

1 **Cobalamin riboswitches are broadly sensitive to corrinoid cofactors to enable an efficient**
2 **gene regulatory strategy**

3 Kristopher J. Kennedy¹, Florian J. Widner¹, Olga M. Sokolovskaya^{1,2}, Lina V. Innocent¹,
4 Rebecca R. Procknow¹, Kenny C. Mok¹, and Michiko E. Taga^{1,*}

5 ¹Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA
6 94720, USA

7 ²Present address: Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San
8 Francisco, CA, 94080, USA

9 *Corresponding author: taga@berkeley.edu

10 **Abstract**

11 In bacteria, many essential metabolic processes are controlled by riboswitches, gene regulatory
12 RNAs that directly bind and detect metabolites. Highly specific effector binding enables
13 riboswitches to respond to a single biologically relevant metabolite. Cobalamin riboswitches are
14 a potential exception because over a dozen chemically similar but functionally distinct cobalamin
15 variants (corrinoid cofactors) exist in nature. Here, we measured cobalamin riboswitch activity *in*
16 *vivo* using a *Bacillus subtilis* fluorescent reporter system and found that among 38 tested
17 riboswitches, a subset responded to corrinoids promiscuously, while others were semi-selective.
18 Analyses of chimeric riboswitches and structural models indicate that, unlike other riboswitch
19 classes, cobalamin riboswitches indirectly differentiate among corrinoids by sensing differences
20 in their structural conformation. This regulatory strategy aligns riboswitch-corrinoid specificity
21 with cellular corrinoid requirements in a *B. subtilis* model. Thus, bacteria can employ broadly
22 sensitive riboswitches to cope with the chemical diversity of essential metabolites.

23 Introduction

24 Controlling gene expression is an essential task that cells accomplish in a variety of ways. Non-
25 coding RNAs are one such means of gene regulation, acting in parallel or in concert with
26 historically better-studied protein-based mechanisms (1). In bacteria and archaea, riboswitches
27 are a widespread type of gene regulatory RNA with the distinct ability to sense particular
28 intracellular metabolites by direct binding (2). These RNAs are typically located in the 5'-
29 untranslated region of mRNA transcripts and function as cis-regulators of downstream genes
30 within their transcripts. A riboswitch is composed of an effector-binding aptamer domain and an
31 expression platform. The aptamer domain adopts a three-dimensional structure that can bind its
32 cognate effector molecule. The expression platform domain is a regulatory switch that interprets
33 the effector-binding state of the upstream aptamer typically to promote or disrupt the
34 transcription or translation of downstream genes (3). The diversity of riboswitch effectors and
35 regulatory mechanisms has revealed fundamental insights into how bacteria sense and respond to
36 dynamic environments and has also driven new approaches for precise control and manipulation
37 of microbes for human purposes (4-7).

38 Cobalamin (Cbl) riboswitches (also called ‘B₁₂ riboswitches’ or ‘adenosylcobalamin
39 riboswitches’) are among the most widespread and structurally diverse types of riboswitch in
40 bacteria (8). They directly bind various forms of the enzyme cofactor Cbl as a cognate effector
41 (Figure 1A, C) (9) to regulate genes involved in the biosynthesis, transport, and usage of Cbl.
42 Cbl-dependent enzymes function in common metabolic pathways including methionine
43 synthesis, deoxyribonucleotide synthesis, tRNA modification, and the degradation of certain
44 amino acids, fatty acids, and biopolymers (10-23). Cbl is also required for rarer metabolic
45 processes involved in antibiotic synthesis, mercury methylation, catabolism of steroids, and
46 many others (24-37). Comparative genomic studies indicate that most bacteria perform Cbl-
47 dependent metabolism and that Cbl-riboswitches often regulate these processes (8, 38, 39).
48 However, an overlooked facet among most riboswitch studies is that Cbl is just one member of a
49 class of enzyme cofactors known as corrinoids (Figure 1B) (40). In fact, Cbl-dependent enzymes
50 in bacteria often function with corrinoids other than Cbl. Yet, it remains unclear whether the
51 dozens of naturally occurring corrinoid cofactors are also Cbl-riboswitch effectors (41-47).

52 Corrinoid cofactors contain a highly substituted corrin ring with a central cobalt ion, a variable
53 ‘upper ligand’ moiety coordinating the β axial face of the cobalt, and a tail structure extending
54 from the corrin ring and terminating in a variable ‘lower ligand’ moiety that often coordinates
55 the α axial face of the cobalt (Figure 1A, B). The molecular basis of selectivity of Cbl-
56 riboswitches for upper ligand variants of Cbl has been relatively well studied, but selectivity for
57 corrinoid tail variants remains mostly unexplored (9, 48, 49). To our knowledge, only one study
58 has directly examined corrinoid tail specificity of a single Cbl-riboswitch. *In vitro* binding
59 measurements showed that the aptamer of the *Escherichia coli* *btuB* Cbl-riboswitch binds the
60 complete corrinoids Cbl and 2-methyladeninylcobamide ([2-MeAde]Cba) with a 3.2-fold
61 difference in affinity (K_D = 89 and 290 nM, respectively). Furthermore, Cbi, an incomplete
62 corrinoid with a truncated tail, binds the aptamer with roughly 8,000-fold lower affinity than Cbl
63 (K_D = 753 μ M), suggesting that this aptamer binds corrinoids in a selective manner (50). In light

64 of these previous studies of corrinoid-specific metabolisms and Cbl-riboswitches, we
65 hypothesize that Cbl-riboswitches harbor a range of distinct corrinoid tail-specific activities.

66 Here, we examined how a panel of 38 Cbl-riboswitches derived from 12 bacterial species
67 responds to the distinct tail structures of four corrinoids: Cbl, pCbl, and CreCba, representatives
68 of the benzimidazolyl, purinyl, and phenolyl cobamides, respectively, and Cbi, an incomplete
69 corrinoid (Figure 1B). To compare activities among several dozen Cbl-riboswitches, we devised
70 a live cell fluorescence-based reporter system in *Bacillus subtilis*. In contrast to conventional *in*
71 *vitro* biochemical approaches, this riboswitch reporter system captures the complete corrinoid-
72 responsive gene regulatory process and provides rapid functional measurements with multiple
73 effectors in parallel. Our results obtained from experiments in the reporter system in conjunction
74 with comparative structural analyses of Cbl-riboswitches and corrinoid effectors allowed us to
75 develop a mechanistic model for how corrinoid tail-specific gene regulation is achieved.
76 Additionally, we examine a gene regulatory strategy for the corrinoid specificity of a Cbl-
77 riboswitch and discuss the conceptual and practical implications of these findings.

78

79 **Results**

80 *Experimental strategy – Development of an in vivo reporter system*

81 In order to compare corrinoid selectivity among several Cbl-riboswitches and corrinoids, we
82 constructed an *in vivo* GFP reporter system. We initially attempted to use an *E. coli* host for the
83 reporter system but found that most of the riboswitches we tested did not function in the *E. coli*
84 host. We chose *B. subtilis* as an alternative host organism because of the robust genome
85 engineering and gene expression toolsets available. Furthermore, the *B. subtilis* genome does not
86 contain any annotated corrinoid biosynthesis or remodeling genes that would potentially interfere
87 with a riboswitch reporter assay. We engineered the strain to overexpress the Cbl uptake and
88 adenosylation operon, *btuFC**DR*, and deleted *queG*, which encodes the only Cbl-dependent
89 enzyme in the genome. We found that *btuFC**DR* overexpression increased uptake of not only
90 Cbl, but also pCbl, CreCba and Cbi (Figure 2A-D). Additionally, each corrinoid was transformed
91 from the cyanated to adenosylated form, suggesting that the corrinoids are internalized to the
92 cytoplasm, and not simply accumulating on the outer cell surface. This strain is effective for
93 measuring the response of the *B. subtilis* *btuF* Cbl-riboswitch to a broad range of concentrations
94 of Cbl (Figure 2E-G). Notably, deletion of *btuR*, which encodes the adenosyltransferase that
95 installs the Ado upper ligand group, rendered the *B. subtilis* *btuF* Cbl-riboswitch reporter
96 insensitive to exogenously supplied CNCbl, MeCbl, and OHCbl, while retaining dose-dependent
97 repression in response to AdoCbl (Figure S1). This strongly suggests that the *B. subtilis* *btuF*
98 Cbl-riboswitch only responds to Cbl containing the 5'-deoxyadenosine upper ligand, in contrast
99 with a report suggesting that this riboswitch aptamer can also bind MeCbl and OHCbl (51).

100 *Comparison of corrinoid specificity among Cbl-riboswitches*

101 In the strain background described above, we constructed 86 reporter strains to examine
102 riboswitches from 20 bacterial species including 10 species known to produce or require specific

103 corrinoids. Of the 86 reporters, 38 repressed GFP expression 0.5-fold or greater in response to
104 one or more corrinoids. 37 of these 38 functional riboswitch expression platforms contain a
105 predicted intrinsic transcriptional terminator suggesting that they are transcriptional riboswitches.
106 We observed extensive variation in sequence length and nucleotide composition throughout the
107 aptamers and expression platforms of the 38 riboswitches that were functional in *B. subtilis*
108 (Figure 1D). Nine of the functional riboswitches are from *Priestia* (formerly *Bacillus*)
109 *megaterium*, which produces Cbl (41), and 12 are from *Sporomusa ovata* and *Veillonella parvula*
110 which both produce CreCba (44, 45, 52, 53). These results show that Cbl-riboswitches of diverse
111 sequence composition and origin can be examined with the *in vivo* reporter system. To address
112 whether Cbl-riboswitches are corrinoid selective, and how corrinoid selectivity varies among
113 Cbl-riboswitches, we measured the dose-responses of the 38 functional Cbl-riboswitches to four
114 corrinoids, Cbl, pCbl, CreCba and Cbi. Our results show that all of the riboswitches responded to
115 more than one corrinoid, and a subset responded to all four (Figure 3). Strikingly, all of the tested
116 riboswitches are either semi-selective (responding to more than one corrinoid) or promiscuous
117 (responding to all four corrinoids) (Figure 3A-B). We did not find any highly selective
118 riboswitches that respond to only one corrinoid. The semi-selective and promiscuous
119 riboswitches all respond to Cbl and pCbl (Figure 3C), and the promiscuous riboswitches
120 additionally respond to Cbi and CreCba (Figure 3D-E, points above the horizontal dashed line).
121 Furthermore, the semi-selective riboswitches are generally more sensitive to Cbl than to pCbl,
122 while the promiscuous riboswitches respond similarly to these two corrinoids. Almost all of the
123 riboswitches respond weakly to CreCba compared to the other three corrinoids (Figures S2A-C).
124 In general, corrinoid selectivity of a riboswitch appears to be associated with its taxonomic
125 origin (Figure 3C-E). The riboswitches from the Bacilli class are exclusively semi-selective
126 (Figure S2A), whereas those from Negativicutes are predominantly promiscuous (Figure S2B).
127 The *S. ovata cobT* riboswitch is a notable exception that will be discussed later. In contrast to
128 taxonomy, corrinoid selectivity of a riboswitch is not strongly associated with the function of its
129 regulatory target genes (Figure S3).

130 Next, we attempted to identify the RNA sequence features that underlie corrinoid selectivity.
131 Chimeric fusions of the semi-selective *P. megaterium metE* riboswitch and the promiscuous *V. parvula mutA* riboswitch enabled us to examine the effects of specific domain and subdomain
132 sequences on corrinoid selectivity (Figure S4). Fusing the *P. megaterium metE* aptamer domain
133 to the expression platform of the *V. parvula mutA* riboswitch produced a semi-selective
134 riboswitch chimera, while the reciprocal chimera was promiscuous, suggesting that the aptamer
135 domain is a major determinant of corrinoid selectivity (Figure S4A). However, results from
136 aptamer subdomain swaps of stem P1, stem-loop P2-L2, stem-loop P4-L4, and P6 accessory
137 region were less conclusive. In the context of the *P. megaterium metE* riboswitch scaffold,
138 swapping stem-loop P2-L2 or the P6 accessory region with the corresponding structures of the *V.*
139 *parvula mutA* riboswitch produced chimeras that are less selective by gaining sensitivity to Cbi
140 and CreCba (Figure S4B). This suggests that these subdomains confer corrinoid promiscuity.
141 Yet, within the *V. parvula mutA* riboswitch scaffold, swapping stem P1 increased corrinoid
142 selectivity by retaining sensitivity to Cbl and pCbl, but losing sensitivity to CreCba and Cbi
143 (Figure S4C). The remaining chimeras partially or completely lost overall activity. These results
144 demonstrate that subdomains distributed throughout the aptamer domain may impact corrinoid
145

146 selectivity; no single conserved substructure completely controls corrinoid selectivity, nor did
147 any single structure fully convert a riboswitch's corrinoid selectivity. Thus, the source of the
148 corrinoid selectivity phenotype appears to be complex and requires inputs from multiple
149 subdomains of the aptamer.

150 *Corrinoid tail structure impacts selectivity of Cbl-riboswitches*

151 We next sought to identify how structural differences in the corrinoid tail affect the response of
152 semi-selective Cbl-riboswitches to corrinoids. There are no predicted hydrogen bond interactions
153 between the lower ligand and the RNA in the X-ray crystal structures of Cbl-bound riboswitches,
154 making it difficult to surmise how a Cbl-riboswitch might distinguish between corrinoids (51,
155 54, 55). Could the overall structural conformation of the corrinoid, rather than specific
156 interactions between the RNA and the corrinoid tail, influence Cbl-riboswitch activity?

157 Corrinoids undergo major conformational changes when spontaneously switching between two
158 distinct states known as 'base-on' and 'base-off' (56, 57). In the base-on state, a nitrogen atom in
159 the lower ligand base is coordinated to the central cobalt atom of the corrin ring (as shown in
160 Figure 1A). In the base-off state, the lower ligand base is de-coordinated, allowing the tail to
161 move more freely (58, 59). Benzimidazolyl and purinyl cobamides (e.g., Cbl, pCbl) can switch
162 between base-on and base-off states. However, the tail moieties of phenolyl cobamides (e.g.,
163 CreCba) and Cbi cannot coordinate cobalt and so these corrinoids exist exclusively in a de-
164 coordinated state (52). Interestingly, we noticed that the semi-selective riboswitches respond
165 strongly to Cbl and pCbl, but respond weakly to Cbi and CreCba. We also observe that semi-
166 selective Cbl-riboswitches are most sensitive to Cbl, which forms the base-on state more readily
167 than pCbl (Figures 3C, S2) (58, 59). In line with these results, the *E. coli* *btuB* riboswitch
168 aptamer was previously shown to bind Cbl with higher affinity than Cbi and [2-MeAde]Cba (a
169 primarily base-off corrinoid) (50). Also, all six X-ray crystal structures of Cbl-riboswitches
170 contain Cbl in the base-on state (51, 54, 55). Based on these observations, we hypothesized that
171 semi-selective riboswitches distinguish between base-on and base-off states of corrinoids. We
172 therefore used a range of corrinoids with diverse lower ligand structures to test whether the
173 activity of Cbl-riboswitches quantitatively correlates with the base-on tendency of corrinoids.

174 We selected a panel of sixteen corrinoids for this analysis, including both natural and synthetic
175 benzimidazolyl, purinyl, and aza-benzimidazolyl corrinoids. These corrinoids span a range of
176 base-on tendency between that of Cbl and pCbl, which we measured as the ratio of spectral
177 absorbance at 525 and 458 nm in the adenosylated form (Figures 4A, S5). Base-on/base-off
178 equilibrium constants for AdoCbl, Ado[2-MeAde]Cba, and pCbl in aqueous conditions have
179 been reported as 76, 0.48, and 0.30, respectively, and are consistent with our measurements of
180 corrinoid base-on tendency (58, 59). We observed a strong association between base-on tendency
181 and riboswitch response in semi-selective riboswitches (Figure 4B). Even among promiscuous
182 Cbl-riboswitches, we observe measurable sensitivity to base-on tendency, albeit to a much
183 smaller degree (Figure 4C). These results support the hypothesis that Cbl-riboswitches
184 selectively respond to corrinoids by distinguishing between the base-on and base-off states of
185 corrinoids.

186 *Structural comparisons between base-on and base-off tail orientations*

187 The results presented above led us to speculate about how a Cbl-riboswitch could detect the
188 base-on and base-off state of a corrinoid. In all published X-ray crystal structures of Cbl-
189 riboswitches, aptamer-effector binding is achieved mainly through van der Waals forces and
190 shape complementarity between the binding site and base-on Cbl. Only a few hydrogen bonds
191 between the RNA and corrinoid are observed, none of which occur with the lower ligand group
192 of Cbl (51, 54, 55). Thus, it appears unlikely that the riboswitch is directly detecting the specific
193 chemical differences among corrinoid lower ligands. Instead, we considered whether the
194 riboswitch discriminates base-on and base-off forms of a corrinoid by sensing corrinoid
195 conformation. In the base-on state, the tail is spatially constrained due to the Co-N coordinate
196 bond, whereas in the base-off form it is able to sample a wider range of spatial positions (60). To
197 develop mechanistic insight into how the base-on and base-off states a corrinoid could impact
198 Cbl-riboswitch activity, we leveraged the plethora of publicly accessible X-ray crystal structures
199 of macromolecule-bound Cbl (37, 51, 54, 55, 61-70). We first assessed the range of structural
200 conformations that are potentially sampled by corrinoids as they dynamically switch between
201 base-on and base-off states by aligning and visually comparing various structural models of Cbl.
202 Six base-on Cbl models were obtained from structural studies of Cbl-riboswitches and synthetic
203 Cbl RNA aptamers, whereas base-off/His-on Cbl models were obtained from X-ray crystal
204 structures of ten Cbl-dependent enzymes (Table S2). After aligning and superimposing these
205 molecular models by their central cobalt and coordinating nitrogen atoms, we observed that the
206 corrin rings and their amide and methyl substituents occupy similar spatial positions, but the tails
207 of base-on and base-off Cbl structures occupy distinct positions (Figure 5A-B). Moreover, the
208 base-on Cbl tails appear in very similar positions with lower ligands in close proximity to the
209 central cobalt ion, whereas the base-off Cbl tails appear more scattered with lower ligands more
210 distal to the cobalt ion. These structural alignments visually convey the degree to which the
211 conformations of base-on and base-off corrinoids can vary among biomolecular complexes.

212 Next, we compared the positions of the aligned base-on and base-off Cbl models in the context
213 of 3D Cbl-riboswitch models. We analyzed X-ray crystal structures of the two Cbl-riboswitches
214 that contain resolved kissing loop structures: one from *Thermoanaerobacter tengcongensis*
215 (Figure 5C-D) and one identified from a marine metagenome sequence (Figure S6A-B) (54).
216 These structural models show that the base-on tails are contained within the binding site,
217 whereas the tails of the base-off Cbl structures protrude away from the binding site and clash
218 with the L5-L13 kissing loop. Although the *B. subtilis btuF* (Figure S6C-D) and
219 *Symbiobacterium thermophilum cbLT* (Figure S6E-F) riboswitch models do not contain the L13
220 structure of the kissing loop, some of the modeled base-off tails clash with L5 of the aptamer in
221 these structures (51, 55). The kissing loop has been shown to play a key mechanistic role of
222 sensing the corrinoid-binding state of the aptamer domain to influence downstream regulatory
223 structures in the expression platform (71, 72). If kissing loop formation in semi-selective Cbl-
224 riboswitches is sensitive to the base-on and base-off states of the corrinoid, then corrinoid
225 selectivity may be mediated by either selective binding by the aptamer or selective formation of
226 downstream regulatory structures.

227 To determine whether the expression platform structures can impact corrinoid selectivity, we
228 examined corrinoid-selective binding separately from subsequent corrinoid-selective regulation.
229 We tested for promiscuous binding by comparing the Cbl dose-response of the *P. megaterium*
230 *metE* Cbl-riboswitch in the presence and absence of competing 100 nM Cbi and found that the
231 response to Cbl is unaffected by Cbi (Figure S7A-B). This indicates that Cbi does not compete
232 with Cbl for riboswitch binding, supporting corrinoid-selective binding as the mechanism of
233 semi-selectivity. However, when the aptamer of this semi-selective riboswitch is replaced with
234 the aptamer of the promiscuous *S. ovata nikA* riboswitch, it retains semi-selectivity, which
235 suggests that the *P. megaterium* expression platform also plays a role in corrinoid selectivity
236 (Figure S7A). Interestingly, the Cbl dose-response of the *S. ovata nikA* / *P. megaterium metE*
237 chimeric riboswitch does become sensitized to competing Cbi addition, confirming that the *S.*
238 *ovata nikA* aptamer retains sensitivity to base-off corrinoid in the context of this chimera (Figure
239 S7C). Taken together, these results show that base-off corrinoids may impede both Cbl-
240 riboswitch binding and formation of regulatory structures, explaining the link between corrinoid
241 base-on tendency and riboswitch activity observed in Figure 4.

242 *Gene regulatory strategy of corrinoid selectivity*

243 While the prior experiments clearly demonstrate that Cbl-riboswitches are capable of
244 distinguishing between corrinoids, we wondered what purpose Cbl-riboswitch corrinoid
245 selectivity might serve in the organisms containing these regulatory systems. We posit that Cbl-
246 riboswitch selectivity reflects a regulatory strategy that complements the corrinoid-specific
247 requirements of the cell and avoids gene mis-regulation. As a specific example, we hypothesize
248 that only corrinoids that are functionally compatible with a Cbl-dependent enzyme should cause
249 riboswitch-mediated repression of the expression of its Cbl-independent counterpart (Figure 6A,
250 B). We tested this hypothesis directly in *B. subtilis* by examining the function and regulation of
251 methionine synthase isozymes MetE (Cbl-independent) and MetH (Cbl-dependent). In bacterial
252 genomes with both *metE* and *metH*, a tandem SAM-Cbl riboswitch is commonly found upstream
253 of the *metE* gene (73, 74). The *B. subtilis* genome contains *metE* but lacks *metH*, and no Cbl-
254 riboswitch is located upstream of *metE*. We therefore constructed strains of *B. subtilis* that
255 heterologously express the *metE* or *metH* locus from the Cbl-producing species *P. megaterium*,
256 in a Δ *metE* background with overexpressed corrinoid uptake genes (Figure 6C) (75-77). In each
257 strain, the *P. megaterium* genes are constitutively transcribed from the promoter P_{Veg} and also
258 contain a transcriptionally fused *gfp* to measure expression levels. Growth of the *B. subtilis* strain
259 expressing *P. megaterium metH* in a medium lacking methionine was supported to varying
260 extents by most benzimidazolyl and both phenolyl cobamides, but not by [5-OHBza]Cba, the
261 purinyl cobamides, or Cbi (Figure 6D, red squares). This result indicates that MetH-dependent
262 growth is influenced by the corrinoid tail structure, as observed previously in other bacteria (78-
263 82). In the *B. subtilis* strain containing the *P. megaterium metE* locus which includes the
264 repressing SAM-Cbl-riboswitch, growth was suppressed by benzimidazolyl cobamides to
265 different extents (Figure 6D, blue circles). This growth pattern coincides with the GFP repression
266 measured for the *metE* riboswitch (Figure 6E), except that the repression of *metE* by purinyl
267 cobamides is apparently insufficient to suppress growth in this context. Comparison of the two
268 strains in response to a suite of corrinoids reveals a striking correspondence between riboswitch-

269 mediated suppression of growth in the *metE*-containing strain and growth promotion by
270 corrinoids in the *metH*-containing strain (Figure 6C). [5-OHBza]Cba and the phenolyl cobamides
271 are exceptions to the trend, though in neither case is MetE-dependent growth completely
272 suppressed by a corrinoid incompatible with MetH. This result demonstrates that riboswitch-
273 based repression and cobalamin-dependent isozyme function are largely aligned for the *P.*
274 *megaterium* *metE-metH* pair and suggests that Cbl-riboswitch specificity may generally adhere
275 to a regulatory strategy reflecting the cell's corrinoid preference.

276

277 Discussion

278 Riboswitches are key regulators of microbial gene expression. The Cbl-riboswitch was the first
279 type discovered and is among the most widely distributed riboswitch classes in bacteria and
280 archaea (9, 83). Previous biochemical and structural studies have uncovered the major molecular
281 features of the Cbl-riboswitch response to Cbl, including how upper ligand variants of Cbl
282 impact their function (48, 49, 51, 54, 55, 71, 72, 74, 84). Yet few studies have examined how
283 other naturally occurring corrinoids containing diverse lower ligand structures impact gene
284 regulation by Cbl-riboswitches (50). Here, we found that Cbl-riboswitches vary in their ability to
285 discriminate between corrinoids, with some being semi-selective on the basis of corrinoid base-
286 on/off state, and others being promiscuous. These results were enabled by a carefully designed
287 fluorescent reporter system capable of measuring the responses of dozens of Cbl-riboswitches to
288 multiple corrinoids *in vivo* (Figures 2, S1). Since several naturally occurring corrinoids other
289 than Cbl appear to be potent effectors for Cbl-riboswitches, we propose that the term 'corrinoid
290 riboswitch' be adopted to describe this broad class of RNAs more accurately. This may also
291 mitigate the inconsistent and overlapping terminology used in the literature (i.e. cobalamin
292 riboswitch, adenosylcobalamin riboswitch, B₁₂ riboswitch, vitamin B₁₂ riboswitch, etc.).

293 We can roughly estimate the intracellular corrinoid concentrations in our corrinoid dose-response
294 experiments to assess the physiological relevance the *in vivo* Cbl-riboswitch data. With the
295 observation that most of the corrinoid in the medium is imported by the *B. subtilis* riboswitch
296 reporter cells (Figure 2A-D), and assuming a cell volume of 10⁻¹⁵ L and a culture cell titer of 10¹²
297 cells/L at OD₆₀₀ = 1, we calculate the cytoplasmic corrinoid concentrations to range from 0.01 to
298 100 μM in the corrinoid dose-response experiments – a 1,000-fold increase from the cell culture
299 medium to the cytoplasm. Reports of binding affinity (K_D) for riboswitch aptamers to AdoCbl
300 range from 0.026 to 90 μM, which is within the range of our estimated intracellular corrinoid
301 concentrations (48, 50, 54, 72, 85). Additionally, Cbl uptake has been measured in some
302 bacterial species. In *E. coli*, the minimum cytoplasmic Cbl concentration to support MetH-
303 dependent growth is roughly 0.03 μM (86). In studies of Cbl uptake across several bacterial
304 species, saturating Cbl uptake can result in cytoplasmic Cbl concentrations in the low μM to low
305 mM range, depending on the species (87, 88). Taken together, these data and calculations
306 support the physiological relevance of the Cbl-riboswitch responses measured in this study.

307 We observed that Cbl-riboswitches display different degrees of corrinoid selectivity, with some
308 that respond to a subset of corrinoids (semi-selective) and others that respond to all tested

309 corrinoids (promiscuous) (Figures 3, S2). Our chimeric riboswitch results suggest that sequence
310 and structural determinants of corrinoid selectivity are dispersed throughout the Cbl-riboswitch
311 aptamer scaffold rather than being confined to a single conserved region (Figure S4). This
312 finding contrasts with other studies of riboswitch specificity. For example, in a study of Cbl
313 upper ligand specificity, a few key residues in the Cbl binding site were sufficient to fully
314 convert a Cbl-riboswitch from MeCbl-specific to AdoCbl-specific (48). In purine riboswitches,
315 effector specificity is achieved by positioning of a critical conserved uracil or cytosine residue in
316 the binding site of the aptamer, which forms a base-pair with the adenine or guanine effector,
317 respectively. Among the various families of SAM riboswitches, highly specific binding of SAM
318 and exclusion of SAH is achieved by RNA structures that discriminate the charged sulfonium ion
319 of SAM from the uncharged sulfoether of SAH (89). In contrast, the SAM/SAH riboswitch class
320 attains effector promiscuity for SAM and SAH by a general lack of interaction between the RNA
321 and the aminocarboxypropyl side chains of these effectors (90, 91). This is reminiscent of Cbl-
322 riboswitches which similarly have few molecular contacts between the RNA and corrinoid tail
323 (50, 54, 55, 84).

324 Overall, our structural model analyses support a mechanism in which semi-selective Cbl-
325 riboswitches primarily sense the distinct corrinoid tail orientations of the base-on and base-off
326 forms. In this case, Cbl-riboswitches only indirectly sense the chemical composition of the
327 variable lower ligand group, with differential binding largely determined by steric effects and
328 shape complementarity (Figures 4-5). Recent molecular dynamics simulations of the *T. tengcongensis* Cbl-riboswitch suggest that the kissing loop structure may form prior to effector
329 binding, which would place even greater constraints on the corrinoid tail orientation to achieve
330 shape complementarity with its binding site (92). Additionally, some Cbl-riboswitches may in
331 fact bind base-off corrinoids but disrupt subsequent formation of downstream regulatory
332 structures of the expression platform, perhaps by interfering with the kissing loop (Figure S7). A
333 similar feature has been observed in tetrahydrofolate (THF) riboswitches where chemical
334 variations in the para-aminobenzoic acid moiety of THF analogs differentially perturb expression
335 platform structures without affecting aptamer binding (93). The mechanisms of corrinoid
336 selectivity of Cbl-riboswitches could be directly tested in future structural or biochemical studies
337 of promiscuous Cbl-riboswitches with base-on and base-off corrinoids.

339 In regard to gene regulatory strategies, it seems sensible that Cbl-riboswitches are not highly
340 effector-specific because bacteria are often flexible in their corrinoid usage. A variety of
341 corrinoids have been shown to support growth of *C. difficile*, *S. ovata*, and *Ensifer meliloti*
342 despite each of these organisms displaying highly specific corrinoid production (82, 94, 95).
343 Furthermore, since corrinoid auxotrophy is prevalent among corrinoid-dependent bacteria, many
344 organisms may need to take advantage of the wide range of corrinoids that may be available in
345 their environment (96). Thus, the range of effector selectivity that we observe among Cbl-
346 riboswitches may reflect a coevolution between corrinoid-responsive gene regulation and
347 corrinoid-dependent physiology. Our result demonstrating complementary corrinoid selectivity
348 between *P. megaterium* MetH-dependent growth and Cbl-riboswitch-dependent expression of
349 MetE is consistent with this notion (Figure 6).

350 Alternatively, the preference for base-on corrinoids among Cbl-riboswitches may function as a
351 proxy to discriminate complete corrinoid coenzymes from incomplete corrinoids such as Cbi,
352 which often function poorly as coenzymes. This idea has been proposed as an explanation for the
353 remarkably high selectivity of the corrinoid uptake system in mammals (97). Interestingly, we
354 found that all but one of the *S. ovata* riboswitches tested are promiscuous types that can respond
355 to its natively produced CreCba. The notable exception is a semi-selective riboswitch upstream
356 of the gene *cobT* (Figure S2B), which functions in a late step of corrinoid biosynthesis that
357 occurs after synthesis of Cbi (53, 98-103). Thus, this Cbl-riboswitch that discriminates against
358 Cbi may allow homeostatic regulation of *cobT* in response to complete corrinoids like Cbl, while
359 preventing unproductive repression of *cobT* in the presence of incomplete corrinoids like Cbi.
360 Future studies examining corrinoid-specific gene regulation of riboswitches in the context of
361 their native organisms may help clarify which regulatory strategies are generally at play in
362 corrinoid-related bacterial physiology.

363 Our findings fit into a broader discussion of how corrinoids impact complex microbial
364 communities (104). In future studies, it will be worth examining how the interplay between
365 corrinoid-specific gene regulation and corrinoid-specific metabolic pathways influence microbial
366 interactions. There is also significant interest in the fields of bioengineering and synthetic
367 biology to use riboswitches as gene regulatory devices because they act more rapidly and
368 efficiently than protein-based regulatory systems (6, 7, 105, 106). Riboswitches have also
369 become desirable therapeutic drug targets because they often control essential metabolic
370 pathways in pathogenic microbes (4, 5, 107). Broader consideration of the conformational
371 dynamics of larger types of effector molecules including organic cofactors, antibiotics, and their
372 analogs could aid efforts to engineer synthetic RNA-based regulatory platforms that function
373 robustly *in vivo*. This could also inform future efforts to develop synthetic antimetabolites that,
374 for example, elicit gene mis-regulation, instead of a more common strategy of creating inhibitors
375 for enzymes (108, 109).

376 The chemical diversity of corrinoids is intrinsically linked to a vast array of metabolic processes
377 and microbial interactions. Yet it remains unclear how microbes have evolved to cope with and
378 thrive on the assortment of natural corrinoid analogs, especially when compared to other primary
379 metabolites including organic cofactors, nucleotides and amino acids which typically require one
380 specific structural form for precise biological functions. We have gained new appreciation for the
381 impacts of chemical diversity on biological function by focusing on the Cbl-riboswitch with its
382 distinctively complex structure and regulatory mechanism, and by accounting for the often
383 overlooked biological and ecological roles of corrinoid analogs. Future studies into the evolution
384 of microbial molecular specificity for corrinoids may yield further insight into the nature of these
385 exceptionally versatile coenzymes.

386

387 **Materials and methods**

388 *Cbl-riboswitch sequence analysis*

389 Cbl-riboswitch sequences, chromosomal coordinates and regulon information were downloaded
390 from the RiboD online database (73) (Table S1). The genome of *Sporomusa ovata* was not
391 included in the RiboD database, so we used the RiboswitchScanner webserver to search for Cbl-
392 riboswitches in this organism (110, 111). Cbl-riboswitch aptamer sequences were manually
393 aligned by conserved secondary structures bounded by the 5' and 3' ends of the P1 stem (8, 85)
394 (Data S1). The P13-L13 stem loop and potential intrinsic transcriptional termination hairpin
395 structures of the expression platform were identified using secondary structure prediction tools in
396 RNAstructure 6.2 (112, 113). Intrinsic terminators were identified as stem loops directly
397 preceding a sequence of five or more consecutive uracil residues (114, 115). Sequence alignment
398 and annotation was carried out in JalView 2.11.1.4 (116). Cartoons of riboswitch secondary
399 structures were constructed using the StructureEditor program of RNAstructure 6.2 (113).

400 *Corrinoid production, extraction, purification, and analysis*

401 Cyanocobalamin, adenosylcobalamin, methylcobalamin, hydroxocobalamin, and
402 dicyanocobinamide were purchased from MilliporeSigma. All other corrinoids used in this study
403 were produced in bacterial cultures and purified in cyanated form as previously described (82,
404 95, 117, 118). For the experiments in Figures 4 and S5, corrinoids other than cobalamin were
405 chemically adenylylated to obtain the coenzyme (5'-deoxyadenylylated) form as previously
406 described (82, 117).

407 UV/Vis spectra were collected from corrinoid samples in UV/Vis-transparent 96-well microtiter
408 plates (greiner bio-one UV-STAR® 675801) using a BioTek Synergy 2 or Tecan Infinite M1000
409 Pro plate reader. To measure concentrations of corrinoid stock solutions, corrinoid samples were
410 diluted 10-fold in 10 mM sodium cyanide to obtain the dicyanated base-off form of the corrinoid.
411 The concentration of the dicyanated corrinoid was calculated using the extinction coefficient
412 $\epsilon_{580} = 10.1 \text{ mM}^{-1} \text{ cm}^{-1}$ (52, 119). For adenylylated corrinoids used in Figures 4 and S5, base-
413 on tendency at neutral pH was measured as the ratio of spectral absorbance at 525 nm and 458
414 nm in phosphate buffered saline solution pH 7.3 at 37°C (47, 59).

415 *Plasmid and strain construction*

416 Plasmids generated in this study were constructed with one-step isothermal assembly (120) and
417 introduced into *E. coli* strain XL1-Blue by heat shock transformation. Riboswitch reporter
418 plasmids were constructed in the shuttle vector pSG29 for single copy integration at the amyE
419 locus of the *B. subtilis* chromosome (121). Riboswitch DNA sequences were inserted between
420 the transcriptional start site of the constitutive *P_{veg}* promoter and the *gfp* translational start site of
421 pSG29. For riboswitch sequences that resulted in no detectable GFP signal under any conditions,
422 a synthetic ribosome binding site (RBS) sequence R0 (5'-
423 GATTAACATAATAAGGAGGACAAAC-3') from pSG29 was placed between the riboswitch
424 sequence and *gfp* translational start site (Table S1B-C).

425 Strains used in this study are listed in Table S1A. All *B. subtilis* riboswitch fluorescent reporter
426 strains and *B. subtilis* strains expressing *P. megaterium metE* and *metH* used in this study are
427 derived from the high-efficiency transformation strain SCK6, which has a xylose-inducible
428 competence gene cassette (122). Preparation of competent cells and transformations of all SCK6-

429 derived strains were performed as previously described (122). The strain KK642, which
430 constitutively overexpresses the corrinoid uptake genes, was constructed by deletion of gene
431 *queG* and replacement of the promoter and 5' untranslated region of the *btuFCDR* operon with
432 the *P_{Veg}* promoter and R0 RBS (121). *B. subtilis* genes *queG*, *btuR*, and *metE* were targeted for
433 deletion by recombination with kanamycin resistance cassettes containing flanking sequence
434 homology to each respective locus. Kanamycin resistance cassettes were PCR-amplified from
435 genomic DNA of *B. subtilis* strains BKK08910 ($\Delta queG::kan^R$), BKK33150 ($\Delta btuR::kan^R$), and
436 BKK13180 ($\Delta metE::kan^R$) (123). Kanamycin resistance cassettes were removed by Cre-Lox
437 recombination using plasmid pDR244 as previously described (123).

438 *B. subtilis* strains heterologously expressing *metE* and *metH* from *P. megaterium* were
439 constructed as follows. The *metE* and *metH* genes were PCR-amplified from genomic DNA of *P.*
440 *megaterium* DSM319 and cloned between the transcriptional start site and the *gfp* translational
441 start site of pSG29. The *P. megaterium* *metE* amplified fragment starts at the SAM-Cbl tandem
442 riboswitch in the 5' UTR and ends at the *metE* stop codon, whereas the *P. megaterium* *metH*
443 fragment starts at the *metH* RBS, which is composed of 20 nucleotides preceding the *metH*
444 translational start site and ends at the *metH* stop codon.

445 Riboswitch reporter plasmids and plasmids containing *P. megaterium* *metE* and *metH* were
446 linearized by restriction enzyme digest with ScaI-HF (New England Biolabs) and selected for
447 integration at the *amyE* locus of *B. subtilis* by plating on lysogeny broth (LB) agar with 100
448 μ g/mL spectinomycin. Colonies were screened for integration at *amyE* by colony PCR. All
449 stocks of bacterial strains were stored in 15% glycerol at -80 $^{\circ}$ C.

450 *Intracellular corrinoid accumulation experiments*

451 *B. subtilis* strains were inoculated from single colonies into 50 mL LB and grown with aeration
452 at 37 $^{\circ}$ C in a shaking incubator (Gyromax 737R, Amerex Instruments, Inc.) for 5-6 hours until
453 reaching an optical density at 600 nm (OD₆₀₀) of 1.0 to 1.5. Each culture was diluted 10-fold in
454 LB and split into 13 25 mL cultures containing 0, 25, 250, or 2500 picomoles of a cyanated
455 corrinoid (Cbl, pCbl, CreCba and Cbi). These cultures were incubated at 37 $^{\circ}$ C with aeration for
456 3-4 hours to a final OD₆₀₀ of 1.5 to 2.0. The cells were pelleted by centrifugation at 4,000 g for
457 10 min. Cell pellets were rinsed three times by resuspension in 10 mL phosphate buffered saline
458 solution pH 7.3 followed by centrifugation. After the final centrifugation, tubes were wrapped in
459 aluminum foil to protect adenosylated corrinoids from exposure to light.

460 To extract intracellular corrinoids, cell pellets were resuspended in 5 mL of 100% methanol by
461 vigorous vortexing for 30 secs. Samples were stored at -80 $^{\circ}$ C until the next day. Frozen lysates
462 were heated in an 80 $^{\circ}$ C water bath for 1.5 hours, with 15 seconds of vortexing every 30
463 minutes. Methanol concentration of each sample was diluted to 10% by adding 45 mL of water,
464 and cell debris was pelleted by centrifugation at 4,000 g for 10 mins. The supernatants were used
465 for the subsequent steps.

466 All of the following steps were carried out in darkened rooms illuminated with red light to
467 preserve light-sensitive adenosylated corrinoid samples. Solid-phase extraction of adenosylated
468 corrinoids with Sep-Pak C18 cartridges (Waters) was performed as previously described (82).

469 Solvents were evaporated in a vacuum concentrator centrifuge (Savant SPD1010, Thermo
470 Scientific) at 45 °C and the samples were resuspended in 500 µL deionized water and passed
471 through 0.45 µm pore-size filters (Millex-HV, MilliporeSigma).

472 Corrinoids were analyzed on an Agilent 1200 series (high-performance liquid chromatography
473 system equipped with a diode array detector (Agilent Technologies). Samples were injected into
474 an Agilent Zorbax SB-Aq column (5-µm pore size, 4.6 by 150 mm). The following HPLC
475 method was used: solvent A, 0.1% formic acid–deionized water; solvent B, 0.1% formic acid–
476 methanol; flow rate of 1 mL/minute at 30°C; 25% to 34% solvent B for 11 minutes, followed
477 by a linear gradient of 34% to 50% solvent B over 2 minutes, followed by a linear gradient of
478 50% to 75% solvent B over 8 minutes.

479 *Riboswitch fluorescent reporter assays*

480 Corrinoid dose-response assays of riboswitch reporter strains were set up as follows. Saturated
481 cultures of the riboswitch reporter strain in LB were diluted 200-fold in LB and dispensed into
482 96-well microtiter plates (Corning Costar Assay Plate 3904) containing a range of concentrations
483 of various corrinoids. The plates were sealed with gas diffusible membranes (Breathe-Easy,
484 MilliporeSigma) and incubated at 37 °C for 4 to 5 hours in a benchtop heated plate shaker
485 (Southwest Science) at 1,200 revolution per minute (rpm). GFP fluorescence
486 (excitation/emission/bandwidth = 485/525/10 nm) and absorbance at 600 nm (A_{600}) were
487 measured on a Tecan Infinite M1000 Pro plate reader. The A_{600} measurements of uninoculated
488 medium and fluorescence measurements of the parental control strains lacking *gfp* were
489 subtracted from all readings. Data were plotted and analyzed in GraphPad Prism 9.

490 *3D structural analysis of corrinoids and macromolecular models*

491 Molecular models of cobalamin in the base-on and base-off/His-on state in complex with various
492 proteins and RNAs were downloaded from the Protein DataBank (PDB) (Table S2) (124). PDB
493 files were analyzed in UCSF Chimera 1.14 (125). Corrinoid molecular models were aligned with
494 each other by the central cobalt atom and coordinating nitrogen atoms of the corrin ring, using
495 the PDB ID 4GMA Cbl model as a reference. Corrinoid models were aligned within the binding
496 sites of riboswitch structures PDB IDs 4GMA, 4FRN, 4GXY, and 6VMY (51, 54, 55).

497 *Methionine-dependent growth of *B. subtilis* strains*

498 *B. subtilis* strains were streaked from frozen stocks onto LB agar plates and incubated overnight
499 at 37 °C for 14-18 hrs. Single colonies were used to inoculate 3 mL liquid starter cultures
500 containing Spizizen minimal medium supplemented with 0.02% D-glucose and 0.2% L-Histidine
501 (SMM) (126). Starter cultures of the *metH*-expressing strain were supplemented with 1 nM
502 CNCbl to support growth, whereas the *metE*-expressing strains were cultured in SMM without
503 CNCbl. Starter cultures were incubated overnight shaking (250 rpm, 37 °C) for 20 hours,
504 reaching cell density of about $OD_{600} = 1.0$. Starter cultures were diluted 500-fold by transferring
505 50 µL of starter culture to 25 mL of SMM. Then 75 µL of the diluted culture were dispensed into
506 wells of a 96 well microtiter plate containing 75 µL of SMM supplemented with 40 nM of
507 various corrinoids. Plates were sealed with gas diffusible membranes (Breathe-Easy,

508 MilliporeSigma) and incubated at 37 °C on the ‘high shaking’ setting of a BioTek Synergy2
509 plate reader. Growth kinetics and *metE* and *metH* expression were measured by A₆₀₀ and GFP
510 fluorescence every 15 minutes for 72 hours. Data were plotted and analyzed in GraphPad Prism
511 9.

512

513 **Acknowledgments**

514 We thank past and present members of the Taga lab for support. In particular, we thank
515 Sebastian Gude, Zachary Hallberg, and Gordon Pherribo for critical reading of the manuscript;
516 Alexa Nicolas and Amanda Shelton for helpful discussions; Anna Grimaldo and Jong-Duk Park
517 for reagents. We thank Amrita Hazra, Arash Komeili, Michael Marletta, Kathleen Ryan, and
518 Matthew Traxler for helpful discussions. We especially thank Ming Hammond for critical
519 reading of the manuscript and helpful advice. We are grateful to the labs of Benjamin Blackman,
520 John Deuber, Krishna Niyogi, and Matthew Traxler for use of their equipment. This work was
521 supported by NIH grants R01GM114535 and R35GM139633 to M.E.T. We acknowledge that
522 this work was conducted on the ancestral and unceded land of the Ohlone people.

523

524 **Author contributions**

525 Conceptualization, K.J.K., F.J.W., K.C.M., and M.E.T.; Methodology, K.J.K., F.J.W., O.M.S.,
526 K.C.M., and M.E.T.; Validation: R.R.P.; Investigation, K.J.K. and L.V.I.; Writing – Original
527 Draft, K.J.K. and M.E.T.; Writing – Review & Editing, K.J.K., O.M.S., K.C.M., and M.E.T.;
528 Funding Acquisition, M.E.T.; Resources, O.M.S. and K.C.M.; Supervision, M.E.T.

529

530 **Declaration of interests**

531 The authors declare no competing interests.

532 **References**

- 533 1. Cech Thomas R & Steitz Joan A (2014) The Noncoding RNA Revolution - Trashing Old
534 Rules to Forge New Ones. *Cell* 157(1):77-94.
- 535 2. Roth A & Breaker RR (2009) The structural and functional diversity of metabolite-
536 binding riboswitches. *Annu Rev Biochem* 78:305-334.
- 537 3. Winkler WC & Breaker RR (2005) Regulation of bacterial gene expression by
538 riboswitches. *Annu Rev Microbiol* 59:487-517.
- 539 4. Panchal V & Brenk R (2021) Riboswitches as Drug Targets for Antibiotics. *Antibiotics*
540 (*Basel, Switzerland*) 10(1).
- 541 5. Quereda JJ & Cossart P (2017) Regulating Bacterial Virulence with RNA. *Annu Rev*
542 *Microbiol* 71:263-280.
- 543 6. Wrist A, Sun W, & Summers RM (2020) The theophylline aptamer: 25 years as an
544 important tool in cellular engineering research. *ACS Synth Biol* 9(4):682-697.
- 545 7. Hallberg ZF, Su Y, Kitto RZ, & Hammond MC (2017) Engineering and In Vivo
546 Applications of Riboswitches. *Annu Rev Biochem* 86:515-539.
- 547 8. McCown PJ, Corbino KA, Stav S, Sherlock ME, & Breaker RR (2017) Riboswitch
548 diversity and distribution. *RNA* 23(7):995-1011.
- 549 9. Nahvi A, *et al.* (2002) Genetic control by a metabolite binding mRNA. *Chem Biol*
550 9(9):1043.
- 551 10. Licht S, Gerfen GJ, & Stubbe J (1996) Thiy radical in ribonucleotide reductases.
552 *Science* 271(5248):477-481.
- 553 11. Berg IA, Kockelkorn D, Buckel W, & Fuchs G (2007) A 3-hydroxypropionate/4-
554 hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. *Science*
555 318(5857):1782-1786.
- 556 12. Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic
557 bacteria. *Annu Rev Microbiol* 40:415-450.
- 558 13. Krasotkina J, Walters T, Maruya KA, & Ragsdale SW (2001) Characterization of the
559 B12- and iron-sulfur-containing reductive dehalogenase from *Desulfitobacterium*
560 *chlororespirans*. *J Biol Chem* 276(44):40991-40997.
- 561 14. Scarlett FA & Turner JM (1976) Microbial metabolism of amino alcohols. Ethanolamine
562 catabolism mediated by coenzyme B12-dependent ethanolamine ammonia-lyase in
563 *Escherichia coli* and *Klebsiella aerogenes*. *J Gen Microbiol* 95(1):173-176.
- 564 15. Stupperich E & Konle R (1993) Corrinoid-Dependent Methyl Transfer Reactions Are
565 Involved in Methanol and 3,4-Dimethoxybenzoate Metabolism by *Sporomusa ovata*.
566 *Appl Environ Microbiol* 59(9):3110-3116.
- 567 16. Jeter RM (1990) Cobalamin-dependent 1,2-propanediol utilization by *Salmonella*
568 *typhimurium*. *J Gen Microbiol* 136(5):887-896.
- 569 17. Forage RG & Foster MA (1982) Glycerol fermentation in *Klebsiella pneumoniae*:
570 functions of the coenzyme B12-dependent glycerol and diol dehydratases. *J Bacteriol*
571 149(2):413-419.
- 572 18. Erb TJ, Rétey J, Fuchs G, & Alber BE (2008) Ethylmalonyl-CoA mutase from
573 *Rhodobacter sphaeroides* defines a new subclade of coenzyme B12-dependent acyl-CoA
574 mutases. *J Biol Chem* 283(47):32283-32293.
- 575 19. Korotkova N, Chistoserdova L, Kuksa V, & Lidstrom ME (2002) Glyoxylate
576 regeneration pathway in the methylotroph *Methylobacterium extorquens* AM1. *J*
577 *Bacteriol* 184(6):1750-1758.

578 20. Ferguson DJ, Jr. & Krzycki JA (1997) Reconstitution of trimethylamine-dependent
579 coenzyme M methylation with the trimethylamine corrinoid protein and the isozymes of
580 methyltransferase II from *Methanosarcina barkeri*. *J Bacteriol* 179(3):846-852.

581 21. Barker HA (1985) beta-Methylaspartate-glutamate mutase from *Clostridium*
582 *tetanomorphum*. *Methods Enzymol* 113:121-133.

583 22. Chen HP, Wu SH, Lin YL, Chen CM, & Tsay SS (2001) Cloning, sequencing,
584 heterologous expression, purification, and characterization of adenosylcobalamin-
585 dependent D-ornithine aminomutase from *Clostridium sticklandii*. *J Biol Chem*
586 276(48):44744-44750.

587 23. Chang CH & Frey PA (2000) Cloning, sequencing, heterologous expression, purification,
588 and characterization of adenosylcobalamin-dependent D-lysine 5, 6-aminomutase from
589 *Clostridium sticklandii*. *J Biol Chem* 275(1):106-114.

590 24. Kim HJ, *et al.* (2013) GenK-catalyzed C-6' methylation in the biosynthesis of
591 gentamicin: isolation and characterization of a cobalamin-dependent radical SAM
592 enzyme. *J Am Chem Soc* 135(22):8093-8096.

593 25. Knox HL, *et al.* (2021) Structural basis for non-radical catalysis by TsrM, a radical SAM
594 methylase. *Nat Chem Biol* 17(4):485-491.

595 26. Choi SC & Bartha R (1993) Cobalamin-mediated mercury methylation by *Desulfovibrio*
596 *desulfuricans* LS. *Appl Environ Microbiol* 59(1):290-295.

597 27. Choi SC, Chase T, Jr., & Bartha R (1994) Enzymatic catalysis of mercury methylation by
598 *Desulfovibrio desulfuricans* LS. *Appl Environ Microbiol* 60(4):1342-1346.

599 28. Parks JM, *et al.* (2013) The genetic basis for bacterial mercury methylation. *Science*
600 339(6125):1332-1335.

601 29. Wang PH, *et al.* (2020) Retroconversion of estrogens into androgens by bacteria via a
602 cobalamin-mediated methylation. *Proc Natl Acad Sci U S A* 117(3):1395-1403.

603 30. Romine MF, *et al.* (2017) Elucidation of roles for vitamin B12 in regulation of folate,
604 ubiquinone, and methionine metabolism. *Proc Natl Acad Sci U S A* 114(7):E1205-e1214.

605 31. Bridwell-Rabb J, Zhong A, Sun HG, Drennan CL, & Liu HW (2017) A B12-dependent
606 radical SAM enzyme involved in oxetanocin A biosynthesis. *Nature* 544(7650):322-326.

607 32. Allen KD & Wang SC (2014) Initial characterization of Fom3 from *Streptomyces*
608 *wedmorensis*: The methyltransferase in fosfomycin biosynthesis. *Arch Biochem Biophys*
609 543:67-73.

610 33. Pierre S, *et al.* (2012) Thiostrepton tryptophan methyltransferase expands the chemistry
611 of radical SAM enzymes. *Nat Chem Biol* 8(12):957-959.

612 34. Marous DR, *et al.* (2015) Consecutive radical S-adenosylmethionine methylations form
613 the ethyl side chain in thienamycin biosynthesis. *Proc Natl Acad Sci U S A*
614 112(33):10354-10358.

615 35. Takano H, *et al.* (2015) Role and Function of LitR, an Adenosyl B12-Bound Light-
616 Sensitive Regulator of *Bacillus megaterium* QM B1551, in Regulation of Carotenoid
617 Production. *J Bacteriol* 197(14):2301-2315.

618 36. Takano H, *et al.* (2011) Involvement of CarA/LitR and CRP/FNR family transcriptional
619 regulators in light-induced carotenoid production in *Thermus thermophilus*. *J Bacteriol*
620 193(10):2451-2459.

621 37. Jost M, *et al.* (2015) Structural basis for gene regulation by a B12-dependent
622 photoreceptor. *Nature* 526(7574):536-541.

623 38. Rodionov DA, Vitreschak AG, Mironov AA, & Gelfand MS (2003) Comparative
624 genomics of the vitamin B12 metabolism and regulation in prokaryotes. *J Biol Chem*
625 278(42):41148-41159.

626 39. Pavlova N, Kaloudas D, & Penchovsky R (2019) Riboswitch distribution, structure, and
627 function in bacteria. *Gene* 708:38-48.

628 40. Kennedy KJ & Taga ME (2020) Cobamides. *Curr Biol* 30(2):R55-r56.

629 41. Moore SJ, *et al.* (2013) Elucidation of the anaerobic pathway for the corrin component of
630 cobalamin (vitamin B12). *Proc Natl Acad Sci U S A* 110(37):14906-14911.

631 42. Battersby AR (2000) Tetracyclic porphyrins: the pigments of life. *Nat Prod Rep* 17(6):507-526.

632 43. Hazra AB, *et al.* (2015) Anaerobic biosynthesis of the lower ligand of vitamin B12. *Proc*
633 *Natl Acad Sci U S A* 112(34):10792-10797.

634 44. Chan CH & Escalante-Semerena JC (2012) ArsAB, a novel enzyme from *Sporomusa*
635 *ovata* activates phenolic bases for adenosylcobamide biosynthesis. *Mol Microbiol*
636 81(4):952-967.

637 45. Newmister SA, Chan CH, Escalante-Semerena JC, & Rayment I (2012) Structural
638 insights into the function of the nicotinate mononucleotide:phenol/p-cresol
639 phosphoribosyltransferase (ArsAB) enzyme from *Sporomusa ovata*. *Biochemistry*
640 51(43):8571-8582.

641 46. Yan J, *et al.* (2018) Purinyl-cobamide is a native prosthetic group of reductive
642 dehalogenases. *Nat Chem Biol* 14(1):8-14.

643 47. Hoffmann B, *et al.* (2000) Native corrinoids from *Clostridium cochlearium* are
644 adeninylcobamides: spectroscopic analysis and identification of pseudovitamin B12 and
645 factor A. *J Bacteriol* 182(17):4773-4782.

646 48. Polaski JT, Webster SM, Johnson JE, Jr., & Batey RT (2017) Cobalamin riboswitches
647 exhibit a broad range of ability to discriminate between methylcobalamin and
648 adenosylcobalamin. *J Biol Chem* 292(28):11650-11658.

649 49. Polaski JT, Kletzien OA, Drogalis LK, & Batey RT (2018) A functional genetic screen
650 reveals sequence preferences within a key tertiary interaction in cobalamin riboswitches
651 required for ligand selectivity. *Nucleic Acids Res* 46(17):9094-9105.

652 50. Gallo S, Oberhuber M, Sigel RK, & Kräutler B (2008) The corrin moiety of coenzyme
653 B12 is the determinant for switching the *btuB* riboswitch of *E. coli*. *Chembiochem*
654 9(9):1408-1414.

655 51. Chan CW & Mondragón A (2020) Crystal structure of an atypical cobalamin riboswitch
656 reveals RNA structural adaptability as basis for promiscuous ligand binding. *Nucleic*
657 *Acids Res* 48(13):7569-7583.

658 52. Stupperich E, Eisinger HJ, & Kräutler B (1988) Diversity of corrinoids in acetogenic
659 bacteria. P-cresolylcobamide from *Sporomusa ovata*, 5-methoxy-6-
660 methylbenzimidazolylcobamide from *Clostridium formicoaceticum* and vitamin B12
661 from *Acetobacterium woodii*. *Eur J Biochem* 172(2):459-464.

662 53. Crofts TS, Seth EC, Hazra AB, & Taga ME (2013) Cobamide structure depends on both
663 lower ligand availability and CobT substrate specificity. *Chem Biol* 20(10):1265-1274.

664 54. Johnson JE, Jr., Reyes FE, Polaski JT, & Batey RT (2012) B12 cofactors directly
665 stabilize an mRNA regulatory switch. *Nature* 492(7427):133-137.

666 55. Peselis A & Serganov A (2013) Structural insights into ligand binding and gene
667 expression control by an adenosylcobalamin riboswitch. *Nat Struct Mol Biol*
668 19(11):1182-1184.

669 56. Barker HA, *et al.* (1960) Isolation and properties of crystalline cobamide coenzymes
670 containing benzimidazole or 5,6-dimethylbenzimidazole. *J Biol Chem* 235:480-488.

671 57. Ladd JN, Hogenkamp HP, & Barker HA (1961) Structure of cobamide coenzymes:
672 influence of pH on absorption spectra and ionophoretic mobilities. *J Biol Chem*
673 236:2114-2118.

674 58. Brown KL & Hakimi JM (1986) Heteronuclear NMR studies of cobalamins. 4. alpha-
675 Ribazole-3'-phosphate and the nucleotide loop of base-on cobalamins. *J Am Chem Soc*
676 108(3):496-503.

677 59. Fieber W, *et al.* (2002) Pseudocoenzyme B12 and adenosyl-Factor A: Electrochemical
678 synthesis and spectroscopic analysis of two natural B12 coenzymes with predominantly
679 'base-off' constitution. *Helvetica Chimica Acta* 85(3):927-944.

680 60. Marques HM, Zou X, & Brown KL (2000) The solution structure of adenosylcobalamin
681 and adenosylcobinamide determined by nOe-restrained molecular dynamics simulations.
682 *Journal of Molecular Structure* 520(1):75-95.

683 61. Sussman D & Wilson C (2000) A water channel in the core of the vitamin B12 RNA
684 aptamer. *Structure* 8(7):719-727.

685 62. Mancia F, *et al.* (1996) How coenzyme B12 radicals are generated: the crystal structure
686 of methylmalonyl-coenzyme A mutase at 2 Å resolution. *Structure* 4(3):339-350.

687 63. Froese DS, *et al.* (2010) Structures of the human GTPase MMAA and vitamin B12-
688 dependent methylmalonyl-CoA mutase and insight into their complex formation. *J Biol
689 Chem* 285(49):38204-38213.

690 64. Drennan CL, Huang S, Drummond JT, Matthews RG, & Ludwig ML (1994) How a
691 protein binds B12: A 3.0 Å X-ray structure of B12-binding domains of methionine
692 synthase. *Science* 266(5191):1669-1674.

693 65. Dowling DP, *et al.* (2016) Molecular basis of cobalamin-dependent RNA modification.
694 *Nucleic Acids Res* 44(20):9965-9976.

695 66. Payne KA, *et al.* (2015) Epoxyqueuosine Reductase Structure Suggests a Mechanism for
696 Cobalamin-dependent tRNA Modification. *J Biol Chem* 290(46):27572-27581.

697 67. Payne KA, *et al.* (2015) Reductive dehalogenase structure suggests a mechanism for
698 B12-dependent dehalogenation. *Nature* 517(7535):513-516.

699 68. Jost M, Born DA, Cracan V, Banerjee R, & Drennan CL (2015) Structural Basis for
700 Substrate Specificity in Adenosylcobalamin-dependent Isobutyryl-CoA Mutase and
701 Related Acyl-CoA Mutases. *J Biol Chem* 290(45):26882-26898.

702 69. Gruber K, Reitzer R, & Kratky C (2001) Radical shuttling in a protein: Ribose
703 pseudorotation controls alkyl-radical transfer in the coenzyme B12-dependent enzyme
704 glutamate mutase. *Angewandte Chemie International Edition* 40(18):3377-3380.

705 70. Berkovitch F, *et al.* (2004) A locking mechanism preventing radical damage in the
706 absence of substrate, as revealed by the x-ray structure of lysine 5,6-aminomutase. *Proc
707 Natl Acad Sci U S A* 101(45):15870-15875.

708 71. Lussier A, Bastet L, Chauvier A, & Lafontaine DA (2015) A kissing loop is important for
709 btuB riboswitch ligand sensing and regulatory control. *J Biol Chem* 290(44):26739-
710 26751.

711 72. Polaski JT, Holmstrom ED, Nesbitt DJ, & Batey RT (2016) Mechanistic Insights into
712 Cofactor-Dependent Coupling of RNA Folding and mRNA Transcription/Translation by
713 a Cobalamin Riboswitch. *Cell Rep* 15(5):1100-1110.

714 73. Mukherjee S, *et al.* (2019) RiboD: a comprehensive database for prokaryotic
715 riboswitches. *Bioinformatics* 35(18):3541-3543.

716 74. Sudarsan N, *et al.* (2006) Tandem riboswitch architectures exhibit complex gene control
717 functions. *Science* 314(5797):300-304.

718 75. Moore SJ, Mayer MJ, Biedendieck R, Deery E, & Warren MJ (2014) Towards a cell
719 factory for vitamin B12 production in *Bacillus megaterium*: bypassing of the cobalamin
720 riboswitch control elements. *New biotechnology* 31(6):553-561.

721 76. Collins HF, *et al.* (2013) *Bacillus megaterium* has both a functional BluB protein
722 required for DMB synthesis and a related flavoprotein that forms a stable radical species.
723 *PLoS One* 8(2):e55708.

724 77. Biedendieck R, *et al.* (2010) Metabolic engineering of cobalamin (vitamin B12)
725 production in *Bacillus megaterium*. *Microb Biotechnol* 3(1):24-37.

726 78. Ma AT, Tyrell B, & Beld J (2020) Specificity of cobamide remodeling, uptake and
727 utilization in *Vibrio cholerae*. *Molecular Microbiology* 113(1):89-102.

728 79. Degnan PH, Barry NA, Mok KC, Taga ME, & Goodman AL (2014) Human gut microbes
729 use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. *Cell*
730 *Host Microbe* 15(1):47-57.

731 80. Tanioka Y, *et al.* (2010) Methyladeninylcobamide functions as the cofactor of
732 methionine synthase in a Cyanobacterium, *Spirulina platensis* NIES-39. *FEBS Lett*
733 584(14):3223-3226.

734 81. Hellwell KE, *et al.* (2016) Cyanobacteria and eukaryotic algae use different chemical
735 variants of vitamin B12. *Curr Biol* 26(8):999-1008.

736 82. Sokolovskaya OM, *et al.* (2019) Cofactor Selectivity in Methylmalonyl Coenzyme A
737 Mutase, a Model Cobamide-Dependent Enzyme. *mBio* 10(5):e01303-01319.

738 83. Nahvi A, Barrick JE, & Breaker RR (2004) Coenzyme B12 riboswitches are widespread
739 genetic control elements in prokaryotes. *Nucleic Acids Res* 32(1):143-150.

740 84. Gallo S, Mundwiler S, Alberto R, & Sigel RK (2011) The change of corrin-amides to
741 carboxylates leads to altered structures of the B12-responding *btuB* riboswitch. *Chem*
742 *Commun (Camb)* 47(1):403-405.

743 85. Choudhary PK, *et al.* (2013) Diversity of cobalamin riboswitches in the corrinoid-
744 producing organohalide respirer *Desulfitobacterium hafniense*. *J Bacteriol* 195(22):5186-
745 5195.

746 86. Di Girolamo PM, Kadner RJ, & Bradbeer C (1971) Isolation of vitamin B 12 transport
747 mutants of *Escherichia coli*. *J Bacteriol* 106(3):751-757.

748 87. Kashket S, Kaufman JT, & Beck WS (1962) The metabolic functions of vitamin B12. III.
749 Vitamin B12 binding in *Lactobacillus leichmannii* and other lactobacilli. *Biochim*
750 *Biophys Acta* 64:447-457.

751 88. Giannella RA, Broitman SA, & Zamcheck N (1971) Vitamin B12 uptake by intestinal
752 microorganisms: mechanism and relevance to syndromes of intestinal bacterial
753 overgrowth. *J Clin Invest* 50(5):1100-1107.

754 89. Price IR, Grigg JC, & Ke A (2014) Common themes and differences in SAM recognition
755 among SAM riboswitches. *Biochim Biophys Acta* 1839(10):931-938.

756 90. Huang L, Liao TW, Wang J, Ha T, & Lilley DMJ (2020) Crystal structure and ligand-
757 induced folding of the SAM/SAH riboswitch. *Nucleic Acids Res* 48(13):7545-7556.

758 91. Weickmann AK, *et al.* (2019) The structure of the SAM/SAH-binding riboswitch.
759 *Nucleic Acids Res* 47(5):2654-2665.

760 92. Ma B, Bai G, Nussinov R, Ding J, & Wang YX (2021) Conformational Ensemble of
761 TteAdoCbl Riboswitch Provides Stable Structural Elements for Conformation Selection
762 and Population Shift in Cobalamin Recognition. *The journal of physical chemistry. B*
763 125(10):2589-2596.

764 93. Trausch JJ & Batey RT (2014) A disconnect between high-affinity binding and efficient
765 regulation by antifolates and purines in the tetrahydrofolate riboswitch. *Chem Biol*
766 21(2):205-216.

767 94. Shelton AN, Lyu X, & Taga ME (2020) Flexible cobamide metabolism in *Clostridioides*
768 (*Clostridium*) *difficile* 630 Δerm. *J Bacteriol* 202(2).

769 95. Mok KC & Taga ME (2013) Growth Inhibition of *Sporomusa ovata* by Incorporation of
770 Benzimidazole Bases into Cobamides. *J Bacteriol* 195(9):1902-1911.

771 96. Shelton AN, *et al.* (2019) Uneven distribution of cobamide biosynthesis and dependence
772 in bacteria predicted by comparative genomics. *ISME J* 13(3):789-804.

773 97. Fedosov SN, Fedosova NU, Kräutler B, Nexo E, & Petersen TE (2007) Mechanisms of
774 discrimination between cobalamins and their natural analogues during their binding to the
775 specific B12-transporting proteins. *Biochemistry* 46(21):6446-6458.

776 98. Chan CH, *et al.* (2014) Dissecting cobamide diversity through structural and functional
777 analyses of the base-activating CobT enzyme of *Salmonella enterica*. *Biochim Biophys
778 Acta* 1840(1):464-475.

779 99. Hazra AB, Tran JL, Crofts TS, & Taga ME (2013) Analysis of substrate specificity in
780 CobT homologs reveals widespread preference for DMB, the lower axial ligand of
781 vitamin B12. *Chem Biol* 20(10):1275-1285.

782 100. Cheong CG, Escalante-Semerena JC, & Rayment I (2001) Structural investigation of the
783 biosynthesis of alternative lower ligands for cobamides by nicotinate
784 mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase from *Salmonella*
785 *enterica*. *J Biol Chem* 276(40):37612-37620.

786 101. Cheong CG, Escalante-Semerena JC, & Rayment I (1999) The three-dimensional
787 structures of nicotinate mononucleotide:5,6-dimethylbenzimidazole
788 phosphoribosyltransferase (CobT) from *Salmonella typhimurium* complexed with 5,6-
789 dimethylbenzimidazole and its reaction products determined to 1.9 Å resolution.
790 *Biochemistry* 38(49):16125-16135.

791 102. Trzebiatowski JR & Escalante-Semerena JC (1997) Purification and characterization of
792 CobT, the nicotinate-mononucleotide:5,6-dimethylbenzimidazole
793 phosphoribosyltransferase enzyme from *Salmonella typhimurium* LT2. *J Biol Chem*
794 272(28):17662-17667.

795 103. Trzebiatowski JR, O'Toole GA, & Escalante-Semerena JC (1994) The *cobT* gene of
796 *Salmonella typhimurium* encodes the NaMN: 5,6-dimethylbenzimidazole
797 phosphoribosyltransferase responsible for the synthesis of N1-(5-phospho-alpha-D-
798 ribosyl)-5,6-dimethylbenzimidazole, an intermediate in the synthesis of the nucleotide
799 loop of cobalamin. *J Bacteriol* 176(12):3568-3575.

800 104. Sokolovskaya OM, Shelton AN, & Taga ME (2020) Sharing vitamins: Cobamides unveil
801 microbial interactions. *Science* 369(6499).

802 105. Villa JK, Su Y, Contreras LM, & Hammond MC (2018) Synthetic Biology of Small
803 RNAs and Riboswitches. *Microbiol Spectr* 6(3).

804 106. Galizi R & Jaramillo A (2019) Engineering CRISPR guide RNA riboswitches for in vivo
805 applications. *Curr Opin Biotechnol* 55:103-113.

806 107. Mansjö M & Johansson J (2011) The riboflavin analog roseoflavin targets an FMN-
807 riboswitch and blocks *Listeria monocytogenes* growth, but also stimulates virulence
808 gene-expression and infection. *RNA Biol* 8(4):674-680.

809 108. Kräutler B (2020) Antivitamins B12 - Some Inaugural Milestones. *Chemistry*
810 26(67):15438-15445.

811 109. Zelder F, Sonnay M, & Prieto L (2015) Antivitamins for Medicinal Applications. *Chembiochem* 16(9):1264-1278.

812 110. Mukherjee S & Sengupta S (2016) Riboswitch Scanner: an efficient pHMM-based web-
813 server to detect riboswitches in genomic sequences. *Bioinformatics* 32(5):776-778.

814 111. Singh P, Bandyopadhyay P, Bhattacharya S, Krishnamachari A, & Sengupta S (2009)
815 Riboswitch detection using profile hidden Markov models. *BMC Bioinformatics* 10:325.

816 112. Mathews DH, *et al.* (2004) Incorporating chemical modification constraints into a
817 dynamic programming algorithm for prediction of RNA secondary structure. *Proc Natl
818 Acad Sci U S A* 101(19):7287-7292.

819 113. Reuter JS & Mathews DH (2010) RNAstructure: software for RNA secondary structure
820 prediction and analysis. *BMC Bioinformatics* 11:129.

821 114. Wilson KS & von Hippel PH (1995) Transcription termination at intrinsic terminators:
822 the role of the RNA hairpin. *Proc Natl Acad Sci U S A* 92(19):8793-8797.

823 115. Gusarov I & Nudler E (1999) The mechanism of intrinsic transcription termination. *Mol
824 Cell* 3(4):495-504.

825 116. Waterhouse AM, Procter JB, Martin DM, Clamp M, & Barton GJ (2009) Jalview Version
826 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics*
827 25(9):1189-1191.

828 117. Sokolovskaya OM, *et al.* (2020) Naturally occurring cobalamin (B12) analogs can
829 function as cofactors for human methylmalonyl-CoA mutase. *Biochimie*.

830 118. Yi S, *et al.* (2012) Versatility in corrinoid salvaging and remodeling pathways supports
831 corrinoid-dependent metabolism in *Dehalococcoides mccartyi*. *Appl Environ Microbiol*
832 78(21):7745-7752.

833 119. Mok KC, *et al.* (2020) Identification of a novel cobamide remodeling enzyme in the
834 beneficial human gut bacterium *Akkermansia muciniphila*. *mBio* 11(6):e02507-02520.

835 120. Gibson DG, *et al.* (2009) Enzymatic assembly of DNA molecules up to several hundred
836 kilobases. *Nature methods* 6(5):343-345.

837 121. Guiziou S, *et al.* (2016) A part toolbox to tune genetic expression in *Bacillus subtilis*.
838 *Nucleic Acids Res* 44(15):7495-7508.

839 122. Zhang XZ & Zhang Y (2011) Simple, fast and high-efficiency transformation system for
840 directed evolution of cellulase in *Bacillus subtilis*. *Microb Biotechnol* 4(1):98-105.

841 123. Koo BM, *et al.* (2017) Construction and Analysis of Two Genome-Scale Deletion
842 Libraries for *Bacillus subtilis*. *Cell Syst* 4(3):291-305.e297.

843 124. Berman HM, *et al.* (2000) The Protein Data Bank. *Nucleic Acids Research* 28(1):235-
844 242.

845 125. Pettersen EF, *et al.* (2004) UCSF Chimera--a visualization system for exploratory
846 research and analysis. *Journal of computational chemistry* 25(13):1605-1612.

847 126. Anagnostopoulos C & Spizizen J (1961) Requirements for transformation in *Bacillus
848 subtilis*. *J Bacteriol* 81(5):741-746.

849

851 **Figure Legends**

852 **Figure 1 – Main corrinoids and riboswitches examined in this study.** (A) Chemical structure
853 of cobalamin, also called vitamin B₁₂. The gray solid line delineates the corrinoid tail region,
854 which contains the variable lower ligand group in the gray dashed-line box. The R group is the
855 upper ligand. (B) Names, lower ligand structures and abbreviations of the corrinoids used
856 throughout this study. Cbl, pCbl and CreCba are ‘complete corrinoids’ (cobamides). Cbi is an
857 ‘incomplete corrinoid’ that lacks the phosphoribosyl and lower ligand groups as indicated by the
858 bracket and wavy line in the corrinoid tail in panel A. (C) Secondary structural model of the Cbl-
859 riboswitch upstream of *B. subtilis* *btuF*. Base paired stems (P), loops (L), and junctions (J) are
860 labeled. The P6 accessory region is highly variable in length and number of stems across Cbl-
861 riboswitch sequences, often containing up to six paired regions. In this example, P6 accessory
862 consists of only two paired regions. A kissing loop interaction (KL, dashed line) occurs between
863 L5 of the aptamer and L13 of the expression platform. M1 indicates mutations C107U and
864 C108U, which are examined in Figure 2F. (D) Secondary structural alignments of seven
865 representative Cbl-riboswitches examined in this study. Row “2° str” indicates paired bases as
866 parentheses, loops and junctions as periods, and kissing loop base pairs by brackets. PDB
867 numbers or abbreviations are given for riboswitches from the following organisms and genes:
868 4GMA, *Thermanaerobacter tencongensis*; *S.the*, *Symbiobacterium thermophilum* *cblS*; *B.sub*, *B.*
869 *subtilis* *btuF*; *P.meg*, *Priestia megaterium* *metE*; *D.haf*, *Desulfitobacterium hafniense* DSY0087;
870 *S.ova*, *Sporomusa ovata* *btuB2*; *V.par*, *Veillonella parvula* *mutA*. Non-conserved sequences
871 between P13 and the start codon are indicated by nucleotide sequence length (nt), but the actual
872 sequences were omitted for clarity.

873 **Figure 2 – Characterization of a live cell Cbl-riboswitch reporter system.** (A-D) Intracellular
874 accumulation of corrinoids in *Bacillus subtilis* strains containing the wild type (diamonds) or
875 constitutively overexpressed (circles) corrinoid uptake genes *btuFCDR*. (E-G) Dose-responses of
876 *B. subtilis* *btuF* GFP riboswitch reporters. ‘Mutant’ riboswitch refers to the M1 mutant version of
877 the *B. subtilis* *btuF* riboswitch (Fig. 1C). Data points in panels A-D represent single
878 measurements from one representative experiment. Data points and error bars in panels E-G
879 represent mean and standard deviation of four independent replicates, and horizontal dotted lines
880 demarcate no change in expression.

881 **Figure 3 – Corrinoid specificity among 38 Cbl-riboswitches.** (A,B) Corrinoid dose-responses
882 of two riboswitch reporter strains with distinct corrinoid specificities, representing the semi-
883 selective (A) and promiscuous (B) types. (C-E) Pairwise comparisons of GFP fold repression
884 induced by 100 nM Cbl versus (C) pCbl, (D) Cbi, and (E) CreCba. Data points are colored by
885 taxonomic class with the number of riboswitches analyzed from each class indicated in
886 parentheses. Vertical and horizontal gray dashed lines demarcate a response to only one of the
887 two corrinoids. Diagonal line demarcates equal response to two corrinoids. Data points and error
888 bars in panels A and B represent mean and standard deviation of ten experiments for *P.*
889 *megaterium* *metE* and six experiments for *V. parvula* *mutA*. Data points and error bars in panels
890 C-E represent mean and range of at least two independent experiments for each riboswitch.

891 **Figure 4 – Corrinoid base-on tendency correlates with corrinoid potency.** (A) Sixteen
892 adenosylated corrinoids used to test the relationship between corrinoid base-on tendency and
893 corrinoid potency. (B) Semi-selective riboswitches *P. megaterium metE* and *D. hafniense*
894 DSY0087 and (C) promiscuous riboswitches *V. parvula mutA* and *S. ovata btuB2* were used to
895 measure the response to each corrinoid. Base-on tendency was measured as the ratio between
896 spectral absorbance at 525 and 458 nm in a pH 7.3 solution. Absorbance spectra are displayed in
897 Figure S5. The cumulative corrinoid response was measured as the area under the dose-response
898 curve of the riboswitch reporter strain for that corrinoid ($AUC_{\text{corrinoid}}$) relative to its dose-
899 response to Cbl (AUC_{Cbl}). Corrinoids with benzimidazole (blue circles), azabenzimidazole
900 (purple circles), and purine (red circles) lower ligands can adopt the base-on conformation. The
901 corrinoids that are unable to adopt the base-on state (CreCba, [Phe]Cba and Cbi) are represented
902 by empty circles. Trendlines in B and C were fit to data points of corrinoids with benzimidazole,
903 azabenzimidazole and purine lower ligands, with strictly base-off corrinoids excluded. Each data
904 point represents a single measurement of riboswitch dose-response and corrinoid base-on
905 tendency.

906 **Figure 5 – Distinct tail positions among base-on and base-off corrinoids may impact**
907 **binding of corrinoids to riboswitches.** 3D alignments of Cbl structural models derived from
908 published X-ray crystal structures of (A) base-on Cbl in complex with RNAs and (B) base-off
909 Cbl in complex with proteins. The Cbl-binding site in the X-ray crystal structure of the
910 *Thermoanaerobacter tengcongensis* Cbl-riboswitch (PDB ID 4GMA) is depicted with (C) base-
911 on and (D) base-off Cbl alignments. Cbl models were aligned by the cobalt and coordinating
912 nitrogen atoms in the corrin ring. Structures of the corrin ring, cobalt, and tail of Cbl are colored
913 in black, blue, and green, respectively. Upper ligand structures of Cbl were omitted for clarity.
914 Riboswitch RNA structures are depicted as space-filled models with the L5-L13 kissing loop in
915 pink and the rest of the RNA in gray.

916 **Figure 6 – Corrinoid specificities of the *P. megaterium metE* riboswitch and *P. megaterium***
917 **MetH enzyme are aligned.** Expression of the Cbl-independent methionine synthase MetE and
918 enzymatic activity of the Cbl-dependent methionine synthase MetH are potentially impacted by
919 the presence of (A) MetH-compatible corrinoids and (B) MetH-incompatible corrinoids. (C) The
920 *metH*-expressing strain (red) is a *B. subtilis* $\Delta metE::loxP$ $\Delta queG::loxP$ $P_{\text{Veg}}-btuFCDR$ strain
921 heterologously expressing *P. megaterium metH*. The *metE*-expressing strain (blue) is a *B. subtilis*
922 $\Delta metE::loxP$ $\Delta queG::loxP$ $P_{\text{Veg}}-btuFCDR$ strain heterologously expressing *P. megaterium metE*
923 downstream from a SAM-Cbl tandem riboswitch (RS). Each methionine synthase gene is
924 constitutively expressed from the P_{Veg} promoter and is transcriptionally fused to *gfp*. (D) Growth
925 rates of the *metE*-expressing strain (blue circles) and *metH*-expressing strain (red squares) strains
926 were measured in methionine-dependent culture conditions containing 20 nM corrinoid. (E)
927 Expression of *metE* was measured as GFP fluorescence per OD_{600} in medium lacking
928 methionine, supplemented with 20 nM corrinoids. Data points are individual measurements and
929 black horizontal lines represent the mean of the four replicate measurements.

930

931 **Legends for supplemental items**

932 **Figure S1 – The *B. subtilis* *btuF* Cbl-riboswitch is sensitive to Cbl with 5'-deoxyadenosyl,**

933 **but not methyl, hydroxyl, or cyanyl upper ligand moieties.** Dose responses of *B. subtilis* *btuF*

934 Cbl-riboswitch reporter strains with (A) adenosylcobalamin (AdoCbl), (B) methylcobalamin

935 (MeCbl), (C) hydroxocobalamin (OHCbl), and (D) cyanocobalamin (CNCbl). Data points and

936 error bars represent mean and standard deviation of four independent replicates. Horizontal

937 dotted lines demarcate no change in expression. Note that the two dose-response curves in panel

938 A are overlapping.

939 **Figure S2 – Corrinoid dose-responses of riboswitch reporter strains.** Riboswitch names

940 (species and gene downstream gene) are indicated for each dose-response. Data points are

941 plotted for at least two independent experiments for each strain. Lines connect mean values. (A)

942 Riboswitches from the class Bacilli. Species include *Bacillus subtilis*, *Priestia megaterium*, and

943 *Alkalihalobacillus halodurans*. (B) Riboswitches from the class Negativicutes. Species include

944 *Sporomusa ovata*, *Veillonella parvula*, and *Selenomonas sputigena*. (C) Riboswitches from the

945 classes Clostridia, Deltaproteobacteria, and Bacteroidia. *Clostridioides difficile*, *Clostridium*

946 *novyi*, *Desulfobacterium hafniense*, and *Symbiobacterium thermophilum* are members of

947 Clostridia. *Desulfobulbus propionicus* and *Pelobacter propionicus* are members of

948 Deltaproteobacteria. *Bacteroides thetaiotaomicron* is a member of Bacteroidia.

949 **Figure S3 – Cbl-riboswitch specificity does not cluster by regulatory gene target function.**

950 Pairwise comparisons of GFP fold repression induced by 100 nM doses of Cbl versus Cbi (top

951 left) pCbl (top right), and CreCba (bottom left). Data points are colored by predicted function of

952 downstream regulatory target genes. The number of riboswitches analyzed from each group is

953 indicated in parentheses. Vertical and horizontal gray dashed lines demarcate a lack of response

954 to one corrinoid. Diagonal line indicates equal repression between corrinoids. The distance of a

955 point from the diagonal line indicates the bias in response towards one of the two corrinoids.

956 **Figure S4 – Chimeric riboswitches show that multiple components contribute to corrinoid**

957 specificity. Repression of GFP expression with 100 nM corrinoid is shown for (A) *P.*

958 *megaterium* *metE* and *V. parvula* *mutA* riboswitches and chimeric fusions of their aptamer and

959 expression platform domains. Aptamer subdomains swaps within the (B) *P. megaterium* *metE*

960 riboswitch scaffold and (C) *V. parvula* *mutA* riboswitch scaffold. Columns and error bars

961 represent mean and standard deviation of 3 replicates. Cartoon riboswitches depict *P.*

962 *megaterium* riboswitch sequence in cyan and *V. parvula* riboswitch sequence in orange.

963 Sequences in black are identical between riboswitches.

964 **Figure S5 – Corrinoid lower ligand structure impacts base-on tendency.** Absorbance spectra

965 of corrinoids were measured in a neutral buffered solution (pH 7.3). Absorbance peaks at 458 nm

966 and 525 nm are associated with base-off and base-on conformations, respectively. Base-on

967 tendency was measured as the ratio between absorbance at 525 nm and 458 nm (thin vertical

968 lines). Each panel is labeled with corrinoid name, base-on tendency value ($\text{Abs}_{525\text{nm}} / \text{Abs}_{458\text{nm}}$),

969 and lower ligand chemical structure. Note that the tail structures of PheCba, CreCba, and Cbi

970 cannot coordinate cobalt, and thus these corrinoids cannot be assigned a ‘base-on tendency’ per

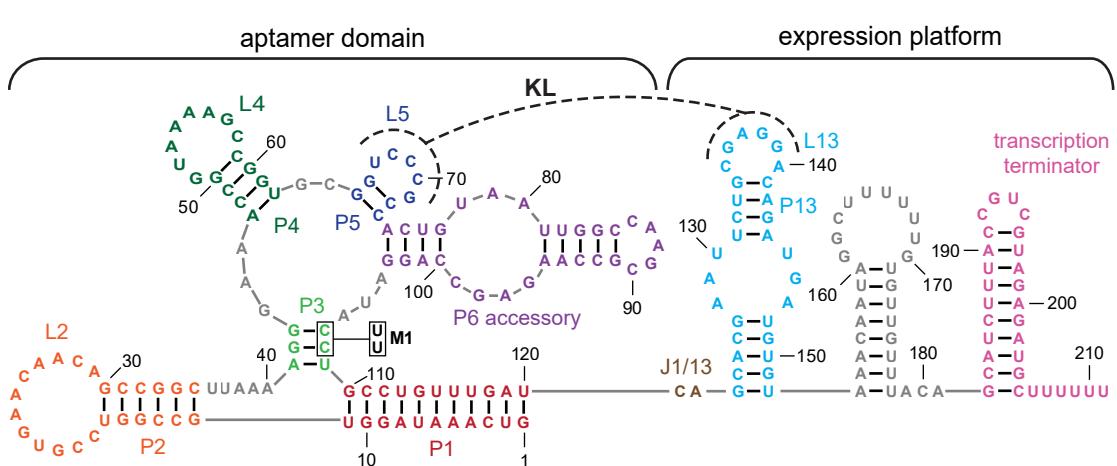
971 se. The $\text{Abs}_{525\text{nm}} / \text{Abs}_{468\text{nm}}$ ratios of PheCba, CreCba, and Cbi simply reflect an absence of any

972 Co-N coordination at the α axial face. For reference, the dashed line in the upper left panel is the
973 absorbance spectrum of nearly complete base-off Cbl measured in acidic solution (pH 1.57).

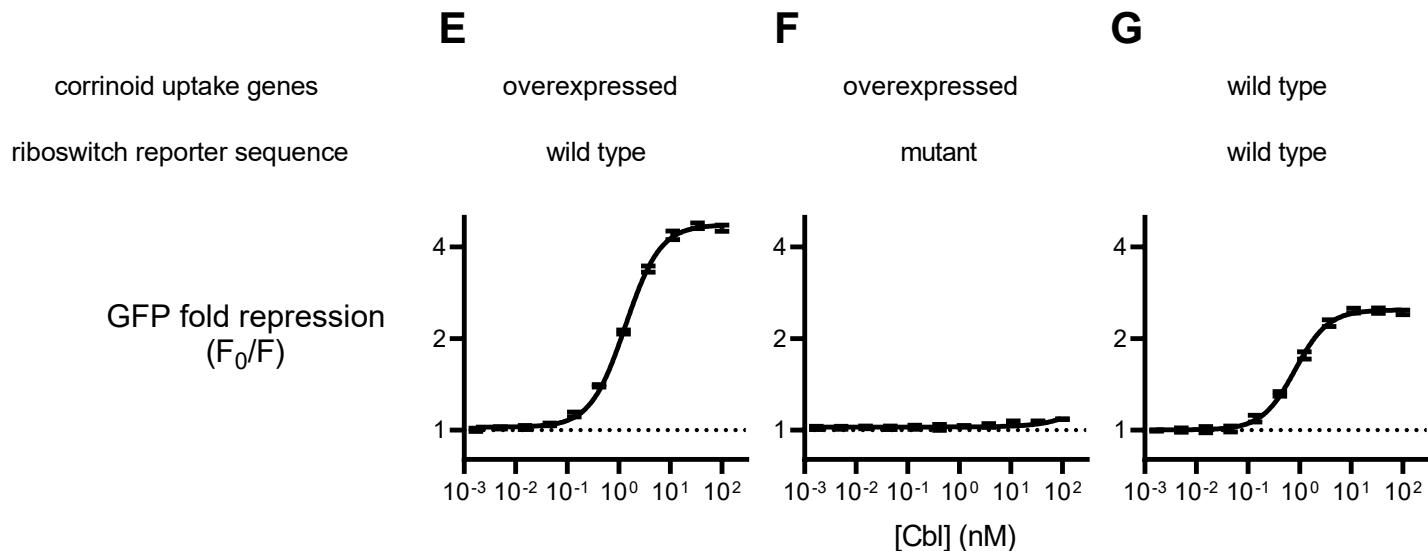
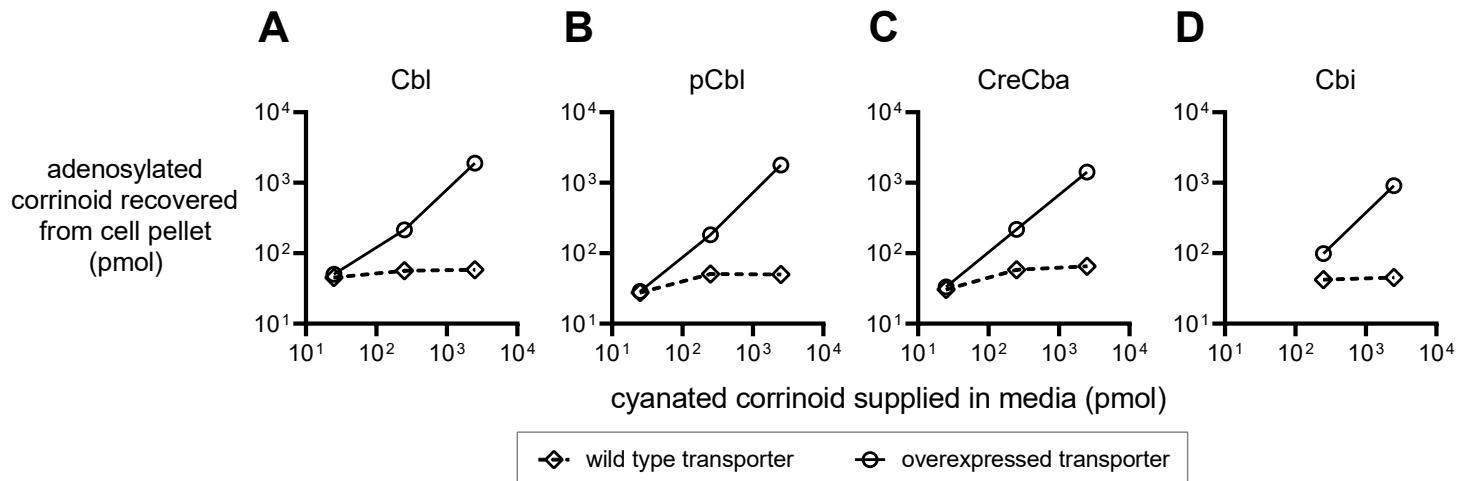
974 **Figure S6 – Cbl-binding sites in X-ray crystal structures of various Cbl-riboswitches.** The
975 marine metagenome derived riboswitch *env8* (PDB ID 4FRN) (A, B), the *B. subtilis* *btuF* Cbl-
976 riboswitch (PDB ID 6VMY) (C, D), and the *S. thermophilum* *cblT* Cbl-riboswitch (PDB ID
977 4GXY) are depicted with base-on (A, C, E) and base-off (B, D, F) Cbl alignments. Cbl models
978 were aligned by the cobalt and coordinating nitrogen atoms in the corrin ring. Structures of the
979 corrin ring, cobalt, and tail of Cbl are colored in black, blue and green, respectively. Upper
980 ligand structures of Cbl were omitted for clarity. Riboswitch RNA structures are depicted as
981 space-filled models with the L5-L13 kissing loop in pink in panels A and B, and just the L5 in
982 pink in panels C-F. The rest of the RNA structures in each panel are in gray. Arrows in panels D
983 and F point to clashes between RNA and the Cbl tails.

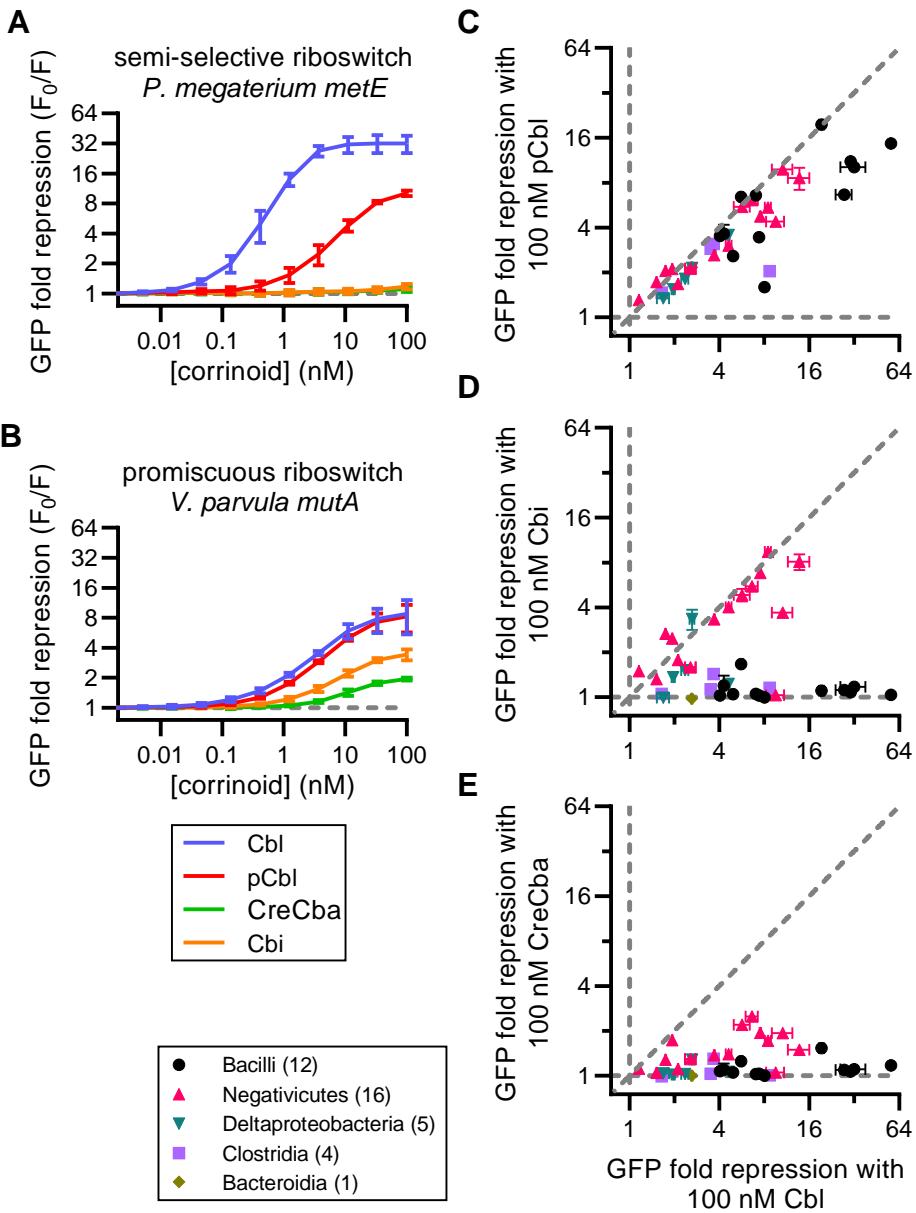
984 **Figure S7 – The aptamer and expression platform of the *P. megaterium* riboswitch
985 contribute to corrinoid selectivity.** (A) Repression of GFP expression with 100 nM corrinoid is
986 shown for the *P. megaterium* *metE* riboswitch, *S. ovata* *nikA* riboswitch, and a chimeric fusion of
987 the *S. ovata* *nikA* aptamer and *P. megaterium* *metE* expression platform domains. Cbl dose-
988 responses with or without 100 nM Cbi in (B) *P. megaterium* *metE* and (C) chimeric
989 riboswitches. Data points and error bars represent mean and standard deviation of four
990 independent replicates.

991 **Table S1 – Strain list and riboswitch information.** (A) List of strains used in this study. (B)
992 Genome and sequence information of wild type riboswitches analyzed in this study. (C)
993 Sequences of mutant riboswitches analyzed in this study.

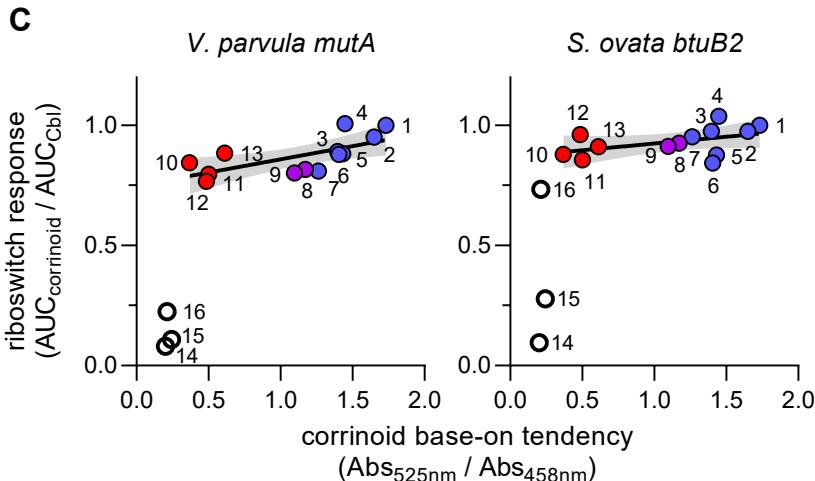

994 **Table S2 – X-ray crystal structural models used for 3D Cbl structural alignments.**

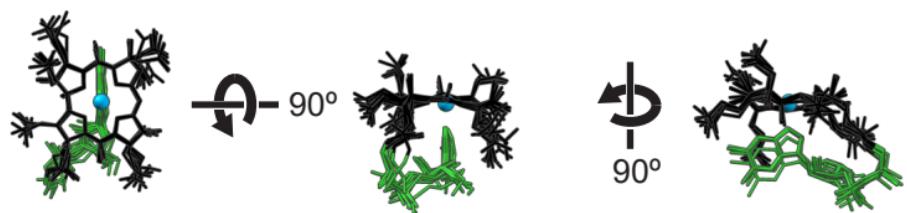
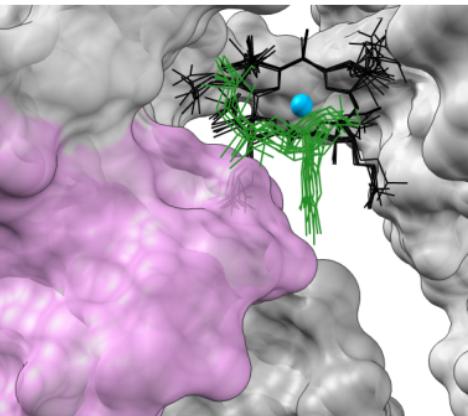
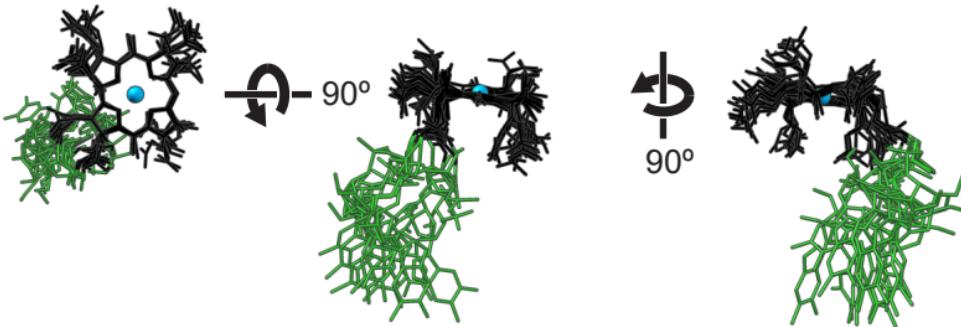
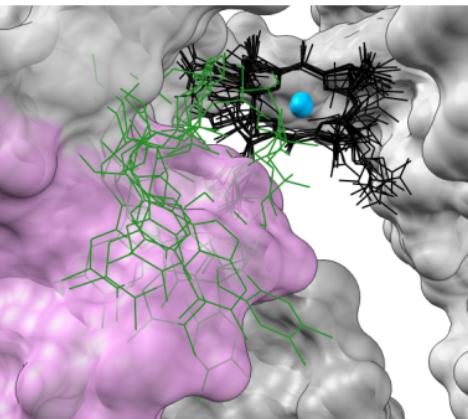
995 **Data S1 – Riboswitch sequence alignment in Stockholm sequence format.**

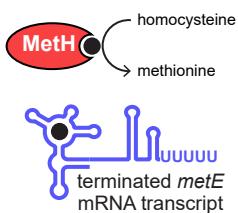

corrinoids	lower ligands
cobalamin, vitamin B ₁₂ (Cbl)	
pseudocobalamin (pCbl)	
cresolylcobamide (CreCba)	
cobinamide (Cbi)	truncated corrinoid tail

R = 5'-deoxyadenosyl (Ado), methyl (Me), hydroxyl (OH), or cyanyl (CN) group

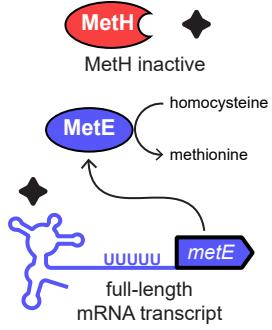


D

A

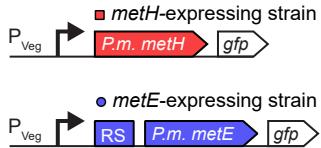
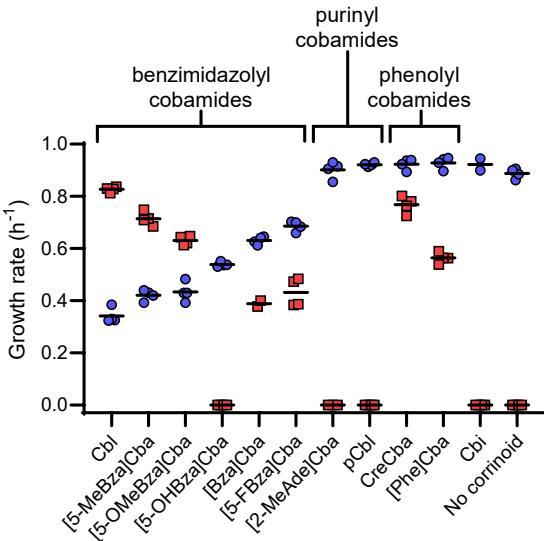
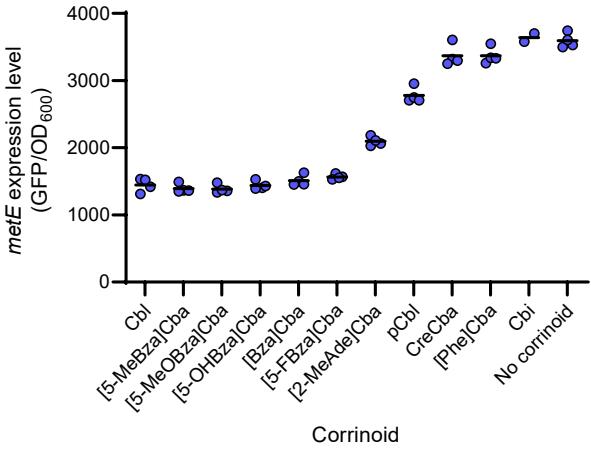

#	lower ligand	corrinoid name
1		Cbl
2		[5-MeBza]Cba
3		[Bza]Cba
4		[5-OHBza]Cba
5		[5-FBza]Cba
6		[4-MeBza]Cba
7		[4-AmBza]Cba
8		[5-AzaBza]Cba
9		[4-DeazaAde]Cba
10		pCbl
11		[2-MeAde]Cba
12		[Pur]Cba
13		[6-MePur]Cba
14		CreCba
15		[Phe]Cba
16	none	Cbi

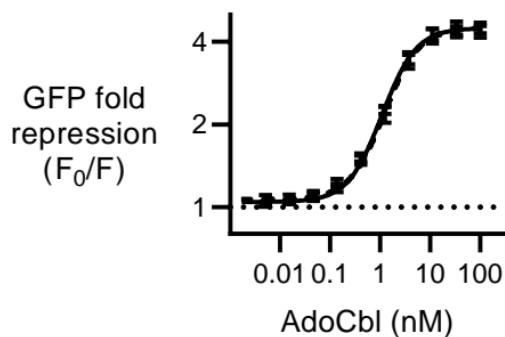
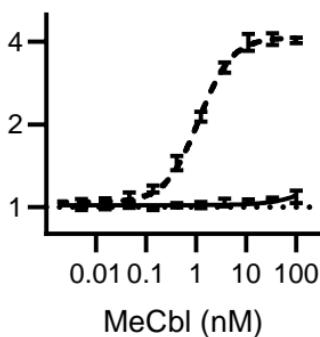
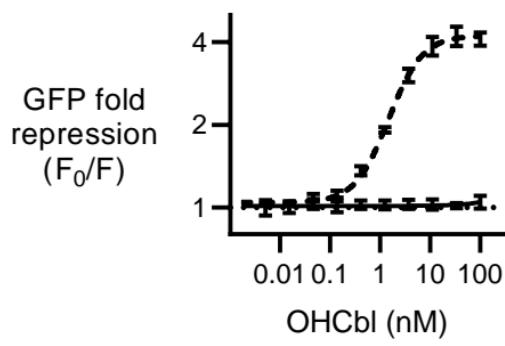
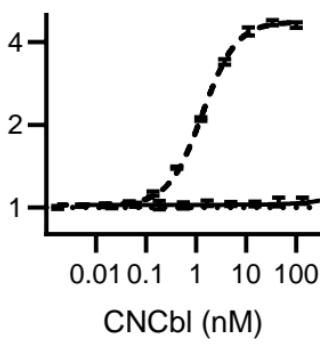
B**C**


A**C****B****D**

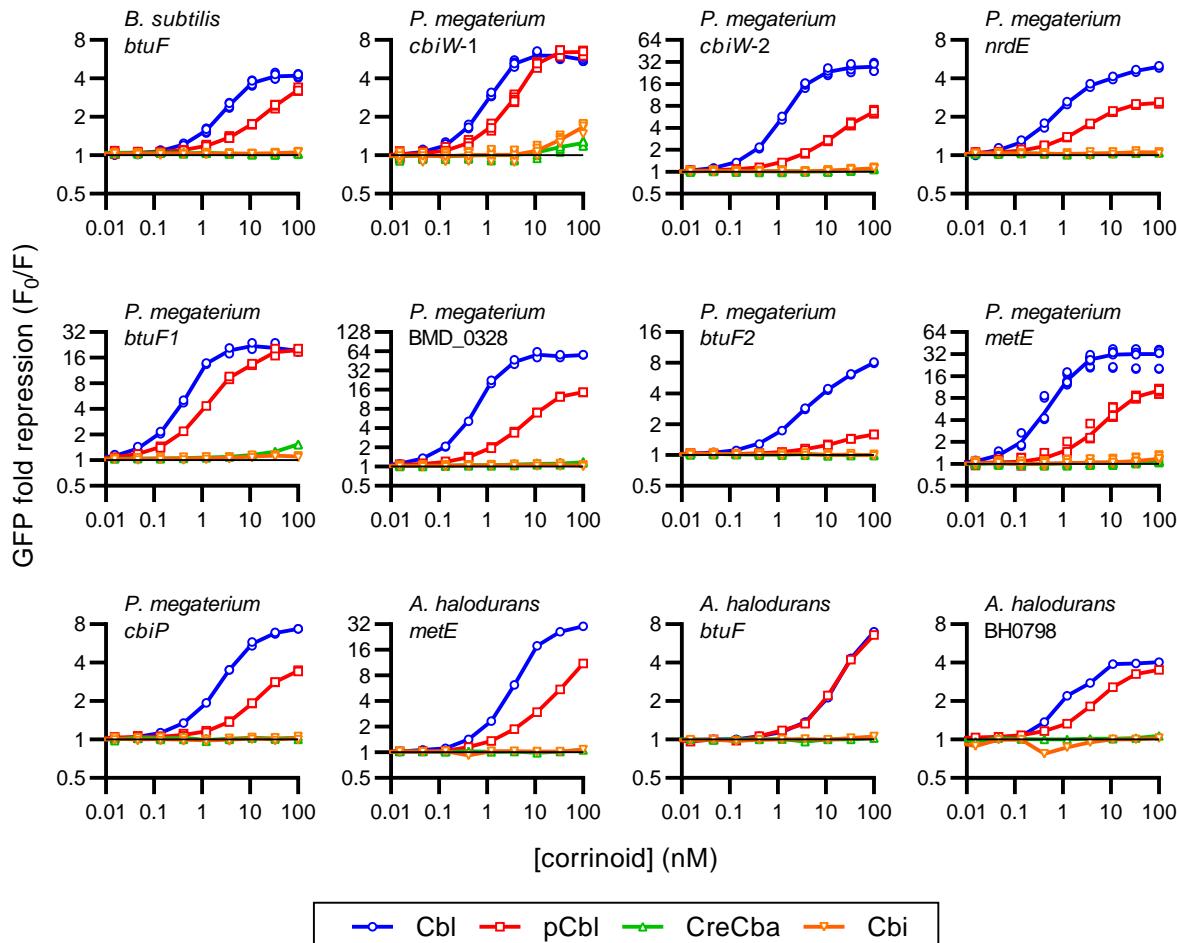
A

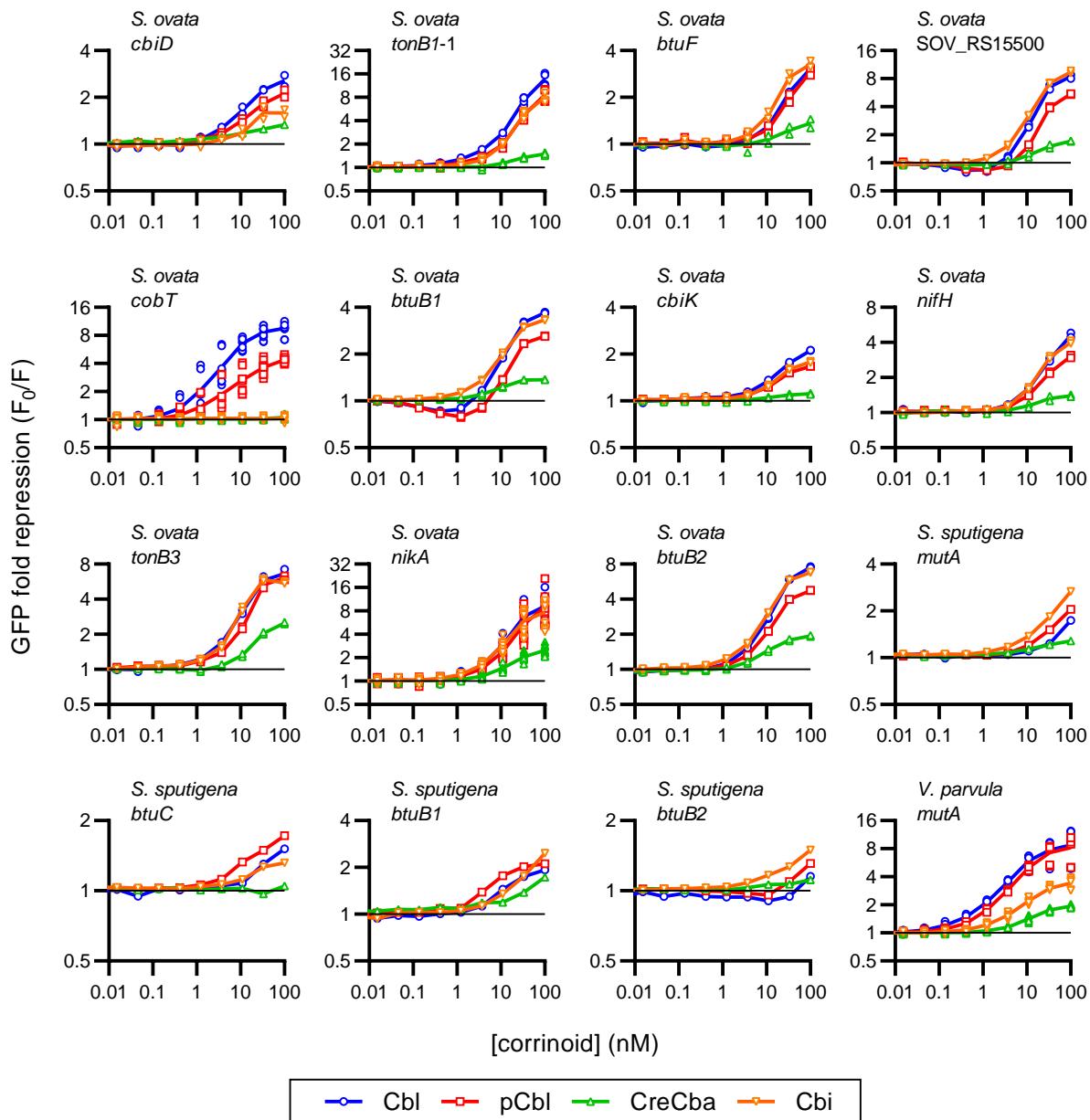
● MethH-compatible corrinoid




B

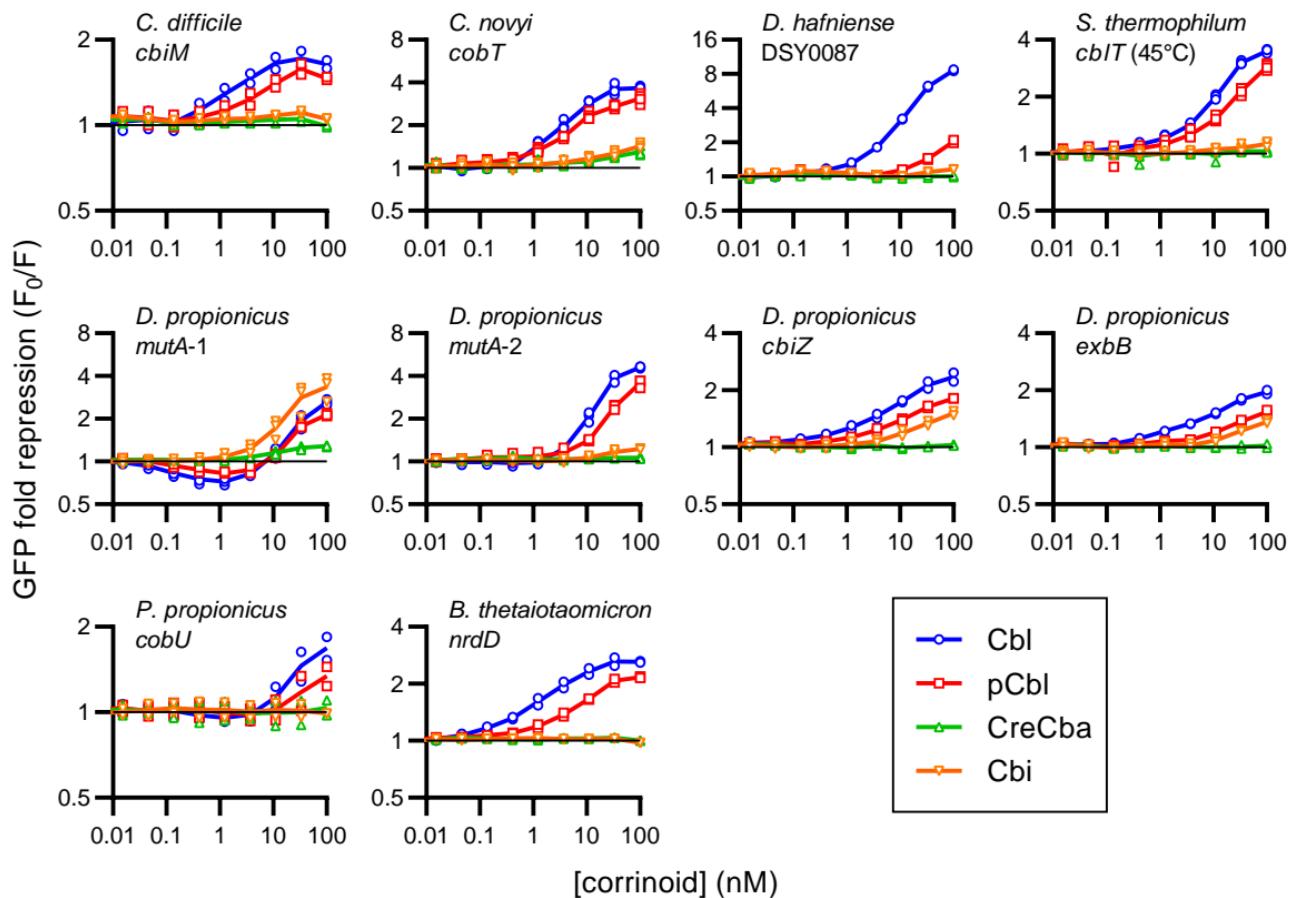




◆ MethH-incompatible corrinoid

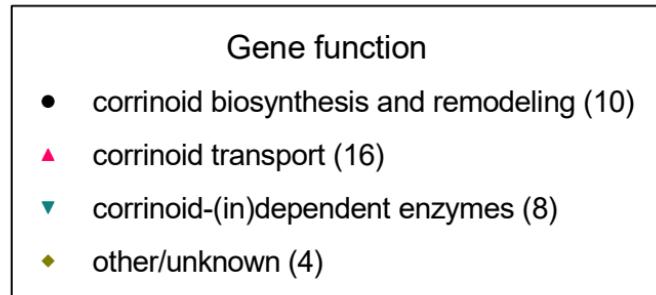
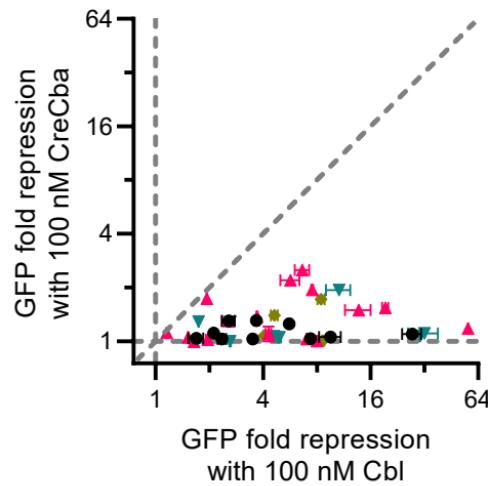
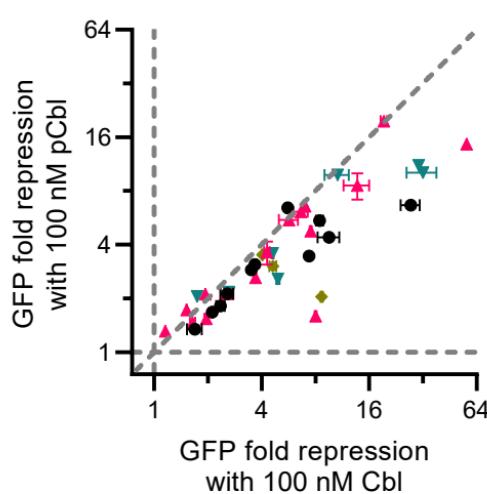
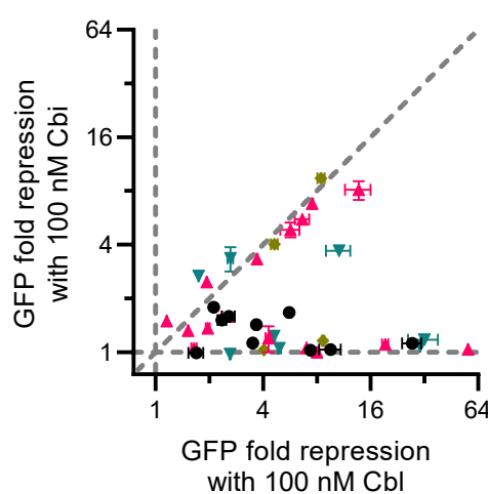
C

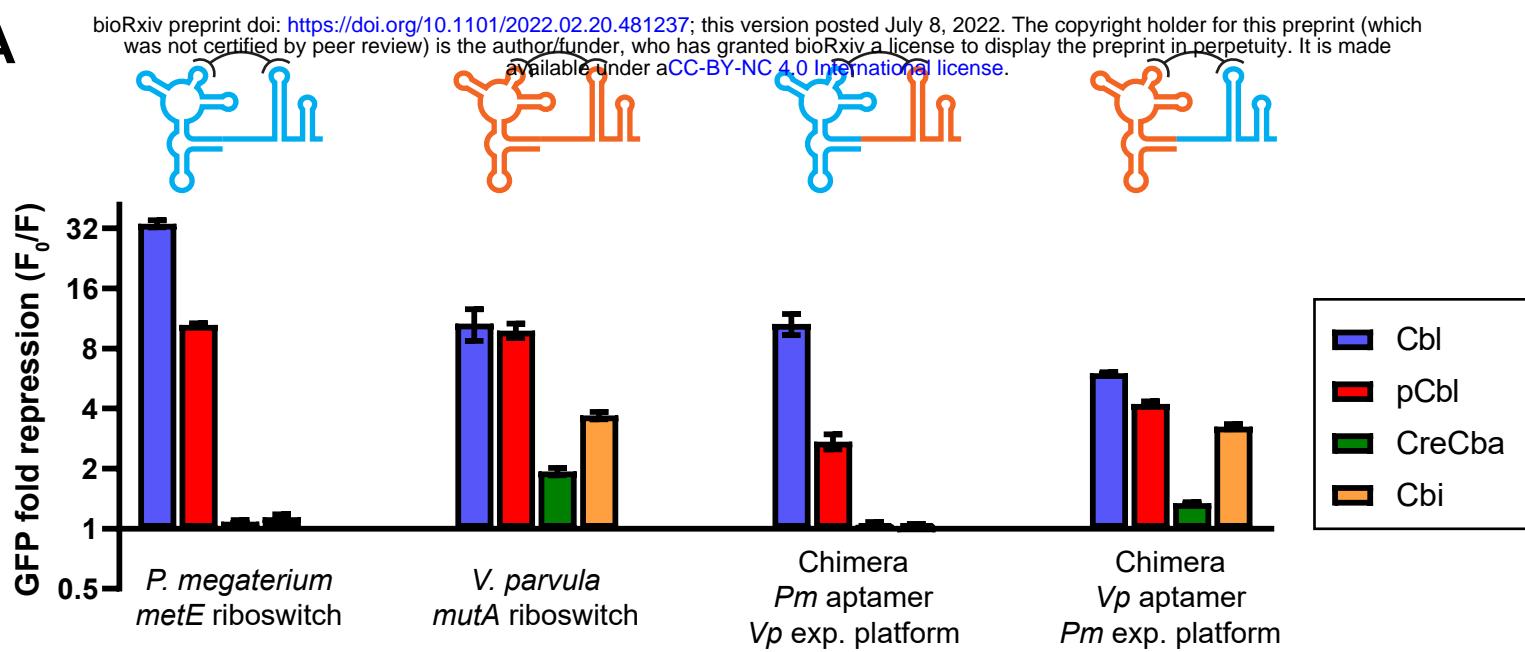
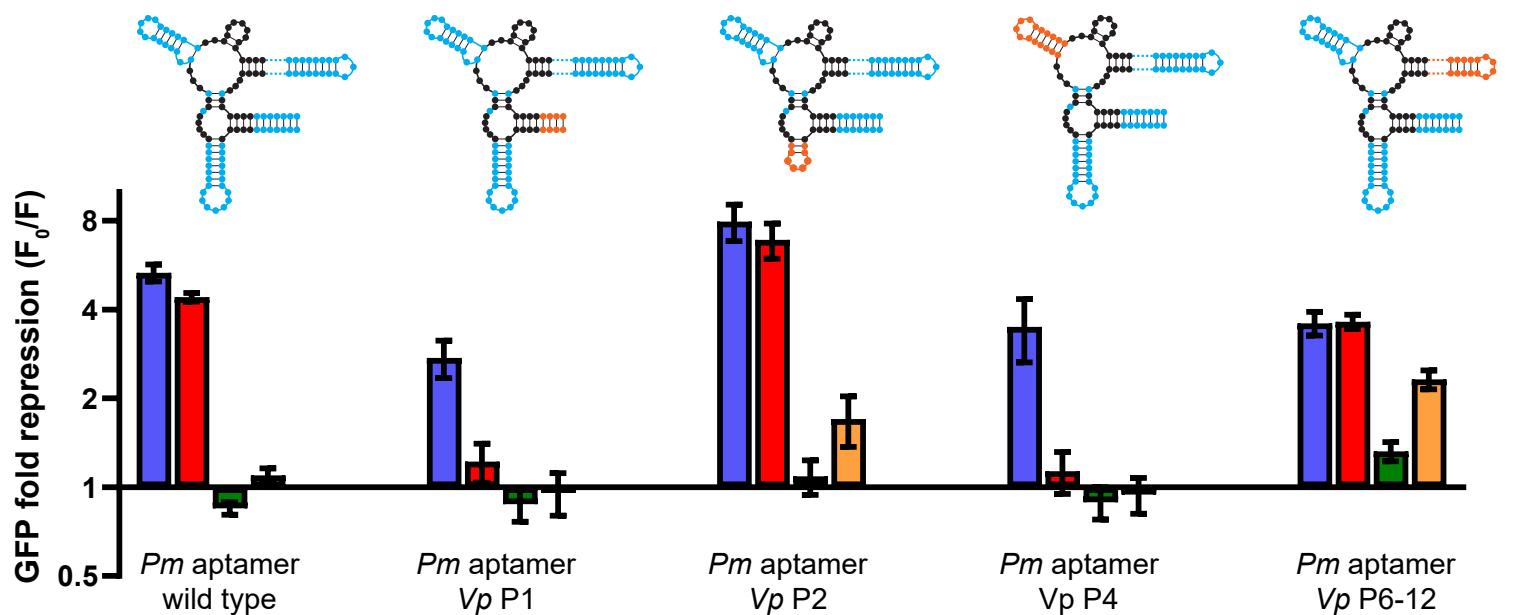
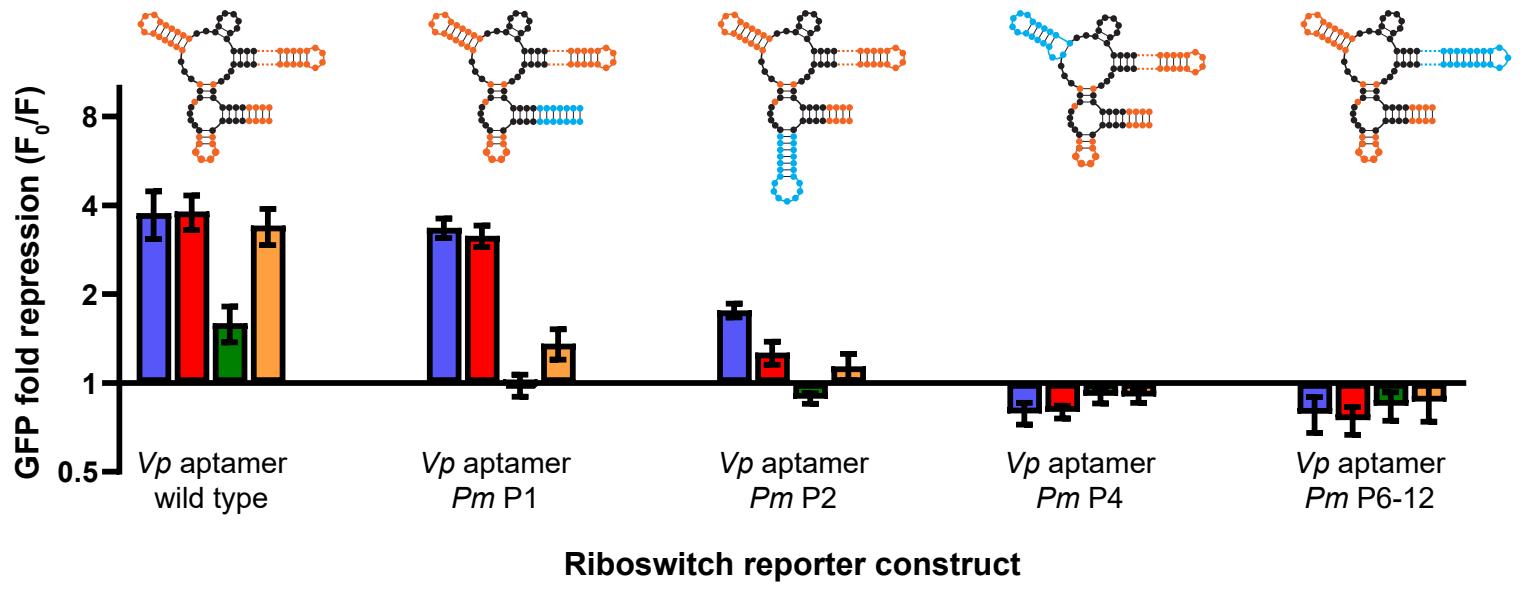

Strain background:

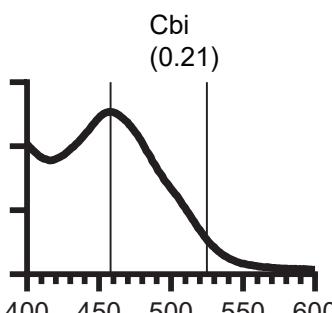
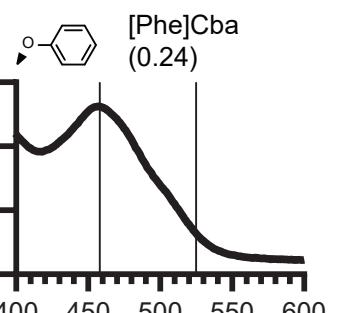
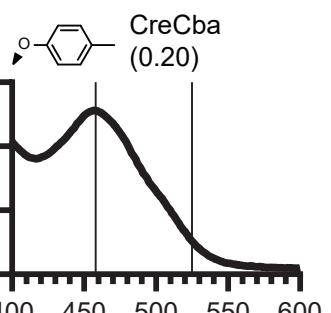
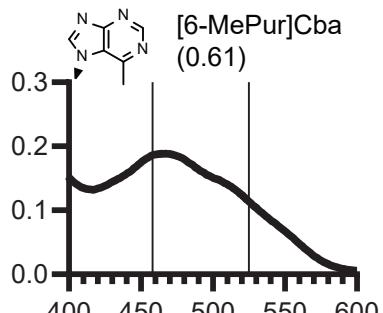
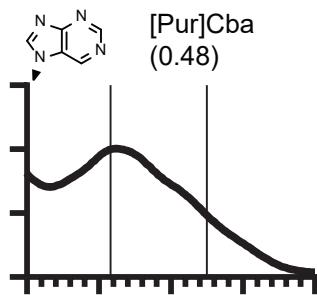
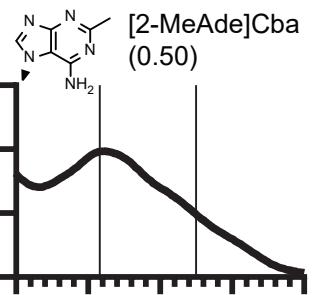
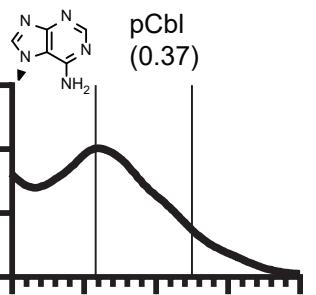
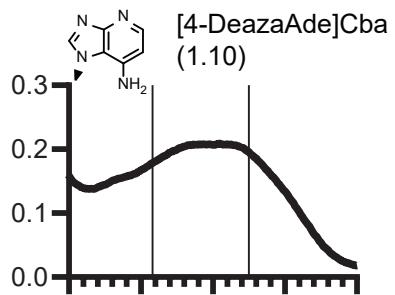
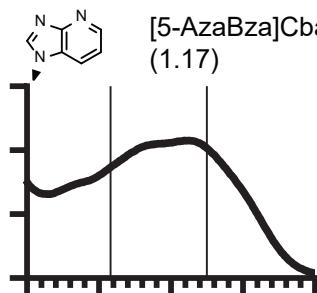
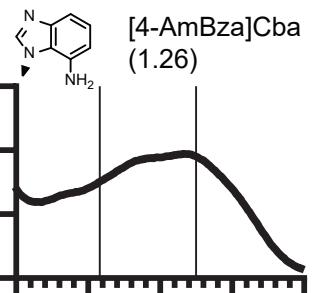
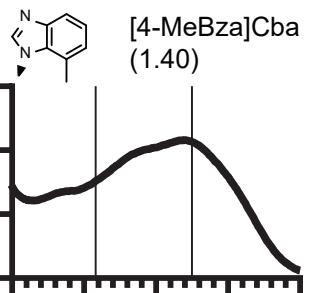
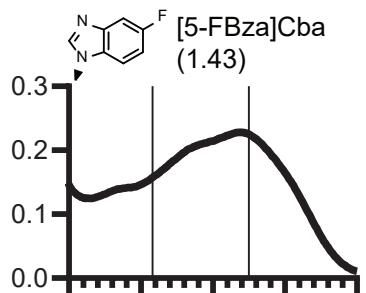
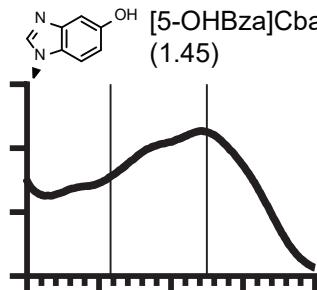
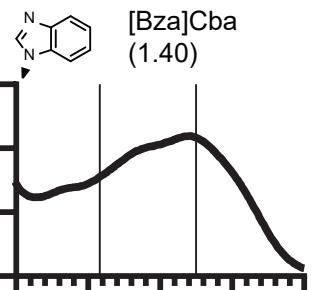
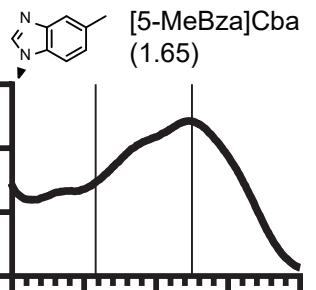
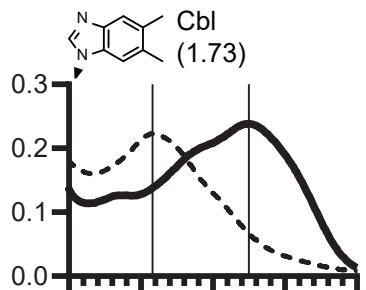

B. subtilis $\Delta metE::loxP$ $\Delta queG::loxP$ $P_{veg}\text{-}btuFCDR$

D**E**

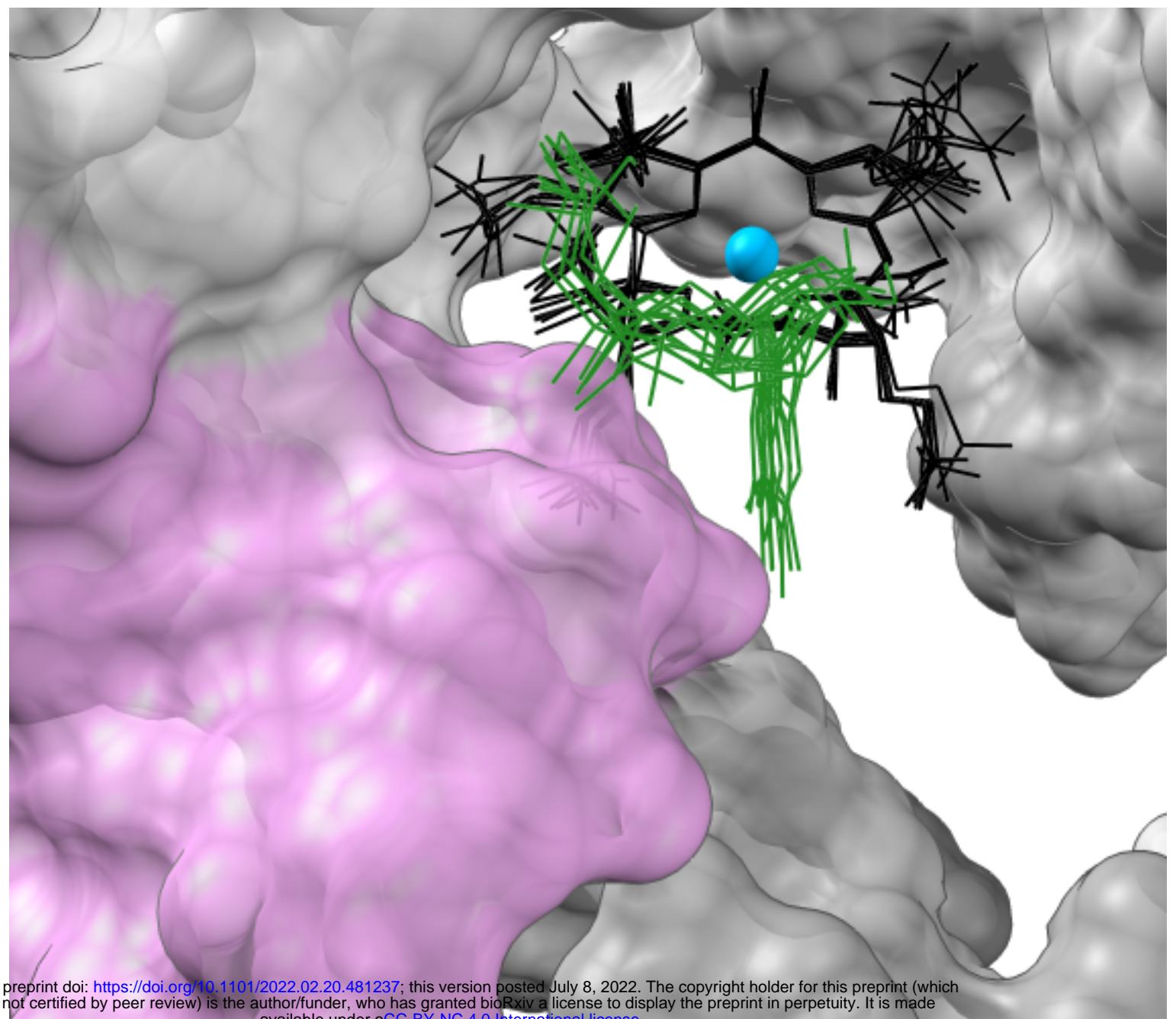
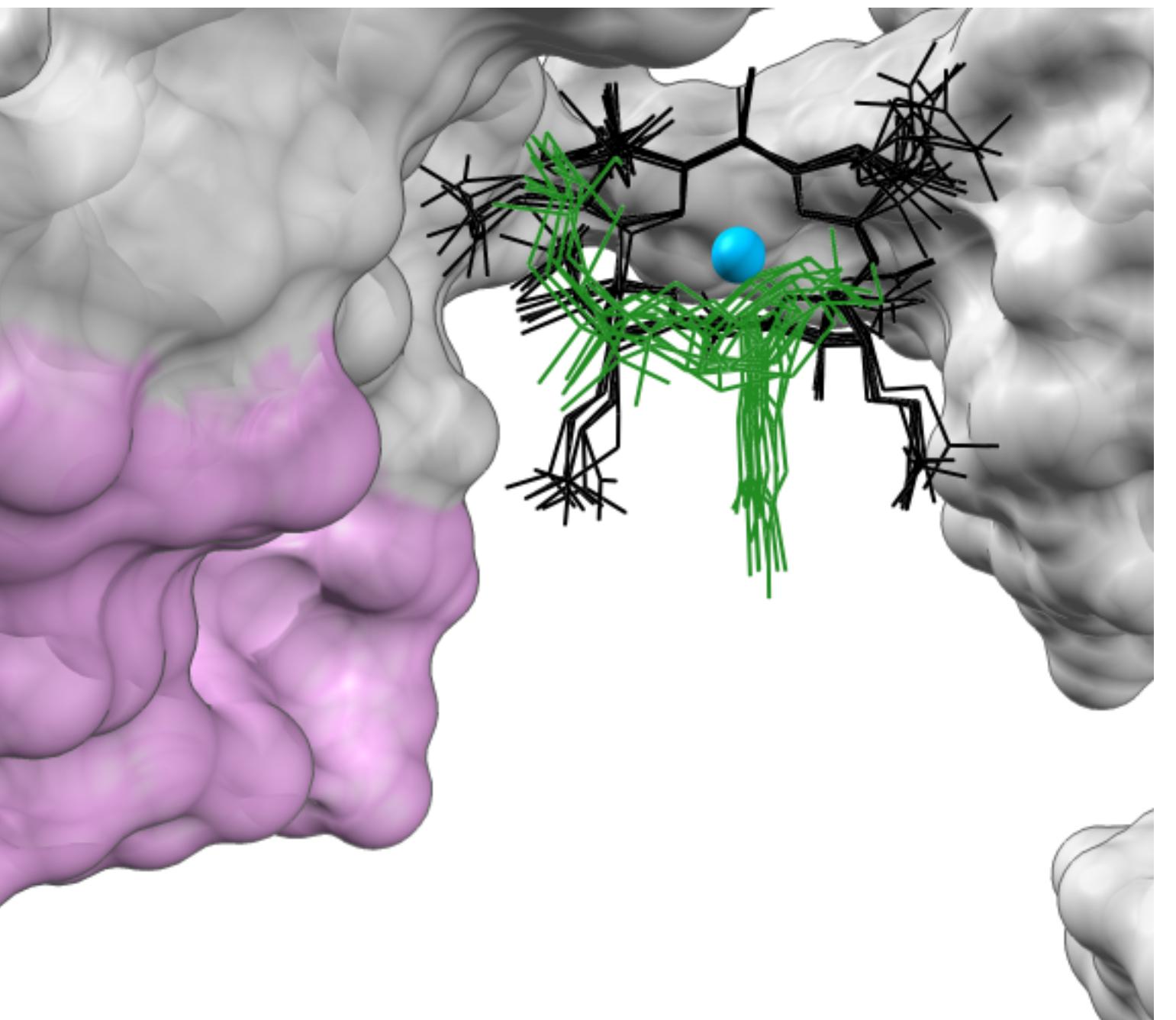
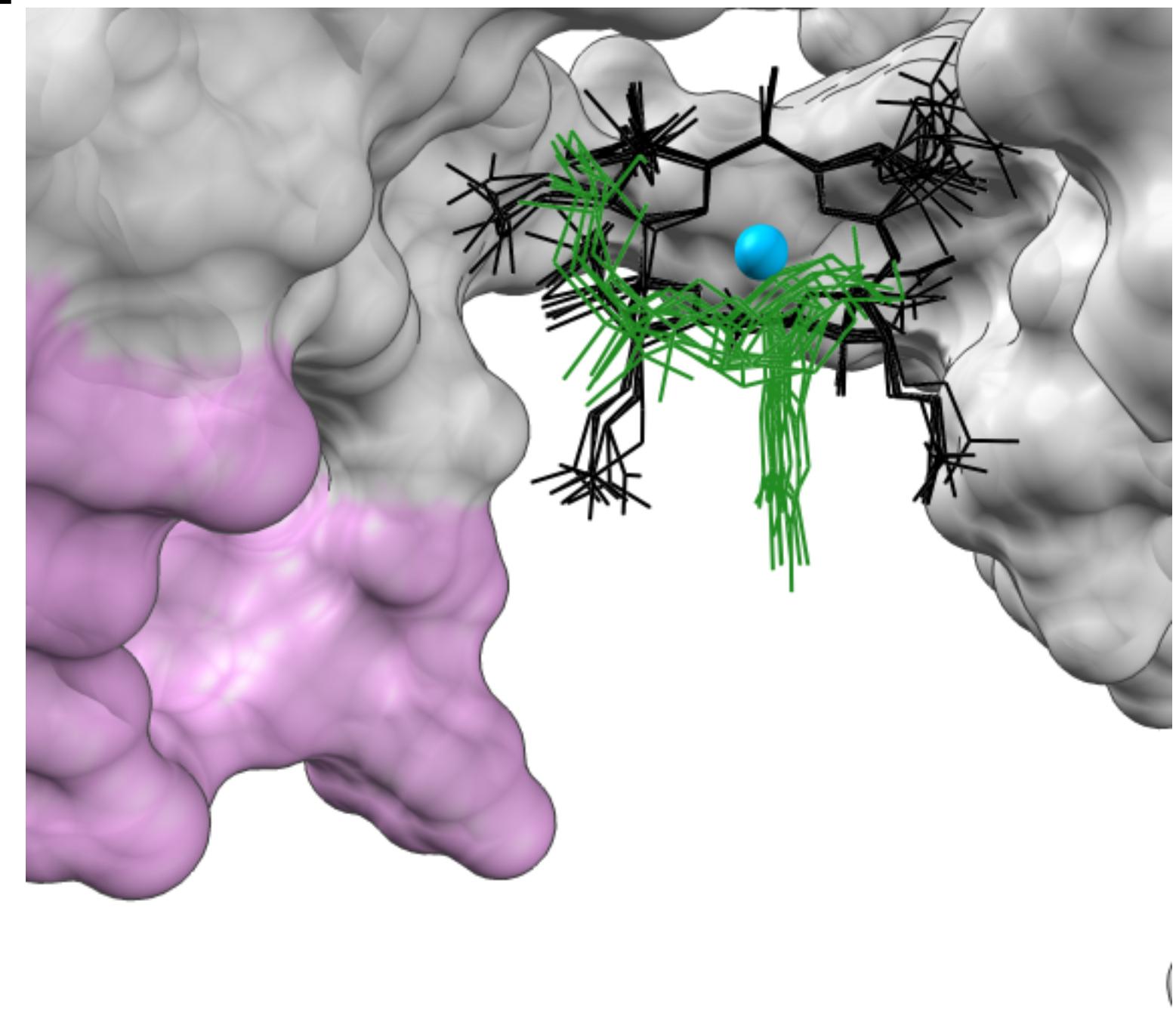
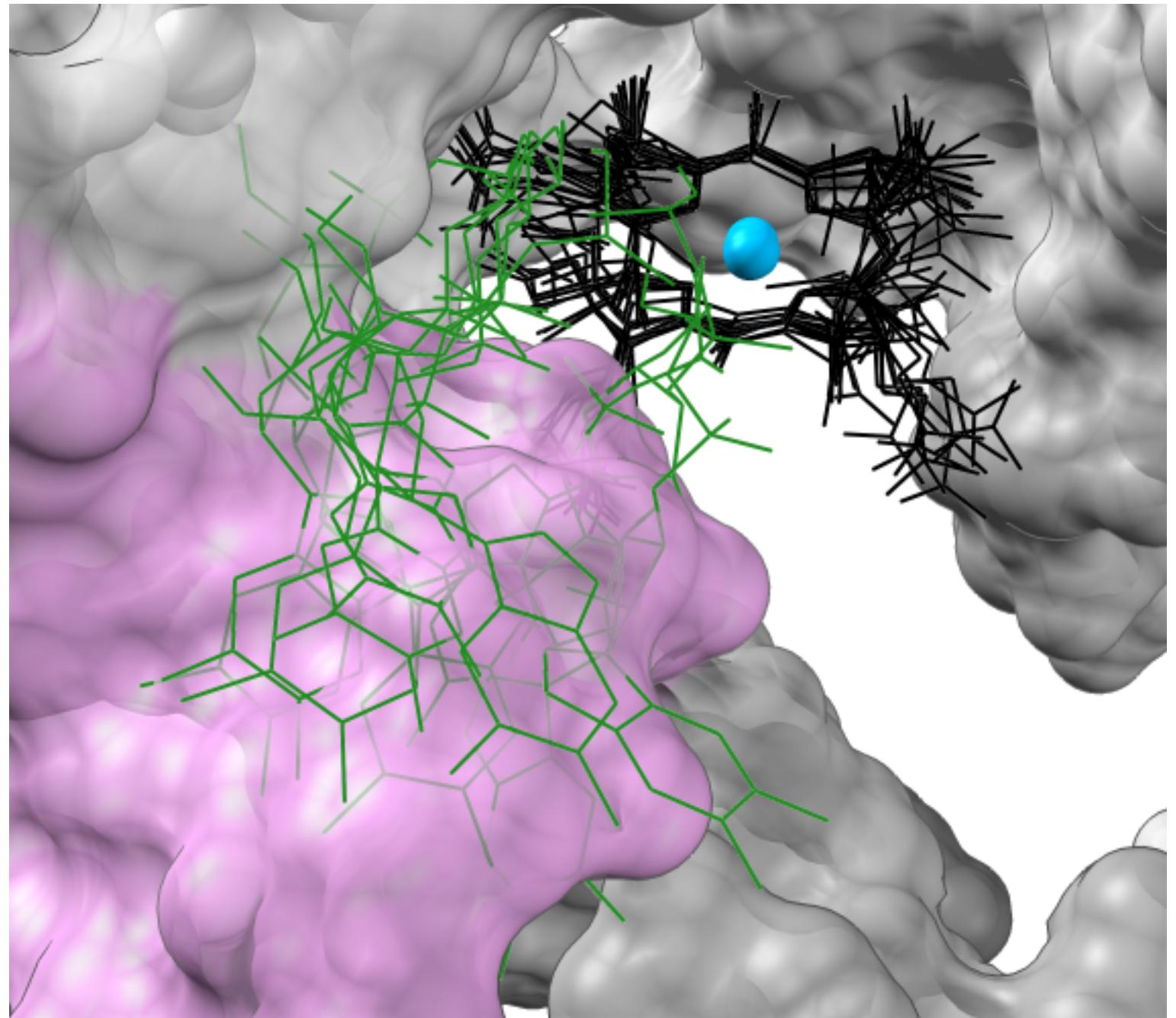
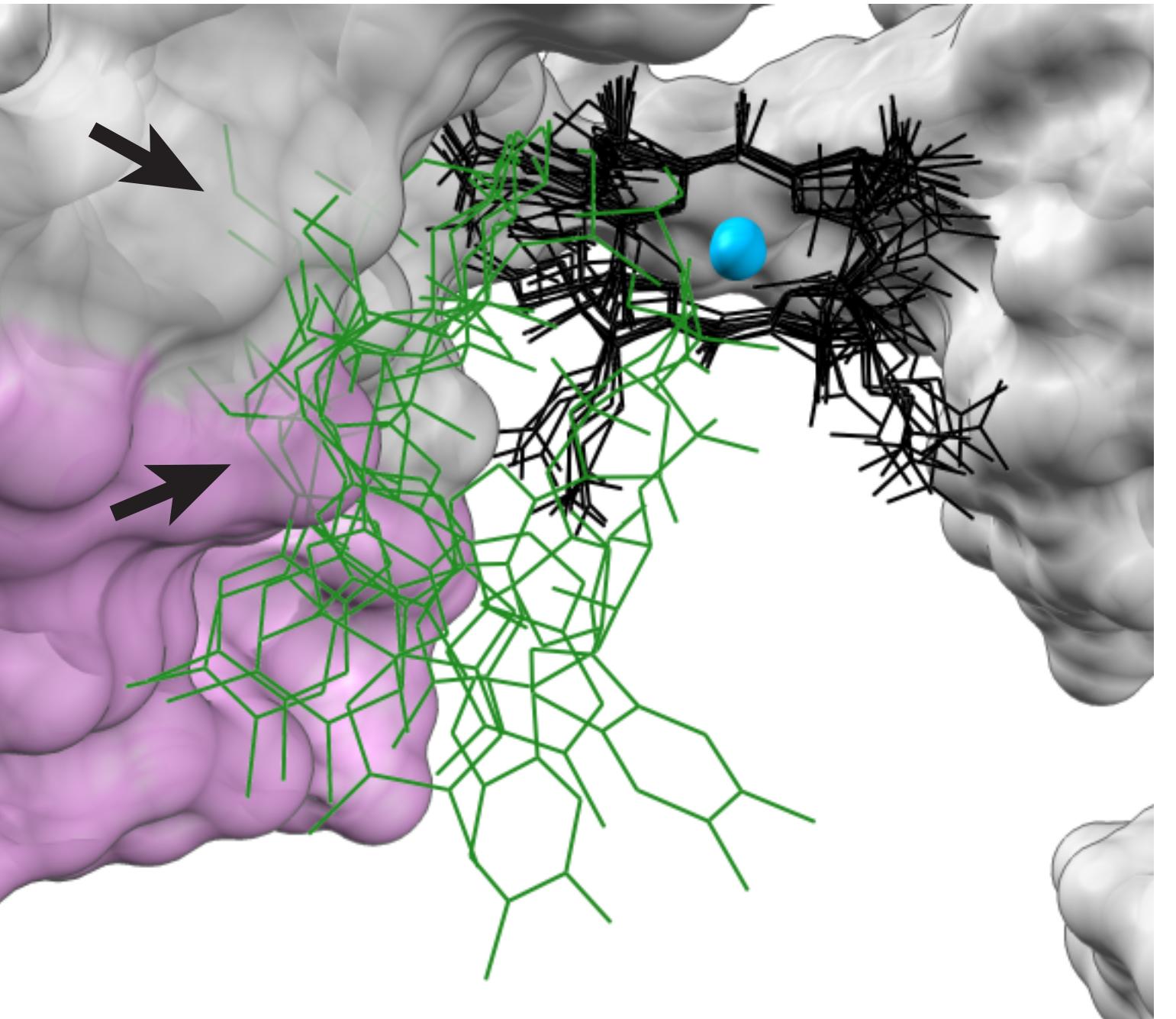
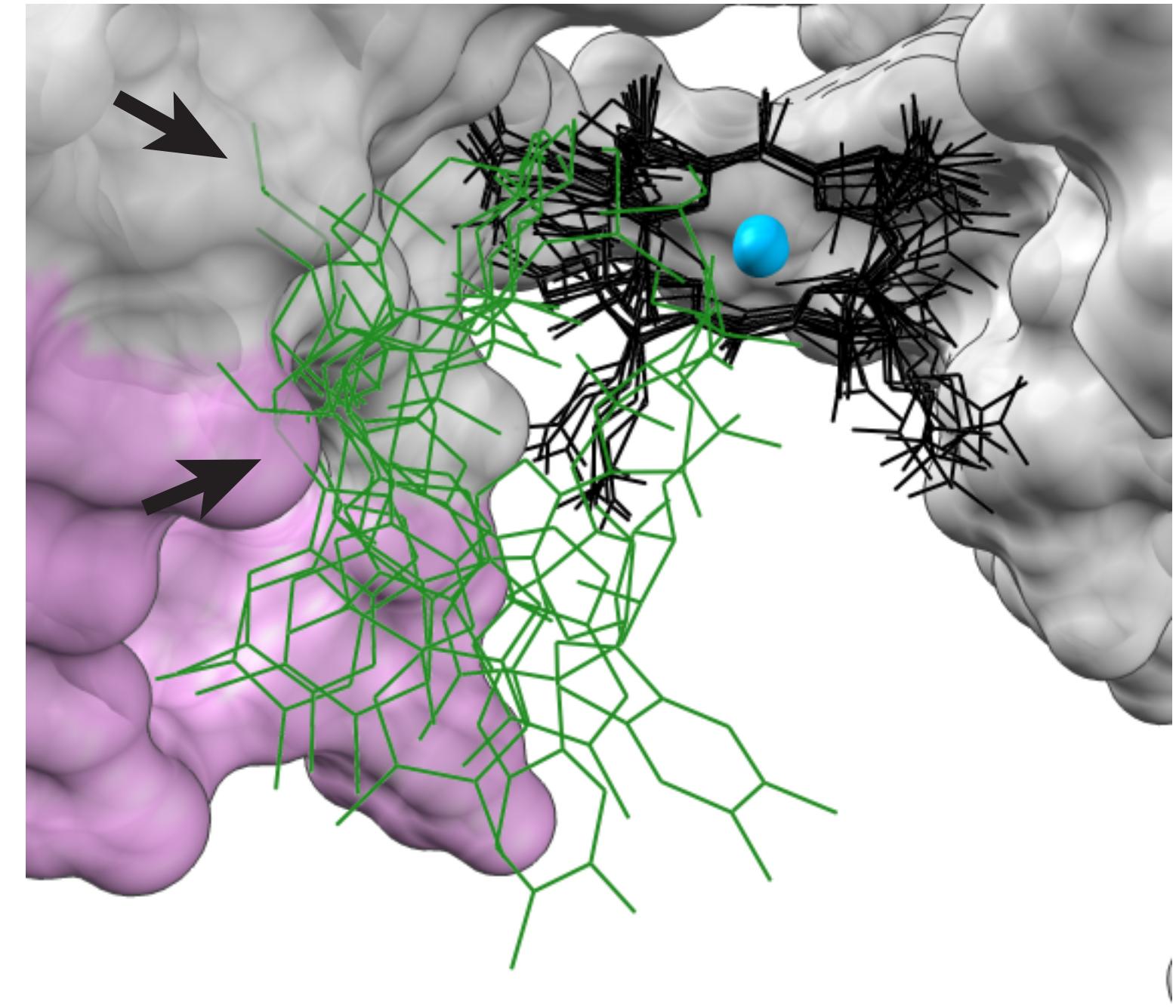

A**B****C****D**

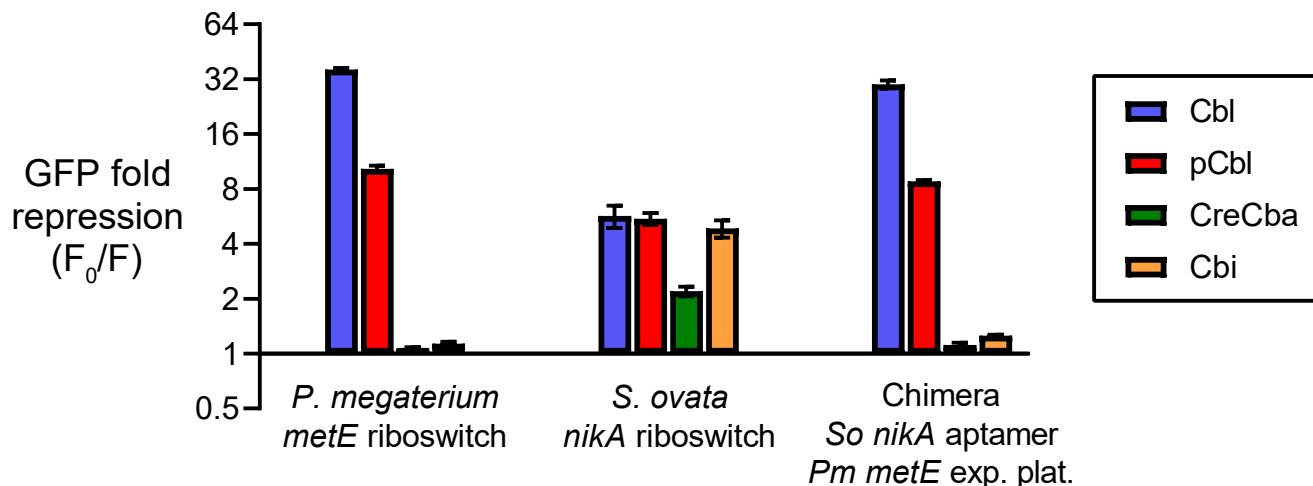
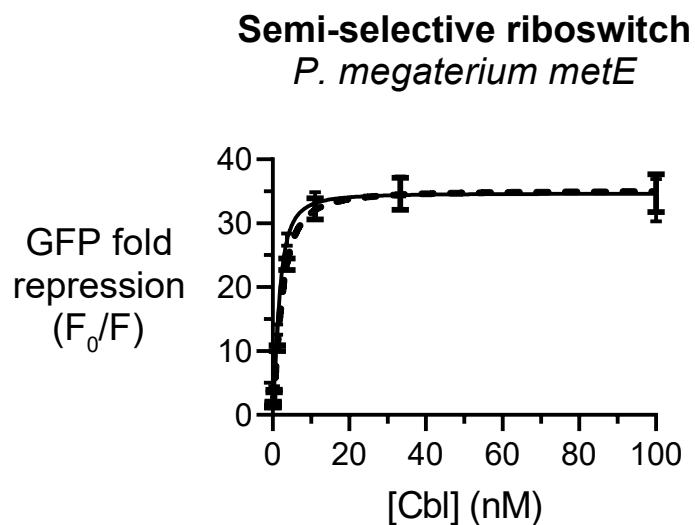
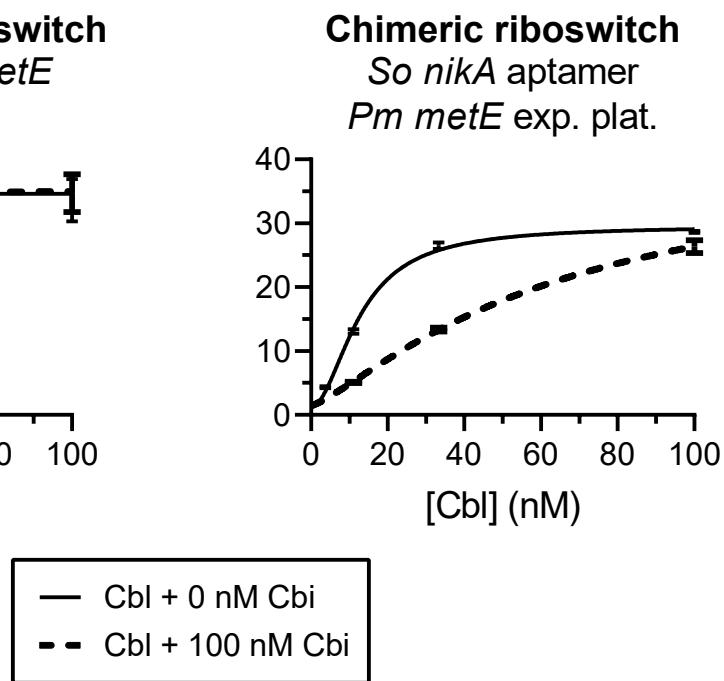




--- adenosyltransferase expressed
— adenosyltransferase deleted ($\Delta btuR$)




A

















B

C




A**B****C**

Wavelength (nm)

A**C****E****B****D****F**

bioRxiv preprint doi: <https://doi.org/10.1101/2022.02.20.481237>; this version posted July 8, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

A**B****C**