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Abstract14

Modeling biological mechanisms is a key for disease understanding and drug-target identifica-15

tion. However, formulating quantitative models in the field of Alzheimer’s Disease is challenged16

by a lack of detailed knowledge of relevant biochemical processes. Additionally, fitting dif-17

ferential equation systems usually requires time resolved data and the possibility to perform18

intervention experiments, which is difficult in neurological disorders. This work addresses these19

challenges by employing the recently published Variational Autoencoder Modular Bayesian Net-20

works (VAMBN) method, which we here trained on combined clinical and patient level gene21

expression data while incorporating a disease focused knowledge graph. Our approach, called22

iVAMBN, resulted in a quantitative model that allowed us to simulate a down-expression of23

the putative drug target CD33, including potential impact on cognitive impairment and brain24

pathophysiology. Experimental validation demonstrated a high overlap of molecular mechanism25

predicted to be altered by CD33 perturbation with cell line data. Altogether, our modeling26

approach may help to select promising drug targets.27
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Author Summary28

For the last 20 years the field of Alzheimer’s Disease (AD) is marked by a series of continuous29

failures to deliver demonstrably effective medications to patients. This is also highlighted by the30

highly controversial recent approval of Aduhelm (Biogen) by the FDA, which is now investigated31

internally due to the lack of clear efficacy.32

One of the reasons for the continuous failure of trials in AD is the choice of the wrong target33

mechanism. In essence there is a lack of understanding, how targeting a certain molecule would34

affect cognitive impairment in human. One way to address this issue is the development of35

quantitative system level models connecting the molecular level with the phenotype. However,36

formulating such models in the field of Alzheimer’s Disease is challenged by a lack of detailed37

knowledge of relevant biochemical processes and the connection of molecular mechanisms to38

cognitive impairment. Additionally, fitting of differential equation systems, which are often39

used in systems biology, requires time resolved data and the possibility to perform intervention40

experiments, which is difficult in neurological disorders due to the lack of realistic model systems.41

Our work addresses these challenges by employing a novel hybrid Artificial Intelligence (AI)42

approach combining variational autoencoders with Bayesian Networks. Our proposed approach,43

named Integrative Variational Autoencoder Modular Bayesian Networks (iVAMBN), was trained44

on combined clinical and patient level gene expression data while incorporating a disease focused45

knowledge graph. Our method resulted in an interpretable, quantitative model. It showed46

connections between various biological mechanisms playing a role in AD. Furthermore, iVAMBN47

directly connected the molecular level to the disease phenotype. Our model allowed us to simulate48

a down-expression of the putative drug target CD33. Results showed a significantly increased49

cognition and predicted perturbation of a number of biological mechanisms. We experimen-50

tally validated these predictions using gene expression data from a knock-out THP-1 monocyte51

cell line. This experiment confirmed our model predictions up to a very high extend. To our52

knowledge we thus developed the first experimentally validated, quantitative, multi-scale model53

connecting molecular mechanisms with clinical outcomes in the AD field.54
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Introduction55

Alzheimer’s Disease (AD) is a neurodegenerative disorder affecting about 50 million people world-56

wide, resulting in the inability to perform necessary, daily activities before leading to an often57

early death [1]. Despite decades of research and more than 2000 clinical studies listed on Clin-58

icalTrials.gov, to date there is no cure, and all existing treatments are purely symptomatic [1].59

New disease modifying treatments are urgently needed, but require a better mechanistic under-60

standing of the disease.61

A common starting point in this context is to map out the existing knowledge landscape62

about the disease. In the past few decades, a large number of databases have been developed63

in the bioinformatics community, such as databases for biological pathways (like KEGG [2],64

PathwayCommons [3], WikiPathways [4], Reactome [5]), drug-target interactions (like Open-65

Targets [6], Therapeutic Targets Database [7]), disease-gene associations (like DisGeNET [8])66

or protein-protein interactions (like STRING [9], IntAct [10]). All these databases simplify the67

usage of the respective knowledge for algorithms and models, especially in the field of drug tar-68

get identification. Moreover, none of these databases have been compiled in a disease focused69

manner. The Biological Expression Language (BEL) provides this opportunity and can be used70

to represent literature-derived, disease focused knowledge in the form of attributed graphs in a71

precise manner. For AD a knowledge graph has been published in [11] and represents the manu-72

ally curated, disease focused mechanistic interplay between genetic variants, proteins, biological73

processes and pathways described in the literature, enabling the user to computationally query74

and integrate knowledge graphs into drug target identification algorithms.75

One of the interesting molecules in the AD field is CD33, a transmembrane receptor protein76

expressed primarily in myeloid lineage cells. It has been associated with decreased risk of AD77

in GWAS studies [12–18] and discussed as a potential therapeutic target, for example via im-78

munotherapy [14]. In an AD mouse model, a knockout of CD33 mitigated amyloid-β clearance79

and improved cognition [13, 17, 18]. Similarly, a positive effect on amyloid-β phagocytosis could80

be observed in CD33 knock-out THP-1 macrophages [16]. In humans a correlation between81

CD33, cognition and amyloid clearance is known, however, the concrete underlying mechanisms82

are still not well understood. There is an ongoing clinical trial that is testing the effects of a CD3383
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inhibitor in patients with mild to moderate AD (NCT03822208). Along those lines, the EU-wide84

PHAGO project (https://www.phago.eu) funded via the Innovative Medicines Initiatives aimed85

to develop tools and methods to study the functioning of CD33 and related pathways in AD in86

order to facilitate decisions about potential drug development programs.87

While graphs are useful for describing the disease focused knowledge landscape about AD, the88

principal incompleteness of disease focused biological knowledge may result in disagreements to89

observed data. Moreover, graphs do not allow to produce quantitative insights and predictions.90

For this purpose ordinary (ODEs) and partial differential equations (PDEs) are frequently used91

in systems biology and systems medicine, as they are able to describe biological mechanisms in92

a quantitative way. However, their formulation requires a detailed understanding of biochemical93

reactions, which in the AD field is only available for specific processes, like for example amyloid-β94

aggregation [19, 20]. Moreover, fitting differential equations usually requires time resolved data95

and the possibility to perform intervention experiments (as knock-downs or stimulation), which96

is challenged by the fact that cell lines and mouse models in the AD field can most likely only97

mimic specific aspects of the human disease [21–23].98

A principle alternative to differential equation systems are probabilistic graphical models and99

in particular Bayesian Networks (BNs), which are quantitative as well. However, standard BN100

implementations require normally or multinomially distributed data, which is not the case in101

many applications. Furthermore, structure learning of BNs is an NP hard problem, where the102

number of possible network structures grows super-exponentially with the number of nodes in103

the network [24]. Hence, modeling higher dimensional data with a BN raises severe concerns104

regarding structure identifiability.105

Altogether, these challenges lead to the fact that the AD field lacks a comprehensive quanti-106

tative model of the interplay between relevant molecules and biological processes, including the107

role of CD33, up to the phenotype level.108

In this work, we developed a - to our knowledge - first quantitative, multi-scale model fo-109

cused on the multitude of mechanisms governing the CD33 molecule. Our model spans a variety110

of modalities, including gene expression, brain pathophysiology, demographic information and111

cognition scores. To address the challenges mentioned before, we started with a disease focused112

knowledge graph reconstruction, which we clustered into modules to significantly reduce dimen-113
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sionality. In the following we use the term "module" to denote a set of objects grouped together.114

Subsequently, we relied on our recently published Variational Autoencoder Modular Bayesian115

Network (VAMBN) algorithm [25], which is a hybrid Artificial Intelligence (AI) approach com-116

bining variational autoencoders [26] with modular Bayesian Networks [27], which is able to model117

arbitrary statistical distributions. We trained VAMBN on joint clinical and patient level gene ex-118

pression data while employing a clustered knowledge graph reflecting incomplete prior knowledge119

about disease mechanisms and their interplay. A simulated knock-down of CD33 and predicted120

downstream effects could be experimentally validated with gene expression data from a cell line.121

Overall, we believe that our work helps to move closer towards a systemic and quantitative un-122

derstanding of the disease, which is the prerequisite for finding urgently needed novel therapeutic123

options.124

Results125

In this work, we relied on AD patient data from the Religious Orders Study and Memory and126

Aging Project (ROSMAP) [28–30] for model training and the Mayo RNAseq Study (Mayo) [31]127

for external validation. An overview about clinical characteristics of the patients in these studies128

can be found in Table 1.129

Overview about Modeling Strategy130

Figure 1 shows an overview about our modeling strategy, which we call integrative VAMBN131

(iVAMBN), combining clinical and patient-level gene expression data with disease focused knowl-132

edge graphs. The first step of our workflow compiles an AD focused knowledge graph describing133

cause and effect relationships between biological processes, genes and pathologies. The generated134

graph consisted of 383 nodes and 607 edges. The graph was subsequently clustered into mod-135

ules with the help of the Markov Clustering algorithm [32] to significantly reduce the number of136

variables for subsequent modeling steps. Genes within modules were annotated with AD disease137

mechanisms coming from the NeuroMMSig gene set collection [33].138

Using patient-level clinical and gene expression data from post-mortem cerebral cortex tis-139

sues, in a second step the VAMBN algorithm was employed to quantitatively model relation-140
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Table 1: Patient statistics. Shown are the number of patients, their age in years (with mean
and standard deviation), sex, APOE genotype (binary encoding for at least one present E4 allele),
MMSE score (with mean and sd) and Braak stage.

ROSMAP Mayo
no. patients 221 82

age 87.95 ± 3.38 82.66 ± 7.61
sex

male 68 33
female 153 49

APOE
0 138 39
1 83 43

MMSE 13.16 ± 8.38 -
Braak

1 7 -
2 6 -
3 42 -
4 71 6
5 88 35
6 7 41

ships between gene modules as well as phenotype related scores (Mini-Mental State Examination141

(MMSE), Braak staging) and demographic features based on ROSMAP data. ROSMAP was142

chosen for training of the algorithm, because of the comparably large number of patients (more143

than 200) and available MMSE plus Braak scores. VAMBN takes as input patient-level data144

hierarchically organized into pre-defined modules (here: either gene modules or a phenotype re-145

lated module including i.e. MMSE plus Braak stages), original features (here: demographic and146

clinical variables like age, sex, APOE genotype, and brain region) and prior knowledge regarding147

their possible connections. The output is a probabilistic graphical model describing connections148

between modules and original features. There is a per-patient score for each module, and each149

of these scores can be further decoded into feature-level gene expression and phenotype data,150

respectively.151

In the third step of our strategy we evaluated, whether our iVAMBN model could also explain152

gene expression data from the Mayo study. Notably, at this step we only considered the Braak153

stage in the phenotype module, because the Mayo study does not report MMSE scores. For that154

purpose we first re-trained our iVAMBN model on ROSMAP while leaving out MMSE scores155

and then assessed the marginal log-likelihood of the modified model on the Mayo dataset. We156
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Figure 1: The Integrative VAMBN (iVAMBN) approach. The iVAMBN approach inte-
grates gene expression data, clinical and patho-physiological (phenotype) measures (bottom left)
into a joint quantitative, probabilistic graphical model. The method initially uses a knowledge
graph (top left) for defining modules and for informing about potential connections between
them. In a second step, a representation of each module using a Heterogeneous Incomplete
Variational Autoencoder (HI-VAE) is learned. In a third step a modular Bayesian Network be-
tween autoencoded modules is learned while taking into account the information derived from
the knowledge graph. Finally, the iVAMBN model is used to simulate gene perturbation (top
right).

then tested the marginal log-likelihood of the true model against randomly permuted versions157

of the learned probabilistic graph. This allowed us to assess, in how far the model learned on158

ROSMAP could explain Mayo data better than expected by pure chance.159

For the last step, we used our iVAMBN model trained on ROSMAP to simulate several160

therapeutic interventions, including a CD33 inhibition. Based on available data, we were able161

to experimentally validate the predicted effects of a CD33 inhibition using CD33 knockout gene162

expression data from a THP-1 monocyte cell line. More details about the entire iVAMBN163

approach can be found in the Methods section of this paper.164

In the following we elaborate on the results obtained in each of these different steps, while165

technical details are provided in the Methods part of this article.166

7

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.02.04.479087doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.04.479087
http://creativecommons.org/licenses/by/4.0/


Knowledge Graph Compilation167

As outlined in the previous section, our modeling approach started with the compilation and168

Markov clustering of a knowledge graph. The Markov clustering resulted in 32 modules, including169

4 single gene modules, namely CD33, HSPB2, HSPB3, and MIR101-1. Most of the non-single170

gene modules comprised only two genes, while others had multiple combinations, like the GABA171

subgraph module with 289 genes. The exact number of genes clustered together as well as the172

result of a statistical over-representation analysis (hypergeometric test) using the AD focused173

gene set collection NeuroMMSig [33] can be found in Supplementary Table S1. A complete list174

of molecules within each module can be found in Supplementary Table S2. The modules were175

considered as nodes of a graph between them, where an edge was set between modules M1,M2,176

if in the original knowledge graph there was at least one gene in M1 and one in M2 that was177

connected via a directed path. The resulting (acyclic) module graph is shown in Figure S1.178

Integrative Variational Autoencoder Modular Bayesian Network Model179

Integrative VAMBN combines the advantages of Bayesian Networks with the capabilities of180

variational autoencoders, more specifically Heterogeneous Incomplete Variational Autoencoders181

(HI-VAEs) [34]. Briefly, the idea is to initially learn a low dimensional Gaussian representation182

of features mapping to each of the defined modules. HI-VAEs differ from classical variational183

autoencoders in the sense that they can be applied to heterogeneous input data of different184

numerical scales, potentially containing missing values. In a second step a Bayesian Network185

structure is then learned over the low dimensional representations of modules, resulting in a186

modular Bayesian Network. More details are presented in the Methods part of this paper and187

in [25].188

We here trained an iVAMBN model using the identified modules (i.e. feature groups in the189

original data) as - potentially multivariate - nodes of a probabilistic graphical model. Note-190

worthy exceptions are described in detail in Supplementary Note S1. In cases where multiple191

features mapto one and the same module (i.e. the corresponding node / random variable in192

the probabilistic graphical model is multivariate), our method initially learns a low dimensional193

representation using a HI-VAE. Second, we learned the Bayesian Network structure connecting194
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these modules. At this stage it is possible to provide information about possible connections195

between modules given in the knowledge derived module graph (Supplementary Figure S1). We196

tested three different strategies to incorporate the information provided in the module graph:197

• completely data driven: the entire Bayesian Network was only learned from data,198

• knowledge informed: the module graph was either used to only initialize Bayesian Network199

structure learning, to enforce / white list the existence of specific edges, or used for a200

combination of both, and201

• completely knowledge driven: strictly constrain edges between modules to those provided202

via the module graph, and additionally learned ones are only allowed to connect cognition203

scores, patho-physiological stages, and demographic features. All other possible edges are204

black listed, i.e. not allowed.205

A systematic comparison of these strategies via a cross-validation yielded a better performance206

of the second strategy (knowledge informed), in which we used the module graph to white list207

edges and to initialize a greedy hill climbing based structure learning, see details in Methods208

Section and Supplementary Note S2. That means, iVAMBN was allowed to add additional209

edges, if the data provided according evidence.210

We repeated the knowledge informed modular Bayesian Network learning 1000 times on211

random bootstrap sub-samples of the data drawn with replacement, hence allowing to quantify212

the statistical confidence of each inferred edge. The results of this analysis can be found in213

Supplementary Table S3.214

In the following we only focus on the 130 edges that were found in at least 40% of the215

1000 modular Bayesian Network reconstructions (Figure 2). Notably, this threshold was only216

chosen for better visualization purposes and to limit the subsequent discussion. Edges with217

lower bootstrap probability might also exist in reality despite lower statistical confidence. Nodes218

corresponding to sex, APOE status, and brain region were not connected to any other nodes219

with sufficient statistical confidence, meaning that these features might have no impact on the220

rest of the network. Nodes with only outgoing edges in the network (i.e. source nodes) were:221

the years of education, the age, and the single gene NAV3. The GABA subgraph (containing222
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more than 280 genes) and the phenotype module were leaf nodes, meaning they had no outgoing223

edges. Only patient age had a direct influence on CD33. CD33 had eight directly influenced224

molecular mechanisms: the GABA subgraph, the Amyloidogenic subgraph (containing genes225

SRC and APBA2), the Acetylcholine signaling subgraph (containing genes ACHE and PRNP),226

the Prostaglandin subgraph, and the Chaperone subgraph (containing genes HSPB6, CXCL8,227

and CCR2). Also, the single gene module, TRAF1, was a child of CD33. Altogether, CD33 had228

a predicted causal influence on every node, except for the source nodes.229

Figure 2: Network representation of iVAMBN model for ROSMAP data. Shown are
the learned (grey) and knowledge-derived (green) edges between gene modules (purple nodes),
single gene modules (green) and CD33 and phenotype module (red). All these edges appeared
with bootstrap frequency > 0.4. The newly inferred shortest path between CD33 and phenotype
is displayed in orange. Other edges with bootstrap frequency > 0.4 have been removed for
visualization purposes, except for those six edges which were trained with a bootstrap confidence
of 1.

Model reveals path between CD33 and disease phenotype230

As shown in Figure 2 the shortest path between CD33 and the disease phenotype was observed231

through the Prostaglandin subgraph. All the edges from this connection were newly learned232
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from data, meaning that they had not previously been identified in the knowledge graph. Nev-233

ertheless, these correlations have been previously reported in the literature: Prostaglandines are234

eicosanoides, which were found to play a role in memory learning and neuroinflammation [35,36].235

A major producer is activated microglia, which itself is activated through amyloid-β and pro-236

duces inflammatory cytokines [37]. Currently, microglia and their effects on AD is a major focus237

in the field of research [38, 39]. Also, PGD2, a prostaglandin mainly synthesized in neurons,238

was previously found to be upregulated in AD patients [40]. Pairwise correlation plots between239

the genes of the prostaglandin pathway and CD33 or phenotype can be found in Supplementary240

Figure S3.241

In total, 130 of the 162 edges of the bootstrapped iVAMBN model were newly learned from242

the data and had not been previously identified within the literature derived knowledge graph.243

Out of these 130 edges, six edges had a bootstrap confidence of 100%, meaning that they were244

learned consistently from 1000 random sub-samples of the data. A list of these edges can be245

found in Table 2.246

Table 2: Consistently newly learned edges in iVAMBN model. All edges were found in
each of 1000 network reconstructions from randomly subsampled data.

from to
DLG4 GRIN1

Tumor necrosis factor subgraph TRAF1
Toll like receptor subgraph REL

Low density lipoprotein subgraph Calpastatin-calpain subgraph
Prostaglandin subgraph CASP7

NAV3 TGF-Beta subgraph

These high confidence edges demonstrated strong pairwise correlations between connected247

modules. NAV3, for example, had a strong negative correlation with MAVS, a member of the248

TGF-Beta subgraph module (Figure 3 left). In contrast to that SRSF10 and CREB1, members of249

the Low density lipoprotein subgraph and Calpastatin-calpain subgraph modules, were strongly250

positive correlated (Figure 3 right).251

Although no direct correlation between NAV3 and MAVS is known, their effects are both252

linked to AD. NAV3, which is predominantly expressed in the nervous system, is increased in253

AD patients [41], while MAVS encodes a gene that is needed for the expression of beta interferon254

and thus contributes to antiviral innate immunity and may protect the cells from apoptosis [42].255
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R = 0.7887
CI = [0.62;0.89]
p = 2.01e−46−4
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Figure 3: Quantitative relationships learned by iVAMBN. Each correlation (R) is shown
along with its confidence interval (CI) and multiple testing adjusted p-value. Left: Correlation
of NAV3 with TGF-Beta subgraph module member MAVS. Right: Correlation of Low density
lipoprotein subgraph module member SRSF10 with CREB1, a member of the Calpastatin-calpain
subgraph module. Further plots can be found in Supplementary Figures S3 and S4.

Together with the strong negative correlation seen in the data, one can hypothesize that the256

increased level of NAV3 in AD leads to a decreased level of MAVS, which elevates apoptosis of257

the cells.258

The strong positive correlation between SRSF10 and CREB1 linked the Low density lipopro-259

tein (LDL) and Calpastatin-calpain subgraphs. LDL is a major APOE receptor, which is the260

strongest genetic factor for AD, where different alleles are either risk or protective alleles [43].261

APOE is also linked to amyloid-β, whose production is increased with elevated activity of calpain262

due to the decreased levels of calpastatin. Calpastatin is also linked to synaptic dysfunction and263

to the tau pathology of AD [44, 45]. Tau is another protein that accumulates in the brains of264

AD patients. The exact underlying mechanisms here are still unknown, but regulatory mech-265

anisms of calpain are highly influenced by Calcium (Ca2+) influx and increased intracellular266

calcium levels are a main reason for the loss of neuronal function in AD [44–46]. Changes in the267

Calpastatin-calpain mechanism may therefore also lead to reduced amyloid-β deposition.268

External Validation of iVAMBN model269

We assessed the ability of the model to explain normalized gene expression data from an inde-270

pendent study, Mayo. Notably, all gene expression data was from the same brain region, namely271

the cerebral cortex. However, Mayo does not contain MMSE scores. Therefore, we first trained272
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a modified version of our iVAMBN model on ROSMAP, which only contained the Braak score in273

the phenotype module, but otherwise had the edges shown in Figure 2. The full list of edges of274

this model together with their corresponding bootstrap confidences can be found in Supplemen-275

tary Table S3. We then explored the marginal log-likelihood log p(data | graph) of the model on276

the Mayo dataset and subtracted the marginal log-likelihood obtained by 1000 random permu-277

tations of the network (Figure 4), resulting in an empirical p-value. This showed that our model278

could explain Mayo gene expression data significantly better than randomly permuted networks279

(p = 0.035) despite the clinical differences between patients in both studies shown in Table 1.280

In addition, we trained a separate iVAMBN model on MSBB data and explored the overlap281

with the ROSMAP model at different thresholds of the bootstrap confidence (Supplementary282

Figure S5). At the previously chosen 40% threshold the overlap of the newly learned edges283

contained in the iVAMBN models trained on ROSMAP and MSBB was statistically significant,284

even if edge directions were considered (hypergeometric test, p < 1e− 38).285

ROSMAP Mayo
data

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-lo
g1

0(
p)

Figure 4: External model validation. Statistical significance −log10(p) value of the marginal
log-likelihood of the model when evaluated on the training data (ROSMAP) and external vali-
dation data (Mayo).
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CD33 Down-expression Simulation286

To understand the potential systemic consequences of a therapeutic intervention into CD33 we287

simulated its down-expression. This was achieved by a counterfactual down-expression (here: 9-288

fold) of CD33 in every patient (Figure 5 (top left)). Due to the fact that iVAMBN is a quantitative289

model, associated downstream consequences on biological mechanisms and phenotype could be290

predicted in every patient (see examples in Figure 5). CD33 down-expression simulation (left)291

results in higher scores of the prostaglandin pathway module (right).292

In addition, iVAMBN predicted a significant increase of MMSE scores (p < 0.001, Figure 6293

(left)), and also a significant decrease of Braak stages (p < 0.001, Figure 6 (right)). That means294

patients are not only predicted to improve the specific cognitive abilities tested by MMSE, but295

are also predicted to improve brain pathophysiology.296

0.0

0.1

0.2

0.3

0.4

−8 −4 0
CD33

de
ns

ity

0.0

0.2

0.4

−4 −2 0 2
Prostaglandin subgraph

de
ns

ity

Figure 5: Module distributions in original and simulated CD33 down-expression.
The blue curve describes the original distribution, while the red one describes the CD33 down-
expression scenario. CD33 down-expression simulation (left) results in lower scores of the
prostaglandin pathway module (right).

CD33 down-expression reveals significant changes in many mechanisms297

Our iVAMBN model predicted significant effects on gene expression of 28 mechanisms and in-298

dividual genes, respectively (Table 3). Significant changes were, for example, predicted for the299

genes CASP7 and TRAF7, and the prostaglandin and calpastatin-calpain mechanisms. But300

also the amyloidogenic mechanism is significantly differential expressed in a CD33 knock-down301

scenario.302

Decreased expression of the amyloidogenic mechanism will thus result in patients with less303
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Figure 6: Predicted changes on phenotype (MMSE and Braak stages) as a conse-
quence of CD33 down-expression. Distribution of MMSE and Braak stages in CD33 origi-
nal (blue) and down-expressed (red) patients shows a significant improvement of scores and thus
cognition as well as brain pathophysiology.

amyloid-β deposition. While this connection of the amyloidogenic mechanism and AD is clear,304

others need to be further explored.305

The link between Calpastatin-calpain mechanism and AD was already described earlier. The306

key aspect is its negative influence on amyloid-β deposition.307

PGD2, a prostaglandin mainly synthesized in neurons, was previously found to be upregulated308

in AD patients [40]. Prostaglandines are eicosanoide, which were found to play a role in memory309

learning and neuroinflammation [35, 36]. A major producer is activated microglia, which itself310

is activated through amyloid-β and produces inflammatory cytokines [37]. Currently, microglia311

and their effects on AD is a major focus in the field of research [38,39]. Again, down-expression312

of the prostaglandin may result in reduced amyloid-β deposition. Altogether, the vast majority313

of significantly differential expressed gene sets was highly linked to AD through the amyloid-β314

cascade.315

Experimental validation with cell line data316

We checked whether our iVAMBN based predictions experimentally agreed with cell line gene317

expression data, specifically reflecting wild type (WT) and CD33 knock-out (KO). Our analysis318

(see details in Methods part) revealed significant changes of 23 AD associated mechanisms and319

genes in KO versus WT. Interestingly, 19 out of these 23 mechanisms overlapped with those320

predicted by iVAMBN (Table 3). Likewise, iVAMBN predicted significant changes of 22 genes321

15

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2022.02.04.479087doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.04.479087
http://creativecommons.org/licenses/by/4.0/


Table 3: Statistical significance of gene modules. The table shows results of a global
test [47], assessing the differential gene set expression of each gene module between WT and
down-expression/KO of CD33. P-values of the test within simulated scenario, as well as, p-values
from cell line KO are reported and corrected for multiple testing using the Benjamini-Hochberg
method. The agreement of both tests is described in the last column, meaning if both tests are
either significant or non-significant (+) or if they don’t show same direction of significance (-).
For GRIN1 no p-value could be computed, as that gene is not present in the cell line data.

p-value p-value agreement
Gene module simulated KD cell line KO significance

GABA subgraph 2.75e-04 3.60e-15 +
Toll like receptor subgraph 1.05e-26 1.05e-13 +

Prostaglandin subgraph 6.99e-109 1.02e-09 +
TGF-Beta subgraph 0.592 8.79e-11 -

Calpastatin-calpain subgraph 3.14e-91 5.41e-09 +
JAK-STAT signaling subgraph 0.454 2.91e-11 -

AGER / NFATC1 / CSF2 5.78e-41 0.0129 +
Chaperone subgraph 2.84e-75 2.02e-09 +

REL 4.45e-18 9.96e-11 +
Ubiquitin degradation subgraph 5.15e-20 1.06e-06 +

GRIN1 1.92e-132 NA
PPARG 2.20e-04 1.78e-03 +

GDNF / CASP3 1.06e-17 2.98e-11 +
Gamma secretase subgraph 4.36e-10 1.93e-03 +

Epigenetic modification subgraph 6.90e-58 7.64e-03 +
TICAM1 / RALBP1 1.46e-16 0.0561 -

Amyloidogenic subgraph 4.54e-69 9.11e-10 +
Tumor necrosis factor subgraph 0.0997 0.769 +

Acetylcholine signaling subgraph 6.74e-04 0.337 -
Matrix metalloproteinase subgraph 0.0708 2.74e-10 -

NAV3 0.176 3.81e-07 -
TRAF1 1.66e-95 2.26e-08 +
CASP7 1.75e-138 0.151 -

GPR3 / ARRB2 4.87e-04 8.02e-04 +
Endoplasmic reticulum-Golgi protein export 5.19e-29 1.78e-11 +

Low density lipoprotein subgraph 0.891 8.11e-06 -
DLG4 5.85e-93 3.44e-07 +
CD33 3.33e-307 8.06e-08 +

and gene sets, respectively, out of which only 3 were false positives at a false discovery rate322

threshold of 5%. Notably one of the false positive predictions (TICAM1 / RALBP1) had an323

adjusted p-value of 5.6% in the experimental data.324

Overall, we thus observed a high degree of overlap between the dysregulated mechanisms and325

those predicted by the iVAMBN model, indicating that our model aligns well with the cell line326

data.327
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Simulation of the perturbation of other candidate targets328

For comparison reasons, we further simulated the effect on the phenotype of a 9-fold up- or329

down-regulation of all other genes in our model, which showed a directed path to the phenotype330

module. Genes belonging to modules which were not an ancestor of the phenotype module were331

excluded, because they could not have any effect on the phenotype according to our model. We332

simulated for each candidate target an up- as well as a down-regulation.333

The simulated dys-regulations showed that none of the candidate targets had a predicted334

effect on the phenotype stronger than CD33 (Figure S5). Only TRAF6 and TGFB3 down-335

regulation as well as up-regulation of APBA2, TRAF5 and SALL1 were predicted to increase336

the mean MMSE score by more than two points, compared to a predicted increase by almost337

five points via CD33 perturbation.338

APBA2 is known to interact with APP and therefore plays a role in the amyloidogenic339

pathway [48, 49]. TRAF6 was identified in multiple experiments as target of miR-146a which is340

a key regulator of innate immunity that is up regulated in AD pathology affected brain regions341

and might also has an effect on amyloid-β metabolism [50]. It was found that treatment with342

a miR-146a agomir inhibits TRAF6 expression and reduced the cognitive impairment in AD343

mice [51].344

Discussion345

The here presented work is the first to demonstrate, to our knowledge, that one can integrate346

gene expression and clinical data together with qualitative knowledge about cause-and-effect347

relationships into a quantitative, system medical model of AD. This was achieved via an AI348

based method, which we combined with a knowledge graph representation of AD. We could349

show that a simulated CD33 down-expression agrees well with experimental gene expression KO350

data from a THP-1 cell line. Overall, our model could thus help to understand and quantify351

intervention effects on a multi-scale biological system level and thus aid the identification of novel352

therapeutic targets, which are urgently needed in the AD field.353

Our model predicted that CD33 down-regulation would yield a significant effect on cogni-354

tion (MMSE) and brain pathophysiology (Braak scores) through the prostaglandin pathway.355
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Although the role of prostaglandins is known to play a role in memory, learning and neuroin-356

flammation [35, 36], the exact mechanism by which cognition is affected remains unknown, but357

seems to be coupled to amyloid-β deposition through microglia. In AD mice, a knockout of CD33358

mitigated amyloid-β clearance and improved cognition [17, 18]. A positive effect on amyloid-β359

phagocytosis could also be observed in CD33 KO THP-1 macrophages [16].360

Despite the evidence for a positive effect on cognition, we should mention that CD33 as361

a possible drug target has possible caveats that have been discussed in the literature [14]: i)362

It is not clear whether the genetic association of CD33 to AD is causal or just due to linkage363

disequilibrium with the true causal variant. ii) It is so far not entirely clear, how to therapeutically364

manipulate the expression level of CD33 in an optimal manner. iii) There might be safety issues365

due to the fact that CD33 is important for inhibiting immune responses and mediating self-366

tolerance. Systemic CD33 inhibition could potentially induce inflammatory autoimmune diseases.367

We therefore see the investigation of CD33 conducted in this paper more as a showcase for our368

iVAMBN approach rather than making any specific recommendation regarding the therapeutic369

value of CD33. Integrating known side effects of approved drugs targeting specific proteins in our370

model’s graph structure could provide hints on possible side effects and is an interesting point371

for further research.372

Altogether we see the impact of our work two-fold: first, we have introduced a novel multi-373

scale, quantitative modeling approach (iVAMBN), which is widely applicable in systems medicine,374

specifically in situations, where only a partial mechanistic understanding of biological phenom-375

ena is given. Secondly, our developed model can be further explored by the AD field and could376

aid a better understanding of the disease as well as identification of novel therapeutic options.377

Methods378

AD Knowledge Graph379

A major part of this study is a BEL (https://bel.bio/) encoded, knowledge graph, which was380

initially compiled via text mining and later on manually curated via literature. In general, the381

BEL language helps to build a computer-process-able cause-and-effect relationship model. Each382
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BEL statement consists of a subject and an object, connected through a relation. Subjects and383

objects could be many different entities, like genes, proteins or RNA, but also biological processes,384

pathologies or even chemicals. Therefore, the relations have many different facets, as well. These385

could be relations like increases, decreases or association, describing the interaction between386

subject and object. But there are also relationships describing something like a membership of387

subject and object, for example hasComponent and isA. The BEL model used here, is an enriched388

version of the AD cause-and-effect relationship model published in [11] and can be found in the389

github repository. The enrichment was done around the two genes CD33 and TREM2, such that390

detailed knowledge about these two genes was gathered in the context of AD.391

A filtering step was necessary, in order to get only entities measured in the gene expression392

data. In this case only gene and protein entities from the knowledge graph can be used. Addition-393

ally, the knowledge graph was filtered for only causal interactions, such as increases, decreases,394

or regulates, resulting in a network with 431 nodes and 673 edges. From that we only took the395

largest connected component to reduce the dimensionality. Hence, the used graph during our396

study consisted of 383 nodes and 607 edges, in which any two nodes were connected through397

some path.398

Clustering of Filtered Knowledge Graph One of the key aspects of iVAMBN is grouping399

of input features (genes, pathophysiological and clinical features) into modules in order to allow400

for a statistically stable identification of a Bayesian Network structure in a subsequent step. For401

identifying modules of genes we clustered the knowledge graph with the help of different graph402

clustering algorithms:403

• the Markov Cluster algorithm [32,52] implemented in the MCL package in R [53].404

• edge betweenness [54] community detection implemented in the R package igraph [55]405

• infomap [56] community finding method implemented in the R package igraph [55]406

After clustering, genes being part of a single cluster were assigned to a corresponding module.407

Genes being not clustered but only connected to one cluster, were merged into that cluster.408

Genes being connected to multiple clusters were kept as single gene modules (modules consisting409

of a single feature) for further analysis. We selected the best clustering algorithm according410
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to multiple metrics described in [57] including internal density, number of edges inside clusters,411

average degree, expansion, cut ratio, conductance, and norm cut. Based on these metrics the412

average ranking of each graph clustering algorithm was computed with the rational in mind, that413

each cluster should have an high internal density and sparse connections across clusters. This414

resulted in choosing the markov clustering algorithm for further analyses. The metrics for each415

clustering algorithm can be found in Supplementary Table S4.416

Annotation of Modules with AD Disease Mechanisms For each module, an over-417

representation analysis for AD associated disease mechanisms was conducted. AD associated418

mechanisms were retrieved from the NeuroMMSig database [33]. For that purpose, the enricher419

function from the clusterProfiler package in R was used, which allows to use user-defined gene420

set annotations for a hypergeometric test [58]. We annotated each module with the most signif-421

icant NeuroMMSig gene set after multiple testing correction via control of false discovery rate422

(Benjamini-Hochberg method).423

Gene Expression Data Analysis424

RNAseq data from several observational clinical studies, as well as RNAseq data from a cell line425

knockout experiment, were used in this work. The patient data were from i) the Religious Orders426

Study and Memory and Aging Project (ROSMAP) [28–30], and ii) the Mayo RNAseq Study427

(Mayo) [31]. The last one contains two separate datasets referring to separate brain regions,428

namely cerebellum (CBE) and temporal cortex (TCX). Both studies were accessed through the429

AMP-AD Knowledge Portal at Synapse using the data deposited in the RNAseq Harmonization430

Study. The used data are gene counts provided as gene count matrices that had been generated431

using STAR [59]. Gene counts were normalized to log counts per Million (logCPMs) and counts432

from AD patients were scaled against the healthy control data within each study. That means433

for each AD sample and gene the corresponding mean expression value of the same gene in434

cognitively normal subjects was subtracted. Subsequently we divided the values by the standard435

deviation of the gene in healthy controls. That means raw expression values were converted into436

abnormality scores.437

After that, the datasets were filtered for AD patients only, resulting in 221 samples for438
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ROSMAP, and 62 samples in each of the two Mayo studies. Further filtering was done based439

on the brain region the samples were taken from. While all brain regions in ROSMAP could be440

mapped to the cerebral cortex via the Uber-anatomy ontology (UBERON) [60], that could only441

be done for the temporal cortex part of the Mayo study, meaning that the cerebellum samples442

were excluded. For making the expression data across studies comparable, a batch correction with443

ComBat [61] was applied to the scaled AD data. This normalized, scaled, and batch corrected444

data was then used for further analysis steps.445

The cell line RNAseq data used during this study is from a THP-1 monocyte cell line with446

two different genetic backgrounds and two treatments. It can be found under GEO accession447

GSE155567. A sample could have either wild-type CD33 or a knocked out CD33 gene, plus448

either a control vector or a SHP-1 knock-down vector, resulting in four different conditions:449

i) wild-type with control, ii) wild-type with SHP-1 knock-down vector, iii) CD33 knockout with450

control vector, and iv) CD33 knockout with SHP-1 knock-down vector. There were 6 biological451

replicates per condition. Within the here presented study, only samples containing the control452

vector were used, resulting in twelve used samples. Therefore samples from condition 1 were453

called as wild-type (WT) samples and samples from condition 3 as knockout (KO) samples.454

Reads were aligned with STAR and gene counts were generated via the featureCounts function455

of the Rsubread package [62]. More details about the data can be found in [16] and under GEO456

accession GSE155567.457

Variational Autoencoders (VAE)458

Variational autoencoders [26] are one of the most frequently used type of unsupervised neural459

network techniques. They can be interpreted as a special type of probabilistic graphical model,460

which has the form Z → X, where Z is a latent, usually multivariate standard Gaussian, and X461

a multivariate random variable describing the input data. Moreover, for any sample (x, z), we462

have p(x | z) = N(µ(z), σ(z)). One of the key ideas behind VAEs is to variationally approximate463

log q(z|x) = logN(z | µ(x), σ(x)) (1)
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This means that µ(x) and σ(x) are the multivariate mean and standard deviation of the approxi-464

mate posterior q(z | x) and are outputs of a multi-layer perceptron neural network (the encoder)465

that is trained to minimize for each data point x the criterion466

log(x) ≥ 1

2

D∑
j=1

(
1 + log σj(x)

2 − µj(x)
2 − σj(x)

2
)
+

1

L

∑
l

log p(x|z(l)) (2)

Here the index j runs over the D dimensions of the input x, and z = µ(x) + σ(x) ⊙ ϵ(l) with467

ϵ(l) ∼ N(0, I) being the lth random sample drawn from a standard multivariate Gaussian, and468

⊙ denotes an element-wise multiplication. Notably, the right summand corresponds to the re-469

construction error of data point x by the model, whereas the first term imposes a regularization.470

We refer to [26] for more details.471

Heterogeneous Incomplete Variational Autoencoders (HI-VAE)472

Variational autoencoders were originally developed for homogeneous, continuous data. However,473

in our case variables grouped into the phenotype module do not fulfill this assumption, because474

Braak stages and MMSE scores are discrete ordinal. In agreement to our earlier work [25] we475

thus employed the HI-VAE [34], which is an extension of variational autoencoders and allows for476

various heterogeneous data types, even within the same module. More specifically, the authors477

suggest to parameterize the decoder distribution as478

p(xj | z) = p(xj |γj = hj(z)) (3)

where hj(·) is a function learned by the neural network, and γj accordingly models data modality479

specific parameters. For example, for real-valued data we have γj = (µ(z), σj(z)
2)), while for480

ordinal discrete data we use a thermometer encoding, where the probability of each ordinal481

category can be computed as482

p(xj = r | γj) = p(xj ≤ r | γj)− p(xj ≤ r − 1 | γj) (4)
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with483

p(xj ≤ r | z) = 1

1 + exp(−(θj(z)− hj(z)))
(5)

The thresholds θj(z) divide the real line into R regions, and hj(z) indicates, in which region z484

falls. The data modality specific parameters are thus γj = {hj(z), θ1(z), ..., θR−1(z)} and are485

modeled as output of a feed forward neural network.486

According to [34] we use batch normalization to account for differences in numerical ranges487

between different data modalities.488

For multi-modal data and in particular discrete data a single Gaussian distribution may not489

be a sufficiently rich representation in latent space. Hence, the authors propose to replace the490

standard Gaussian prior distribution imposed for z in VAEs by a Gaussian mixture prior with491

K components:492

s ∼ Categorical(π) (6)

z | s ∼ N(µ(s), IK) (7)

where πk = 1
K for k = 1, 2, ...,K and s is a one-hot vector encoding of the mixture compo-493

nent. We evaluated different choices of K using a 3-fold cross-validation, while employing the494

reconstruction error 1
L

∑
l log p(x|z(l)) as an objective. In conclusion it turned out that K = 1495

component was an optimal choice for all modules in our iVAMBN model.496

Modular Bayesian Networks497

Let X = (Xv)v∈V be a set of random variables indexed by nodes V in a directed acyclic graph498

(DAG) G = (V,E). In our case each of these nodes corresponds either to lower dimensional499

embedding of a group of variables (i.e. module) in the original data, or to an original features500

(e.g. biological sex) in the dataset. According to the definition of a Bayesian Network (BN), the501

joint distribution p(X1, X2, . . . , Xn) factorizes according to502

p(X1, X2, . . . , Xn) =
∏
v∈V

p(Xv | Xpa(v)) (8)
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where pa(v) denotes the parent set of node v [27]. In our case random variables follow either503

a Gaussian or a multinomial distribution, i.e. the BN is hybrid. Notably, no discrete random504

variable was allowed to be a child of a Gaussian one.505

Since the BN in our case is defined over low dimensional representations of groups of variables,506

we call the structure Modular Bayesian Network (MBN). Notably, a MBN is a special instance507

of a hierarchical BN over a structured input domain [63–66].508

A typical assumption in (M)BNs is that the set of parameters (θv)v∈V associated to nodes509

V are statistically independent. For a Gaussian node v parameters can thus be estimated by510

fitting a linear regression function with parents of v being predictor variables [27]. Similarly, for511

a discrete node ṽ having only discrete parents, parameters can be estimated by counting relative512

frequencies of variable configurations, resulting into a conditional probability table.513

Quantitative Modeling Across Biological Scales via iVAMBN514

Model Training515

The here presented Integrative Variational Autoencoder Modular Bayesian Network (iVAMBN)516

approach (Figure 1), integrates different biological scales together with a knowledge graph into517

the previously published Variational Autoencoder Modular Bayesian Network (VAMBN) ap-518

proach [25]. More precisely, there are four steps to build an iVAMBN model: i) Definition of519

modules of variables, ii) Training of a HI-VAE for each module, iii) Definition of logical con-520

straints for possible edges in the MBN, and iv) Structure and parameter learning of the MBN521

using encoded values for each module. These four steps result from the fact that HI-VAEs (as522

well as any other variants of variational autoencoders) themselves can be interpreted as specific523

types of BNs and thus the overall log-likelihood of an iVAMBN model can be decomposed accord-524

ingly. That means the overall iVAMBN model can be interpreted as a special type of Bayesian525

Network, see [25] for details.526

The four model building steps were followed in the application of the iVAMBN approach527

in this work as well. The modules of variables were mainly defined through the previously528

explained Markov clustering of the knowledge graph, plus an additional module summarizing529

MMSE (Mini–Mental State Examination) and Braak stages into one phenotype module. MMSE530
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measures cognitive impairment by testing the orientation in time and space, recall, language,531

and attention, while Braak stages refer to the degree of biological brain pathology [67]. Some532

non-assigned genes, were directly treated as nodes in the MBN construction and thus also called533

gene modules. The same was done for demographic features, like sex, age, years of education534

and the APOE genotype.535

For training the HI-VAEs for each module a hyperparameter optimization (grid search) was536

implemented over learning rate (learning rate ∈ {0.001, 0.01}) and minibatch size (minibatch537

size ∈ {16, 32}) as in [25]. Each parameter combination was evaluated with the reconstruction538

loss as objective function in a 3-fold cross-validation scenario.539

In general the number of possible MBN DAG structures for n nodes grows super-exponentially540

with n [24], making identification of the true graph structure highly challenging. Therefore, our541

aim was to restrict the set of possible DAGs a priori as much as possible via knowledge based542

logical constraints. More specifically we imposed the following causal restrictions:543

• Nodes defined by demographic or clinical features (like age, gender, APOE genotype, and544

brain region) can only have outgoing edges.545

• The phenotype module (= clinical outcome measures) can only have incoming edges.546

• Genes and gene modules can not influence demographic or clinical features, except the age.547

To additionally integrate prior knowledge defined through the knowledge graph, we tested three548

different strategies while building a MBN:549

1) Completely data driven: The knowledge graph is completely ignored for structure learn-550

ing.551

2) Knowledge informed: The knowledge graph is used in the greedy hill climbing algorithm552

for structure learning i) as starting point, ii) as white list (intending that those edges were553

defined as pre-existing), or iii) as both.554

3) Completely knowledge driven: The knowledge graph provides the structure of the555

MBN and additional connections are only allowed for demographics or the phenotype mod-556

ule.557
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Structure learning of the MBN was always performed via a greedy hill climber using the Bayesian558

Information Criterion for model selection. We employed the implementation provided in R-559

package bnlearn [68].560

Evaluating the Model Fit561

To evaluate the fit of the overall iVAMBN model we employed the generative nature of our model:562

Following a topological sorting of the nodes of the DAG of the MBN we first sampled from the563

distribution of each node conditional on its parent. Notably, for MBN nodes representing modules564

this amounted to sample from the posterior of the according HI-VAE, which in practice can be565

realized via injection of normally distributed noise, see Section Variational Autoencoders, Eq.566

(2). Subsequently, the random sample was then decoded via the HI-VAE. Altogether we thus567

generated as many synthetic subjects as real ones. We then compared the marginal distribution568

of each variable based on the synthetic and the real data. Results, including summary statistics569

and Kullback-Leibler divergences are shown in the supplementary material. Furthermore, we570

compared the correlation matrices of synthetic and real data.571

CD33 down-expression simulation and analysis572

To be able to simulate a down-expression of CD33, we first shifted the distribution of CD33573

such that it reflects a 9-fold down-expression of CD33. In agreement to the theory of Bayesian574

Networks this operation made CD33 conditionally independent of its parents in the MBN, which575

amounts to deleting any of its incoming edges and resulted into a mutilated MBN. Afterwards we576

exploited the fact that iVAMBN is a generative model. That means we first drew samples from577

the conditional densities of the mutilated MBN. Practically this amounted to first topologically578

sort the nodes in the MBN, hence exploiting the fact that the underlying graph structure cannot579

have cycles. Subsequently, samples were drawn from the statistical distribution of each node580

while conditioning on the value of its parents. The result was a per-sample module activity581

scores, which we then decoded through our HI-VAE models into single gene scores.582

Differences between the wild-type and simulated down-expression samples were investigated583

afterwards via multiple statistical hypothesis tests: First, a linear regression was used to model584
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the down-expression effect on gene expression and on the different phenotype scores. Second, the585

globaltest package in R was used to test the differential expression of specific gene sets between586

the wild-type and simulated down-expression group [47]. Those tested gene sets were here defined587

through the modules’ genes used in the MBN, meaning that we tested for differential expression588

of MBN’s gene modules. P-values were adjusted for multiple test scenario with the help of the589

subsets option of globaltest and via calculating the false discovery rate. The globaltest for gene590

sets, as well as the fold change analysis, was also applied to the cell line WT and KO data to be591

able to validate the results.592

Effects of the perturbation of other candidate targets were simulated similarly as the CD33593

knock-down. Again, the distribution of the respective target was shifted such that it reflected594

a 9-fold down- or up-regulation. The module was identified to which the candidate target had595

been assigned, and all variables (including the perturbed target) mapping to that module were596

encoded via the previously trained HI-VAE for the module. Subsequently, the effects on the597

phenotype could be predicted in the same way as described for CD33.598
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