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Abstract 

Background: Autism spectrum disorder (autism) is a complex neurodevelopmental 
condition with pronounced behavioural, cognitive, and neural heterogeneities across 
individuals. Here, our goal was to characterise heterogeneity in autism by identifying 
patterns of neural diversity as reflected in BOLD fMRI in the way individuals with autism 
engage with a varied array of cognitive tasks.  

Methods: All analyses were based on the EU-AIMS/AIMS-2-TRIALS multisite Longitudinal 
European Autism Project (LEAP) with participants with autism and typically developing 
controls (TD) between 6 and 30 years of age. We employed a novel task-potency approach 
which combines the unique aspects of both resting-state fMRI and task-fMRI to quantify 
task-induced variations in the functional connectome. Normative modelling was used to 
map atypicality of features on an individual basis with respect to their distribution in 
neurotypical control participants. We applied robust out-of-sample canonical correlation 
analysis (CCA) to relate connectome data to behavioural data. 

Results: Deviation from the normative ranges of global functional connectivity was greater 
for individuals with autism compared to TD in each fMRI task paradigm (all tasks p<0.001). 
The similarity across individuals of the deviation pattern was significantly increased in 
autistic relative to TD individuals (p<0.002). The CCA identified significant and robust brain-
behavior covariation between functional connectivity atypicality and autism-related 
behavioral features. 

Conclusions: Individuals with autism engage with tasks in a globally atypical way, but the 
particular spatial pattern of this atypicality is nevertheless similar across tasks. Atypicalities 
in the tasks originate mostly from prefrontal cortex and default mode network regions, but 
also speech and auditory networks. We show, moving forward, sophisticated modeling 
methods such as task-potency and normative modeling will prove key to unravelling 
complex heterogeneous conditions like autism. 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.22.481408doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.481408
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

Introduction  

Autism spectrum disorder (henceforth ‘autism’) is a complex neurodevelopmental 
condition marked by difficulties with social communication, repetitive, restricted behaviours 
and interests and sensory processing atypicalities (American Psychiatric Association, 2013). 
Cross-participant heterogeneity in autism has made understanding underlying mechanisms 
and the complex interrelation between neurobiology and cognitive profiles in autism 
challenging. Imaging studies in autism report both over-and under-connectivity of functional 
brain networks (Oldehinkel et al., 2019; Picci et al., 2016; Uddin et al., 2013) on the basis of 
resting-state fMRI data. Different task-fMRI studies, probing a variety of neural processes,  
report between-group differences with small effect size at best  (Deshpande et al., 2013; 
Just et al., 2014; Moessnang et al., 2020). Crucially, little effort has been made to integrate 
the diverse findings both across different cognitive domains and between task-fMRI and 
resting-state connectivity at the level of an individual participant. In order to better 
characterize heterogeneity both across cognitive domains and across individuals we 
combine novel methodological approaches.  

First, we propose an integrated analytical approach to characterise the task-specific 
cognitive demands in autistic individuals. We utilise a task-potency approach which 
combines the unique aspects of both resting-state fMRI (rs-fMRI) and task-fMRI (Chauvin et 
al., 2019). Rs-fMRI provides insight into the large scale ‘architecture’ of brain connectivity in 
an individual. Task-fMRI might however more directly probe the neural correlates of specific 
cognitive domains affected by the condition such as social/emotional processing and 
attention. We leverage the advantages offered by both views in task-potency, which 
disentangles the relative contribution of task-induced functional connectivity from that of 
the baseline architecture at the individual level (Mennes et al., 2010). This allows for greater 
sensitivity to individual task-based functional connectivity (FC) effects as well as a more 
precise interpretation of findings as being related specifically to the cognitive load and not 
to differences in baseline. 

Second, even though many cognitive/behavioural studies have been able to 
successfully show differences between individuals with autism and typically developing 
individuals across a range of cognitive domains such as social cognition, reward and emotion 
processing, and executive functioning (Hull et al., 2017), there appears to exist pronounced 
behavioural, cognitive, and neural heterogeneity across individuals with autism (Brunsdon & 
Happé, 2014; Nunes et al., 2018; Wolfers et al., 2019). In order to parse the heterogeneous 
nature of autism neurobiology, we therefore apply normative modeling which will allow us 
to map atypicality of brain-derived features on an individual basis with respect to the 
distribution of those features in a group of similar typically developing controls. (Marquand 
et al., 2019). This approach has previously been applied in autism and yielded promising 
results (Bethlehem et al., 2020; Floris et al., 2020; Zabihi et al., 2019). This way, the analysis 
becomes more sensitive to idiosyncratic brain atypicalities.  
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In order to be able to characterise diversity in presentation across cognitive domains and 
individuals we leverage the large-scale resource that has specifically been designed to 
capture a large, heterogenous and thus naturalistic autism sample – the EU-AIMS/AIMS-2-
TRIALS Longitudinal European Autism Project (LEAP) (Charman et al., 2017a, 2017b; Loth et 
al., 2017). It is designed to provide deep-phenotyping by including both various 
neuroimaging measures (such as rs-fMRI and task-fMRI), an extensive cognitive battery 
capturing social cognition, reward and emotion processing, and executive functioning and 
in-depth behavioural phenotyping. Due to the presence of multiple task paradigms in the 
dataset we are able to contrast the spatial patterns of atypicality across these different 
tasks. We are especially interested in finding out whether posited patterns of task-specific 
functional connectome atypicality in autism are similar across cognitive domains – and 
conversely, how that similarity is expressed in typically developing controls. 

We assess whether the patterns of brain atypicality we find in individuals relate to metrics 
of autism at a behavioural level - thereby assessing for each task whether task-specific 
functional connectome atypicality carries information relevant to finding brain-behaviour 
relationships in autism. In order to relate high-dimensional brain data to behavioural data in 
a way without making prior assumptions on the most relevant features in a multivariate 
context, we will apply canonical correlation analysis (CCA) (Mihalik et al., 2020; Wang et al., 
2020) 

By integrating complementary functional modalities and combining the aforementioned 
novel tools such as task-potency and normative modelling, taking a unique look at 
identifying (a)typicality in the way individuals with autism engage with cognitive demands 
across tasks at the individual neural level is made possible. For the multiple fMRI tasks 
present in the dataset enable a crucial cross-task perspective towards gauging to what 
extent such atypicalities exist across different cognitive loads, and whether this pattern is 
different in autism from typically developing controls. 
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Materials and Methods  

Sample 

The dataset from the EU-AIMS/AIMS2TRIALS LEAP project was used for the current 
analyses – a large multi-centre European project with an aim to identify biomarkers in 
(Charman et al., 2017b, 2017a; Loth et al., 2017). Local ethical committees approved the 
study at their respective sites. Participant were extensively clinically phenotyped and 
underwent multiple MRI assessments. Data from participants with intellectual disability 
(IQ<75) was not included in the current project. Furthermore, we removed participants from 
the analysis on the basis of data quality using the following criteria: Participants were 
required to have acceptable overlap (>94%) with the MNI152 standard brain after image 
registration. We then excluded 57 participants due to poor overlap (<50%) with one or more 
particular regions from the ICP brain parcellation atlas. Participants were furthermore 
excluded on the basis of incidental findings and incomplete scans (N=18), and those in the 
top 5% in terms of head motion quantified through root mean square framewise 
displacement (N=27) (Jenkinson et al., 2002). The above criteria resulted in the inclusion of 
data for analyses from the following participants: 282 participants with autism (age range 
7.5-30.3 years; mean = 17.1; sd = 5.4; 72.3% male), and 221 typically developing controls 
(age range 6.9-29.8 years; mean = 17.0; sd = 5.5; 63.8% male). Not every participant was 
included in each analysis, for the reason that not all participants completed all fMRI scan 
sessions. See supplementary tables S1 through S5 for more details on the subsample 
characterization in each task.   

Behavioural data 

Total scores on seven behavioural variables were included in the multivariate 
canonical correlation analyses with the aim to broadly include information about the 
affected autism domains, co-occurring attention deficit hyperactivity disorder (ADHD), and 
adaptive functioning, as well as IQ. Three variables cover the primary affected domains in 
autism (social and communicative difficulties, repetitive/restricted behaviours and interests, 
and sensory atypicalities): Social Responsiveness Scale-2 (SRS) (Constantino, 2013) – a 
quantitative scale of autism symptomatology over the past 6 months, the Repetitive 
Behaviors Scale-revised (RBS) (Bodfish et al., 2000) – a scale which assesses more specifically 
restricted and repetitive behaviours, and the Short Sensory Profile (SSP) (Tomchek & Dunn, 
2007)  – a scale which assesses sensory processing atypicalities. Two further variables cover 
the ADHD related behaviours: ADHD hyperactivity/impulsivity, and ADHD inattentiveness. 
These are the two components from the DSM-5 ADHD rating scale for behaviour in the past 
six months. Furthermore, we included the Vineland-II Adaptive Behaviour Composite 
(Vineland) (Sparrow, 2011) which assesses the level of real-life everyday adaptive 
functioning. Finally, we included Full scale intelligence quotient (IQ) as measured by the 
Wechsler adult scale intelligence-2 (Wechsler et al., 2011). Missing data was imputed with 
random forest regression, as done in (Zabihi et al., 2019).  

fMRI data 

Participants performed a resting-state fMRI (rsfMRI) lasting approximately 6 
minutes, and one or more of the following task-fMRI scans: Hariri emotion processing 
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(Hariri) (Hariri et al., 2002), Flanker and Go-NoGo (Flanker) (Meyer-Lindenberg & 
Weinberger, 2006), social reward anticipation (Reward_s), non-social reward anticipation 
(Reward_ns) (Delmonte et al., 2012), and animated shapes theory of mind (ToM) (Castelli et 
al., 2002; White et al., 2011).  See supplementary information for brief descriptions of these 
tasks. Participants were instructed to relax and fixate on a cross presented on the screen for 
the duration of the rsfMRI scan. Additionally, each participant completed an anatomical 
scan for the purpose of registration. MRI data were acquired on 3T scanners at multiple 
sites in Europe - King’s College London (KCL), Radboud University Nijmegen Medical Centre 
(RUNMC), University Medical Centre Utrecht (UMCU), Autism Research Centre (ARC), 
University of Cambridge (UCAM), Central Institute of Mental Health, Mannheim (CIMH), and 
Karolinska Institutet (KI). Data from KI was not used due to a low number of participants. 
fMRI parameters are described in the supplementary information. 

fMRI preprocessing 

Preprocessing of both the resting state- and task-fMRI data was performed with 
tools from FSL (Jenkinson et al., 2012). The first five volumes for each acquisition were 
removed to allow for equilibration of the magnetization. To correct for head movement, we 
performed volume realignment to the middle volume using MCFLIRT. Next, global 4D mean 
intensity normalization and smoothing with a 6mm FWHM kernel were applied. ICA-AROMA 
was used to identify and remove secondary motion-related artefacts (Pruim, Mennes, 
Buitelaar, et al., 2015; Pruim, Mennes, van Rooij, et al., 2015). Next, signal from white 
matter and cerebrospinal fluid was regressed out and we applied a 0.01Hz high-pass filter. 
For each participant, we registered acquisitions to their respective high-resolution T1 
anatomical images by means of the Boundary-Based Registration tool from FSL-FLIRT 
(Jenkinson et al., 2002). The high-resolution T1 image belonging to each participant was 
registered to MNI152 space with FLIRT 12-degrees of freedom linear registration, and 
further refined using FNIRT non-linear registration (Andersson et al., 2007). We used the 
inverse of these transformations to take a brain atlas to the native space of each participant, 
where all further analyses were performed. ComBat was used to clean the data for linear 
site effects (Johnson et al., 2007)  

Task potency 

We used the hierarchical instantaneous connectivity parcellation (ICP) brain atlas 
with 168 brain regions (hierarchically situated in 11 larger-scale ’networks’) (van Oort et al., 
2017) to define brain regions in the native space of each subject. This was done for each of 
the five task-fMRI acquisitions – as well as for resting-state. For each participant, we 
calculated the regularized covariance (Ledoit & Wolf, 2012) between the average BOLD time 
series extracted from each brain region pair. We then estimated partial correlations from 
the covariance matrix and consecutively applied the Fisher-Z transformation. This provided 
for each participant a connectivity matrix of size 168x168 - one resting-state matrix and one 
task-fMRI matrix per task. The main gaussian from a mixture gaussian-gamma model that 
was fitted on the distribution of edge values for each individual matrix supplied us with 
parameterised information about said distribution (Bielczyk et al., 2017; Llera et al., 2016). 
We used these parameters to normalize the elements in each matrix. In order to produce 
individual matrices of connectivity modulations induced by the task, i.e., task potency, we 
subtracted each participant’s resting-state connectivity matrix from that participant’s task 
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connectivity matrix. The resulting matrices are interpreted as containing the connectivity 
modulations away from the resting-state baseline that the respective task induces in the 
brain – i.e. task-potency (Chauvin et al., 2019, 2021). 

Normative modelling 

A normative model of potency edge values was built against age and sex from typically 
developing participants using the nispat implementation in python (Marquand et al., 2016, 
2019). This model was used to predict the range of (a)typical edge values in out-of-sample 
typically developing participants as well as the autistic participants. Task potency values 
were thereby transformed to Z-scores quantifying the atypicality per edge of each 
individual’s task potency matrix elements given the normative reference. This was done 
separately in each task. Percentage of connectome deemed atypical was identified by 
thresholding the Z-scores at z=|±2.571|, nominally describing the 1% most extreme positive 
and negative values. The number of edges passing this threshold for each individual was 
then expressed as a percentage of the total amount of edges. Independent t-tests were 
performed on the percentages to assess case-control differences in the tasks. All p-values 
were FDR corrected for multiple comparisons across tasks. Cohen’s D was calculated for an 
effect size estimate in each task. 
 
Cross-task similarity 

 We investigate similarity in the patterns of atypicality across the tasks in autism as 
well as typically developing controls. This is done for both diagnostic groups separately by 
constructing a pearson correlation matrix from the mean edge-wise atypicality scores across 
tasks. Differences in covariance values are compared between the groups with the Wilcoxon 
signed rank test (Wilcoxon, 1945). 

Canonical correlation analysis 

Canonical correlation analysis (CCA) is a technique for finding latent linear 
multivariate relationships between two sets of data (Hotelling, 1936; Pedregosa et al., 2011; 
Smith et al., 2015). CCA analysis was done only in the individuals with autism in order to 
assess whether the variation in the task atypicality patterns relates also to phenotypic 
description in individuals with autism. The following processing steps were done separately 
for each task. For the behavioural side of the CCA analysis the seven variables previously 
described were used (SRS, RBS, SSP, ADHD hyperactivity/impulsivity, ADHD inattentiveness, 
Vineland, IQ). For the brain side of the CCA, principal components-based dimensionality 
reduction was applied to the brain subjects by edges data matrix in order to make the CCA 
well-posed. Aiming for a balance between model accuracy and complexity, the top 10 
variance components were kept for input in the CCA. Stability and generalizability of CCA 
parameters was assessed through 1000 different splits of 10-fold out-of-sample cross 
validation – building a ‘test’ distribution of the first canonical correlation as well as the 
paired CCA weights. Significance of the relationship found was assessed through building an 
out-of-sample null distribution of CCA correlations i.e., permutation testing. Subjects were 
randomly permuted (within scan site) to break up the original correlation structure and 
performing again 1000 different splits of 10-fold cross-validation. Non-spuriousness of the 
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original relationship found was assessed by assessing whether the mean of the test 
distribution is more extreme than the 95th percentile of the null distribution. 

Results 

General connectome atypicality levels 

Figure 1 shows for each task distributions of subjects for the percentage of total 
edges that pass the atypicality threshold at z=2.571 (1%, two tailed) in the autism and TD 
groups. We interpret this metric as a global subject-level atypicality score in each task. We 
identify significantly greater levels of atypical modulation in individuals with autism in each 
of the tasks. Flanker - Cohen’s d: 0.61, p<0.01. Hariri - d: 0.34, p<0.01. Monetary reward - d: 
0.19, p<0.01.  Social reward - d: 0.19, p<0.01. Theory of mind - d: 0.36, p<0.01. For full 
information see supplementary table T1. These findings provide a global view where the 
distribution of edges in autism is shifted towards greater atypicality in achieving the same 
cognitive states as represented by task-potency. 

Brain region atypicality levels 

For the next analysis we looked more closely at the spatial profile of connectivity 
modulation atypicality of autistic individuals with respect to typically developing controls. 
Figure 2 shows for each task the top 10% brain regions with the greatest atypicality scores in 
the autism group. To further identify the implicated cognitive terms associated with these 
regions, we used the Neurosynth online brain image decoder (October, 2021) to identify 
which networks and cognitive terms were represented in the atypicality data spatial pattern 
(Gorgolewski et al., 2015). Because atypicality scores were initially estimated at the edge 
level, we computed the mean absolute atypicality value for all edges in a region, in order to 
present an atypicality score per brain region. For the Hariri task the top matches were 
medial prefrontal cortex (r=0.141), auditory (r=0.132), and speech networks (r=0.13), and 
superior temporal cortex (r=0.119). In the Flanker task, the top matches between the 
pattern of atypicality and canonical brain networks were in order: medial prefrontal cortex 
(r=0.144), default mode network (r=0.12), and posterior cingulate (r=0.11). For the 
monetary reward task, the top matches were again medial prefrontal cortex (r=0.146), then 
somatosensory cortex (r=0.116), default mode network (r=0.115), and speech networks 
(r=0.11). For the social reward task, the matches consisted of medial prefrontal cortex 
(r=0.129), speech network (r=0.11), and default mode network (r=0.108). Finally, in the 
theory of mind task the spatial pattern of atypical modulation was most closely matched to 
the speech network (r=0.141), superior temporal cortex (r=0.14), and auditory cortex 
(r=0.139). The purely cognitive terms associated most with the atypicality scores were 
speech and listening/auditory regions across all tasks. 

Atypicality similarity across tasks 

Figure 3 shows the correlation matrix of the atypicality edge pattern across the 
different tasks in the typically developing controls and autism groups. Correlations are 
consistently across tasks higher for autism (mean correlation: 0.43) than for TD (mean 
correlation 0.07). Wilcoxon signed rank test of the difference shows a significant difference 
at p<0.002. 
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Canonical correlation analysis 

 We then investigated whether these spatial patterns of atypicality in the different 
tasks are also meaningfully related to behavioural measures of autism. This grounds the 
model into clinical relevance. Canonical correlation analyses found significant brain-
behaviour modes of covariation in each of the tasks. Loadings displayed very high stability 
under out-of-sample 10-fold cross-validation (correlations > 0.99). Figure 4 displays CCA 
loadings in the behavioural domain for the respective tasks. The pattern found is similar 
across tasks and follows a trend of autism severity (the SSP is scored inverted relative to the 
other metrics, with low scores indicating high impairment). The loadings are of comparable 
magnitude across the tasks with the exception of IQ, which does load in the modes revealed 
from the Hariri and Flanker tasks, but shows minimal involvement in (non)social reward and 
theory of mind. Figure 5 shows the top loading brain regions in the CCA. Figure 5 is 
effectively a rotation of the data from figure 2 under the added influence of autism 
behavioural scores. In this situation, for the Hariri task the top Neurosynth matches were 
anterior cingulate cortex (r=0.215), speech cortex (r=0.143), and anterior insula (r=0.134). 
For the Flanker task these were temporal cortex (r=0.152), language regions (r=0.148), and 
superior temporal cortex (r=0.148). In the monetary reward task they were visual cortex 
(r=0.185), occipital cortex (r=0.177), and motor cortex (r=0.162). In social reward the best 
matches were prefrontal cortex (r=0.135), linguistic regions (r=0.132), and motor cortex 
(r=0.132). Finally, for the theory of mind task they consisted of dorsolateral cortex (r=0.162), 
auditory cortex (r=0.145), and anterior cingulate (r=0.14). Supplementary figure 1 shows the 
difference between the data from figures 2 and 5 visualized. 

Discussion 

 Our aim in this study was to identify and map individual-level (a)typicality in neural 
patterns associated with processing across different cognitive domains. We employ a task 
potency approach (functional connectivity modulation away from resting state baseline) for 
individuals with autism as they engage in tasks with different cognitive demands.  

We show that autism is paired with greater individual-level global atypicality of brain 
connectivity modulation in each of the tasks under review. This could indicate broadly 
atypical deployment of neural resources under cognitive loads in autism and reiterates the 
necessity to move beyond simple group comparisons through the normative modelling 
approach. We further show that the deviations we model in the brain relate to behavioural 
measures of autism and found a robust and stable primary relationship in each of the tasks. 
The behavioural loadings of this relationship can furthermore be interpreted as describing a 
main axis of impairment in autism. 

The spatial patterns of atypicality in the autism group display high levels of cross-task 
correlation, which was mostly absent in the typically developing controls. This suggests a 
high level of similar atypicality in autism when dealing with the various cognitive demands. 
Interestingly, these findings in combination would suggest that while individuals with autism 
have a globally more atypical pattern of task potency relative to controls, the specific spatial 
pattern of this atypicality does show clear similarity across cognitive domains. In the context 
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of heterogeneous samples, it lends validity to the concept of an autism as a grouping from a 
functional neurobiological perspective. Research simultaneously investigating multiple tasks 
has previously been demonstrated in an ADHD cohort (Chauvin et al., 2021), yet has not 
been applied to autistic individuals. Given our findings this could be a promising target for 
future research in autism. A deeper investigation of why and how it is the case that cross-
task similarity in atypicalities are on average much more similar in autism than in controls, 
and how this might relate to literature of the lack of functional differentiation in autism 
(Nebel et al., 2012; Picci et al., 2016) is necessary. One explanation could be that the brain 
connectivity pattern of individuals with autism is less free to fluctuate and reorganise under 
different cognitive loads. This explains both the atypicality in relationship to controls as well 
as the similarity across tasks within autism as found in this paper. 

The findings in this paper need to be contextualised with regards to some 
limitations. The brain plots displayed in this paper should not be regarded as directly 
equivalent to activation maps. While areas highlighted in the figures do imply involvement 
of said area, this involvement is through the up- or downregulation of its coupling with 
other areas – not necessarily its own activation in isolation. fMRI-tasks used in the LEAP 
sample were chosen based on their relevance for autism research, however still other forms 
of cognitive engagement may be relevant for a complete cross-task perspective. 
Furthermore, though we view autism through individualized atypicality metrics, the 
normative range estimation necessitates that the typically developing participants are 
treated as a single group. This potentially masks subgroups in autism that are embedded in 
the typically developing range.  

To conclude, in this paper we have applied innovative techniques to aid 
understanding of autism brain connectivity heterogeneity in a multi-task setting. These 
techniques reveal that individuals with autism engage with tasks in a globally atypical way, 
but that the particular pattern of this atypicality is nevertheless similar across tasks. 
Atypicalities across tasks originate mostly from prefrontal cortex and default mode network 
regions, but also speech and auditory networks. We furthermore validated the behavioural 
relevance of these techniques through showing significant relationships between brain and 
behavioural data. The similarities between atypicalities across the affected cognitive 
domains in autism may hold the key to furthering our understanding of the autistic brain. 
Further, we demonstrated the added value of innovative tools, i.e., task-potency and 
normative modelling, with the goal to improve the interpretability of task-based fMRI 
functional connectivity and parse heterogeneity at the individual level in autism. We show 
that individuals with autism exhibit an atypical task-active functional connectome and we 
show that taking a cross-task perspective might help reveal a common pattern of atypicality 
in autism more broadly. 
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Figure 1. Violin plot of subject distributions for atypicality subject scores in each task. Independent t-tests are performed 

between the subject distributions for each task. Derived P-values (p), and Cohen’s D effect size (D) are displayed above the 

respective tasks. (** = p<0.01,  ***= p<0.001) 
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Figure 2. The top 10% brain regions with the greatest atypicality score in autism as summed over edges. From top to 

bottom: Hariri, Flanker, social reward, nonsocial reward, and theory of mind. 
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Figure 1. Heatmap of cross-task Pearson correlation of the edgewise group-level mean atypicality pattern in the brain for 

TD and ASD. Correlations are higher across the board for autism (mean correlation: 0.43), than for TD (mean correlation 

0.07). Wilcoxon signed rank test shows a significant difference at p<0.002. 
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Figure 4. Behavioural loadings for each task in the CCA analysis. 
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Figure 5. The top 10% brain regions with the greatest CCA loadings in autism as summed over edges. From top to bottom: 

Hariri, Flanker, social reward, nonsocial reward, and theory of mind. 
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Supplementary information 

 
 
fMRI scanning Parameters 

 
Structural images were obtained using a 5.5-minute MPRAGE sequence (TR=2300ms, 
TE=2.93ms, T1=900ms, voxels size=1.1x1.1x1.2mm, flip angle=9°, matrix size=256x256, 
FOV=270mm, 176 slices). The rsfMRI scan was acquired using a multi-echo planar imaging 
(ME-EPI) sequence; TR=2300ms, TE 12ms, 31ms, and 48ms (slight variations are present 
across centres), flip angle=80°, matrix size=64x64, in-plane resolution=3.8mm, FOV=240mm, 
33 axial slices, slice thickness/gap=3.8mm/0.4mm, volumes=200 (UMCU), 215 (KCL, CIMH), 
or 265 (RUNMC, UCAM).  

fMRI task brief descriptions 

Hariri: participants view a trio of faces and are asked to select one of two test faces that 
expresses the same emotion as the target face. 
 
Flanker: participants press a button corresponding to the direction of an arrow target. The 
target is flanked by stimuli that point either in the same (congruent) or opposite 
(incongruent) direction, or by neutral flankers. 
 
Social reward: An arrow cue indicates to the participants whether a given trial provides an 
opportunity for a win. Participants are then asked to make a fast button press in response to 
a target. Succesful eligible trials are rewarded with a happy face stimulus. 
 
Social reward: An arrow cue indicates to the participants whether a given trial provides an 
opportunity for a win. Participants are then asked to make a fast button press in response to 
a target. Succesful eligible trials are rewarded with a monetary stimulus. 
 
Theory of mind: participants are presented with short videos in which two triangles either 
move randomly, in a goal-directed manner, or in a goal directed manner that involves that 
manipulation of thoughts and feelings of the other triangle. Participants are asked to 
categorize the videos with one of these three labels. 
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Subsample characterizations per task 

 
Table S1 (hariri) 
variable ASD mean(std) [min-max] TD mean(std) [min-max] post hoc 

age 18.22(5.74) [7.58-30.0] 17.55(5.49) [6.89-30.0] ns 

IQ 106.93(16.29) [63.18-148.0] 108.03(11.99) [76.82-134.0] ns 

SRS social responsiveness 68.15(11.87) [43.0-95.0] 54.75(10.89) [37.0-67.0] ASD>TD 

RBS repetitive behaviour 13.83(13.21) [0.0-90.0] 3.6(3.87) [0.0-23.0] ASD>TD 

SSP sensory profile 146.28(24.03) [53.0-190.0] 166.04(15.55) [138.0-190.0] ASD<TD 

ADHD hyperimpulsivity 2.15(2.64) [0.0-9.0] 0.52(1.05) [0.0-6.0] ASD>TD 

ADHD inattentiveness 3.79(2.86) [0.0-9.0] 1.86(1.69) [0.0-7.0] ASD>TD 

VL adaptive functioning 73.19(12.25) [20.0-117.0] 79.39(11.73) [73.0-126.0] ASD<TD 

 
Table S2 (flanker) 
variable ASD mean(std) [min-max] TD mean(std) [min-max] post hoc 

age 19.16(4.77) [12.07-30.0] 18.75(4.61) [11.18-30.0] ns 

IQ 104.86(16.54) [63.18-148.0] 108.02(11.58) [76.82-133.0] ns 

SRS social responsiveness 68.19(11.7) [43.0-95.0] 55.6(10.83) [37.0-67.0] ASD>TD 

RBS repetitive behaviour 14.18(13.43) [0.0-90.0] 3.78(3.81) [0.0-23.0] ASD>TD 

SSP sensory profile 147.78(23.29) [53.0-190.0] 165.44(15.63) [146.0-190.0] ASD<TD 

ADHD hyperimpulsivity 2.0(2.42) [0.0-9.0] 0.5(0.96) [0.0-6.0] ASD>TD 

ADHD inattentiveness 3.81(3.03) [0.0-9.0] 2.07(1.68) [0.0-7.0] ASD>TD 

VL adaptive functioning 71.67(11.46) [20.0-101.0] 75.06(3.84) [73.0-114.0] ASD<TD 

 
Table S3 (social reward) 
variable ASD mean(std) [min-max] TD mean(std) [min-max] post hoc 

age 16.95(5.51) [7.48-30.0] 16.71(5.61) [6.89-30.0] ns 

IQ 101.06(18.62) [59.0-148.0] 106.8(13.82) [70.41-142.0] ASD<TD 

SRS social responsiveness 69.54(11.43) [43.0-95.0] 54.76(10.84) [37.0-73.0] ASD>TD 

RBS repetitive behaviour 15.27(13.48) [0.0-90.0] 3.47(3.87) [0.0-23.0] ASD>TD 

SSP sensory profile 143.88(23.1) [53.0-190.0] 166.47(15.26) [138.0-190.0] ASD<TD 

ADHD hyperimpulsivity 2.38(2.59) [0.0-9.0] 0.59(1.23) [0.0-7.0] ASD>TD 

ADHD inattentiveness 4.16(3.0) [0.0-9.0] 1.88(1.71) [0.0-7.0] ASD>TD 

VL adaptive functioning 72.62(12.11) [20.0-117.0] 81.58(13.69) [66.0-127.0] ASD<TD 
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Table S4 (monetary reward) 
variable ASD mean(std) [min-max] TD mean(std) [min-max] post hoc 

age 16.99(5.49) [7.48-30.0] 16.71(5.7) [6.89-30.0] ns 

IQ 100.9(18.56) [59.0-148.0] 106.92(13.95) [70.41-142.0] ASD<TD 

SRS social responsiveness 69.59(11.4) [43.0-95.0] 54.75(10.74) [37.0-71.0] ASD>TD 

RBS repetitive behaviour 15.14(13.36) [0.0-90.0] 3.51(3.86) [0.0-23.0] ASD>TD 

SSP sensory profile 144.18(22.73) [53.0-190.0] 166.28(15.18) [138.0-190.0] ASD<TD 

ADHD hyperimpulsivity 2.38(2.59) [0.0-9.0] 0.54(1.17) [0.0-7.0] ASD>TD 

ADHD inattentiveness 4.13(2.97) [0.0-9.0] 1.81(1.64) [0.0-6.0] ASD>TD 

VL adaptive functioning 72.67(12.03) [20.0-117.0] 81.72(13.77) [66.0-127.0] ASD<TD 

 
Table S5 (theory of mind) 
variable ASD mean(std) [min-max] TD mean(std) [min-max] post hoc 

age 16.97(5.75) [7.48-30.0] 16.64(5.47) [6.89-30.0] ns 

IQ 105.04(16.37) [63.18-148.0] 108.22(12.11) [74.0-134.0] ASD<TD 

SRS social responsiveness 69.33(11.57) [43.0-95.0] 54.31(10.87) [37.0-73.0] ASD>TD 

RBS repetitive behaviour 14.65(12.7) [0.0-90.0] 3.33(3.82) [0.0-23.0] ASD>TD 

SSP sensory profile 144.76(23.56) [53.0-190.0] 166.94(15.41) [138.0-190.0] ASD<TD 

ADHD hyperimpulsivity 2.41(2.67) [0.0-9.0] 0.51(1.05) [0.0-6.0] ASD>TD 

ADHD inattentiveness 4.11(2.98) [0.0-9.0] 1.77(1.67) [0.0-7.0] ASD>TD 

VL adaptive functioning 73.69(11.67) [20.0-117.0] 81.29(13.05) [73.0-126.0] ASD<TD 

 
 
 
Full statistical values for figure 1 

 
Table T1 
 HARIRI FLANKER REWARD_M REWARD_S TOM 

T-STATISTIC -6,674 -3,907 -2,702 -2,805 -4,668 
P-VALUE 1.592e-10 0,000117 0,00716 0,00530 4,338e-6 
COHEN’S D 0,61 0,33 0,19 0,2 0,36 
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Supplementary figures 

 

 

Figure supp 1. Visual analytical pipeline for task-potency 

 

 

 

 

 

 

Figure supp 2. The top 10% brain regions with the greatest difference between normative modeling atypicality scores and 

CCA loadings in autism as summed over edges. From top to bottom: Hariri, Flanker, social reward, nonsocial reward, and 

theory of mind. 
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