

1 ***Examining population structure across multiple collections of***
2 ***Cannabis***

3
4 Anna Halpin-McCormick¹
5 Karolina Heyduk³
6 Michael B. Kantar^{1*}
7 Nicholas L.Batora²
8 Rishi R. Masalia²
9 Kerin Law²
10 Eleanor J. Kuntz^{2*}

11
12 ¹Department of Tropical Plant and Soil Sciences, University of Hawai‘i at Mānoa, Honolulu, HI
13 96822

14 ²LeafWorks Inc. 130 S. High St, Sebastopol, CA 95472

15 ³School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822

16
17 *corresponding authors: Eleanor J. Kuntz - eleonor@leafworks.com and Michael Kantar –
18 mbkantar@hawaii.edu

19 **Abstract**

20 Population structure of *Cannabis sativa* L. was explored across nine independent collections that
21 each contained a unique sampling of varieties. Hierarchical Clustering of Principal Components
22 (HCPC) identified a range of three to seven genetic clusters across datasets with inconsistent
23 structure based on use type indicating the importance of sampling particularly when there is
24 limited passport data. There was broader genetic diversity in modern cultivars relative to
25 landraces. Further, in a subset of geo-referenced landrace accessions, population structure was
26 observed based on geography. The inconsistent structure across different collections shows the
27 complexity within *Cannabis*, and the importance of understanding any particular collection
28 which could then be leveraged in breeding programs for future crop improvement.

29

30

31 **Key Words:** Population Structure, Genome Scan, Public Data, Medicinal Plants, Fiber Plants

32

33

34 **Introduction**

35 *Cannabis sativa L.* is an annual flowering herb which has been domesticated multiple
36 times for food, fiber and medicine over the last twelve thousand years (Hillig, 2005; Clarke &
37 Merlin, 2013; Clarke & Merlin, 2016; Ren et al., 2021). *Cannabis* is popularly known for its
38 psychoactive effects; however, it is its medicinal capacity is driving increased production (Punja
39 & Holmes 2020). The compounds tetrahydrocannabinol (THC) and cannabidiol (CBD) are the
40 most studied due to their potential in pain management (Walker & Huang, 2002; Alexander,
41 2020; Bicket et al., 2023), as a multiple sclerosis treatment (Svendsen et al., 2004), for epilepsy
42 management (Charlotte's Web (CW2A) US Plant Patent No. PP30,639 P2; Perucca, 2017), for
43 reduction in nausea (Parker et al., 2011) and as an appetite stimulant (Badowski & Perez, 2016).
44 Today, *Cannabis* is broadly divided into non-drug and drug-type cultivars (**Table 1**).

45 Due to the classification of *Cannabis* as a Schedule I narcotic in the United States,
46 research during the 20th century was largely restricted (Hurgobin et al., 2021). However, the 2018
47 United States Farm Bill reduced these restrictions, with many states now having reduced
48 regulations (Mead, 2019). In 2020 the Drug Enforcement Administration expanded research
49 licenses (Ryan et al., 2021) leading to increased *Cannabis* research. However, due to past
50 restrictions *Cannabis* has not fully benefited from scientific tool developments (e.g. molecular
51 marker tools, heterotic pattern development) of the last century. Further, drug control laws and
52 prohibition have constrained formal documentation often resulting in unverifiable and anecdotal
53 cultivar origins (Duvall, 2016). However, there has been recent work to develop tools and initiate
54 breeding (Toth et al., 2020; Petit et al., 2021; Woods et al., 2021; Toth et al., 2022; Woods et al.,
55 2023).

56 While there is still some debate, the taxonomy of *Cannabis* has moved towards a
57 monotypic description of the genus (McPartland 2018; McPartland & Small 2020). *Cannabis*

58 populations have been partitioned using different methods (e.g., genetic, chemical and
59 phenotype) with different populations showing different patterns (de Meijer et al., 2003; Lynch
60 et al., 2016). There are also examples of studies using regional, ecotype, and use-type to
61 understand population partitions (Soorni et al., 2017; Zhang et al., 2020; Carlson et al., 2021;
62 Ren et al., 2021). These studies have found contrasting results due to contested definitions and
63 different samples. In addition to understanding species and population delineation, previous
64 genetic work has explored the cannabinoid metabolic pathways (Guerriero et al. 2017; Guerriero
65 et al., 2019; Allen et al., 2019; McKernan et al., 2020; van Velzen & Schranz 2021).

66 Understanding population structure provides insight into evolutionary relationships and
67 facilitates the identification of cultivars that have value for breeding practices. Further,
68 understanding genetic relationships can help reconstruct pedigrees and genetic relationships
69 which have been lost due to a century of prohibition. Clarification of cultivar relationships could
70 provide more concrete reproducible results in addition to the ethnohistorical information and
71 spoken accounts that underpin current research. The molecular genetic profiles of *Cannabis*
72 cultivars will enhance our understanding of them, providing a valuable tool to confirm marketing
73 claims independently of relying solely on visual characteristics. This, in turn, can contribute to a
74 more reliable and sustainable industry.

75 Previous work has used a range of sequencing methods, reference genomes, and sampling
76 schemes (Small & Cronquist, 1976; Clarke, 1987; van Bakel et al., 2011; Duvall 2016; Soorni et
77 al. 2017; Soler et al., 2017; Maoz 2020; Hurgobin et al. 2021; Grassa et al. 2021). In an attempt
78 to understand previous studies (eight publicly available datasets) as well as a newly generated
79 dataset we used a common single nucleotide polymorphism (SNP) calling pipeline and the same
80 reference genome (Grassa et al., 2021) to explore population structure present across different

81 germplasm collections and to identify potential samples that can be explored as the basis for
82 breeding.

83 Materials and Methods

84 Sequence Data Acquisition

85 Raw sequence data from Soorni et al. 2017 (PRJNA419020), Lynch et al., 2016
86 (PRJNA317659), Phylos Biosciences (PRJNA347566 & PRJNA510566), Courtagen Life
87 Sciences (PRJNA297710), and Sunrise Genetics (PRJNA350539) were downloaded from
88 National Center for Biotechnology Information (NCBI: <https://www.ncbi.nlm.nih.gov/>) using the
89 SRA toolkit (<https://hpc.nih.gov/apps/sratoolkit.html>). Data from Medicinal Genomics, where 61
90 paired samples were provided for bulk download (Medicinal Genomics 61 -
91 <https://www.medicinalgenomics.com/kannapedia-fastq/>) and an additional 289 samples
92 (Medicinal Genomics StrainSEEK v1) were individually downloaded from each cultivar page.
93 The last data source used here was developed by LeafWorks Inc., consisting of 498 individuals.
94 Full dataset descriptions are available in **Table 2**.

95 Sample Name Acquisition

96 Sample names were assigned to individual samples as supplied by authors in supplemental
97 materials of publication or through the metadata supplied through NCBI. All individual line
98 assignments can be seen in **Tables S1-S9**. For Phylos Biosciences datasets, each SRR number
99 was searched in NCBI in the SRA database. For the n=845 and the n=1,378 datasets this
100 facilitated the association of SRR numbers with cultivar names from the “Sample” section and
101 aided in matching the sample to the genotype information sheet on the Phylos Biosciences
102 website (<https://phylos.bio/>). The links to the matching genotype report page for each SRA
103 sample have been included in the metadata of the supplemental tables (N=845 **Table S2** and
104 n=1,378 **Table S3**).

105 **Use-type Category Assignment**

106 Different meta-data for each dataset was used to identify the use-type (**Table 1**). For Phylos
107 Biosciences (<https://phylos.bio/>) and Medicinal Genomics (<https://www.kannapedia.net>). For the
108 Medicinal Genomics dataset, where no information was reported in the “Plant Type” section on
109 individual strain pages, the cannabinoid section on strain pages which reports percentages of
110 THC and CBD as well as other cannabinoids was used to assign type to individual samples, with
111 well-known hemp variety names facilitated by the EU Plant variety database
112 <https://ec.europa.eu/> (eg. Santhica, Carmagnola, Fedora, Felina). For the LeafWorks Inc. dataset,
113 type associations were provided for 101 landrace samples and 44 hemp samples with remaining
114 use-type associations assigned through searching sample names on <https://www.leafly.com> or
115 <https://www.wikileaf.com>. For Soorni et al. 2017 dataset a recent publication used chemistry of
116 these same accessions to determine use-type (Mostafaei Dehnavi et al. 2022). For the remaining
117 datasets (Sunrise Genetics, Lynch et al., 2016, and Courtagen Life Sciences) sample names were
118 searched on <https://www.leafly.com> or <https://www.wikileaf.com> for assignment to a category of
119 use-type (**Tables S1-S9**). Use-types were not evenly represented and this uneven representation
120 of different use-types may influence conclusions related to the genus overall (**Tables S1-S9**).

121 **Sequence Data Processing**

122 Where demultiplexing was required, barcodes were acquired from the supplemental materials
123 and removed using the software SABRE (version 1.0 - <https://github.com/najoshi/sabre>). All
124 dataset fastq files were checked for adapter sequence content using the FASTQC (version 0.11.8-
125 Andrews, 2010). Datasets were examined post FASTQC using MULTIQC (Ewels et al., 2016).
126 Where adapters were present, TRIMMOMATIC (version 0.39 - Bolger et al., 2014) was used to
127 remove these sequence elements. The software SKEWER (Jiang et al. 2014) was used to trim
128 adaptors from Phylos Biosciences n=1,378 dataset. Some data from Lynch et al. 2016

129 (PRJNA310948) was also not included as PRJNA310948 appears to contain duplicates of
130 samples from PRJNA317659 both released in 2016. Therefore, only PRJNA317659 was used.
131 The Medicinal Genomics' Kannapedia site contains samples that have been sequenced across a
132 variety of platforms, for consistency here we used the samples from StrainSEEK v1 (n=289).

133 Reads were then aligned to the CBDRx genome (Grassa et al. 2021) using BWA-MEM
134 (version 0.7.17 - Li, 2013). SAMTOOLS (version 1.9 - Li et al., 2009) was used to convert SAM
135 files to BAM files and mapped reads were sorted for a mapping quality of 30 or above.
136 BCFTOOLS (version 1.9 - Danecek & McCarthy, 2017) using the mpileup function was used to
137 generate SNPs and create VCF files. Samples were filtered using VCFtools (version 0.1.16 -
138 Danecek et al., 2011) for a minor allele frequency of 0.05, Hardy-Weinberg Equilibrium (0.05),
139 and a maximum missingness of 10%. After filtering, data were analyzed using the SNPRelate
140 (Zheng et al. 2012), FactoMineR (Lê et al., 2008) and factoextra (Kassambara & Mundt, 2017)
141 packages in RStudio (version 1.4.1106 - R Core Team, 2013).

142 **Nucleotide Diversity Calculation**

143 VCF files for known modern cultivars and landraces were separately merged into a single VCF
144 file. Nucleotide diversity (π) was calculated using VCFtools with a 10,000 bp sliding window
145 across the strictly filtered files for each dataset. Changes in π across chromosomes were plotted
146 in RStudio using the ggplot package (Wickham, 2011).

147 **Population Structure and Phylogenetic Analysis**

148 VCFtools was used to generate MAP and PED files. These were then used to generate BED,
149 BIM, and FAM files in the software PLINK (version 1.9 - Purcell et al., 2007). For each dataset
150 population structure across a range of population partitions was assessed in fastSTRUCTURE
151 (version 1.0 - Raj et al., 2014). The optimal number of K was also examined for each dataset
152 using the elbow and silhouette methods in the FactoMineR and factoextra packages. In addition,

153 each dataset was examined using Principal Component Analysis (PCA) in SNPRelate (Zheng et
154 al., 2012). Only bi-allelic SNPs further filtered for linkage disequilibrium (0.2) were used for the
155 PCA and Hierarchical Clustering on Principal Components (HCPC) (**Fig. 1-2 and Fig. S2-6**). A
156 Maximum Likelihood (ML) phylogenetic tree was constructed for the LeafWorks Inc. dataset, a
157 VCF file was converted to NEXUS and FASTA format using the software package
158 VCF2PHYLIP (version 2.6 - <https://github.com/edgardomortiz/vcf2phylip>). Ambiguities were
159 changed to “N” where observed. Multiple sequence alignment was performed using MAFFT
160 (version 7.475- Katoh & Standley 2013) and this was submitted to the software ModelTest-NG
161 (version 0.1.6 - Darriba et al. 2020) to best evaluate the substitution model to be used.
162 Phylogenetic trees were constructed in IQ-TREE (version 2.0.7 - Minh et al., 2020) with the -B
163 1000 flag for bootstrap support. Trees were visualized in FigTree (Version1.4.4 -
164 <http://tree.bio.ed.ac.uk/software/figtree/>).

165 **Assembly of 126 whole chloroplast genomes**
166 Chloroplast DNA was assembled using the Fast-Plast program, with default parameters -
167 <https://github.com/mrmckain/Fast-Plast>. To explore haplo-group assignment a maximum
168 likelihood phylogeny was constructed on 126 whole chloroplast sequences which were provided
169 by LeafWorks Inc. Multiple sequence alignment was performed using MAFFT (version 7.475 -
170 Katoh and Standley 2013) and using the ModelTest-NG software (Darriba et al. 2020) the
171 GTR+G4 model was selected as the best substitution model. A phylogenetic tree was generated
172 using IQ-TREE (version 2.0.7 - Minh et al., 2020) with the -B 1000 flag for bootstrap support.
173 Trees were visualized in FigTree (Version1.4.4 - <http://tree.bio.ed.ac.uk/software/figtree/>).

174

175 **Results**

176 **Commonalities across Datasets**

177 *Cannabis* genetic diversity and population structure were explored using independent
178 data sources, all of which were analyzed using the same pipeline (**Table 2**). All datasets were
179 aligned to the same CBDRx reference genome (Grassa et al., 2021). Reanalysis allows for a
180 cleaner comparison, as previous studies have used multiple reference genomes (e.g., Laverty et
181 al., 2019; McKernan et al., 2020; van Bakel et al., 2011; Gao et al., 2020). There were not
182 common SNPs across all datasets, when joint SNP calling was attempted. Therefore, each dataset
183 was analyzed independently and each had a different number of SNPs (**Table 3-5**). As sample
184 sizes are robust, this suggests that the type of sequencing approach taken, library prep,
185 sequencing depth, chromosomal coverage, and/or sample properties may bias the genetic
186 diversity.

187 **Population Structure**

188 Hierarchical Clustering of Principal Components (HCPC) identified three to seven
189 clusters across datasets (**Fig. 1-2 and Fig. S1-6**). In the LeafWorks Inc. dataset, four groups were
190 identified. When use-type was used to interpret the clusters there was some partitioning, with
191 Group 1 being predominantly Hemp, but Groups 2/3 being largely type I (**Fig. 1A**). In the
192 LeafWorks Inc. fastSTRUCTURE analysis there were large amounts of admixture regardless of
193 use-type/market-class (**Fig. 1B**). Within the Phylos Biosciences datasets, hierarchical clustering
194 identified five groups in the n=845 dataset (**Fig. 1C**) and three clusters in the n=1378 dataset
195 (**Fig. S2B**). In the small Phylos Biosciences dataset (n=845) hierarchical clustering shows a
196 concentrated number of Landrace (95 of 127), Hemp (14 of 17) and type I (11 of 48) samples in
197 Group 1 (**Fig. 1C**). In Group 2 the majority of the type III samples are observed (30 of 48 – **Fig.**
198 **1C**). .fastSTRUCTURE analysis indicated less admixture in Landrace and Hemp samples as
199 compared to type I samples (K=3/4/5), with some differentiation based on use-types observed

200 (Fig. 1D). In the large dataset from Phylos Biosciences (n=1378 - Fig. S2), the hierarchical
201 clustering shows a concentration of samples which have the designation of “Kush” in Group 1
202 (34 of 88 -Fig. S2B). The subsequent fastSTRUCTURE analysis for the Phylos Biosciences
203 (n=1378) shows a similar pattern where Landrace samples show less admixture as compared to
204 type I samples (K=4/5) (Fig. S2C). In the HCPC for the Phylos Biosciences dataset (n=1378)
205 there is a concentration of samples with the designation “OG” (49/115 in Group 1 of HCPC) -
206 Fig. S2B). In the Soorni et al dataset there was clear clustering by use-type in both analyses (Fig.
207 2A-B). The Medicinal Genomics StrainSEEK v1 dataset was partitioned into five groups (Fig.
208 2C). There was some clustering of specific genotypes (e.g. Blue Dream (n=11) in Group 1 of
209 HCPC – Fig. 2C), but in fastSTRUCTURE analysis there were no clear trends in clustering
210 observed across use-type (Fig 2D). For the Sunrise Genetics dataset (n=25) HCPC shows
211 grouping of samples with the same names but no clear pattern in the fastSTRUCTURE clustering
212 analysis (Fig. S3C). In the Lynch et al., 2016 dataset (n=162) there was some evidence of use-
213 type but the pattern was not consistent (Fig. S4B). For the Courtagen Life Sciences dataset
214 (n=58), there was clustering by cultivar name (e.g. Kandy Kush (n=5) in Group 5 of HCPC) but
215 not by use-type (Fig. S5). Within the Medicinal Genomics dataset (n=61) there was no clear
216 clustering by use-type (Fig. S6). Across datasets there is no clear partitioning pattern based on
217 use-type or based on accession name, this lack of pattern does not indicate a lack of population
218 structure, but rather confirms the inconsistency in definitions of use-type and the fact that
219 cultivar naming conventions do not reflect pedigrees.

220 **Phylogenetic Relationships**

221 A Maximum Likelihood (ML) phylogeny was assembled for the new LeafWorks Inc. (n
222 = 498) dataset which partitioned accessions into ten clades (Fig. S7). Clades 1 to 7 and clade 9
223 have bootstrap support of over 90, with clades 8 and 10 having low support (63 and 52,

224 respectively). The majority of accessions (454 of 498) were in four clades (clades 4, 6, 9 and 10).
225 There is not a clear pattern to which clade landrace samples are in (Clades 5=11 of 101; clade
226 9=24 of 101; clade10=52 of 101) with remaining individuals spread across the remaining clades
227 - **Fig. S7**). There did not appear to be clear use-type partitioning in the phylogeny. Within the
228 chloroplast data, two clades were identified, clade 1 (n= 2) and clade 2 (n=124) (**Fig. S8**).
229 However, with low support for the majority of samples it is possible that additional groupings
230 within this might be possible.

231 **Exploration of nucleotide diversity and geographic partitioning Landraces**
232 The LeafWorks Inc. (n=498) and Phylos Biosciences (n=845) datasets both contained
233 known landrace and modern cultivars (**Table 1**; **Table S2-S3**). The LeafWorks Inc. dataset
234 contained 101 landrace samples and 397 known modern accessions (**Table S1**) and the Phylos
235 Biosciences dataset contained 127 landrace samples and 718 modern accessions (**Table S2**).
236 Clustering patterns were similar in the two datasets (**Fig. 3**). Within both datasets nucleotide
237 diversity differences were explored between landrace and domesticated samples using a 10 kb
238 sliding window (**Fig. 4**), revealing many genomic regions that differed between modern cultivars
239 and landraces. A subset of landraces in the LeafWorks Inc. dataset contained geo-references,
240 allowing for an exploration of structure based on geography. There was geographic clustering
241 with the Lolab Valley and Hindu Kush samples (**Fig. 5C**). There were low levels of admixture
242 based on the three geographic regions (**Fig. 5E**), indicating that despite being geographically
243 close populations remained isolated. Differences in nucleotide diversity in these geographically
244 distinct populations were observed on chromosomes 5, 6, and 7 (**Fig. 5D**), and these genomic
245 regions may hold locally adaptive genes and may be useful sources of variation for breeding.

246 **Core collection identification**

247 Plant breeding relies on the available genetic variation within a given germplasm
248 collection or breeding program. A core collection is a representative subset of a germplasm
249 collection which attempts to capture the majority of the genetic diversity in that collection
250 (Frankel 1984). Using genetic distance, the 25 most diverse samples were selected from each
251 dataset (with the exception of the Sunrise dataset where 10 samples were selected). These
252 samples represent a core collection for each specific dataset (**Table S10**).

253 **Discussion**

254 Species descriptions in the *Cannabis* genus have been based on morphology and
255 chemistry (Clarke & Merlin, 2013; Onofri & Mandolino, 2017; Lewis et al., 2018; McPartland,
256 2018; Garfinkel et al., 2021; Smith et al., 2022). While three putative species have been
257 described in the *Cannabis* genus, genetic studies have not supported these delineations, instead
258 observing a monotypic genus (Clarke & Merlin, 2013; Sawler et al., 2015; Lynch et al., 2016;
259 Schwabe & McGlaughlin, 2019). Much effort has been made exploring use-type/marketing class
260 as markers of population stratification (Clarke & Merlin, 2013; Small, 2015). Here we continue
261 this tradition, by exploring population structure in nine different collections of *Cannabis* that
262 consisted of privately bred THC-dominant, public hemp samples and landrace accessions.

263 Understanding genetic diversity within each individual collection aides in understanding
264 population history and helps in developing strategies for future breeding. In particular,
265 establishing the number of distinct populations may help reduce the number of individuals that
266 need to be tested for the development of hybrid cultivars (Carlson et al., 2021).

267 **Understanding population structure**

268 Previous work has used various reference genomes (Lynch et al., 2016; Soorni et al.,
269 2017; Laverty et al., 2019; Jin et al., 2021) and this reflects the current predicament within the
270 industry where standards are still in development. Here a single reference genome (CBDRx -

271 Grassa et al. 2021) was used to facilitate comparison; however, it is acknowledged that this can
272 create reference bias impacting the examination of some questions. Reference limitations are
273 being addressed through the utilization of pangenomes and are increasingly becoming available
274 for many crop species (Hübner et al., 2019; Li et al., 2021; Della Coletta et al., 2021). Future
275 work to develop a *Cannabis* pangenome would be of great utility to the community.

276 *Cannabis* has historically used morphological and ethnographic data to delineate
277 populations not genetic data. Creating genetic profiles to cluster accessions and conduct
278 phylogenetic analysis facilitates using classic use-type to understand accession relationships (**Fig**
279 **3 and Fig. S7**) and offers a perspective on how *Cannabis* populations may have been influenced
280 by human mediated selection for important traits (**Fig. S2-6**). The LeafWorks Inc. and Soorni et
281 al., 2017 datasets exhibited more use-type separation (**Fig. 3A/3C**) than other datasets. A broader
282 distribution of genetic variation in Type I cultivars was observed in multiple datasets (**Fig. 3A-**
283 **B**). This may be indicative of the purported large-scale hybridization that is thought to have
284 occurred in Type I cultivars in the United States after 1960 (Clarke & Merlin, 2016).
285 Alternatively, this higher genetic diversity in Type I cultivars could represent convergent
286 selection, with each lineage being bred in isolation and now released back to the market as
287 regulations relax. However, the lack of available pedigree records makes it difficult to reconcile
288 these two alternative hypotheses. The other datasets did not show clear relationships with use-
289 type.

290 While the *Cannabis* genus has been described with the presence of one, two, three, and
291 even up to seven proposed species and subspecies (Linnaeus, 1753; Lamarck, 1785; Vavilov &
292 Bukinich, 1929; Schultes et al., 1974; Small & Cronquist, 1976; Hillig, 2004; Clarke & Merlin,
293 2013; McPartland & Guy 2014), contemporary genetic studies have not supported these

294 polytypic classifications delineations which are primarily rooted in morphological and
295 geographical data. While modern genetic studies consistently do not support previously
296 suggested species delineation (Gilmore et al., 2007; Sawler et al., 2015; Lynch et al., 2016;
297 Small, 2015; Zhang et al., 2018; Schwabe & McGlaughlin, 2019; McPartland & Small 2019;
298 Roman et al., 2019; Henry et al. 2020; Ren et al 2021; Schwabe et al., 2021; Vergara et al. 2021;
299 Woods et al., 2023), they do support multiple potential populations within the genus. Despite
300 these findings, the prevailing taxonomic treatment of the *Cannabis* genus tends to favor a
301 monotypic classification. Several publications have proposed delineations in the relationship
302 between use-type and population structure (Gilmore et al., 2007; Roman et al., 2019; Zhang et
303 al., 2018; Henry et al., 2020; Ren et al., 2021; Woods et al., 2023). This suggests that collection
304 origin and accurate passport data greatly impact the population structure observed. High levels of
305 hybridization and shared ancestry may all contribute to the relatively shallow population
306 structure observed in some datasets (**Fig. 1D**) and hamper the ability to clearly differentiate
307 populations.

308 Landrace samples are distributed throughout population clusters and across the
309 phylogenies, however the number of landrace samples in a particular partition appear to be
310 affected by the germplasm sampling (**Fig. 1 and Fig. S7**). When landraces were analyzed with
311 modern cultivars, they were broadly distributed across clades suggesting that modern cultivars in
312 the same clade share the most ancestry with the landraces in the same clade (**Fig. 1A-B**).
313 Landraces did not cluster with a particular use-type. In a subset of georeferenced samples (n=26)
314 hierarchical clustering revealed three geographically discrete landrace populations appear to be
315 quite distinct from one another with minimal admixture (**Fig. 5B/E**). The subset landraces with
316 georeferences and which were geographically separated, clustered distinctly when analyzed

317 separately (**Fig. 5E**). While landraces were defined based on metadata and a history of being
318 grown in a specific geography, limitations on passport data cloud inference. Without new
319 collections and legitimate chain of custody documentation, this likely cannot be addressed.

320 **Inconsistent Naming**

321 The naming problem in *Cannabis* refers to the unreliable naming of cultivars which frequently
322 do not reflect accession pedigree causing problems for both the producer and consumer. Name
323 fidelity was explored using the twelve ‘Blue Dream’ samples in the LeafWorks Inc. dataset (**Fig.**
324 **S7**). Of these, 7/12 placed in clade 1 (blue_dream samples #1, 3, 4, 6, 7, 9 & 10), 1 sample in
325 clade 6 (blue_dream_5), clade 9 (blue_dream_11) and clade 10 (blue_dream_2). The remaining
326 two samples (blue_dream # 8 & 12) were unplaced in the phylogenetic tree. Cultivars that show
327 consistent placement within a phylogeny have a high likelihood of name accuracy. This
328 exemplifies the naming problem, where only 58% of the samples appeared to be similar. This
329 data further supports previous work demonstrating misconceptions in strain reliability and which
330 further showed that the marketing varieties of *Cannabis* as “indica” and “sativa” does not appear
331 to have genetic support (Schwabe & McGlaughlin, 2019). Further work is needed to determine
332 how pervasive the naming problem is. This work also highlights the importance of genetics to
333 inform label claims, which will be particularly crucial in the event of legalization when the
334 Federal Drug Administration would require accurate plant label claims as it does for all other
335 natural products sold in the United States. As sequencing costs continue to decrease, genomic
336 approaches for understanding *Cannabis* naming will likely become standard practice and could
337 overcome the challenge of clone and cultivar misidentification.

338 **Strategic use of Germplasm for Breeding**

339 Variation in cannabinoid content is genetically complex and potentially affected by the
340 environment (Lydon et al., 1987; Campbell et al., 2020; Caplan et al., 2019; Toth et al., 2021).

341 Breeding with a focus on a particular use-type could help to ensure consistency in secondary
342 chemistry and incorporating an assessment of admixture or hybridization in this selection may
343 expedite the time taken to reach population stability. Coupling plant phylogeny with
344 metabolomics could facilitate the identification of plants with unique genetic and secondary
345 chemistries and would provide unique market classes (Stone et al. 2020).

346 Breeding targets in the future will likely focus on the common traits of disease and pest
347 resistance but will also likely need to maintain certain metabolite content to ensure use-type.
348 There is potential value in exploring if specific SNP markers can be identified to differentiate
349 use-type as this can inform parental choice in plant breeding programs. Expanding the use of
350 genome wide markers will not only help to characterize populations but can also help establish
351 preliminary partitioning of samples into potential heterotic groups. Population stratification and
352 use-type categorization have already found applications in hybrid breeding efforts (Carlson et al.,
353 2021). To establish new patterns of heterosis, it has been proposed that a practical starting point
354 could involve segregating individuals based on genetic distance, with a threshold set at >0.4
355 (Govindaraju 2019). This approach can be empirically tested within any germplasm collection,
356 whether it's publicly or privately held, to identify effective patterns for achieving improved
357 breeding outcomes.

358 Another option will be to use evolutionary plant breeding (EPB) to help maintain
359 diversity and stability of a crop in a specific environment leveraging natural selection (Merrick et
360 al. 2020). This has been used to aid in hybridization (Dreiseitl, 2020). Here landrace sampling
361 was limited (**Tables S1-9**), but a more thorough characterization of *Cannabis* landrace
362 populations would facilitate use of this approach. The history of prohibition and local cultivar
363 development suggests that there is a large possibility of biopiracy (e.g. unauthorized exploitation

364 or theft of valuable genetic resources or traditional knowledge) with respect to the developing
365 industry. It will be important to develop equitable distribution and ensure that local communities
366 benefit from the work their communities have done in the past and be in compliance with The
367 International Treaty on Plant Genetic Resources for Food and Agriculture (Cooper, 2002).

368 **Public Data Implications**

369 The relaxing of governmental regulations and decrease in sequencing costs technologies
370 have made it possible to genotype many different germplasm collections over the last decade
371 (**Table 2**). Public-private partnerships offer a route to harness the diverse resources and expertise
372 present in both sectors and provide a useful mechanism to advance *Cannabis* science (Ferroni &
373 Castle, 2011). Ensuring data standards are upheld and that metadata are available will make the
374 increasing amount of data available useful to many different researchers (Chao, 2014). The
375 ability to analyze the data requires accurate metadata and while this problem is not unique to
376 *Cannabis*, it is acutely problematic in any species that has high economic value and limited
377 foundational genomic resources. When working with public data sources care must be taken in
378 the cross comparison of specific datasets as the amount of shared germplasm and data quality
379 can influence the breadth and inference potential of the analysis (Williamson et al. 2021).
380 Additionally, when expanding these observations to conclusions about the genus as whole, it is
381 important to carefully consider germplasm sampling bias which limits the direct comparison,
382 which may result in limited or no shared SNPs across datasets (Zimmerman et al., 2020). It is
383 evident that the selection of sequencing technology, such as short-read amplicon sequencing or
384 genome-wide sequencing, can substantially alter the capacity for making inferences and can have
385 a notable impact on the value of some genomic statistics (Evangelou and Ioannidis, 2013;
386 Marchi et al., 2021). In this analysis it is very likely that due to the high numbers of potential
387 Type I plants, sampling of male *Cannabis* plants has been largely unobserved. This is because

388 Type I plants typically consist of female flowers exclusively, with males often being removed
389 from cultivation.

390 **Future perspectives**

391 Nine datasets were explored to understand population structure in *Cannabis*, identifying
392 inconsistent genetic clustering with use-type. The inconsistency of use-type as a predictor of
393 relatedness implies that it may be a collection specific association, or that the relatively simple
394 inheritance of tetrahydrocannabinolic acid synthase (THCAS) may obfuscate background genetic
395 relationships. With the legal status of *Cannabis* now shifting, researchers can begin to examine
396 the effects of prohibition on extant *Cannabis* varieties and keep better records while developing
397 new cultivars. In the United States, prohibition may have created closed gene pools through the
398 breeding of limited germplasm facilitated by limiting plant exchange. Limited genetic diversity
399 in breeding may have had a role to play in the increased potency of *Cannabis* varieties over time,
400 with increases in THC content from ~4% in 1995 to ~12% in 2014 reported (El Sohly et al.
401 2016). Analogous to this in the wild, repeated range contractions during the Holocene are
402 thought to have resulted in repeated genetic bottlenecks and likely initiated incomplete allopatric
403 speciation which has led to differences between European (CBD-dominant - Type III) and Asian
404 (THC-Dominant - Type I) *Cannabis* populations (McPartland 2018).

405 The study of *Cannabis* genetics and its population structure is influenced by historical
406 factors like prohibition and contemporary breeding practices. Genome sequencing technologies
407 play a pivotal role in shaping our understanding of *Cannabis* genetic diversity. The debate over
408 species and subspecies classifications persists, with genetic research consistently challenging
409 traditional delineations. Importantly, the identification of population stratification and genetic
410 markers holds promise for enhancing breeding efforts, particularly in developing new heterotic
411 patterns. Additionally, while the industry burgeons, concerns regarding biopiracy and the

412 preservation of genetic diversity remain salient. Despite the challenges posed by inconsistent
413 naming conventions and limited sampling, ongoing research efforts continue to shed light on the
414 intricate genetic landscape of *Cannabis*, with significant implications for its future cultivation,
415 medicinal use, and industrial applications.

416 **Acknowledgements**

417 We would like to thank Mr. Robert Connell Clarke for his curation of the use-type associations
418 for the Phylos Biosciences (n=1378) dataset as well as for valuable discussions and insights.

419 **Funding:** This manuscript was prepared without external financial support or funding.
420 **Conflicts of interest/Competing interests:** LeafWorks Inc. is a for profit company
421 **Availability of data and material:** data are available upon reasonable request to the
422 corresponding author.
423 **Code availability:** code are available at <https://github.com/ahmccormick> and at
424 https://figshare.com/authors/Anna_H_McCormick/17741367
425 **Author contributions:** *Conceptualization:* AHMC, KH, MBK, NB, RRM, KL, EJK, *Formal*
426 *Analysis:* AHMC, RRM, *Figure Preparation:* AHMC, *Manuscript Drafting:* AHMC, *Writing*
427 *and Reviewing Manuscript:* AHMC, KH, MBK, NB, RRM, KL, EJK.
428

429 Main Figure Legends

430 **Fig. 1** Examining hierarchical clustering on principal components (HCPC) and population structure in the
431 LeafWorks Inc. (n=498) and Phylos Biosciences (n=845) datasets. In each case population genetic
432 clustering was conducted based only on nuclear genetic SNPs while reported use-type within the dataset
433 is below in solid bars to facilitate interpretation based upon community standards **(A)** Hierarchical cluster
434 dendrogram from 520 nuclear SNPs for the LeafWorks Inc. dataset with use-type indicated below. Use-
435 type are pictured below (Type I=288, Type II =5, Type III=16, Hemp=44, Landrace=101 and
436 Unknown=44) **(B)** Visualization of population structure and admixture from 1,405 nuclear SNPs for the
437 LeafWorks Inc. dataset using the fastSTRUCTURE software (k=2-5) with the optimal number of K being
438 4 using the silhouette method **(Fig. S9-10)** **(C)** Hierarchical cluster dendrogram from 292 nuclear SNPs
439 for the Phylos Biosciences dataset with use-type indicated below. Use-type accessions include Type
440 I=479, Type II=8, Type III=46, Landrace=127, Hemp=143 and Unknown=42 **(D)** Visualization of
441 population structure and admixture from 385 nuclear SNPs for the Phylos Biosciences dataset using the
442 fastSTRUCTURE software (k=2-5) with the optimal number of K being 3 using the Silhouette method
443 **(Fig. S9-10)**.

444
445 **Fig. 2** Examining hierarchical clustering and population structure in the Soorni et al. 2017 (n=94) and the
446 Medicinal Genomics StrainSEEK V1 (n=289) datasets. In each case clustering was conducted based on
447 nuclear genetic SNPs while reported use-type within the dataset is below in solid bars to facilitate
448 interpretation based upon community standards **(A)** Hierarchical cluster dendrogram from 6,865 nuclear
449 SNPs for the Soorni et al. 2017 dataset with use-type of each accession indicated below. Use-type are
450 pictured below (Type I=20, Type III=10, Type II=1, Landrace=78 and Unknown=63) **(B)** Visualization of
451 population structure and admixture from 33,629 nuclear SNPs for the Soorni et al. 2017 dataset using the
452 fastSTRUCTURE software (k=2-5) with the optimal number of K being 3 using the silhouette method
453 **(Fig. S9-10)** **(C)** Hierarchical cluster dendrogram from 5,045 nuclear SNPs for the Medicinal Genomics
454 StrainSEEK V1 dataset with use-type indicated below. Use-type of accessions include Type I=108, Type
455 III=9, Type II=17 and Unknown=155 **(D)** Visualization of population structure and admixture from
456 20,566 nuclear SNPs for the Medicinal Genomics StrainSEEK V1 dataset using the fastSTRUCTURE
457 software (k=2-5) with the optimal number of K being 3 using the silhouette method **(Fig. S9-10)**.

458
459 **Fig. 3** Examination of use-type association across datasets **(A)** Principal component analysis (PCA) from
460 520 nuclear SNPs for the LeafWorks Inc. dataset **(B)** PCA from 213 SNPs Phylos Biosciences(n=845)
461 dataset **(C)** PCA from 6,865 nuclear SNPs for the Soorni et al. 2017 dataset where cannabinoid content
462 could be determined due to recent publication for 31/94 samples. **(D)** PCA from 5,045 nuclear SNPs for
463 the Medicinal Genomics StrainSEEK V1 dataset.

464
465 **Fig. 4** Nucleotide diversity as examined by a 10kb sliding window for landrace and domesticated
466 partitions for the LeafWorks Inc. and Phylos Biosciences datasets **(A)** Nucleotide diversity by
467 chromosome and **(B)** across chromosome length for Domesticated (n=397, 2,096 SNPs) and Landrace
468 (n=101, 2,131 SNPs) samples for the LeafWorks Inc. dataset **(C)** Nucleotide diversity by chromosome
469 and **(D)** across chromosome length for Domesticated (n=718, 749 SNPs) and Landrace (n=127, 566
470 SNPs) samples for the Phylos Biosciences dataset.

471
472 **Fig. 5** Landrace accessions from the LeafWorks Inc. dataset show separation between Indian and
473 Myanmar populations **(A)** Map detailing the locations of landrace accessions, highlighted are the Hindu
474 Kush Mountains, Lolab Valley and Myanmar **(B)** Hierarchical cluster dendrogram based on 304 SNPs
475 (LD 0.2) across 26 samples of known and trusted origin **(C)** PCA based on 304 SNPs with geographical
476 locations of samples as indicated **(D)** Nucleotide diversity comparison between Hindu Kush Mountains
477 (n=6, 4,304 SNPs), Lolab Valley (n=4, 853 SNPs) and Myanmar (n=4, 2,204 SNPs) as examined by a
478 10kb sliding window **(E)** Visualization of population structure and admixture using the fastSTRUCTURE

479 software ($k=3$) with the optimal number of K being 3 using the silhouette method.

480 Supplemental Figure Legends

481 **Fig. S1** Dataset overview **(A)** Nucleotide diversity examined by a 10kb sliding window for all 9 genomic
482 datasets for *Cannabis sativa* L. **(B)** Nucleotide diversity across the length of the 10 chromosomes for all
483 9 genomic datasets.

484

485 **Fig. S2** Nuclear SNP analysis for the Phylos Biosciences (n=1,378) dataset. Clustering was conducted
486 based on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars to
487 facilitate interpretation based upon community standards **(A)** PCA by use-type based on 269 nuclear
488 SNPs. Use-type associations include THC-Dominant (Type I) (n=996) CBD-Dominant (Type III) (n=87),
489 Hemp (n=215), Landrace (n=78) and Unknown (n=2) **(B)** Hierarchical cluster dendrogram with use-type
490 indicated below **(C)** Visualization of population structure and admixture using the fastSTRUCTURE
491 software (k=2-5) with the optimal number of K being 3 using the silhouette method.

492

493 **Fig. S3** Nuclear SNP analysis for the Sunrise Genetics dataset for 25 samples. Clustering was conducted
494 based on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars to
495 facilitate interpretation based upon community standards **(A)** PCA by use-type based on 1,604 nuclear
496 SNPs. Use-type associations include THC-Dominant (Type I) (n=38) and Unknown (n=12) **(B)**
497 Hierarchical cluster dendrogram with use-type indicated below **(C)** Visualization of population structure
498 and admixture using the fastSTRUCTURE software (k=2-5) with the optimal number of K being 3 using
499 the silhouette method.

500

501 **Fig. S4** Nuclear SNP analysis for the Lynch et al., 2016 dataset for 162 samples. Clustering was
502 conducted based on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars
503 to facilitate interpretation based upon community standards **(A)** PCA by use-type for 162 samples from
504 2,223 SNPs. Type associations include Hemp (n=1), Landrace (n=1), THC-Dominant (Type I) (n=162),
505 CBD-Dominant (Type III) (n=11), THC:CBD (Type II) (n=2) and Unknown (n=21) **(B)** Hierarchical
506 cluster dendrogram with use-type indicated below **(C)** Visualization of population structure and
507 admixture using the fastSTRUCTURE software (k=2-5) with the optimal number of K being 2 using the
508 silhouette method.

509

510 **Fig. S5** Nuclear SNP analysis for the Courtagen Life Sciences dataset for 58 samples. Clustering was
511 conducted based on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars
512 to facilitate interpretation based upon community standards **(A)** PCA by use-type based on 119 nuclear
513 SNPs. Use-type associations include Hemp (n=1), THC-Dominant (Type I) (n=41), CBD-Dominant
514 (Type III) (n=11) and Unknown (n=5) **(B)** Hierarchical cluster dendrogram with use-type indicated below
515 **(C)** Visualization of population structure and admixture using the fastSTRUCTURE software (k=2-5).

516

517 **Fig. S6** Nuclear SNP analysis for the Medicinal Genomics 61 dataset for 61 samples. Clustering was
518 conducted based on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars
519 to facilitate interpretation based upon community standards **(A)** PCA by use-type based on 2,267 nuclear
520 SNPs. Use-type associations include Hemp (n=1), THC-Dominant (Type I) (n=47), CBD-Dominant
521 (Type III) (n=5) and Unknown (n=9) **(B)** Hierarchical cluster dendrogram with use-type indicated below
522 **(C)** Visualization of population structure and admixture using the fastSTRUCTURE software (k=2-5)
523 with the optimal number of K being 3 using the silhouette method.

524

525 **Fig. S7** Maximum Likelihood tree for the LeafWorks Inc. dataset constructed from 1,405 nuclear SNPs
526 from 498 samples. Modeltest-*ng* revealed the TIM2+G4 as the best fit substitution model and IQ-Tree
527 software was used for phylogenetic inference. Blue Dream samples (n=12) are highlighted in blue at the
528 branch tips. Use-type for individual samples is additionally indicated.

529

530 **Fig. S8** Maximum Likelihood phylogenetic tree for 126 whole chloroplast assemblies. Individuals were
531 aligned using MAFFT. Modeltest-NG revealed the GTR+G4 as the best fit substitution model and IQ-
532 Tree software was used for phylogenetic inference. The resultant tree was visualized using FigTree
533 (Version 1.4.4).

534
535 **Figure S9** Examining optimal K number across the datasets using the Elbow Method **(A)** LeafWorks Inc.
536 dataset **(B)** Phylos Biosciences dataset (n=845) **(C)** Soorni dataset (n=94) **(D)** Medicinal Genomics
537 StrainSEEK V1 (n=289) **(E)** Phylos Biosciences dataset (n=1378) **(F)** Sunrise Genetics (n=25) **(G)**
538 Colorado dataset (n=162) **(H)** Courtagen dataset (n=58) **(I)** Kannapedia 61 dataset (n=61) **(J)** LeafWorks
539 Inc. landrace samples (n=14).

540
541 **Figure S10** Examining optimal K number across the datasets using the Silhouette Method **(A)** LeafWorks
542 Inc. dataset **(B)** Phylos Biosciences dataset (n=845) **(C)** Soorni dataset (n=94) **(D)** Medicinal Genomics
543 StrainSEEK V1 (n=289) **(E)** Phylos Biosciences dataset (n=1378) **(F)** Sunrise Genetics (n=25) **(G)**
544 Colorado dataset (n=162) **(H)** Courtagen dataset (n=58) **(I)** Kannapedia 61 dataset (n=61) **(J)** LeafWorks
545 Inc. landrace samples (n=14).

546

547 **Table Legends**

548 **Table 1.** Definitions related to the different types of germplasm that were used in this study.

549 **Table 2.** Data sources used for this project.

550 **Table 3.** SNP count per dataset pre and post filtering.

551 **Table 4.** SNP counts for each dataset by chromosome following biallelic sorting and Linkage

552 Disequilibrium prune at 0.2 and mapped to CBDRx (cs10) genome.

553 **Table 5.** Partition specific (Landrace and Domesticates) SNP count per dataset pre and post filtering.

554 **Table S1.** Cultivar name, use-type, clade association and domestication classifications for the LeafWorks
555 Inc. data set.

556 **S2.** SSR ID, Cultivar name, use-type and domestication classifications for the Phylos Biosciences
557 (n=845) data set.

558 **Table S3.** SSR ID, Cultivar name, use-type, clade association and domestication classifications for the
559 Phylos Biosciences (n=1,378) data set.

560 **Table S4.** SSR ID, Cultivar name, Chemistry Type and and HCPC group for the Soorni et al. 2017 data
561 set.

562 **Table S5.** Sample ID, RSP ID, Cultivar name and use-type association for Medicinal Genomics (n=753)
563 data set.

564 **Table S6.** SSR ID, Cultivar name and use-type association for the Sunrise Genetics data set.

565 **Table S7.** SSR ID, Cultivar name and use-type association for Lynch et al., 2016 data set.

566 **Table S8.** SSR ID, Cultivar name and use-type association for the Courtagen Life Sciences data set.

567 **Table S9.** Sample ID, Cultivar name and use-type association for Medicinal Genomics (n=61) data set.

568 **Table S10.** Core collections for the nine datasets.

569 References

570 Alexander, SP. 2020. Barriers to the wider adoption of medicinal Cannabis. *British Journal of*
571 *Pain*, 14(2), 122-132.

572

573 Allen, KD, McKernan, K, Pauli, C, Roe, J, Torres, A, Gaudino, R. 2019. Genomic
574 characterization of the complete terpene synthase gene family from Cannabis sativa. *PLoS one*,
575 14(9), e0222363.

576

577 Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data.

578

579 Badowski, ME, Perez, SE. 2016. Clinical utility of dronabinol in the treatment of weight loss
580 associated with HIV and AIDS. *HIV/AIDS-Research and Palliative Care*, 37-45.

581

582 Van Bakel, H, Stout, JM, Cote, AG, Tallon, CM, Sharpe, AG, Hughes, TR, Page, JE. 2011. The
583 draft genome and transcriptome of Cannabis sativa. *Genome biology*, 12(10), 1-18.

584

585 Bicket, MC, Stone, EM, McGinty, EE. 2023. Use of cannabis and other pain treatments among
586 adults with chronic pain in US states with medical cannabis programs. *JAMA network open*, 6(1),
587 e2249797-e2249797.

588

589 Bolger, AM, Lohse, M, Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina
590 sequence data. *Bioinformatics*, 30(15), 2114-2120.

591

592 Campbell, LG, Dufresne, J, Sabatinos, SA. 2020. Cannabinoid inheritance relies on complex
593 genetic architecture. *Cannabis and Cannabinoid Research*, 5(1), 105-116.

594

595 Caplan, D, Dixon, M, Zheng, Y. 2019. Increasing inflorescence dry weight and cannabinoid
596 content in medical cannabis using controlled drought stress. *HortScience*, 54(5), 964-969.

597

598 Carlson CH, Stack GM, Jiang Y, Taşkıran B, Cala AR, Toth JA, Philippe G, Rose JK, Smart CD,
599 Smart LB. 2021. Morphometric relationships and their contribution to biomass and cannabinoid
600 yield in hybrids of hemp (Cannabis sativa). *Journal of Experimental Botany*;72(22):7694-709.

601

602 Chao, TC. 2014. Enhancing metadata for research methods in data curation. *Proceedings of the*
603 *American society for information science and technology*, 51(1), 1-4.

604

605 Clarke, RC, Merlin, MD. 2013. Cannabis. Evolution and Ethnobotany, University of Cali.

606

607 Clarke RC. 1987 Cannabis evolution. MS thesis, Indiana University, Bloomington, IN.

608

609 Clarke, RC, Merlin, MD. 2016. Cannabis domestication, breeding history, present-day genetic
610 diversity, and future prospects. *Critical reviews in plant sciences*, 35(5-6), 293-327.

611

612 Della Coletta, R, Qiu, Y, Ou, S, Hufford, MB, Hirsch, CN. 2021. How the pan-genome is
613 changing crop genomics and improvement. *Genome biology*, 22(1), 1-19.

614

615 Cooper, HD. 2002. The international treaty on plant genetic resources for food and agriculture.
616 *Rev. Eur. Comp. & Int'l Envtl. L.*, 11, 1.

617

618 Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E.,
619 Lunter, G., Marth, G.T., Sherry, S.T. McVean, G. 2011. The variant call format and VCFtools.
620 *Bioinformatics*, 27(15), 2156-2158.

621

622 Danecek, P., McCarthy, S.A. 2017. BCFtools/csq: haplotype-aware variant consequences.
623 *Bioinformatics*, 33(13), 2037-2039.

624

625 Darriba, D., Posada, D., Kozlov, A.M., Stamatakis, A., Morel, B., Flouri, T. 2020. ModelTest-
626 NG: a new and scalable tool for the selection of DNA and protein evolutionary models.
627 *Molecular biology and evolution*, 37(1), 291-294.

628

629 De Meijer, E.P., Bagatta, M., Carboni, A., Crucitti, P., Moliterni, V.C., Ranalli, P., Mandolino,
630 G. 2003. The inheritance of chemical phenotype in Cannabis sativa L. *Genetics*, 163(1), 335-
631 346.

632

633 De Meijer, E.P.M., Hammond, K.M., Micheler, M. 2009. The inheritance of chemical phenotype
634 in Cannabis sativa L.(III): variation in cannabichromene proportion. *Euphytica*, 165(2), 293-311.

635

636 Dreiseitl, A. 2020. Specific resistance of barley to powdery mildew, its use and beyond: A
637 concise critical review. *Genes*, 11(9), 971.

638

639 Duvall, C.S. 2017. Drug laws, bioprospecting and the agricultural heritage of Cannabis in Africa.
640 In *Drugs, Law, People, Place and the State*, 10-25. Routledge.

641

642 El Sohly, M.A., Mehmedic, Z., Foster, S., Gon, C., Chandra, S., Church, J.C. 2016. Changes in
643 cannabis potency over the last 2 decades (1995–2014): analysis of current data in the United
644 States. *Biological psychiatry*, 79(7), 613-619.

645

646 Evangelou, E., Ioannidis, J. P. 2013. Meta-analysis methods for genome-wide association
647 studies and beyond. *Nature Reviews Genetics*, 14(6), 379-389.

648

649 Ewels, P., Magnusson, M., Lundin, S., Käller, M. 2016. MultiQC: summarize analysis results for
650 multiple tools and samples in a single report. *Bioinformatics*, 32(19), 3047-3048.

651

652 Ferroni, M., Castle, P. 2011. Public-private partnerships and sustainable agricultural
653 development. *Sustainability*, 3(7), 1064-1073.

654

655 Frankel, O.H. 1984. Genetic perspectives of germplasm conservation. *Genetic manipulation:
656 impact on man and society*, 161, 170.

657

658 Gao, S., Wang, B., Xie, S., Xu, X., Zhang, J., Pei, L., Yu, Y., Yang, W., Zhang, Y., 2020. A high-
659 quality reference genome of wild Cannabis sativa. *Horticulture research*, 7.

660

661 Garfinkel, A.R., Otten, M. and Crawford, S. 2021. SNP in potentially defunct
662 tetrahydrocannabinolic acid synthase is a marker for cannabigerolic acid dominance in Cannabis
663 sativa L. *Genes*, 12(2), 228.

664

665 Gilmore, S., Peakall, R., Robertson, J., 2007. Organelle DNA haplotypes reflect crop-use
666 characteristics and geographic origins of Cannabis sativa. *Forensic Science International*, 172(2-
667 3), 179-190.

668

669 Govindaraju, D.R., 2019. An elucidation of over a century old enigma in genetics—Heterosis.
670 *PLoS Biology*, 17(4), e3000215.

671

672 Grassa, C.J., Weiblen, G.D., Wenger, J.P., Dabney, C., Poplawski, S.G., Timothy Motley, S.,
673 Michael, T.P., et al. 2021. A new Cannabis genome assembly associates elevated cannabidiol
674 (CBD) with hemp introgressed into marijuana. *New Phytologist*, 230(4), 1665-1679.

675

676 Guerriero, G., Behr, M., Legay, S., Mangeot-Peter, L., Zorzan, S., Ghoniem, M., et al. 2017.
677 Transcriptomic profiling of hemp bast fibres at different developmental stages. *Scientific reports*,
678 7(1), 4961.

679

680 Guerriero, G., Deshmukh, R., Sonah, H., Sergeant, K., Hausman, J.F., Lentzen, E., Valle, N.,
681 Siddiqui, K.S., et al. 2019. Identification of the aquaporin gene family in Cannabis sativa and
682 evidence for the accumulation of silicon in its tissues. *Plant Science*, 287, 110167.

683

684 Henry, P., Khatodia, S., Kapoor, K., Gonzales, B., Middleton, A., Hong, K., Hilyard, A.,
685 Johnson, S., Allen, D., Chester, Z., et al. 2020. A single nucleotide polymorphism assay sheds
686 light on the extent and distribution of genetic diversity, population structure and functional basis
687 of key traits in cultivated north American cannabis. *Journal of Cannabis Research*, 2(1), 1-11.

688

689 Hillig, K.W. 2005. Genetic evidence for speciation in Cannabis (Cannabaceae). *Genetic
690 Resources and Crop Evolution*, 52, 161-180.

691

692 Hübner, S., Bercovich, N., Todesco, M., Mandel, J.R., Odenheimer, J., Ziegler, E., Lee, J.S.,
693 Baute, G.J., Owens, G.L., Grassa, C.J., et al. 2019. Sunflower pan-genome analysis shows that
694 hybridization altered gene content and disease resistance. *Nature plants*, 5(1), 54-62.

695

696 Hurgobin, B., Tamiru-Oli, M., Welling, M.T., Doblin, M.S., Bacic, A., Whelan, J., Lewsey,
697 M.G. 2021. Recent advances in Cannabis sativa genomics research. *New Phytologist*, 230(1), 73-
698 89.

699

700 Jiang, H., Lei, R., Ding, S.W., Zhu, S. 2014. Skewer: a fast and accurate adapter trimmer for
701 next-generation sequencing paired-end reads. *BMC bioinformatics*, 15, 1-12.

702

703 Jin, D., Henry, P., Shan, J., Chen, J. 2021. Classification of cannabis strains in the Canadian
704 market with discriminant analysis of principal components using genome-wide single nucleotide
705 polymorphisms. *Plos one*, 16(6), e0253387.

706

707 Kassambara, A., Mundt, F. 2017. factoextra: Extract and visualize the results of multivariate data
708 analyses (Version 1.0. 5). *URL* <https://www.rdocumentation.org/packages/factoextra/versions/1.0.5>.

710

711 Katoh, K., Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7:
712 improvements in performance and usability. *Molecular biology and evolution*, 30(4), 772-780.

713

714 Lamarck, J.B. 1785. *Encyclopédie méthodique. Botanique*. Panckoucke, Paris.

715

716 Laverty, K.U., Stout, J.M., Sullivan, M.J., Shah, H., Gill, N., Holbrook, L., Deikus, G., Sebra, R.,
717 Hughes, T.R., Page, J.E., Van Bakel, H. 2019. A physical and genetic map of Cannabis sativa
718 identifies extensive rearrangements at the THC/CBD acid synthase loci. *Genome research*,
719 29(1), 146-156.

720

721 Lewis, M.A., Russo, E.B., Smith, K.M. 2018. Pharmacological foundations of cannabis
722 chemovars. *Planta medica*, 84(04), 225-233.

723

724 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
725 Durbin, R. 2009. 1000 Genome Project Data Processing Subgroup, 2009. The sequence
726 alignment/map format and SAMtools. *bioinformatics*, 25(16), 2078-2079.

727

728 Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
729 *arXiv preprint arXiv:1303.3997*.

730

731 Li, J., Yuan, D., Wang, P., Wang, Q., Sun, M., Liu, Z., Si, H., Xu, Z., Ma, Y., Zhang, B., Pei, L.
732 2021. Cotton pan-genome retrieves the lost sequences and genes during domestication and
733 selection. *Genome biology*, 22(1), 1-26.

734

735 Linnaeus, C. 1753. *Species Plantarum*. Laurentius Salvius, Stockholm, 1200.

736

737 Lydon, J., Teramura, A.H., Coffman, C.B. 1987. UV-B radiation effects on photosynthesis,
738 growth and cannabinoid production of two Cannabis sativa chemotypes. *Photochemistry and
739 Photobiology*, 46(2), 201-206.

740

741 Lynch, R.C., Vergara, D., Tittes, S., White, K., Schwartz, C.J., Gibbs, M.J., Ruthenburg, T.C.,
742 DeCesare, K., Land, D.P., Kane, N.C. 2016. Genomic and chemical diversity in Cannabis.
743 *Critical Reviews in Plant Sciences*, 35(5-6), 349-363.

744

745 Maoz, T.Y. 2020. Making Cannabis History in 2020. *WWW document] URL* <https://www.nrgene.com/blog/making-cannabis-history-in-2020>.

746

747

748 Marchi, N., Schlichta, F., Excoffier, L. 2021. Demographic inference. *Current Biology*, 31(6),
749 R276-R279.

750

751 McKernan, K.J., Helbert, Y., Kane, L.T., Ebling, H., Zhang, L., Liu, B., Eaton, Z., McLaughlin,
752 S., Kingan, S., Baybayan, P., Concepcion, G. 2020. Sequence and annotation of 42 cannabis

753 genomes reveals extensive copy number variation in cannabinoid synthesis and pathogen
754 resistance genes. *BioRxiv*, 2020-01.

755

756 McPartland, J.M., Guy, G.W. 2017. Models of Cannabis taxonomy, cultural bias, and conflicts
757 between scientific and vernacular names. *The botanical review*, 83, 327-381.

758

759 McPartland, J.M. 2018. Cannabis systematics at the levels of family, genus, and species.
760 *Cannabis and cannabinoid research*, 3(1), 203-212.

761

762 McPartland, J.M., Hegman, W., Long, T. 2019. Cannabis in Asia: its center of origin and early
763 cultivation, based on a synthesis of subfossil pollen and archaeobotanical studies. *Vegetation
764 history and archaeobotany*, 28, 691-702

765

766 McPartland, J.M., Small, E. 2020. A classification of endangered high-THC cannabis (*Cannabis
767 sativa subsp. indica*) domesticates and their wild relatives. *PhytoKeys*, 144, 81.

768

769 Mead, A. 2017. The legal status of cannabis (marijuana) and cannabidiol (CBD) under US law.
770 *Epilepsy & Behavior*, 70, 288-291.

771

772 Mead, A. 2019. Legal and regulatory issues governing cannabis and cannabis-derived products
773 in the United States. *Frontiers in plant science*, 10, 697.

774

775 Merrick, L.F., Lyon, S.R., Balow, K.A., Murphy, K.M., Jones, S.S., Carter, A.H.,\ 2020.
776 Utilization of evolutionary plant breeding increases stability and adaptation of winter wheat
777 across diverse precipitation zones. *Sustainability*, 12(22), 9728.

778

779 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler,
780 A., Lanfear, R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference
781 in the genomic era. *Molecular biology and evolution*, 37(5), 1530-1534.

782

783 Mostafaei Dehnavi, M., Ebadi, A., Peirovi, A., Taylor, G., Salami, S.A. 2022. THC and CBD
784 Fingerprinting of an Elite Cannabis Collection from Iran: Quantifying Diversity to Underpin
785 Future Cannabis Breeding. *Plants*, 11(1), 129.

786

787 Murovec, J., Eržen, J.J., Flajšman, M., Vodnik, D. 2022. Analysis of Morphological Traits,
788 Cannabinoid Profiles, THCA Gene Sequences, and Photosynthesis in Wide and Narrow Leaflet
789 High-Cannabidiol Breeding Populations of Medical Cannabis. *Frontiers in plant science*, 13,
790 786161.

791

792 Onofri, C., Mandolino, G. 2017. Genomics and Molecular Markers in Cannabis sativa L.
793 *Cannabis sativa L.-botany and biotechnology*, 319-342.

794

795 Onofri, C., de Meijer, E.P., Mandolino, G. 2015. Sequence heterogeneity of cannabidiolic-and
796 tetrahydrocannabinolic acid-synthase in Cannabis sativa L. and its relationship with chemical
797 phenotype. *Phytochemistry*, 116, 57-68.

798

799 Parker, L.A., Rock, E.M., Limebeer, C.L. 2011. Regulation of nausea and vomiting by
800 cannabinoids. *British journal of pharmacology*, 163(7), 1411-1422.

801

802 Perucca, E. 2017. Cannabinoids in the treatment of epilepsy: hard evidence at last?. *Journal of*
803 *epilepsy research*, 7(2), 61.

804

805 Petit, J., Salentijn, E.M., Paulo, M.J., Thouminot, C., van Dinter, B.J., Magagnini, G., Gusovius,
806 H.J., Tang, K., Amaducci, S., Wang, S., Uhrlaub, B. 2020. Genetic variability of morphological,
807 flowering, and biomass quality traits in hemp (*Cannabis sativa* L.). *Frontiers in plant science*,
808 11, 102.

809

810 Punja, Z.K., Holmes, J.E. 2020. Hermaphroditism in marijuana (*Cannabis sativa* L.)
811 inflorescences—impact on floral morphology, seed formation, progeny sex ratios, and genetic
812 variation. *Frontiers in Plant Science*, 718.

813

814 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar,
815 P., De Bakker, P.I., Daly, M.J., Sham, P.C. 2007. PLINK: a tool set for whole-genome
816 association and population-based linkage analyses. *The American journal of human genetics*,
817 81(3), 559-575.

818

819 Raj, A., Stephens, M., Pritchard, J.K. 2014. fastSTRUCTURE: variational inference of
820 population structure in large SNP data sets. *Genetics*, 197(2), 573-589.

821

822 Ren, G., Zhang, X., Li, Y., Ridout, K., Serrano-Serrano, M.L., Yang, Y., Liu, A., Ravikanth, G.,
823 Nawaz, M.A., Mumtaz, A.S., Salamin, N. 2021. Large-scale whole-genome resequencing
824 unravels the domestication history of *Cannabis sativa*. *Science advances*, 7(29), eabg2286.

825

826 Roman, M.G., Gangitano, D., Houston, R. 2019. Characterization of new chloroplast markers to
827 determine biogeographical origin and crop type of *Cannabis sativa*. *International journal of*
828 *legal medicine*, 133, 1721-1732.

829

830 Ryan, J. E., McCabe, S. E., Boyd, C. J. 2021. Medicinal cannabis: policy, patients, and
831 providers. *Policy, Politics, & Nursing Practice*, 22(2), 126-133.

832

833 Sawler, J., Stout, J.M., Gardner, K.M., Hudson, D., Vidmar, J., Butler, L., Page, J.E., Myles, S.
834 2015. The genetic structure of marijuana and hemp. *PloS one*, 10(8), e0133292.

835

836 Schultes, R.E., Klein, W.M., Plowman, T., Lockwood, T.E. 1974. Cannabis: an example of
837 taxonomic neglect. *Botanical Museum Leaflets, Harvard University*, 23(9), 337-367.

838

839 Schwabe, A.L., McGlaughlin, M.E. 2019. Genetic tools weed out misconceptions of strain
840 reliability in *Cannabis sativa*: implications for a budding industry. *Journal of Cannabis*
841 *Research*, 1(1), 1-16.

842

843 Schwabe, A.L., Hansen, C.J., Hyslop, R.M., McGlaughlin, M.E. 2021. Comparative genetic
844 structure of *Cannabis sativa* including federally produced, wild collected, and cultivated samples.

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890

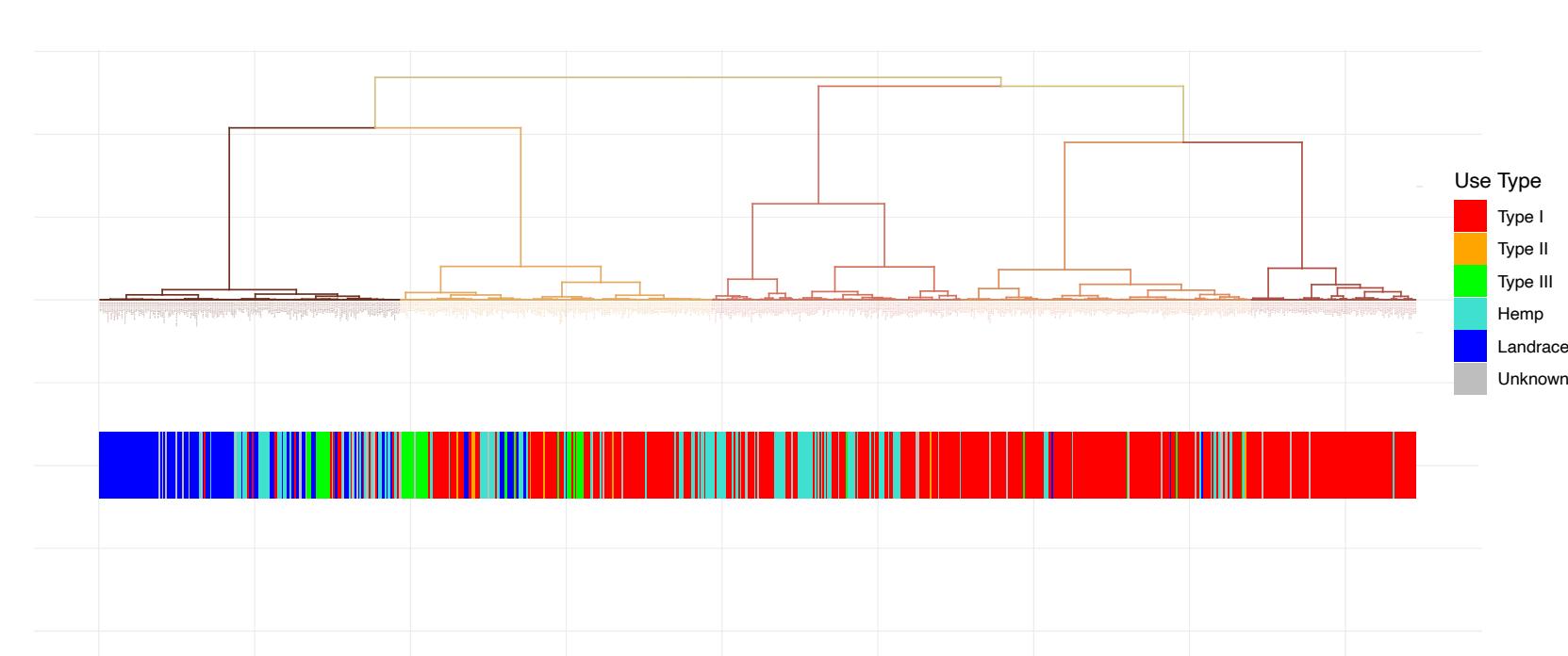
Frontiers in Plant Science, 2098.
Scott, M.F., Ladejobi, O., Amer, S., Bentley, A.R., Biernaskie, J., Boden, S.A., Clark, M., Dell'Acqua, M., Dixon, L.E., Filippi, C.V., Fradgley, N. 2020. Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. *Heredity*, 125(6), 396-416.
Small, E., Cronquist, A. 1976. A practical and natural taxonomy for Cannabis. *Taxon*, 405-435.
Small, E. 2015. Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. *The botanical review*, 81, 189-294.
Smith, C.J., Vergara, D., Keegan, B., Jikomes, N. 2022. The phytochemical diversity of commercial cannabis in the United States. *PLoS one*, 17(5), e0267498.
Soler, S., Gramazio, P., Figàs, M.R., Vilanova, S., Rosa, E., Llosa, E.R., Borràs, D., Plazas, M. and Prohens, J. 2017. Genetic structure of Cannabis sativa var. indica cultivars based on genomic SSR (gSSR) markers: implications for breeding and germplasm management. *Industrial crops and products*, 104, 171-178.
Soorni, A., Fatahi, R., Haak, D.C., Salami, S.A., Bombarely, A. 2017. Assessment of genetic diversity and population structure in Iranian cannabis germplasm. *Scientific reports*, 7(1), 15668.
Stone, N.L., Murphy, A.J., England, T.J., O'Sullivan, S.E. 2020. A systematic review of minor phytocannabinoids with promising neuroprotective potential. *British Journal of Pharmacology*, 177(19), 4330-4352.
Svendsen, K.B., Jensen, T.S., Bach, F.W. 2004. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. *Bmj*, 329(7460), 253.
Toth, J.A., Stack, G.M., Cala, A.R., Carlson, C.H., Wilk, R.L., Crawford, J.L., Viands, D.R., Philippe, G., Smart, C.D., Rose, J.K., Smart, L.B. 2020. Development and validation of genetic markers for sex and cannabinoid chemotype in Cannabis sativa L. *Gcb Bioenergy*, 12(3), 213-222.
Toth, J.A., Smart, L.B., Smart, C.D., Stack, G.M., Carlson, C.H., Philippe, G., Rose, J.K. 2021. Limited effect of environmental stress on cannabinoid profiles in high-cannabidiol hemp (Cannabis sativa L.). *GCB Bioenergy*, 13(10), 1666-1674.
Toth, J.A., Stack, G.M., Carlson, C.H., Smart, L.B. 2022. Identification and mapping of major-effect flowering time loci Autoflower1 and Early1 in Cannabis sativa L. *Frontiers in Plant Science*, 13, 991680.
van Velzen, R., Schranz, M.E. 2021. Origin and evolution of the cannabinoid oxidocyclase gene family. *Genome Biology and Evolution*, 13(8), evab130.

891
892 Vavilov N.I., Bokinich D.D. 1929. Agricultural Afghanistan. Bull. Appl. Bot. Genet. Plant
893 Breeding Supp. 33: 378–382, 474, 480, 584–585, 604
894
895 Vergara, D, Huscher, EL, Keepers, KG, Pisupati, R, Schwabe, AL, McGlaughlin, ME, Kane, N.
896 C. 2021. Genomic evidence that governmentally produced Cannabis sativa poorly represents
897 genetic variation available in state markets. *Frontiers in plant science*, 12, 668315.
898
899 Walker, J.M., Huang, S.M. 2002. Cannabinoid analgesia. *Pharmacology & therapeutics*, 95(2),
900 127-135.
901
902 Wickham, H. 2011. *ggplot2. Wiley interdisciplinary reviews: computational statistics*, 3(2), 180-
903 185.
904
905 Williamson, H. F., Brettschneider, J., Caccamo, M., Davey, R. P., Goble, C., Kersey, P. J., ... &
906 Leonelli, S. 2021. Data management challenges for artificial intelligence in plant and agricultural
907 research. *F1000Research*, 10.
908
909 Woods, P., Campbell, B.J., Nicodemus, T.J., Cahoon, E.B., Mullen, J.L., McKay, J.K. 2021.
910 Quantitative trait loci controlling agronomic and biochemical traits in Cannabis sativa. *Genetics*,
911 219(2), iyab099.
912
913 Woods, P., Price, N., Matthews, P., McKay, J.K. 2023. Genome-wide polymorphism and genic
914 selection in feral and domesticated lineages of Cannabis sativa. *G3*, 13(2), ikac209.
915
916 Zimmerman, S. J., Aldridge, C. L., Oyler-McCance, S. J. 2020. An empirical comparison of
917 population genetic analyses using microsatellite and SNP data for a species of conservation
918 concern. *BMC genomics*, 21, 1-16.
919
920 Zhang, Q., Chen, X., Guo, H., Trindade, L.M., Salentijn, E.M., Guo, R., Guo, M., Xu, Y., Yang,
921 M. 2018. Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L.
922 *Frontiers in plant science*, 9, 1876.
923
924 Zhang, J., Yan, J., Huang, S., Pan, G., Chang, L., Li, J., Zhang, C., Tang, H., Chen, A., Peng, D.
925 and Biswas, A. 2020. Genetic diversity and population structure of cannabis based on the
926 genome-wide development of simple sequence repeat markers. *Frontiers in Genetics*, 11, 958.
927
928 Zheng, X., Levine, D., Shen, J., Gogarten, S.M., Laurie, C., Weir, B.S. 2012. A high-
929 performance computing toolset for relatedness and principal component analysis of SNP data.
930 *Bioinformatics*, 28(24), 3326-3328.
931
932

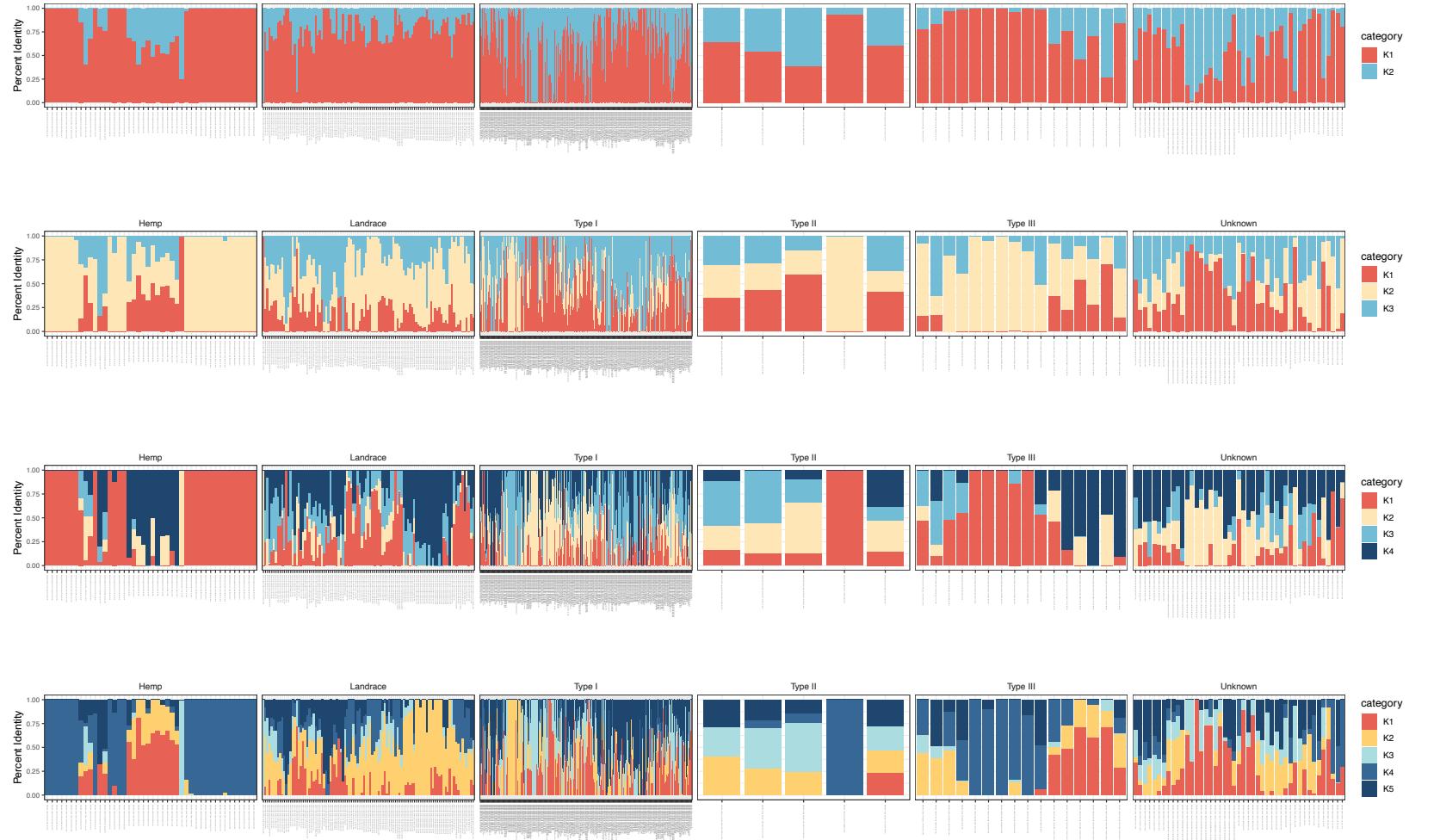
A



C



B



D

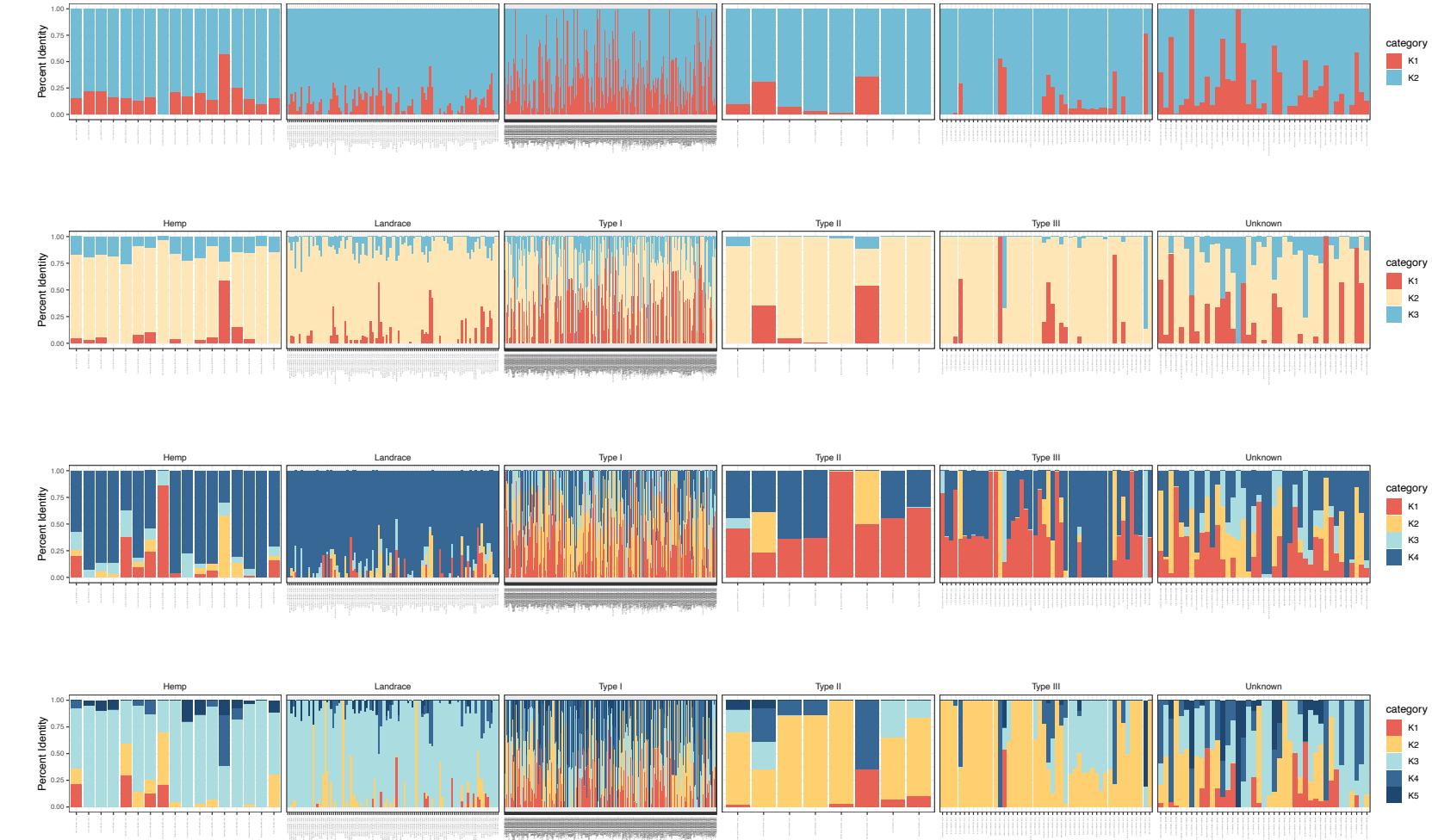
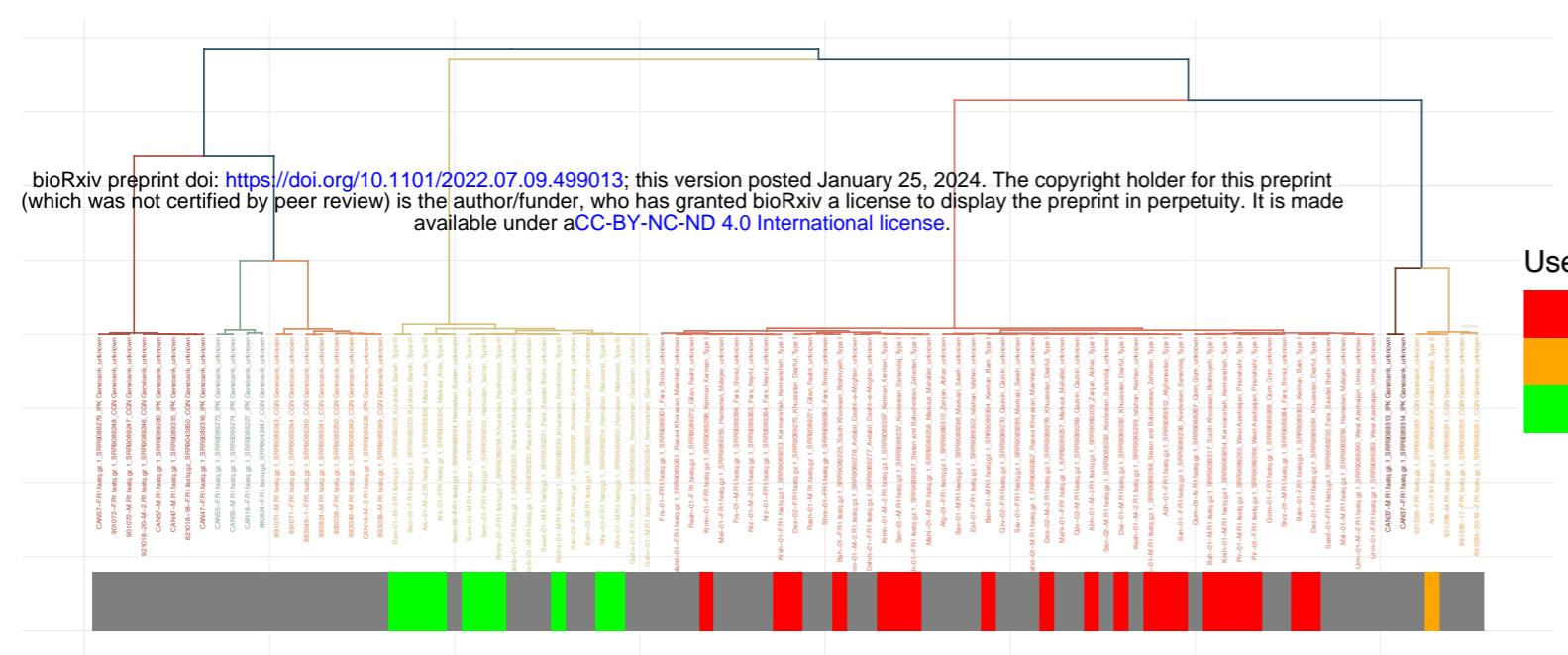


Figure 1 Examining hierarchical clustering on principal components (HCPC) and population structure in the LeafWorks Inc. (n=498) and Phylos Biosciences (n=845) datasets. In each case population genetic clustering was conducted based only on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars to facilitate interpretation based upon community standards **(A)** Hierarchical cluster dendrogram from 520 nuclear SNPs for the LeafWorks Inc. dataset with use-type indicated below. Use-type are pictured below (Type I=288, Type II=5, Type III=16, Hemp=44, Landrace=101 and Unknown=44) **(B)** Visualization of population structure and admixture from 1,405 nuclear SNPs for the LeafWorks Inc. dataset using the fastSTRUCTURE software (k=2-5) with the optimal number of K being 4 using the silhouette method (**Fig. S9-10**) **(C)** Hierarchical cluster dendrogram from 292 nuclear SNPs for the Phylos Biosciences dataset with use-type indicated below. Use-type accessions include Type I=479, Type II=8, Type III=46, Landrace=127, Hemp=143 and Unknown=42 **(D)** Visualization of population structure and admixture from 385 nuclear SNPs for the Phylos Biosciences dataset using the fastSTRUCTURE software (k=2-5) with the optimal number of K being 3 using the Silhouette method (**Fig. S9-10**).

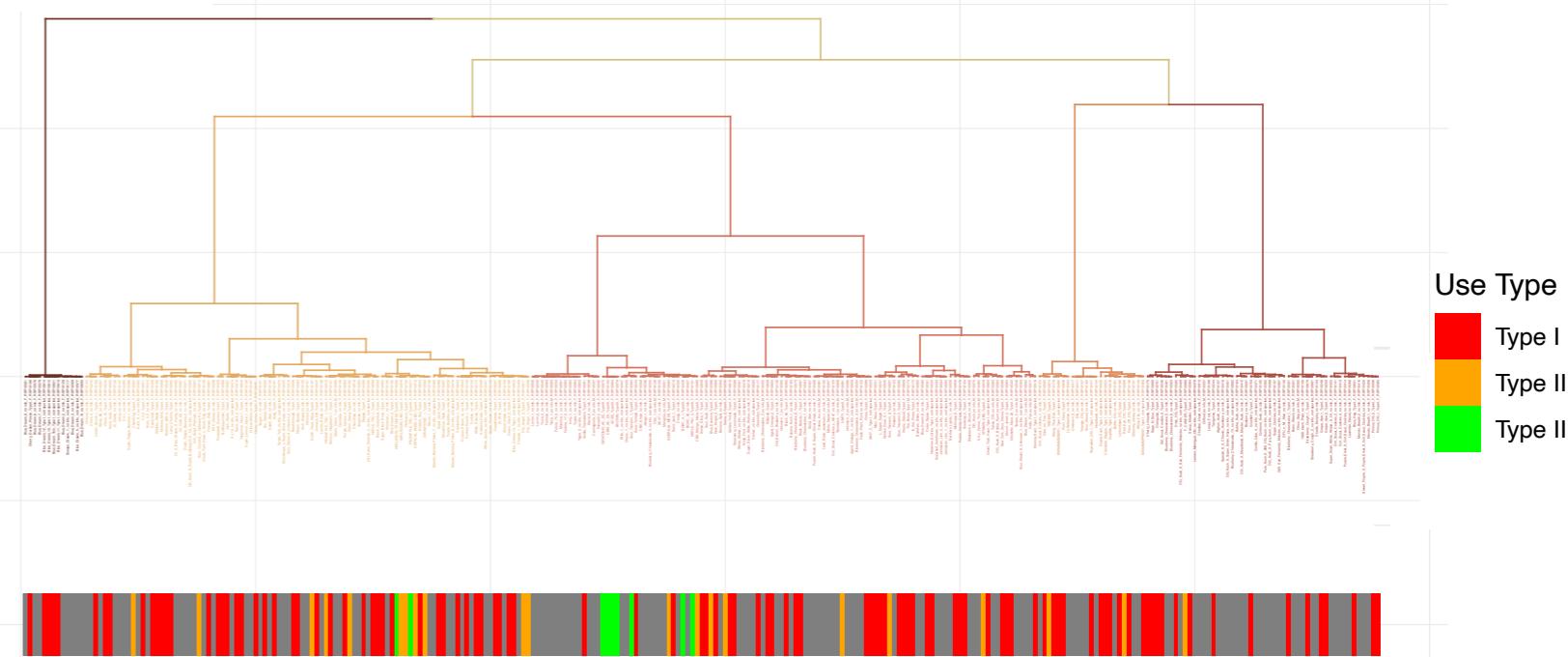
A



B



C



D

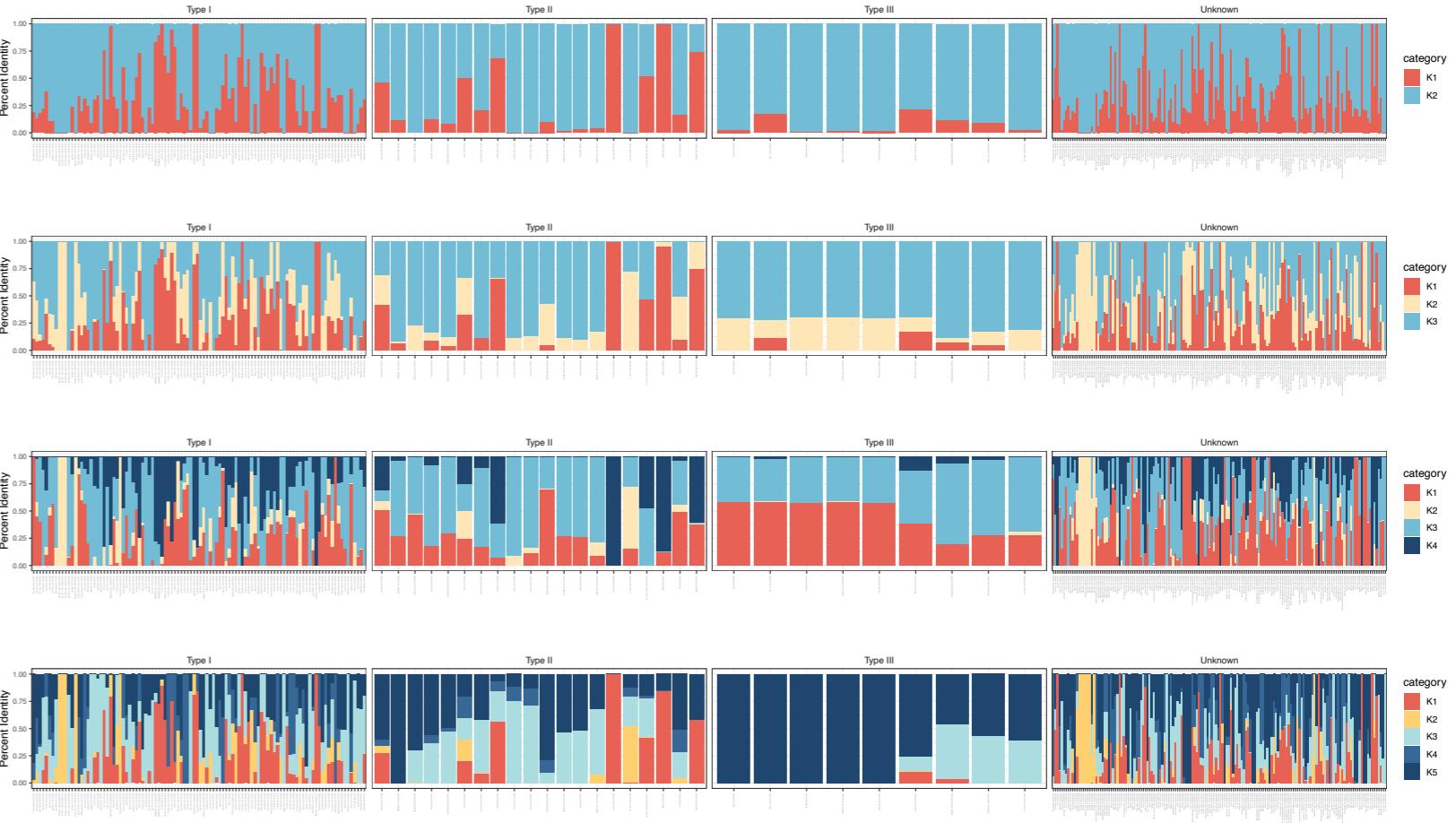
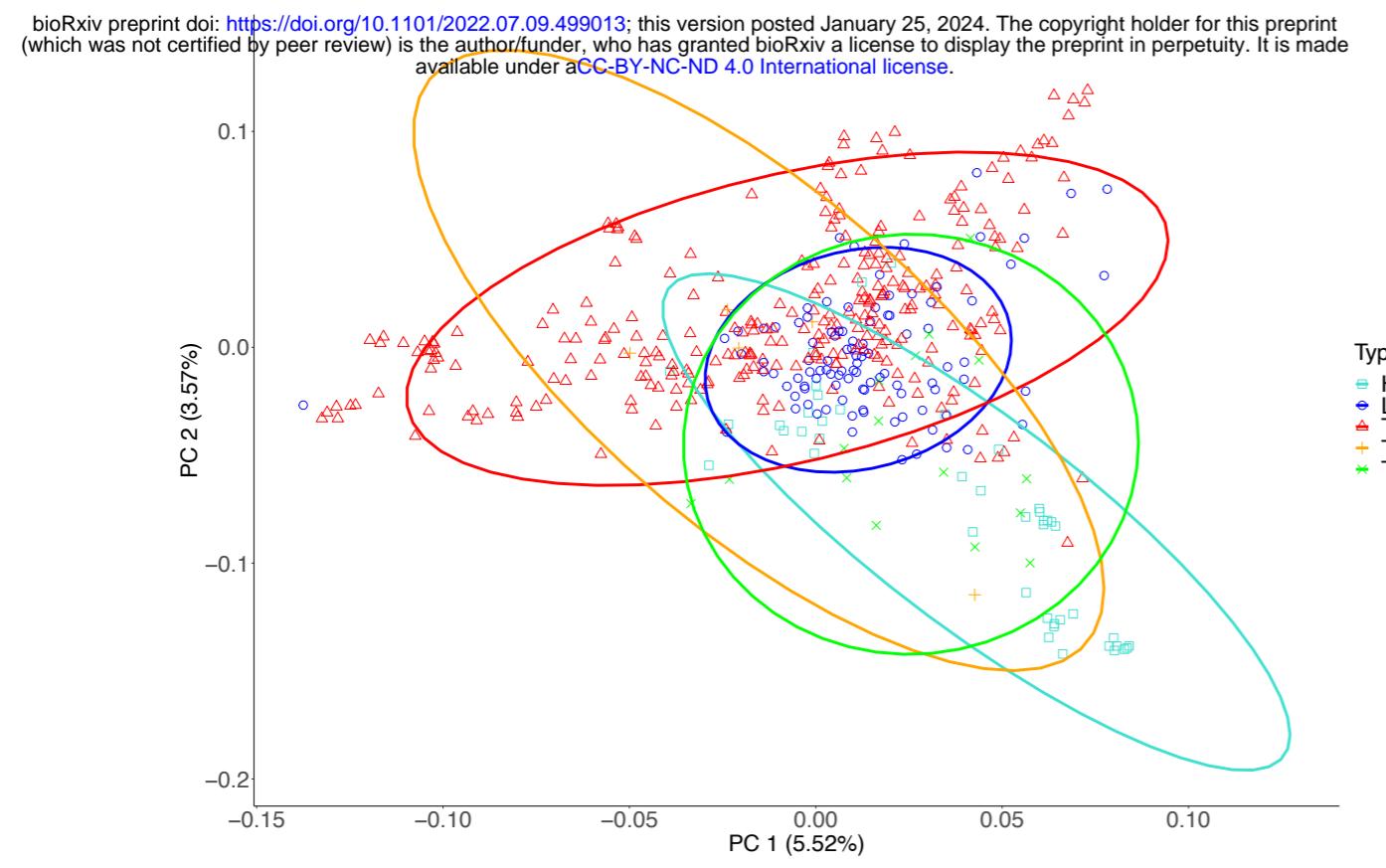
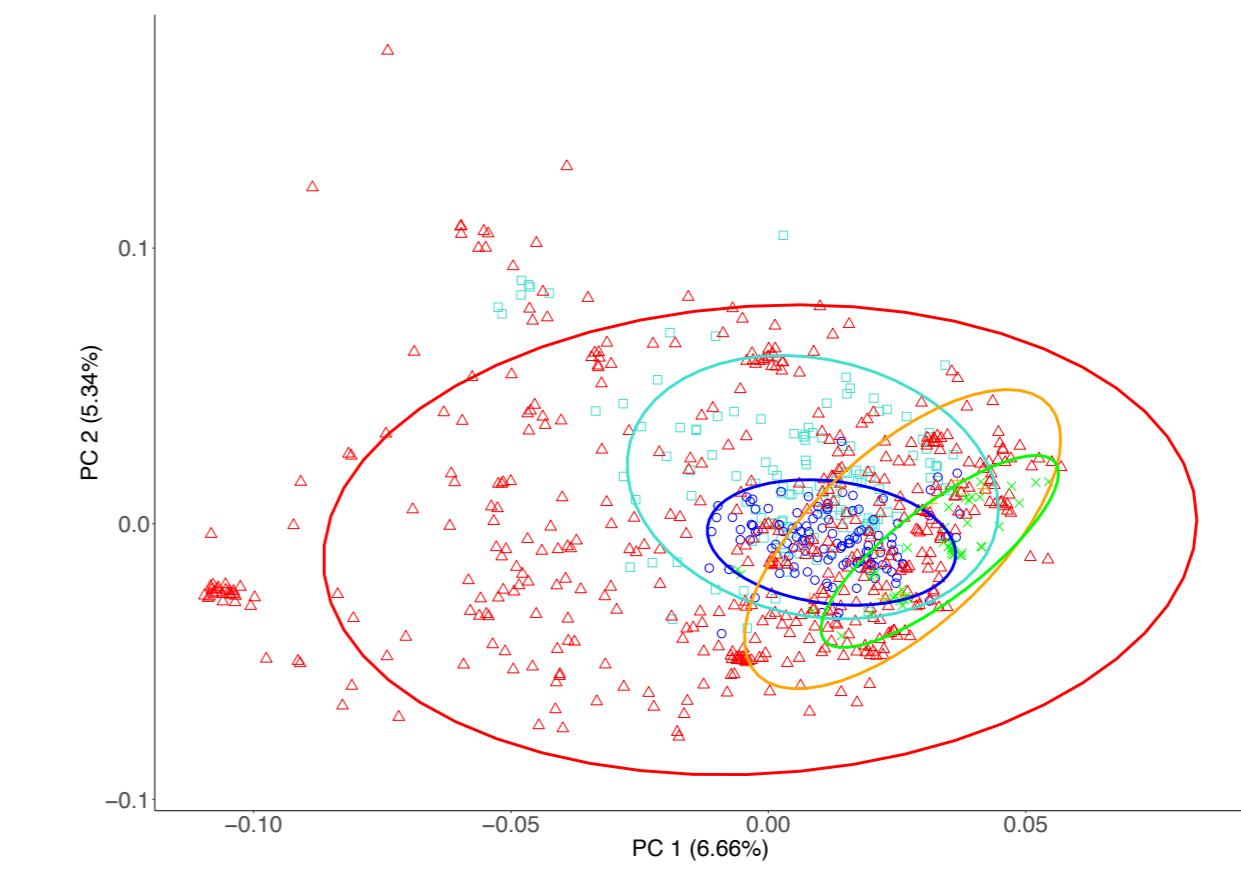


Figure 2 Examining hierarchical clustering and population structure in the Soorni et al. 2017 (n=94) and the Medicinal Genomics StrainSEEK V1 (n=289) datasets. In each case clustering was conducted based on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars to facilitate interpretation based upon community standards (A) Hierarchical cluster dendrogram from 6,865 nuclear SNPs for the Soorni et al. 2017 dataset with use-type of each accession indicated below. Use-type are pictured below (Type I=20, Type III=10, Type II=1, Landrace=78 and Unknown=63) (B) Visualization of population structure and admixture from 33,629 nuclear SNPs for the Soorni et al. 2017 dataset using the fastSTRUCTURE software (k=2-5) with the optimal number of K being 3 using the silhouette method (Fig. S9-10) (C) Hierarchical cluster dendrogram from 5,045 nuclear SNPs for the Medicinal Genomics StrainSEEK V1 dataset with use-type indicated below. Use-type of accessions include Type I=108, Type III=9, Type II=17 and Unknown=155 (D) Visualization of population structure and admixture from 20,566 nuclear SNPs for the Medicinal Genomics StrainSEEK V1 dataset using the fastSTRUCTURE software (k=2-5) with the optimal number of K being 3 using the silhouette method (Fig. S9-10).

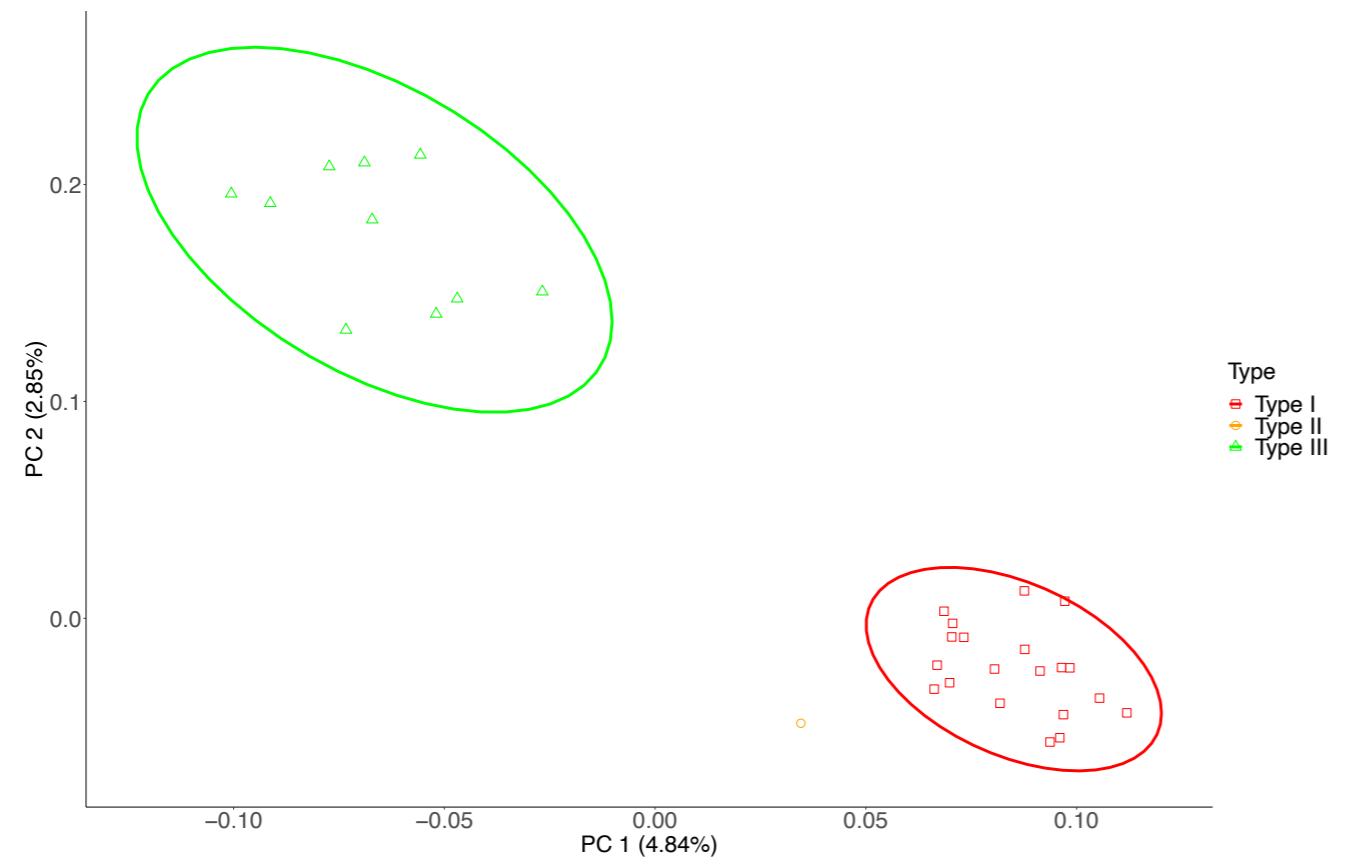
A



C



B



D

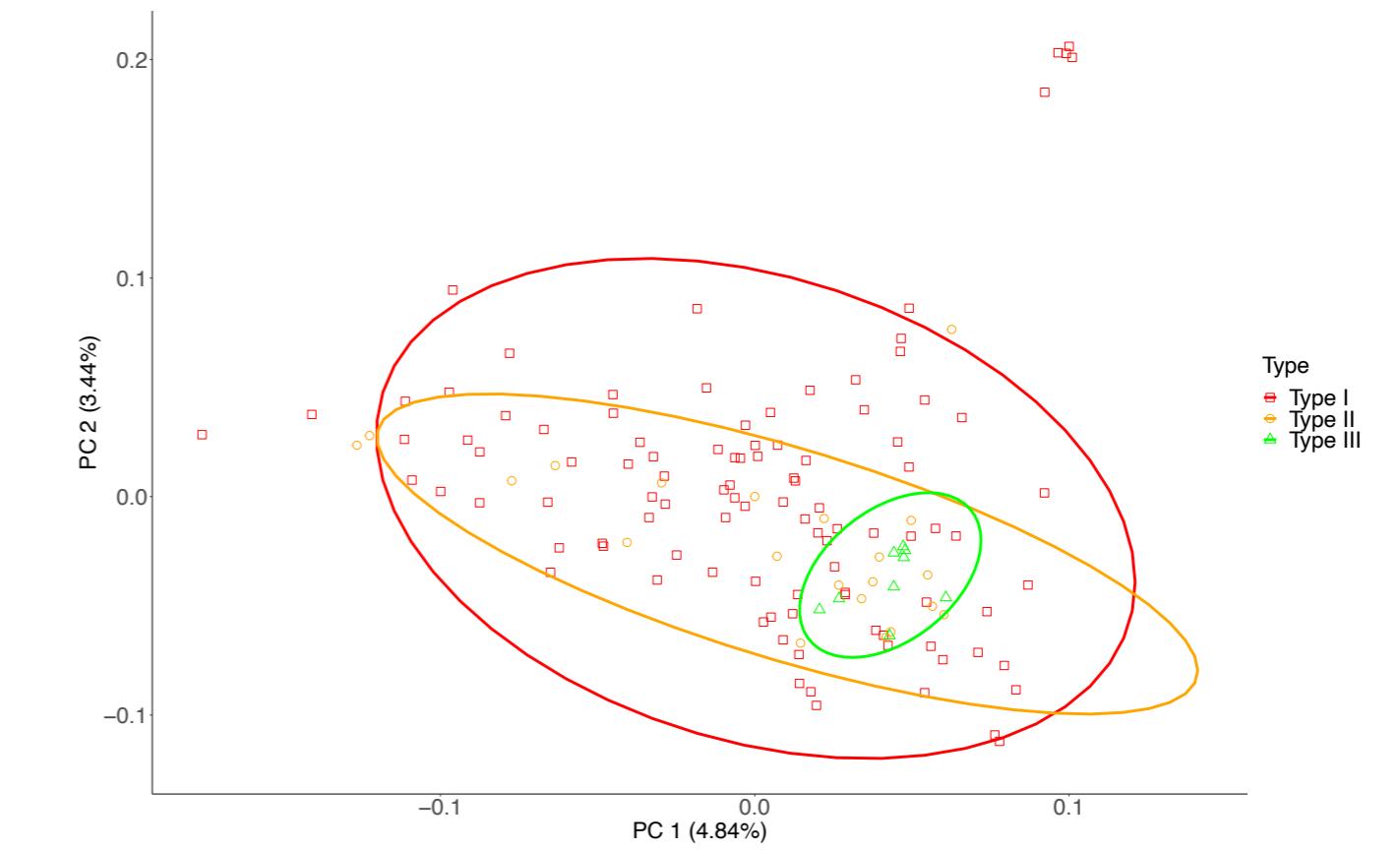
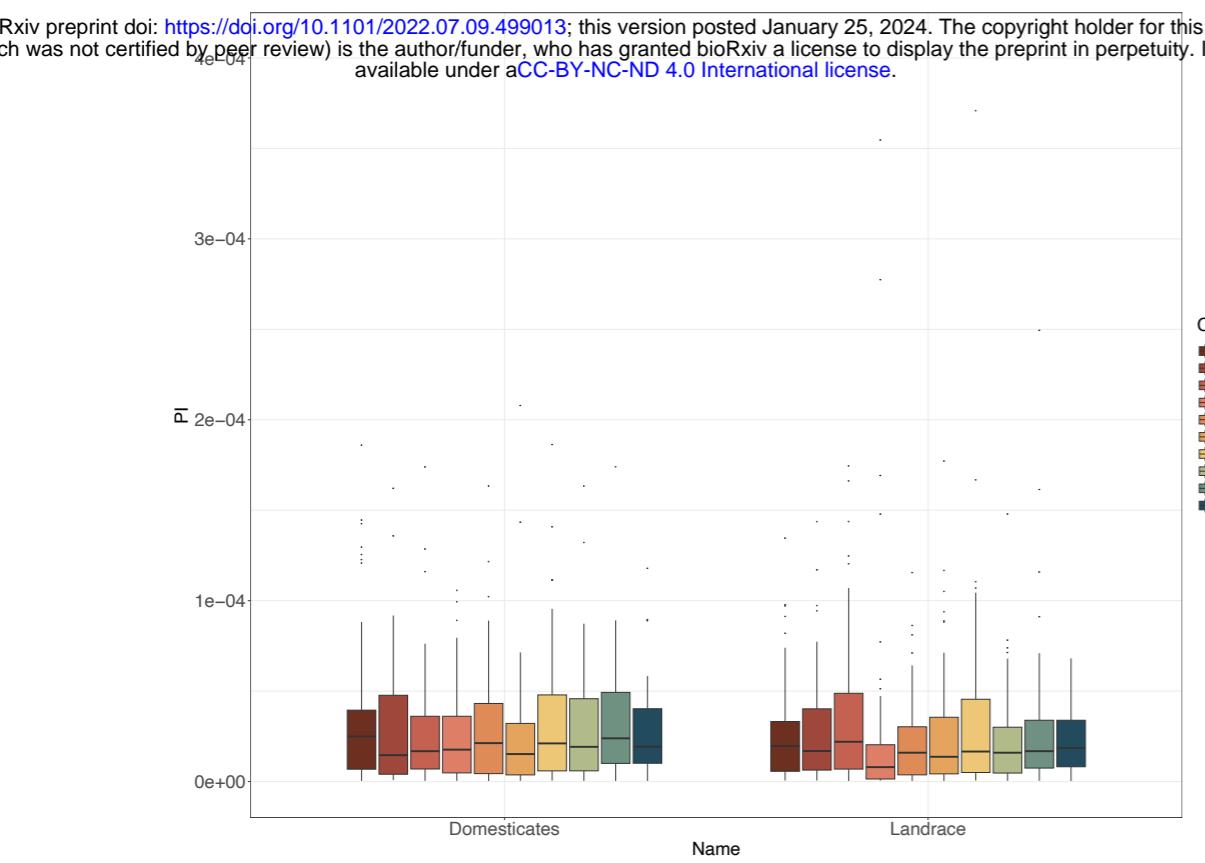


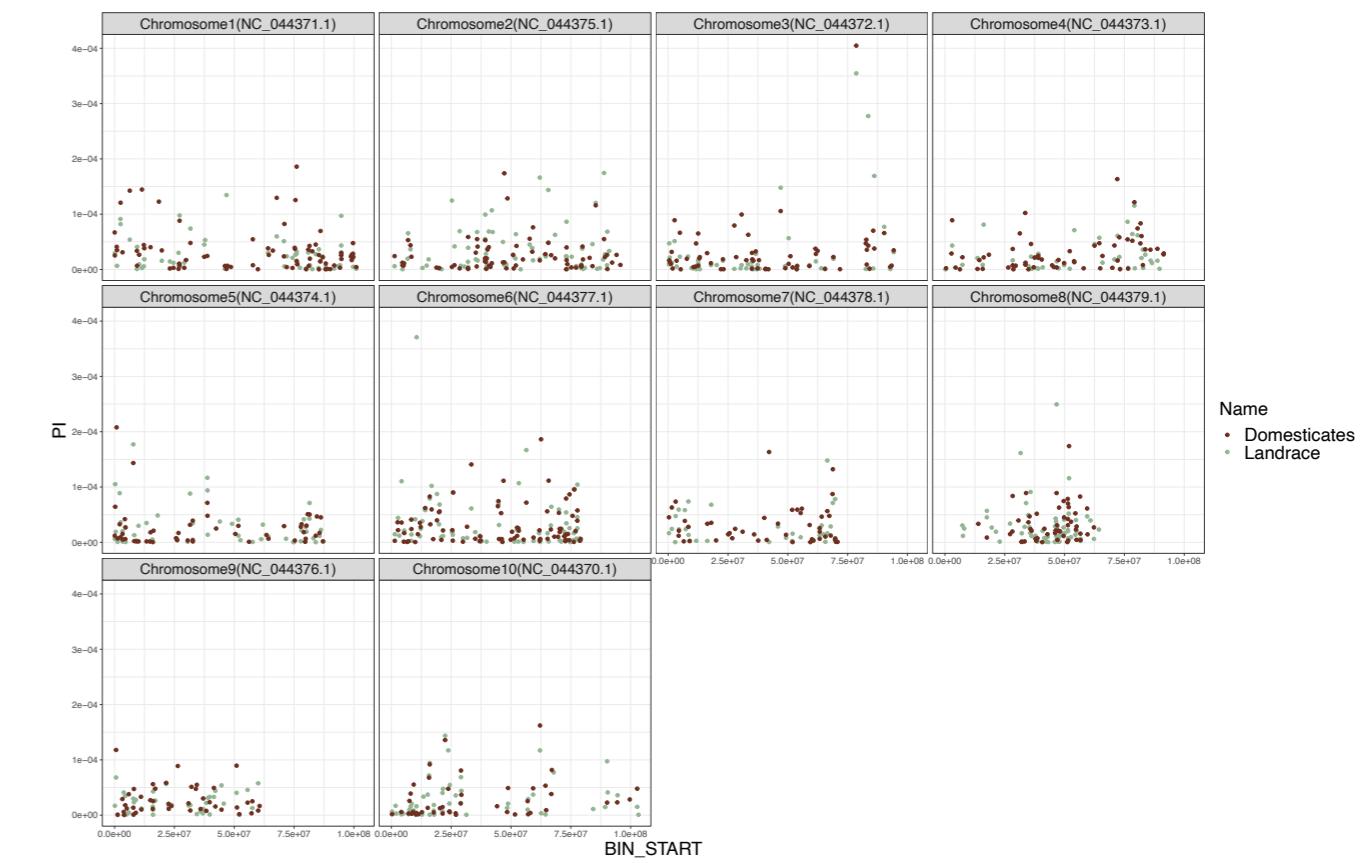
Figure 3 Examination of use-type association across datasets **(A)** Principal component analysis (PCA) from 520 nuclear SNPs for the LeafWorks Inc. dataset **(B)** PCA from 213 SNPs Phylos Biosciences (n=845) dataset **(C)** PCA from 6,865 nuclear SNPs for the Soorni et al. 2017 dataset where cannabinoid content could be determined due to recent publication for 31/94 samples. **(D)** PCA from 5,045 nuclear SNPs for the Medicinal Genomics StrainSEEK V1 dataset.

A

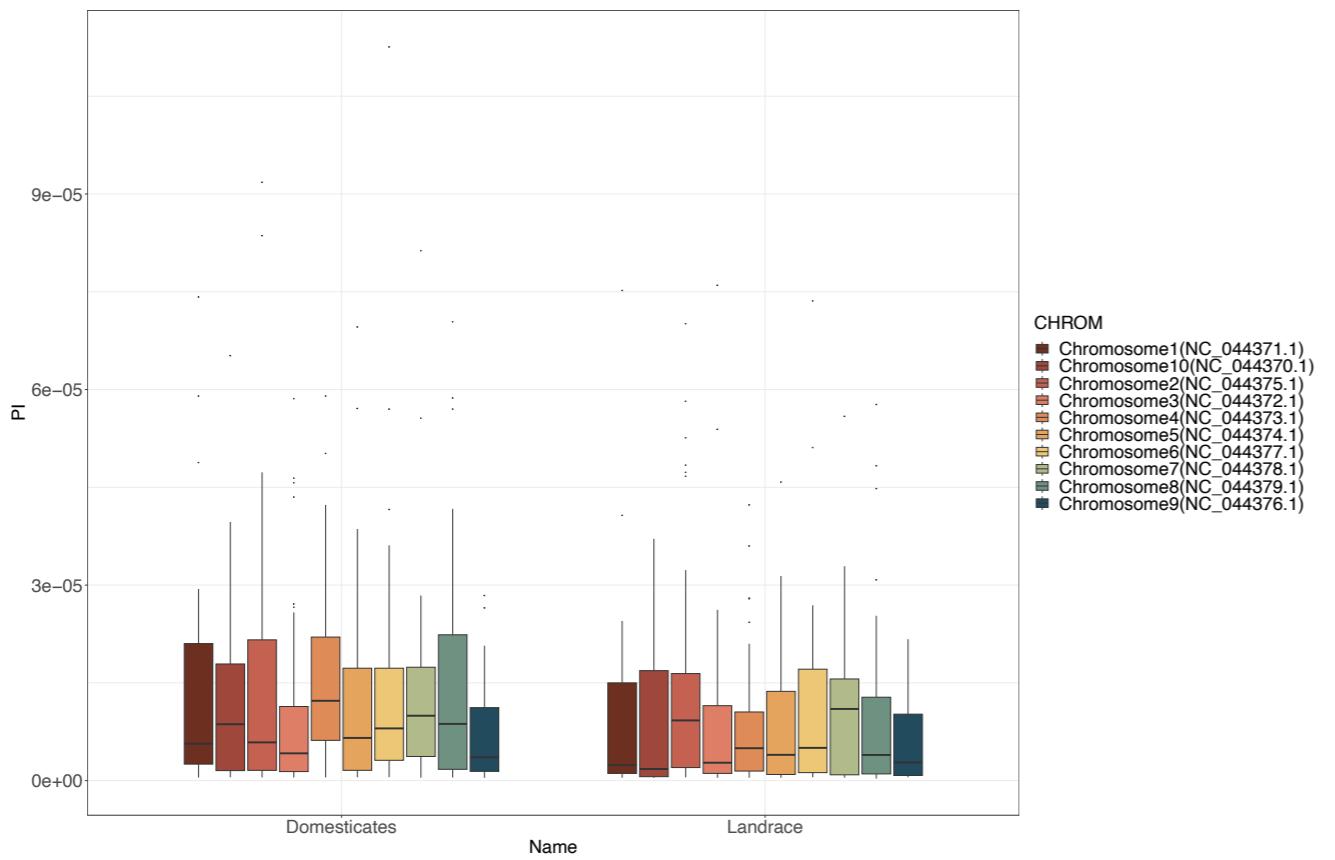
bioRxiv preprint doi: <https://doi.org/10.1101/2022.07.09.499013>; this version posted January 25, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



B



C



D

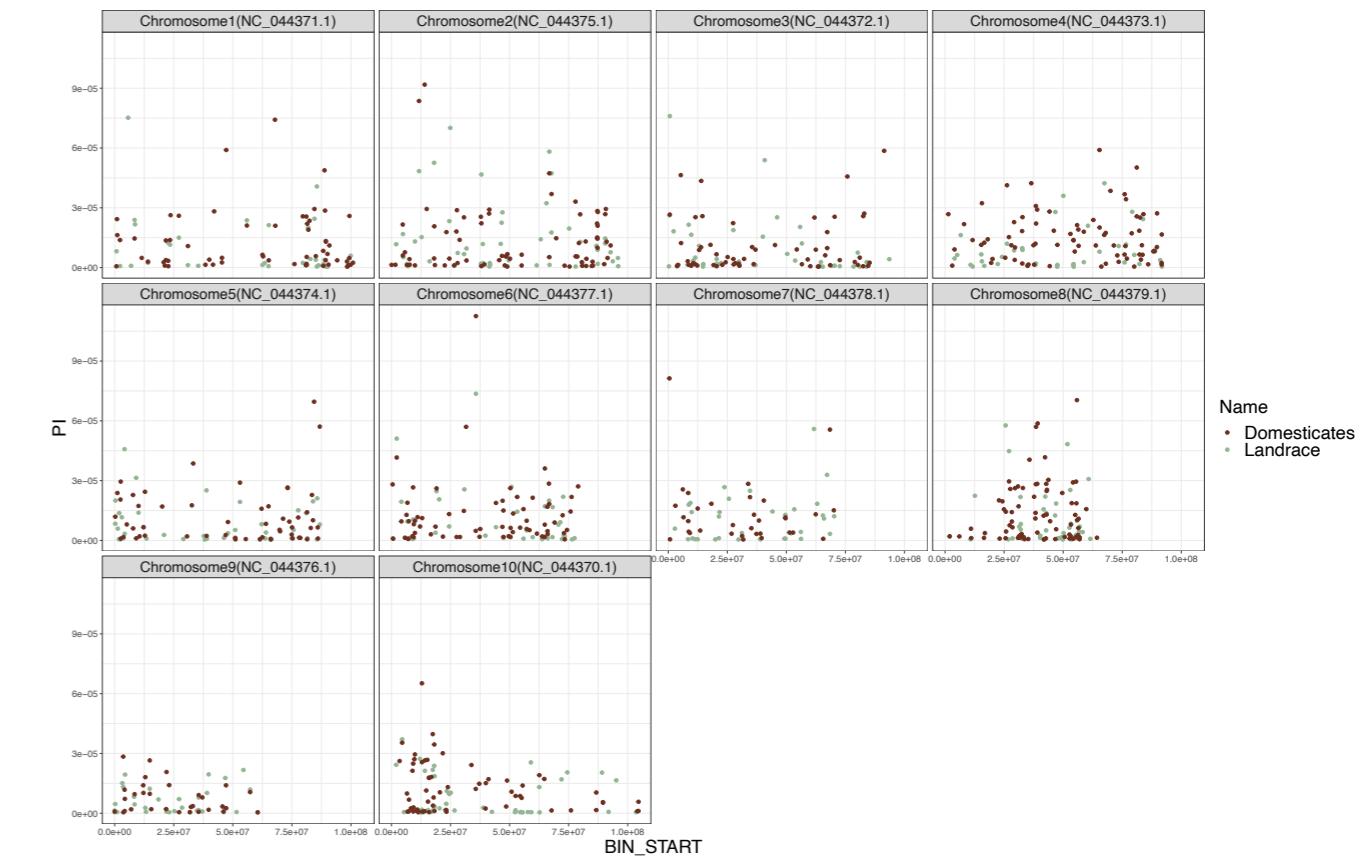
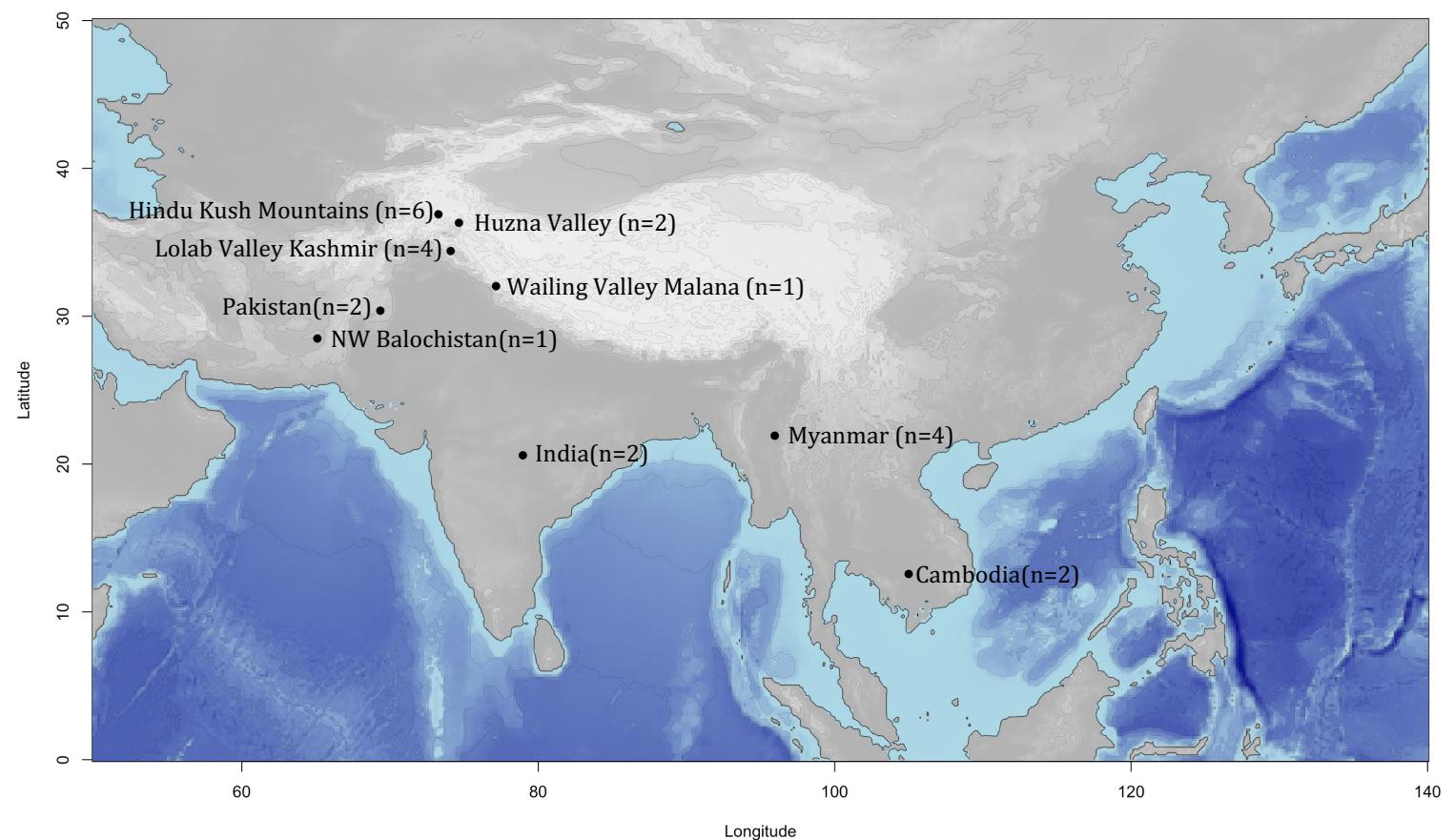
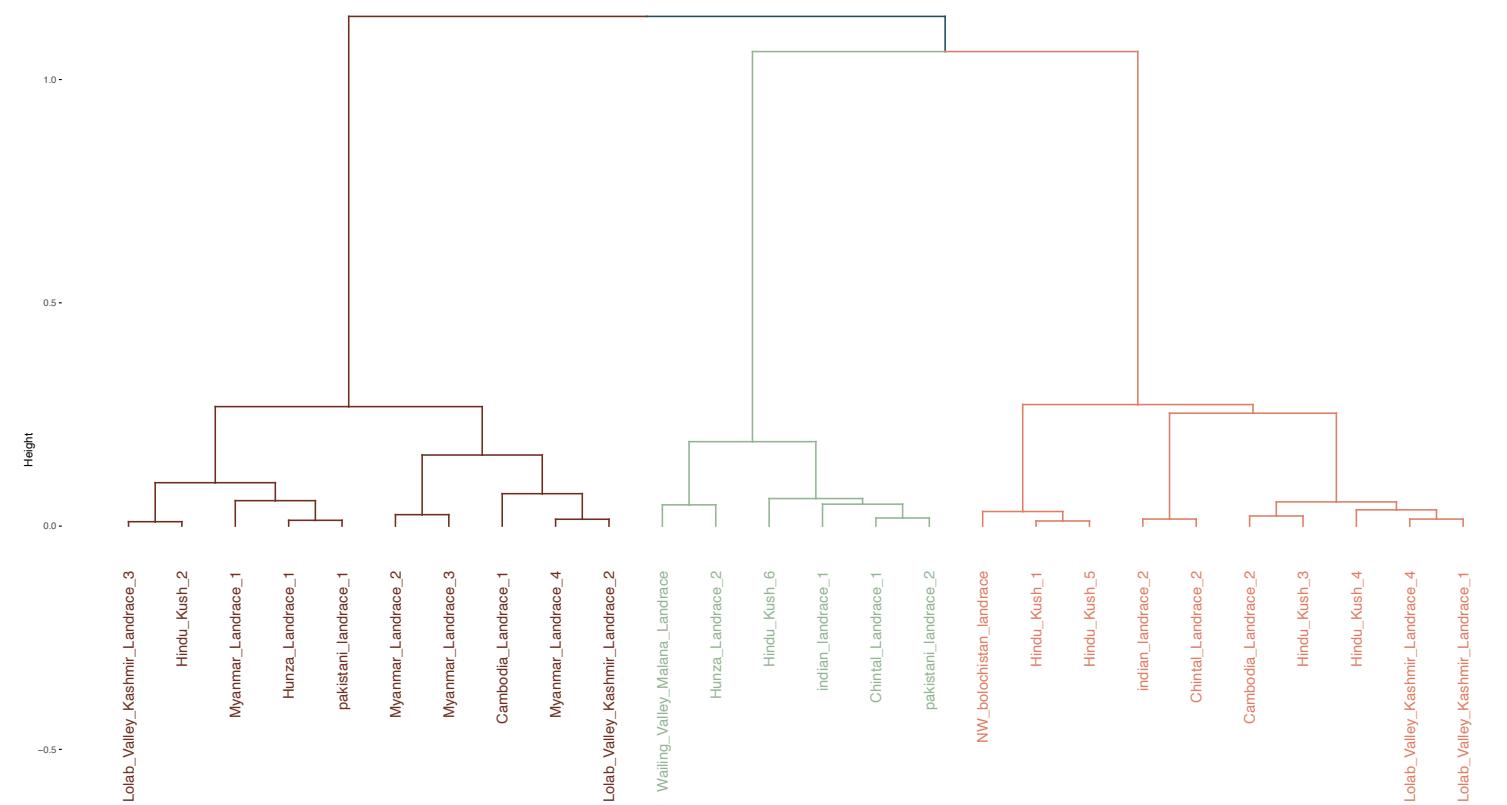


Figure 4 Nucleotide diversity as examined by a 10kb sliding window for landrace and domesticated partitions for the LeafWorks Inc. and Phylos Biosciences datasets **(A)** Nucleotide diversity by chromosome and **(B)** across chromosome length for Domesticated (n=397, 2,096 SNPs) and Landrace (n=101, 2,131 SNPs) samples for the LeafWorks Inc. dataset **(C)** Nucleotide diversity by chromosome and **(D)** across chromosome length for Domesticated (n=718, 749 SNPs) and Landrace (n=127, 566 SNPs) samples for the Phylos Biosciences dataset.

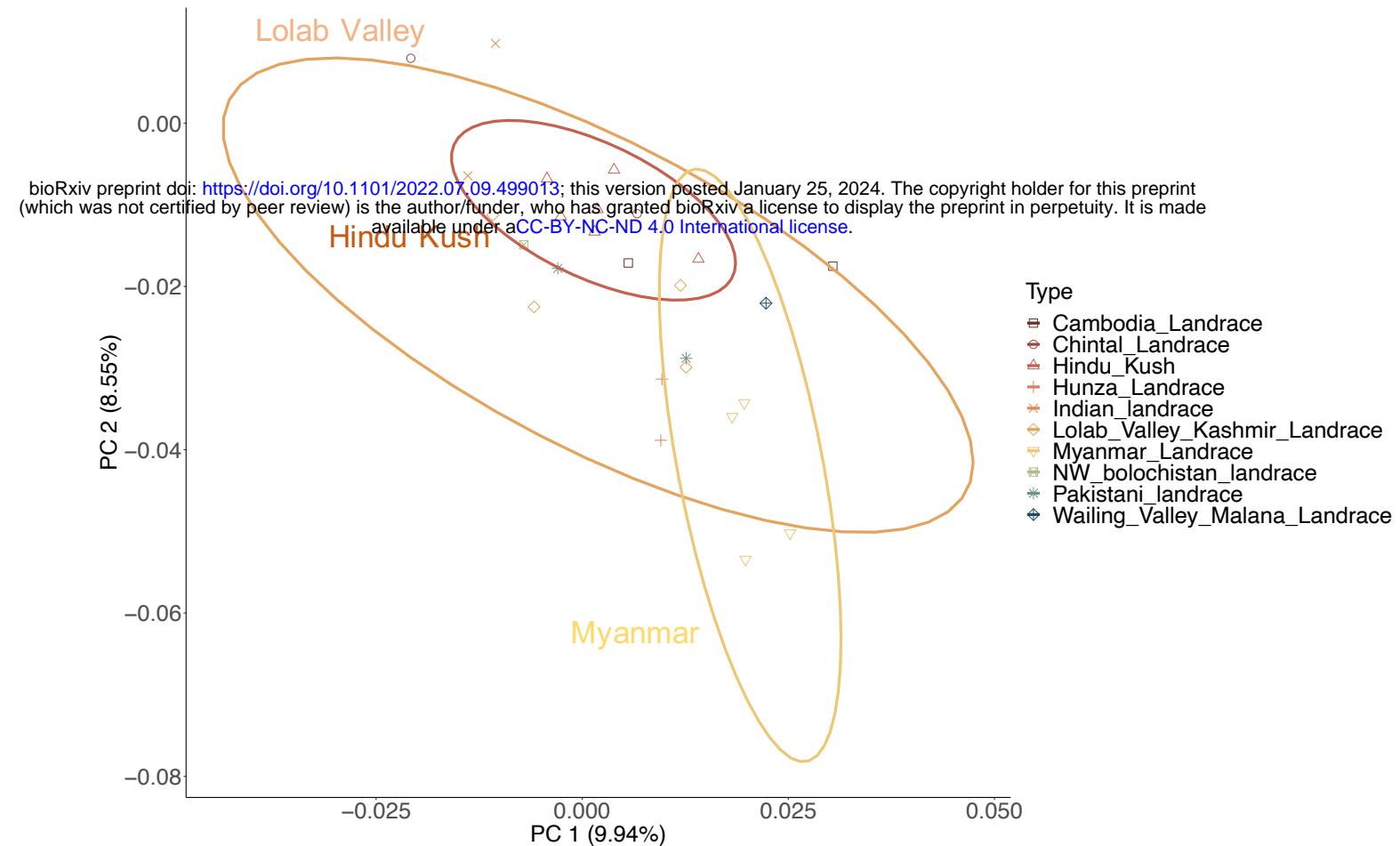
A



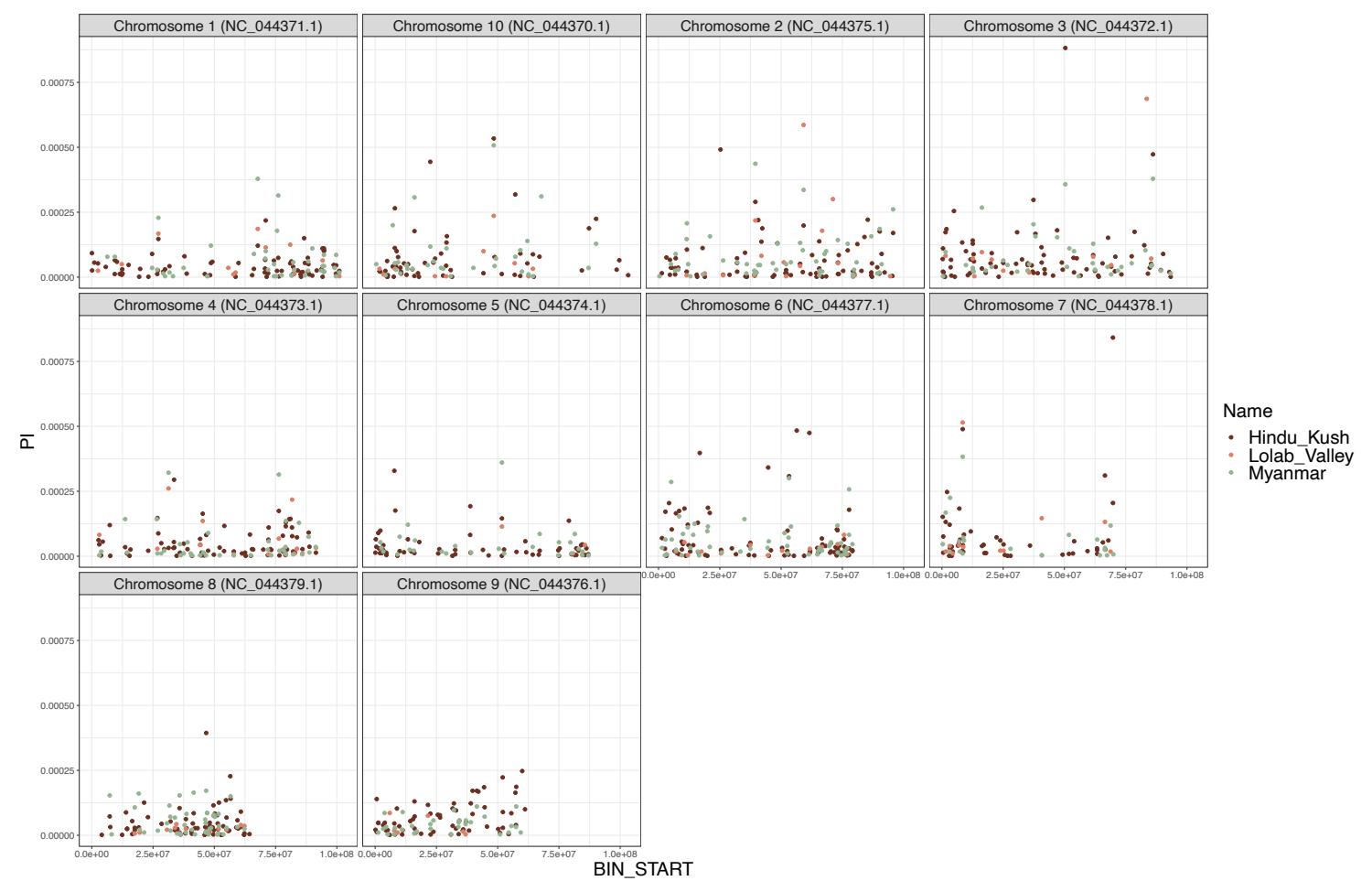
B



C



D



E

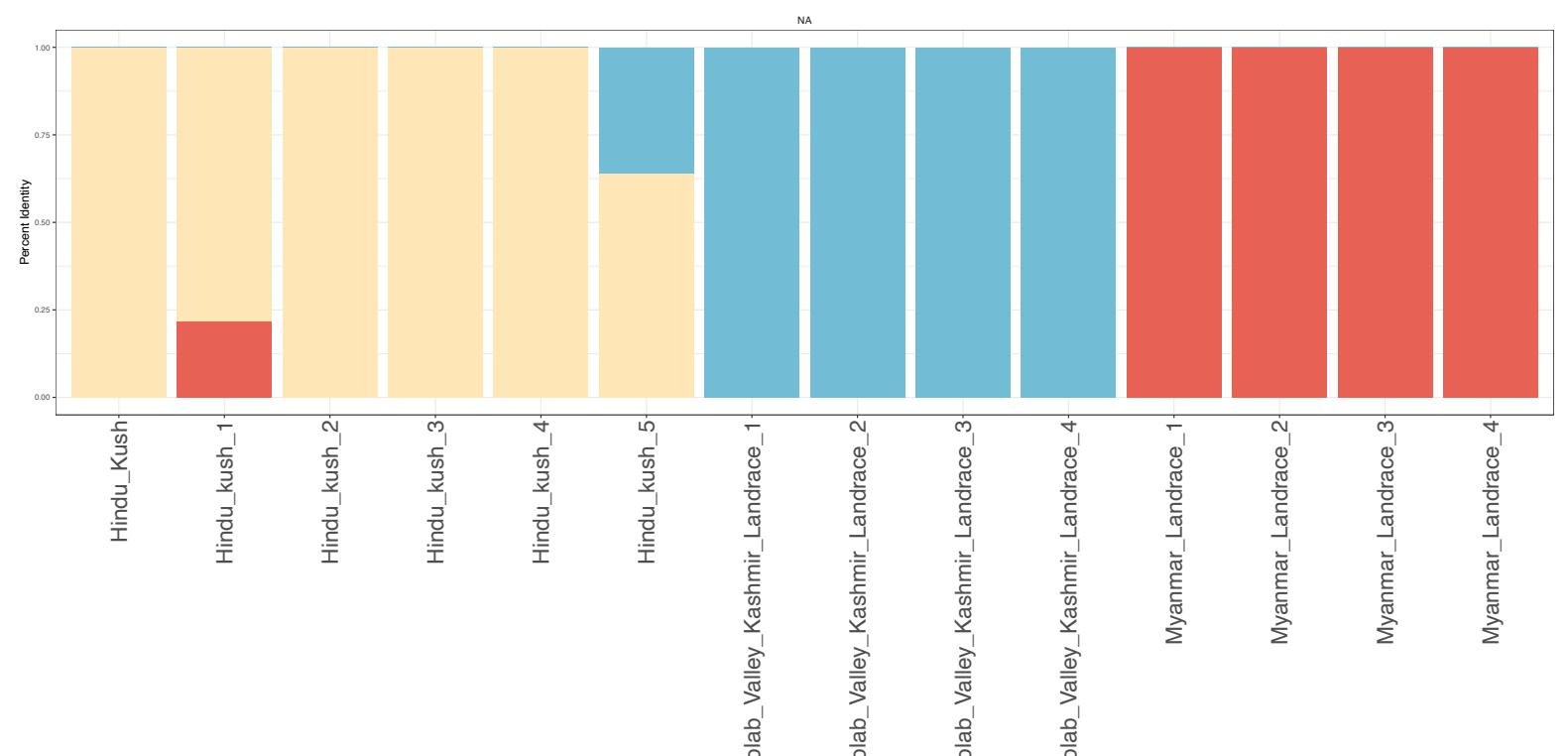


Figure 5 Landrace accessions from the LeafWorks Inc. dataset show separation between Indian and Myanmar populations **(A)** Map detailing the locations of landrace accessions, highlighted are the Hindu Kush Mountains, Lolab Valley and Myanmar **(B)** Hierarchical cluster dendrogram based on 304 SNPs (LD 0.2) across 26 samples of known and trusted origin **(C)** PCA based on 304 SNPs with geographical locations of samples as indicated **(D)** Nucleotide diversity comparison between Hindu Kush Mountains (n=6, 4,304 SNPs), Lolab Valley (n=4, 853 SNPs) and Myanmar (n=4, 2,204 SNPs) as examined by a 10kb sliding window **(E)** Visualization of population structure and admixture using the fastSTRUCTURE software (k=3) with the optimal number of K being 3 using the silhouette method.

Table 1. Definitions related to the different types of germplasm that were used in this study.

Type	Class	Definition
Feral	Used as both Non-drug and Drug type	Plants that have escaped cultivation and are now growing in the wild without human intervention. These accessions have no influence of human selection.
Landrace	Used as both Non-drug and Drug type	Cultivars are introduced to a region by humans and then become locally adapted to a specific geography over time mostly through indirect selection by farmers and natural selection.
Modern	Used as both Non-drug and Drug type	Cultivars that have been intentionally bred and selected by humans using advanced breeding techniques (genetics and statistics) with the goal of enhancing specific traits. These cultivars have been developed in recent years or decades and may not have the same regional or historical ties as landrace strains.
Hemp	This material is used for fiber - Non-drug type	Samples that had names of hemp used for grain and fiber or wild collected feral plants (no chemical analysis to confirm hemp or marijuana)
Type III	Non-drug type	(CBD-dominant): cannabis flower defined as hemp in the U.S with <0.3% THC with a wide range of CBD (average 12% 30:1 CBD:THC)
Type II	Drug-type	(CBD:THC): balanced ratio of THC:CBD (1:1)
Type I	Drug-type	(THC-dominant): modern cannabis strains found in the legal U.S. medical and adult use market (generally >10% THC, average 21% THC, usually 30:1 THC:CBD ratio)

Table 2. Data sources used for this project. Light grey indicates other public datasets which were not utilized in this study.

Data source	Dataset reference in this text	BioProject	Number of individuals	Sequencing Platform	Type	Citation
Phylos Biosciences	Phylos Biosciences	PRJNA347566	845		Paired read	https://phylos.bio
Phylos Biosciences	Phylos Biosciences	PRJNA510566	1,378	1 ILLUMINA (NextSeq 500)	Paired read	NA
LeafWorks Inc	LeafWorks	NA	498	Illumina NovaSeq	Paired read	This manuscript
University of Tehran	Soomri <i>et al.</i>	PRJNA419020	94	Illumina HiSeq 2500	Single read	Soomri <i>et al.</i> , 2017
Sunrise Genetics	Sunrise Genetics	PRJNA350539	25	Illumina HiSeq 4000	Paired read	NA
Courtagen Life Sciences	Courtagen Life Sciences	PRJNA297710	58	2 ILLUMINA (Illumina MiSeq)	Paired read	NA
University of Colorado Boulder	University of Colorado Boulder	PRJNA317659	162	1 ILLUMINA (Illumina HiSeq 2000)	Single read	Lynch <i>et al.</i> , 2016
Medicinal Genomics	Medicinal Genomics (n=61)	NA	61		Paired read	www.medicinalgenomics.com/kannapedia-fasta/
Medicinal Genomics	Medicinal Genomics (strainSEEK v1)	NA	289		Paired read	www.kannapedia.net
Total			3347			

Table 3. SNP count per dataset pre and post filtering.

Dataset	Sample (n)	Total # SNPs	# SNPs post filter (0.9)	# Bi-allelic SNPs	LD (0.2)	PC 1-6 (%)
Phylos Biosciences	845	1,620,202	385	383	292	[1] 6.66 5.34 4.14 3.17 2.77 2.28
Phylos Biosciences	1,378	2,175,027	363	362	269	[1] 8.14 4.61 4.18 3.41 2.91 2.76
LeafWorks	498	10,911,876	1,405	1400	520	[1] 5.52 3.57 3.02 2.67 2.32 2.12
Soorni <i>et al.</i>	94	37,615,406	33,629	33,346	6,865	[1] 4.84 2.85 2.12 1.96 1.83 1.68
Sunrise Genetics	25	7,502,178	6,329	6,284	1,604	[1] 15.66 8.45 6.85 6.35 5.65 5.28
Couragen Life Sciences	58	470,780,334	311	310	119	[1] 6.16 4.83 4.59 4.47 4.26 3.86
University of Colorado Boulder	162	139,508,383	5,999	5,946	2,223	[1] 5.40 3.64 3.12 2.57 2.45 2.24
Medicinal Genomics 61	61	246,261,943	8,716	8,709	2,267	[1] 4.95 3.89 2.75 2.53 2.39 2.32
Medicinal Genomics StrainSEEK V1	289	121,471,853	20,566	20,454	5,045	[1] 4.84 3.44 2.61 2.17 1.95 1.81

Table 4. SNP counts for each dataset by chromosome following biallelic sorting and Linkage Disequilibrium prune at 0.2 and mapped to CBDRx (cs10) genome.

Dataset	SNPs CHR1	SNPs CHR2	SNPs CHR3	SNPs CHR4	SNPs CHR5	SNPs CHR6	SNPs CHR7	SNPs CHR8	SNPs CHR9	SNPs CHRX	SNPs Total
Phylos Biosciences (n=845)	32	43	22	38	26	37	19	32	17	26	292
Phylos Biosciences (n=1,378)	30	41	21	43	15	31	18	28	13	29	269
LeafWorks (n=498)	65	63	51	43	51	83	38	32	46	48	520
Soonni <i>et al.</i> (n=94)	917	797	658	780	593	670	552	667	642	589	6,865
Sunrise Genetics (n=25)	191	184	176	174	136	178	138	158	117	152	1,604
Couragen Life Sciences (n=58)	13	15	18	5	25	15	7	12	2	7	119
Lynch <i>et al.</i> (n=162)	336	338	327	304	249	291	264	114	0	0	2,223
Kannapedia 61	215	209	239	196	329	289	198	166	129	297	2,267
Medicinal Genomics StrainSEEK V1	436	528	578	526	545	543	550	367	359	613	5,045

Table 5. Partition specific (Landrace and Domesticates) SNP count per dataset pre and post filtering.

	Accession #	Total # SNPs	# SNPs post filter	# Bi-allelic SNPs	LD (0.2)
LeafWorks (Landrace_101)	101	4,761,034	2138	2131	1919
LeafWorks (Domesticates_397)	397	10,183,788	2096	2090	711
LeafWorks (Hindu_Kush_6)	6	835,656	4,304	4265	640
LeafWorks (Lolab_Valley_4)	4	502,884	853	850	170
LeafWorks (Myanmar_Burma_4)	4	617,666	2,204	2,186	384
Phylos Biosciences (Landrace_107)	107	1,027,670	267	266	219
Phylos Biosciences (Domesticates_679)	679	3,342,423	704	704	478