

1 **Vertical and horizontal transmission of cell fusing agent virus in *Aedes aegypti***

2

3 Rhiannon A. E. Logan^{1,2}, Shannon Quek¹, Joseph N. Muthoni^{1,3}, Anneliese von Eicken⁴,

4 Laura E. Brettell⁵, Enyia R. Anderson¹, Marcus E.N. Villena⁴, Shivanand Hegde¹, Grace T.

5 Patterson⁶, Eva Heinz⁵, Grant L. Hughes¹, Edward I. Patterson^{1,4*}

6

7 ¹ Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected

8 Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK

9 ² Parasitology Department, Heidelberg University Hospital, Im Neuenheimer Feld 324,

10 69120 Heidelberg, Germany

11 ³ International Centre of Insect Physiology and Ecology (*icipe*), P.O. Box 30772-00100,

12 Nairobi, Kenya

13 ⁴ Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada

14 ⁵ Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical

15 Medicine, Liverpool L3 5QA, UK

16 ⁶ Department of Population Medicine, Ontario Veterinary College, University of Guelph,

17 Guelph, ON N1G 2W1, Canada

18 * Corresponding author: ipatterson@brocku.ca

19 **Abstract**

20 Cell fusing agent virus (CFAV) is an insect specific flavivirus (ISF) found in field and
21 laboratory populations of *Aedes aegypti*. ISFs have recently demonstrated the ability to block
22 the transmission of arboviruses such as dengue, West Nile and Zika viruses. It is thought that
23 vertical transmission is the main route for ISF infections. This has been observed with
24 CFAV, but there is evidence of horizontal and venereal transmission in other ISFs.
25 Understanding the route of transmission can inform strategies to spread ISFs to wild vector
26 populations as a method of controlling pathogenic arboviruses. We crossed individually
27 reared male and female mosquitoes from both a naturally occurring CFAV-positive *Ae.*
28 *aegypti* colony and its negative counterpart to provide information on maternal, paternal, and
29 horizontal transmission. RT-PCR was used to detect CFAV in individual female mosquito
30 pupal exuviae and was 89% sensitive, but only 41% in male mosquito pupal exuviae. This is
31 a possible way to screen individuals for infection without destroying the adults. Female-to-
32 male horizontal transmission was not observed during this study, however there was a 31%
33 transmission rate from mating pairs of CFAV-positive males to negative female mosquitoes.
34 Maternal vertical transmission was observed with a filial infection rate of 93%. The rate of
35 paternal transmission was 85% when the female remained negative, 61% when the female
36 acquired CFAV horizontally, and 76% overall. Maternal and paternal transmission of CFAV
37 could allow the introduction of this virus into wild *Ae. aegypti* populations through male or
38 female mosquito releases, and thus provides a potential strategy for ISF-derived arbovirus
39 control.

40

41 **Introduction**

42 The genus *Flavivirus* contains many arboviruses of medical and veterinary
43 importance such as dengue, West Nile and Zika viruses, as well as insect-specific flaviviruses
44 (ISFs) that are only known to infect insect hosts. ISFs are known to be present in a range of
45 mosquito species and we are becoming increasingly aware of their functions and uses
46 because of recent reports showing their ability to block arbovirus transmission in mosquitoes
47 and their use as chimeric vaccines (Harrison et al. 2021; Baidaliuk et al. 2019; Hobson-Peters
48 et al. 2019; Romo et al. 2018; Hall-Mendelin et al. 2016; Goenaga et al. 2015; Kenney et al.
49 2014; Hobson-Peters et al. 2013).

50 Whilst both arboviruses and ISFs belong to the *Flavivirus* genus, transmission is
51 markedly different. Arboviruses are dual-host flaviviruses transmitted through the blood-
52 feeding of arthropods on viremic vertebrate hosts. After acquisition of the virus from the
53 host, only a small fraction of subsequent transmission is vertical, with female mosquitoes
54 passing the virus to their offspring after feeding on an infected host (Phumee et al. 2019;
55 Tesh et al. 2016; Thangamani et al. 2016; Baqar et al. 1993; Rosen et al. 1983). Contrary to
56 this, vertical transmission is thought to be the main route of ISF transmission because the
57 viruses do not replicate in vertebrate hosts.

58 A small number of studies have observed vertical transmission of ISFs in naturally or
59 experimentally infected mosquito colonies (Peinado et al. 2022; McClean et al. 2021;
60 Contreras-Gutierrez et al. 2017; Bolling et al. 2012; Saiyasombat et al. 2011; Lutomiah et al.
61 2007), including for cell fusing agent virus (CFAV), an ISF identified in several *Aedes*
62 *aegypti* cell culture lines, and in field and laboratory colony mosquitoes (Baidaliuk et al.
63 2020; Martin et al. 2020; Bolling et al. 2015; Stollar and Thomas, 1975). The observed
64 vertical transmission rate was higher in naturally infected colonies of *Ae. aegypti* with CFAV
65 compared to experimentally infected colonies, and similar results were seen in *Culex pipiens*

66 with *Culex* flavivirus (CxFV) (Contreras-Gutierrez et al. 2017; Saiyasombat et al. 2011).
67 Filial transmission from experimentally infected females ranged from 0-50% for CFAV in
68 *Ae. aegypti*, and 0-22% for CxFV in *Cx. pipiens*. For Kamiti River virus (KRV), an ISF
69 isolated from *Aedes macintoshi*, the filial infection rate from *Ae. aegypti* females following
70 an infectious blood meal was 4% (Lutomiah et al. 2007). The disparate range in these
71 experiments suggest that other forms of transmission may also occur.

72 Horizontal transmission of ISFs has also been observed in mosquito colonies. KRV
73 was able to infect a high proportion of *Ae. aegypti* larvae when exposed to infected cell
74 culture, while Aedes flavivirus (AeFV) only infected a low proportion of *Ae. aegypti* larvae
75 and adults when feeding on infected cell cultures and sugar meals, respectively (Peinado et
76 al. 2022; Lutomiah et al. 2007). However, the virus was not detected in water used to rear
77 CxFV-infected *Cx. pipiens* larvae and infection was not detected in co-reared, negative larvae
78 (Bolling et al. 2012), suggesting infected individuals did not shed virus into their larval
79 environment. Venereal transmission of CxFV and AeFV was demonstrated in both directions,
80 from male-to-female as well as female-to-male, in experiments that crossed infected
81 mosquito colonies with naïve colonies (Peinado et al. 2022; Bolling et al. 2012). These rates
82 were generally low, except for male-to-female crosses in *Aedes albopictus* which lead to an
83 18% infection rate (Peinado et al. 2022).

84 Further knowledge of the transmission and maintenance of ISFs in mosquito
85 populations, especially for mosquito species that are competent vectors where ISFs are of
86 interest for pathogen control approaches, are of high relevance for this group of viruses.
87 CFAV infects an important vector species, *Ae. aegypti*, and its relation to many dangerous
88 flaviviruses may allow it to be used to control arbovirus transmission through superinfection
89 exclusion – blocking subsequent infection of a similar virus – (Baidaliuk et al. 2019) or as a
90 vehicle for paratransgenesis – using a microbe to express transgenes in its host – as has been

91 proposed for other insect-specific viruses (Patterson et al. 2021; Patterson et al. 2020; Gu et
92 al. 2010; Ren et al. 2008; Ward et al. 2001). CFAV has been shown to be maternally
93 transmitted with experimentally infected female mosquitoes (Contreras-Gutierrez et al.
94 2017), but it is not known if CFAV is paternally or horizontally transmitted. Given the
95 reduced rates of transmission seen in experimental infections, we hypothesized that multiple
96 modes of transmission occur in naturally infected colonies. To assess this, we used a
97 laboratory colony of CFAV-infected *Ae. aegypti* and a known uninfected colony to quantify
98 maternal, paternal, and horizontal transmission of CFAV. Our results provide insights into
99 the transmission routes of CFAV which could be used to inform strategies to spread
100 pathogen-blocking ISFs into mosquito populations.

101

102 **Materials and Methods**

103 *Mosquitoes and virus*

104 Established laboratory colonies of *Ae. aegypti* Galveston and Iquitos colonies were
105 maintained in a 12-hour light:12-hour dark cycle with a 1-hour dawn and dusk, at 25°C and
106 75% relative humidity. A previous report identified a persistent infection of CFAV in the *Ae.*
107 *aegypti* Galveston colony and no virus infection was detected in the *Ae. aegypti* Iquitos
108 colony (Ma et al. 2021; Bolling et al. 2015). The presence and absence of CFAV in these
109 colonies was confirmed prior to performing the following experiments. The sequence for the
110 CFAV isolate from the Galveston colony is available on GenBank (CFAV-Galveston strain
111 accession no. KJ741267).

112

113 *Mosquito rearing to assess vertical and horizontal CFAV transmission*

114 Eggs collected from standard colony maintenance were floated out and larvae were
115 fed ground fish food until reaching pupal stage. Pupae from each colony were sexed and

116 individually placed in 50 mL conical tubes with fresh water. Once emerged, water was
117 removed from the tube and the pupae exuviae were stored at -80 °C, the sex of the adults was
118 confirmed, and individual males were removed from their tube and placed in a tube with an
119 individual female. Mating pairs consisted of the following cohorts: i) 1 Galveston female + 1
120 Galveston male for CFAV transmission positive control; ii) 1 Iquitos female + 1 Iquitos male
121 for CFAV transmission negative control; iii) 1 Galveston female + 1 Iquitos male for female-
122 to-male horizontal transmission and maternal transmission; or iv) 1 Iquitos female + 1
123 Galveston male for male-to-female transmission and paternal transmission. Individual mating
124 pairs were provided with 10% sucrose and allowed to mate for three days before the males
125 were removed and stored at -80 °C. Subsequent replicates to confirm the lack of female-to-
126 male transmission involved cohousing mating pairs from cohort iii) 1 Galveston female + 1
127 Iquitos male for 14 days. Females were presented with a blood meal consisting of 1:1 human
128 red blood cells and plasma via a Hemotek membrane feeding system to stimulate egg laying.
129 After two days, individual blood fed females were transferred to a 30 mL egg laying tube
130 containing water and filter paper. After another two days, females were collected and stored
131 at -80 °C. Egg papers were collected and dried for storage in the insectary until ready to rear
132 offspring. The offspring were reared as normal and emerged adults were collected and
133 individually stored at -80 °C. Adults in the F0 or F1 generation that were deceased prior to
134 collection were not used for detection of CFAV.

135

136 *Detection of CFAV by reverse transcription polymerase chain reaction (RT-PCR)*

137 Pupae exuviae or adults were homogenized in a 2 mL Safe-lock microcentrifuge tube
138 with a stainless-steel ball and RNA lysis buffer from the Zymo Quick-RNA Miniprep kit for
139 5 min at 26 Hz. RNA purification with the Zymo Quick-RNA Miniprep kit was performed
140 per the manufacturer's protocol.

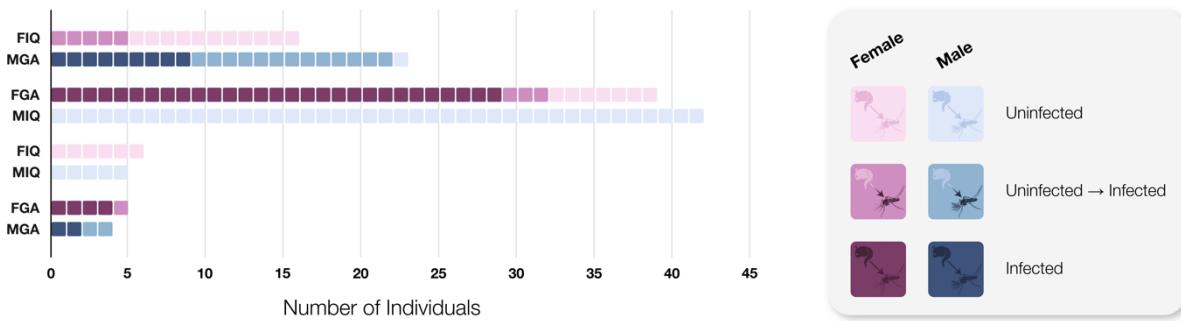
141 One-step RT-PCR assays without denaturation were prepared with the Jena
142 Bioscience SCRIPT RT-PCR kit according to the manufacturer's instructions using CFAV
143 forward and reverse primers as previously described (Weger-Lucarelli et al. 2018).
144 Thermocycler settings were as follows: 1 h at 50 °C, 5 min at 95 °C, 40 cycles of 10 s at 95
145 °C, 20 s at 60 °C and 2 min at 72 °C, with a final extension of 5 min at 72 °C. An expected
146 amplicon of 367 bp was visualized by gel electrophoresis.

147

148 *Statistical Analysis*

149 All statistical analyses were conducted in Microsoft Excel and the R statistical
150 software package (<http://www.r-project.org>; R Core Team 2020). Binomial 95% confidence
151 intervals (CI) were calculated for sensitivity and transmission efficiencies. Graphics were
152 generated using the package ggplot2 (Wickham 2016).

153


154 **Results**

155 *Detection of CFAV in pupal exuviae*

156 Assessment of horizontal and vertical transmission of CFAV requires the
157 confirmation of infected and non-infected mosquitoes prior to the transmission event. This is
158 typically performed by surveying mosquitoes from the colonies to determine a baseline
159 colony infection rate, rather than detection of virus in the individuals involved in the
160 experiment. To assess the experimental individuals directly, pupae exuviae of the parental
161 generation were tested for the presence of CFAV (Figure 1). The pupae exuviae from all
162 CFAV-negative adults were negative, which indicates that the PCR assay has a specificity of
163 100% in both female and male pupae exuviae. This includes 17/17 females and 47/47 males
164 from the Iquitos colony, and 7/7 females and 1/1 male from the Galveston colony. Only
165 individuals from the Galveston colony were considered for comparison between pupae

166 exuviae and CFAV-positive adults. The resulting sensitivity was 89% (33/37; CI: 74-97%)
167 for females and 41% (11/27; CI: 22-61%) for males, with an overall sensitivity of 69%
168 (44/64; CI: 58-80%) (Table 1). The positive predictive value for CFAV detection in pupae
169 exuviae was 100% for both females and males, and the negative predictive value was 86%
170 for females, 75% for males, and 78% overall. When only considering samples from the
171 Galveston colony, the negative predictive value is 64% for females, 6% for males, and 29%
172 overall.

173

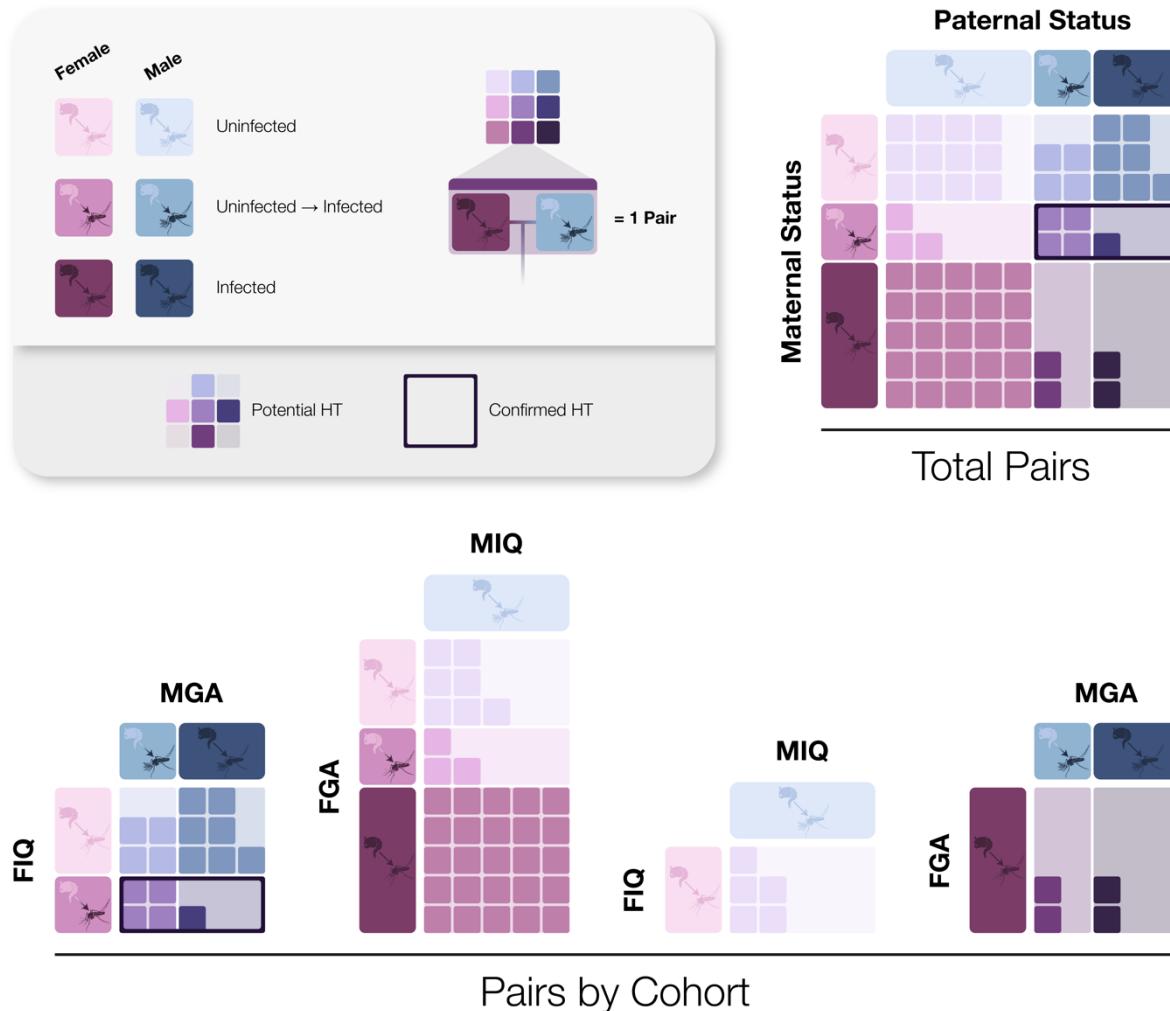
174

175 Figure 1. Comparison of CFAV infection status in pupal exuviae versus adult. Red icons
176 indicate the female mosquito and blue icons represent the male in each grouped mating pair.
177 Only mosquitoes that survived to the collection time point were tested, leading to an uneven
178 number of males and females. The shading gradient indicates infection status, where the
179 lightest shade indicates no infection detected in the pupae exuviae and adult, intermediate
180 shade indicates a no infection detected at pupae and positive for infection at adult (pupae
181 result does not agree with adult result), and the darkest shade indicates positive for infection
182 detected at both pupae and adult stages. The combination of each individual mating pair is
183 provided on the Y-axis. The 5 females with negative pupae and positive adult in the FIQ-
184 MGA group are cases of horizontal transmission. FIQ = female Iquitos, MIQ = male Iquitos,
185 FGA = female Galveston, MGA = male Galveston.

186

187 Table 1. Analysis of detection of CFAV in pupae exuviae versus emerged adult mosquitoes.

188 PPV = positive predictive value, NPV = negative predictive value.


Metric	Female	Male	All
Sensitivity (%, n)	89 (33/37)	41 (11/27)	69 (44/64)
Specificity (%, n)	100 (17/17)	100 (47/47)	100 (64/64)
PPV (%)	100	100	100
NPV – all samples (%)	85	62	69
NPV – Galveston only (%)	64	6	29

189

190 *Horizontal transmission in paired mosquitoes*

191 Adults from the parental generation were grouped into mating pairs and assessed for
192 CFAV infection (Figure 2). All paired adults from the Galveston colony positive control
193 group were positive, and all paired adults from the Iquitos colony negative control group
194 were negative for CFAV. No female-to-male transmission was observed in mating pairs
195 consisting of a Galveston female and an Iquitos male when cohoused for either 3 days (0/14)
196 or 14 days (0/15). All Galveston females were positive, and all Iquitos males were negative
197 for CFAV. Male-to-female transmission was observed at a rate of 31% (5/16; CI: 11-59%) in
198 mating pairs with an Iquitos female and a Galveston male. All Galveston males in these
199 mating pairs were positive for CFAV. The pupae exuviae corresponding to Iquitos female
200 adults where CFAV was detected were all negative.

201

202

203 Figure 2. Evidence of horizontal transmission of CFAV between mating pairs. CFAV
204 infection status of F0 mosquitoes in each mating pair. Shading of red and blue on the icons
205 represent the infection status of each adult in the mating pair, with the lightest icons
206 indicating that both mosquitoes in the mating pair tested negative at both the pupa and adult
207 stage, and the darkest icons indicating that both mosquitoes in the mating pair tested positive
208 at both the pupa and adult stage. Mating pairs are assigned a colour on the red-to-blue
209 gradient based on the combined infection status of the female and male (9 potential
210 outcomes). Mosquitoes that tested negative at the pupa stage and positive as an adult are
211 examples of potential horizontal transmission. Samples surrounded by the black border are
212 confirmed cases of horizontal male-to-female transmission. FIQ = female Iquitos, MIQ =
213 male Iquitos, FGA = female Galveston, MGA = male Galveston.

214

215 *Vertical transmission from paired mosquitoes*

216 Offspring from all four mating pair groups were assessed for CFAV to determine if

217 vertical transmission was possible through both maternal and paternal routes (Figure 3).

218 Vertical transmission from the Galveston colony control group was 100% (56/56; CI: 94-

219 100%) for offspring from three different mating pairs (Figure 4). Offspring from three Iquitos

220 colony control mating pairs were all negative for CFAV (0/39; CI: 0-9%). Maternal

221 transmission was observed from five mating pairs with a Galveston female and an Iquitos

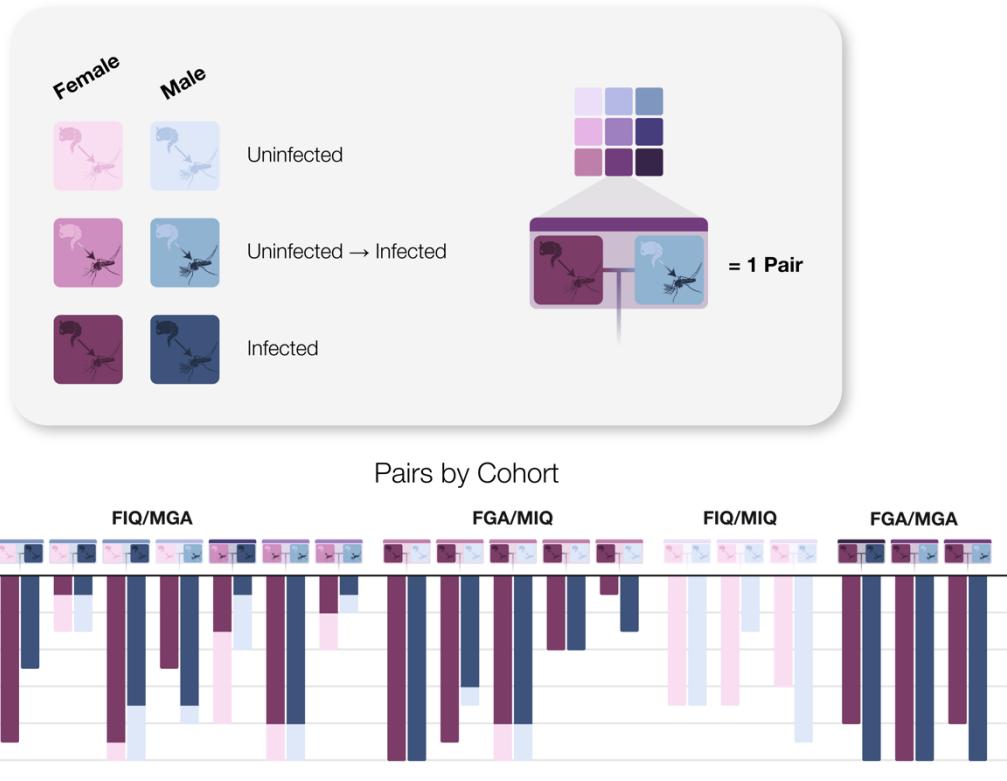
222 male. The filial infection rate from the five mating pairs ranged from 80-100%, with an

223 overall filial infection rate of 93% (63/68; CI: 84-98%). Paternal transmission was also

224 observed from eight mating pairs with an Iquitos female and a Galveston male, including

225 three mating pairs in which the Iquitos female also became positive. The filial infection rate

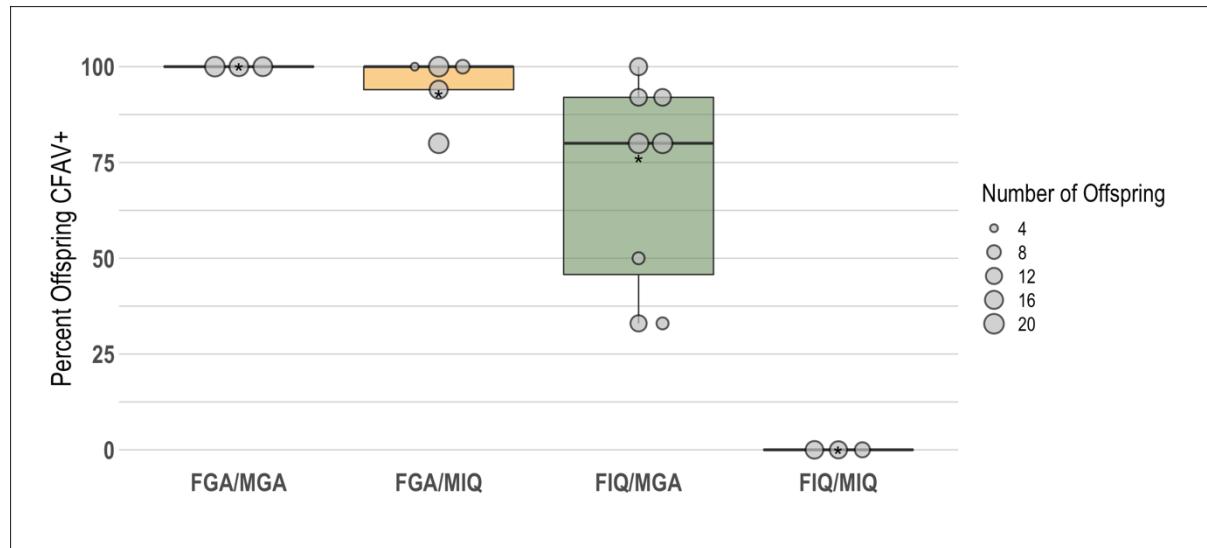
226 from mating pairs where the Iquitos female was negative varied from 33-100%, with an


227 overall rate of 85% (56/66; CI: 74-92%). For the three mating pairs with positive Iquitos

228 female adults, the filial infection rate varied from 25-80% with an overall rate of 61% (23/38;

229 CI: 43-76%). The overall filial infection rate from all eight mating pairs with Iquitos female

230 and Galveston male was 76% (79/104; CI: 67-84%).


231

232

233 Figure 3. Filial infection of CFAV to assess maternal and paternal transmission. Red and blue
234 icons indicate the female and male in each grouped mating pair, respectively. The shading
235 gradient indicates infection status. Shading of red and blue on the bar above the icons
236 represent the infection status of each pupa and adult in the mating pair. Histogram represents
237 the infection status of the adult offspring, with light red or blue representing a negative
238 female or male, respectively, and dark red or blue representing a positive female or male.
239 Pupae exuviae were not examined for offspring. FIQ = female Iquitos, MIQ = male Iquitos,
240 FGA = female Galveston, MGA = male Galveston.

241

242

243 Figure 4. Vertical transmission of CFAV from different mating pair combinations. The size
244 of the grey dots indicates the number of offspring from each mating pair in the group.
245 Asterisk indicates the overall mean of vertical transmission seen from all offspring from the
246 group. FIQ = female Iquitos, MIQ = male Iquitos, FGA = female Galveston, MGA = male
247 Galveston.

248

249 Discussion

250 There has been a rapid expansion of known members of ISFs and other insect-specific
251 viruses, but little is known about their biology and maintenance in mosquito populations.
252 This is true even for CFAV, an ISF first discovered in 1975 and with global distribution in a
253 major vector species and sustained seasonal infection (Baidaliuk et al. 2020; Jeffries et al.
254 2020; Martin et al. 2020; Ajamma et al. 2018; Fernandes et al. 2018; Bolling et al. 2015;
255 Yamanaka et al. 2013; Espinoza-Gomez et al. 2011; Cook et al. 2006). The detection of
256 infected larvae or pupae and lack of other known hosts has led to speculation that ISFs are
257 vertically transmitted. Although the results vary by virus and mosquito colony, experimental
258 infections have demonstrated that maternal transmission occurs, as well as venereal
259 transmission and the potential for other modes of horizontal transmission.

260 Crossing mosquitoes from CFAV-positive and -negative colonies confirmed maternal
261 transmission and revealed paternal and horizontal transmission of CFAV. Maternal
262 transmission of CFAV was first demonstrated by Contreras-Gutierrez et al. (2017). Adult
263 females from a CFAV-negative colony were injected with CFAV, which produced an overall
264 F1 filial infection rate of 28%, and range of 0-50% for individual females. Rearing offspring
265 from the F1 generation increased the overall filial infection rate to 74% in the F2 generation
266 (range of 60-93%), similar to the control rates of 78% to 100% from previous experiments
267 with the Galveston colony (Contreras-Gutierrez et al. 2017) and the current rate of 100% in
268 our Galveston colony. The increase from F1 to F2 infection rates in the experimentally
269 infected colony may be due to the contributions of undetected paternal transmission and
270 chronic infection of CFAV increasing the likelihood of infecting reproductive organs in F1
271 mosquitoes. Similarly, discrepancies between maternal transmission of 28% compared to
272 93% in the current experiments may be because the chronic infection of CFAV in Galveston
273 females are more likely to infect reproductive organs compared to injection and 4-day
274 incubation period employed in prior experiments, although ovaries from *Cx. pipiens* were
275 infected with CxFV 4 days post-injection (Saiyasombat et al. 2011). Allowing sufficient time
276 for systemic infection has also been suggested with *Anopheles gambiae* densovirus
277 (AgDNV), where vertical transmission was observed when parent mosquitoes were infected
278 at the larval stage, but not when females were infected through venereal transmission
279 (Werling et al. 2022; Ren et al. 2008). The high levels of vertical transmission seen in the
280 Galveston colony are also maintained by paternal transmission, which was responsible for an
281 overall filial infection rate of 76% and is the first observation of paternal transmission in
282 ISFs. While paternal transmission has not previously been evaluated in ISFs there are other
283 well-documented examples of paternal transmission, such as for verdadero virus, a

284 partitivirus in mosquitoes (Cross et al. 2020) and rice gall dwarf virus, an aphid-plant
285 reovirus that binds to host sperm to infect offspring (Mao et al. 2019).

286 Horizontal transmission has also been demonstrated as a viable transmission route for
287 ISFs. Transmission rates from male-to-female adults were 31% for CFAV. This rate is more
288 similar to the 18% male-to-female venereal transmission for AeFV in *Ae. aegypti* than the
289 2.4% rate observed with CxFV in *Cx. pipiens* (Peinado et al. 2022; Bolling et al. 2012).
290 Neither the current CFAV experiments nor the AeFV experiments excluded other forms of
291 contact transmission, such as sharing sugar meal sources. While transmission through food
292 sharing did not occur with CxFV and feeding on infected sugar meals rarely resulted in AeFV
293 infection (Peinado et al. 2022; Bolling et al. 2012), KRV is known to have high oral infection
294 rates (Lutomiah et al. 2007). No female-to-male transmission was observed, although this
295 occurred at a rate of 5.3% with CxFV, and 2% with AeFV (Peinado et al. 2022; Bolling et al.
296 2012). Increasing the sample size may reveal some female-to-male transmission, but the rate
297 is likely low.

298 Our horizontal transmission results were strengthened by testing pupae exuviae to
299 demonstrate the lack of infection before being cohoused and mating with a positive male.
300 Prior studies have not confirmed the infection status of individual mosquitoes before the
301 potential transmission events. Although improvements for testing male pupae exuviae would
302 be desirable, the sensitivity of 89% for female pupae exuviae provides the ability to assess
303 prior infection in mosquitoes by testing pupae exuviae, which will be useful for future
304 experiments. It is unknown why sensitivity differs between female and male pupae exuviae,
305 but a previous study has shown that virus levels have a wider range and are lower titer, on
306 average, in males (Martin et al. 2020).

307 CFAV may be a useful tool to limit secondary infections with arboviruses in *Ae.*
308 *aegypti* mosquitoes. Superinfection exclusion has been demonstrated in cells and mosquitoes

309 infected with CFAV, other ISFs and insect-specific viruses. Previous studies showed that
310 initial infection with a field-derived CFAV isolate resulted in reduced dengue virus and Zika
311 virus replication and dissemination (Baidaliuk et al. 2019). However, the lack of knowledge
312 on the transmission of ISFs is a limitation in their potential use for pathogen control
313 (Patterson et al. 2020). As both maternal and paternal transmission have been confirmed, our
314 results offer the potential to establish CFAV infection in wild *Ae. aegypti* populations
315 through the release of infected females or males. Releasing males would be most desirable
316 because they do not contribute to the transmission of arboviruses and CFAV transmission by
317 the male-to-female horizontal route may also improve overall infection levels in the field.

318

319 **Acknowledgments**

320 EIP was supported by the Liverpool School of Tropical Medicine Director's Catalyst Fund
321 award and Brock University Research Initiative Award. JNM was supported by the
322 Wellcome Trust International Masters fellowship (219672/Z/19/Z). GLH was supported by
323 the BBSRC (BB/T001240/1 and BB/W018446/1), the UKRI (20197), the EPSRC
324 (V043811/1), a Royal Society Wolfson Fellowship (RSWF\R1\180013), and the NIHR
325 (NIHR2000907). SH was supported by a Liverpool School of Tropical Medicine Director's
326 Catalyst Fund award. EH, LEB and GLH were supported by the BBSRC (V011278/1).

327 **References**

328 1. Harrison, J. J., Hobson-Peters, J., Bielefeldt-Ohmann, H., & Hall, R. A. (2021). Chimeric
329 Vaccines Based on Novel Insect-Specific Flaviviruses. *Vaccines*, 9(11), 1230.

330

331 2. Baidaliuk, A., Miot, E. F., Lequime, S., Moltini-Conclois, I., Delaigue, F., Dabo, S., ... &
332 Lambrechts, L. (2019). Cell-fusing agent virus reduces arbovirus dissemination in Aedes
333 aegypti mosquitoes in vivo. *Journal of virology*, 93(18), e00705-19.

334

335 3. Hobson-Peters, J., Harrison, J. J., Watterson, D., Hazlewood, J. E., Vet, L. J., Newton, N.
336 D., ... & Hall, R. A. (2019). A recombinant platform for flavivirus vaccines and diagnostics
337 using chimeras of a new insect-specific virus. *Science translational medicine*, 11(522).

338

339 4. Romo, H., Kenney, J. L., Blitvich, B. J., & Brault, A. C. (2018). Restriction of Zika virus
340 infection and transmission in Aedes aegypti mediated by an insect-specific
341 flavivirus. *Emerging microbes & infections*, 7(1), 1-13.

342

343 5. Hall-Mendelin, S., McLean, B. J., Bielefeldt-Ohmann, H., Hobson-Peters, J., Hall, R. A.,
344 & van den Hurk, A. F. (2016). The insect-specific Palm Creek virus modulates West Nile
345 virus infection in and transmission by Australian mosquitoes. *Parasites & Vectors*, 9(1), 1-
346 10.

347

348 6. Goenaga, S., Kenney, J. L., Duggal, N. K., Delorey, M., Ebel, G. D., Zhang, B., ... &
349 Brault, A. C. (2015). Potential for co-infection of a mosquito-specific flavivirus, Nhumirim
350 virus, to block West Nile virus transmission in mosquitoes. *Viruses*, 7(11), 5801-5812.

351

352 7. Kenney, J. L., Solberg, O. D., Langevin, S. A., & Brault, A. C. (2014). Characterization of
353 a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of
354 arthropod cells with medically important flaviviruses. *The Journal of general virology*, 95(0
355 12), 2796.

356

357 8. Hobson-Peters, J., Yam, A. W. Y., Lu, J. W. F., Setoh, Y. X., May, F. J., Kurucz, N., ... &
358 Hall, R. A. (2013). A new insect-specific flavivirus from northern Australia suppresses
359 replication of West Nile virus and Murray Valley encephalitis virus in co-infected mosquito
360 cells. *PLoS one*, 8(2), e56534.

361

362 9. Phumee, A., Chompoosri, J., Intayot, P., Boonserm, R., Boonyasuppayakorn, S.,
363 Buathong, R., ... & Siriyasatien, P. (2019). Vertical transmission of Zika virus in Culex
364 quinquefasciatus Say and Aedes aegypti (L.) mosquitoes. *Scientific reports*, 9(1), 1-9.

365

366 10. Tesh, R. B., Bolling, B. G., & Beaty, B. J. (2016). Role of vertical transmission in
367 mosquito-borne arbovirus maintenance and evolution. *Arbovirus: Molecular Biology,
368 Evolution and Control; Vasilakis, N., Gubler, DJ, Eds*, 191-217.

369

370 11. Thangamani, S., Huang, J., Hart, C. E., Guzman, H., & Tesh, R. B. (2016). Vertical
371 transmission of Zika virus in Aedes aegypti mosquitoes. *The American journal of tropical
372 medicine and hygiene*, 95(5), 1169.

373

374 12. Baqar, S., Hayes, C. G., Murphy, J. R., & Watts, D. M. (1993). *Vertical transmission of
375 West Nile virus by Culex and Aedes species mosquitoes*. NAVAL MEDICAL RESEARCH
376 UNIT NO 3 CAIRO (EGYPT) DEPT OF MEDICAL ZOOLOGY.

377

378 13. Rosen, L., Shroyer, D. A., Tesh, R. B., Freier, J. E., & Lien, J. C. (1983). Transovarial
379 transmission of dengue viruses by mosquitoes: *Aedes albopictus* and *Aedes aegypti*. *The*
380 *American journal of tropical medicine and hygiene*, 32(5), 1108-1119.

381

382 14. Peinado, S. A., Aliota, M. T., Blitvich, B. J., & Bartholomay, L. C. (2022). Biology and
383 Transmission Dynamics of *Aedes* flavivirus. *Journal of Medical Entomology*.

384

385 15. McLean, B. J., Hall-Mendelin, S., Webb, C. E., Bielefeldt-Ohmann, H., Ritchie, S. A.,
386 Hobson-Peters, J., ... & van den Hurk, A. F. (2021). The insect-specific Parramatta River
387 virus is vertically transmitted by *Aedes vigilax* mosquitoes and suppresses replication of
388 pathogenic flaviviruses in vitro. *Vector-Borne and Zoonotic Diseases*, 21(3), 208-215.

389

390 16. Contreras-Gutierrez, M. A., Guzman, H., Thangamani, S., Vasilakis, N., & Tesh, R. B.
391 (2017). Experimental infection with and maintenance of cell fusing agent virus (Flavivirus) in
392 *Aedes aegypti*. *The American journal of tropical medicine and hygiene*, 97(1), 299.

393

394 17. Bolling, B. G., Olea-Popelka, F. J., Eisen, L., Moore, C. G., & Blair, C. D. (2012).
395 Transmission dynamics of an insect-specific flavivirus in a naturally infected *Culex pipiens*
396 laboratory colony and effects of co-infection on vector competence for West Nile
397 virus. *Virology*, 427(2), 90-97.

398

399 18. Saiyasombat, R., Bolling, B. G., Brault, A. C., Bartholomay, L. C., & Blitvich, B. J.
400 (2011). Evidence of efficient transovarial transmission of *Culex* flavivirus by *Culex pipiens*
401 (Diptera: Culicidae). *Journal of medical entomology*, 48(5), 1031-1038.

402

403 19. Lutomiah, J. J., Mwandawiro, C., Magambo, J., & Sang, R. C. (2007). Infection and
404 vertical transmission of Kamiti river virus in laboratory bred Aedes aegypti
405 mosquitoes. *Journal of Insect Science*, 7(1).

406

407 20. Baidaliuk, A., Lequime, S., Moltini-Conclois, I., Dabo, S., Dickson, L. B., Prot, M., ... &
408 Lambrechts, L. (2020). Novel genome sequences of cell-fusing agent virus allow comparison
409 of virus phylogeny with the genetic structure of Aedes aegypti populations. *Virus*
410 *evolution*, 6(1), veaa018.

411

412 21. Martin, E., Tang, W., Briggs, C., Hopson, H., Juarez, J. G., Garcia-Luna, S. M., ... &
413 Hamer, G. L. (2020). Cell fusing agent virus (Flavivirus) infection in Aedes aegypti in Texas:
414 seasonality, comparison by trap type, and individual viral loads. *Archives of Virology*, 165(8),
415 1769-1776.

416

417 22. Bolling, B. G., Vasilakis, N., Guzman, H., Widen, S. G., Wood, T. G., Popov, V. L., ... &
418 Tesh, R. B. (2015). Insect-specific viruses detected in laboratory mosquito colonies and their
419 potential implications for experiments evaluating arbovirus vector competence. *The*
420 *American journal of tropical medicine and hygiene*, 92(2), 422.

421

422 23. Stollar, V., & Thomas, V. L. (1975). An agent in the Aedes aegypti cell line (Peleg)
423 which causes fusion of Aedes albopictus cells. *Virology*, 64(2), 367-377.

424

425 24. Patterson, E. I., Kautz, T. F., Contreras-Gutierrez, M. A., Guzman, H., Tesh, R. B.,

426 Hughes, G. L., & Forrester, N. L. (2021). Negeviruses reduce replication of alphaviruses

427 during coinfection. *Journal of Virology*, 95(14), e00433-21.

428

429 25. Patterson, E. I., Villinger, J., Muthoni, J. N., Dobel-Ober, L., & Hughes, G. L. (2020).

430 Exploiting insect-specific viruses as a novel strategy to control vector-borne disease. *Current*

431 *opinion in insect science*, 39, 50-56.

432

433 26. Gu, J. B., Dong, Y. Q., Peng, H. J., & Chen, X. G. (2010). A recombinant AeDNA

434 containing the insect-specific toxin, BmK IT1, displayed an increasing pathogenicity on

435 *Aedes albopictus*. *The American journal of tropical medicine and hygiene*, 83(3), 614.

436

437 27. Ren, X., Hoiczyk, E., & Rasgon, J. L. (2008). Viral paratransgenesis in the malaria vector

438 *Anopheles gambiae*. *PLoS pathogens*, 4(8), e1000135.

439

440 28. Ward, T. W., Jenkins, M. S., Afanasiev, B. N., Edwards, M., Duda, B. A., Suchman, E.,

441 ... & Carlson, J. O. (2001). *Aedes aegypti* transducing densovirus pathogenesis and

442 expression in *Aedes aegypti* and *Anopheles gambiae* larvae. *Insect molecular biology*, 10(5),

443 397-405.

444

445 29. Ma, Q., Srivastav, S. P., Gamez, S., Dayama, G., Feitosa-Suntheimer, F., Patterson, E. I.,

446 ... & Lau, N. C. (2021). A mosquito small RNA genomics resource reveals dynamic

447 evolution and host responses to viruses and transposons. *Genome research*, 31(3), 512-528.

448

449 30. Weger-Lucarelli, J., Rückert, C., Grubaugh, N. D., Misencik, M. J., Armstrong, P. M.,
450 Stenglein, M. D., ... & Brackney, D. E. (2018). Adventitious viruses persistently infect three
451 commonly used mosquito cell lines. *Virology*, 521, 175-180.

452

453 31. R Core Team R: a language and environment for statistical computing. R foundation for
454 statistical computing, 2020. Available: <https://www.r-project.org/>

455

456 32. Wickham H ggplot2: elegant graphics for data analysis. New York: Springer-Verlag,
457 2016. <https://ggplot2.tidyverse.org>

458

459 33. Jeffries, C. L., White, M., Wilson, L., Yakob, L., & Walker, T. (2020). Detection of Cell-
460 Fusing Agent virus across ecologically diverse populations of *Aedes aegypti* on the
461 Caribbean island of Saint Lucia. *Wellcome Open Research*, 5.

462

463 34. Ajamma, Y. U., Onchuru, T. O., Ouso, D. O., Omondi, D., Masiga, D. K., & Villinger, J.
464 (2018). Vertical transmission of naturally occurring Bunyamwera and insect-specific
465 flavivirus infections in mosquitoes from islands and mainland shores of Lakes Victoria and
466 Baringo in Kenya. *PLoS Neglected Tropical Diseases*, 12(11), e0006949.

467

468 35. Natal Fernandes, L., de Moura Coletti, T., Julio Costa Monteiro, F., Octavio da Silva
469 Rego, M., Soares D'Athaide Ribeiro, E., de Oliveira Ribeiro, G., ... & Charlys da Costa, A.
470 (2018). A novel highly divergent strain of cell fusing agent virus (CFAV) in mosquitoes from
471 the Brazilian Amazon region. *Viruses*, 10(12), 666.

472

473 36. Yamanaka, A., Thongrungkiat, S., Ramasoota, P., & Konishi, E. (2013). Genetic and
474 evolutionary analysis of cell-fusing agent virus based on Thai strains isolated in 2008 and
475 2012. *Infection, Genetics and Evolution*, 19, 188-194.

476

477 37. Espinoza-Gómez, F., López-Lemus, A. U., Rodriguez-Sánchez, I. P., Martinez-Fierro, M.
478 L., Newton-Sánchez, O. A., Chávez-Flores, E., & Delgado-Enciso, I. (2011). Detection of
479 sequences from a potentially novel strain of cell fusing agent virus in Mexican Stegomyia
480 (Aedes) aegypti mosquitoes. *Archives of virology*, 156(7), 1263-1267.

481

482 38. Cook, S., Bennett, S. N., Holmes, E. C., De Chesse, R., Moureau, G., & De Lamballerie,
483 X. (2006). Isolation of a new strain of the flavivirus cell fusing agent virus in a natural
484 mosquito population from Puerto Rico. *Journal of General Virology*, 87(4), 735-748.

485

486 39. Werling, K. L., Johnson, R. M., Metz, H. C., & Rasgon, J. L. (2022). Sexual transmission
487 of Anopheles gambiae densovirus (AgDNV) leads to disseminated infection in mated
488 females. bioRxiv.

489

490 40. Cross, S. T., Maertens, B. L., Dunham, T. J., Rodgers, C. P., Brehm, A. L., Miller, M. R.,
491 ... & Stenglein, M. D. (2020). Partitiviruses infecting *Drosophila melanogaster* and *Aedes*
492 *aegypti* exhibit efficient biparental vertical transmission. *Journal of Virology*, 94(20),
493 e01070-20.

494

495 41. Mao, Q., Wu, W., Liao, Z., Li, J., Jia, D., Zhang, X., ... & Wei, T. (2019). Viral
496 pathogens hitchhike with insect sperm for paternal transmission. *Nature communications*, 10(1), 1-10.