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Abstract

Modeling biological mechanisms is a key for disease understanding and drug-target identifica-
tion. However, formulating quantitative models in the field of Alzheimer’s Disease is challenged
by a lack of detailed knowledge of relevant biochemical processes. Additionally, fitting dif-
ferential equation systems usually requires time resolved data and the possibility to perform
intervention experiments, which is difficult in neurological disorders. This work addresses these
challenges by employing the recently published Variational Autoencoder Modular Bayesian Net-
works (VAMBN) method, which we here trained on combined clinical and patient level gene
expression data while incorporating a disease focused knowledge graph. Our approach, called
iVAMBN, resulted in a quantitative model that allowed us to simulate a down-expression of
the putative drug target CD33, including potential impact on cognitive impairment and brain
pathophysiology. Experimental validation demonstrated a high overlap of molecular mechanism
predicted to be altered by CD33 perturbation with cell line data. Altogether, our modeling

approach may help to select promising drug targets.
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» Author Summary

20 For the last 20 years the field of Alzheimer’s Disease (AD) is marked by a series of continuous
30 failures to deliver demonstrably effective medications to patients. This is also highlighted by the
a1 highly controversial recent approval of Aduhelm (Biogen) by the FDA, which is now investigated
sz internally due to the lack of clear efficacy.

33 One of the reasons for the continuous failure of trials in AD is the choice of the wrong target
sa  mechanism. In essence there is a lack of understanding, how targeting a certain molecule would
s affect cognitive impairment in human. One way to address this issue is the development of
3e quantitative system level models connecting the molecular level with the phenotype. However,
sz formulating such models in the field of Alzheimer’s Disease is challenged by a lack of detailed
s knowledge of relevant biochemical processes and the connection of molecular mechanisms to
s cognitive impairment. Additionally, fitting of differential equation systems, which are often
20 used in systems biology, requires time resolved data and the possibility to perform intervention
a1 experiments, which is difficult in neurological disorders due to the lack of realistic model systems.
a2 Our work addresses these challenges by employing a novel hybrid Artificial Intelligence (AI)
a3 approach combining variational autoencoders with Bayesian Networks. Our proposed approach,
s« named Integrative Variational Autoencoder Modular Bayesian Networks (iVAMBN), was trained
«s on combined clinical and patient level gene expression data while incorporating a disease focused
s knowledge graph. Our method resulted in an interpretable, quantitative model. It showed
47 connections between various biological mechanisms playing a role in AD. Furthermore, iVAMBN
as directly connected the molecular level to the disease phenotype. Our model allowed us to simulate
s a down-expression of the putative drug target CD33. Results showed a significantly increased
so cognition and predicted perturbation of a number of biological mechanisms. We experimen-
51 tally validated these predictions using gene expression data from a knock-out THP-1 monocyte
sz cell line. This experiment confirmed our model predictions up to a very high extend. To our
53 knowledge we thus developed the first experimentally validated, quantitative, multi-scale model

sa connecting molecular mechanisms with clinical outcomes in the AD field.
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s Introduction

ss  Alzheimer’s Disease (AD) is a neurodegenerative disorder affecting about 50 million people world-
sz wide, resulting in the inability to perform necessary, daily activities before leading to an often
ss  early death |1]. Despite decades of research and more than 2000 clinical studies listed on Clin-
so icalTrials.gov, to date there is no cure, and all existing treatments are purely symptomatic [1].
o New disease modifying treatments are urgently needed, but require a better mechanistic under-
e1 standing of the disease.

62 A common starting point in this context is to map out the existing knowledge landscape
es about the disease. In the past few decades, a large number of databases have been developed
e in the bioinformatics community, such as databases for biological pathways (like KEGG |2],
es PathwayCommons [3], WikiPathways |4], Reactome [5]), drug-target interactions (like Open-
e Targets [6], Therapeutic Targets Database [7]), disease-gene associations (like DisGeNET |§])
ez or protein-protein interactions (like STRING [9], IntAct [10]). All these databases simplify the
es usage of the respective knowledge for algorithms and models, especially in the field of drug tar-
oo get identification. Moreover, none of these databases have been compiled in a disease focused
7o manner. The Biological Expression Language (BEL) provides this opportunity and can be used
71 to represent literature-derived, disease focused knowledge in the form of attributed graphs in a
72 precise manner. For AD a knowledge graph has been published in [11] and represents the manu-
73 ally curated, disease focused mechanistic interplay between genetic variants, proteins, biological
7a  processes and pathways described in the literature, enabling the user to computationally query
7z and integrate knowledge graphs into drug target identification algorithms.

76 One of the interesting molecules in the AD field is CD33, a transmembrane receptor protein
7z expressed primarily in myeloid lineage cells. It has been associated with decreased risk of AD
7s in GWAS studies |12H18] and discussed as a potential therapeutic target, for example via im-
7o munotherapy [14]. In an AD mouse model, a knockout of CD33 mitigated amyloid-53 clearance
so and improved cognition [13}[17,/18]. Similarly, a positive effect on amyloid-3 phagocytosis could
s1  be observed in CD33 knock-out THP-1 macrophages |16]. In humans a correlation between
s2 (D33, cognition and amyloid clearance is known, however, the concrete underlying mechanisms

s3 are still not well understood. There is an ongoing clinical trial that is testing the effects of a CD33
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sa inhibitor in patients with mild to moderate AD (NCT03822208). Along those lines, the EU-wide
s PHAGO project (https://www.phago.eu) funded via the Innovative Medicines Initiatives aimed
ss to develop tools and methods to study the functioning of CD33 and related pathways in AD in
sz order to facilitate decisions about potential drug development programs.

88 While graphs are useful for describing the disease focused knowledge landscape about AD, the
se principal incompleteness of disease focused biological knowledge may result in disagreements to
90 observed data. Moreover, graphs do not allow to produce quantitative insights and predictions.
o1 For this purpose ordinary (ODEs) and partial differential equations (PDEs) are frequently used
o2 in systems biology and systems medicine, as they are able to describe biological mechanisms in
o3 a quantitative way. However, their formulation requires a detailed understanding of biochemical
oa reactions, which in the AD field is only available for specific processes, like for example amyloid-$3
os aggregation [19,)20]. Moreover, fitting differential equations usually requires time resolved data
o and the possibility to perform intervention experiments (as knock-downs or stimulation), which
o7 is challenged by the fact that cell lines and mouse models in the AD field can most likely only
es mimic specific aspects of the human disease [21H23].

00 A principle alternative to differential equation systems are probabilistic graphical models and
w0 in particular Bayesian Networks (BNs), which are quantitative as well. However, standard BN
101 implementations require normally or multinomially distributed data, which is not the case in
102 many applications. Furthermore, structure learning of BNs is an NP hard problem, where the
103 number of possible network structures grows super-exponentially with the number of nodes in
10 the network [24]. Hence, modeling higher dimensional data with a BN raises severe concerns
105 regarding structure identifiability.

106 Altogether, these challenges lead to the fact that the AD field lacks a comprehensive quanti-
107 tative model of the interplay between relevant molecules and biological processes, including the
10s  role of CD33, up to the phenotype level.

100 In this work, we developed a - to our knowledge - first quantitative, multi-scale model fo-
110 cused on the multitude of mechanisms governing the CD33 molecule. Our model spans a variety
11 of modalities, including gene expression, brain pathophysiology, demographic information and
112 cognition scores. To address the challenges mentioned before, we started with a disease focused

13 knowledge graph reconstruction, which we clustered into modules to significantly reduce dimen-
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114 sionality. In the following we use the term "module" to denote a set of objects grouped together.
15 Subsequently, we relied on our recently published Variational Autoencoder Modular Bayesian
e Network (VAMBN) algorithm [25], which is a hybrid Artificial Intelligence (AI) approach com-
1z bining variational autoencoders [26] with modular Bayesian Networks [27], which is able to model
us arbitrary statistical distributions. We trained VAMBN on joint clinical and patient level gene ex-
110 pression data while employing a clustered knowledge graph reflecting incomplete prior knowledge
120 about disease mechanisms and their interplay. A simulated knock-down of CD33 and predicted
122 downstream effects could be experimentally validated with gene expression data from a cell line.
122 Overall, we believe that our work helps to move closer towards a systemic and quantitative un-
123 derstanding of the disease, which is the prerequisite for finding urgently needed novel therapeutic

124 options.

= Results

126 In this work, we relied on AD patient data from the Religious Orders Study and Memory and
12z Aging Project (ROSMAP) [28-30] for model training and the Mayo RNAseq Study (Mayo) [31]
12s  for external validation. An overview about clinical characteristics of the patients in these studies

120 can be found in Table[d]

130 Overview about Modeling Strategy

121 Figure [I] shows an overview about our modeling strategy, which we call integrative VAMBN
132 (iIVAMBN), combining clinical and patient-level gene expression data with disease focused knowl-
133 edge graphs. The first step of our workflow compiles an AD focused knowledge graph describing
13a  cause and effect relationships between biological processes, genes and pathologies. The generated
135 graph consisted of 383 nodes and 607 edges. The graph was subsequently clustered into mod-
136 ules with the help of the Markov Clustering algorithm [32] to significantly reduce the number of
137 variables for subsequent modeling steps. Genes within modules were annotated with AD disease
138 mechanisms coming from the NeuroMMSig gene set collection [33].

130 Using patient-level clinical and gene expression data from post-mortem cerebral cortex tis-

140 sues, in a second step the VAMBN algorithm was employed to quantitatively model relation-
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Table 1: Patient statistics. Shown are the number of patients, their age in years (with mean
and standard deviation), sex, APOE genotype (binary encoding for at least one present E4 allele),
MMSE score (with mean and sd) and Braak stage.

ROSMAP Mayo
no. patients 221 82
age 87.95 + 3.38 | 82.66 + 7.61

sex

male 68 33

female 153 49
APOE

0 138 39

1 83 43

MMSE 13.16 + 8.38 -
Braak

1 7 -

2 6 -

3 42 -

4 71 6

5 88 35

6 7 41

a1 ships between gene modules as well as phenotype related scores (Mini-Mental State Examination
1= (MMSE), Braak staging) and demographic features based on ROSMAP data. ROSMAP was
13 chosen for training of the algorithm, because of the comparably large number of patients (more
s than 200) and available MMSE plus Braak scores. VAMBN takes as input patient-level data
a5 hierarchically organized into pre-defined modules (here: either gene modules or a phenotype re-
16 lated module including i.e. MMSE plus Braak stages), original features (here: demographic and
1z clinical variables like age, sex, APOE genotype, and brain region) and prior knowledge regarding
1as  their possible connections. The output is a probabilistic graphical model describing connections
140 between modules and original features. There is a per-patient score for each module, and each
150 of these scores can be further decoded into feature-level gene expression and phenotype data,
151 respectively.

152 In the third step of our strategy we evaluated, whether our iVAMBN model could also explain
153 gene expression data from the Mayo study. Notably, at this step we only considered the Braak
1sa stage in the phenotype module, because the Mayo study does not report MMSE scores. For that
15 purpose we first re-trained our iVAMBN model on ROSMAP while leaving out MMSE scores

156 and then assessed the marginal log-likelihood of the modified model on the Mayo dataset. We
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Figure 1: The Integrative VAMBN (iVAMBN) approach. The iVAMBN approach inte-
grates gene expression data, clinical and patho-physiological (phenotype) measures (bottom left)
into a joint quantitative, probabilistic graphical model. The method initially uses a knowledge
graph (top left) for defining modules and for informing about potential connections between
them. In a second step, a representation of each module using a Heterogeneous Incomplete
Variational Autoencoder (HI-VAE) is learned. In a third step a modular Bayesian Network be-
tween autoencoded modules is learned while taking into account the information derived from
the knowledge graph. Finally, the iVAMBN model is used to simulate gene perturbation (top
right).

157 then tested the marginal log-likelihood of the true model against randomly permuted versions
158 of the learned probabilistic graph. This allowed us to assess, in how far the model learned on
155 ROSMAP could explain Mayo data better than expected by pure chance.

160 For the last step, we used our iVAMBN model trained on ROSMAP to simulate several
161 therapeutic interventions, including a CD33 inhibition. Based on available data, we were able
162 to experimentally validate the predicted effects of a CD33 inhibition using CD33 knockout gene
163 expression data from a THP-1 monocyte cell line. More details about the entire iVAMBN
16a  approach can be found in the Methods section of this paper.

165 In the following we elaborate on the results obtained in each of these different steps, while

166 technical details are provided in the Methods part of this article.
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1 Knowledge Graph Compilation

16 As outlined in the previous section, our modeling approach started with the compilation and
160 Markov clustering of a knowledge graph. The Markov clustering resulted in 32 modules, including
170 4 single gene modules, namely CD33, HSPB2, HSPB3, and MIR101-1. Most of the non-single
iz2 - gene modules comprised only two genes, while others had multiple combinations, like the GABA
172 subgraph module with 289 genes. The exact number of genes clustered together as well as the
173 result of a statistical over-representation analysis (hypergeometric test) using the AD focused
17a - gene set collection NeuroMMSig 33| can be found in Supplementary Table S1. A complete list
17s  of molecules within each module can be found in Supplementary Table S2. The modules were
176 considered as nodes of a graph between them, where an edge was set between modules M7, Mo,
17z if in the original knowledge graph there was at least one gene in M; and one in M, that was

178 connected via a directed path. The resulting (acyclic) module graph is shown in Figure S1.

s Integrative Variational Autoencoder Modular Bayesian Network Model

10 Integrative VAMBN combines the advantages of Bayesian Networks with the capabilities of
181 variational autoencoders, more specifically Heterogeneous Incomplete Variational Autoencoders
1.2 (HI-VAESs) [34]. Briefly, the idea is to initially learn a low dimensional Gaussian representation
183 of features mapping to each of the defined modules. HI-VAEs differ from classical variational
18a autoencoders in the sense that they can be applied to heterogeneous input data of different
1ss  numerical scales, potentially containing missing values. In a second step a Bayesian Network
186 structure is then learned over the low dimensional representations of modules, resulting in a
15z modular Bayesian Network. More details are presented in the Methods part of this paper and
18 in |25)].

180 We here trained an iVAMBN model using the identified modules (i.e. feature groups in the
10 original data) as - potentially multivariate - nodes of a probabilistic graphical model. Note-
101 worthy exceptions are described in detail in Supplementary Note S1. In cases where multiple
102 features mapto one and the same module (i.e. the corresponding node / random variable in
103 the probabilistic graphical model is multivariate), our method initially learns a low dimensional

10a representation using a HI-VAE. Second, we learned the Bayesian Network structure connecting
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15 these modules. At this stage it is possible to provide information about possible connections
10 between modules given in the knowledge derived module graph (Supplementary Figure S1). We

107 tested three different strategies to incorporate the information provided in the module graph:

108 o completely data driven: the entire Bayesian Network was only learned from data,

100 e knowledge informed: the module graph was either used to only initialize Bayesian Network
200 structure learning, to enforce / white list the existence of specific edges, or used for a
201 combination of both, and

202 e completely knowledge driven: strictly constrain edges between modules to those provided
203 via the module graph, and additionally learned ones are only allowed to connect cognition
204 scores, patho-physiological stages, and demographic features. All other possible edges are
205 black listed, i.e. not allowed.

206 A systematic comparison of these strategies via a cross-validation yielded a better performance

207 of the second strategy (knowledge informed), in which we used the module graph to white list
20e  edges and to initialize a greedy hill climbing based structure learning, see details in Methods
200 Section and Supplementary Note S2. That means, iVAMBN was allowed to add additional
210 edges, if the data provided according evidence.

211 We repeated the knowledge informed modular Bayesian Network learning 1000 times on
212 random bootstrap sub-samples of the data drawn with replacement, hence allowing to quantify
213 the statistical confidence of each inferred edge. The results of this analysis can be found in
214 Supplementary Table S3.

215 In the following we only focus on the 130 edges that were found in at least 40% of the
216 1000 modular Bayesian Network reconstructions (Figure . Notably, this threshold was only
217z chosen for better visualization purposes and to limit the subsequent discussion. Edges with
218 lower bootstrap probability might also exist in reality despite lower statistical confidence. Nodes
210 corresponding to sex, APOE status, and brain region were not connected to any other nodes
220 with sufficient statistical confidence, meaning that these features might have no impact on the
221 rest of the network. Nodes with only outgoing edges in the network (i.e. source nodes) were:

222 the years of education, the age, and the single gene NAV3. The GABA subgraph (containing
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223 more than 280 genes) and the phenotype module were leaf nodes, meaning they had no outgoing
224 edges. Only patient age had a direct influence on CD33. CD33 had eight directly influenced
225 molecular mechanisms: the GABA subgraph, the Amyloidogenic subgraph (containing genes
226 SRC and APBAZ2), the Acetylcholine signaling subgraph (containing genes ACHE and PRNP),
227 the Prostaglandin subgraph, and the Chaperone subgraph (containing genes HSPB6, CXCLS,
228 and CCR2). Also, the single gene module, TRAF1, was a child of CD33. Altogether, CD33 had

220 a predicted causal influence on every node, except for the source nodes.

AGER | NFATC1 | CSF2

) _ GDNF | CASP3
Gamma secretase subgraph Matrix metalloproteinase subgraph oiquitin degradation subgraph
GPR3 | ARRB2
Endoplasmic reticulum-Golgi protein export GRIN1 4 DLG4 NAV3
PPARG 9
CASP7
JAK-STAT signaling subgraph Tumor necrosis factor subgraph TGF-Beta subgraph
Epigenetic modification-subgraph GABA subgraph
Amyloidogenic subgraph REL
1
Calpastatin-calpain subgraph 1 1
Chaperone subgraph
1 Toll like receptor subgraph
Acetylcholine signaling subgraph
TRAF1
Low density lipoprotein subgraph TICAM1 | RALBP1
081 0.87

Prostaglandin subgraph

. 043 047 ‘

Figure 2: Network representation of iVAMBN model for ROSMAP data. Shown are
the learned (grey) and knowledge-derived (green) edges between gene modules (purple nodes),
single gene modules (green) and CD33 and phenotype module (red). All these edges appeared
with bootstrap frequency > 0.4. The newly inferred shortest path between CD33 and phenotype
is displayed in orange. Other edges with bootstrap frequency > 0.4 have been removed for

visualization purposes, except for those six edges which were trained with a bootstrap confidence
of 1.

230 Model reveals path between CD33 and disease phenotype

2s1 As shown in Figure [2] the shortest path between CD33 and the disease phenotype was observed

232 through the Prostaglandin subgraph. All the edges from this connection were newly learned

10
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233 from data, meaning that they had not previously been identified in the knowledge graph. Nev-
23a  ertheless, these correlations have been previously reported in the literature: Prostaglandines are
235 eicosanoides, which were found to play a role in memory learning and neuroinflammation [3536].
236 A major producer is activated microglia, which itself is activated through amyloid-5 and pro-
237 duces inflammatory cytokines [37]. Currently, microglia and their effects on AD is a major focus
238 in the field of research [38,[39]. Also, PGD2, a prostaglandin mainly synthesized in neurons,
230 was previously found to be upregulated in AD patients [40]. Pairwise correlation plots between
2a0 the genes of the prostaglandin pathway and CD33 or phenotype can be found in Supplementary
21 Figure S3.

242 In total, 130 of the 162 edges of the bootstrapped iVAMBN model were newly learned from
2a3  the data and had not been previously identified within the literature derived knowledge graph.
242 Out of these 130 edges, six edges had a bootstrap confidence of 100%, meaning that they were
2as  learned consistently from 1000 random sub-samples of the data. A list of these edges can be
2as  found in Table 2l

Table 2: Consistently newly learned edges in iVAMBN model. All edges were found in
each of 1000 network reconstructions from randomly subsampled data.

from ‘ to
DLG4 GRIN1
Tumor necrosis factor subgraph TRAF1
Toll like receptor subgraph REL
Low density lipoprotein subgraph | Calpastatin-calpain subgraph
Prostaglandin subgraph CASPT7
NAV3 TGF-Beta subgraph
247 These high confidence edges demonstrated strong pairwise correlations between connected

2 modules. NAV3, for example, had a strong negative correlation with MAVS, a member of the
200  TGF-Beta subgraph module (Figureleft). In contrast to that SRSF10 and CREB1, members of
20 the Low density lipoprotein subgraph and Calpastatin-calpain subgraph modules, were strongly
a1 positive correlated (Figure [3|right).

252 Although no direct correlation between NAV3 and MAVS is known, their effects are both
263 linked to AD. NAV3, which is predominantly expressed in the nervous system, is increased in
asa  AD patients [41], while MAVS encodes a gene that is needed for the expression of beta interferon

255 and thus contributes to antiviral innate immunity and may protect the cells from apoptosis [42].

11
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6 . R =-0.7852 4
Cl =[-0.89;-0.61]
p=09.23e-46

MAVS
~
CREB1
)

R =0.7887
A CI=[0.62;0.89]
-2 -4 p =2.01e-46
-25 00 25 -25 00 25
NAV3 SRSF10

Figure 3: Quantitative relationships learned by iVAMBN. Each correlation (R) is shown
along with its confidence interval (CI) and multiple testing adjusted p-value. Left: Correlation
of NAV3 with TGF-Beta subgraph module member MAVS. Right: Correlation of Low density
lipoprotein subgraph module member SRSF10 with CREB1, a member of the Calpastatin-calpain
subgraph module. Further plots can be found in Supplementary Figures S3 and S4.

26 Logether with the strong negative correlation seen in the data, one can hypothesize that the
257 increased level of NAV3 in AD leads to a decreased level of MAVS, which elevates apoptosis of
2ss  the cells.

259 The strong positive correlation between SRSF10 and CREBI linked the Low density lipopro-
260 tein (LDL) and Calpastatin-calpain subgraphs. LDL is a major APOE receptor, which is the
261 strongest genetic factor for AD, where different alleles are either risk or protective alleles [43].
262 APOE is also linked to amyloid-3, whose production is increased with elevated activity of calpain
263 due to the decreased levels of calpastatin. Calpastatin is also linked to synaptic dysfunction and
26 to the tau pathology of AD [44,/45]. Tau is another protein that accumulates in the brains of
26s  AD patients. The exact underlying mechanisms here are still unknown, but regulatory mech-
266 anisms of calpain are highly influenced by Calcium (Ca?") influx and increased intracellular
267 calcium levels are a main reason for the loss of neuronal function in AD [44H46]. Changes in the

26 Calpastatin-calpain mechanism may therefore also lead to reduced amyloid-3 deposition.

0 Hxternal Validation of iVAMBN model

270 We assessed the ability of the model to explain normalized gene expression data from an inde-
271 pendent study, Mayo. Notably, all gene expression data was from the same brain region, namely

272 the cerebral cortex. However, Mayo does not contain MMSE scores. Therefore, we first trained

12
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273 a modified version of our iVAMBN model on ROSMAP, which only contained the Braak score in
274 the phenotype module, but otherwise had the edges shown in Figure[2] The full list of edges of
27s  this model together with their corresponding bootstrap confidences can be found in Supplemen-
are  tary Table S3. We then explored the marginal log-likelihood log p(data | graph) of the model on
277 the Mayo dataset and subtracted the marginal log-likelihood obtained by 1000 random permu-
a7 tations of the network (Figure [4]), resulting in an empirical p-value. This showed that our model
270 could explain Mayo gene expression data significantly better than randomly permuted networks
280 (p = 0.035) despite the clinical differences between patients in both studies shown in Table

281 In addition, we trained a separate iVAMBN model on MSBB data and explored the overlap
22 with the ROSMAP model at different thresholds of the bootstrap confidence (Supplementary
2s3  Figure S5). At the previously chosen 40% threshold the overlap of the newly learned edges
2sa  contained in the iVAMBN models trained on ROSMAP and MSBB was statistically significant,

2ss  even if edge directions were considered (hypergeometric test, p < le — 38).

3.0

-log10(p)
- N N
wn = 5]

=
o
)

o
[t
!

0.0 -

ROSMAP Mayo
data

Figure 4: External model validation. Statistical significance —logio(p) value of the marginal
log-likelihood of the model when evaluated on the training data (ROSMAP) and external vali-
dation data (Mayo).
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2e CD33 Down-expression Simulation

2s7 10 understand the potential systemic consequences of a therapeutic intervention into CD33 we
2ss  simulated its down-expression. This was achieved by a counterfactual down-expression (here: 9-
200 fold) of CD33 in every patient (Figure[5| (top left)). Due to the fact that iVAMBN is a quantitative
200 model, associated downstream consequences on biological mechanisms and phenotype could be
201 predicted in every patient (see examples in Figure . CD33 down-expression simulation (left)
202 results in higher scores of the prostaglandin pathway module (right).

203 In addition, iVAMBN predicted a significant increase of MMSE scores (p < 0.001, Figure |§|
200 (left)), and also a significant decrease of Braak stages (p < 0.001, Figure [] (right)). That means
205 patients are not only predicted to improve the specific cognitive abilities tested by MMSE, but

206 are also predicted to improve brain pathophysiology.

5 % b % 5 5 3
CD33 Prostaglandin subgraph

Figure 5: Module distributions in original and simulated CD33 down-expression.
The blue curve describes the original distribution, while the red one describes the CD33 down-
expression scenario. CD33 down-expression simulation (left) results in lower scores of the
prostaglandin pathway module (right).

207 CD33 down-expression reveals significant changes in many mechanisms

20  Our iVAMBN model predicted significant effects on gene expression of 28 mechanisms and in-
200 dividual genes, respectively (Table . Significant changes were, for example, predicted for the
300 genes CASP7 and TRAF7, and the prostaglandin and calpastatin-calpain mechanisms. But
so1  also the amyloidogenic mechanism is significantly differential expressed in a CD33 knock-down
302 scenario.

303 Decreased expression of the amyloidogenic mechanism will thus result in patients with less
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Figure 6: Predicted changes on phenotype (MMSE and Braak stages) as a conse-
quence of CD33 down-expression. Distribution of MMSE and Braak stages in CD33 origi-
nal (blue) and down-expressed (red) patients shows a significant improvement of scores and thus
cognition as well as brain pathophysiology.

s0a amyloid-5 deposition. While this connection of the amyloidogenic mechanism and AD is clear,
s0s  others need to be further explored.

306 The link between Calpastatin-calpain mechanism and AD was already described earlier. The
307 key aspect is its negative influence on amyloid-5 deposition.

308 PGD2, a prostaglandin mainly synthesized in neurons, was previously found to be upregulated
300 in AD patients . Prostaglandines are eicosanoide, which were found to play a role in memory
s10  learning and neuroinflammation . A major producer is activated microglia, which itself
s11 is activated through amyloid-8 and produces inflammatory cytokines . Currently, microglia
s12  and their effects on AD is a major focus in the field of research . Again, down-expression
s13 of the prostaglandin may result in reduced amyloid-5 deposition. Altogether, the vast majority
s1a Of significantly differential expressed gene sets was highly linked to AD through the amyloid-3

s1is  cascade.

1.6 Experimental validation with cell line data

siz - We checked whether our iVAMBN based predictions experimentally agreed with cell line gene
a1 expression data, specifically reflecting wild type (WT) and CD33 knock-out (KO). Our analysis
a0 (see details in Methods part) revealed significant changes of 23 AD associated mechanisms and
320 genes in KO versus WT. Interestingly, 19 out of these 23 mechanisms overlapped with those

s21 predicted by iVAMBN (Table . Likewise, iVAMBN predicted significant changes of 22 genes
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Table 3: Statistical significance of gene modules. The table shows results of a global
test [47], assessing the differential gene set expression of each gene module between WT and
down-expression/KO of CD33. P-values of the test within simulated scenario, as well as, p-values
from cell line KO are reported and corrected for multiple testing using the Benjamini-Hochberg
method. The agreement of both tests is described in the last column, meaning if both tests are
either significant or non-significant (+) or if they don’t show same direction of significance (-).
For GRIN1 no p-value could be computed, as that gene is not present in the cell line data.

p-value p-value agreement

Gene module | simulated KD | cell line KO | significance
GABA subgraph 2.75e-04 3.60e-15 +
Toll like receptor subgraph 1.05e-26 1.05e-13 +
Prostaglandin subgraph 6.99e-109 1.02e-09 +
TGF-Beta subgraph 0.592 8.79%e-11 -
Calpastatin-calpain subgraph 3.14e-91 5.41e-09 +
JAK-STAT signaling subgraph 0.454 2.91e-11 -
AGER / NFATC1 / CSF2 5.78e-41 0.0129 +
Chaperone subgraph 2.84e-75 2.02e-09 +
REL 4.45e-18 9.96e-11 +
Ubiquitin degradation subgraph 5.15e-20 1.06e-06 +

GRIN1 1.92e-132 NA

PPARG 2.20e-04 1.78e-03 +
GDNF / CASP3 1.06e-17 2.98e-11 +
Gamma secretase subgraph 4.36e-10 1.93e-03 +
Epigenetic modification subgraph 6.90e-58 7.64e-03 +
TICAM1 / RALBP1 1.46e-16 0.0561 -
Amyloidogenic subgraph 4.54e-69 9.11e-10 +
Tumor necrosis factor subgraph 0.0997 0.769 +
Acetylcholine signaling subgraph 6.74e-04 0.337 -
Matrix metalloproteinase subgraph 0.0708 2.74e-10 -
NAV3 0.176 3.81e-07 -
TRAF1 1.66e-95 2.26e-08 +
CASP7 1.75e-138 0.151 -
GPR3 / ARRB2 4.87e-04 8.02e-04 +
Endoplasmic reticulum-Golgi protein export 5.19e-29 1.78e-11 +
Low density lipoprotein subgraph 0.891 8.11e-06 -
DLG4 5.85e-93 3.44e-07 +
CD33 3.33e-307 8.06e-08 +

22 and gene sets, respectively, out of which only 3 were false positives at a false discovery rate
;23 threshold of 5%. Notably one of the false positive predictions (TICAM1 / RALBP1) had an
32 adjusted p-value of 5.6% in the experimental data.

325 Overall, we thus observed a high degree of overlap between the dysregulated mechanisms and
326 those predicted by the iVAMBN model, indicating that our model aligns well with the cell line

2z data.
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s2s  Simulation of the perturbation of other candidate targets

320 For comparison reasons, we further simulated the effect on the phenotype of a 9-fold up- or
330 down-regulation of all other genes in our model, which showed a directed path to the phenotype
;i module. Genes belonging to modules which were not an ancestor of the phenotype module were
332 excluded, because they could not have any effect on the phenotype according to our model. We
;33 simulated for each candidate target an up- as well as a down-regulation.

334 The simulated dys-regulations showed that none of the candidate targets had a predicted
a3 effect on the phenotype stronger than CD33 (Figure S5). Only TRAF6 and TGFB3 down-
336 regulation as well as up-regulation of APBA2, TRAF5 and SALL1 were predicted to increase
33z the mean MMSE score by more than two points, compared to a predicted increase by almost
s3s  five points via CD33 perturbation.

330 APBA2 is known to interact with APP and therefore plays a role in the amyloidogenic
a0 pathway [48/[49]. TRAF6 was identified in multiple experiments as target of miR-146a which is
sa1 a key regulator of innate immunity that is up regulated in AD pathology affected brain regions
;2 and might also has an effect on amyloid-5 metabolism [50]. It was found that treatment with
33 a miR-146a agomir inhibits TRAF6 expression and reduced the cognitive impairment in AD

34a  Inice l51|

«s  DDiscussion

s The here presented work is the first to demonstrate, to our knowledge, that one can integrate
sa7  gene expression and clinical data together with qualitative knowledge about cause-and-effect
sas  relationships into a quantitative, system medical model of AD. This was achieved via an Al
a0 based method, which we combined with a knowledge graph representation of AD. We could
350 show that a simulated CD33 down-expression agrees well with experimental gene expression KO
51 data from a THP-1 cell line. Overall, our model could thus help to understand and quantify
2 intervention effects on a multi-scale biological system level and thus aid the identification of novel
3 therapeutic targets, which are urgently needed in the AD field.

384 Our model predicted that CD33 down-regulation would yield a significant effect on cogni-

a5 tion (MMSE) and brain pathophysiology (Braak scores) through the prostaglandin pathway.
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s Although the role of prostaglandins is known to play a role in memory, learning and neuroin-
sz flammation [350|36], the exact mechanism by which cognition is affected remains unknown, but
s seems to be coupled to amyloid-( deposition through microglia. In AD mice, a knockout of CD33
30 mitigated amyloid-3 clearance and improved cognition [17,[18]. A positive effect on amyloid-3
se0  phagocytosis could also be observed in CD33 KO THP-1 macrophages [16].

361 Despite the evidence for a positive effect on cognition, we should mention that CD33 as
sz a possible drug target has possible caveats that have been discussed in the literature [14]: i)
sz It is not clear whether the genetic association of CD33 to AD is causal or just due to linkage
sea  disequilibrium with the true causal variant. ii) It is so far not entirely clear, how to therapeutically
ses  manipulate the expression level of CD33 in an optimal manner. iii) There might be safety issues
ses  due to the fact that CD33 is important for inhibiting immune responses and mediating self-
se7  tolerance. Systemic CD33 inhibition could potentially induce inflammatory autoimmune diseases.
ses  We therefore see the investigation of CD33 conducted in this paper more as a showcase for our
seo  1IVAMBN approach rather than making any specific recommendation regarding the therapeutic
sro  value of CD33. Integrating known side effects of approved drugs targeting specific proteins in our
sz model’s graph structure could provide hints on possible side effects and is an interesting point
sz for further research.

373 Altogether we see the impact of our work two-fold: first, we have introduced a novel multi-
s7a  scale, quantitative modeling approach (iVAMBN), which is widely applicable in systems medicine,
s7zs  specifically in situations, where only a partial mechanistic understanding of biological phenom-
376 ena is given. Secondly, our developed model can be further explored by the AD field and could

377 aid a better understanding of the disease as well as identification of novel therapeutic options.

s« Methods

s AD Knowledge Graph

ss0 A major part of this study is a BEL (https://bel.bio/) encoded, knowledge graph, which was
ss1  initially compiled via text mining and later on manually curated via literature. In general, the

ss2  BEL language helps to build a computer-process-able cause-and-effect relationship model. Each
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sss  BEL statement consists of a subject and an object, connected through a relation. Subjects and
ssa  Objects could be many different entities, like genes, proteins or RNA, but also biological processes,
sss  pathologies or even chemicals. Therefore, the relations have many different facets, as well. These
sss could be relations like increases, decreases or association, describing the interaction between
sz subject and object. But there are also relationships describing something like a membership of
sss  subject and object, for example hasComponent and isA. The BEL model used here, is an enriched
ss0  version of the AD cause-and-effect relationship model published in [11] and can be found in the
30 github repository. The enrichment was done around the two genes CD33 and TREM2, such that
se1  detailed knowledge about these two genes was gathered in the context of AD.

302 A filtering step was necessary, in order to get only entities measured in the gene expression
303 data. In this case only gene and protein entities from the knowledge graph can be used. Addition-
sea  ally, the knowledge graph was filtered for only causal interactions, such as increases, decreases,
ses  Or regulates, resulting in a network with 431 nodes and 673 edges. From that we only took the
306 largest connected component to reduce the dimensionality. Hence, the used graph during our
307 study comnsisted of 383 nodes and 607 edges, in which any two nodes were connected through
38 some path.

300 Clustering of Filtered Knowledge Graph One of the key aspects of iVAMBN is grouping
a0 of input features (genes, pathophysiological and clinical features) into modules in order to allow
w01 for a statistically stable identification of a Bayesian Network structure in a subsequent step. For
202 identifying modules of genes we clustered the knowledge graph with the help of different graph

203 clustering algorithms:

404 e the Markov Cluster algorithm [32}52] implemented in the MCL package in R [53].

405 e edge betweenness [54] community detection implemented in the R package igraph [55)
406 e infomap [56] community finding method implemented in the R package igraph 55|

w07 After clustering, genes being part of a single cluster were assigned to a corresponding module.
w8 Genes being not clustered but only connected to one cluster, were merged into that cluster.
200 Genes being connected to multiple clusters were kept as single gene modules (modules consisting

a0 of a single feature) for further analysis. We selected the best clustering algorithm according
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s11 to multiple metrics described in [57] including internal density, number of edges inside clusters,
w12 average degree, expansion, cut ratio, conductance, and norm cut. Based on these metrics the
w13 average ranking of each graph clustering algorithm was computed with the rational in mind, that
a1a  each cluster should have an high internal density and sparse connections across clusters. This
a1 resulted in choosing the markov clustering algorithm for further analyses. The metrics for each
a6 clustering algorithm can be found in Supplementary Table S4.

a17 Annotation of Modules with AD Disease Mechanisms For each module, an over-
a8 representation analysis for AD associated disease mechanisms was conducted. AD associated
a0 mechanisms were retrieved from the NeuroMMSig database [33|. For that purpose, the enricher
420 function from the clusterProfiler package in R was used, which allows to use user-defined gene
a1 set annotations for a hypergeometric test [58]. We annotated each module with the most signif-
422 icant NeuroMMSig gene set after multiple testing correction via control of false discovery rate

423 (Benjamini-Hochberg method).

22 Gene Expression Data Analysis

425 RNAseq data from several observational clinical studies, as well as RNAseq data from a cell line
426 knockout experiment, were used in this work. The patient data were from i) the Religious Orders
27 Study and Memory and Aging Project (ROSMAP) [28-30], and ii) the Mayo RNAseq Study
228  (Mayo) |31]. The last one contains two separate datasets referring to separate brain regions,
.20 namely cerebellum (CBE) and temporal cortex (TCX). Both studies were accessed through the
a0 AMP-AD Knowledge Portal at Synapse using the data deposited in the RNAseq Harmonization
ann Study. The used data are gene counts provided as gene count matrices that had been generated
.32 using STAR [59]. Gene counts were normalized to log counts per Million (logCPMs) and counts
a3z from AD patients were scaled against the healthy control data within each study. That means
a3a for each AD sample and gene the corresponding mean expression value of the same gene in
435 cognitively normal subjects was subtracted. Subsequently we divided the values by the standard
436 deviation of the gene in healthy controls. That means raw expression values were converted into
437 abnormality scores.

438 After that, the datasets were filtered for AD patients only, resulting in 221 samples for
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a3 ROSMAP, and 62 samples in each of the two Mayo studies. Further filtering was done based
a0 on the brain region the samples were taken from. While all brain regions in ROSMAP could be
21 mapped to the cerebral cortex via the Uber-anatomy ontology (UBERON) [60], that could only
a2 be done for the temporal cortex part of the Mayo study, meaning that the cerebellum samples
w3 were excluded. For making the expression data across studies comparable, a batch correction with
ws  ComBat |61] was applied to the scaled AD data. This normalized, scaled, and batch corrected
a5 data was then used for further analysis steps.

426 The cell line RNAseq data used during this study is from a THP-1 monocyte cell line with
aaz  two different genetic backgrounds and two treatments. It can be found under GEO accession
as GSE155567. A sample could have either wild-type CD33 or a knocked out CD33 gene, plus
aao  either a control vector or a SHP-1 knock-down vector, resulting in four different conditions:
w0 1) wild-type with control, ii) wild-type with SHP-1 knock-down vector, iii) CD33 knockout with
a1 control vector, and iv) CD33 knockout with SHP-1 knock-down vector. There were 6 biological
a2 replicates per condition. Within the here presented study, only samples containing the control
a3 vector were used, resulting in twelve used samples. Therefore samples from condition 1 were
asa called as wild-type (WT) samples and samples from condition 3 as knockout (KO) samples.
a5 Reads were aligned with STAR and gene counts were generated via the featureCounts function
a6 Of the Rsubread package [62]. More details about the data can be found in [16] and under GEO

a7 accession GSE155567.

=s Variational Autoencoders (VAE)

a0 Variational autoencoders |26] are one of the most frequently used type of unsupervised neural
w0 network techniques. They can be interpreted as a special type of probabilistic graphical model,
a1 which has the form Z — X, where Z is a latent, usually multivariate standard Gaussian, and X
462 a multivariate random variable describing the input data. Moreover, for any sample (z, z), we

w63 have p(x | z) = N(p(z),0(2)). One of the key ideas behind VAEs is to variationally approximate

log q(z|x) =log N (z | p(x),o(x)) (1)
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s6a  This means that u(z) and o(x) are the multivariate mean and standard deviation of the approxi-
s mate posterior ¢(z | x) and are outputs of a multi-layer perceptron neural network (the encoder)

a6 that is trained to minimize for each data point x the criterion

D
log(x

M\H

(1+1logoj(z)* — pj(2)* — 05()*) + %Zlogp(ﬂz(l)) (2)
Jj=1 l
sz Here the index j runs over the D dimensions of the input z, and z = u(z) + o(z) © €V with
ws €D~ N (0, 1) being the {th random sample drawn from a standard multivariate Gaussian, and
w0 (© denotes an element-wise multiplication. Notably, the right summand corresponds to the re-
470 construction error of data point x by the model, whereas the first term imposes a regularization.

«an We refer to [26] for more details.

«» Heterogeneous Incomplete Variational Autoencoders (HI-VAE)

473 Variational autoencoders were originally developed for homogeneous, continuous data. However,
474 in our case variables grouped into the phenotype module do not fulfill this assumption, because
a5 Braak stages and MMSE scores are discrete ordinal. In agreement to our earlier work [25] we
aze  thus employed the HI-VAE [34], which is an extension of variational autoencoders and allows for
477 various heterogeneous data types, even within the same module. More specifically, the authors

a8 suggest to parameterize the decoder distribution as

p(z; | 2) = p(xj|v; = hy(2)) (3)

a0 where h;(-) is a function learned by the neural network, and +; accordingly models data modality
sso  specific parameters. For example, for real-valued data we have v; = (u(z),0;(2)?)), while for
a1 ordinal discrete data we use a thermometer encoding, where the probability of each ordinal

a2 category can be computed as

plzj =r]v) =plx; <rlvy) —ple; <r—1]v) (4)
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483 with
1

()

plr; <rlz)=

sss  The thresholds 6;(z) divide the real line into R regions, and h;(z) indicates, in which region z
s falls. The data modality specific parameters are thus v; = {h;(z2),01(2),...,0r_1(2)} and are
sss  modeled as output of a feed forward neural network.

487 According to [34] we use batch normalization to account for differences in numerical ranges
a8 between different data modalities.

480 For multi-modal data and in particular discrete data a single Gaussian distribution may not
a0 be a sufficiently rich representation in latent space. Hence, the authors propose to replace the
w01 standard Gaussian prior distribution imposed for z in VAEs by a Gaussian mixture prior with

402 K components:

s ~ Categorical () (6)
2| s~ N(u(s),Ix) (7)
a3  where mp = % for k = 1,2,..., K and s is a one-hot vector encoding of the mixture compo-

wa mnent. We evaluated different choices of K using a 3-fold cross-validation, while employing the
ws  reconstruction error + >, logp(z|2(V) as an objective. In conclusion it turned out that K = 1

a6 component was an optimal choice for all modules in our iVAMBN model.

»z Modular Bayesian Networks

ws Let X = (X,)pev be a set of random variables indexed by nodes V in a directed acyclic graph
w0 (DAG) G = (V,E). In our case each of these nodes corresponds either to lower dimensional
soo  embedding of a group of variables (i.e. module) in the original data, or to an original features
s (e.g. biological sex) in the dataset. According to the definition of a Bayesian Network (BN), the

so2 joint distribution p(Xy, Xa, ..., X,) factorizes according to

p(X1, Xo,..., X,) = Hp(Xv | Xpa(v)) (8)
veV
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sos  where pa(v) denotes the parent set of node v |27]. In our case random variables follow either
soa  a Gaussian or a multinomial distribution, i.e. the BN is hybrid. Notably, no discrete random
sos variable was allowed to be a child of a Gaussian one.

506 Since the BN in our case is defined over low dimensional representations of groups of variables,
sz we call the structure Modular Bayesian Network (MBN). Notably, a MBN is a special instance
sos  Of a hierarchical BN over a structured input domain [63H66].

500 A typical assumption in (M)BNs is that the set of parameters (6,),cv associated to nodes
s10 V are statistically independent. For a Gaussian node v parameters can thus be estimated by
s11 fitting a linear regression function with parents of v being predictor variables |27]. Similarly, for
s12  a discrete node ¥ having only discrete parents, parameters can be estimated by counting relative

s13 frequencies of variable configurations, resulting into a conditional probability table.

s Quantitative Modeling Across Biological Scales via iVAMBN
s15 Model Training

sie  The here presented Integrative Variational Autoencoder Modular Bayesian Network (iVAMBN)
siz - approach (Figure , integrates different biological scales together with a knowledge graph into
s1s the previously published Variational Autoencoder Modular Bayesian Network (VAMBN) ap-
s10 proach [25]. More precisely, there are four steps to build an iVAMBN model: i) Definition of
s20 modules of variables, ii) Training of a HI-VAE for each module, iii) Definition of logical con-
s22 straints for possible edges in the MBN, and iv) Structure and parameter learning of the MBN
s22  using encoded values for each module. These four steps result from the fact that HI-VAEs (as
s23 well as any other variants of variational autoencoders) themselves can be interpreted as specific
s2a types of BNs and thus the overall log-likelihood of an iVAMBN model can be decomposed accord-
s2s  ingly. That means the overall iVAMBN model can be interpreted as a special type of Bayesian
s2s  Network, see 25| for details.

527 The four model building steps were followed in the application of the iVAMBN approach
s2s  in this work as well. The modules of variables were mainly defined through the previously
s20  explained Markov clustering of the knowledge graph, plus an additional module summarizing

s MMSE (Mini-Mental State Examination) and Braak stages into one phenotype module. MMSE
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531 measures cognitive impairment by testing the orientation in time and space, recall, language,
s2  and attention, while Braak stages refer to the degree of biological brain pathology [67]. Some
s33  non-assigned genes, were directly treated as nodes in the MBN construction and thus also called
ssa  gene modules. The same was done for demographic features, like sex, age, years of education
s3s and the APOE genotype.

536 For training the HI-VAEs for each module a hyperparameter optimization (grid search) was
sz implemented over learning rate (learning rate € {0.001,0.01}) and minibatch size (minibatch
sss size € {16,32}) as in [25]. Each parameter combination was evaluated with the reconstruction
s30  loss as objective function in a 3-fold cross-validation scenario.

540 In general the number of possible MBN DAG structures for n nodes grows super-exponentially
sar with n [24], making identification of the true graph structure highly challenging. Therefore, our
se2  aim was to restrict the set of possible DAGs a priori as much as possible via knowledge based

sa3  logical constraints. More specifically we imposed the following causal restrictions:

544 e Nodes defined by demographic or clinical features (like age, gender, APOE genotype, and

545 brain region) can only have outgoing edges.
546 e The phenotype module (= clinical outcome measures) can only have incoming edges.
547 e Genes and gene modules can not influence demographic or clinical features, except the age.

sas 10 additionally integrate prior knowledge defined through the knowledge graph, we tested three

sao  different strategies while building a MBN:

550 1) Completely data driven: The knowledge graph is completely ignored for structure learn-

551 ing.

552 2) Knowledge informed: The knowledge graph is used in the greedy hill climbing algorithm
553 for structure learning i) as starting point, ii) as white list (intending that those edges were

554 defined as pre-existing), or iii) as both.

555 3) Completely knowledge driven: The knowledge graph provides the structure of the
556 MBN and additional connections are only allowed for demographics or the phenotype mod-

557 ule.
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sss Structure learning of the MBN was always performed via a greedy hill climber using the Bayesian
sso  Information Criterion for model selection. We employed the implementation provided in R-

seo  package bnlearn [68].

se1  Evaluating the Model Fit

se2 10 evaluate the fit of the overall iVAMBN model we employed the generative nature of our model:
ses Following a topological sorting of the nodes of the DAG of the MBN we first sampled from the
sea  distribution of each node conditional on its parent. Notably, for MBN nodes representing modules
ses  this amounted to sample from the posterior of the according HI-VAE, which in practice can be
ses realized via injection of normally distributed noise, see Section Variational Autoencoders, Eq.
sez (2). Subsequently, the random sample was then decoded via the HI-VAE. Altogether we thus
ses generated as many synthetic subjects as real ones. We then compared the marginal distribution
seo  Of each variable based on the synthetic and the real data. Results, including summary statistics
s70 and Kullback-Leibler divergences are shown in the supplementary material. Furthermore, we

ss1 compared the correlation matrices of synthetic and real data.

s= CD33 down-expression simulation and analysis

sz Lo be able to simulate a down-expression of CD33, we first shifted the distribution of CD33
sza such that it reflects a 9-fold down-expression of CD33. In agreement to the theory of Bayesian
szs Networks this operation made CD33 conditionally independent of its parents in the MBN, which
s76  amounts to deleting any of its incoming edges and resulted into a mutilated MBN. Afterwards we
s7z exploited the fact that iVAMBN is a generative model. That means we first drew samples from
s7s  the conditional densities of the mutilated MBN. Practically this amounted to first topologically
s7o  sort the nodes in the MBN, hence exploiting the fact that the underlying graph structure cannot
sso have cycles. Subsequently, samples were drawn from the statistical distribution of each node
ss1  while conditioning on the value of its parents. The result was a per-sample module activity
sz scores, which we then decoded through our HI-VAE models into single gene scores.

583 Differences between the wild-type and simulated down-expression samples were investigated

ssa  afterwards via multiple statistical hypothesis tests: First, a linear regression was used to model
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sss the down-expression effect on gene expression and on the different phenotype scores. Second, the
sss  globaltest package in R was used to test the differential expression of specific gene sets between
ss7  the wild-type and simulated down-expression group [47]. Those tested gene sets were here defined
sss through the modules’ genes used in the MBN, meaning that we tested for differential expression
sso  of MBN’s gene modules. P-values were adjusted for multiple test scenario with the help of the
seo  subsets option of globaltest and via calculating the false discovery rate. The globaltest for gene
ser  sets, as well as the fold change analysis, was also applied to the cell line WT and KO data to be
so2 able to validate the results.

503 Effects of the perturbation of other candidate targets were simulated similarly as the CD33
sea  knock-down. Again, the distribution of the respective target was shifted such that it reflected
ses  a 9-fold down- or up-regulation. The module was identified to which the candidate target had
sos  been assigned, and all variables (including the perturbed target) mapping to that module were
sez encoded via the previously trained HI-VAE for the module. Subsequently, the effects on the

ses phenotype could be predicted in the same way as described for CD33.
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s16 Study=syn21241740

817 e CD33 KO cell line: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155567
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