# Prediction of Stroke Outcome in Mice Based on Non-Invasive MRI and Behavioral

#### 2 **Testing**

- Felix Knab#<sup>1,2</sup>, Stefan Paul Koch#<sup>1-3</sup>, Sebastian Major<sup>1,2</sup>, Tracy D. Farr<sup>1-4</sup>, Susanne Mueller<sup>1-3</sup>, 3
- Philipp Euskirchen<sup>1</sup>, Moritz Eggers<sup>1,2</sup>, Melanie T.C. Kuffner<sup>1,2</sup>, Josefine Walter<sup>1,2,5</sup>, Jens P. Dreier<sup>1,2,6-7</sup>, Matthias Endres<sup>1,2,6,8-10</sup>, Ulrich Dirnagl<sup>1,2,6,8-10</sup> Nikolaus Wenger<sup>1,2,6,11</sup>, Christian J.
- Hoffmann<sup>1,2,11</sup>, Philipp Boehm-Sturm#<sup>1-3</sup>, Christoph Harms<sup>1,2,6,8,9</sup># 6
- <sup>1</sup>Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and 7
- Humboldt-Universität zu Berlin, Klinik und Hochschulambulanz für Neurologie, Department 8
- of Experimental Neurology, Berlin, Germany
- <sup>2</sup>Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and 10
- Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, 11
- 12 CharitéUniversitätsmedizin Berlin, Germany
- <sup>3</sup>Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and 13
- 14 Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence and Charité Core Facility
- 7T Experimental MRIs, Berlin, Germany 15
- <sup>4</sup>School of Life Sciences, University of Nottingham, UK, NG7 2UH 16
- <sup>5</sup>Berlin Institute of Health at Charité Universitätsmedizin Berlin, OUEST Center for 17
- Transforming Biomedical Research, Berlin, Germany 18
- 19 <sup>6</sup>Einstein Center for Neuroscience, Berlin, Germany
- <sup>7</sup>Bernstein Center for Computational Neuroscience 20
- <sup>8</sup>German Center for Cardiovascular Research (DZHK), partner site Berlin 21
- <sup>9</sup>NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany 22
- <sup>10</sup>German Center for Neurodegenerative Diseases (DZNE) 23
- <sup>11</sup>Berlin Institute of Health (BIH), Berlin, Germany 24
- #denotes equal contribution 25

#### 26 Prediction of stroke outcome in mice

- Correspondence to: Christoph Harms, Charité Universitaetsmedizin Berlin, Center for 27
- 28 Stroke Research Berlin, Department of Experimental Neurology, Charitéplatz 1, 10117
- Berlin, 29
- 30 Germany
- Fax number: +4930450 560942 31
- Telephone Number: +4930450560631 32
- 33 Email address: christoph.harms@charite.de
- **Total word count:** 6592 34

35 ABSTRACT

- 36 Background: Prediction of post-stroke outcome using the degree of subacute deficit or
- 37 magnetic resonance imaging is well studied in humans. While mice are the most commonly
- 38 used animals in preclinical stroke research, systematic analysis of outcome predictors is
- 39 lacking.
- 40 **Methods:** Data from 13 studies that included 45 min of middle cerebral artery occlusion on
- 41 148 mice were pooled. Motor function was measured using a modified protocol for the
- 42 staircase test of skilled reaching. Phases of subacute and residual deficit were defined.
- 43 Magnetic resonance images of stroke lesions were co-registered on the Allen Mouse Brain
- 44 Atlas to characterize stroke topology. Different random forest prediction models that either
- 45 used motor-functional deficit or imaging parameters were generated for the subacute and
- 46 residual deficits.
- 47 **Results:** We detected both a subacute and residual motor-functional deficit after stroke in
- 48 mice. Different functional severity grades and recovery trajectories could be observed. In
- mice with small cortical lesions, lesion volume was the best predictor of the subacute deficit.
- The residual deficit could be predicted most accurately by the degree of the subacute deficit.
- When using imaging parameters for the prediction of the residual deficit, including
- 52 information about the lesion topology increased prediction accuracy. A subset of anatomical
- 53 regions within the ischemic lesion had particular impact on the prediction of long-term
- 54 outcome. Prediction accuracy depended on the degree of functional impairment.
- 55 Conclusions: For the first time, we identified and characterized predictors of post-stroke
- outcome in a large cohort of mice and found strong concordance with clinical data. These
- 57 results are discussed in light of study design and imaging limitations. In the future, using
- outcome prediction can improve the design of preclinical studies and guide intervention
- 59 decisions.

60

61

#### NON-STANDARD ABBREVIATIONS AND ACRONYMS

- 62 **AMBA** Allen Mouse Brain Atlas
- 63 **CCA** Common Carotid Artery
- 64 **ECA** External Carotid Artery
- 65 **FOV** Field Of View
- 66 **ICA** Internal Carotid Artery
- 67 **IQR** Interquartile Range
- 68 **LSMD** Least Square Mean Difference
- 69 **MD** Mean difference
- 70 **MCA** Middle Cerebral Artery
- 71 MCAO Middle Cerebral Artery Occlusion
- 72 **MedAE** Median Absolute Error
- 73 **PA** Pterygopalatine Artery
- 74 **pp** percentage points
- 75 **PE** prediction error
- 77 Keywords

76

stroke, mice, outcome prediction, motor-function, staircase

#### INTRODUCTION

79

80

81

82

83

84

85

86

87 88

89

90

91

92 93

94 95

96

97 98

99

100

101

102 103

104

105

106 107

108 109

110

111112

113114

115

116117

118

119

120

121122

Stroke remains a major public health challenge, as its occurrence rises in aging societies.<sup>1</sup> With decreasing mortality rates due to progress in acute stroke therapy, the need to develop treatments that improve functional outcome has become more pressing.<sup>2</sup> Understanding predictors of functional outcome after stroke both in humans and rodents is an essential step towards defining adequate treatment decisions and improving the design of preclinical studies.<sup>3</sup> Prediction of expected motor-functional outcomes in mice could potentially guide researchers in their treatment decisions in preclinical stroke intervention studies and support outcome-dependent stratifications. In humans, magnetic resonance imaging (MRI) is used to assess stroke volume and topology. Lesion volume is most commonly used to analyze stroke severity and predict functional outcome, but the prognostic value has been shown to be better when including lesion topology.<sup>5-11</sup> This was also shown in an exploratory preclinical study using a porcine stroke model.<sup>12</sup> Additionally, the degree of the subacute deficit has been shown to be a reliable predictor of long-term outcome, especially for mild functional deficits. 13,14 In contrast to humans, little is known about predictors of functional outcome after stroke in mice, although they are commonly used in preclinical research. The stroke preclinical assessment network, for instance, recently completed the largest preclinical stroke study on mice and provided examples of how the middle cerebral artery occlusion (MCAO) model can be used to conduct studies that are similar to those performed in humans.<sup>15</sup> Although highly standardized procedures such as the filamentous MCAO have been developed in rodent stroke research, lesion volume and topology differ between individual mice, for instance, because of variations in the vasculature and degree of collaterals, such as the patency of the posterior communicating artery. 16 In addition, lesion volumes are different between mouse strains.<sup>17</sup> Due to the resulting variance of lesion volumes and topology as well as small sample sizes in rodent stroke research, a systematic analysis of predictors of poststroke outcome using early non-invasive MRI is challenging. Furthermore, detecting motorfunctional deficits in rodents following stroke is difficult as they show impressive recovery and have subtle, if any, long-term motor deficits in common behavioral tests. 18 In a previous study, we have investigated accuracy of early perfusion/diffusion MRI for final infarct prediction. 19 The main goal of the present study was to identify and compare different predictors of functional outcome following brain ischemia in mice. We therefore aggregated imaging and behavioral data from 13 MCAO studies. Using a newly modified protocol for the staircase test of skilled reaching, we tested forepaw function before and after stroke over a period of 41 days. We defined two phases of post-stroke recovery and tried to predict functional outcome after one week (subacute outcome) or three weeks (long-term outcome) using early MRI. We hypothesized that incorporating lesion topology and behavioral data would improve the predictability of post-stroke outcomes compared to using only the lesion volume. Therefore, we compared the prognostic value of lesion volume and topology for predicting the subacute deficit and additionally included the subacute deficit for predicting the residual deficit using machine learning on a large cohort of 148 mice. We replicated our findings in an independent cohort. Our work opens new avenues towards a better understanding of post-stroke recovery and impairment in mice and paves the way to using prediction of functional outcome for the optimization of preclinical stroke studies.

#### **METHODS**

123124125

126 127

128 129

130

131 132

133

134

135

136137138

150 151

152

153

154

155

156 157

158 159

# **Experimental Design**

13 studies from 2016 to 2019 were pooled for behavioral and imaging analyses. Mice were trained in the staircase test for three weeks before and after 45 min of MCAO surgery followed by MRI after 24 hours (Figure 1A, details in Supplemental Materials & Methods). 360 mice were considered for inclusion into this study. Four exclusion criteria were prespecified (Figure S1): 1) In the third week of testing, mice performed below 20% of the average in the staircase test (n=30); 2) no visible infarct in MRI (n=18); 3) Surgical death or humane euthanasia before study end (n=121) and 4) incomplete data sets for behavioral data (n=25). Following these criteria, 166 mice were included (Table S1). To validate our prediction models, an additional cohort was built, termed *replication cohort*, using two studies from 2015 and 2019 with n=49 mice finally included (Figure S2). <u>Basic characteristics of the animals are provided in Table S2 and Figure S3.</u>

## **Staircase Test of Skilled Reaching**

Behavioral testers were blinded to the intervention and MRI results. Mice were housed, food 139 140 restricted and familiarized with the staircase test (details in Supplemental Materials & Methods).<sup>20</sup> We chose one experimental variable, the percentage of collected pellets per side. 141 Performance was expressed as a percentage of average pre-stroke performance (baseline). 142 143 Mice were randomized and allocated to either MCAO or sham surgery. Based on the mean performance of the entire cohort after stroke, two phases were defined: a 'subacute deficit' 144 phase (days 2-6), during which performance appeared dynamic and increasing, and a 145 'residual deficit' phase (days 12–21), throughout which performance appeared stable. 146 147 Average performance was calculated for each mouse for the respective period. A gap of five 148 days was chosen between the subacute and residual deficit to ensure the dynamic phase had 149 ended.

#### **Classification of Severity Grades for Subgroup Analysis**

Alluding to the modified Rankin scale, a score regularly used in stroke patients, five different functional subgroups were defined.<sup>21</sup> Subgroups were based on the severity of the motor-functional deficit of the paretic paw: mild (performance >80%), moderate-mild (60–79%), moderate (40–59%), moderate-severe (20–39%) and severe deficit (0–19%). Both *subacute* and *residual deficit* were used to define subgroups, depending on the analysis context (Figure 1B–D).

#### **Selection of Predictors**

Two factors were analyzed for their predictive value for the degree of the subacute deficit 160 161 after MCAO: 1) stroke lesion volume measured within the coordinates of the Allen Mouse 162 Brain Atlas (AMBA), which makes it identical to the volume of remaining brain tissue, <sup>22</sup> and 163 2) MRI lesion percentages measured in the 736 AMBA regions. Throughout the manuscript, 164 this predictor is referred to as segmented MRI. The dimensionality of the segmented MRI (736 initial regions) was reduced by discarding all regions that did not show a lesion in at least one 165 166 animal. This left the segmented MRI with 536 regions In addition to those two imaging-based 167 parameters, for the prediction of the residual deficit, the degree of subacute deficit was included as a third factor. 168

**Development of Prediction Models with Machine Learning** 

For development of machine learning based prediction models, we divided the data set into a training (2/3 of the animals) and a test (1/3 of the animals) group (details in Supplemental Materials & Methods). For each predictor, we calculated the median absolute error (MedAE) and report the average as *prediction error* (*PE*). Only *PEs* from the test cohort were used for accuracy analysis. *PE* measures the difference between predicted and actual performance. Small errors indicate high accuracy. First and third quartiles and interquartile ranges (IQR) of absolute error were calculated to estimate *PE* variation within a cohort. To determine which anatomical regions affect MRI-based *residual deficit* prediction accuracy, the *out-of-bag* predictor importance for each anatomical region in the *segmented MRI* was calculated (details in Supplemental Materials & Methods).<sup>23</sup>

# Statistics, Data Availability & Ethics Approval

Data are reported according to the ARRIVE guidelines. Methods for statistics, data display and availability including ethics approval are described in the Supplemental Materials & Methods.

#### RESULTS

187

188

189

190

191

192

193

194

195

196

197 198

199

200

201

202203

204

205

206

207208

209

210211

212

213

214215

216

217218

219

220 221

222

223

224

225

226

227

228

229230

231

232

# MRI Characterization and Lesion Topology

Total cohort and functional subgroup incidence maps were generated (Figure 2A). Average *lesion volume* was 25.00 mm<sup>3</sup> (95% CI: 21.46–28.54). While heterogeneity of stroke volumes was increased in the 45 minutes compared to a 30 minutes occlusion (Figure S4), it was smaller than in a previously published study performing 60 minutes of MCA occlusion.<sup>15</sup> Classified by degree of residual deficit, mean lesion volume was 14.03 mm<sup>3</sup> (9.82–18.25) in mild, 17.17 mm<sup>3</sup> (12.52–21.82) in moderate to mild, 26.29 mm<sup>3</sup> (16.86–35.73) in moderate, 33.62 mm<sup>3</sup> (24.04–43.20) in moderate to severe, and 47.23 mm<sup>3</sup> (36.79–57.68) in severe residual deficit mice (Figure 2B). One-Way ANOVA showed a significant difference in mean lesion volumes between functional subgroups (F(4,143)=14.14, p<0.0001; full report in Table S3). T2-weighted MR-images were co-registered on the AMBA to evaluate lesion topology (*segmented MRI*). Quantitative evaluation of the hyperintense lesion was performed on 536 regions and lesion volume in each region was expressed in percent (Table S4).

# A Modified Staircase Test Can Assess Early and Long-Term Functional Outcome in Mice after Stroke

Performance peaked after approximately 7 days (Figure 3A–B). The average percentage of retrieved pellets during baseline testing was 49.26% (47.22-51.31) on the left (later nonparetic) side and 46.29% (44.16–48.42) on the right (later paretic) side in the MCAO group and 45.81% (37.38-54.23) and 47.11% (38.95-55.26) on the left and right sides in the sham group (Figure S5). Mixed effects analysis showed no side-group interaction (F(1,164)=1.464, p=0.2281). After MCAO, mean subacute performance was 61.60% (56.12-67.08) on the nonparetic side and 37.59% (31.92–43.26) on the paretic side (Figure 3C). In sham animals, subacute performance was 78.40% (63.46–93.34) on the left and 72.23 (57.30–87.15) on the right side. Mixed-effects analysis found a significant interaction between side and group (F(1,164)=4.189, p=0.0423). After correcting for multiple comparisons using Šidák's test, MCAO animals had significantly lower paretic paw performance than sham (LSMD=34.63 percentage points [pp], t=4.092, DF=328, p=0.0001). After correcting for multiple comparisons using Šidák's test, performance of the paretic paw was significantly lower in MCAO animals when compared to sham (LSMD=34.63pp, t=4.092, DF=328, p=0.0001). Non-paretic sides did not differ between groups (LSMD=16.80pp, t=1.985, DF=328, p=0.0937). Paired t-test was performed to test for a difference in between paretic and nonparetic paws of the MCAO mice to show side-specificity of the motor-functional deficit. Performance in the paretic paw was significantly lower than in the non-paretic paw (MD: 24.01 %, 18.34–29.68, t=8.365, df=147, p<0.0001) (Figure S6A). In the period of residual deficit, non-paretic performance was 95.35 % (89.54–101.17) and paretic performance was 60.88 % (54.94-66.81; Figure 3D). During the phase of residual deficit, sham animals performed 92.39% (81.80–102.98) on the non-paretic side and 91.56% (78.45–104.66) on the paretic side. Mixed-effects analysis showed a significant interaction between side and group (F(1,164)=9.384, p=0.0026). Using Sidák's test, paretic paw performance was significantly lower in MCAO animals compared to sham (LSMD=30.68pp, t=3.501, DF=328, p=0.0011). Non-paretic sides showed no statistically significant difference between groups (LSMD=2.96pp, t=0.3377, DF=328, p=0.9302). Finally, we analyzed the

effects of the general well-being of the animals on functional outcome. We used the Modified

DeSimoni Neuroscore for the assessment of general deficits and the weight loss on day 2 as proxies for general well-being and found poor correlation to the degree of either subacute or residual deficit (Figure S7 and S8).<sup>24</sup> In addition, *PEs* of weight loss or neuroscore were significantly higher compared to imaging- or performance-based prediction (Figure S9 and S10).

# **Prediction of Subacute Deficit from Acute MR Imaging**

Using random forest and early non-invasive MRI data, *subacute deficit* prediction models were created. *PE* was 13.30pp (13.00–13.59, Q<sub>1</sub>: 5.98, Q<sub>3</sub>: 31.48, IQR: 25.51) for the *lesion volume* and 16.23pp (16.03–16.42, Q<sub>1</sub>: 8.04, Q<sub>3</sub>: 29.18, IQR: 21.14) for the *segmented MRI* (Figure 4A–B). Unpaired, two-tailed t-test revealed, that *PE* was significantly smaller when using the *lesion volume* as a predictor compared to the *segmented MRI* (MD=2.93pp, 2.58–3.28, t=16.60, df=98, p<0.0001).

## Prediction of Residual Deficit from Subacute Deficit and MRI

*PE* was 18.90pp (18.70–19.09,  $Q_1$ : 8.04,  $Q_3$ : 29.09, IQR: 21.05) for the *subacute deficit*, 22.68pp (22.46–22.90,  $Q_1$ : 14.07,  $Q_3$ : 41.84, IQR: 27.77) for the *segmented MRI* and 25.95pp (25.71–26.29,  $Q_1$ : 12.21,  $Q_3$ : 41.25, IQR: 29.04) for the *lesion volume* (Figure 4C–D). Oneway ANOVA showed predictors differed significantly (F(2,147)=1032, p<0.0001). After multiple comparisons were corrected using Tukey's test, the *PE* of the *subacute deficit* was significantly smaller than *PE* of the *segmented MRI* (MD=3.79pp, 4.15–3.42, p<0.0001) and the *lesion volume* (MD=7.06pp, 7.43–6.69, p<0.0001). *Segmented MRI* outperformed the prediction accuracy of the *lesion volume* (MD=3.28pp, 3.65–2.91, p<0.0001).

# Identification of Anatomical Regions Associated with Long-Term Outcome

To better understand which anatomical regions within the lesion best predict long-term outcome, the contribution of each region measured by MRI was analyzed by quantifying its importance within the random forest algorithm. We found 81 regions with above-zero out-of-bag predictor importance, meaning they contribute more than random data (Figure 5A–B, Table S5). Among those regions were the caudoputamen, the primary somatosensory area, the external capsule and the corticospinal tract. In the next step, random forest models were trained using increasing number of MRI regions, starting with the most important region. The *PE* of those models gradually decreased with increasing number of MRI regions (Figure 5C). *PE* quickly reached a plateau, and adding more regions only slightly improved accuracy. A relevant local minimum of *PE* was observed with the first 14 anatomical regions (*PE*=22.91pp).

# Validation in an Independent Cohort

As a final step, we tested our prediction models on the independent *replication cohort*. Imaging and behavioral analyses can be found in the Supplemental Materials & Methods. For the prediction of the *subacute deficit*, mean *PE* when using the *lesion volume* was 23.19pp (22.85–23.53) and 20.00pp (19.74–20.27) for the *segmented MRI* (Figure 6A–B). In contrast to our first cohort, now the *segmented MRI* provided significantly smaller *PEs* compared to the *lesion volume* (MD=3.19pp, 3.61–2.76, t=14.89, df=98, p<0.0001). The *PE* for the *residual deficit* using the *subacute deficit* was 10.76pp (10.31–11.22), 22.96pp (22.15–23.77) for the *segmented MRI* and 23.94pp (23.41–24.46) for the *lesion volume* (Figure 6C–D). One-

way ANOVA revealed, that there was a statistically significant difference between predictors 279 280 (F(2,147)=18.98, p<0.0001). After correction for multiple comparisons using Tukey's test, the PE of the subacute deficit was significantly smaller than the PE of the segmented MRI 281 (MD=12.20pp, 13.23–11.17, p<0.0001) and the lesion volume (MD=13.18pp, 14.20–12.15, 282 283 p<0.0001). The difference between segmented MRI and the lesion volume was less clear than 284 in our first cohort, but trended towards significance, with the segmented MRI providing slightly smaller PEs compared to the lesion volume (MD=0.98pp, 2.01-0.05, p=0.0668). 285 Lastly, we tested the prediction accuracy when including an increasing number of anatomical 286 287 regions. Only regions we identified to have an impact on the prediction of the residual deficit 288 in our testing cohort were used. Surprisingly, in our replication cohort, using the lesion percentage in the caudoputamen provided smaller PEs compared to using the entire 289 290 segmented MRI or the lesion volume. When adding an increasing number of regions, we first 291 observed a sharp spike in PEs, followed by a slow decrease. Excitingly, after including 292 fourteen regions, we again observed a local minimum of PE (Figure 6E), replicating our 293 finding from the *testing cohort*.

#### DISCUSSION

In this study, we systematically compared different predictors of subacute and long-term functional outcomes after stroke in a large cohort of mice. We used MRI derived parameters such as the *lesion volume* and *lesion topology*, as well as early functional testing to predict post-stroke performance in a pellet reaching task. Studies with large sample sizes have transformed preclinical MRI research and corresponding open data repositories have proven extremely valuable, e.g. in the context of robust functional networks measured by resting state fMRI. Predictors of post-stroke outcome, such as imaging-derived parameters or functional data, have previously been extensively studied in humans. Holie one preclinical study on predictors of stroke outcome in a porcine MCAO model exists, evidence on prediction of stroke outcome in mice is scarce, despite rodents being used most commonly as model animals in stroke studies. 12,26

Using a modified protocol for the staircase test of skilled reaching in mice, we were able to monitor motor function daily and to detect both subacute and long-term functional deficits. A side-specific disability of the forepaw was detected over three weeks post-surgery. This indicates that performance was governed by the stroke and not by general sickness behavior. We observed distinct trajectories of functional recovery. The differentiation between recoverees and non-recoverees is comparable to what can be observed in humans. The resemblance to the human recovery process supports the predictive value of stroke modeling in mice and the case for implementing sophisticated behavioral tests that involve a longer phase of training prior to stroke for assessing long-term impairments. For future applications, one has to consider the possible impact of food restriction included as part of the staircase training and testing on mortality and lesion volume.

The lesion volume was the best predictor for the subacute deficit after stroke in mice as measured by PE in our testing cohort. In the replication cohort it was outperformed by the segmented MRI, which included information about the lesion topology. While PEs remained low, this is clearly a difference between the two cohorts. However, we also observed differences in stroke size and topology between the two cohorts. In our replication cohort lesion volumes were bigger and cortical regions accounted for higher proportions of the lesion volume compared to the testing cohort. While it has previously been stated that lesion volume functions as a good predictor for acute stroke outcome, our data suggests that in mice with greater cortical lesions taking into account topological information provides a more accurate prediction of early functional outcome. For the long-term motor-functional outcome, in the testing cohort the segmented MRI provided significantly better prediction accuracies than the lesion volume. This indicates that for functional recovery, lesion topology is more relevant than lesion volume, which again is in line with clinical data. 11,12 It should be noted, that in the 45 min MCAO model, lesion volume and lesion topology are not fully independent predictors. Larger ischemic lesions typically include cortical regions while smaller lesions are restricted to subcortical structures. This phenomenon can be observed in the results of our replication cohort, where the difference between the segmented MRI and the lesion volume was only marginal but trending towards significance.

Following up on the influence of lesion topology, we identified anatomical regions that drive imaging-based prediction of the *residual deficit*. We found that considering only a subset of anatomical regions can explain functional long-term outcome. Prediction accuracy displayed a local maximum after 14 regions had been added to the prediction model. Among those regions were both, cortical and subcortical regions typically affected by a MCAO stroke such

as the caudoputamen and the primary somatosensory area. Evidently, the caudoputamen is damaged and part of the lesion core in the transient occlusion model but also serves as the structure that best predicts the performance. Further, white matter regions such as the corpus callosum and the fiber tracts showed to be of particular importance for the prediction of long-term outcome. This is in line with previous studies in humans suggesting that lesions of the corticospinal tract seem to be more important to both early and long-term functional outcome than lesion volume. These findings could be replicated in our independent *replication cohort*, where a local minimum of *PE* could be observed after including the same 14 regions. Again, lesions in the caudoputamen had a major impact on prediction accuracies, outperforming both cortical grey and white matter structures.

Imaging-based predictors offered good estimates of post-stroke long-term outcome but the

Imaging-based predictors offered good estimates of post-stroke long-term outcome but the best predictor of the *residual deficit* was the degree of the *subacute deficit*, again confirming studies on predictors of post-stroke outcome in humans.<sup>32</sup> Lastly, we found that independent of the chosen model, the prediction accuracy for both the *subacute* and *residual deficits* depended on the degree of the deficit. In line with clinical data, we found that severe *residual deficits* are more difficult to predict than moderate-to-mild deficits.<sup>13,14</sup>

## **Study Limitations**

340 341

342343

344

345

346 347

348 349

350

351

352

353 354

355 356 357

358

359

360

361

362

363

364

365

366

367

368

369

370 371

372

373 374

375

376

377

378

379 380

381

382

383

384

385

We have restricted our prediction tools to 45 min of MCAO using endoluminal filament occlusion. As the data was pooled from 13+2 studies performed between 2015 and 2019, the dataset contained various co-variates. However, variance analysis revealed that sex, genotype, surgeon, or age did not significantly explain differences in performance after stroke. We cannot exclude confounding effects of housing, lab chow diet, anesthesia, or further covariates. Furthermore, we did not replicate our results with other behavioral readouts than the staircase test of skilled pellet reaching. Additionally, using MR imaging from a later time point, e.g. 21 days after MCAO, would have likely resulted in even better prediction accuracies. However, prediction of functional outcome that is based on late MR-imaging cannot be used for guiding intervention decisions in future preclinical studies as the window of opportunity in mice has proven to be narrow.<sup>33</sup> Another limitation of our approach is the manual delineation of lesion masks. Although manual lesion segmentation is still the gold standard today, well-documented, multi-centric and openly available stroke T1-weighted MRI datasets pave the way towards fully automated algorithms for MRI stroke lesion segmentation in humans.<sup>34–36</sup> Results from T2-weighted MRI in rodent stroke models are also promising with excellent similarity between manual segmentation and fully automated algorithms exceeding agreement between multiple raters. These studies have facilitated significant progress in the pursue to fully automate lesion segmentation. 38,39 Nulling of the fluid signal via e.g. FLAIR MRI could have improved the discrimination between CSF and ischemic lesion. However, 24 hours after MCAO, CSF has still higher signal on RARE than the lesion and the walls of the lateral ventricles can be reliably identified.<sup>22</sup> For later time points, an adjusted imaging protocol might have to be applied. Animals' unspecific sickness behavior during the subacute deficit phase may have contributed to the degree of performance loss. The differences between sham and MCAO, as well as paretic and non-paretic paw, were, however, significant, indicating that our behavioral paradigm detects stroke-specific motor-functional deficits. There were no video recordings of the testing sessions to account for differences in kinematics but the entire behavioral data set has been uploaded in the repository linked to this study. Analysis of lesion volumes stratified by functional subgroups might be partly

weakened by experimental bias, since lesion volume and performance are strongly correlating. Finally, we corrected only for multiple tests in a single test set and not for multiple comparisons between different tests or hypotheses.

11/R1

# CONCLUSIONS

386 387

388

389

390

391

392393

394

395

396

In conclusion, we have here for the first time identified and characterized predictors of poststroke outcome in mice. The concordance with clinical data strengthens the usability of mice as model animals in preclinical studies. Prediction of outcome in intervention studies using non-invasive MRI measurements or motor-functional data should be utilized to compare expected and achieved motor-function outcomes, select mice with particularly poor predicted outcomes, and guide treatment or intervention options. This will help to improve the reproducibility of preclinical rodent stroke research and close the translational gap.

## **Acknowledgments**

Janet Lips coordinated experiments and contributed with MRI, handling, and behavioral evaluation; Larissa Mosch (behavior, histology), Monika Dopatka (surgeries), and Marco Foddis (surgeries, behavioral assessment, and MRI) all provided excellent technical assistance. Figures were created with biorender.com

# **Sources of Funding**

Funding was provided by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) to C.J.H. and C.H. (Project number 417284923), to P.B.S. (Project number 428869206), to N.W., M.E., and C.H. (Project number 424778381–TRR 295) and NeuroCure (EXC–2049–390688087) and the German Federal Ministry of Education and Research (BMBF, Center for Stroke Research Berlin 01EO1301) to U.D., P.B.S., and C.H., and to P.B.S. by the BMBF under the ERA-NET NEURON scheme (01EW1811). M.Ku. received funding from the DFG Graduate School 203. This work was supported by Charité3<sup>R</sup>| Replace–Reduce–Refine and partly by the Fondation Leducq to M.E., and C.H.. F.K. and M.Eg. received a scholarship from the Berlin Institute of Health, Berlin. P.E., N.W., and C.J.H. are participants in the Charité Clinical Scientist Program funded by the Charité – Universitätsmedizin Berlin and the Berlin Institute of Health and N.W. is a Freigeist Fellow with support from the Volkswagen Foundation. In addition, this work was supported by DFG (Project number 73500270 and 413848220) and ERA-NET NEURON EBio2, with funds from BMBF 01EW2004 to J.P.D.

# **Disclosures**

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. No funding was received to assist with the preparation of this manuscript.

# **Supplemental Materials & Methods**

Checklist Expanded Materials & Methods Online Figures S1-S13 Tables S1-8

# References

1

- 2 1. Béjot Y, Bailly H, Durier J, Giroud M. Epidemiology of stroke in Europe and trends for the 21st century. *Press. Medicale*. 2016;45:e391–e398. doi:10.1016/j.lpm.2016.10.003
- 4 2. Eriksson M, Norrving B, Terént A, Stegmayr B. Functional Outcome 3 Months after 5 Stroke Predicts Long-Term Survival. *Cerebrovasc. Dis.* 2008;25:423–429. 6 doi:10.1159/000121343
- Farr TD, Wegener S. Use of magnetic resonance imaging to predict outcome after stroke: A review of experimental and clinical evidence. *J. Cereb. Blood Flow Metab.* 2010;30:703–717. doi:10.1038/jcbfm.2010.5
- 4. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: The diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. *Ann. Neurol.* 2006;60:508–517. doi:10.1002/ana.20976
- Schiemanck SK, Post MWM, Kwakkel G, Witkamp TD, Kappelle LJ, Prevo AJH.
   Ischemic lesion volume correlates with long-term functional outcome and quality of life
   of middle cerebral artery stroke survivors. *Restor. Neurol. Neurosci.* 2005;23:257–263.
- Lövblad KO, Baird AE, Schlaug G, Benfield A, Siewert B, Voetsch B, Connor A,
   Burzynski C, Edelman RR, Warach S. Ischemic lesion volumes in acute stroke by
   diffusion-weighted magnetic resonance imaging correlate with clinical outcome. *Ann. Neurol.* 1997;42:164–170. doi:10.1002/ana.410420206
- Pinto A, McKinley R, Alves V, Wiest R, Silva CA, Reyes M. Stroke lesion outcome
   prediction based on MRI imaging combined with clinical information. *Front. Neurol.* 2018;9:1–10. doi:10.3389/fneur.2018.01060
- 25 8. Cheng B, Forkert ND, Zavaglia M, Hilgetag CC, Golsari A, Siemonsen S, Fiehler J, Pedraza S, Puig J, Cho TH, et al. Influence of stroke infarct location on functional outcome measured by the modified rankin scale. *Stroke*. 2014;45:1695–1702. doi:10.1161/STROKEAHA.114.005152
- 9. Borich MR, Brodie SM, Gray WA, Ionta S, Boyd LA. Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation. *Neuropsychologia*. 2015;79:246–255. doi:10.1016/j.neuropsychologia.2015.07.007
- 32 10. Munsch F, Sagnier S, Asselineau J, Bigourdan A, Guttmann CR, Debruxelles S, Poli M, 33 Renou P, Perez P, Dousset V, et al. Stroke location is an independent predictor of 34 cognitive outcome. *Stroke*. 2016;47:66–73. doi:10.1161/STROKEAHA.115.011242
- Menezes NM, Ay H, Zhu MW, Lopez CJ, Singhal AB, Karonen JO, Aronen HJ, Liu Y,
   Nuutinen J, Koroshetz WJ, et al. The real estate factor: Quantifying the impact of
   infarct location on stroke severity. Stroke. 2007;38:194–197.
   doi:10.1161/01.STR.0000251792.76080.45
- 39 12. Scheulin KM, Jurgielewicz BJ, Spellicy SE, Waters ES, Baker EW, Kinder HA,
   40 Simchick GA, Sneed SE, Grimes JA, Zhao Q, et al. Exploring the predictive value of
   41 lesion topology on motor function outcomes in a porcine ischemic stroke model. *Sci.* 42 *Rep.* 2021;11:1–15. doi:10.1038/s41598-021-83432-5
- Zarahn E, Alon L, Ryan SL, Lazar RM, Vry MS, Weiller C, Marshall RS, Krakauer
   JW. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke.

- Cereb. Cortex. 2011;21:2712–2721. doi:10.1093/cercor/bhr047 45
- 46 14. Vliet R, Selles RW, Andrinopoulou E, Nijland R, Ribbers GM, Frens MA, Meskers C,
- Kwakkel G. Predicting Upper Limb Motor Impairment Recovery after Stroke: A 47 48 Mixture Model. Ann. Neurol. 2020;87:383–393. doi:10.1002/ana.25679
- Lyden PD, Bosetti F, Diniz MA, Rogatko A, Koenig JI, Lamb J, Nagarkatti KA, 49 15.
- Cabeen RP, Hess DC, Kamat PK, et al. The Stroke Preclinical Assessment Network: 50
- 51 Rationale, Design, Feasibility, and Stage 1 Results. Stroke. 2022;53:1802–1812.
- 52 doi:10.1161/STROKEAHA.121.038047
- 53 16. Knauss S, Albrecht C, Dirnagl U, Mueller S, Harms C, Hoffmann CJ, Koch SP, Endres
- 54 M, Boehm-Sturm P. A Semiquantitative Non-invasive Measurement of PcomA Patency
- 55 in C57BL/6 Mice Explains Variance in Ischemic Brain Damage in Filament MCAo.
- Front. Neurosci. 2020;14:1-11. doi:10.3389/fnins.2020.576741 56
- 57 17. Maeda K, Hata R, Hossmann KA. Differences in the cerebrovascular anatomy of
- C57Black/6 and SV129 mice. Neuroreport. 1998;9:1317-1319. doi:10.1097/00001756-58
- 59 199805110-00012
- 60 18. Weber RZ, Mulders G, Kaiser J, Tackenberg C, Rust R. Deep learning based behavioral
- 61 profiling of rodent stroke recovery. bioRxiv. 2021;
- 62 Leithner C, Füchtemeier M, Jorks D, Mueller S, Dirnagl U, Royl G. Infarct Volume
- Prediction by Early Magnetic Resonance Imaging in a Murine Stroke Model Depends 63
- on Ischemia Duration and Time of Imaging. Stroke. 2015;46:3249–3259. 64
- 65 doi:10.1161/STROKEAHA.114.007832
- 66 20. Baird AL, Meldrum A, Dunnett SB. The staircase test of skilled reaching in mice. Brain
- Res. Bull. 2001;54:243–250. doi:10.1016/S0361-9230(00)00457-3 67
- 68 21. Bamford JM, Sandercock PAG, Wariow CP, Slattery J. Interobserver agreement for the
- assessment of handicap in stroke patients: To the editor. Stroke. 1989;20:828. 69
- 70 doi:10.1161/01.STR.20.6.828
- 71 22. Koch S, Mueller S, Foddis M, Bienert T, von Elverfeldt D, Knab F, Farr TD, Bernard
- 72 R, Dopatka M, Rex A, et al. Atlas registration for edema-corrected MRI lesion volume
- 73 in mouse stroke models. J. Cereb. Blood Flow Metab. 2019;39:313-323.
- 74 doi:10.1177/0271678X17726635
- 75 23. Breiman L. Random Forests. Mach. Learn. 2001;45:5-32.
- 76 doi:10.1023/A:1010933404324
- 77 24. Donath S, An J, Lee SLL, Gertz K, Datwyler AL, Harms U, Müller S, Farr TD,
- Füchtemeier M, Lättig-Tünnemann G, et al. Interaction of ARC and DAXX: A novel 78
- 79 endogenous target to preserve motor function and cell loss after focal brain ischemia in
- mice. J. Neurosci. 2016;36:8132-8148. doi:10.1523/JNEUROSCI.4428-15.2016 80
- 81 25. Grandjean J, Canella C, Anckaerts C, Ayrancı G, Bougacha S, Bienert T, Buehlmann
- 82 D, Coletta L, Gallino D, Gass N, et al. Common functional networks in the mouse brain
- revealed by multi-centre resting-state fMRI analysis. Neuroimage. 2020;205. 83
- doi:10.1016/j.neuroimage.2019.116278 84
- 85 26. Casals JB, Pieri NCG, Feitosa MLT, Ercolin ACM, Roballo KCS, Barreto RSN,
- Bressan FF, Martins DS, Miglino MA, Ambrósio CE. The use of animal models for 86
- 87 stroke research: a review. Comp. Med. 2011;61:305-13.

- 88 doi:10.1109/TAES.1968.5408692
- 89 27. Bravo-Ferrer I, Cuartero MI, Zarruk JG, Pradillo JM, Hurtado O, Romera VG, Díaz-
- 90 Alonso J, García-Segura JM, Guzmán M, Lizasoain I, et al. Cannabinoid type-2
- 91 receptor drives neurogenesis and improves functional outcome after stroke. *Stroke*.
- 92 2017;48:204–212. doi:10.1161/STROKEAHA.116.014793
- 28. Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, Clarkson
- AN, Dancause N, Wieloch T, Johansen-Berg H, et al. Enhancing the Alignment of the
- 95 Preclinical and Clinical Stroke Recovery Research Pipeline: Consensus-Based Core
- 96 Recommendations from the Stroke Recovery and Rehabilitation Roundtable
- 97 Translational Working Group 

  . Neurorehabil. Neural Repair. 2017;31:699–707.
- 98 doi:10.1177/1545968317724285
- 99 29. Manzanero S, Gelderblom M, Magnus T, Arumugam T V. Calorie restriction and stroke. *Exp. Transl. Stroke Med.* 2011;3:1–13. doi:10.1186/2040-7378-3-8
- 101 30. Lindenberg R, Renga V, Zhu LL, Betzler F, Alsop D, Schlaug G. Structural integrity of
- 102 corticospinal motor fibers predicts motor impairment in chronic stroke. Neurology.
- 103 2010;74:280–287. doi:10.1212/WNL.0b013e3181ccc6d9
- 104 31. Feng W, Wang J, Chhatbar PY, Doughty C, Landsittel D, Lioutas V, Kautz SA,
- Schlaug G. Corticospinal tract lesion load: An imaging biomarker for stroke motor
- outcomes. Ann. Neurol. 2015;78:860–70. doi:10.1002/ana.24510
- 107 32. Frankel MR, Morgenstern LB, Kwiatkowski T, Lu M, Tilley BC, Broderick JP, Libman
- 108 R, Levine SR, Brott T. Predicting prognosis after stroke: A placebo group analysis from
- the National Institute of Neurological Disorders and Stroke rt-PA stroke trial.
- 110 Neurology. 2000;55:952–959. doi:10.1212/WNL.55.7.952
- 111 33. Zeynalov E, Jones SM, Elliott JP. Therapeutic time window for conivaptan treatment
- against stroke-evoked brain edema and blood-brain barrier disruption in mice. *PLoS*
- 113 One. 2017;12:1–8. doi:10.1371/journal.pone.0183985
- 114 34. Liew SL, Lo BP, Donnelly MR, Zavaliangos-Petropulu A, Jeong JN, Barisano G,
- Hutton A, Simon JP, Juliano JM, Suri A, et al. A large, curated, open-source stroke
- neuroimaging dataset to improve lesion segmentation algorithms. *Sci. Data.* 2022;9:1–
- 12. doi:10.1038/s41597-022-01401-7
- 118 35. Ito KL, Kim H, Liew SL. A comparison of automated lesion segmentation approaches
- for chronic stroke T1-weighted MRI data. Hum. Brain Mapp. 2019;40:4669–4685.
- doi:10.1002/hbm.24729
- 121 36. Verma K, Kumar S, Paydarfar D. Automatic Segmentation and Quantitative
- Assessment of Stroke Lesions on MR Images. Diagnostics. 2022;12.
- doi:10.3390/diagnostics12092055
- 124 37. Valverde JM, Shatillo A, De Feo R, Gröhn O, Sierra A, Tohka J. RatLesNetv2: A Fully
- 125 Convolutional Network for Rodent Brain Lesion Segmentation. Front. Neurosci.
- 2020;14:1–11. doi:10.3389/fnins.2020.610239
- 127 38. Mulder IA, Khmelinskii A, Dzyubachyk O, de Jong S, Rieff N, Wermer MJH, Hoehn
- 128 M, Lelieveldt BPF, van den Maagdenberg AMJM. Automated ischemic lesion
- segmentation in MRI mouse brain data after transient middle cerebral artery occlusion.
- 130 Front. Neuroinform. 2017;11:1–15. doi:10.3389/fninf.2017.00003

39. An J, Wendt L, Wiese G, Herold T, Rzepka N, Mueller S, Koch SP, Hoffmann CJ, Harms C, Boehm-Sturm P. Deep learning-based automated lesion segmentation on mouse stroke magnetic resonance images. 2022; https://www.biorxiv.org/content/10.1101/2022.08.09.503140v1

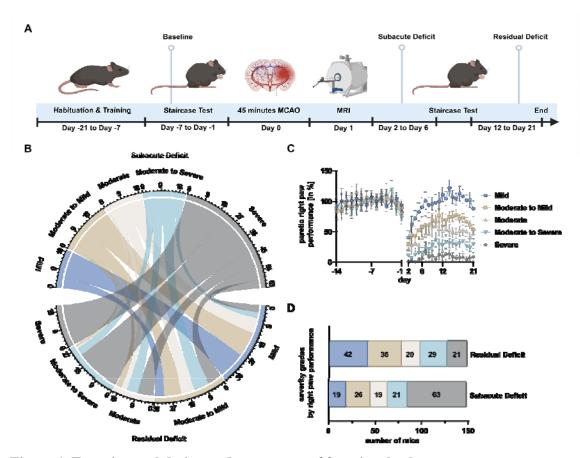
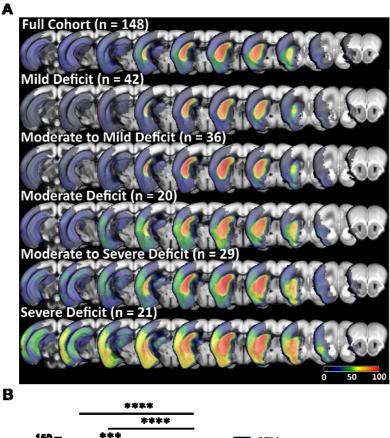




Figure 1. Experimental design and assessment of functional subgroups

**A**, Mice were trained in pellet reaching for 21 days. Average percentage of retrieved pellets during the last week prior to MCAO was used to normalize performance (baseline). Mice received either 45 min of MCAO or sham surgery. MRI was performed on day 1 and mice were then tested for another 21 days. **B**, Chord diagram displaying the different trajectories of recovery. Groups on top display mice stratified by degree of *subacute deficit*, while groups on bottom display mice stratified by *residual deficit*. Numbers indicate group sizes. Interconnections visualize how many mice with a given *subacute deficit* recovered to have a given *residual deficit*, i.e. roughly a third of the mice with a severe *subacute deficit* displayed no recovery and showed a severe *residual deficit*. **C**, Performance of the paretic right paw over time for each severity grade. Error bars indicate 95% CI. Severity grades here were based on the degree of the *residual deficit*. **D**, Overview over sizes of functional subgroups. Groups are either based on the degree of *subacute* or *residual deficit*. While the majority of mice displayed a severe *subacute deficit*, due to their impressive capability for spontaneous recovery, the majority of mice displayed only mild *residual deficits*.



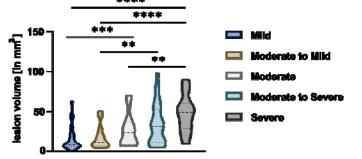



Figure 2. MRI characterization of lesion volume and location.

 **A**, Coronal incidence maps of stroke lesions in the total cohort and the five different functional subgroups. Colours indicate percentage of mice with a lesion in a given region. Severity grades are based on degree of *residual deficit*. **B**, *lesion volume* by severity grade (based on degree of *residual deficit*). Great variability within functional subgroups could be observed and there was no significant difference when comparing *lesion volume* of consecutive severity grades, i.e. of mice with mild or moderate to mild *residual deficits*.

Figure 3. Assessing the sensorimotor deficit after stroke.

**A**, Non-paretic left and **B**, paretic right paw performance over time, bars depict 95% confidence interval. Performance on days -7 to -1 were averaged and taken as a baseline (first black rectangle). Data from days 2 to 6 were summarized and referred to as *subacute deficit* (second rectangle) while data from days 12 to 21 are referred to as *residual deficit* (third rectangle). **C**, *Subacute* and **D**, *residual deficit* of the non-paretic and paretic paw in sham (brown plot) and MCAO (blue plot) animals. Dashed lines indicate medians, dotted line indicate quartiles. Mixed-effects model followed by Šidák's post-hoc tests for multiple comparison were used to test effect of group and side.

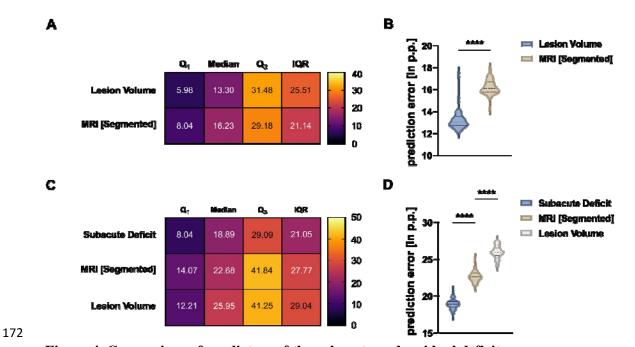



Figure 4. Comparison of predictors of the subacute and residual deficit. A through **B**, Comparison of the prediction accuracy of the two predictors of the *subacute deficit*. Averaged  $Q_1$ , median,  $Q_3$  and IQR were calculated using the 50 independent models for each predictor. Dashed lines indicate median, dotted lines indicate quartiles. Unpaired t-test was used to compare *PEs*. Small *PE* indicates small deviation between predicted and achieved performance. **C** through **D**, Comparison of prediction accuracy of the two imaging based parameters and the *subacute deficit* for the prediction of the *residual deficit*. Again, one-

way ANOVA followed by Tukey's test for multiple comparison was used.

173

174

175176

177178

179

180

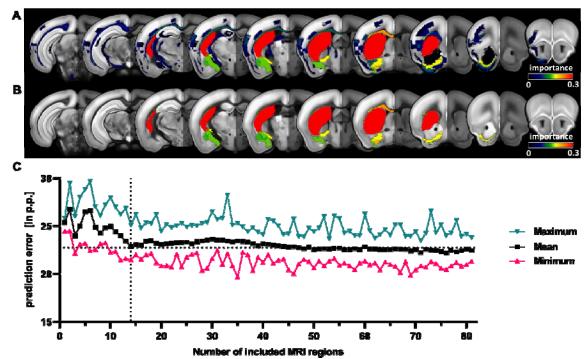



Figure 5. Identification of anatomical regions that drive imaging-based prediction of functional outcome.

 **A**, Coronal slices depicting the importance of the 81 regions calculated from our random forest models (RF). Only regions with an importance level >0 are shown **B**, Visualization of the importance level of the 14 anatomical regions that were included in the prediction model that resulted in a local minimum of *PE*. **C**, Prediction of *residual deficit* was performed using an increasing number of regions in the *segmented MRI*. *PE* as well as maximum and minimum *PE* are depicted. Dashed lines at x=14 and y=21.5 denote the first local minimum of *PE* when including only 14 regions.

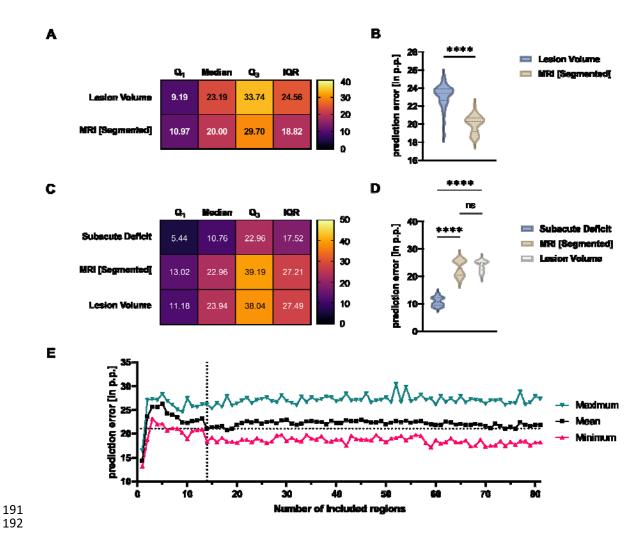



Figure 6. Validation of prediction models in an independent cohort.

**A**, through **B**, Comparison of the prediction accuracy of the two predictors of the *subacute deficit*. Dashed lines indicate median, dotted lines indicate quartiles. Unpaired t-test was used to compare PEs. While PEs were comparable to the ones seen in our testing cohort, subacute deficit was best predicted when using the segmented MRI **C** through **D**, Comparison of prediction accuracy of the two imaging based parameters and the *subacute deficit* for the prediction of the *residual deficit*. Again, the *subacute deficit* was the best predictor of the *residual deficit*, followed by the *segmented MRI* and the *lesion volume*. **E**, Analogous to the testing cohort, prediction of *residual deficit* was performed using an increasing number of regions in the *segmented MRI*. Dashed lines at x=14 and y=21.5 denote the local minimum of PE that had previously been observed in the testing cohort.