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Abstract

Recurrent Neural Networks (RNNs) are commonly used models to study neural
computation. However, a comprehensive understanding of how dynamics in RNNs
emerge from the underlying connectivity is largely lacking. Previous work de-
rived such an understanding for RNNs fulfilling very specific constraints on their
connectivity, but it is unclear whether the resulting insights apply more generally.
Here we study how network dynamics are related to network connectivity in RNNs
trained without any specific constraints on several tasks previously employed in
neuroscience. Despite the apparent high-dimensional connectivity of these RNNs,
we show that a low-dimensional, functionally relevant subspace of the weight
matrix can be found through the identification of operative dimensions, which we
define as components of the connectivity whose removal has a large influence on
local RNN dynamics. We find that a weight matrix built from only a few operative
dimensions is sufficient for the RNNs to operate with the original performance,
implying that much of the high-dimensional structure of the trained connectivity is
functionally irrelevant. The existence of a low-dimensional, operative subspace
in the weight matrix simplifies the challenge of linking connectivity to network
dynamics and suggests that independent network functions may be placed in spe-
cific, separate subspaces of the weight matrix to avoid catastrophic forgetting in
continual learning.

1 Introduction

A central goal in neuroscience is to understand how groups of tightly interconnected neurons generate
the complex network dynamics that underlies behavior. To this end, ever larger experimental datasets
on neural anatomy, neural activity and the corresponding behavior are collected and analyzed and
new experimental tools to extend the amount and quality of such data are continuously developed.
However, in most settings it remains an open question how the underlying neural connectivity is
able to generate the observed neural dynamics. Progress in how to inspect and interpret these
complex datasets, and in particular on the relation between neural structure and function, may come
in particular from new theoretical frameworks [1, 2].

Artificial Recurrent Neural Networks (RNNs) are a promising tool to develop such theoretical frame-
works in a well-controlled and flexible setting [3, 4, 5]. Previous work on RNNs explained how
a specifically designed connectivity can give rise to desired network dynamics [6, 7, 8]. Further
theoretical work on RNNs with random, recurrent weights provided detailed insights into the proper-
ties of neural dynamics emerging from largely unstructured connectivity [9, 10, 11, 12, 13]. More
recent work related structure to function in feedforward networks [14, 15] or RNNs with specific
connectivity constraints. For example, network motifs in threshold-linear networks are used to predict
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the existence of fixed points of the dynamics [16]. Similarly, a principled understanding of dynamics
and the role of different cell classes in computations can be achieved for RNNs with low-dimensional
weight matrices (low-rank RNN [17, 18]). At present, it remains unclear if and how the resulting
findings can be generalized to RNNs which are not subject to such constraints.

In this work, we study how the network dynamics are related to the network connectivity in vanilla
RNNs that are trained using a gradient-based approach without imposing any specific constraints on
the network weight matrix. We find that the weight matrix of the trained RNN is consistently high-
dimensional, even when trained on tasks resulting in dynamics that are low-dimensional. Notably,
we are nonetheless able to identify a low-dimensional subspace within the high-dimensional weight
matrix that is sufficient to perform the trained task. We identify this functionally relevant subspace
of the connectivity through the definition of a set of operative dimensions, which we define as
components of the network connectivity that have a large impact on computationally relevant local
dynamics produced by the network.

This ability to identify functionally relevant subspaces in weight matrices improves our understanding
of how the network connectivity generates the observed network dynamics and thereby makes RNNs
into a more interpretable model for neuroscience and machine learning applications.

2 Results

We perform our analyses on vanilla RNNs trained without regularization terms, using the standard
RNN equation:

τ ẋt = −xt + Wrt + But + σt (1)
where xt ∈ RN are the linear activities of the N hidden units over time t with rt = tanh(xt),
W ∈ RN×N is the recurrent weight matrix of the hidden units and τ ∈ R is the time constant
(τ = 10ms, dt = 1ms). We consider RNNs of N = 100 noisy units, where each element of σt

is drawn from a Gaussian distribution N (µ = 0, σ = 3.1623
√
dt ≈ 0.1). The network output is

defined as:
zt = Yrt (2)

with output readout weights Y ∈ RZ×N . The task-dependent, time-varying inputs ut ∈ RU are
projected onto the hidden units with input weights B ∈ RN×U . Note that only the inputs vary across
different conditions within a task. For any given condition, the cost is defined as:

cost =
1

ZT
ΣZ

i=1Σ
T
t=1(z

∗
t (i)− zt(i))

2 (3)

where z∗t (i) is the desired output. All network weights (B, W, Y) are randomly initialized, and
networks are trained to minimize the summed costs across all conditions.

The RNNs are trained separately on two previously proposed tasks: context-dependent integration
[19] and sine wave generation [20] (see appendix section A.3.8 for additional results on sequential
MNIST). The dynamics of RNNs trained on these tasks is well understood, and was shown to be
largely independent of the type of employed RNN [21]. In context-dependent integration, the RNN
receives two noisy, sensory inputs (between -1 and 1) and two static, context inputs (0 or 1). The
network is trained to select one of the two sensory inputs (depending on the currently active context
input; i.e. select input sensoryi in contexti) and integrate it over time (Fig. 1a, b). The network
should reach choice1 or choice2 if the average of the contextually relevant sensory input is positive
or negative, respectively. In the sine wave generation task, the RNN receives one static input and is
trained to output a sine wave whose target frequency is given by the level of this static input (Fig. 1f,
g; for details on task structures see section A.1.1). For both tasks we trained 20 RNNs (different
random initial connectivity) with gradient-based optimization to minimize the cost (Eq. 3; for details
see section A.1.2).

2.1 High-variance dimensions

To characterize the relation between network connectivity and dynamics, we first consider the
functional relevance of high-variance dimensions (as in analyses of low-rank RNN [17]) defined as
the left singular vectors of the RNN weight matrix W:

W = ΣN
i=1wisivT

i (4)

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2022. ; https://doi.org/10.1101/2022.06.03.494670doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494670
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: High-variance dimensions of the connectivity. (a) Task schematic of the context-dependent
integrator. (b) Low-dimensional projection of condition average trajectories for an example context-
dependent integrator. (c) Variance explained (in activity space) by individual PCs of the network
activity X over all input conditions, shown at different stages of training. (d) Variance explained (in
weight space) by individual PCs of the weight matrix W at different stages of training. (e) Network
output cost (Eq. 3) of networks with reduced-rank weight matrices WPC

k for k = 1 : N (Eq. 5),
averaged over input conditions (shaded area: median absolute deviation (mad) over trials). (f-j)
Analogous to (a-e), but for a sine wave generator. (b-e) and (g-j) 1 representative network per task.

where wi and vi are the left and right singular vectors respectively, and si the associated singular
values. In general, we refer to the i-th left singular vectors of a matrix M ∈ RN×C (C ∈ R) as the
principal components of the matrix, PC(M)i.

We first ask whether the weight matrices of the trained networks are low or high-dimensional, by
assessing the amount of variance in the connectivity (s2i ) explained by principal components PC(W)i.
In the trained networks, variance explained falls off slowly over PC(W)i, implying that the weight
matrices W are high-dimensional. The variance explained by individual PCs changes little during
training (Fig. 1d, i shown for column dimensions; colors: training iteration) but is strongly influenced
by the rank of the untrained network (Fig. S6). Despite having a high-dimensional connectivity,
the network activities (X = [x1, . . . xT ] and R = [r1, . . . rT ]; both further concatenated over all
input conditions) are consistently low-dimensional. Activity is low-dimensional even before training,
as W is initialized with a spectral radius of 1 (Fig. 1c, h; colors: training iteration). Throughout
training, more than 95% of the variance in the network activities X can be described by less than ten
dimensions. Thus, even though the underlying weight matrix (being high-dimensional) could support
activity in any region of state space, the network activity generally only occupies a low-dimensional
subspace. This finding raises the question of whether all dimensions in W are truly necessary to
perform the task.

To assess the functional importance of single dimensions of W, we construct reduced-rank approxi-
mations of W from only a subset of all PC(W)i and then assess the performance of the resulting
RNN (as in [22]). Each low-rank approximation is constructed by including only the first k PC(W)i:

WPC
k = Σk

i=1wisivTi (5)

RNN performance based on WPC
k is evaluated as above to obtain the network output cost (Eq. 3).

We find that a large number of PC(W)i are consistently required to reach a similar performance
as the original network. For the two example networks, 88 PCs are required to achieve original
performance for context-dependent integration, and 86 PCs for sine wave generation (Fig. 1e, j; we
define original performance as 4 times the cost of the corresponding full-rank RNN, Fig. S7 shows
more example networks). Furthermore, performance does not improve monotonically with increasing
rank, but rather displays sudden jumps at specific ranks (Fig. 1e, j). These jumps suggest that
some high-variance dimensions are more relevant than others in driving the network output. These
putative differences in functional relevance are not obviously mirrored in the amount of variance in
W explained by each high-variance dimension (Fig. 1d, i). In other words, the amount of variance in
connectivity space explained by a given dimension in W does not appear to directly correspond to its
functional relevance.
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Figure 2: Local and global dynamics. (a) Network output cost for reduced-rank weight matrices
WPC

k in an example network for context-dependent integration. Analogous to Fig. 1e, but shown
separately for choice1 and choice2 trials in context1. (b) Average trajectories for the conditions in (a)
in the full-rank and a reduced-rank (k = 60) network (grayish and reddish curves, see legend). Blue
lines show recurrent dynamics in the reduced-rank network initialized at locations corresponding
to slow points of the dynamics in the full-rank network (blue crosses). (c) Same as (b) but for a
reduced-rank network with k = 61.

Overall, it appears that the inferred high-variance dimensions may be ill-suited to shed light on the
relation between RNN connectivity and dynamics. These findings point to two possible scenarios: the
functionally relevant subspace of the weight matrix in these unconstrained RNNs is genuinely high-
dimensional, precluding simpler descriptions of the most relevant components of the connectivity; or
high-variance dimensions PC(W)i may in general not be well-aligned with functionally relevant
dimensions of the connectivity.

2.2 Operative dimensions

2.2.1 Definition of operative dimensions

To distinguish between these two scenarios, we devised an approach to directly identify functionally
relevant dimensions of the weight matrix. We refer to this new type of dimensions as the operative
dimensions of the connectivity.

The definition of operative dimensions is based on the key insight that sudden jumps in performance
(cost, Eq. 3) can be caused by small changes in the local dynamics. Here we illustrate this for
one example network trained on context-dependent integration (Fig. 2). We focus on 2 out of 8
input conditions, for which the cost shows prominent jumps at specific ranks k, specifically when
transitioning from k = 60 to k = 61 (Fig. 2a; red circles).

To understand this sharp increase, we examine the activity trajectories produced by the original
full-rank and the reduced-rank RNN for the two considered input conditions (k = 60 in Fig. 2b;
k = 61 in Fig. 2c). The well-performing, full-rank RNN produces trajectories that start in the center
and move out to endpoints on the right (choice1; solid black) or left (choice2; dashed gray). The RNN
with k = 60 closely matches these dynamics (Fig. 2b; red curves, solid and dashed). On the other
hand, the RNN with k = 61 erroneously produces trajectories that move to the left endpoint for both
conditions (Fig. 2c; overlapping red curves). This discrepancy between choice1 trajectories in the
original full-rank and k = 61 RNN underlies the large jump in cost (Fig. 2a).

Critically, we found that the large difference in cost between the two reduced-rank networks is due to
only a small change in the underlying local, recurrent dynamics. To visualize the local dynamics in
the two reduced-rank RNNs, we generate brief activity trajectories (Fig. 2b,c; blue curves) initialized
at the location of identified slow-points of the dynamics in the original full-rank RNN (blue crosses;
identified as in [19]). Here, we isolate the recurrent contribution to the dynamics by running the
RNN without any external inputs (Eq. 1 with ut = 0, σt = 0). The resulting trajectories suggest
that the local recurrent dynamics is substantially different across networks only in the region of state
space that activity travels through at the onset of the trial (Fig. 2b,c; dashed square). This small local
difference is sufficient to redirect the choice1 trajectories for k = 61 towards the wrong endpoint.
This mistake cannot be corrected by recurrent dynamics at other locations in state space, resulting in
the large cost. In summary, the functional relevance of individual dimensions of W is hard to assess
based on changes in the cost, but rather may be better judged based on its effect on local network
dynamics.
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Based on this insight, we define operative dimensions as dimensions in W that have a large impact on
the local dynamics if removed from W (Fig. 3a). Given an arbitrary unit vector a ∈ RN , we define
Ŵ as the matrix of rank N − 1 obtained by removing the dimension a from the column space of W
(orthogonal projection):

Ŵ = W − a(aT W) (6)

In the absence of noise, the dynamics of the resulting reduced-rank RNN are then given by
τ ˆ̇xt = −xt + Ŵrt + But. At location xt the activity evolves to x̂t+1 = xt + ˆ̇xtdt over one time-step.
Likewise, the state of the full-rank network evolves to xt+1 = xt + ẋtdt, where we have set σt = 0
in Eq. 1. We quantify the change in local dynamics brought about by removing a as:

∆f = ∥xt+1 − x̂t+1∥2 (7)

as illustrated graphically in Fig. 3a. We then define the operative dimensions of W based on ∆f
in two steps. In the first step, we infer a set of local operative dimensions at each of P sampling
locations yj ∈ RN in state space. The sampling locations are chosen as an evenly distributed subset
of the states xt explored by the condition average trajectories of the full-rank network (Fig. 1b, g; only
a subset of P > 100 locations shown). This choice of sampling locations ensures that we consider
only local dynamics that is likely to contribute to solving the task at hand. The first local operative
dimension d1,j at location yj is defined as the dimension a that maximizes ∆f :

d1,j = argmax
a

(∆f){xt=yj} (8)

Up to N − 1 further local operative dimensions di,j at the same location yj are defined in the same
way, but under the additional constraint that they need to be orthogonal to all previously identified
local operative dimensions at that location:

di,j = argmax
a

(∆f){xt=yj}, constrained by: dT
i,jdi∗,j = 0, ∀i∗ < i (9)

In the second step, we define the global operative dimensions by combining the local operative
dimensions di,j from all sampling locations yj (i = 1 : N, j = 1 : P ). Specifically, the local
operative dimensions are scaled by their local ∆f and concatenated into one matrix L.

L = [d1,1∆f1,1,d1,2∆f1,2, . . . ,dN,P−1∆fN,P−1,dN,P∆fN,P ] (10)

where ∆fi,j = ∆f{xt=yj ,a=di,j}. The i-th global operative dimensions qi is then defined as the i-th
left singular vector of L:

L = ΣN
i=1qigip

T
i (11)

where gi are the singular values, and pi the right singular vectors of L. The subspace spanned by the
global operative dimensions qi consists of all left singular vectors with gi > 0. Note that these steps
result in operative dimensions of the column space of W, which are referred to as column dimensions
in the figures. We employ an analogous approach to define operative dimensions of the row space of
W which yields global operative row dimensions qi (row dimensions in figures; see section A.2.2).

2.2.2 Operative dimensions identify a low-d functional subspace of the connectivity

To quantify the functional relevance of the global operative dimensions, we proceed as for the high-
variance dimensions above (Eq. 5) by constructing reduced-rank approximations of W from only a
subset of the operative dimensions. For the column dimensions, the reduced-rank approximations
WOP

k are given by:
WOP

k = Σk
i=1qi(q

T
i W) (12)

Network activity xOP
t,k based on WOP

k is then computed as above (Eq. 1).

Unlike the high-variance dimensions, the global operative dimensions identify a low-dimensional
subspace that is sufficient for the RNN to achieve the original performance in both tasks (Fig. 3b-c,
e-f; solid lines, qualitatively similar results on sequential MNIST are shown in section A.3.8). We
find that 15 column and 27 row dimensions are sufficient to achieve original performance for context-
dependent integration; and 29 column and 41 row dimensions for sine wave generation. Thus, the
RNNs are functionally low-rank even though the underlying weight matrix is high-dimensional.
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Figure 3: Operative dimensions. (a) Definition of operative dimensions based on local recurrent
dynamics along a condition average trajectory. Arrows show the recurrent contribution to the
dynamics for the full-rank and several reduced-rank networks (colors, see legend). Local operative
dimensions maximize ∆f . Here inputs ut and noise σt are set to zero. (b) Rank of global operative
column dimensions, estimated with PC analysis on concatenated local operative dimensions (Eq. 10
and 11). (c) Network output cost of networks with reduced-rank weight matrix WOP

k for k = 1 : N
(Eq. 12). (d) State distance between trajectories in the full-rank network and in networks with
reduced-rank weight matrix WOP

k . (b-d) Based on global operative column dimensions and averaged
over 20 networks per task; shaded area: mad. Network output cost obtained with internal and input
noise, state distance without any noise. (e-g) Same as (b-d) for global operative row dimensions.

This clear difference between the global operative dimensions and the high-variance dimensions is
also reflected in their weak alignment to each other (Fig. S8). This finding implies that much of the
network connectivity in these trained networks is not required to perform the task.

Notably, the identified functionally relevant subspace of the connectivity is sufficient to generate the
original network trajectory, not just the network activities along the output direction. The average
distance between the network trajectories of the reduced-rank and the full-rank networks decreases
rapidly as the global operative dimensions are sequentially added to the weight matrix (Fig. 3d, g;
state distance = 1

T

∑T
t=1 ∥xt − xOP

t,k ∥2). This observation follows from the definition of operative
dimensions, which focuses not on changes in network output, but rather on the recurrent dynamics at
sampling locations lying along the entirety of the condition average trajectories. We obtained similar
results for networks at different stages of training (Fig. S14) and with different types of connectivity
and architecture (Fig. S15). Similarly, even though operative dimensions are defined based on how
much they alter the local dynamics when removed from W, the first few operative dimensions are
sufficient to preserve the dominant local, linear dynamics (Fig. S17).

Unlike for high-variance dimensions (Fig. 1e, j), RNN performance and state distance change
smoothly with increasing rank of the global operative dimensions (Fig. 3c-d, f-g). However, adding
the first few dimensions to the weight matrix often hurts performance. This effect can happen because
the global operative dimensions are not sorted based on when they are required during individual
trials, but rather by their impact on local network dynamics. Indeed, the first few operative dimensions
are mostly required at state-space locations explored late in the trial, but are insufficient to sustain the
dynamics required early in the trial (Fig. S21c, f, i, l).

Identifying the operative dimensions critically relies on the correct choice of sampling locations.
First, we illustrate the importance of the choice of sampling locations by defining global operative
dimensions based on random sampling locations in state space (Fig. 3c, f; dotted lines). For the same
choice of rank, the resulting dimensions yield much poorer performance compared to the operative
dimensions defined as above, emphasizing the importance of capturing the local network dynamics
within the functionally relevant part of state space. Second, even when sampling locations are defined
along the condition average trajectories, they need to be sampled at high enough density. When too
few sampling locations are chosen along the trajectories, the identified global operative dimensions
are less effective at reproducing network output and trajectories (Fig. S18).
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Figure 4: Operative dimensions and network complexity. (a) Task schematic for high-dimensional
sine wave generator networks trained to output 1-5 sine waves simultaneously. (b) Variance explained
(in activity space) by individual PCs of the network activity X over all input conditions. (c) Rank
of global operative column dimensions, estimated with PC analysis on concatenated local operative
dimensions L (Eq. 10 and 11). (d) Network output cost of networks with reduced-rank weight matrix
WOP

k for k = 1 : N (Eq. 12). (e) State distance between trajectories in the full-rank network and in
networks with reduced-rank weight matrix WOP

k . (c-e) Based on global operative column dimensions;
averaged over 5 networks per number of inputs/outputs; shaded area: mad. Network output cost
obtained with internal and input noise, state distance without any noise. (f-h) Same as (c-e) for global
operative row dimensions.

One consequence of the tight link between local network dynamics and operative dimensions is that
the number of operative dimensions required to approximate a particular network may increase with
the complexity of the network activity, and of its inputs and outputs [23]. To illustrate this relation,
we systematically varied the complexity of RNN computations by training sine wave generators with
varying numbers of input and output signals (between 1 − 5 inputs U and outputs Z; Fig. 4). As
expected, the network activity xt becomes increasingly high-dimensional for increasing values of U
and Z (Fig. 4b), and correspondingly the number of global operative dimensions required to achieve
the original performance increases as well (Fig. 4c-e and f-h). We obtained a similar effect when
increasing the dimensionality of the inputs into the RNNs, while keeping the dimensionality of the
output fixed. (Fig. 13). Analytical considerations also imply that, in vanilla RNNs described by Eq. 1,
the number of global operative dimensions is tightly linked to the dimensionality of the network
activity R (section A.2.4 and A.2.5).

2.2.3 Operative dimensions relate functional modules to weight subspaces

Past studies have shown that RNNs can implement complex, context-dependent computations by
"tiling" activity state space into separate functional modules [21, 19, 24]. Dynamics within individual
modules is often approximately linear, but different approximately linear dynamics, corresponding to
different input-output relations, are implemented across modules [20].

Our definition of operative dimensions is well-suited to ask whether the existence of functional
modules in activity space has a correspondence at the level of the structure of the connectivity. To
obtain a more fine-grained mapping from function to structure, the global operative dimensions can be
generated based on different subsets of local operative dimensions. Specifically, sampling locations
can be grouped based on their functional meaning, i.e. based on which condition average they belong
to. The resulting sets of function-specific global operative dimensions can then link different network
functions to particular subspaces in the weight matrix.

We demonstrate this approach for the context-dependent integrator network. We inferred global
operative dimensions from local operative dimensions that were collected either separately by context,
but pooled over choice, or separately by choice, but pooled over context (details section A.2.6).
We refer to the resulting context-dependent global operative column dimensions as qi(contextj),
and the choice-dependent dimensions as qi(choicej) (i = 1 : N , j = 1 : 2; row dimensions: qi).
We compared these dimensions directly by measuring their pairwise alignment (subspace angle,
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Figure 5: Function-specific global operative dimensions. (a) Subspace angle between global operative
column dimensions qi defined separately for context1 and context2. (b) Subspace angle between
global operative column dimensions qi defined separately for choice1 and choice2. (c-d) Same as
(a-b) for global operative row dimensions qi. (e) Network output cost averaged separately over trials
of context1 or context2 for networks with reduced-rank weight matrix consisting of the first k function-
specific global operative column dimensions from context1 (WOPCtx

k,j , context j = 1). (f) Network
output cost averaged separately over trials of choice1 or choice2 for networks with reduced-rank
weight matrix consisting of the first k function-specific global operative column dimensions from
choice1 (WOPCho

k,j , choice j = 1). (g) Same as (e), but based on global operative column dimensions
from context 2. (h) Same as (f), but based on global operative column dimensions from choice 2.

Fig. 5a-d). We find that the function-specific global operative dimensions are only weakly aligned
across the two contexts, but more strongly aligned across choices, suggesting that the RNN uses
different weight subspaces to implement the sensory integration in each context, but reuses weight
structures to implement the sensory integration across choices.

To further support this conclusion, we checked if the global operative dimensions inferred from one
functional module can support accurate computations in another module. We first constructed module
specific, reduced-rank approximations of W as above (Eq. 12), which we refer to as WOPCtx

k,j (context-
specific) and WOPCho

k,j (choice-specific). We then measured network performance across conditions
when using these different reduced-rank approximations (Fig. 5e-h). In agreement with the subspace-
angles above, we find that networks based on operative dimensions defined in context1 perform
poorly in context2, and vice versa (Fig. 5e, g) whereas operative dimensions from a given choice
yield comparatively good performance also in the other choice (Fig. 5f, h). These observations are in
line with previous findings [19] that the context-dependent integrator implements an approximate
line attractor in each context, with mostly preserved dynamics along a given line attractor (i.e. across
choices), but rather different dynamics between attractors (i.e. across context). Interestingly, the
identified structure in the underlying connectivity, while clearly revealed by the operative dimensions
(Fig. 5), does not become apparent when studying the weight matrix or contributions of individual
network units directly (Fig. S19).

3 Discussion

In this work, we present an approach for inferring the operative dimensions of an arbitrary weight
matrix in an RNN. The operative dimensions of the connectivity are defined based on their impact on
the computationally relevant, local recurrent dynamics of the network. We find that for the examined
tasks, the operative dimensions span a low-dimensional subspace of the connectivity space that is
sufficient to produce accurate outputs in a reduced-rank network.

Relation to state of the art. Our framework of operative dimensions extends recent work based
on RNNs that by construction are explicitly low-rank, which already showed that many tasks of
relevance to neuroscience can be solved with RNNs that rely entirely on low-rank connectivity [17].
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Unlike in this previous work, the networks we analyzed have a connectivity that is not constrained–the
dimensionality of the underlying weight matrix is high at initialization, and remains high throughout
training (Fig. 1d, i). This high dimensionality persists even though the weight updates brought about
by training are low-rank [22]. However, our analyses showed that only a low-dimensional subspace of
the effectively high-dimensional connectivity is used to solve the task, whereby the remainder of the
structure in the weight matrix plays essentially no role in solving the task at hand. This finding opens
the possibility to apply the conceptual framework of low-rank networks [17], which has provided
valuable and direct insights into the relation of connectivity and dynamics, also to other types of
RNNs.

Operative dimensions amount to a form of model reduction [25, 26] that emphasizes the preservation
of attractor dynamics [27, 28] for the special case of a model parameterized as a neural network.
Critically, our approach to relating the model structure to its function relies on characterizing the
dynamics locally, along explored activity trajectories, similarly to methods to quantify non-linear
dynamics based on Lyapunov or bred vectors [29, 30, 31].

More generally, our work makes a contribution towards increasing the interpretability of artificial
neural networks. Past work had shown that unconstrained, trained RNNs need not be considered
as a "black box", but rather that the computations implemented by many RNNs can be understood
at the level of population dynamics, through the interaction of inputs and dynamical primitives
like attractors and saddle points [20, 32, 24]. Recent work related the implemented dynamical
primitives to the underlying connectivity [17] in constrained RNNs. We have shown that establishing
such relations is in principle also possible through the definition of condition-dependent operative
dimensions (Fig. 5) without any specific constraints on the connectivity. Current opinions assume
that such increased understanding and interpretability of artificial networks is desirable both to
increase acceptance of the resulting machine learning applications throughout society, but also
potentially to design better artificial system that overcome biases and limitations resulting from
current approaches (see [33, 34, 35] for reviews). Nonetheless, potentially negative societal impacts
of increased interpretability cannot be ruled out. For instance, if used on RNNs trained on personal
data, operative dimensions may potentially facilitate the extraction of private information that was
otherwise hidden in high-dimensional weight matrices.

Limitations. One limitation of our approach to identifying operative dimensions is that it relies on
studying local recurrent dynamics based on a somewhat arbitrary definition of sampling locations
in activity state space. By design, the inferred operative dimensions will be sufficient to reproduce
the full-rank dynamics only at these specific locations in state space. Note that there is no explicit
requirement for the operative dimensions to reproduce the desired network output. We picked
sampling locations along the condition average trajectories, based on the assumption that these
average trajectories provide a good coverage of all the relevant local dynamics. In practice, this
assumption may not hold in all RNNs. For one, average trajectories may travel through state-space
regions that are not visited by any single trials, leading one to under-sample functionally relevant
regions. For another, single-trial and average trajectories may also reflect dynamics that is not
functionally relevant, and thus lead to over-sampling of regions that are not directly involved in
generating the output. Further work may address alternative approaches for choosing sampling
locations to optimize their functional relevance. To some extent, the adequacy of sampling locations
can be tested empirically by systematically varying the number and location of sampling locations to
optimize the performance of the inferred reduced-rank networks (Fig. S18).

Another potential limitation of our approach is that it may not be equally effective in identifying a
functional subspace of the connectivity across all types of RNNs and in more complex tasks. While
here we have focused on vanilla RNNs, we found that a low-dimensional functional subspace can
be identified in such RNNs for a variety of network architectures, including with non-overlapping
populations of excitatory and inhibitory neurons, or the use of different non-linear activation functions
(Fig. S15). The properties of learned dynamics in the kind of tasks we employed is largely conserved
across different types of networks (GRU, LSTM; [21, 24]), in particular the role of "tiling" activity
space into distinct computational modules. This observation implies that our approach to relating
connectivity and function at the level of local dynamics is at least meaningfully applicable even in
these different kinds of networks. While we find that operative dimensions can retrieve a functionally
relevant subspace also for a richer task like sequential MNIST (Fig. S16), it remains an open question
whether these approaches will extend to harder AI problems.
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Conclusion Operative dimensions can infer a functionally relevant subspace within high-
dimensional RNN connectivity that is sufficient to perform the task at hand. On one hand, this
observation might benefit practical applications of RNNs as a computational tool, e.g. for continual
learning in RNNs, by specifically protecting functionally relevant subspaces of the weight matrix
to avoid catastrophic forgetting [36], or for weight compression, by storing the weight matrix as a
linear combination of the global operative dimensions [37, 22]. On the other hand, the ability to
identify functionally specific subspaces in the network connectivity may improve the applicability of
RNNs as a model in neuroscience, as it simplifies the critical challenge of linking the properties of
the connectivity to the network dynamics and may thus provide guidance on how to relate structure
to function in complex biological datasets.

Code Availability
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A Appendix

A.1 Recurrent neural networks

A.1.1 Task structures

Context-dependent integration The context-dependent integrator [19] receives four inputs: two
time-varying, noisy sensory inputs of six different levels, drawn at each time from N (µ, σ =

31.623
√
dt ≈ 1) with µ ∈ {−0.5,−0.12,−0.3, 0.03, 0.12, 0.5}; and two constant context inputs,

set to 1 or 0. In context1, input context1 is set to 1 and input context2 is set to 0 while both sensory
inputs are ON. The task is to integrate the relevant sensory input (input sensory1) over time in the
activity of the output unit zt and ignore the irrelevant sensory input (input sensory2) and vice versa
for context2. Each trial consists of 650ms burn period (only input contextj=1; both sensory inputs
OFF) followed by 750ms sensory integration time (only input contextj=1; both sensory inputs ON).
One trial has T = 1400 time steps.

Sine wave generation The sine wave generator [20] receives one constant input which can be
set to one of 51 different levels ut = l/51 + 0.25 ∀t < T , l ∈ R. The level of the constant input
defines the target frequency of the sine wave generated in the activity of the network output unit zt
whereby the target frequencies ωl (l = 1 : 51) are equally spaced between 1− 6 rad/sec to define
ωl = 0.1 ∗ (l− 1)+1. Each trial lasts 500ms during which the input ut is constantly ON (T = 500).

High-dimensional sine wave generation The high-dimensional sine wave generator network
(Fig. 4) is an extension of the sine wave generator network explained in section A.1.1 [20]. It receives
U = 1 : 5 constant inputs ut and is trained to generate sine wave activity in U = Z = 1 : 5
outputs zt. The U constant inputs are set independently of each other to one of 51 different levels
ut(i) = li/51 + 0.25 ∀t < T, i = 1 : U, li ∈ R. The level of the i-th constant input ut(i) defines
the target frequency of the sine wave generated in the activity of the i-th network output unit zt(i)
whereby the target frequencies ωli (li = 1 : 51) are equally spaced between 1− 6 rad/sec to define
ωli = 0.1 ∗ (li − 1) + 1. Each trial lasts 500ms during which the input is constantly ON (T = 500).
For U = Z = 1 the high-dimensional sine wave generation network is identical to the sine wave
generation network explained in section A.1.1. We train separate networks for every number of
U = Z = 1 : 5.

A.1.2 Network training

In both tasks, all weights (B,W,Y) are optimized using Hessian-free optimization [38] to minimize
the network output cost:

costtraining =
1

Z
ΣZ

i=1Σ
T
t=1(z

∗
t (i)− zt(i))

2 (13)

between the respective target activity z∗t and the network output activity zt at every time point
during the trial, averaged over all input conditions (figures show costtraining scaled by 1/T , Eq. 3).
B,W, and Y are randomly initialized and set to have a spectral radius of 1 (B0 = N (0, 1), W0 =

N (0, 1/
√
N), Y0 = N (0, 1)). All input conditions are trained simultaneously with equal probability

to ensure a balanced training set (batch size = 400). The presented results are obtained using the same
input conditions as during training but with varying input noise and internal noise. The code to train
and run the RNNs was modified from [19]. For the main results we trained 20 networks on context-
dependent integration, 20 networks on sine wave generation and 25 networks on high-dimensional
sine wave generation (5 networks per U = Z (U = 1 : 5, Z = 1 : 5)).

A.2 Definition of operative dimensions

A.2.1 Sampling locations

We place the sampling locations yj (j = 1 : P ) equally spaced in time on the condition average
trajectories of each network. The condition average trajectories are defined as the mean network
activity per time point of the corresponding input condition, averaged over input and internal noise
(20 trials per condition).
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For the context-dependent integration network we considered the condition average trajectories for 8
different input conditions whereby we define the input condition based on the context (1 or 2), the
choice (1 or 2) and the coherency of the sensory inputs (congruent (sign(input sensory1) = sign(input
sensory2) or incongruent (sign(input sensory1) != sign(input sensory2) ) in every trial (23 = 8 distinct
input conditions). We placed the sampling locations equally spaced in time along each of these
8 condition average trajectories at every 100-th time step (t=1:100:1400 resulting in 15 sampling
locations per condition average trajectory) to obtain y1 = x1, y2 = x100, y3 = x200, . . . for every
input condition. In total, we defined P = 8× 15 = 120 sampling locations.

The sine wave generation network has 51 different input conditions (51 input levels). For the definition
of local operative dimensions, we subsampled the input conditions and only considered every 5-th
input level (l = 1 : 5 : 51), resulting in 11 condition average trajectories. We placed the sampling
locations equally spaced in time along each of these 11 condition average trajectories at every 50-th
time step (t=1:50:500 resulting in 11 sampling locations per condition average trajectory) to obtain
y1 = x1, y2 = x50, y3 = x100, . . . for every input condition. In total, we defined 11 × 11 = 121
sampling locations.

A.2.2 Operative row dimensions

Analogously to the operative column dimensions, the operative row dimensions are defined as the
dimensions in W that have a large impact on the local dynamics if removed from the row space of W
(Fig. 3a).

Given an arbitrary unit vector a ∈ RN , ∥a∥2 = 1, we define Ŵ for the operative row dimensions as
the matrix of rank N − 1 obtained by removing the dimension a from the row space of W:

Ŵ = W − (a(Wa)T )T (14)

The respective local and global operative dimensions are defined as explained in section 2.2.1. Based
on Eq. 7, 8, 9, 10, 11, the i-th global operative row dimension is defined as the i-th left singular vector
of L and we refer to is as qi.

The reduced-rank approximation of W constructed from only a subset of the global operative row
dimensions is then given by:

WOP
k = Σk

i=1(qi(Wqi)
T )T (15)

For simplicity and readability purposes, below we use the variables for the global operative column
dimensions throughout the text. All corresponding statements similarly apply also to the row
dimensions, unless explicitly stated otherwise.

A.2.3 Properties of local operative dimensions in vanilla RNNs

For the special case of a vanilla RNN (Eq. 1), several properties of the local and global operative
dimensions can be derived analytically. While the derivations below do not apply to other RNN
architectures (e.g. LSTM [39], GRU [40]) the general approach and definitions for the estimation of
operative dimensions are applicable irrespective of the RNN architecture.

Analytical derivation of local operative column dimensions The first local operative dimension
d1,j at location yj is the solution of the following optimization problem (Eq. 8):

d1,j = argmax
a

(∆f){xt=yj}

with a ∈ RN , ∥a∥2 = 1, and ∆f as (Eq. 1, 7):

∆f = ∥xt+1 − x̂t+1∥2

For a vanilla RNN:

xt+1 = xt − xt
dt

τ
+ Wrt

dt

τ
+ But

dt

τ

x̂t+1 = xt − xt
dt

τ
+ Ŵrt

dt

τ
+ But

dt

τ
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To derive the first local operative column dimension this can be simplified as follows:

d1,j = argmax
a

(∥xt+1 − x̂t+1∥2)

d1,j = argmax
a

(∥[xt − xt
dt

τ
+ Wrt

dt

τ
+ But

dt

τ
]− [xt − xt

dt

τ
+ Ŵrt

dt

τ
+ But

dt

τ
]∥2)

d1,j = argmax
a

(∥dt
τ
(Wrt − Ŵrt)∥2)

We replace Ŵ using Eq. 6:

d1,j = argmax
a

(∥dt
τ
(Wrt − (W − a(aT W))rt)∥2)

d1,j = argmax
a

(∥dt
τ
(aaT Wrt)∥2)

which has a unique solution for a vector a that is aligned to Wrt:

d1,j = Wrt (16)

Dimensionality of local operative column dimensions From the above derivation also follows
that, at any given location xt in the state space of a vanilla RNN, only a single local operative column
dimension can be derived. This follows from the observation that removal from W of any vector that
is orthogonal to d1,j = Wrt necessarily results in ∆f = 0, and thus does not cause any change in
the network dynamics:

∆f = ∥xt+1 − x̂t+1∥2

∆f = ∥dt
τ
(aaT Wrt)∥2

Replacing Wrt = d1,j :

∆f = ∥dt
τ
(aaT d1,j)∥2

Given that all local operative column dimensions di,j ∀i > 1 have to fulfill dT
i,jd1,j = 0 (see Eq. 9),

it follows that ∆fi,j = 0, ∀i > 1

Hence, when using the standard RNN equation as described in Eq. 1, only a single local operative
column dimensions d1,j = Wrt can be inferred at any given location in state space.

The previous two key derivations on local operative column dimensions can further be extended to
the case where the non-linear RNN dynamics is well described by the local linear approximation
A ∈ RN×N around slow points of the full-rank RNN x∗ ∈ RN . Hence, the derivations and
corresponding results are more general and apply (approximately) to any RNN architecture that
results in dynamics that are locally linear, not just to vanilla RNN.

A.2.4 Dimensionality of global operative column dimensions

The above properties of the local operative column dimensions have implications for the overall
dimensionality of the global operative column dimensions. Specifically, in a vanilla RNN the
dimensionality of the subspace spanned by the global operative column dimensions is bounded by the
dimensionality of the network activity rt. This follows from the above derivation (section A.2.3) that
there is only a single local operative column dimension at any sampling location yj in state space,
namely d1,j = Wrt with rt = tanh(yj).

The population activity rt at a given location in state space and time can be written as a linear
combination of the principal components of the population activity PC(R)i:

rt = c1,tPC(R)1 + c2,tPC(R)2 + ...+ cN,tPC(R)N
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where the coefficients ci,t (i = 1 : N ) depend on state space location and time t in the trial.
Combining the above expression with d1,j = Wrt results in:

d1,j = W(c1,tPC(R)1 + c2,tPC(R)2 + ...+ cN,tPC(R)N )

d1,j = c1,t(WPC(R)1) + c2,t(WPC(R)2) + ...+ cN,t(WPC(R)N )

While the coefficients ci,t vary over sampling locations rt = tanh(yj), the vectors WPC(R)1,
WPC(R)2, ... ,WPC(R)N do not, and rather are a fixed property of an RNN with weight matrix
W. Hence, all local operative column dimensions are a linear combination of the WPC(R)i with
ci,t > 0. As a consequence, if the population activity R is contained in a low-dimensional subspace,
the subspace of the column space of W that is required to perform the task (spanned by the operative
column dimensions) is also low-dimensional, and its dimensionality is at most as high as the
dimensionality of the responses R, independently of the training procedure. Note that while the
dimensionality of these two subspaces is related, the two subspaces need not be overlapping.

Notably, a comprehensive understanding of the exact factors determining the dimensionality of
activity in trained RNNs is currently lacking. The dimensionality of the inputs can be expected
to be an important factor [1] although in general not the only one. Indeed, RNNs that receive
high-dimensional inputs can nonetheless generate low-dimensional dynamics [32]. On the other
hand, reservoir computing networks can generate high-dimensional dynamics even when driven
with low-dimensional inputs [41, 42]. Our result that the dimensionality of activity in the N-fold
sine-wave generator increases with N (Fig. 4b) could further be interpreted as being driven by the
dimensionality of the output.

A.2.5 Dimensionality of global operative row dimensions

Analytical constraints to the functional subspace spanned by the global operative row dimensions
can also be derived. Specifically, this functional subspace is contained within the intersection of the
subspace spanned by the network activity R and the subspace spanned by the row dimensions of W.
Indeed, any vector orthogonal to this intersection can be removed from W without any effect on the
network dynamics.

The effect of removing dimension a from the row space of W is given by:

∆f = ∥dt
τ
(xt+1 − x̂t+1)∥2

∆f = ∥ − dt

τ
((a(Wa)T )T rt)∥2

∆f = ∥ − dt

τ
(WaaT rt)∥2

The term Wa vanishes for any a outside the row space of W. The term aT rt vanishes for any term
orthogonal to rt. Hence, ∆f = 0 for any a outside the intersection between the row space of W and
the activity subspace.

A.2.6 Function-specific global operative dimensions

To define function-specific global operative dimensions, we combine local operative dimensions
only from specific subsets of sampling locations. In Fig. 5, we created four different types of such
function-specific global operative dimensions qi(function) (i = 1 : N ) for the context-dependent
integration network:

• qi(context1): sampling locations yj along the condition average trajectories of context1
• qi(context2): sampling locations yj along the condition average trajectories of context2
• qi(choice1): sampling locations yj along the condition average trajectories of choice1
• qi(choice2): sampling locations yj along the condition average trajectories of choice2

All four types combine sampling locations from 4 condition average trajectories with 15 sampling
locations each (P = 60).
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A.2.7 Required computational resources

Computing the local operative column dimensions is computationally inexpensive because there is an
explicit solution (d1,j = Wrt; see section A.2.3) and hence it is not required to run the numerical
optimization procedure but only 1 matrix multiplication per sampling location.

To obtain the local operative row dimensions we perform a numerical optimization (matlab function
fminunc to find the minimum of an unconstrained multivariable function using the quasi-newton
optimization algorithm; as provided in the code to obtain the operative dimensions). We run the
optimization upto N -times per sampling location or until ∆f < 1e−8. It takes less than one minutes
to obtain the local operative row dimensions at a given sampling location on a standard machine (6
core, Intel Core i7-7800X CPU, 3.50GHz).

A.3 Additional analyses and figures

A.3.1 Importance of initial rank of W

The trained weight matrices W are generally high-dimensional in both tasks (Fig. 1d, i). Interestingly,
the rank of the trained weight matrix seems highly dependent on the rank of the initial weight
matrix W0 (Fig. S6) whereby a low-dimensional, initial weight matrix W0 generally results in a
low-dimensional, trained weight matrix W.

Figure 6: Dimensionality of trained weight matrices with different initial ranks. (a) Variance explained
(in weight space) by individual PCs of the weight matrix W after training when the initial weight
matrix W0 was randomly initialized with different ranks (colors, see legend). (b) Same as (a) for row
dimensions of W. (a - b) Each line is one network; 20 networks per W0; trained on context-dependent
integration. For the column as well as the row space, the rank of W changes little over training, and
is instead mainly determined by the rank of W0. The dimensionality of the weight matrix W after
training is thus only weakly related to the trained task in these cases.

A.3.2 High-variance dimensions

To assess the functional importance of the high-variance dimensions of W, we sequentially remove
the high-variance dimensions from W while measuring the performance of the reduced-rank network
(Fig. 1e, j). Generally, the network performance shows sudden jumps at specific ranks which are hard
to interpret. Here we show how the network performance varies over reduced-rank WPC

k for more
example networks to illustrate the large differences that are seen across individual networks (Fig. S7).
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Figure 7: Network performance for reduced-rank weight-matrices based on high-variance dimensions.
(a) Network output cost (Eq. 3) of networks with reduced-rank weight matrices WPC

k for k = 1 : N
(Eq. 5). (b) State distance between trajectories in the full-rank network and in networks with
reduced-rank weight matrix WPC

k . (c-d) Same as (a-b) for 5 example networks trained on sine wave
generation. (a-d) Shown for 5 networks each; shaded area: mad over trials; Network output cost
obtained with internal and input noise, state distance without any noise. The network performance
shows large jumps at specific ranks that differ across networks (similar to Fig. 1 e, j).

A.3.3 Alignment between global operative dimensions and high-variance dimensions

The large difference between operative and high-variance dimensions also becomes apparent when
comparing their pairwise alignment to each other. While the subspace angles between the first few
global operative dimensions to the first few high-variance dimensions show a weak alignment, the
remaining dimensions are almost orthogonal to each other (Fig. S8; subspace angle = acos(|qi ·
PC(W)j |)).

Figure 8: Alignment of operative to high-variance dimensions. (a) Subspace angle between global
operative column dimensions qi and PCs of W, X and R. (b) Same as (a) for global operative row
dimensions in context-dependent integration. (c) Same as (a) for global operative column dimensions
in sine wave generation. (d) Same as (a) for global operative row dimensions in sine wave generation.
(a - d) Average over 20 networks per task.

Interestingly, the global operative column dimensions show a stronger alignment with the linear
network activity PC(X) (Fig. S8a, c) and the global operative row dimensions with the non-linear
network activity PC(R) (Fig. S8b, d). However, despite their partial alignment the PCs of the
network activity are not describing the functionally relevant subspace as accurately as the global
operative dimensions. To assess this, we construct reduced-rank approximations of W using PC(X)i:

WPC(X)
k = Σk

i=1PC(X)i(PC(X)Ti W) (17)

and similarly PC(R)i:

WPC(R)
k = Σk

i=1PC(R)i(PC(R)Ti W) (18)
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Analogously for row dimensions based on Eq. 15. The networks require a larger number of PC(X)i
or PC(R)i than global operative dimensions in W to achieve the same performance level (Fig. S9).

Figure 9: Network performance for reduced-rank RNN based on PCs of network activity X and R. (a)
Network output cost of networks with reduced-rank weight matrix WPC(X)

k for k = 1 : N (Eq. 17).
(b) State distance between trajectories in the full-rank network and in networks with reduced-rank
weight matrix WPC(X)

k for k = 1 : N . (c - d) Same as (a - b) for removing PC(R)i from row
dimensions of W. (a - d) Averaged over 20 networks per task; shaded area: mad over networks;
Network output cost obtained with internal and input noise, state distance without any noise.

A.3.4 Alignment to other relevant dimensions

While the operative dimensions are not well aligned with the high-variance dimensions shown above,
they may be aligned with other important dimensions of the RNN. Here we consider three additional
types of dimensions: (1) the input dimensions; (2) the eigenvectors of the weight matrix; and (3) the
main dimensions characterizing the local linear dynamics around the chosen sampling locations.

First, we considered the alignment between the global operative dimensions and the input dimensions
(Fig. S10), which we define based on various different approaches: we consider the principal
components of the input weight matrix B (panel a; subspace angle = acos(|qi · PC(B)j |)); the
main directions in state space effectively explored by the inputs (panel b; subspace angle =
acos(|qi · PC(But)j |) ∀t = 1 : T ); or directly the column space of B (panel c; subspace angle =
acos(|qi · column(B)j)|) ∀j = 1 : U ). Irrespective of the employed definition, all these inputs
dimensions are largely orthogonal to the column operative dimensions, and only weakly aligned to a
few row operative dimensions. Some alignment with the row operative dimensions can be expected,
as these dimensions in W describe the input connections of the hidden units. It seems reasonable
that the functionally relevant subspace of the row space in W - described by the global operative row
dimensions - is at least partially aligned with the task input dimensions, as these mediate the inputs
that are crucial drivers of the network activity while performing the task.

Second, we consider the alignment between the global operative dimensions and the right and left
eigenvectors of W (Fig. S11; subspace angle = acos(|qi · right/left eigenvector (W)j |)). Both
eigenvectors are at most weakly aligned to the global operative dimensions, emphasizing that our
approach retrieves dimensions that may not be directly identifiable based on the weight matrix alone.

Third, we considered the alignment between a local operative dimensions estimated at a particular
state-space location and the linearized RNN dynamics A at that location (linearized at sampling
locations on condition average trajectory, see Eq. 24 and 25 for definition of A). In Fig. S12 we
characterize the linear dynamics through the PC of of A, which are not aligned with with respective
first local operative dimensions at any sampling location (large subspace angles; subspace angle =
acos(|d1,j · PC(W)j |)). Likewise, we failed to find any alignment between the local operative
dimensions and the right and left eigenvectors of A at any sampling location (not shown).
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The mismatch between operative dimensions and linear dynamics might at least partly reflect our
definition of operative dimensions, which is based entirely on the contribution of the recurrent
dynamics Wr while discarding the decay term −xdt/τ (see Eq. 1). The linearized dynamics, on the
other hand, includes contributions from both terms. Hence, an interesting extensions of our presented
definition of operative dimensions would additionally consider the decay term to define ∆f and
remove a from the decay term similar to as from W (Eq. 6). However, such a formulation would
make the resulting operative dimensions harder to interpret and more work is required to gain more
insights into such alternative definitions of operative dimensions.

Figure 10: Alignment between global operative dimensions and network input dimensions. (a)
Subspace angle between global operative column dimensions qi and PCs of B, the PCs of But,
and the columns of B. (b) Same as (a) for global operative row dimensions in context-dependent
integration. (c) Same as (a) for global operative column dimensions in sine wave generation. (d)
Same as (a) for global operative row dimensions in sine wave generation. (a - d) Average over 20
networks per task.

Figure 11: Alignment between global operative dimensions and eigenvectors of W. (a) Subspace
angle between global operative column dimensions qi and right and left eigenvectors of W. (b) Same
as (a) for global operative row dimensions in context-dependent integration. (c) Same as (a) for
global operative column dimensions in sine wave generation. (d) Same as (a) for global operative
row dimensions in sine wave generation. (a - d) Average over 20 networks per task.
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Figure 12: Alignment between local operative dimensions and linearized dynamics A. (a) Subspace
angle between the first local operative column dimensions d1,j and the first three PCs of A compared
over sampling locations. (b) Same as (a) for global operative row dimensions in context-dependent
integration. (c) Same as (a) for global operative column dimensions in sine wave generation. (d)
Same as (a) for global operative row dimensions in sine wave generation. (a - d) Average over 20
networks per task.
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A.3.5 Importance of input dimensionality

To understand if the dimensionality of the global operative dimensions is related to the dimensionality
of the network input we study operative dimensions in networks with systematically varied number
of inputs. Specifically, we train RNNs (N = 100) on an extended version of the context-dependent
integration task in which the networks are trained to distinguish between up to 9 contexts simultane-
ously (U = 1 : 9, Z = 1, Fig. 13a). We trained 5 networks for every U (U = 1 : 9, Z = 1) and
obtained the global operative dimensions for each of them.

In networks with higher number of inputs the dimensionality of the global operative dimensions is
generally higher (Fig. 13c, f) and they require a larger number of dimensions to perform the task
with the same performance (Fig. 13d,e,g,h). The overall dimensionality of the network activities also
increases with U (Fig. 13b) which further demonstrates the tight link between the dimensionality of
the network activity and operative dimensions. Note that the dimensionality of W remains roughly
the same over all U (not shown).

Figure 13: Operative dimensions and input dimensionality. (a) Task schematic for n-fold context-
dependent integrator networks trained to select and integrate the relevant input out of 1-9 sensory
inputs simultaneously. (b) Variance explained (in activity space) by individual PCs of the network
activity X over all input conditions. (c) Rank of global operative column dimensions, estimated with
PC analysis on concatenated local operative dimensions L (Eq. 10 and 11). (d) Network output
cost of networks with reduced-rank weight matrix WOP

k for k = 1 : N (Eq. 12). (e) State distance
between trajectories in the full-rank network and in networks with reduced-rank weight matrix WOP

k .
(c-e) Based on global operative column dimensions; averaged over 5 networks per number of contexts;
shaded area: mad. Network output cost obtained with internal and input noise, state distance without
any noise. (f-h) Same as (c-e) for global operative row dimensions.
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A.3.6 Operative dimensions over training

Operative dimensions can be estimated for the RNN at any stage of training. The global operative
dimensions at a particular training stage are defined based on sampling locations yj located along
the condition average trajectories for that training stage. Sampling locations are placed along the
trajectories equally spaced in time, as described in section 2.2.1. For all training stages, a low-
dimensional subspace in W can be defined which is sufficient to achieve the performance of the
full-rank network at the same training stage (Fig. 14). Note that the network output cost for the
full-rank networks is higher at early stages in training.

Figure 14: Operative dimensions over training. (a) Rank of global operative column dimensions,
estimated with PC analysis on concatenated local operative dimensions (Eq. 10 and 11) for networks
trained on context-dependent integration at different stages of training. (b) Network output cost of
networks with reduced-rank weight matrix WOP

k for k = 1 : N (Eq. 12) trained on context-dependent
integration at different stages of training. (c) State distance between trajectories in the full-rank
network and in networks with reduced-rank weight matrix WOP

k trained on context-dependent
integration at different stages of training. (d-f) Same as (a-c) for global operative row dimensions in
context-dependent integration networks. (g-i) Same as (a-c) for global operative column dimensions
in sine wave generation networks. (j-l) Same as (a-c) for global operative row dimensions in sine
wave generation networks. (a-l) Averaged over 5 networks per training iteration; shaded area: mad
over networks; Network output cost obtained with internal and input noise, state distance without any
noise.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2022. ; https://doi.org/10.1101/2022.06.03.494670doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.494670
http://creativecommons.org/licenses/by-nc-nd/4.0/


A.3.7 Operative dimensions for different network types

To illustrate the general applicability of our definition of operative dimensions, we also estimated
operative dimensions for the following three alternative types of RNNs:

bias, x0. We extended the standard RNN equation (Eq. 1) with trainable parameters for bias of
hidden units bh ∈ RN , bias for output units bz ∈ RZ and initial conditions per contextj x0 ∈ RN×J

for J = 2 in the context-dependent integration network.

τ ẋt = −xt + Wrt + But + br + σt (19)

where xt=0 is set to x0j for trials of contextj. The network output is defined as:

zt = Yrt + bz (20)

relu, bias, x0. Same as Eq. 19 and 20, but replacing the tanh with the relu activation function for
rt:

rt(i) = max(0, xt(i)) ∀i = 1 : N (21)

dale’s law, relu, bias, x0. Same as Eq. 19, 20, 21 and with the additional constraint on W to respect
Dale’s law which constrains hidden units to either act purely excitatory or inhibitory. Here we set
80% of the hidden units to be excitatory, 20% to be inhibitory (implementation inspired by [43]):

W = WrecD (22)

with W rec(i, j) = max(0,W (i, j)), with i = 1 : N , j = 1 : N and a diagonal matrix D ∈ RN×N

defined as:

D(i, j) =


1, if j = i ∧ uniti is excitatory
−1, elseif j = i ∧ uniti is inhibitory
0, else

(23)

To ensure convergence during training, in this last RNN type W was initialized with a Gamma
distribution (W0 = G(2, 0.1/2)).
We trained these alternative RNN types on the context-dependent integrator task. We find that also in
these RNNs the inferred operative dimensions successfully identify a low-dimensional functional
subspace of the connectivity that is sufficient to solve the task (Fig. 15).

Figure 15: Operative dimensions for various network types. (a) Network output cost of networks with
reduced-rank weight matrix WOP

k for k = 1 : N (Eq. 12) for different network types (section A.3.7).
(b) State distance between trajectories in the full-rank network and in networks with reduced-rank
weight matrix WOP

k for different network types (section A.3.7). (c-d) Same as (a-b) for global
operative row dimensions. (a-d) Averaged over 5 networks per network type; shaded area: mad over
networks.
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A.3.8 Operative dimensions applied to sequential MNIST

To validate our definition of operative dimensions to a task more closely related to current AI
applications, we estimated operative dimensions on networks trained on sequential MNIST [44]. In
this task, the RNN is trained to classify hand-written digits when the individual pixels of each image
are provided sequentially over time as an input to the network. For simplicity, the RNN equations and
training are analogous to those we employed for the other, simpler tasks considered above (see Eq. 1).
Here we increased the size of the RNN’s hidden layer from 100 to 200 units (N = 200), while the
input is 1-dimensional (U = 1). This architecture does not achieve state-of-the-art performance on
this task.

The properties of high-variance dimensions PC(W) for sequential MNIST are similar to those in
the simpler tasks above (Fig. 16a-d). The network activity X is low-dimensional throughout training
while the underlying weight matrix W is high-dimensional (Fig. 16a, b; shown for 1 representative
example network). Furthermore, sequentially removing PC(W)i from W would imply that the
RNN requires more than 175 (out of N=200) dimensions in W to achieve the full-rank classification
accuracy (Fig. 16a, b; results obtained on test set; full-rank classification accuracy=94% on training
and test set).

To identify a functionally relevant subspace in W we proceeded as above. We collected the local
operative dimensions at P = 3950 sampling locations that were equally spaced in time along a
random subset of trials (at every 10th time step along 50 randomly selected trials of the training set).
Placing sampling locations along the condition average trajectories (averaged over all trials of the
same output class) yielded slightly worse performance, most likely due to a lower number of possible
sampling locations. Overall, sequential MNIST required a higher number of sampling locations than
the simpler tasks presented above [19, 20].

The resulting operative dimensions reveal that the RNN trained on sequential MNIST requires only
58 dimensions (out of 200) to perform the task with the original classification accuracy (here we
define original classification accuracy as 95% of the accuracy of the corresponding full-rank RNN;
Fig. S16; averaged over 10 networks). The operative dimensions thus identify a functionally relevant
subspace that is of substantially lower dimensionality than the full-rank weight matrix W (results for
column dimensions). Further analysis using output-class-specific operative dimensions might reveal
valuable insights into the computation implemented by these networks.

Figure 16: Operative dimensions in sequential MNIST. (a) Variance explained (in activity space)
by individual PCs of the network activity X, shown at different stages of training (test set). (b)
Variance explained (in weight space) by individual PCs of the weight matrix W at different stages
of training. (c) Network classification accuracy of networks with reduced-rank weight matrices
WPC

k for k = 1 : N (Eq. 5), (d) State distance between trajectories in the full-rank network and in
networks with reduced-rank weight matrix WOP

k . (e) Rank of global operative column dimensions,
estimated with PC analysis on concatenated local operative dimensions (Eq. 10 and 11). (f) Network
classification accuracy of networks with reduced-rank weight matrix WOP

k for k = 1 : N (Eq. 12). (g)
State distance between trajectories in the full-rank network and in networks with reduced-rank weight
matrix WOP

k . (a-d) 1 representative network. (e-g) Based on global operative column dimensions
and averaged over 10 networks per task; shaded area: mad.
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A.3.9 Local, linear dynamics in reduced-rank RNN using operative dimensions

Computations in RNNs can often be understood by analyzing linear approximations of the dynamics
around fixed points or slow points [20]. Here we ask how well the reduced-rank approximations
we derived can approximate the local linearized dynamics of the full-rank networks. We find that
the operative dimensions of the connectivity are sufficient to reproduce the dominant local, linear
dynamics in the full-rank RNNs, reinforcing the finding that the reduced-rank RNNs capture the key
computations of the full-rank or closest reduced-rank system.

Here we study the local, linear dynamics in the context-dependent integrator and the sine wave
generator by linearizing around slow points of the full-rank RNN x∗ ∈ RN located on the condition
average trajectories [20, 19]. We obtain a linear system approximation A ∈ RN×N :

A(i, j) = −δ(i, j) +W (i, j)tanh′(x∗(j)) (24)

with i = 1 : N , j = 1 : N and

δ(i, j) =

{
1, if i = j

0, otherwise
(25)

Similarly, we obtain the linear system approximations AOP
k for the reduced-rank RNN using WOP

k
with k = 1 : N (Eq. 12):

AOP
k (i, j) = −δ(i, j) +WOP

k (i, j)tanh′(x∗(j)) (26)

with i = 1 : N , j = 1 : N .

These linear system approximations AOP
k are then studied by analyzing their eigenvalue decomposi-

tion:

AOP
k =

N∑
i=1

bi,kλi,keTi,k (27)

with bi,k ∈ RN as the i-th right eigenvector, ei,k ∈ RN as the i-th left eigenvector and λi,k

the i-th eigenvalue of AOP
k with rank k. The full-rank AOP

k=N consists of one dominant eigenvector
(λ1,k=N ≈ 0) with the remaining modes fast decaying (λi,k=N < 0, ∀i = 2 : N , as described in [19]).
To compare the eigenvectors and eigenvalues of the reduced-rank systems AOP

k to each other we have
to ensure a consistent sorting of their values across linearized systems AOP

k ∀k = 1 : N . Therefore we
sorted the eigenvalues of the full-rank system AOP

k=N in descending order of the absolute eigenvalues
and then used matlab’s eigenshuffle (https://www.mathworks.com/matlabcentral/fileexchange/22885-
eigenshuffle) to sort the remaining reduced-rank systems to be as similar as possible to the full-rank
system.

To measure the similarity between the full-rank and reduced-rank linear dynamics we considered the
following quantities (Fig. S17):

angle to full − rank right EV = acos(|(bT
i,k=Nbi,k)|)

angle to full − rank left EV = acos(|(eTi,k=Nei,k)|)

∆ to full − rank eigenvalue = |λi,k=N − λi,k|

Note that the linearization is performed at the location of slow points x∗ of the full-rank RNN,
which are not necessarily slow points of the dynamics in the reduced-rank RNN. This implies that in
the reduced-rank networks the linearized dynamics can be expected to approximate the non-linear
dynamics less well than in the full-rank network (or only at some distance from x∗, see [20]). Despite
this limitation, we find that the inferred dominant linear dynamics is largely preserved in the reduced-
rank RNN. In reduced-rank RNN based on only the first few global operative dimensions, the first
right eigenvector, left eigenvector and eigenvalue remain very close to their original values in the
full-rank RNN; the fast decaying modes instead require the full-rank weight matrix to be retrieved
(Fig. S17).
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Figure 17: Local, linear dynamics in reduced-rank networks. (a) Subspace angle between the right
eigenvectors of full-rank RNN and the right eigenvectors of reduced-rank RNN with WOP

k for
k = 1 : N . (b) Absolute difference between the eigenvalues of full-rank RNN and the eigenvalues
of reduced-rank RNN with WOP

k for k = 1 : N . (c) Subspace angle between the left eigenvectors
of full-rank RNN and the left eigenvectors of reduced-rank RNN with WOP

k for k = 1 : N (global
operative row dimensions). (d) Absolute difference between the eigenvalues of full-rank RNN and
the eigenvalues of reduced-rank RNN with WOP

k for k = 1 : N (global operative row dimensions).
(a - d) For context-dependent integration RNN; shaded area: mad over P = 120 sampling locations
of 1 representative network. (e - h) Same as (a - d) for sine wave generator with P = 121.

A.3.10 Operative dimensions for different number of sampling locations

To accurately identify the functionally relevant subspace in W it is crucial to define appropriate
and sufficient sampling locations yt to collect the local operative dimensions at. To illustrate how
the inferred operative dimensions change depending on the number of sampling locations, we
systematically reduced the number of sampling locations used to generate the global operative
dimensions while keeping the sampling locations equally distributed over all condition average
trajectories (Fig. S18). The global operative dimensions of the context-dependent integration networks
are still accurate with fewer sampling locations, whereas the global operative dimensions of the
sine wave generator networks generally require more sampling locations to properly capture the
functionally relevant subspace in W.

Figure 18: Operative dimensions for different number of sampling locations. (a) Network output
cost of networks with reduced-rank weight matrix WOP

k for k = 1 : N (Eq. 12) for network trained
on context-dependent integration using different number of sampling locations. (b) Same as (a) for
global operative row dimensions. (a - b) Averaged over 20 networks per task; shaded area: mad
over networks; size of diamond-markers corresponds to indicated number of sampling locations (see
legend).
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A.3.11 Single unit contributions to the functional subspace of the connectivity

Our analysis using function-specific operative dimensions (section 2.2.3) showed for the context-
dependent integration network that different functional modules are implemented using distinct
subspaces in W. Functionally relevant weight subspaces are shared between choice1 and choice2, but
not between context1 and context2 (Fig. 5). Here we ask if this functional specificity of operative
dimensions is reflected also at the level of the connectivity of single units. Specifically, we focus
on two simple properties of a given network unit, namely its effective output and total recurrent
input. We define these two quantities for specific task conditions and times by exploiting the inferred
operative dimensions.

We consider the effective output and total recurrent input of each unit at every sampling location
yj (j = 1 : P ) separately by generating one reduced-rank approximations WOPy

k,j (k = 1 : N ,

j = 1 : P ) per sampling location. Every WOPy

k,j consists of only the local operative dimensions
defined for the respective sampling location yj and thereby provides a reduced-rank approximation
that is tailored to perform only specific parts of the network function, similarly to our approach
in in defining function-specific operative dimensions (section 2.2.3). Using these WOPy

k,j allows us
to isolate the input and output of each unit that is functionally relevant to solve specific network
functions, i.e. to reproduce activity at specific times and conditions.

We define the total effective output that unit i sends to all other hidden units as the norm of the weight
matrix column i scaled by the network activity of unit i at sampling location yj (tanh(yt(i)) = rt(i)):

total effective output uniti =
√
ΣN

h=1(W
OPy

k,j (h, i)rt(i))2 (28)

This total effective output is defined separately for each sampling location yj . Here k = 1, as the
operative column dimensions at every location are always rank 1 (k = 1; see section A.2.3).

Similarly, we define the total recurrent input received by each unit i from all other hidden units as the
dot product of the weight matrix row i with the network activity rt = tanh(yt).

total recurrent input uniti = ΣN
h=1W

OPy

k,j (i, h)rt(h) (29)

Again, this recurrent input is defined separately for each sampling location yj . Here k was set to
include only functionally relevant local operative row dimensions for which ∆f > 10−6 (k ≈ 10).

These total recurrent inputs and effective outputs are shown in Fig. S19a, d) for each unit (x-axis)
and time/condition (y-axis). This plot does not reveal any obvious structure. Specifically, we find
no evidence that particular units are contributing to the functional inputs or outputs preferentially in
particular conditions but not others (e.g. context or choice).

In addition to the above unit properties, which combine information about the reduced-rank weight
matrix WOPy

k,j and the network activities rt, we also considered simpler properties based only on

WOPy

k,j , i.e. only on the units’ connectivity. Specifically, we analyzed the norm of each column and

each row in the WOPy

k,j , at every sampling location yt, as an alternative measure of the contribution
of each unit to specific network functions (Fig. S19b-c, e-f). However, similar to Fig. 19a, d), these
measures do not show any obvious structure over time and conditions at the level of single units.

Overall these observations suggest that all neurons are at least partially involved in creating the
functionally relevant RNN dynamics at all times and in all conditions. This becomes apparent
in Fig. 19a-b, d-e) as the values along every column (corresponding to the total recurrent input
or effective output per unit) change abruptly between sampling locations from similar times and
conditions (y-axis). However, more detailed analysis of the reduced-rank weight matrices and network
activities may well reveal structure at the level of units that is not apparent from the simple properties
that we analyzed here.
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Figure 19: Functional contribution of individual network units. (a) Total effective output of each unit
i at sampling location yj as defined in Eq. 28. (b) Norm of column i in reduced-rank weight matrix

WOPy

k,j at different sampling locations yj (i corresponding to neuron ID along x-axis). (c) Norm of
column i in full-rank weight matrix W at different sampling locations yj (i corresponding to neuron
ID along x-axis). (d) Total recurrent input of each unit i at every sampling location yj as defined in

Eq. 28. (e) Norm of row i in reduced-rank weight matrix WOPy

k,j at different sampling locations yj
(i corresponding to neuron ID along x-axis). (f) Norm of row i in in full-rank weight matrix W at
different sampling locations yj (i corresponding to neuron ID along x-axis). (a-c) sorted by values of
last row in (a). (d-f) sorted by values of last row in (d). (a-f) Sampling locations subsampled, shown
are locations with congruent inputs at t=1, 400, 900, 1400.

A.3.12 Alignment between global operative column and row dimensions

The global operative column and row dimensions both span a low-dimensional subspace in the
weight matrix W which is sufficient for the RNNs to perform the task (Fig. 3b-g). However, the two
subspaces show little similarity. In the context-dependent integration network, only the first global
operative column dimensions are weakly aligned to the first operative row dimensions. The remaining
dimensions show no alignment to each other (Fig. S20a). Similarly in the sine wave generator
networks, the global operative column and row dimensions show little similarity (Fig. S20b).

Overall, operative column and row dimensions provide complementary insights into RNN computa-
tions. In broad terms, the column dimensions in W describe the output connections of each hidden
unit, whereas the row dimensions describe the input connections of each hidden unit. The respective
operative dimensions in turn identify the functionally relevant subspaces in the network connectivity.
If these subspaces of the network connectivity are interpreted as subspaces in the network activity,
they might provide a tool to compare each unit’s functionally relevant input and output subspaces, i.e.
to determine how the activity of a given hidden unit is shaped by, and how it influences, the activity
in the remainder of the network.

Figure 20: Alignment between global operative column and row dimensions. (a) Subspace angle
between global operative column dimensions qi and global operative row dimensions qi for context-
dependent integration networks. (b) Same as (a) for sine wave generation networks. (a-b) Averaged
over 20 networks.
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A.3.13 Alignment of operative dimensions over sampling locations

The global operative dimensions are a combination of the local operative dimensions of all sampling
locations. To illustrate the large differences between local operative dimensions across sampling
locations, here we show how the local operative dimensions from different sampling locations are
aligned to each other. We find that local operative dimensions tend to be similar if their sampling
locations are close to each other in state space. However, more distant sampling locations generally
yield almost orthogonal local operative dimensions (Fig. S21b, e). Similarly, we test the alignment
between the local operative dimensions at a particular sampling location and the global operative
dimensions. We find that the global operative dimensions are not preferentially aligned to any local
operative dimensions defined at particular sampling location, but rather are partially aligned to the
local operative dimensions from all sampling locations (Fig. S21c, f, i, l).

Figure 21: Alignment of operative dimensions over sampling locations. (a) ∆f for local operative col-
umn dimensions of context-dependent integrator. The subspace of local operative column dimensions
is 1-dimensional at all sampling locations. (b) Pairwise subspace angle of first local operative column
dimensions across sampling locations. Local operative column dimensions gradually change over
state space, with closer sampling locations yielding more similar local operative column dimensions.
(c) Subspace angle between the first local operative column dimension at each sampling location
and the global operative column dimensions. The first few global operative column dimensions are
partially aligned with local operative column dimensions from most sampling locations. (d-f) Same as
(a-c) for operative row dimensions for context-dependent integrators. (g-i) Same as (a-c) for operative
column dimensions for sine wave generators. (j-l) Same as (a-c) for operative row dimensions for
sine wave generators. (a-f) Sampling locations are sorted based on the spatial proximity to each other,
moving along the line attractor over time in each context. (g-l) Sampling locations are sorted based
on the input frequency and then the time along the respective condition average trajectory, showing
that local operative dimensions are not shared per frequency. (a-l) Averaged over 20 networks; only a
subsample of all sampling locations shown; all subspace angles are computed considering only the
first local operative column or row dimensions at each sampling location.
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