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Abstract

Many intracellular signaling pathways, including the MAPK/ERK cascade, respond
to an external stimulus in a yes-or-no manner. This has been reflected in estimates
of the amount of information a single cell can transmit about the amplitude of an
applied (and sustained) input signal, which turns out to only slightly exceed 1 bit.
More information, however, can potentially be transmitted in response to time-
varying stimulation. In this work, we find a lower bound of the MAPK/ERK signaling
channel capacity. We use an epithelial cell line expressing an ERK activity reporter
and an optogenetically modified fibroblast growth factor receptor, which allows
triggering eventual ERK activity by short light pulses. We observe that it is possible
to reconstruct the stimulatory input pattern with five-minute delay and one-minute
resolution. By stimulating the cells with random pulse trains we demonstrate that
the information transmission rate through the MAPK/ERK pathway can exceed 6 bits
per hour. Such high information transmission rate allows the MAPK/ERK pathway

to coordinate multiple processes including cell movement.
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Introduction

Cells communicate with each other and constantly monitor their extracellular milieu. Upon
receiving a stimulus, cells have to recognize its identity and act accordingly to operate in a
coordinated manner and properly adapt to the changing environment. At the molecular
level, recognition of a specific signal as well as its reliable transmission and appropriate
interpretation involve diverse intracellular processes, primarily post-translational protein
modifications and gene expression, both of which are notoriously stochastic (Artyomov et al.,
2007; Bowsher and Swain, 2012; Raj and van Oudenaarden, 2008). Also, in part due to the
molecular noise, the strength of an incoming signal may verge on the biochemical detection
limit (Berg and Purcell, 1977; Lipniacki et al., 2007; Mora and Wingreen, 2010).
Consequently, at the single-cell level, major intracellular signaling pathways respond to an
external stimulus in a crude all-or-nothing manner (Das et al., 2009; Ferrell and Machleder,
1998; Harding et al., 2005; Markevich et al., 2004; Tay et al., 2010; Turner et al., 2010). The
inability of individual cells to resolve the level of stimulation (input amplitude) is reflected in
the amount of information about the ligand concentration the signaling pathways can
transmit, which has been estimated to only slightly exceed 1 bit (Cheong et al., 2011;
Selimkhanov et al., 2014; Tang et al., 2021; Tudelska et al., 2017). One bit of information is
sufficient to digitally switch on the expression of a pathway-specific set of genes (Riviere et
al., 1998; Tay et al., 2010), but insufficient to control signaling-regulated processes that

occur at time scales shorter than that of gene expression such as cell migration.

Cell signaling is implemented with biochemically diverse processes that are associated
with vastly different time scales: triggering protein production requires about an hour, and as
such is relatively the slowest process; protein post-translational modifications require
minutes; intracellular ion release-based processes may occur at the subsecond timescale;
and neural signal transduction occurs within milliseconds. The time scales associated with
these processes translate to the number of bits processed per hour but it is the eventual
signaling outcome that determines the necessary amount of information or information
transmission rate. Specifically, when the major function of a pathway is regulation of
expression of particular genes in response to a stimulus, then quantification of information
extracted about the stimulus may be the right way to characterize the pathway. However,
when a pathway can be reactivated and reused may times, then one should ask about the
information transmission rate and search for temporal information encoding that may

possibly maximize this rate.
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With the advent of genetically-encoded live cell reporters (Komatsu et al., 2011; Loewith
et al., 2021; Regot et al., 2014; Zhang et al., 2018), it has become widely recognized that
maijor signaling pathways may transcode external stimuli into diverse patterns of activity of
signaling proteins (Albeck et al., 2013; Lahav et al., 2004; Nelson et al., 2004). These
temporal codes are subsequently translated into specific physiological outcomes (Behar and
Hoffmann, 2010; Hao and O’Shea, 2011; Harton et al., 2019; Levine et al., 2013; Purvis and
Lahav, 2013; Sen et al., 2020; Yosef and Regev, 2011; Zambrano et al., 2016). The
mammalian mitogen-activated protein kinase/extracellular signal-regulated kinase
(MAPK/ERK) signaling pathway, in addition to discriminating between transient/sustained
growth-factor stimulation (Murphy et al., 2002; Sasagawa et al., 2005; Wilson et al., 2017)
and performing its temporal integration (Gillies et al., 2017), is capable of transcoding the
growth factor concentration into the frequency of ERK activity pulses (Albeck et al., 2013;
Kochanczyk et al., 2017). Subsequently, the pulsatile ERK activity is translated into
frequency-dependent signaling programs (Toettcher et al., 2013) or even cell fates (Ryu et
al., 2015). Notably, neurons utilize temporal coding (Butts et al., 2007; Gollisch and Meister,
2008; MacKay and McCulloch, 1952), and the information transmission rate of a neural spike
train may reach tens of bits per second (Arnold et al., 2013; Strong et al., 1998).

Cells are subjected to temporally varying stimulation by morphogens, hormones, or
cytokines (Apostolou and Thanos, 2008; Heemskerk et al., 2019; Polonsky et al., 1988;
Shvartsman et al., 2001). Although such time-varying conditions can be readily reproduced
in vitro with the use of microfluidics (Ashall et al., 2009; Harton et al., 2019; Sumit et al.,
2017) or, at even higher time resolution, optogenetics (Aoki et al., 2017; Bugaj et al., 2017;
Toettcher et al., 2011), estimates of the information transmission rate through signaling

pathways, from receptor to effector, are missing.

In this study, we estimate the lower bound of the rate of information transmission through
the mammalian MAPK/ERK pathway. We use an epithelial cell line with an optogenetically
modified fibroblast growth factor receptor (optoFGFR), which allows triggering eventual ERK
activity by short light pulses. The cell line is stably transfected with a reporter, which allows
fine temporal monitoring of ERK activity. By stimulating cells with random pulse trains,
generated with probabilistic algorithms according to three different information encoding
strategies, and applying classifier-based decoding, we demonstrate that the information
transmission rate through the pathway can exceed 6 bits per hour. When consecutive input
pulses are at least 20 min apart, then, based on ERK activity, it is possible to reconstruct the

stimulatory pattern with five-minute delay and one-minute resolution.
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Results

Information encoding and information transmission rate

The maximal amount of information that can be transmitted through a communication

channel per time unit using the best possible input protocol is called the channel capacity C:

. I(S,R
C= max lim &8
protocols At—oo At

where (S, R) is the mutual information between the input (signal) S and the output
(response) R in an experiment of duration Af (Shannon, 1948). In this work, we compute
I(S, R) as the difference:

I(S,R) = H(S) — H(S|R),
where H(S) is the input entropy (the amount of information sent), which in our experimental
design can be computed directly from the assumed probabilistic distribution of the pathway-
stimulating input sequence; and H(S|R) is the conditional entropy (the amount of information
lost), which captures the uncertainty introduced by the channel (understood here as the
signaling pathway). The value H(S|R) depends both on the channel and the signal and as

such is estimated based on experimental data.

There are multiple ways to encode information in a train of pulses. When the magnitudes
of all stimulation pulses are equal, the input can be perceived as a sequence of Os (no pulse)
and 1s (pulse). The input information (or entropy) rate increases with the frequency of
pulses, reaching the maximum for binary sequences that have equal probabilities of 0 and 1.
However, shorter intervals between pulses imply higher information loss due to imperfect
transmission. One should thus expect that there exists an optimum, for which the

information transmission rate (or simply bitrate) is maximal.

We applied three types of pulsatile stimulation protocols to estimate the lower bound for
the channel capacity of the MAPK/ERK pathway (see Figure 1A and Methods for details). In
what we call the binary encoding protocol, information is encoded in a sequence of Os and
1s which are sent at regular time intervals Tcaock With equal probabilities. In our experiments,
we stimulated cells with light pulses according to a 0/1 sequence of length 19:
1011010011110000101 (containing all possible 16 subsequences of length 4) and its logic
negation. In the interval encoding protocol, information is encoded in the lengths of intervals
between subsequent input light pulses. To maximize the input entropy, the intervals were
drawn from a geometric distribution. In the interval encoding protocol with a minimal gap,
the time intervals were also drawn from a geometric distribution (with the mean interpulse
interval Tgeom), but the intervals shorter than a minimal interval 14, were excluded. For each

assumed Tgap, We chose Tgeom that maximizes the input entropy (see Methods for details).
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Compared to the previous protocol, the inclusion of 144 reduces the input entropy rate, but
also increases the percentage of cells identified as responding to a light pulse timely, which

facilitates accurate information transmission.

Detection of pulses

To quantify the bitrate through the MAPK/ERK pathway, we used the human mammary
epithelial cell line MCF-10A with both an optogenetically modified fibroblast growth factor
receptor (optoFGFR) (Dessauges et al., 2021; Gagliardi et al., 2021), which can be activated
by blue light (470 nm), and a fluorescent ERK kinase translocation reporter (ERK KTR),
which translocates from the nucleus to the cytoplasm when phosphorylated by ERK

(Figure 1B). The cells were stimulated with short (100 ms) blue light pulses according to the
three types of pulsatile information encoding protocols (Figure 1A). ERK KTR translocation
was observed at one-minute resolution and quantified (Figure 1C-D; see Methods and
Figure 1—figure supplement 1 for details of the workflow). Signal transduction from
optoFGFR to ERK KTR was found to be fast, with the maximal translocation increment (drop
of the nuclear ERK KTR fluorescence) observed between 2 and 3 min, maximum
translocation at 6 min, and maximal translocation decrement around 11 min after the light

pulse (Figure 1E).

Based on the quantified single-cell trajectories of nuclear ERK KTR (Figure 1D), we
reconstructed the input sequence of light pulses using a method based on the k-nearest
neighbors algorithm (see Methods for details) and data within just the 8 min-wide window
sliding over an ERK KTR translocation trajectory. The method was typically able to predict
the pulse timing with one-minute resolution (Figure 1F), which is clearly better than any
individual pulse feature (cf. Figure 1E-F). The percentage of detected pulses increases
sharply with the time interval between the pulse to be detected and the previous pulse,
reaching about 60% for the interval of 10 min and 90% for the interval of 20 min (Figure 1G).
The missed pulses, pulses detected as occurring earlier or later, and false detections are

responsible for the information loss.

Bitrate estimation

We estimated the information loss along the pathway by computing the entropy of the input
conditioned on its classifier-based reconstruction based on single-cell ERK KTR trajectories.
Next, by subtracting the information loss from the input entropy we quantified transmitted
information, and eventually by dividing the result by time we were able to estimate the

bitrate.
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In Figure 2A we show 10 example single-cell ERK KTR translocation trajectories of cells
responding to the first sequence used in the binary encoding protocol with the time span
between subsequent digits (clock period) Taeck = 10 min. The percentage of cells identified
as responding to light pulses varied from 86% to nearly 100%. As expected, the detectability
is higher when the time span from the preceding pulse is 20 min or more (more than 95%
pulses are detected). A tiny percentage of cells, 1-3%, was identified as responding at time

points without a light pulse.

For the binary protocol we performed experiments for 7 different clock periods ranging
from 3 to 30 min (Figure 2B). The input information rate, 1 bit/Tqock, decreases with
increasing Teock but, as expected, for longer Taock the fraction of information lost due to
missed pulses or false detections is lower. For the shortest T¢oc 0f 3 min, the input
information rate reached 20 bit/h, but due to severe information loss the transmitted
information rate was nearly the same as for Tcock = 5 min (Figure 2B). It should be noted that
in the case of the binary encoding protocol during input reconstruction we utilize the a priori
knowledge of the time points in which the light pulses could have occurred (“pulse slots”).
Thus, based on the ERK KTR translocation trajectory we have to decide only whether the
light pulses occurred in these time points or not. This makes the reconstruction easier than
in the interval encoding protocols, however the binary encoding appears rather artificial in

the biological context.

In Figure 2C we show representative fragments of ERK KTR translocation trajectories in
10 cells responding to stimulation with light according to the interval encoding protocol with
Tgeom = 32 min. For all but one input pulse the percentage of cells identified as responding
timely exceeds 70% and is generally higher for pulses occurring after a longer time span
from a previous pulse. For interpulse intervals below 10 min, the detectability decreases
rapidly (for example, for the pulse at minute 744 that occurred 8 min after its predecessor,
this fraction happens to be only 21%). For each pulse there is also a fraction of detections
that indicate an input pulse 1 min before or after the true pulse. These imprecise detections
carry some information about the timing of pulses and thus decrease the bitrate, however

less markedly than missed pulses or false detections.

We performed 6 experiments according to the interval encoding protocol with Tgeom
ranging from 22 to 55 min (Figure 2D). The highest bitrate of 6.3 bit/h was found for Tgeom =
35 min, while for Tgeom = 31 and 42 min the bitrate was found equal 5.4 and 5.2 bit/h,
respectively. The shortest (22 min) and longest (55 min) average intervals resulted in,
respectively, the highest and the lowest information loss. This causes that for these two
suboptimal protocols, having respectively high (15 bit/h) and low (7.7 bit/h) input information

rate, the bitrate is nearly the same, slightly over 5 bit/h.
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In Figure 2E, we show 10 example trajectories for the interval encoding protocol with Tgeom
=10 min and a gap of 145y = 20 min (giving together the mean interpulse interval equal 30
min). The ERK KTR translocation pulses are well distinguishable and thus in around 90% of
single-cell trajectories the stimulation pulses were reconstructed with one-minute resolution.
For this protocol the bitrate was found to be the highest, equal 7.0 bit’/h based on two
experimental replicates (Figure 2F). The somewhat lower bitrate of 6.1 bit/h was found for
the protocol with Tgeom = 8 min and 144 = 15 min (average of two replicates). It is important to
stress that in our method of pulse detection based only on the 8-min rolling window we do

not use prior information about the gap.

Latency and accuracy of signal detection

In Figure 3A—C we gathered all the experiments to estimate the maximum bitrate that can be
achieved across all 3 protocols. From 6 to 9 experiments performed for each protocol we
selected 3 (4 for the third protocol) experiments for which we obtained the highest bitrate,
and estimated the lower bound of the maximum bitrate as the average over these selected
experiments. As a result we obtained the following bounds (mean +/- standard error of the

mean):

(1) 4.4 +/- 0.1 bit/h for the binary encoding protocol with the optimal clock period (Tcioek) in
the range of 3—-7 min,

(2) 5.6 +/- 0.2 bit/h for the interval encoding protocol with the optimal average interval (Tgeom)

in the range of 31—42 min, and

(3) 6.6 +/- 0.2 bit/h for the interval encoding protocol with a minimal gap, with the optimal
gap interval (Tgsp) in the range of 15—20 min and the (inverse of the) corresponding

geometric distribution parameter (Tgeom) in the range of 810 min.

Altogether, the above results show that the channel capacity of the MAPK/ERK pathway
exceeds 6 bit/h and suggest that the highest bitrate can be achieved for the interval

encoding protocol with a gap.

We should mention that the bitrate estimations presented in Figure 2 and Figure 3A-C
were obtained after rejecting the fraction f= 20% of ERK KTR trajectories that exhibit the
lowest variability, that is, those with the smallest average square change of the nuclear
intensity between subsequent snapshots. As we can see in Figure 3—figure supplement 1,
the maximum bitrate estimated for each of three protocols is an increasing function of ffor f
in the range from 0 to 50%. In the case of the binary encoding protocol the maximum bitrate
increases nearly linearly with f, which is the consequence that for this protocol, for short
clock periods lower variability directly corresponds to lower chance of responding to a light

pulse. However, for the interval encoding protocol the most significant increase is observed
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in the range 0—20%, which motivated us to remove 20% trajectories. At least some of these

trajectories come from cells with optoFGFR or ERK KTR not functioning properly.

In Figure 3—figure supplement 2 we show the histograms of bitrate measured for single
cells in all experiments. The orange area in the histograms corresponds to the removed
20% fraction of cells. We can notice that the histograms for the interval encoding protocol
with a minimal gap are bimodal, but by removing the 20% of cells we may eradicate the
lower mode, which additionally justifies the choice of the particular value of f (for consistency

we removed the same fraction of trajectories from experiments for the other two protocols).

All bitrate estimations are based on the ERK KTR translocation trajectory analyzed in an
8 min-wide rolling window that ends t = 5 min after the hypothetical pulse to be detected (o
stands for ‘time to decision’). This means that we account for information that is available for
each cell 5 min after the pulse that the cell is expected to recognize. In Figure 3D we give
the maximal bitrate estimates (for the interval encoding protocol with a minimal gap jointly for
the experiments with the highest bitrate, encircled in Figure 3A—C) as a function of to. We
found that increasing o beyond 5 min only marginally increases the bitrate, while decreasing
it below 3 min dramatically decreases the bitrate (which possibly reflects the fact that the

maximum increment is observed between 2 and 3 min after the pulse).

Discussion

Toettcher et al. (2013) showed that the RAS-ERK module of the MAPK pathway may
transmit input signals across a broad range of timescales, from 4 min to multiple hours.
Here, we explicitly estimated the information transmission rate from FGFR to an ERK activity
reporter to find that the MAPK/ERK channel capacity exceeds 6 bit/h. We analyzed three
protocols to encode information: binary encoding, interval encoding, and interval encoding
with a minimal gap, to find that interval-encoded information can be transmitted at a
significantly higher bitrate than binary-encoded information. The presence of a minimal gap
between pulses of length comparable to the refractory time (i.e., time in which the cell may
not unambiguously respond to a subsequent pulse) further increases the bitrate. The
interval encoding appears the most natural from the biological perspective as it assumes that
pulses occur independently according to a Poisson process. These random pulses can be
associated with single-cell apoptosis, which recently has been found to trigger synchronous
ERK activation (Valon et al., 2021) that propagates radially for about three cell “layers”
(Gagliardi et al., 2021). Long-distance waves of ERK activity assist wound healing, inducing
collective cell migration (Aoki et al., 2017; Hiratsuka et al., 2015). One could expect that

even if such waves are initiated with high frequency, the first “layer” of cells filters out pulses


https://doi.org/10.1101/2022.03.17.484713
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.17.484713; this version posted March 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

that occur within the refractory time, and thus the further “layers” of cells will be subjected to

stimulation that resembles the interval encoding with a minimal gap.

We found that for the interval encoding with a minimal gap the bitrate may exceed 6 bit/h,
which imposes a lower bound on the MAPK/ERK channel capacity. The fact that the interval
encoding is associated with the highest bitrate follows from the cells’ ability to respond to
light pulses in a very synchronous manner. The light pulses can be detected nearly perfectly
with one-minute resolution (provided that the time from the preceding pulse is longer than
the refractory time), based on ERK activity in an 8-min interval ending 5 min after the light
pulse. We should notice that because of technical constraints we have not investigated
signaling with resolution finer than 1 min, and thus we may not rule out that the MAPK/ERK

channel capacity significantly exceeds the determined lower bound of 6 bit/h.

Cells of multicellular organisms send, receive, and process information. Early studies
demonstrated that signaling cascades can transmit to transcription factors merely above
a bit of information about a cytokine level (Selimkhanov et al., 2014; Sen et al., 2020).
Information about the level of stimulation, available to the observer of single-cell responses,
is reduced due to extrinsic noise (phenotypic variability), which causes that cells respond
differently (but potentially reproducibly) to the same stimuli (Tay et al., 2010; Topolewski et
al., 2022; Zhang et al., 2017). In the case of TNF to NF-kB signaling, information is
degraded also along the pathway due to intrinsic noise and signal saturability (Tudelska et
al., 2017). Consequently, at the transcription factor level, cells may only recognize the
presence or absence of a stimulus, not the strength of stimulation. This is sufficient to
trigger all-or-nothing gene activation, but insufficient to coordinate a more complex cell

behavior.

The MAPK/ERK channel, however, is known to coordinate diverse complex behaviors
and cell fate decisions, such as cell proliferation, differentiation, migration, senescence and
apoptosis (Sun et al., 2015). Importantly the RAS-to-ERK cascade transmits signals from
numerous inputs to numerous outputs regulated by ERK and its upstream components,
MEK, RAF, and RAS. ltis thus natural to expect that more information may be contained in
the time profile of ERK (Rauch et al., 2016; Ryu et al., 2015). In particular, the spatially
localized RAS activation is responsible for formation of cell protrusions (Sasaki et al., 2004),
which arise and contract in the time scale of a couple of minutes (Yang et al., 2018),
enabling cell motion. Since ERK works as a RAS-activated (via RAF and MEK) RAS
inhibitor (Zhan et al., 2020), the ERK activity profile influences temporal characteristics of
protrusions and thus cell motion. The high information capacity of the MAPK/ERK channel

demonstrated in this study enables coordination of versatile functions associated with ERK
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and its upstream kinases, with cell motion likely being the process the most information is

fed into.

Methods

Experimental methods

Cell culture

The MCF-10A human mammary epithelial cells were a gift of J.S. Brugge. The cells were
modified to stably express the nuclear marker H2B-miRFP703, the ERK biosensor ERK-
KTR-mRuby2 and the optogenetic actuator optoF GFR with inactivation half-time of about
5.5 min. (Dessauges et al., 2021; Gagliardi et al., 2021). The modified MCF-10A cells were
cultured in tissue-culture treated plastic flasks and fed with a growth medium composed of
DMEM:F12 (1:1) supplemented with horse serum 5%, recombinant human EGF (20 ng/ml,
Peprotech), L-glutamine, hydrocortisone (0.5 pg/ml, Sigma-Aldrich/Merck), insulin (10 ug/ml,
Sigma-Aldrich/Merck), penicillin (200 U/ml) and streptomycin (200 ug/ml). The cells were
routinely split upon reaching ~90% confluency. For time-lapse optogenetic experiments,
cells were seeded on 24-well 1.5 glass bottom plates (Cellvis) coated with 5 pg/ml
fibronectin (PanReac AppliChem) at 1x10° cells/well density in growth medium two days
before the experiment. Four hours before the optogenetic stimulation (2.5 h before imaging),
cells were washed twice with PBS and then cultured in a starvation medium composed of
DMEM:F12 (1:1) supplemented with BSA (0.3% Sigma-Aldrich/Merck), L-glutamine,
hydrocortisone (0.5 pug/ml, Sigma-Aldrich/Merck).

Optogenetic stimulation
OptoFGFR was stimulated with pulses of blue LED light (100 ms, 470 nm, 3 W/cm?) applied
according to specific stimulation protocols (see a further subsection on stimulation

protocols).

Imaging

Imaging experiments were performed on an epifluorescence Eclipse Ti inverted fluorescence
microscope (Nikon) controlled by NIS-Elements (Nikon) with a Plan Apo air 20x (NA 0.8)
objective. Laser-based autofocus was used throughout the experiments. Image acquisition
was performed with an Andor Zyla 4.2 plus camera at the 16-bit depth every 1 min. The
following excitation and emission filters were used: far red: 640 nm, ET705/72m; red:

555 nm, ET652/60m; green: 470 nm, ET525/36m. Imaging started 1.5 h before the onset of
optogenetic stimulation (to provide proper history for ERK KTR track normalization, see a

further subsection on signal processing).

10
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Theoretical and computational methods

Stimulation protocols

In the case of binary encoding, all stimulation protocols have 19 temporally equidistant pulse
“slots”. We applied the following fixed pattern of pulses: 1011010011110000101 (1=pulse,
0=no pulse), which is the shortest sequence containing uniquely every possible
subsequence of four binary digits. For each “clock period” (i.e., time between pulse slots)
this sequence (in one field of view) and its logic negation (in another field of view) were
used. Since the clock periods ranged from 3 min to 30 min, overall protocol durations
ranged from 19%3=57 to 19x30=570 min. The estimated values of the information
transmission rate are means computed for tracks obtained from 2 fields of view and 4-5
biological replicates for each clock period, except for the clock periods of 20 min and 30 min,

for which 10 fields of view from a single biological replicate were used.

In the case of interval encoding, the interpulse intervals were chosen in an randomized
manner: the interval lengths were first selected to best reflect the underlying distribution,
either geometric or geometric with a minimal gap, given the time budget of a single
experiment (~26 h), and then randomly shuffled. A four hour-long resting period was added
in the middle of the experiment to allow the cells to regenerate in 3 of 6 experiments with
stimulation according to the protocol without a gap and 5 of 9 experiments with stimulation
according to the protocol with a minimal gap; however, no significant difference was
observed between results of the experiments with and without the resting period. The
resting period and the initial 90-min starvation period were excluded from the analysis. The
first pulse of the sequence and the first pulse after the resting period were also discarded as
non-representative. Overall, in each protocol there were 24—131 analyzed pulses (during

25-31 h) depending on the assumed average interval between pulses.

Nuclei detection and cell tracking
The nuclei were detected in the channel of fluorescently tagged histone 2B (H2B)-miRFP703

using local thresholding. Outlines of overlapping nuclei were split based on geometric
convexity defects when possible. Outlines of nuclei that were partially out of frame were
excluded from analysis. The nuclei were tracked automatically using a greedy algorithm
based on parameters such as proximity of outlines in subsequent time points, their surface
area, eccentricity, orientation, total fluorescence intensity and intensity distribution. ERK
KTR tracks were obtained by calculating within each tracked nuclear outline the mean
intensity in the ERK KTR channel. All image processing was performed within our custom

software, SHUTTLETRACKER (https://pmbm. ippt.pan.pl/software/shuttletracker).
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Signal processing

For each tracked nucleus, the mean ERK KTR intensity in its contour was quantified and
normalized, first with the whole-image mean intensity in the ERK KTR channel (to
compensate for possible global changes in fluorescence), and then with the average over
the cell 120-min history (to account for variation in ERK KTR expression or its uneven
visibility in individual cells). Such normalized values are subtracted from 1 and then referred
to simply as ‘ERK KTR translocation’ and denoted x:, where t indicates a time point and
directly corresponds to the minute of the imaged part of the experiment. Of note, for nuclear
ERK KTR signal constant in time, such normalization and linear transformation imply

conveniently that x; = 0.

Selection of tracks

In each field of view, we ranked tracks by their length and then by their quality, defined as
low variation of the nuclear area within the track, and preselected 500 top scoring tracks.

To eliminate cells that responded weakly to stimulation, for example due to low reporter
expression, we further rejected 100 tracks (20%) with the lowest sum-of-squares of the
discrete derivative of the ERK KTR translocation trajectory (computed after only the first step

of normalization).

Input reconstruction

Binary encoding. The ERK KTR translocation trajectories from each experiment were split
into the training set (200 randomly selected trajectories) and the test set (remaining 200
trajectories). For each potential light pulse time point ty, referred to as “slot”, we extracted
slices of £ = 6 subsequent time points beginning at three different one-minute shifts with
respect to fo: 2 min before the slot (that is, from & — 2 to &, + 3), 1 min before the slot (from

fo — 1 to to + 4), and exactly on the time point of the slot (from f, to f, + 5). For each slice we
computed ¢ - 1 discrete backward derivatives, Ax; = x; — x;—1. Separately for each of three
sets of slices (corresponding to a specific shift with respect to f), a k-nearest neighbors

(k = 10) classifier (Pedregosa et al., 2011) with (£ - 1)-dimensional Euclidean distance and
inverse-distance weighting was trained such that each slice is labeled with 0/1 depending on
the predicted occurrence of a light pulse in its slot. In this way, three 0/1 labels are assigned
to a single slot. To obtain input signal reconstruction in each slot of x;, an ensemble
classifier combined three binary predictions through hard voting. In the estimation of the
confusion matrix (described further), the whole procedure was repeated for 5 random
partitionings of trajectories into the training set and the test set. We checked that the

reconstruction is not improved for higher k.
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Interval encoding. The ERK KTR translocation trajectories from each experiment were split
into the training set (200 randomly selected trajectories) and the test set (200 remaining
trajectories). Each trajectory was represented as a set of overlapping slices of /=6
subsequent time points. The slices constitute a perfect 6-fold coverage meaning that each
(non-terminal) time point belongs to 6 (partially overlapping) slices. Each slice was labeled
with the “time after pulse” (TAP) being the time from the last light pulse to the last time point
of the slice (or from the previous pulse if this time is shorter than 3 min); this adjustment is
important in the case of very short, 3—4 min, interpulse intervals). For each slice we
computed ¢ — 1 discrete backward derivatives, Ax; = x;— xi-1. A k-nearest neighbors (k = 10)
classifier (Pedregosa et al., 2011) with (£ — 1)-dimensional Euclidean distance and inverse-
distance weighting was trained to predict a TAP associated with each slice. Slices with TAP
values of 3, 4, or 5 min were used to predict pulses through hard voting: time points
indicated by at least two of three slices were considered as time points having a light pulse
in the final reconstruction (see Figure 1—figure supplement 2). To additionally prevent a
single pulse from being predicted multiple times, if more than one prediction was indicated
within any three subsequent time points, all predictions except the first one were discarded.
In the estimation of the contingency table (described further), the whole procedure was

repeated for 5 different random partitionings of trajectories into the test set and the train set.

Let us notice that in both the binary and the interval encoding protocols, the decision
whether to classify a given time point f, as a point containing a light pulse was made based
on 3 subsequent, partially overlapping slices of length 6, which cover 8 subsequent values of
x; (for t ranging from f, — 2 to f, + 5). Thus, only information available to a cell 5 min after the
pulse was used by the trained ensemble classifier to make a prediction. In Figure 3D-E, the

length of this window is varied to check how fast information is accumulated.

Bitrate computation

We estimated the bitrate as the amount of information /(S, R) between the input signal S and
the elicited response R sent within an interval corresponding to the total input duration At
according to the formula:

i(S,R) = ISR) _ H(S)—H(SIR) _ H(S) _ H(SIR) ™)
! At At At At

where H(S) is the entropy of an input signal and H(S|R) is the entropy of the input

conditioned on the response (or, in our case, on the output-based reconstruction of the
input). As described below, the input entropy rate, h(S) := H(S)/At, may be determined
theoretically, whereas the conditional entropy H(S|R) is calculated based on ERK KTR

translocation trajectories.
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Input entropy rate

In the case of the binary encoding protocol, input sequences contain 0/1 digits occurring
independently with identical probabilities of ¥ in temporally equidistant pulse slots. The
entropy of such 19-digit input sequences is Hvinary(S) = 19 bits. When digits occur in pulse

slots Tcock @apart, then the input entropy rate per digit is

19 bits

hbinary(S; Tdock) = 19 Toroek = 1 bit/Tciock. (2)

Since Taock is the clock period of the binary encoding protocol, Eq. (2) expresses the input

entropy rate per clock period.

In the case of the interval encoding protocols, intervals between pulses are drawn by
random from the geometric distribution with the rate parameter p = 1/14com and are optionally
lengthened by adding 14sp. The entropy of the geometric distribution is

__ plog, p+(1-p) log, (1-p)
p

= Tgeom logz Tgeom — (Tgeom - 1) logz (Tgeom - 1)' (3)

SO the entropy rate hinterval(s; Tgeom, Tgap) |S

T log, Tgeom — (Tgeom—1) 108, (Tgeom—1)
h; ST T = B%om =2 8 2 , 4
1nterva1( » Lgeom» gap) Tgeom +Tgap ( )

where Tgeom + Tgap iS the mean interpulse interval. Since in the interval encoding protocols,
digits 0/1 occur at the one-minute resolution, hinerval cOmputed in Eq. (4) is also the entropy
per digit. For the “gapless” protocol, Tgeom Was varied whereas T4qp Was set to 2 min (to avoid
ambiguities in signal reconstruction). For Tgeom > 3.15 min, hinterval(S; Tgeom, Tgap) IS @
decreasing function of Tgeom. For the protocol with a minimal gap, T4ap Was varied and Tgeom

was adjusted through numerical optimization to maximize Ainterval(S; Tgeom, Tgap)-

Conditional entropy

For the binary and the interval encoding protocols we estimate from above the conditional
entropy H(S|R) per digit of the input given its reconstruction. In light of Eq. (1) this will
provide us with a lower bound on the bitrate i(S, R). Entropy of a joint distribution is lower
than the sum of individual entropies (Cover and Thomas, 2006), thus

H(SIR) = XaH(SqlR), (5)
where Sy is a single input digit and H(S4|R) is the entropy of that input digit conditioned on
the whole-sequence reconstruction R. The equality holds only when R and S jointly are a
Markov process, this is, when digits occur independently and the reconstruction of a given
digit does not depend on other digits. Of note, in our experiments the input digits are
independent for the binary encoding protocol, but dependent for the interval encoding
protocol with a (minimal) gap. However, even for the binary encoding protocol, the

probability of detecting a pulse (digit ‘1’) depends on the time interval from the previous 1.
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Further, from the data processing inequality (Cover and Thomas, 2006), for the binary
encoding protocol, we have
H(SalR) < H(S4lRa), (6)
where H(Sq|Ry) is the entropy of an input digit Sy conditioned on its reconstruction Ry, and for
the interval encoding protocols we have
H(SalR) < H(Sa| (Ra-1,Ra,Ra+1)), (7)
where H(S4|(Ru -1, R4, Ra+1)) is the entropy of Sy conditioned on three subsequent digits of

the reconstruction.

Taken together, from inequalities (5)—(7) we have
H(S|IR) < XaH(SqlRg) and  H(S|R) < XgH(Sal (Ra-1,Ra,Ra+1)), (8)
which means that to obtain upper bounds on conditional entropies for the binary encoding
and the interval encoding protocols we have to calculate H(S4|R4) and
H(S4|(Rd-1, Ra, Ra+1)), respectively.

Calculation of H(S4|R4) for binary encoding. To obtain H(S4|R4), we calculated the

confusion matrix between Sy and Ry:

R4 1 0

Sy
1 TP FN
0 FP TN

where TP, FP, FN, TN are, respectively, the probabilities of true positive detections, false
positive detections (“false detections”), false negative detections (“missed pulses”), and true
negative detections averaged over all time points, all selected tracks, and all partitions of
data into the train set and the test set. Based on this confusion matrix we calculated

H(S4|R4) according to the definition as:

Sa=S,Rq=
H(Sal Ra) = ~E(10g, p(SalR)) = = XsreqonP(Sa = 5,Ra = 1) log, U220, (9)

Calculation of H(S4|(R4-1, Ra, Ra+1)) for interval encoding. For this encoding, we
computed the contingency table showing the relation between Sy and the reconstruction of
the three subsequent digits (Rs-1, Ra, Ra+1), which also accounts for information carried by

inaccurate detections:
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(Ra-1, Ra, Ra+4) | (0,0,0) | (1,0,0) | (0,1,0) | (0,0,1)

Sq

The entries of the contingency table are joint probabilities p(S¢ = s, (Ra-1, Ra, Ra+1) =

(r-1, ro, r+1)) of input signal s € {0, 1} and reconstructed input r € {(0,0,0), (1,0,0), (0,1,0),
(0,0,1)}. In contrast to the confusion matrix for the binary encoding, these joint probabilities
have no straightforward interpretation in terms of TP, FP, FN, TN or inaccurate detection
probabilities. The combinations of (Rs-1, R4, Ra+1) containing two or three 1s do not occur
due to the prior elimination of detections that are closer than 3 min apart. The conditional
entropy was calculated according to the definition as:

H(Sdl (Rd—erder+1)) = - Z p(Sd =S, (Rd—lle’Rd+1) = (r—llTOlr‘I'l))

5,r-1,70,7+1 €{0,1}

P(Sa=s,(Rd-1.Ra,Ra+1)=("-1,70,7+1)) (10)
P((Rag-1RaRa+1)=(T-1,70,741))

X log,

To summarize, bitrate may be computed based on Eq. (1) with input entropy rates given by
Eq. (2) and Eq. (3) and conditional entropies given by Eq. (9) and Eq. (10) in the case of the
binary encoding protocols and in the case of interval encoding protocols, respectively.

Sources of information loss

To determine the sources of the information loss (Figure 2BDF), we sequentially corrected
all types of errors in the reconstruction: false detections (false positives), missed pulses
(false negatives), and for the interval encoding protocols also inaccurate (deferred or
advanced) detections. After each correction step, we recomputed the confusion
matrix/contingency table and attributed the decrease of conditional entropy and the resulting
increases of bitrate to the particular type of error. Since the obtained results depend on a
particular order of correction steps, to compare individual contributions from the three
corresponding types of reconstruction errors, we calculated each of these contributions by
averaging over all possible orders of the correction steps (2 permutations for the binary
encoding protocol, 6 permutations for the interval encoding protocols; see Figure 2—figure
supplement 1). Of note, each sequence of correction steps restores exactly the input signal
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and the estimated bitrate losses associated with considered error types sum up to the total
bitrate loss. Since the procedure is symmetric with respect to each type of error, these

contributions may be compared.
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Figure 1. Decoding pulsatile signals relayed through the MAPK/ERK pathway.

(A) Input: three considered protocols of encoding information in a pulse train. In binary encoding,
a pulse is either present or not in each of the temporally equidistant slots. In interval encoding,
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information is carried by the lengths of time intervals between subsequent pulses. The intervals are
drawn from a geometric distribution (at the one-minute resolution). In interval encoding with a minimal
gap, the intervals are drawn from a geometric distribution and then the intervals shorter than the
minimal gap are discarded.

(B) Diagram of the MAPK/ERK pathway within the engineered MCF-10A cells. Blue light activates
optoFGFR, triggering a kinase cascade, which culminates in ERK activation. The fluorescent (mRuby2)
ERK KTR, which in non-stimulated cells is mostly localized to the nucleus, upon phosphorylation by
nuclear active ERK (ppERK) is exported to the cytoplasm. (A drop of) the mean nuclear fluorescence of
ERK KTR is used as a proxy of its translocation and ERK activity.

(C) Output: ERK KTR translocation in response to activation of optoFGFR by a light pulse at t0.
Nuclear contours of 13 cells are marked with different colors. For the sake of presentation, microscopic
images are normalized such that the original 10%—90% quantiles of pixel intensity span over the whole
grayscale range, black to white.

(D) Input reconstruction: time track of ERK KTR translocation in 13 representative cells in response to a
sequence of 4 light pulses. The shaded interval is the interval in which snapshots shown in panel C
were acquired; the trajectories correspond to respective color-coded nuclear outlines shown in panel C.
Green bars show the proportion of cells (estimated based on 400 single-cell trajectories) in which a
pulse was detected by the trained classifier.

(E) Histograms of three basic temporal features characterizing the ERK KTR translocation profile: time
to the largest translocation increment, peak of translocation, and the largest translocation decrement
(all with respect to the time of a light pulse that elicited the characterized response). In a typical cell, the
translocation has the steepest slope between 2 and 3 min after the light pulse, reaches the maximum at
6 min, and rebounds at the highest rate between 10 and 11 min after the light pulse. Data from all 6
experiments with the gapless interval encoding protocol.

(F) Accuracy of the light pulse detection. Most of the pulses are detected exactly at one-minute
resolution. Data as in panel E, classifier trained on other cells from the same experiment. (G)
Proportion of cells in which a pulse was detected as a function of the interval after the previous pulse.
Nearly 90% of pulses are detected with 2-min accuracy if occurring at least 15 min after the previous
pulse. About 80% of pulses that are more than 20 min apart are detected exactly. Data as in panel F.
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Figure 1—figure supplement 2. lllustration of the input sequence reconstruction algorithm for
the interval encoding.

(A) Tracks from the training set are segmented into partially overlapping slices of 6 subsequent time
points such that each time point belongs to 6 slices. Each slice is labeled with time after pulse (TAP),
measured with respect to the last time point in the slice. The kNN classifier is trained to predict the TAP

associated with each slice.

(B) TAP labels of track slices in the test set are predicted with the kNN classifier. For each slice, the
predicted label indicates the time point at which the stimulation pulse most probably occurred.

(C) Votes from different slices are counted. Only votes from slices predicted with TAP = 3,4,5 min are
taken into account. Time points that received at least two out of the three possible votes are considered
as time points with pulse in the final reconstruction.
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Figure 2. Pulse detection and bitrate estimation in three protocols.

(A) Binary encoding: 10 representative trajectories from the experiment with slots every Tqock = 10 min.
Stimulation pulses are marked with blue down-pointing triangles. Small filled circles indicate light pulses
detected based on the corresponding trajectories. Percentage-labeled green bars in each pulse slot
show the fraction of cells in which a pulse was correctly detected. Fractions of false positive detections
are shown as percentage-labeled gray bars.

(B) Binary encoding: bitrate and sources of bitrate loss in experiments with various clock periods. The
number of analyzed cell trajectories was 3200 for clock periods T¢ock ranging from 3 to 15 min and 1200
for Toock = 20 and 30 min. Each analyzed cell trajectory contained 19 clock periods.

(C) Interval encoding: 10 representative trajectories from the experiment with the mean interval Tgeom =
35 min. Stimulation pulses are marked with blue down-pointing triangles. Colored dots indicate light
pulses detected based on the corresponding trajectories. Green bars show the fraction of cells in which
a pulse was detected in a particular minute.
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(D) Interval encoding: bitrate and sources of bitrate loss in experiments with various mean intervals.
The number of analyzed cell trajectories was 400 in each of 6 experiments. The number of light pulses
in analyzed trajectories was in the range 24-60 depending on the mean interval (all experiments lasted
27-33 h).

(E) Interval encoding with a minimal gap: 10 representative trajectories from the experiment with a
minimal gap of Tgap = 20 min and the inverse of the optimized geometric distribution parameter Tgeom =
10 min. Graphical convention as in panel C.

(F) Interval encoding with a minimal gap: bitrate and loss sources in experiments with various minimal
gaps and mean intervals. The number of analyzed cell trajectories was 400 in each of 9 experiments.
The mean number of light pulses in analyzed trajectories was in the range 19-96 depending on the
mean interval (all experiments lasted 27-33 h).
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Figure 2—figure supplement 1. The method of estimation of the information transmission rate
losses caused by three types of errors.

(A) Detection and labeling of errors in the reconstruction R. Since patterns of ‘11’ and ‘101’ are
guaranteed to never occur in the input sequence S, the labeling is non-overlapping and unambiguous.
Inaccurate detections in the interval encoding protocols are not decomposed into missed pulses and
false detections but subjected to their specific correction type.

(B) An example 3-step sequence of error corrections for the interval encoding protocols. After the third
step, the fully corrected reconstruction R is identical to the input sequence S.

(C) All orders of three-step corrections (for the interval encoding protocols) and two-step corrections (for
the binary encoding protocol). Within each encoding protocol, for each type of correction its contribution
to reducing the loss of the information transmission rate is estimated for all permutations and then
averaged.
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(A)—(C) Information transmission rate for three protocols. The lower bound of channel capacity is
estimated as the average of 3 or 4 encircled points and marked with a dashed line.

(D)—(E) Lower bound of channel capacity as a function of time from pulse to its detection for two interval
encoding protocols. Pulse detection is based on the ERK KTR trajectory window that begins 2 min
before a pulse slot and ends at the time after the pulse slot indicated on the horizontal axis
(classification is always based on three overlapping slices of their length adjusted to the length of the
window). The 8 min-long window (red circle) is used for pulse detection throughout the paper.
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Figure 3—figure supplement 1. Lower bound of channel as a function of the fraction of cells
rejected in the preselection step.

The lower bound is computed as in Figure 3. The preselection step is introduced to exclude cells that
do not respond to stimulation, possibly due to low expression of optoFGFR or the ERK KTR. The cells
are rejected based on a criterion that is a priori independent of the accuracy of pulse detection, see
Methods for details. Throughout the paper, the fraction of rejected cells is set to 20% (highlighted in
gray), because above this value the bitrate estimates in the interval encoding protocols with and without
a gap reach a plateau.
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Figure 3—figure supplement 2. Histograms of the information transmission rate in individual
cells for (A) binary encoding, (B) interval encoding, and (C) interval encoding with a minimal gap.

Estimates for the cells rejected in the preselection step (20% of all cells) are marked in orange.

Negative information transmission rate estimates are possible due to the rough approximation based on
inequalities in Eq. (8).
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