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Abstract

Population structure of Cannabis sativa L. was explored across nine independent collections that
each contained a unique sampling of varieties. Hierarchical Clustering of Principal Components
(HCPC) identified a range of three to seven genetic clusters across datasets with inconsistent
structure based on use type indicating the importance of sampling particularly when there is
limited passport data. There was broader genetic diversity in modern cultivars relative to
landraces. Further, in a subset of geo-referenced landrace accessions, population structure was
observed based on geography. The inconsistent structure across different collections shows the
complexity within Cannabis, and the importance of understanding any particular collection

which could then be leveraged in breeding programs for future crop improvement.
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Introduction
Cannabis sativa L. is an annual flowering herb which has been domesticated multiple

times for food, fiber and medicine over the last twelve thousand years (Hillig, 2005; Clarke &
Merlin, 2013; Clarke & Merlin, 2016; Ren et al., 2021). Cannabis is popularly known for its
psychoactive effects; however, it is its medicinal capacity is driving increased production (Punja
& Holmes 2020). The compounds tetrahydrocannabinol (THC) and cannabidiol (CBD) are the
most studied due to their potential in pain management (Walker & Huang, 2002; Alexander,
2020; Bicket et al., 2023), as a multiple sclerosis treatment (Svendsen et al., 2004), for epilepsy
management (Charlotte’s Web (CW2A) US Plant Patent No. PP30,639 P2; Perucca, 2017), for
reduction in nausea (Parker et al., 2011) and as an appetite stimulant (Badowski & Perez, 2016).
Today, Cannabis is broadly divided into non-drug and drug-type cultivars (Table 1).

Due to the classification of Cannabis as a Schedule I narcotic in the United States,
research during the 20™ century was largely restricted (Hurgobin et al., 2021). However, the 2018
United States Farm Bill reduced these restrictions, with many states now having reduced
regulations (Mead, 2019). In 2020 the Drug Enforcement Administration expanded research
licenses (Ryan et al., 2021) leading to increased Cannabis research. However, due to past
restrictions Cannabis has not fully benefited from scientific tool developments (e.g. molecular
marker tools, heterotic pattern development) of the last century. Further, drug control laws and
prohibition have constrained formal documentation often resulting in unverifiable and anecdotal
cultivar origins (Duvall, 2016). However, there has been recent work to develop tools and initiate
breeding (Toth et al., 2020; Petit et al., 2021; Woods et al., 2021; Toth et al., 2022; Woods et al.,
2023).

While there is still some debate, the taxonomy of Cannabis has moved towards a

monotypic description of the genus (McPartland 2018; McPartland & Small 2020). Cannabis
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populations have been partitioned using different methods (e.g., genetic, chemical and
phenotype) with different populations showing different patterns (de Meijer et al., 2003; Lynch
et al., 2016). There are also examples of studies using regional, ecotype, and use-type to
understand population partitions (Soorni et al., 2017; Zhang et al., 2020; Carlson et al., 2021;
Ren et al., 2021). These studies have found contrasting results due to contested definitions and
different samples. In addition to understanding species and population delineation, previous
genetic work has explored the cannabinoid metabolic pathways (Guerriero et al. 2017; Guerriero
etal., 2019; Allen et al., 2019; McKernan et al., 2020; van Velzen & Schranz 2021).

Understanding population structure provides insight into evolutionary relationships and
facilitates the identification of cultivars that have value for breeding practices. Further,
understanding genetic relationships can help reconstruct pedigrees and genetic relationships
which have been lost due to a century of prohibition. Clarification of cultivar relationships could
provide more concrete reproducible results in addition to the ethnohistorical information and
spoken accounts that underpin current research. The molecular genetic profiles of Cannabis
cultivars will enhance our understanding of them, providing a valuable tool to confirm marketing
claims independently of relying solely on visual characteristics. This, in turn, can contribute to a
more reliable and sustainable industry.

Previous work has used a range of sequencing methods, reference genomes, and sampling
schemes (Small & Cronquist, 1976; Clarke, 1987; van Bakel et al., 2011; Duvall 2016; Soorni et
al. 2017; Soler et al., 2017; Maoz 2020; Hurgobin et al. 2021; Grassa et al. 2021). In an attempt
to understand previous studies (eight publicly available datasets) as well as a newly generated
dataset we used a common single nucleotide polymorphism (SNP) calling pipeline and the same

reference genome (Grassa et al., 2021) to explore population structure present across different
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81 germplasm collections and to identify potential samples that can be explored as the basis for

82  breeding.

83  Materials and Methods

84 Sequence Data Acquisition
85 Raw sequence data from Soorni et al. 2017 (PRINA419020), Lynch et al., 2016

86 (PRINA317659), Phylos Biosciences (PRINA347566 & PRINA510566), Courtagen Life
87 Sciences (PRINA297710), and Sunrise Genetics (PRJNA350539) were downloaded from
88 National Center for Biotechnology Information (NCBI: https://www.ncbi.nlm.nih.gov/) using the
89  SRA toolkit (https://hpc.nih.gov/apps/sratoolkit.html). Data from Medicinal Genomics, where 61
90 paired samples were provided for bulk download (Medicinal Genomics 61 -
91 https://www.medicinalgenomics.com/kannapedia-fastq/) and an additional 289 samples
92  (Medicinal Genomics StrainSEEK v1) were individually downloaded from each cultivar page.
93  The last data source used here was developed by LeafWorks Inc., consisting of 498 individuals.
94  Full dataset descriptions are available in Table 2.
95 Sample Name Acquisition
96 Sample names were assigned to individual samples as supplied by authors in supplemental
97 materials of publication or through the metadata supplied through NCBI. All individual line
98 assignments can be seen in Tables S1-S9. For Phylos Biosciences datasets, each SRR number
99 was searched in NCBI in the SRA database. For the n=845 and the n=1,378 datasets this
100 facilitated the association of SRR numbers with cultivar names from the “Sample” section and
101 aided in matching the sample to the genotype information sheet on the Phylos Biosciences
102 website (https://phylos.bio/). The links to the matching genotype report page for each SRA
103  sample have been included in the metadata of the supplemental tables (N=845 Table S2 and

104 n=1,378 Table S3).

10
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Use-type Category Assignment
Different meta-data for each dataset was used to identify the use-type (Table 1). For Phylos

Biosciences (https://phylos.bio/) and Medicinal Genomics (https://www.kannapedia.net). For the

Medicinal Genomics dataset, where no information was reported in the “Plant Type” section on
individual strain pages, the cannabinoid section on strain pages which reports percentages of
THC and CBD as well as other cannabinoids was used to assign type to individual samples, with
well-known hemp variety names facilitated by the EU Plant variety database

https://ec.europa.eu/ (eg. Santhica, Carmagnola, Fedora, Felina). For the LeafWorks Inc. dataset,

type associations were provided for 101 landrace samples and 44 hemp samples with remaining
use-type associations assigned through searching sample names on https://www.leafly.com or
https://www.wikileaf.com. For Soorni et al. 2017 dataset a recent publication used chemistry of
these same accessions to determine use-type (Mostafaei Dehnavi et al. 2022). For the remaining
datasets (Sunrise Genetics, Lynch et al., 2016, and Courtagen Life Sciences) sample names were
searched on https://www.leafly.com or https://www.wikileaf.com for assignment to a category of
use-type (Tables S1-S9). Use-types were not evenly represented and this uneven representation

of different use-types may influence conclusions related to the genus overall (Tables S1-S9).

Sequence Data Processing
Where demultiplexing was required, barcodes were acquired from the supplemental materials

and removed using the software SABRE (version 1.0 - https://github.com/najoshi/sabre). All

dataset fastq files were checked for adapter sequence content using the FASTQC (version 0.11.8-
Andrews, 2010). Datasets were examined post FASTQC using MULTIQC (Ewels et al., 2016).
Where adapters were present, TRIMMOMATIC (version 0.39 - Bolger et al., 2014) was used to
remove these sequence elements. The software SKEWER (Jiang et al. 2014) was used to trim

adaptors from Phylos Biosciences n=1,378 dataset. Some data from Lynch et al. 2016
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(PRINA310948) was also not included as PRINA310948 appears to contain duplicates of
samples from PRINA317659 both released in 2016. Therefore, only PRINA317659 was used.
The Medicinal Genomics’ Kannapedia site contains samples that have been sequenced across a
variety of platforms, for consistency here we used the samples from StrainSEEK v1 (n=289).
Reads were then aligned to the CBDRx genome (Grassa et al. 2021) using BWA-MEM
(version 0.7.17 - Li, 2013). SAMTOOLS (version 1.9 - Li et al., 2009) was used to convert SAM
files to BAM files and mapped reads were sorted for a mapping quality of 30 or above.
BCFTOOLS (version 1.9 - Danecek & McCarthy, 2017) using the mpileup function was used to
generate SNPs and create VCEF files. Samples were filtered using VCFtools (version 0.1.16 -
Danecek et al., 2011) for a minor allele frequency of 0.05, Hardy-Weinberg Equilibrium (0.05),
and a maximum missingness of 10%. After filtering, data were analyzed using the SNPRelate
(Zheng et al. 2012), FactoMineR (L¢ et al., 2008) and factoextra (Kassambara & Mundt, 2017)

packages in RStudio (version 1.4.1106 - R Core Team, 2013).

Nucleotide Diversity Calculation
VCF files for known modern cultivars and landraces were separately merged into a single VCF

file. Nucleotide diversity (x) was calculated using VCFtools with a 10,000 bp sliding window
across the strictly filtered files for each dataset. Changes in 7 across chromosomes were plotted

in RStudio using the ggplot package (Wickham, 2011).

Population Structure and Phylogenetic Analysis
VCFtools was used to generate MAP and PED files. These were then used to generate BED,

BIM, and FAM files in the software PLINK (version 1.9 - Purcell et al., 2007). For each dataset
population structure across a range of population partitions was assessed in fastSTRUCTURE
(version 1.0 - Raj et al., 2014). The optimal number of K was also examined for each dataset

using the elbow and silhouette methods in the FactoMineR and factoextra packages. In addition,
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153 each dataset was examined using Principal Component Analysis (PCA) in SNPRelate (Zheng et
154 al., 2012). Only bi-allelic SNPs further filtered for linkage disequilibrium (0.2) were used for the
155 PCA and Hierarchical Clustering on Principal Components (HCPC) (Fig. 1-2 and Fig. S2-6). A
156 Maximum Likelihood (ML) phylogenetic tree was constructed for the LeafWorks Inc. dataset, a
157 VCEF file was converted to NEXUS and FASTA format using the software package

158 VCF2PHYLIP (version 2.6 - https://github.com/edgardomortiz/vef2phylip). Ambiguities were

159 changed to “N” where observed. Multiple sequence alignment was performed using MAFFT
160 (version 7.475- Katoh & Standley 2013) and this was submitted to the software ModelTest-NG
161 (version 0.1.6 - Darriba et al. 2020) to best evaluate the substitution model to be used.

162 Phylogenetic trees were constructed in IQ-TREE (version 2.0.7 - Minh et al., 2020) with the -B

163 1000 flag for bootstrap support. Trees were visualized in FigTree (Versionl.4.4 -

164 http://tree.bio.ed.ac.uk/software/figtree/).

165 Assembly of 126 whole chloroplast genomes
166  Chloroplast DNA was assembled using the Fast-Plast program, with default parameters -

167  https://github.com/mrmckain/Fast-Plast. To explore haplo-group assignment a maximum

168 likelihood phylogeny was constructed on 126 whole chloroplast sequences which were provided
169 by LeafWorks Inc. Multiple sequence alignment was performed using MAFFT (version 7.475 -
170  Katoh and Standley 2013) and using the ModelTest-NG software (Darriba et al. 2020) the

171 GTR+G4 model was selected as the best substitution model. A phylogenetic tree was generated
172 using IQ-TREE (version 2.0.7 - Minh et al., 2020) with the -B 1000 flag for bootstrap support.

173  Trees were visualized in FigTree (Versionl.4.4 - http://tree.bio.ed.ac.uk/software/figtree/).

174

15 8
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175 Results

176 Commonalities across Datasets
177 Cannabis genetic diversity and population structure were explored using independent

178 data sources, all of which were analyzed using the same pipeline (Table 2). All datasets were
179  aligned to the same CBDRXx reference genome (Grassa et al., 2021). Reanalysis allows for a

180 cleaner comparison, as previous studies have used multiple reference genomes (e.g., Laverty et
181 al., 2019; McKernan et al., 2020; van Bakel et al., 2011; Gao et al., 2020). There were not

182 common SNPs across all datasets, when joint SNP calling was attempted. Therefore, each dataset
183 was analyzed independently and each had a different number of SNPs (Table 3-5). As sample
184 sizes are robust, this suggests that the type of sequencing approach taken, library prep,

185 sequencing depth, chromosomal coverage, and/or sample properties may bias the genetic

186  diversity.

187 Population Structure
188 Hierarchical Clustering of Principal Components (HCPC) identified three to seven

189  clusters across datasets (Fig. 1-2 and Fig. S1-6). In the LeafWorks Inc. dataset, four groups were
190 identified. When use-type was used to interpret the clusters there was some partitioning, with

191  Group 1 being predominantly Hemp, but Groups 2/3 being largely type I (Fig. 1A). In the

192 LeafWorks Inc. fastSTRUCTURE analysis there were large amounts of admixture regardless of
193  use-type/market-class (Fig. 1B). Within the Phylos Biosciences datasets, hierarchical clustering
194 identified five groups in the n=845 dataset (Fig. 1C) and three clusters in the n=1378 dataset

195 (Fig. S2B). In the small Phylos Biosciences dataset (n=845) hierarchical clustering shows a

196 concentrated number of Landrace (95 of 127), Hemp (14 of 17) and type I (11 of 48) samples in
197 Group 1 (Fig. 1C). In Group 2 the majority of the type III samples are observed (30 of 48 — Fig.
198 1C). .fastSTRUCTURE analysis indicated less admixture in Landrace and Hemp samples as

199 compared to type I samples (K=3/4/5), with some differentiation based on use-types observed

17 9
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(Fig. 1D). In the large dataset from Phylos Biosciences (n=1378 - Fig. S2), the hierarchical
clustering shows a concentration of samples which have the designation of “Kush” in Group 1
(34 of 88 -Fig. S2B). The subsequent fastSTRUCTURE analysis for the Phylos Biosciences
(n=1378) shows a similar pattern where Landrace samples show less admixture as compared to
type I samples (K=4/5) (Fig. S2C). In the HCPC for the Phylos Biosciences dataset (n=1378)
there is a concentration of samples with the designation “OG” (49/115 in Group 1 of HCPC) -
Fig. S2B). In the Soorni et al dataset there was clear clustering by use-type in both analyses (Fig.
2A-B). The Medicinal Genomics StrainSEEK v1 dataset was partitioned into five groups (Fig.
2C). There was some clustering of specific genotypes (e.g. Blue Dream (n=11) in Group 1 of
HCPC - Fig. 2C ), but in fastSTRUCTURE analysis there were no clear trends in clustering
observed across use-type (Fig 2D). For the Sunrise Genetics dataset (n=25) HCPC shows
grouping of samples with the same names but no clear pattern in the fastSTRUCTURE clustering
analysis (Fig. S3C). In the Lynch et al., 2016 dataset (n=162) there was some evidence of use-
type but the pattern was not consistent (Fig. S4B). For the Courtagen Life Sciences dataset
(n=58), there was clustering by cultivar name (e.g. Kandy Kush (n=5) in Group 5 of HCPC) but
not by use-type (Fig. S5). Within the Medicinal Genomics dataset (n=61) there was no clear
clustering by use-type (Fig. S6). Across datasets there is no clear partitioning pattern based on
use-type or based on accession name, this lack of pattern does not indicate a lack of population
structure, but rather confirms the inconsistency in definitions of use-type and the fact that

cultivar naming conventions do not reflect pedigrees.

Phylogenetic Relationships
A Maximum Likelihood (ML) phylogeny was assembled for the new LeafWorks Inc. (n

= 498) dataset which partitioned accessions into ten clades (Fig. S7). Clades 1 to 7 and clade 9

have bootstrap support of over 90, with clades 8 and 10 having low support (63 and 52,

10
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224 respectively). The majority of accessions (454 of 498) were in four clades (clades 4, 6, 9 and 10).
225 There is not a clear pattern to which clade landrace samples are in (Clades 5=11 of 101; clade
226  9=24 of 101; clade10=52 of 101) with remaining individuals spread across the remaining clades
227 - Fig. S7). There did not appear to be clear use-type partitioning in the phylogeny. Within the
228 chloroplast data, two clades were identified, clade 1 (n=2) and clade 2 (n=124) (Fig. S8).

229 However, with low support for the majority of samples it is possible that additional groupings

230  within this might be possible.

231 Exploration of nucleotide diversity and geographic partitioning Landraces
232 The LeafWorks Inc. (n=498) and Phylos Biosciences (n=845) datasets both contained

233 known landrace and modern cultivars (Table 1; Table S2-S3). The LeafWorks Inc. dataset
234  contained 101 landrace samples and 397 known modern accessions (Table S1) and the Phylos
235 Biosciences dataset contained 127 landrace samples and 718 modern accessions (Table S2).
236  Clustering patterns were similar in the two datasets (Fig. 3). Within both datasets nucleotide
237 diversity differences were explored between landrace and domesticated samples using a 10 kb
238 sliding window (Fig. 4), revealing many genomic regions that differed between modern cultivars
239 and landraces. A subset of landraces in the LeafWorks Inc. dataset contained geo-references,
240 allowing for an exploration of structure based on geography. There was geographic clustering
241  with the Lolab Valley and Hindu Kush samples (Fig. 5C). There were low levels of admixture
242  based on the three geographic regions (Fig. SE), indicating that despite being geographically
243  close populations remained isolated. Differences in nucleotide diversity in these geographically
244  distinct populations were observed on chromosomes 5, 6, and 7 (Fig. SD), and these genomic

245 regions may hold locally adaptive genes and may be useful sources of variation for breeding.

246 Core collection identification

21 11
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247 Plant breeding relies on the available genetic variation within a given germplasm

248  collection or breeding program. A core collection is a representative subset of a germplasm
249  collection which attempts to capture the majority of the genetic diversity in that collection
250 (Frankel 1984). Using genetic distance, the 25 most diverse samples were selected from each
251 dataset (with the exception of the Sunrise dataset where 10 samples were selected). These

252 samples represent a core collection for each specific dataset (Table S10).

253 Discussion
254 Species descriptions in the Cannabis genus have been based on morphology and

255  chemistry (Clarke & Merlin, 2013; Onofri & Mandolino, 2017; Lewis et al., 2018; McPartland,
256  2018; Garfinkel et al., 2021; Smith et al., 2022). While three putative species have been

257 described in the Cannabis genus, genetic studies have not supported these delineations, instead
258 observing a monotypic genus (Clarke & Merlin, 2013; Sawler et al., 2015; Lynch et al., 2016;
259  Schwabe & McGlaughlin, 2019). Much effort has been made exploring use-type/marketing class
260 as markers of population stratification (Clarke & Merlin, 2013; Small, 2015). Here we continue
261 this tradition, by exploring population structure in nine different collections of Cannabis that
262  consisted of privately bred THC-dominant, public hemp samples and landrace accessions.

263  Understanding genetic diversity within each individual collection aides in understanding

264 population history and helps in developing strategies for future breeding. In particular,

265 establishing the number of distinct populations may help reduce the number of individuals that

266 need to be tested for the development of hybrid cultivars (Carlson et al., 2021).

267 Understanding population structure
268 Previous work has used various reference genomes (Lynch et al., 2016; Soorni et al.,

269 2017; Laverty et al., 2019; Jin et al., 2021) and this reflects the current predicament within the

270 industry where standards are still in development. Here a single reference genome (CBDRx -

23 12
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Grassa et al. 2021) was used to facilitate comparison; however, it is acknowledged that this can
create reference bias impacting the examination of some questions. Reference limitations are
being addressed through the utilization of pangenomes and are increasingly becoming available
for many crop species (Hiibner et al., 2019; Li et al., 2021; Della Coletta et al., 2021). Future
work to develop a Cannabis pangenome would be of great utility to the community.

Cannabis has historically used morphological and ethnographic data to delineate
populations not genetic data. Creating genetic profiles to cluster accessions and conduct
phylogenetic analysis facilitates using classic use-type to understand accession relationships (Fig
3 and Fig. S7) and offers a perspective on how Cannabis populations may have been influenced
by human mediated selection for important traits (Fig. S2-6). The LeafWorks Inc. and Soorni et
al., 2017 datasets exhibited more use-type separation (Fig. 3A/3C) than other datasets. A broader
distribution of genetic variation in Type I cultivars was observed in multiple datasets (Fig. 3A-
B). This may be indicative of the purported large-scale hybridization that is thought to have
occurred in Type I cultivars in the United States after 1960 (Clarke & Merlin, 2016).
Alternatively, this higher genetic diversity in Type I cultivars could represent convergent
selection, with each lineage being bred in isolation and now released back to the market as
regulations relax. However, the lack of available pedigree records makes it difficult to reconcile
these two alternative hypotheses. The other datasets did not show clear relationships with use-
type.

While the Cannabis genus has been described with the presence of one, two, three, and
even up to seven proposed species and subspecies (Linnaeus, 1753; Lamarck, 1785; Vavilov &
Bukinich, 1929; Schultes et al., 1974; Small & Cronquist, 1976; Hillig, 2004; Clarke & Merlin,

2013; McPartland & Guy 2014), contemporary genetic studies have not supported these
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polytypic classifications delineations which are primarily rooted in morphological and
geographical data. While modern genetic studies consistently do not support previously
suggested species delineation (Gilmore et al., 2007; Sawler et al., 2015; Lynch et al., 2016;
Small, 2015; Zhang et al., 2018; Schwabe & McGlaughlin, 2019; McPartland & Small 2019;
Roman et al., 2019; Henry et al. 2020; Ren et al 2021; Schwabe et al., 2021; Vergara et al. 2021;
Woods et al., 2023), they do support multiple potential populations within the genus. Despite
these findings, the prevailing taxonomic treatment of the Cannabis genus tends to favor a
monotypic classification. Several publications have proposed delineations in the relationship
between use-type and population structure (Gilmore et al., 2007; Roman et al., 2019; Zhang et
al., 2018; Henry et al., 2020; Ren et al., 2021; Woods et al., 2023). This suggests that collection
origin and accurate passport data greatly impact the population structure observed. High levels of
hybridization and shared ancestry may all contribute to the relatively shallow population
structure observed in some datasets (Fig. 1D) and hamper the ability to clearly differentiate
populations.

Landrace samples are distributed throughout population clusters and across the
phylogenies, however the number of landrace samples in a particular partition appear to be
affected by the germplasm sampling (Fig. 1 and Fig. S7). When landraces were analyzed with
modern cultivars, they were broadly distributed across clades suggesting that modern cultivars in
the same clade share the most ancestry with the landraces in the same clade (Fig. 1A-B).
Landraces did not cluster with a particular use-type. In a subset of georeferenced samples (n=26)
hierarchical clustering revealed three geographically discrete landrace populations appear to be
quite distinct from one another with minimal admixture (Fig. SB/E). The subset landraces with

georeferences and which were geographically separated, clustered distinctly when analyzed
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317 separately (Fig. SE). While landraces were defined based on metadata and a history of being
318 grown in a specific geography, limitations on passport data cloud inference. Without new

319 collections and legitimate chain of custody documentation, this likely cannot be addressed.

320 Inconsistent Naming
321 The naming problem in Cannabis refers to the unreliable naming of cultivars which frequently

322 do not reflect accession pedigree causing problems for both the producer and consumer. Name
323 fidelity was explored using the twelve ‘Blue Dream’ samples in the LeafWorks Inc. dataset (Fig.
324 S7). Of these, 7/12 placed in clade 1 (blue_dream samples #1, 3,4, 6, 7, 9 & 10), 1 sample in
325 clade 6 (blue dream_5), clade 9 (blue dream_11) and clade 10 (blue_dream_2). The remaining
326 two samples (blue_dream # 8 & 12) were unplaced in the phylogenetic tree. Cultivars that show
327 consistent placement within a phylogeny have a high likelihood of name accuracy. This

328 exemplifies the naming problem, where only 58% of the samples appeared to be similar. This
329 data further supports previous work demonstrating misconceptions in strain reliability and which
330 further showed that the marketing varieties of Cannabis as “indica” and “‘sativa” does not appear
331 to have genetic support (Schwabe & McGlaughlin, 2019). Further work is needed to determine
332 how pervasive the naming problem is. This work also highlights the importance of genetics to
333 inform label claims, which will be particularly crucial in the event of legalization when the

334 Federal Drug Administration would require accurate plant label claims as it does for all other
335 natural products sold in the United States. As sequencing costs continue to decrease, genomic
336 approaches for understanding Cannabis naming will likely become standard practice and could

337 overcome the challenge of clone and cultivar misidentification.

338 Strategic use of Germplasm for Breeding
339 Variation in cannabinoid content is genetically complex and potentially affected by the

340 environment (Lydon et al., 1987; Campbell et al., 2020; Caplan et al., 2019; Toth et al., 2021).
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341 Breeding with a focus on a particular use-type could help to ensure consistency in secondary
342 chemistry and incorporating an assessment of admixture or hybridization in this selection may
343  expedite the time taken to reach population stability. Coupling plant phylogeny with

344  metabolomics could facilitate the identification of plants with unique genetic and secondary
345 chemistries and would provide unique market classes (Stone et al. 2020).

346 Breeding targets in the future will likely focus on the common traits of disease and pest
347 resistance but will also likely need to maintain certain metabolite content to ensure use-type.
348 There is potential value in exploring if specific SNP markers can be identified to differentiate
349  use-type as this can inform parental choice in plant breeding programs. Expanding the use of
350 genome wide markers will not only help to characterize populations but can also help establish
351 preliminary partitioning of samples into potential heterotic groups. Population stratification and
352 use-type categorization have already found applications in hybrid breeding efforts (Carlson et al.,
353 2021). To establish new patterns of heterosis, it has been proposed that a practical starting point
354  could involve segregating individuals based on genetic distance, with a threshold set at >0.4
355 (Govindaraju 2019). This approach can be empirically tested within any germplasm collection,
356 whether it's publicly or privately held, to identify effective patterns for achieving improved

357 breeding outcomes.

358 Another option will be to use evolutionary plant breeding (EPB) to help maintain

359 diversity and stability of a crop in a specific environment leveraging natural selection (Merrick et
360 al.2020). This has been used to aid in hybridization (Dreiseitl, 2020). Here landrace sampling
361 was limited (Tables S1-9), but a more thorough characterization of Cannabis landrace

362 populations would facilitate use of this approach. The history of prohibition and local cultivar

363 development suggests that there is a large possibility of biopiracy (e.g. unauthorized exploitation
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364 or theft of valuable genetic resources or traditional knowledge) with respect to the developing
365 industry. It will be important to develop equitable distribution and ensure that local communities
366 benefit from the work their communities have done in the past and be in compliance with The

367 International Treaty on Plant Genetic Resources for Food and Agriculture (Cooper, 2002).

368 Public Data Implications
369 The relaxing of governmental regulations and decrease in sequencing costs technologies

370 have made it possible to genotype many different germplasm collections over the last decade

371 (Table 2). Public-private partnerships offer a route to harness the diverse resources and expertise
372 present in both sectors and provide a useful mechanism to advance Cannabis science (Ferroni &
373 Castle, 2011). Ensuring data standards are upheld and that metadata are available will make the
374 increasing amount of data available useful to many different researchers (Chao, 2014). The

375 ability to analyze the data requires accurate metadata and while this problem is not unique to

376 Cannabis, it is acutely problematic in any species that has high economic value and limited

377 foundational genomic resources. When working with public data sources care must be taken in
378 the cross comparison of specific datasets as the amount of shared germplasm and data quality
379 can influence the breadth and inference potential of the analysis (Williamson et al. 2021).

380 Additionally, when expanding these observations to conclusions about the genus as whole, it is
381 important to carefully consider germplasm sampling bias which limits the direct comparison,
382  which may result in limited or no shared SNPs across datasets (Zimmerman et al., 2020). It is
383 evident that the selection of sequencing technology, such as short-read amplicon sequencing or
384 genome-wide sequencing, can substantially alter the capacity for making inferences and can have
385 anotable impact on the value of some genomic statistics (Evangelou and Ioannidis, 2013;

386 Marchi et al., 2021). In this analysis it is very likely that due to the high numbers of potential

387 Type I plants, sampling of male Cannabis plants has been largely unobserved. This is because
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388 Type I plants typically consist of female flowers exclusively, with males often being removed

389 from cultivation.

390 Future perspectives
391 Nine datasets were explored to understand population structure in Cannabis, identifying

392 inconsistent genetic clustering with use-type. The inconsistency of use-type as a predictor of

393 relatedness implies that it may be a collection specific association, or that the relatively simple
394  inheritance of tetrahydrocannabinolic acid synthase (THCAS) may obfuscate background genetic
395 relationships. With the legal status of Cannabis now shifting, researchers can begin to examine
396 the effects of prohibition on extant Cannabis varieties and keep better records while developing
397 new cultivars. In the United States, prohibition may have created closed gene pools through the
398 breeding of limited germplasm facilitated by limiting plant exchange. Limited genetic diversity
399 in breeding may have had a role to play in the increased potency of Cannabis varieties over time,
400 with increases in THC content from ~4% in 1995 to ~12% in 2014 reported (EI Sohly et al.

401 2016). Analogous to this in the wild, repeated range contractions during the Holocene are

402  thought to have resulted in repeated genetic bottlenecks and likely initiated incomplete allopatric
403 speciation which has led to differences between European (CBD-dominant - Type III) and Asian
404 (THC-Dominant - Type 1) Cannabis populations (McPartland 2018).

405 The study of Cannabis genetics and its population structure is influenced by historical
406 factors like prohibition and contemporary breeding practices. Genome sequencing technologies
407 play a pivotal role in shaping our understanding of Cannabis genetic diversity. The debate over
408 species and subspecies classifications persists, with genetic research consistently challenging
409 traditional delineations. Importantly, the identification of population stratification and genetic
410 markers holds promise for enhancing breeding efforts, particularly in developing new heterotic

411 patterns. Additionally, while the industry burgeons, concerns regarding biopiracy and the
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412 preservation of genetic diversity remain salient. Despite the challenges posed by inconsistent
413 naming conventions and limited sampling, ongoing research efforts continue to shed light on the
414 intricate genetic landscape of Cannabis, with significant implications for its future cultivation,
415 medicinal use, and industrial applications.

416 Acknowledgements
417 We would like to thank Mr. Robert Connell Clarke for his curation of the use-type associations

418 for the Phylos Biosciences (n=1378) dataset as well as for valuable discussions and insights.

37 19
38


https://doi.org/10.1101/2022.07.09.499013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.09.499013; this version posted January 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

419 Funding: This manuscript was prepared without external financial support or funding.

420 Conflicts of interest/Competing interests: LeafWorks Inc. is a for profit company

421 Availability of data and material: data are available upon reasonable request to the

422  corresponding author.

423  Code availability: code are available at https://github.com/ahmccormick and at

424  https:/figshare.com/authors/Anna H McCormick/17741367

425  Author contributions: Conceptualization. AHMC, KH, MBK, NB, RRM, KL, EJK, Formal
426  Analysis: AHMC, RRM, Figure Preparation:. AHMC, Manuscript Drafting: AHMC, Writing
427  and Reviewing Manuscript: AHMC, KH, MBK, NB, RRM, KL, EJK.

428

39 20
40


https://figshare.com/authors/Anna_H_McCormick/17741367
https://github.com/ahmccormick
https://doi.org/10.1101/2022.07.09.499013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.09.499013; this version posted January 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

429 Main Figure Legends

430 Fig. 1 Examining hierarchical clustering on principal components (HCPC) and population structure in the
431 LeafWorks Inc. (n=498) and Phylos Biosciences (n=845) datasets. In each case population genetic
432  clustering was conducted based only on nuclear genetic SNPs while reported use-type within the dataset
433  is below in solid bars to facilitate interpretation based upon community standards (A) Hierarchical cluster
434  dendrogram from 520 nuclear SNPs for the LeafWorks Inc. dataset with use-type indicated below. Use-
435 type are pictured below (Type 1=288, Type II =5, Type IlI=16, Hemp=44, Landrace=101 and
436  Unknown=44) (B) Visualization of population structure and admixture from 1,405 nuclear SNPs for the
437  LeafWorks Inc. dataset using the fastSTRUCTURE software (k=2-5) with the optimal number of K being
438 4 using the silhouette method (Fig. S9-10) (C) Hierarchical cluster dendrogram from 292 nuclear SNPs
439  for the Phylos Biosciences dataset with use-type indicated below. Use-type accessions include Type
440 T1=479, Type II=8, Type IlI=46, Landrace=127, Hemp=143 and Unknown=42 (D) Visualization of
441 population structure and admixture from 385 nuclear SNPs for the Phylos Biosciences dataset using the
442  fastSTRUCTURE software (k=2-5) with the optimal number of K being 3 using the Silhouette method
443  (Fig. S9-10).

444

445  Fig. 2 Examining hierarchical clustering and population structure in the Soorni et al. 2017 (n=94) and the
446  Medicinal Genomics StrainSEEK V1 (n=289) datasets. In each case clustering was conducted based on
447  nuclear genetic SNPs while reported use-type within the dataset is below in solid bars to facilitate
448  interpretation based upon community standards (A) Hierarchical cluster dendrogram from 6,865 nuclear
449  SNPs for the Soorni et al. 2017 dataset with use-type of each accession indicated below. Use-type are
450 pictured below (Type =20, Type I1I=10, Type II=1, Landrace=78 and Unknown=63) (B) Visualization of
451 population structure and admixture from 33,629 nuclear SNPs for the Soorni et al. 2017 dataset using the
452  fastSTRUCTURE software (k=2-5) with the optimal number of K being 3 using the silhouette method
453  (Fig. S9-10) (C) Hierarchical cluster dendrogram from 5,045 nuclear SNPs for the Medicinal Genomics
454  StrainSEEK V1 dataset with use-type indicated below. Use-type of accessions include Type =108, Type
455 1I=9, Type 1I=17 and Unknown=155 (D) Visualization of population structure and admixture from
456 20,566 nuclear SNPs for the Medicinal Genomics StrainSEEK V1 dataset using the fastSTRUCTURE
457  software (k=2-5) with the optimal number of K being 3 using the silhouette method (Fig. S9-10).

458

459  Fig. 3 Examination of use-type association across datasets (A) Principal component analysis (PCA) from
460 520 nuclear SNPs for the LeafWorks Inc. dataset (B) PCA from 213 SNPs Phylos Biosciences(n=845)
461 dataset (C) PCA from 6,865 nuclear SNPs for the Soorni et al. 2017 dataset where cannabinoid content
462  could be determined due to recent publication for 31/94 samples. (D) PCA from 5,045 nuclear SNPs for
463  the Medicinal Genomics StrainSEEK V1 dataset.

464

465 Fig. 4 Nucleotide diversity as examined by a 10kb sliding window for landrace and domesticated
466 partitions for the LeafWorks Inc. and Phylos Biosciences datasets (A) Nucleotide diversity by
467 chromosome and (B) across chromosome length for Domesticated (n=397, 2,096 SNPs) and Landrace
468 (n=101, 2,131 SNPs) samples for the LeafWorks Inc. dataset (C) Nucleotide diversity by chromosome
469 and (D) across chromosome length for Domesticated (n=718, 749 SNPs) and Landrace (n=127, 566
470  SNPs) samples for the Phylos Biosciences dataset.

471

472  Fig. 5 Landrace accessions from the LeafWorks Inc. dataset show separation between Indian and
473  Myanmar populations (A) Map detailing the locations of landrace accessions, highlighted are the Hindu
474  Kush Mountains, Lolab Valley and Myanmar (B) Hierarchical cluster dendrogram based on 304 SNPs
475 (LD 0.2) across 26 samples of known and trusted origin (C) PCA based on 304 SNPs with geographical
476 locations of samples as indicated (D) Nucleotide diversity comparison between Hindu Kush Mountains
477  (n=6, 4,304 SNPs), Lolab Valley (n=4, 853 SNPs) and Myanmar (n=4, 2,204 SNPs) as examined by a
478  10kb sliding window (E) Visualization of population structure and admixture using the fastSTRUCTURE
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479  software (k=3) with the optimal number of K being 3 using the silhouette method.
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480 Supplemental Figure Legends

481 TFig. S1 Dataset overview (A) Nucleotide diversity examined by a 10kb sliding window for all 9 genomic
482  datasets for Cannabis sativa L. (B) Nucleotide diversity across the length of the 10 chromosomes for all
483 9 genomic datasets.

484

485  Fig. S2 Nuclear SNP analysis for the Phylos Biosciences (n=1,378) dataset. Clustering was conducted
486 based on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars to
487 facilitate interpretation based upon community standards (A) PCA by use-type based on 269 nuclear
488  SNPs. Use-type associations include THC-Dominant (Type I) (n=996) CBD-Dominant (Type III) (n=87),
489 Hemp (n=215), Landrace (n=78) and Unknown (n=2) (B) Hierarchical cluster dendrogram with use-type
490 indicated below (C) Visualization of population structure and admixture using the fastSTRUCTURE
491  software (k=2-5) with the optimal number of K being 3 using the silhouette method.

492

493  Fig. S3 Nuclear SNP analysis for the Sunrise Genetics dataset for 25 samples. Clustering was conducted
494  based on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars to
495 facilitate interpretation based upon community standards (A) PCA by use-type based on 1,604 nuclear
496 SNPs. Use-type associations include THC-Dominant (Type I) (n=38) and Unknown (n=12) (B)
497  Hierarchical cluster dendrogram with use-type indicated below (C) Visualization of population structure
498  and admixture using the fastSTRUCTURE software (k=2-5) with the optimal number of K being 3 using
499  the silhouette method.

500

501 Fig. S4 Nuclear SNP analysis for the Lynch et al., 2016 dataset for 162 samples. Clustering was
502  conducted based on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars
503 to facilitate interpretation based upon community standards (A) PCA by use-type for 162 samples from
504 2,223 SNPs. Type associations include Hemp (n=1), Landrace (n=1), THC-Dominant (Type 1) (n=162),
505 CBD-Dominant (Type III) (n=11), THC:CBD (Type II) (n=2) and Unknown (n=21) (B) Hierarchical
506 cluster dendrogram with use-type indicated below (C) Visualization of population structure and
507  admixture using the fastSTRUCTURE software (k=2-5) with the optimal number of K being 2 using the
508  silhouette method.

509

510  Fig. S5 Nuclear SNP analysis for the Courtagen Life Sciences dataset for 58 samples. Clustering was
511  conducted based on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars
512 to facilitate interpretation based upon community standards (A) PCA by use-type based on 119 nuclear
513  SNPs. Use-type associations include Hemp (n=1), THC-Dominant (Type 1) (n=41), CBD-Dominant
514 (Type III) (n=11) and Unknown (n=5) (B) Hierarchical cluster dendrogram with use-type indicated below
515 (C) Visualization of population structure and admixture using the fastSTRUCTURE software (k=2-5).
516

517 Fig. S6 Nuclear SNP analysis for the Medicinal Genomics 61 dataset for 61 samples. Clustering was
518  conducted based on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars
519 to facilitate interpretation based upon community standards (A) PCA by use-type based on 2,267 nuclear
520 SNPs. Use-type associations include Hemp (n=1), THC-Dominant (Type 1) (n=47), CBD-Dominant
521 (Type II) (n=5) and Unknown (n=9) (B) Hierarchical cluster dendrogram with use-type indicated below
522  (C) Visualization of population structure and admixture using the fastSTRUCTURE software (k=2-5)
523  with the optimal number of K being 3 using the silhouette method.

524

525  Fig. S7 Maximum Likelihood tree for the LeafWorks Inc. dataset constructed from 1,405 nuclear SNPs
526  from 498 samples. Modeltest-ng revealed the TIM2+G4 as the best fit substitution model and IQ-Tree
527  software was used for phylogenetic inference. Blue Dream samples (n=12) are highlighted in blue at the
528  branch tips. Use-type for individual samples is additionally indicated.

529
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530 Fig. S8 Maximum Likelihood phylogenetic tree for 126 whole chloroplast assemblies. Individuals were
531 aligned using MAFFT. Modeltest-NG revealed the GTR+G4 as the best fit substitution model and 1Q-
532 Tree software was used for phylogenetic inference. The resultant tree was visualized using FigTree

533  (Version 1.4.4).

534

535 Figure S9 Examining optimal K number across the datasets using the Elbow Method (A) LeafWorks Inc.
536 dataset (B) Phylos Biosciences dataset (n=845) (C) Soorni dataset (n=94) (D) Medicinal Genomics
537 StrainSEEK V1 (n=289) (E) Phylos Biosciences dataset (n=1378) (F) Sunrise Genetics (n=25) (G)
538 Colorado dataset (n=162) (H) Courtagen dataset (n=58) (I) Kannapedia 61 dataset (n=61) (J) LeafWorks
539  Inc. landrace samples (n=14).

540

541 Figure S10 Examining optimal K number across the datasets using the Silhouette Method (A) LeafWorks
542  Inc. dataset (B) Phylos Biosciences dataset (n=845) (C) Soorni dataset (n=94) (D) Medicinal Genomics
543  StrainSEEK V1 (n=289) (E) Phylos Biosciences dataset (n=1378) (F) Sunrise Genetics (n=25) (G)
544  Colorado dataset (n=162) (H) Courtagen dataset (n=58) (I) Kannapedia 61 dataset (n=61) (J) LeafWorks
545 Inc. landrace samples (n=14).

546
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Table Legends

Table 1. Definitions related to the different types of germplasm that were used in this study.

Table 2. Data sources used for this project.

Table 3. SNP count per dataset pre and post filtering.

Table 4. SNP counts for each dataset by chromosome following biallelic sorting and Linkage
Disequilibrium prune at 0.2 and mapped to CBDRx (cs10) genome.

Table 5. Partition specific (Landrace and Domesticates) SNP count per dataset pre and post filtering.
Table S1. Cultivar name, use-type, clade association and domestication classifications for the LeafWorks
Inc. data set.

S2. SSR ID, Cultivar name, use-type and domestication classifications for the Phylos Biosciences
(n=845) data set.

Table S3. SSR ID, Cultivar name, use-type, clade association and domestication classifications for the
Phylos Biosciences (n=1,378) data set.

Table S4. SSR ID, Cultivar name, Chemistry Type and and HCPC group for the Soorni et al. 2017 data
set.

Table S5. Sample ID, RSP ID, Cultivar name and use-type association for Medicinal Genomics (n=753)
data set.

Table S6. SSR ID, Cultivar name and use-type association for the Sunrise Genetics data set.

Table S7. SSR ID, Cultivar name and use-type association for Lynch et al., 2016 data set.

Table S8. SSR ID, Cultivar name and use-type association for the Courtagen Life Sciences data set.
Table S9. Sample ID, Cultivar name and use-type association for Medicinal Genomics (n=61) data set.
Table S10. Core collections for the nine datasets.
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Figure 1 Examining hierarchical clustering on principal components (HCPC) and population structure in the LeafWorks Inc. (n=498) and Phylos Biosciences (n=845) datasets. In each case
population genetic clustering was conducted based only on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars to facilitate interpretation based upon
community standards (A) Hierarchical cluster dendrogram from 520 nuclear SNPs for the LeafWorks Inc. dataset with use-type indicated below. Use-type are pictured below (Type =288,
Type II =5, Type IlI=16, Hemp=44, Landrace=101 and Unknown=44) (B) Visualization of population structure and admixture from 1,405 nuclear SNPs for the LeafWorks Inc. dataset
using the fastSTRUCTURE software (k=2-5) with the optimal number of K being 4 using the silhouette method (Fig. S9-10) (C) Hierarchical cluster dendrogram from 292 nuclear SNPs
for the Phylos Biosciences dataset with use-type indicated below. Use-type accessions include Type =479, Type II=8, Type IlI=46, Landrace=127, Hemp=143 and Unknown=42 (D)
Visualization of population structure and admixture from 385 nuclear SNPs for the Phylos Biosciences dataset using the fastSTRUCTURE software (k=2-5) with the optimal number of K

being 3 using the Silhouette method (Fig. S9-10).
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Figure 2 Examining hierarchical clustering and population structure in the Soorni et al. 2017 (n=94) and the Medicinal Genomics StrainSEEK V1 (n=289) datasets. In each case clustering
was conducted based on nuclear genetic SNPs while reported use-type within the dataset is below in solid bars to facilitate interpretation based upon community standards (A) Hierarchical

cluster dendrogram from 6,865 nuclear SNPs for the Soorni et al. 2017 dataset with use-type of each accession indicated below. Use-type are pictured below (Type =20, Type I1I=10, Type
[I=1, Landrace=78 and Unknown=63) (B) Visualization of population structure and admixture from 33,629 nuclear SNPs for the Soorni et al. 2017 dataset using the fastSTRUCTURE

software (k=2-5) with the optimal number of K being 3 using the silhouette method (Fig. S9-10) (C) Hierarchical cluster dendrogram from 5,045 nuclear SNPs for the Medicinal Genomics
StrainSEEK V1 dataset with use-type indicated below. Use-type of accessions include Type I=108, Type I11=9, Type II=17 and Unknown=155 (D) Visualization of population structure and
admixture from 20,566 nuclear SNPs for the Medicinal Genomics StrainSEEK V1 dataset using the fastSTRUCTURE software (k=2-5) with the optimal number of K being 3 using the

silhouette method (Fig. S9-10).
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Figure 4 Nucleotide diversity as examined by a 10kb sliding window for landrace and domesticated partitions for the LeafWorks Inc. and Phylos Biosciences datasets (A) Nucleotide
diversity by chromosome and (B) across chromosome length for Domesticated (n=397, 2,096 SNPs) and Landrace (n=101, 2,131 SNPs) samples for the LeafWorks Inc. dataset (C)
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Figure 5 Landrace accessions from the LeafWorks Inc. dataset show separation between Indian and Myanmar populations (A) Map detailing the locations of landrace accessions,
highlighted are the Hindu Kush Mountains, Lolab Valley and Myanmar (B) Hierarchical cluster dendrogram based on 304 SNPs (LD 0.2) across 26 samples of known and trusted origin (C)
PCA based on 304 SNPs with geographical locations of samples as indicated (D) Nucleotide diversity comparison between Hindu Kush Mountains (n=6, 4,304 SNPs), Lolab Valley (n=4,
853 SNPs) and Myanmar (n=4, 2,204 SNPs) as examined by a 10kb sliding window (E) Visualization of population structure and admixture using the fastSTRUCTURE software (k=3) with

the optimal number of K being 3 using the silhouette method.
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Table 1. Definitions related to the different types of germplasm that were used in this study.

Type Class Definition
Used as both Non- | pjang that have escaped cultivation and are now growing in the
Feral drug and Drug wild without human intervention. These accessions have no
type influence of human selection.
Used as both Non- | cyltivars are introduced to a region by humans and then become
Landrace |drugandDrug locally adapted to a specific geography over time mostly through
type indirect selection by farmers and natural selection.
Cultivars that have been intentionally bred and selected by humans
Used as both Non- | ging advanced breeding techniques (genetics and statistics) with
Modern | drug and Drug the goal of enhancing specific traits. These cultivars have been
type developed in recent years or decades and may not have the same
regional or historical ties as landrace strains.
This material is Samples that had names of hemp used for grain and fiber or wild
Hemp used for fiber - collected feral plants (no chemical analysis to confirm hemp or
Non-drug type marijuana)
(CBD-dominant): cannabis flower defined as hemp in the U.S with
Typernr | Non-drug type <0.3% THC with a wide range of CBD (average 12% 30:1
CBD:THCQ)
Type II Drug-type (CBD:THC): balanced ratio of THC:CBD (1:1)
(THC-dominant): modern cannabis strains found in the legal U.S.
Type I Drug-type medical and adult use market (generally >10% THC, average 21%
THC, usually 30:1 THC:CBD ratio)
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Table 2. Data sources used for this project. Light grey indicates other public datasets which were not
utilized in this study.

Data source Dataset reference in this text Bioproject Number of individuals Sequencing Platform Type Citation
Phylos Bi Phylos Bi PRINA347566 845 Paired read https://phylos.bio
Phylos Biosciences Phylos Bi PRINAS510566 1,378 1 ILLUMINA (NextSeq 500) Paired read NA

LeafWorks Inc LeafWorks NA 498 Illumina NovaSeq Paired read This manuscript
University of Tehran Soorni et al. PRINA419020 94 Illumina HiSeq 2500 Single read Soorni et al., 2017
Sunrise Genetics Sunrise Genetics PRINA350539 25 Illumina HiSeq 4000 Paired read NA
Courtagen Life Sciences Courtagen Life Sciences PRINA297710 58 2 ILLUMINA (Tllumina MiSeq) Paired read NA
University of Colorado Boulder University of Colorado Boulder PRINA317659 162 1| ILLUMINA (lllumina HiSeg 2000) Singlo read Lynch et al., 2016
Medicinal Genomics Medicinal Genomics (n=61) NA 61 Paired read www.medicinaly com/kannapedia-fastg
Medicinal Genomics Medicinal Genomics (strainSEEK v1) NA 289 Paired read WWW net
Total 3347
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Table 3. SNP count per dataset pre and post filtering.

Dataset Sample (n) Total # SNPs # SNPs post filter (0.9) # Bi-allelic SNPs LD (0.2) PC 1-6 (%)
Phylos Biosci 845 1,620,202 385 383 292 [1]6.66 5.344.143.172.772.28
Phylos Biosci 1,378 2,175,027 363 362 269 [1]8.144.614.183.412.912.76
LeafWorks 498 10,911,876 1,405 1400 520 [1]15.523.573.022.672322.12
Soorni ez al. 94 37,615,406 33,629 33,346 6,865 [1]4.842.852.121.961.83 1.68
Sunrise Genetics 25 7,502,178 6,329 6,284 1,604 [1]115.66 845 6.85 6.35 5.65 5.28
Courtagen Life Sciences 58 470,780,334 311 310 119 [1]6.164.834.594.47 4.26 3.86
University of Colorado Boulder 162 139,508,383 5,999 5,946 2,223 [1]5.403.643.122.572.452.24
Medicinal Genomics 61 61 246,261,943 8,716 8,709 2,267 [1]4.953.892.752.532.39232
Medicinal Genomics StrainSEEK V1 289 121,471,853 20,566 20,454 5,045 [1]4.84 3.442.612.17 1.95 1.81
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Table 4. SNP counts for each dataset by chromosome following biallelic sorting and Linkage
Disequilibrium prune at 0.2 and mapped to CBDRx (cs10) genome.

Dataset SNPs CHR1 SNPs CHR2 SNPs CHR3 SNPs CHR4 SNPs CHRS SNPs CHR6 SNPs CHR7 SNPs CHR8 SNPs CHR9 SNPs CHRX SNPs Total
Phylos Biosciences (n=845) 32 43 22 38 26 37 19 32 17 26 292
Phylos Biosciences (n=1,378) 30 41 21 43 15 31 18 28 13 29 269
LeafWorks (n=498) 65 63 51 43 51 83 38 32 46 48 520
Soomni et al. (n=94) 917 797 658 780 593 670 552 667 642 589 6,865
Sunrise Genetics (n=25) 191 184 176 174 136 178 138 158 117 152 1,604
Courtagen Life Sciences (n=58) 13 15 18 5 25 15 7 12 2 7 119
Lynch et al. (n=162) 336 338 327 304 249 291 264 114 0 0 2,223
K ia 61 215 209 239 196 329 289 198 166 129 297 2,267
Medicinal G ics StrainSEEK V1 436 528 578 526 545 543 550 367 359 613 5,045
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Table 5. Partition specific (Landrace and Domesticates) SNP count per dataset pre and post filtering.

Accession#  Total # SNPs  # SNPs post filter  # Bi-allelic SNPs LD (0.2)

LeafWorks (Landrace_101) 101 4,761,034 2138 2131 1919
LeafWorks (Domesticates 397) 397 10,183,788 2096 2090 711
LeafWorks (Hindu_Kush_6) 6 835,656 4,304 4265 640
LeafWorks (Lolab_Valley 4) 4 502,884 853 850 170
LeafWorks (Myanmar Burma_4) 4 617,666 2,204 2,186 384
IPhylos Biosciences (Landrace_107) 107 1,027,670 267 266 219
[Phylos Biosciences (Domesticates 679) 679 3,342,423 704 704 478
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