598 ± 0.398 respectively. There was no 

statistical difference between cVAE and gcVAE. Both cVAE and gcVAE had statistically 

lower dataset prediction performance than ComBat (Table 4).  

Overall, cVAE and gcVAE appeared to remove more dataset differences than ComBat. 

However, dataset prediction accuracies for cVAE and gcVAE were still better than chance (p 

= 1e-4), suggesting residual dataset differences.   
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Figure 5. Dataset prediction accuracies. (A) Left: Dataset prediction accuracies for 

matched ADNI and AIBL participants. Right: p values of differences between different 

approaches. "*" indicates statistical significance after surviving FDR correction (q < 0.05). 

"n.s." indicates not significant. (B) Same as (A) but for matched ADNI and MACC 

participants. All p values are reported in Tables 3 and 4. 

 

 

Dataset Prediction Accuracies 

（mean ± std） 

p values 

Unharm ComBat cVAE gcVAE 

Unharmonized (1.000 ± 0.027)  1e-4 1e-4 1e-4 

ComBat (0.626 ± 0.410)   0.0055 0.0410 

cVAE (0.595 ± 0.381)    0.1754 

gcVAE (0.603 ± 0.382)     

Table 3. Dataset prediction accuracies with p values of differences between different 

approaches for matched ADNI and AIBL participants. Statistically significant p values after  

FDR (q < 0.05) corrections are bolded.  
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Dataset Prediction Accuracies 

（mean ± std） 

p values 

Unharm ComBat cVAE gcVAE 

Unharmonized (1.00 ± 1e-16)  1e-4 1e-4 1e-4 

ComBat (0.721 ± 0.392)   1e-4 1e-4 

cVAE (0.603 ± 0.391)    0.3584 

gcVAE (0.598 ± 0.398)     

Table 4. Dataset prediction accuracies with p values of differences between different 

approaches for matched ADNI and MACC participants. Statistically significant p values after  

FDR (q < 0.05) corrections are bolded. 

 

 

3.2 gcVAE outperformed cVAE for clinical diagnosis prediction 

Figure 6A shows the clinical diagnosis prediction accuracies for matched ADNI and 

AIBL participants. Because the matched participants had similar age, sex, MMSE and 

clinical diagnosis (Figure 3), comparison between unharmonized ADNI and unharmonized 

AIBL participants would indicate whether there was a drop in prediction performance due to 

dataset differences (e.g., scanner differences). Unexpectedly, there was no statistical 

difference in clinical diagnosis prediction performance between unharmonized ADNI and 

unharmonized AIBL participants (Table 5).  

Applying ComBat resulted in a statistically significant drop in prediction performance 

(p = 7e-4) compared with no harmonization. This suggests that ComBat removed biological 

information in addition to dataset differences (Figure 5A). cVAE exhibited an even bigger 

drop in prediction performance compared with ComBat (p = 1e-4), suggesting that the better 

removal of dataset differences (Figure 5A) came at the expense of removing even more 

biological information. gcVAE yielded the best prediction performance with statistically 

significant improvements over all other approaches, including unharmonized ADNI (see p 

values in Table 5).  

Figure 6B shows the clinical diagnosis prediction accuracies for matched ADNI and 

MACC participants. As expected, there was a significant drop in clinical diagnosis prediction 

performance between unharmonized ADNI and unharmonized MACC participants (p = 1e-

4). The decrease in clinical diagnosis performance was worsened by ComBat and cVAE, 

once again suggesting that the removal of dataset differences (Figure 5B) came at the expense 

of also removing biological information. gcVAE recovered a significant portion of the 
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decrease in prediction performance, such that it was not statistically different from 

unharmonized MACC (Table 6). However, it was still significantly worse than unharmonized 

ADNI, suggesting potential room for improvement.   

 

 

Figure 6. Clinical diagnosis prediction accuracies. (A) Left: Clinical diagnosis prediction 

accuracies for matched ADNI and AIBL participants. Right: p values of differences between 

different approaches. "*" indicates statistical significance after surviving FDR correction (q < 

0.05). "n.s." indicates not significant. (B) Same as (A) but for matched ADNI and MACC 

participants. All p values are reported in Tables 5 and 6. 
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Clinical Diagnosis Prediction 

Accuracies (mean ± std） 

p values 

Unharm ADNI Unharm AIBL ComBat cVAE gcVAE 

Unharm ADNI (0.48 ± 0.33)  0.5171 0.0077 1e-4 2e-4 

Unharm AIBL (0.47 ± 0.23)   7e-4 1e-4 1e-4 

ComBat (0.41 ± 0.34)    1e-4 1e-4 

cVAE (0.26 ± 0.29)     1e-4 

gcVAE (0.69 ± 0.41)      

Table 5. Clinical diagnosis prediction accuracies with p values of differences between different 

approaches for matched ADNI and AIBL participants. Statistically significant p values after 

FDR (q < 0.05) corrections are bolded.  

 

 

Clinical Diagnosis Prediction 

Accuracies (mean ± std） 

p values 

Unharm ADNI Unharm MACC ComBat cVAE gcVAE 

Unharm ADNI (0.63 ± 0.33)  1e-4 1e-4 1e-4 1e-4 

Unharm MACC (0.45 ± 0.29)   0.0124 1e-4 0.0545 

ComBat (0.42 ± 0.35)    2e-4 0.0065 

cVAE (0.36 ± 0.26)     1e-4 

gcVAE (0.49 ± 0.30)      

Table 6. Clinical diagnosis prediction accuracies with p values of differences between different 

approaches for matched ADNI and MACC participants. Statistically significant p values after 

FDR (q < 0.05) corrections are bolded. 

 

 

3.3 gcVAE outperformed cVAE in MMSE prediction 

Figure 7A shows the MMSE prediction mean absolute error (MAE) for matched ADNI 

and AIBL participants. Because the matched participants had similar age, sex, MMSE and 

clinical diagnosis, comparison between unharmonized ADNI and unharmonized AIBL 

participants would indicate whether there was a drop in prediction performance due to dataset 

differences (e.g., scanner differences). As expected, there was a drop in MMSE prediction 

performance (increased MAE) for unharmonized AIBL participants compared with 

unharmonized ADNI participants (p = 1e-4).  

There was no statistical difference between ComBat and the unharmonized AIBL 

participants. cVAE had statistically worse MMSE prediction performance compared with all 
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other approaches (p values in Table 7). gcVAE recovered a significant portion of the decrease 

in prediction performance, such that prediction performance was not statistically different 

from ComBat and unharmonized AIBL (Table 7). However, it was still statistically worse 

than unharmonized ADNI, suggesting further room for improvement. 

Figure 7B shows the MMSE prediction MAE for matched ADNI and MACC 

participants. As expected, there was a drop in MMSE prediction performance (increased 

MAE) for unharmonized MACC participants compared with unharmonized ADNI 

participants (p = 1e-4). Both ComBat and cVAE caused further drop in prediction 

performance (p values in Table 8). gcVAE had the best prediction performance (lowest 

MAE), such that prediction performance was statistically better than unharmonized MACC 

and not statistically different from unharmonized ADNI (Table 8). 

 

Figure 7. MMSE prediction errors as measured by mean absolute error (MAE). (A) 

Left: MMSE prediction errors for matched ADNI and AIBL participants. Right: p values of 

differences between different approaches. "*" indicates statistical significance after surviving 

FDR correction (q < 0.05). "n.s." indicates not significant. (B) Same as (A) but for matched 

ADNI and MACC participants. All p values are reported in Tables 7 and 8. 
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MMSE Prediction MAE 

（mean ± std） 

p values 

Unharm ADNI Unharm AIBL ComBat cVAE gcVAE 

Unharm ADNI (1.60 ± 2.17)  1e-4 0.0061 1e-4 1e-4 

Unharm AIBL (1.86 ± 2.32)   0.4339 0.0054 0.0756 

ComBat (1.82 ± 2.07)    0.0322 0.1473 

cVAE (2.09 ± 3.29)     0.0023 

gcVAE (1.97 ± 2.93)      

Table 7. MMSE prediction errors with p values of differences between different approaches 

for matched ADNI and AIBL participants. Statistically significant p values after FDR (q < 

0.05) corrections are bolded. 
 

MMSE Pred MAE 

（mean ± std） 

p values 

Unharm ADNI Unharm MACC ComBat cVAE gcVAE 

Unharm ADNI (4.26 ± 3.87)  1e-4 1e-4 1e-4 0.9570 

Unharm MACC (5.09 ± 4.66)   1e-4 1e-4 1e-4 

ComBat (5.61 ± 5.03)    1e-4 1e-4 

cVAE (5.96 ± 5.50)     1e-4 

gcVAE (4.25 ± 3.57)      

Table 8. MMSE prediction errors with p values of differences between different approaches 

for matched ADNI and MACC participants. Statistically significant p values after FDR (q < 

0.05) corrections are bolded. 

 

3.4 Further analyses 

3.4.1 Effects of training set size 

We investigated the effects of varying the training set size used for fitting the 

harmonization models (Figure 1C). Across all sample sizes, cVAE and gcVAE generally 

achieved lower dataset prediction accuracies than ComBat (Figure 8A). Across all sample 

sizes, gcVAE achieved better clinical diagnosis prediction than cVAE and ComBat (Figure 

8B). Across all sample sizes for MACC, gcVAE achieved better MMSE prediction than 

cVAE and ComBat (Figure 8C2). Across all sample sizes for AIBL (Figure 8C1), gcVAE 

achieved better MMSE prediction than cVAE; gcVAE achieved worse prediction than 
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ComBat. Overall, across all sample sizes, gcVAE compared favorably with cVAE and 

ComBat.  

In the case of ComBat, larger sample sizes led to worse dataset prediction accuracies 

(i.e., better harmonization). However, sample sizes have minimal effect on clinical diagnosis 

and MMSE prediction. In the case of cVAE, greater sample sizes led to better MMSE 

prediction for both AIBL and MACC participants, better clinical diagnosis prediction for 

MACC participants, worse clinical diagnosis prediction for AIBL participants, and better 

dataset prediction accuracies. In the case of gcVAE, greater sample sizes led to better MMSE 

and clinical diagnosis prediction for both AIBL and MACC participants, as well as better 

dataset prediction accuracies. Overall, for both cVAE and gcVAE, larger sample sizes 

appeared to improve downstream application performance (i.e., MMSE and clinical diagnosis 

prediction), but at the expense of dataset prediction performance. 
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Figure 8. Performance of harmonization models trained with different sample sizes. 

(A1) Dataset prediction accuracies for matched ADNI-AIBL participants; (B1) The clinical 

diagnosis prediction accuracies for matched AIBL participants; (C1) MMSE prediction errors 

for matched AIBL participants. (A2), (B2), and (C2) are the same as (A1), (B1), and (C1), but 

for matched ADNI and MACC participants. 
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3.4.2 Association analyses 

 Figures 9 shows the association analyses between gray matter ROI volumes and four 

variables (age, sex, MMSE and clinical diagnoses) among matched ADNI and AIBL 

participants. Figure 10 shows the same analyses for matched ADNI and MACC participants. 

For each scatter plot, more dots in the green region indicates better gcVAE performance 

compared with the baseline. gcVAE clearly outperformed no harmonization (Figures 9A and 

10A) and ComBat (Figures 9B and 10B) in both datasets. On the other hand, cVAE and 

gcVAE exhibited comparable performance (Figures 9C and 10C) in both datasets. 
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Figure 9. Association analyses between gray matter ROI volumes and four variables 

(age, MMSE, sex and clinical diagnosis) for matched ADNI and AIBL participants.  

First row shows association with age. Second row shows association with MMSE. Third row 

shows association with sex. Fourth row shows association with clinical diagnosis. (A) 

Comparison between gcVAE and no harmonization. (B) Comparison between gcVAE and 

ComBat. (C) Comparison between gcVAE and cVAE. Each block dot represents one gray 

matter ROI. Dots in the green area indicates better gcVAE performance compared with 

baseline. gcVAE clearly outperforms no harmonization and ComBat. gcVAE and cVAE 

exhibited similar performance. 
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Figure 10. Association analyses between gray matter ROI volumes and four variables 

(age, MMSE, sex and clinical diagnosis) for matched ADNI and MACC participants.  

First row shows association with age. Second row shows association with MMSE. Third row 

shows association with sex. Fourth row shows association with clinical diagnosis. (A) 

Comparison between gcVAE and no harmonization. (B) Comparison between gcVAE and 

ComBat. (C) Comparison between gcVAE and cVAE. Each block dot represents one gray 

matter ROI. Dots in the green area indicates better gcVAE performance compared with 

baseline. gcVAE clearly outperforms no harmonization and ComBat. gcVAE and cVAE 

exhibited similar performance. 
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3.4.3 ComBat with additional covariates 

Our main analysis utilized ComBat with age and sex as covariates. Here, we 

considered ComBat with age, sex, MMSE and clinical diagnosis as covariates. We note that 

this version of ComBat assumed that MMSE and clinical diagnosis information were known 

in the test set (matched participants). Therefore, the prediction performance of ComBat (with 

the additional covariates) was corrupted by test set leakage and was not valid.  

The additional covariates led to better MMSE and clinical diagnosis prediction by 

ComBat (Tables S10 and S11). In the case of AIBL, clinical diagnosis prediction remained 

statistically worse than gcVAE, but MMSE prediction was now statistically better than 

gcVAE. In the case of MACC, clinical diagnosis prediction was now comparable with 

gcVAE, but MMSE prediction remained worse than gcVAE. Interestingly, the additional 

covariates led to greater dataset prediction accuracies for both ADNI-AIBL and ADNI-

MACC, suggesting worse harmonization. Together, gcVAE remained better than ComBat.  

 

3.4.4 Reversing the roles of the matched and unmatched participants 

In this analysis, we reversed the roles of matched and unmatched participants (Section 

2.9.4). Similar to the original main analyses, we found that gcVAE compared favorably with 

both ComBat and cVAE (Figures S4 to S6; Tables S12 to S17).  

More specifically, recall that there were six evaluation metrics (two for dataset 

prediction, two for diagnosis prediction and two for MMSE prediction). gcVAE was 

statistically better than ComBat for both dataset prediction metrics and two downstream 

application performance metrics, while being statistically worse than ComBat in one 

downstream application performance metric (Figures S4 to S6; Tables S12 to S17). On the 

other hand, gcVAE was statistically worse than cVAE for the two dataset prediction metrics, 

but statistically better than cVAE for the four downstream application performance metrics 

(Figures S4 to S6; Tables S12 to S17). Therefore, similar to the main results, cVAE removed 

more dataset differences at the expense of removing more biological information.   

One interesting deviation from the main results was that in the current setup (where 

harmonization models were trained on matched participants), ComBat was statistically better 

than no harmonization across all six evaluation metrics. On the other hand, in the main 

analysis (Figures 5 to 7; Tables 3 to 8), ComBat was statistically better than no harmonization 

for both dataset prediction metrics, but statistically worse than no harmonization for all four 

downstream application performance metrics. On the other hand, for the main analysis, 

gcVAE was statistically better than no harmonization for both dataset prediction metrics and 
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two downstream application performance metrics. In the current analysis, gcVAE was 

statistically better than no harmonization for both dataset prediction metrics and three 

downstream application performance metrics, but was statistically worse for one application 

performance metric. Therefore, gcVAE appeared more robust than ComBat to covariate 

differences during the harmonization procedure.  
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4 Discussion 

In this study, we proposed a flexible harmonization framework to utilize downstream 

application performance to regularize the harmonization model. Our proposed approach 

could be integrated with most harmonization approaches based on DNNs. Here, we integrated 

our approach with the cVAE model. Using three large-scale datasets, we demonstrated that 

gcVAE compared favorably with ComBat and cVAE. 

We found that cVAE was able to significantly remove more dataset differences than 

ComBat (Figure 5). This makes intuitive sense given that cVAE considered all brain regions 

jointly, so should theoretically be able to remove multivariate site effects distributed across 

brain regions. However, the removal of more dataset differences came at the expense of also 

removing relevant biological information as measured by downstream application 

performance (Figures 6 and 7).  

Indeed, the removal of relevant biological information was an issue not just for 

cVAE, but also for ComBat. In the case of predicting clinical diagnosis and MMSE, the use 

of ComBat led to similar or worse performance than not harmonizing at all. By constraining 

the harmonization with goal-specific DNNs, the gcVAE models were able to yield better 

prediction of MMSE and clinical diagnosis (Figures 6 and 7), while removing as much 

dataset differences as cVAE (Figure 5).  

In the case of clinical diagnosis prediction, gcVAE was able to yield better prediction 

performance than no harmonization. In the case of MMSE prediction, gcVAE was able to 

yield better prediction performance than no harmonization in the MACC dataset, but was 

only able to yield comparable prediction performance than no harmonization in the AIBL 

dataset.  

Our main analyses (Figures 6 and 7) showed that gcVAE facilitated the translation of 

goal-specific DNNs from ADNI to new datasets (AIBL and MACC). Another common 

application of harmonization is to facilitate the pooling of datasets for some joint analysis. 

Here, we investigated the association of the brain volumes with multiple variables across the 

harmonized datasets. We found that gcVAE clearly outperformed no harmonization (Figures 

9A and 10A) and ComBat (Figures 9B and 10B). On the other hand, cVAE and gcVAE 

exhibited comparable performance (Figures 9C and 10C). 
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4.1 Matched versus unmatched participants  

We note that our workflow utilized unmatched participants to train the harmonization 

models, dataset prediction models and goal-specific DNNs, while evaluation was performed 

on the matched participants (Figures 1 and 2). The setup allowed us to compare downstream 

application performance between unharmonized data from matched ADNI participants and 

matched AIBL participants. Because age, sex, MMSE and clinical diagnosis were similar 

between matched ADNI and AIBL participants, the drop in downstream application 

performance (clinical diagnosis or MMSE prediction) could be attributed to a lack of 

harmonization. Since the goal-specific DNNs were trained on ADNI (Figure 2B), the 

prediction performance on matched unharmonized ADNI participants served as an upper 

bound on the prediction performance after harmonization.  

Surprisingly, in the case of clinical diagnosis prediction in the AIBL dataset, gcVAE 

was better than the upper bound (Figure 6A). On the other hand, in the case of MMSE 

prediction in the AIBL dataset, gcVAE only achieved similar performance as no 

harmonization and was worse than the upper bound (Figure 7A). One possible reason for this 

discrepancy is that when tuning the hyperparameters, the weights tradeoff the prediction of 

MMSE and clinical diagnosis were fixed, so in the case of AIBL, this might have 

inadvertently favored clinical diagnosis prediction more than MMSE prediction. 

However, we note that the current workflow of training on unmatched participants can 

prove challenging for ComBat (Nygaard et al., 2016; Zindler et al., 2020) because of 

covariate differences between ADNI and AIBL (as well ADNI and MACC). Therefore, we 

considered a control analysis in which the roles of the matched and unmatched participants 

were swapped. Consistent with the main analyses, we found that gcVAE compared favorably 

with both ComBat and cVAE (Figures S4 to S6; Tables S12 to S17). Furthermore, in the 

control analysis, ComBat was better than no harmonization for both dataset prediction and 

downstream application performance. On the other hand, in the control analysis, gcVAE was 

statistically better than no harmonization for both dataset prediction metrics and three 

downstream application performance metrics, but was statistically worse for one application 

performance metric. Overall, this suggests that gcVAE was more robust than ComBat to 

covariate differences between datasets used for the harmonization procedure.  

 

4.2 Sample size  

Deep neural networks are often thought to be data hungry. Across different sample 

sizes (Figure 8), gcVAE was better than cVAE for all four downstream application 
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performance. On the other hand, across all sample sizes, gcVAE was better than ComBat for 

three downstream prediction metrics. Interestingly, gcVAE was worse than ComBat for 

MMSE prediction in the AIBL dataset across all sample sizes but given the rapid 

improvement trajectory of gcVAE (Figure 8C1), we might expect the gap to close rapidly 

with more data. Surprisingly, as the sample size increases, the downstream performance of 

gcVAE improved at the expense of dataset prediction performance. However, the dataset 

prediction accuracies of gcVAE continued to be worse (i.e., better harmonization) than 

ComBat even with the full set of data (Figure 8A).  

 

4.3 Methodological considerations 

To illustrate the use of gcVAE, when harmonizing ADNI and a new dataset, the 

researcher could validate gcVAE by repeating the same procedure as the current study 

(Figures 2 and 3). Once the researcher is satisfied with the performance, the researcher could 

then train the model on 90% of the data and tune the hyperparameters on the remaining 10% 

of the data without the need of a 10-fold cross-validation procedure. The final model can then 

be applied to the full dataset. 

An interesting methodological consideration is the handling of confound variables 

when using gcVAE. For example, age is likely related to clinical diagnosis. Therefore, when 

training gcVAE to harmonize ADNI and AIBL, the algorithm might seek to preserve age-

related brain patterns related to clinical diagnosis. However, we note that this may or may not 

be an issue depending on the study. For example, if our goal is clinical diagnosis, then it 

would be counterproductive to exclude age in the diagnosis procedure. After all, 

demographics are often used for differential diagnosis in actual clinical practice.  

There might indeed be situations, where the related variables are indeed confounds. For 

example, if a study is interested in dementia risks above and beyond aging, then age does 

become a confound. In that scenario, researchers could consider regressing age from the 

imaging features and/or target variables before training the goal-specific DNN. Another 

approach is to include an adversarial cost when training the goal-specific DNN to ensure the 

intermediate layers could not be used to predict the confound variable (e.g., age). 

The theoretical advantage of gcVAE over ComBat is its multivariate nature, which 

allowed cVAE to remove site differences distributed across brain regions. This advantage is 

clearly demonstrated in the dataset prediction experiments (Figure 5). More recent ComBat 

variants, such as CovBat (Chen et al., 2019) allowed the harmonization of inter-regional 
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covariance. Given their multivariate nature, cVAE and gcVAE should also in principle 

remove site variation in covariance. 

Finally, our current study only demonstrated results from harmonizing pairs of datasets 

(ADNI and AIBL, as well as ADNI and MACC). However, the cVAE framework is highly 

flexible and the cVAE machinery can be easily extended to multiple datasets. Similarly, the 

goal-specific DNN could also be trained on multiple datasets. So overall, gcVAE could in 

principle be applied to harmonize multiple datasets jointly. However, this is not something 

we have demonstrated in this study, which we leave for future work. 

 

4.4 Limitations 

 The strength of gcVAE is also its main limitation. The reliance of goal-specific DNNs 

led to better downstream performance, but the resulting improvements might not generalize 

to new downstream applications. Therefore, the training procedure might have to be repeated 

for each new downstream application. Future research is necessary to address this limitation.  
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5 Conclusion 

In this study, we proposed a goal-specific brain MRI harmonization framework, which 

took into account downstream application performance in the harmonization process. Using 

three large-scale datasets, we demonstrated that our approach compared favorably with existing 

approaches in terms of preserving relevant biological information, while removing site 

differences.    
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Supplementary Material 

Vendor Scanner Model Field Strength Number of scans 

GE  

Discovery  3T 595 

Genesis Signa 3T 273 

Signa Excite 
1.5T 838 

3T 30 

Signa HDx 
1.5T 464 

3T 42 

Signa HDxt 
1.5T 212 

3T 405 

Philips 

Achieva 
1.5T 67 

3T 481 

Gemini 3T 32 

Gyroscan Intera 1.5T 12 

Gyroscan NT 1.5T 2 

Ingenia 3T 84 

Ingenuity 3T 18 

Intera 
1.5T 319 

3T 216 

Intera Achieva 
1.5T 6 

3T 1 

Siemens 

Allegra 3T 48 

Avanto 1.5T 385 

Biograph 3T 12 

Espree 1.5T 22 

NUMARIS/4 1.5T 2 

Prisma 3T 2 

Prisma_fit 3T 3 

Skyra 3T 274 

Sonata 1.5T 371 

SonataVision 1.5T 25 

Symphony 1.5T 547 

SymphonyTim 1.5T 88 

Trio 3T 107 

TrioTim 3T 1371 

Verio 3T 601 

Table S1. Scanner information for 7955 scans in ADNI dataset. 

 

 

 

Vendor Scanner Model Field Strength Number of scans 

Siemens 

Avanto 1.5T 241 

TrioTim 3T 558 

Verio 3T 134 

Table S2. Scanner information for 933 scans in AIBL dataset. 
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 Timepoint ADNI value AIBL value P value 

AGE 

1 71.0±5.5 70.8±5.3 0.96 

2 72.5±5.5 72.6±5.5 0.98 

3 74.2±5.5 73.9±5.6 0.93 

4 75.7±5.5 75.6±5.5 0.99 

MMSE 

1 29.3±0.9 29.2±0.9 1.00 

2 29.5±0.5 29.5±0.5 1.00 

3 29.7±0.5 29.7±0.5 1.00 

4 29.5±0.8 29.5±0.8 1.00 

AD diagnosis 

1 100%-0%-0% 100%-0%-0% 1.00 

2 100%-0%-0% 100%-0%-0% 1.00 

3 100%-0%-0% 100%-0%-0% 1.00 

4 100%-0%-0% 100%-0%-0% 1.00 

Sex - 50% 50% 1.00 

Table S3. ADNI-AIBL matching results for participants having 4 time points (scans). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 

 

 

 Timepoint ADNI value AIBL value P value 

AGE 

1 73.3±3.3 73.1±3.3 0.96 

2 74.8±3.3 75.2±3.3 0.94 

3 76.3±3.3 76.1±3.3 0.97 

MMSE 

1 29.0±0.0 20.0±0.0 1.00 

2 30.0±0.0 30.0±0.0 1.00 

3 30.0±0.0 30.0±0.0 1.00 

AD diagnosis 

1 100%-0%-0% 100%-0%-0% 1.00 

2 100%-0%-0% 100%-0%-0% 1.00 

3 100%-0%-0% 100%-0%-0% 1.00 

Sex - 50% 50% 1.00 

Table S4. ADNI-AIBL matching results for participants having 3 time points (scans). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 
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 Timepoint ADNI value AIBL value P value 

AGE 
1 74.4±9.8 74.5±9.8 0.99 

2 76.1±9.8 76.1±9.9 0.99 

MMSE 
1 27.9±2.8 27.9±2.8 1.00 

2 27.8±2.8 27.8±2.8 1.00 

AD diagnosis 
1 57%-43%-0% 57%-43%-0% 1.00 

2 57%-43%-0% 57%-43%-0% 1.00 

Sex - 88% 88% 1.00 

Table S5. ADNI-AIBL matching results for participants having 2 time points (scans). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 

 

 

 Timepoint ADNI value AIBL value P value 

AGE 1 74.8±5.9 74.8±5.9 1.00 

MMSE 1 27.3±3.9 27.3±3.9 0.98 

AD diagnosis 1 68%-19%-13% 68%-19%-13% 1.00 

Sex - 43% 43% 1.00 

Table S6. ADNI-AIBL matching results for participants having 1 time point (scan). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 
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 Timepoint ADNI value MACC value P value 

AGE 

1 71.5±6.8 72.3±6.7 0.67 

2 73.5±6.8 73.8±6.8 0.91 

3 75.9±6.9 75.5±6.6 0.81 

MMSE 

1 26.9±3.7 27.0±3.5 0.94 

2 26.1±4.5 26.1±4.5 0.98 

3 24.9±6.3 25.2±6.3 0.87 

AD diagnosis 

1 39%-46%-15% 36%-54%-10% 0.72 

2 43%-36%-21% 46%-36%-18% 0.88 

3 43%-36%-21% 46%-32%-22% 0.91 

Sex - 57% 57% 1.00 

Table S7. ADNI-MACC matching results for participants having 3 time points (scans). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 

 

 

 Timepoint ADNI value MACC value P value 

AGE 
1 73.6±5.7 73.9±5.6 0.78 

2 75.8±5.6 75.5±5.6 0.71 

MMSE 
1 24.7±4.9 24.8±4.6 0.86 

2 23.4±6.9 23.5±6.6 0.91 

AD diagnosis 
1 35%-38%-27% 35%-40%-25% 0.80 

2 37%-30%-33% 37%-35%-28% 0.49 

Sex - 51% 58% 0.20 

Table S8. ADNI-MACC matching results for participants having 2 time points (scans). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test 
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 Timepoint ADNI value MACC value P value 

AGE 1 75.7±6.7 75.7±6.7 0.97 

MMSE 1 21.0±5.9 21.0±5.9 0.94 

AD diagnosis 1 14%-34%-52% 14%-38%-48% 0.64 

Sex - 52% 56% 0.34 

Table S9. ADNI-MACC matching results for participants having 1 time points (scans). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 

 

 

ADNI-AIBL 
ComBat  

(AGE+SEX+MMSE+DX) 

Models to Compare 

ComBat 

(AGE+SEX) 
cVAE gcVAE 

Dataset Pred Acc 

(Mean±Std) 

0.70±0.38 0.62±0.41 0.60±0.38 0.60±0.38 

p values 1e-4 1e-4 1e-4 

Clinical Diagnosis Pred 

Acc (Mean±Std) 

0.45±0.33 0.41±0.34 0.26±0.29 0.69±0.41 

p values 0.0014 1e-4 1e-4 

MMSE Pred MAE 

(Mean±Std) 

1.82±2.48 1.82±2.07 2.09±3.29 1.97±2.93 

p values 0.9582 0.0013 0.0290 

Table S10. Comparison between ComBat with 4 covariates and other harmonization 

models for ADNI-AIBL. The first row is dataset prediction accuracy, the second row is 

clinical diagnosis prediction accuracy, and the last row is MMSE prediction mean absolute 

error (MAE). Within each row, the p values correspond to the difference between ComBat 

with four covariates and the other models. P values significant after FDR correction (q < 

0.05) are bolded. 
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ADNI-MACC 
ComBat  

(AGE+SEX+MMSE+DX) 

Models to Compare 

ComBat 

(AGE+SEX) 
cVAE gcVAE 

Dataset Pred Acc 

(Mean±Std) 

0.75±0.36 0.72±0.39 0.60±0.39 0.60±0.40 

p values 0.0086 1e-4 1e-4 

Clinical Diagnosis Pred 

Acc (Mean±Std) 

0.49±0.35 0.42±0.35 0.36±0.26 0.49±0.30 

p values 1e-4 1e-4 0.7204 

MMSE Pred MAE 

(Mean±Std) 

4.95±4.57 5.61±5.03 6.01±5.50 4.25±3.57 

p values 1e-4 1e-4 1e-4 

Table S11. Comparison between ComBat with 4 covariates and other harmonization 

models for ADNI-MACC. The first row is dataset prediction accuracy, the second row is 

clinical diagnosis prediction accuracy, and the last row is MMSE prediction mean absolute 

error (MAE). Within each row, the p values correspond to the difference between ComBat 

with four covariates and the other models. P values significant after FDR correction (q < 

0.05) are bolded. 

 

 

Dataset Prediction Accuracies 

（mean ± std） 

p values 

Unharm ComBat cVAE gcVAE 

Unharmonized (0.991±0.066)  1e-4 1e-4 1e-4 

ComBat (0.676±0.293)   1e-4 1e-4 

cVAE (0.467±0.174)    1e-4 

gcVAE (0.514±0.175)     

Table S12. Dataset prediction accuracies with p values of differences between different 

approaches for unmatched ADNI and AIBL participants. Statistically significant p values after 

FDR (q < 0.05) corrections are bolded. This is the same as Table 3, except that the roles of 

matched and unmatched participants were swapped. 
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Dataset Prediction Accuracies 

（mean ± std） 

p values 

Unharm ComBat cVAE gcVAE 

Unharmonized (0.983±0.083)  1e-4 1e-4 1e-4 

ComBat (0.720±0.284)   1e-4 1e-4 

cVAE (0.412±0.139)    1e-4 

gcVAE (0.466±0.176)     

Table S13. Dataset prediction accuracies with p values of differences between different 

approaches for unmatched ADNI and MACC participants. Statistically significant p values 

after FDR (q < 0.05) corrections are bolded. This is the same as Table 4, except that the roles 

of matched and unmatched participants were swapped. 

 

 

Clinical Diagnosis Prediction  

Accuracies (mean ± std） 

p values 

Unharm AIBL ComBat cVAE gcVAE 

Unharm AIBL (0.40±0.21)  1e-4 0.0570 1e-4 

ComBat (0.48±0.31)   0.0915 1e-4 

cVAE (0.44±0.22)    1e-4 

gcVAE (0.68±0.38)     

Table S14. Clinical diagnosis prediction accuracies with p values of differences between 

different approaches for unmatched AIBL participants. Statistically significant p values after 

FDR (q < 0.05) corrections are bolded. This is the same as Table 5, except that the roles of 

matched and unmatched participants were swapped. 
 

Clinical Diagnosis Prediction  

Accuracies (mean ± std） 

p values 

Unharm MACC ComBat cVAE gcVAE 

Unharm MACC (0.47±0.29)  0.0021 0.2552 1e-4 

ComBat (0.53±0.31)   2e-4 0.1374 

cVAE (0.44±0.16)    1e-4 

gcVAE (0.56±0.27)     

Table S15. Clinical diagnosis prediction accuracies with p values of differences between 

different approaches for unmatched MACC participants. Statistically significant p values 

after FDR (q < 0.05) corrections are bolded. This is the same as Table 6, except that the roles 

of matched and unmatched participants were swapped. 
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MMSE Prediction MAE 

（mean ± std） 

p values 

Unharm AIBL ComBat cVAE gcVAE 

Unharm AIBL (2.15±2.54)  0.0062 1e-4 3e-4 

ComBat (2.06±2.38)   1e-4 1e-4 

cVAE (2.58±3.44)    1e-4 

gcVAE (2.39±3.22)     

Table S16. MMSE prediction errors with p values of differences between different approaches 

for unmatched AIBL participants. Statistically significant p values after FDR (q < 0.05) 

corrections are bolded. This is the same as Table 7, except that the roles of matched and 

unmatched participants were swapped. 
 
 
 

MMSE Prediction MAE 

（mean ± std） 

p values 

Unharm MACC ComBat cVAE gcVAE 

Unharm MACC (6.90±4.49)  1e-4 0.4411 1e-4 

ComBat (5.92±4.16)   1e-4 1e-4 

cVAE (7.00±5.43)    1e-4 

gcVAE (5.03±3.37)     

Table S17. MMSE prediction errors with p values of differences between different approaches 

for unmatched MACC participants. Statistically significant p values after FDR (q < 0.05) 

corrections are bolded. This is the same as Table 8, except that the roles of matched and 

unmatched participants were swapped. 
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Figure S1. Workflow of control analysis for data matching and model training. We 

illustrate the workflow using ADNI and AIBL. The same procedure was applied to ADNI 

and MACC. The workflow is the same as Figure 1 except the role of matched and unmatched 

participants are swapped in panel C. Furthermore in the case of panel B, all unharmonized 

data from all ADNI participants was used to train the goal-specific DNN because there are 

too few matched participants to train the goal-specific DNN.  
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Figure S2. Workflow of control analysis for data harmonization and performance 

evaluation. We illustrate the workflow using ADNI and AIBL. The same procedure was 

applied to ADNI and MACC. The workflow is the same as Figure 2 except the role of 

matched and unmatched participants are swapped in panels B and C. Note that in panel C 

(compared with Figure 2C), the prediction performance of unmatched unharmonized ADNI 

and unmatched unharmonized AIBL participants were not comparable, so the downstream 

application performance was only evaluated on unmatched unharmonized AIBL and 

unmatched harmonized AIBL data.  
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Figure S3. Illustration of permutation test for comparing clinical diagnosis accuracies of 

ComBat and gcVAE. (A1) For a given model, we averaged the clinical diagnosis accuracies 

within each participant for ComBat. (B1) Same as A1 but for gcVAE. (A2) Averaging the 

clinical diagnosis accuracies across the 10 models within each participant. (B1 & B2) Same 

as A1 and A2 but for gcVAE. (C) Permute 10,000 times to obtain p value.  
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Figure S4. Dataset prediction accuracies when harmonization models were trained on 

matched data and evaluation was performed on unmatched data. (A) Left: Dataset 

prediction accuracies for unmatched ADNI and AIBL participants. Right: p values of 

differences between different approaches. "*" indicates statistical significance after surviving 

FDR correction (q < 0.05). "n.s." indicates not significant. (B) Same as (A) but for unmatched 

ADNI and MACC participants. All p values are reported in Tables S12 and S13. This is the 

same as Figure 5, except that the roles of matched and unmatched participants were swapped. 
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Figure S5. Clinical diagnosis prediction accuracies when harmonization models were 

trained on matched data and evaluation was performed on unmatched data. (A) Left: 

Clinical diagnosis prediction accuracies for unmatched AIBL participants. Right: p values of 

differences between different approaches. "*" indicates statistical significance after surviving 

FDR correction (q < 0.05). "n.s." indicates not significant. (B) Same as (A) but for unmatched 

MACC participants. All p values are reported in Tables S14 and S15. This is the same as 

Figure 6, except that the roles of matched and unmatched participants were swapped. 
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Figure S6. MMSE prediction errors as measured by mean absolute error (MAE) when 

harmonization models were trained on matched data and evaluation was performed on 

unmatched data. (A) Left: MMSE prediction errors for unmatched AIBL participants. 

Right: p values of differences between different approaches. "*" indicates statistical 

significance after surviving FDR correction (q < 0.05). "n.s." indicates not significant. (B) 

Same as (A) but for unmatched MACC participants. All p values are reported in Tables S16 

and S17. This is the same as Figure 7, except that the roles of matched and unmatched 

participants were swapped. 
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