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Abstract: Resistance to pharmacological treatments is a major public health challenge. Here we report
RESISTOR—a novel structure- and sequence-based algorithm for drug design providing prospective pre-
diction of resistance mutations. RESISTOR computes the Pareto frontier of four resistance-causing criteria:
the change in binding affinity (∆Ka) of the (1) drug and (2) endogenous ligand upon a protein’s mutation;
(3) the probability a mutation will occur based on empirically derived mutational signatures; and (4) the
cardinality of mutations comprising a hotspot. To validate RESISTOR, we applied it to kinase inhibitors
targeting EGFR and BRAF in lung adenocarcinoma and melanoma. RESISTOR correctly identified eight
clinically significant EGFR resistance mutations, including the “gatekeeper” T790M mutation to erlotinib
and gefitinib and five known resistance mutations to osimertinib. Furthermore, RESISTOR predictions are
consistent with sensitivity data on BRAF inhibitors from both retrospective and prospective experiments
using the KinCon biosensor technology. RESISTOR is available in the open-source protein design software
OSPREY.
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1. Introduction

Acquired resistance to therapeutics is a pressing public health challenge that affects maladies from bacte-
rial and viral infections to cancer [1–6]. There are several different ways cancer cells acquire resistance to
treatments, including drug inactivation, drug efflux, DNA damage repair, cell death inhibition, and escape
mutations, among others [2]. Accurate, prospective prediction of resistance mutations could allow for design
of drugs that are less susceptible to resistance. While it is unlikely that medicinal chemists will be able to
address all of the resistance-conferring mechanisms in cancer cells, progress can be made by the incorpora-
tion of increasingly accurate models of the above contributing factors to acquired resistance, leading to the
development of more durable therapeutics. To that end, several structure-based computational techniques
for therapeutic design and resistance prediction have been proposed.

One such technique is based on the substrate-envelope hypothesis. In short, the substrate-envelope hy-
pothesis states that drugs designed to have the same interactions as the endogenous substrate in the active
site will be unlikely to lose efficacy because any mutation that ablates binding to the drug would also ablate
binding to the endogenous substrate [7]. C. Schiffer and B. Tidor’s labs developed the substrate-envelope
hypothesis for targeting drug-resistant HIV strains [7–10]. Their design technique has been successfully
applied to develop compounds with reduced susceptibility to drug-resistant HIV proteases [10].

Another computational technique is to use ensemble-based positive and negative design [11, 12]. There
are two specific ways that point mutations can confer resistance to therapeutics: they can decrease binding
affinity to the therapeutic or they can increase binding to the endogenous ligand [11, 13]. Protein design
with the goal of decreasing binding is known as negative design, and increasing binding is known as positive
design. As a concrete example, consider the case of a drug that inhibits the tyrosine kinase activity of the
epidermal growth factor receptor (EGFR) to treat lung adenocarcinoma. Here, an active site mutation could
sterically prevent the inhibitor from entering the active site [14]. On the other hand, a different mutation
might have no effect on an enzyme’s interactions with the drug but instead increase affinity to its native
ligands, resulting in increased phosphorylization of downstream substrates [15, 16]. Because these two
distinct pathways to therapeutic resistance exist, it is necessary to predict resistance mutations using both
positive and negative design. In other words, predicting resistance can be reduced to predicting a ratio of the
change in Ka upon mutation of the protein:endogenous ligand and protein:drug complexes.

Ka is an equilibrium constant measuring the binding and unbinding of a ligand to a receptor. It is defined
as:

Ka =
kon

koff
=

[RL]
[R] [L]

, (1)

where kon and koff are the on- and off-rate constants, and [RL], [R], and [L] the equilibrium concentrations of,
respectively, the receptor-ligand complex, unbound receptor, and unbound ligand. Ka is the reciprocal of the
disassociation constant Kd . K∗ is an algorithm implemented in the OSPREY computational protein design
software that provably approximates Ka [17, 18]. See the supplementary materials for further explanation of
the K∗ algorithm.

Our lab developed a provable, ensemble-based method using positive and negative K∗ design to compu-
tationally predict and experimentally validate resistance mutations in protein targets [11]. We then applied
this methodology to prospectively predict resistance mutations in dihydrofolate reductase when Staphylo-
coccus aureus was treated with a novel antifolate [13] (also confirmed in vivo [13, 19]), demonstrating the
utility of correctly predicting escape mutations during the drug discovery process. For cancer therapeutics,
Kaserer and Blagg used OSPREY to combine positive and negative K∗ design with mutational signatures
and hotspot identification to both retrospectively and prospectively predict clinically significant resistance
mutations [20]. Their technique combined sequence, in the form of trinucleotide mutational probabilities,
and structures, in the form of positive and negative K∗ design, to predict resistance mutations.

From these previous works, it is clear that multiple criteria must be combined to decide whether a mu-
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tation confers resistance. Often it is the human designers themselves who must choose arbitrary weights
for different criteria. Yet multi-objective, or Pareto, optimization techniques would allow designers to com-
bine multiple criteria without choosing arbitrary decision thresholds. Pareto optimization for protein design
has been employed by Chris Bailey-Kellogg, Karl Griswold, and co-workers [21–26]. One such example
is PEPFR (Protein Engineering Pareto FRontier), which enumerates the entire Pareto frontier for a set of
different criteria such as stability vs. diversity, affinity vs. specificity, and activity vs. immunogenicity [27].
Algorithmically, PEPFR combined divide-and-conquer with dynamic or integer programming to achieve
an algorithm where the number of divide-and-conquer “divide” steps required for the search over design
space is linear only in the number of Pareto optimal designs. To our knowledge, Pareto optimization has
yet to be applied to predicting resistance mutations, making RESISTOR the first algorithm to employ Pareto
optimization for predicting resistance mutations.

Instead of merely finding a single solution optimizing a linear combination of functions, Pareto optimiza-
tion finds all consistent solutions optimizing multiple objectives such that no solution can be improved for
one objective without making another objective worse. Specifically, let Λ be the set of possible solutions to
the multi-objective optimization problem, and let λ ∈ Λ. Let F be a set of objective functions and f ∈ F ,
where f : Λ → R is one objective function. A particular solution λ is said to dominate another solution λ ′

when

f (λ )≤ f (λ ′) for all f ∈ F , and (2)

g(λ )< g(λ ′) for at least one g ∈ F . (3)

A solution λ is Pareto optimal if it is not dominated. RESISTOR combines ensemble-based positive and
negative design, cancer-specific mutational signature probabilities, and hotspots to identify not only the
Pareto frontier, but also the Pareto ranks of all candidate sequences.

The inclusion of mutational signature probabilities in Pareto optimization is possible because distinct
mutational processes are operating in different types of cancers [28, 29]. Specifically, these mutational pro-
cesses drive the type and frequency of DNA base substitutions. Each different signature is postulated to be
associated with a biological process (such as ABOPEC activity [29]) or a causative agent (such as tobacco
use), although not all associations are definitively known. What is certain is that particular signatures tend
to appear in particular types of cancer. For example, 12 single-base substitution signatures, 2 double-base
substitution signatures, and 7 indel signatures were found in a large set of melanoma samples, with many
of those signatures associated with ultraviolet light exposure [29]. Building on the work of Alexandrov et
al. [28], Kaserer and Blagg combined the multiple signatures found in each cancer type to generate overall
single-base substitution probabilities [20]. RESISTOR uses these probabilities to compute the overall prob-
ability that mutation events will occur in a gene independent of changes to protein fitness. This amino acid
mutational probability is one of the axes we optimize over.

The most computationally complex part of provable, ensemble-based multistate design entails computing
the K∗ scores of the different design states. This is largely because for biological accuracy it is necessary to
use K∗ with continuous sidechain flexibility [30, 31]. Though OSPREY has highly-optimized GPU routines
for continuous flexibility [18], energy minimization over a combinatorial number of sequences in a contin-
uous space is, in practice, computationally expensive. Having a method to reduce the number of sequences
evaluated would greatly decrease the computational cost. COMETS is an empirically sublinear algorithm
that provably returns the optimum of an arbitrary combination of multiple sequence states [32]. RESISTOR

uses COMETS to prune sequences whose predicted binding with the drug improves and binding with the
endogenous ligand deteriorates. While COMETS does not compute the full partition function, it provides
a useful method to efficiently prune a combinatorial sequence space. This is particularly important when
one considers resistant protein targets with more than one resistance mutation. By virtue of pruning using
COMETS, RESISTOR inherits the empirical sublinearity characteristics of the COMETS sequence search,
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rendering RESISTOR, to our knowledge, the first provable structure-based resistance prediction algorithm
that is sublinear in the size of the sequence space.

The tyrosine kinase EGFR and serine/threonine-protein kinase BRAF are two oncogenes associated with,
respectively, lung adenocarcinoma and melanoma. Both kinases are conformationally flexible, but two con-
formations are particularly determinative to their kinase activity—the “active” and “inactive” conformations.
Oncogenic mutations to EGFR include L858R and deletions in exon 19, both of which constitutively acti-
vate EGFR [33, 34]. Likewise, V600E is the most prevalent constitutively activating mutation in BRAF [35].
Numerous drugs have been developed to treat the EGFR L858R and BRAF V600E mutations. The first gen-
eration inhibitors erlotinib and gefitinib competitively inhibit ATP binding in EGFR’s active site, whereas
binding by the third generation osimertinib is irreversible [36–38]. For BRAF, the therapeutics dabrafenib,
vemurafenib, and encorafenib were designed to target the V600E mutation and are in clinical use, and
PLX8394 is in clinical trials [39–42]. Use of RESISTOR to predict resistance mutations to these drugs would
provide strong validation of the efficacy of this novel approach.

By presenting RESISTOR, this article makes the following contributions:

1. A novel multi-objective optimization algorithm that combines four axes of resistance-causing criteria
to rank candidate mutations.

2. The use of COMETS as a provable and empirically sublinear pruning algorithm that removes a com-
binatorial number of candidate sequences before expensive ensemble evaluation.

3. A validation of RESISTOR that correctly predicted eight clinically significant resistance mutations in
EGFR, providing explanatory ensemble-bound structural models for acquired resistance.

4. Prospective predictions with explanatory structural models and experimental validation of resistance
mutations for four drugs targeting BRAF mutations in melanoma.

5. Newly modelled structures of EGFR and BRAF bound to their endogenous ligands and inhibitors in
cases where no experimental structures exist.

6. An implementation of RESISTOR in our laboratory’s free and open source computational protein
design software OSPREY [18].

2. Methods

The Pareto optimization in RESISTOR optimizes four axes: structure-based positive design, structure-based
negative design, sequence-based mutational probabilities, and the count of resistance-causing mutations at
a given amino acid location. Briefly, we chose these four criteria because they identify mutations that 1)
increase affinity to the endogenous ligand in such a way that it outcompetes the inhibitor; 2) decrease the
efficacy of the drug by reducing its binding (leading to the same effect); 3) are predicted to occur based
on the DNA sequence and excludes those that are unlikely to arise; and, 4) are located at residue positions
where many mutations are predicted to confer resistance, thus identifying a position of relative importance.
We believe these criteria to be the minimal requirements a cancer clone must fulfill to confer resistance, and
we’ve had success predicting retrospective and prospective resistance mutations in a previous study using
these four criteria [20]. It should be mentioned that, as a generalizable method, additional resistance-causing
criteria could be trivially added to RESISTOR for further refinement. The Pareto optimization objective
function maximizes the ∆Ka of the positive design (the protein bound to the endogenous ligand), minimizes
the ∆Ka of the negative designs (the protein bound to the drug), maximizes the mutational probability,
and maximizes the count of resistance-causing mutations per amino acid. Positive design (affinity to the
endogenous ligand) is also an indication of clonal fitness, i.e. whether the mutated protein can still provide
the function that the cancer cell so critically depends on. If the binding to the endogenous ligand is disrupted,
then it’s unlikely the clone will survive. Fig. 1 shows an overview how these axes are implemented in our
algorithm.
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Fig. 1: An example RESISTOR workflow with EGFR. RESISTOR finds the Pareto frontier from OSPREY positive and negative
designs, mutational probabilities, and resistance hotspots. (A) Two structures are required as input to OSPREY to compute postive
and negative design K∗ scores. The structure for positive design is EGFR (green) bound to its endogenous ligand ATP (blue), for
the negative design EGFR is bound to the drug erlotinib (pink). The goal of positive (resp. negative) design is to improve (resp.
ablate) binding affinity. A mutation is resistant when its ratio of positive to negative K∗ scores increases. (B) All residues within
5 Å (purple) of the drug are allowed to mutate to any other amino acid. (C) COMETS is used as an efficient, sublinear algorithm
to quickly prune infeasible mutations. BWM∗ is used with a fixed branch width to compute a polynomial-time approximation to
the K∗ score. (D) Candidate mutations that pass the COMETS pruning step have their positive and negative K∗ scores computed
in OSPREY. We recommend using the BBK∗ with MARK∗ algorithm as it is the fastest for computing K∗ scores. (E) Candidate
resistance mutations are pruned when their ratio of positive to negative K∗ scores indicates a mutation does not cause resistance
or if the target amino acid requires a mutation in all three DNA bases. (F) RESISTOR computes mutational probabilities using a
protein’s coding DNA along with cancer-specific trinucleotide mutational probabilities for lung adenocarcinoma (abbreviated as
LuAd), sliding a window (G) over 5

′
- and 3

′
-flanked codons. (H) RESISTOR employs a recursive graph algorithm to compute the

probability that a particular amino acid will mutate to another amino acid (I). (J) Finally, RESISTOR uses Pareto optimization on
the positive and negative K∗ scores, the mutational probabilities, and hotspot counts to predict resistance mutants.
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2.1. Structure-based Positive and Negative Design

We use the K∗ algorithm in OSPREY to predict an ε-accurate approximation to the binding affinity (Ka)
in four states: 1) the wildtype structure bound to the endogenous ligand; 2) the wildtype structure bound
to the therapeutic; 3) the mutated structure bound to the endogenous ligand; and 4) the mutated structure
bound to the therapeutic. This ε-accurate approximation is called the K∗ score [17, 18]. In order to cal-
culate the K∗ score of a protein:ligand complex, it is necessary to have a structural model of the atomic
coordinates. Experimentally-determined complexes have been solved for EGFR bound to an analog of its
endogenous ligand (PDB id 2itx), to erlotinib (1m17), gefitinib (4wkq), and to osimertinib (4zau) [43–46].
Similarly, we used the crystal structure for BRAF bound to dabrafenib (4xv2) and vemurafenib (3og7) [47,
48]. Experimentally-determined complexes of BRAF bound to encorafenib, PLX-8394, and an ATP analog
in an active conformation do not exist, so we instead modelled the ligands into BRAF in its activated con-
formation (for additional details on model selection and preparation see the STAR methods). We used these
predicted complex structures for our resistance predictions.

We added new functionality into OSPREY that simplifies the process of performing computational mu-
tational scans. A mutational scan refers to the process of computing the K∗ score of every possible amino
acid mutation within a radius of a ligand. RESISTOR uses this functionality to calculate the four K∗ scores
for each amino acid within a 5 Å radius of the drug or the endogenous ligand. This generated a search
space of 2471 sequences. We then set all residues with sidechains within 3 Å of the mutating residue to be
continuously flexible for the RESISTOR K∗ designs. Each sequence has an associated conformation space
size dependent on the total number of mutable and flexible residues, which one can use as a heuristic to
estimate the difficulty of computing a complex’s partition function. The average conformation space size
of each sequence was ∼ 5.9× 1010 conformations, thus computing the partition functions is only possible
using OSPREY’s pruning and provable ε-approximation algorithms [18, 30, 49]. Empirical runtimes of the
positive- and negative-K∗ designs are shown in supplementary figure S1. The change in the K∗ score upon
mutation for the endogenous ligand (positive design) and drug (negative design) become two of the four
axes of optimization. These two axes also form the basis of a pruning step (described in Sec. 2.4).

2.2. Computing the Probability of Amino Acid Mutations

To convert the trinucleotide to trinucleotide probabilities into amino acid to amino acid mutational proba-
bilities, RESISTOR constructs a directed graph with the trinucleotides as nodes and the probability that one
trinucleotide mutates into another trinucleotide as directed edges. It then reads the cDNA of the protein in
a sliding window of 5

′
- and 3

′
-flanked codons, since the two DNA bases flanking a codon are necessary to

determine the probabilities of either the first or third base of a codon mutating. We designed a recursive algo-
rithm to traverse the graph and find all codons that can be reached within n single-base mutations, where n is
an input parameter. The algorithm then translates the target codons into amino acids and, as a final step, sums
the different probabilities on each path to an amino acid into a single amino acid mutational probability (see
Fig. 1F-I). One can either (a) precompute a cancer-specific codon-to-codon lookup table consisting of every
5
′
- and 3

′
-flanked codon to its corresponding amino acid mutational probabilities, or (b) read in a sequence’s

cDNA and compute the mutational probabilities on the fly. The benefit of (a) is it only needs to be done once
per cancer type and can be used on an arbitrary number of sequences. On the other hand, when assigning
mutational probabilities to proteins that have strictly fewer than 45 amino acids, it is faster to compute the
amino-acid specific mutational signature on the fly. In both cases, the algorithm is strictly polynomial and
bounded by O(kn9), where k is the number of codons with flanking base pairs (upper-bounded by 45) and n
is the number of mutational steps allowed, which in the case of RESISTOR is 2. An implementation of this
algorithm is included in the free and open source OSPREY GitHub repository [18].
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2.3. Identifying Mutational Hotspots

After calculating the positive and negative change in affinity ∆Ka and determining the mutational probabil-
ity of each amino acid, RESISTOR prunes the set of candidate mutations (see section 2.4). Post-pruning, it
counts the number of mutations at each amino acid location. This count is important to determine whether
a residue location is likely to become a “mutational hotspot”, namely a residue location where many mu-
tations are predicted to confer resistance. Correctly identifying mutational hotspots is vital because they
indicate that a drug is dependent on the wildtype identity of the amino acid at that location, and it is likely
that many mutations away from that amino acid will cause resistance. Consequently, the fourth axis used
in RESISTOR’s Pareto optimization is the count of predicted resistance-conferring mutations per residue
location.

2.4. Reducing the Positive Prediction Space

Prior to carrying out the multi-objective optimization to identify predicted resistance mutations, we prune
the set of candidates. First, we introduce a cut-off based on the ratio of K∗ scores of positive and negative
designs, adapted from Kaserer and Blagg’s 2018 cut-off [20]. We determine the average of the K∗ scores for
the drug and endogenous ligand across all of the wildtype designs for the same protein. The cut-off c is:

c =
c0K∗

L

K∗
D

, (4)

where c0 is a user-specified constant, K∗
L

is the average of the K∗ scores for the wildtype protein bound to
the endogenous ligand, and K∗

D
is the average of the K∗ score for the wildtype protein bound to the drug. We

recommend in practice to set c0 to be greater than the range
(
K

∗
max −K

∗
min

)
of wildtype K∗ scores—we set it

to for the tyrosine kinase inhibitor (TKI) predictions.1 A mutation m is predicted to be resistant when:

K∗
L
(m)

K∗
D
(m)

> c, (5)

where K∗
L
(m) is the K∗ score of the endogenous ligand bound to the mutant, and K∗

D
(m) is the K∗ score of

the drug bound to the mutant.
We further prune the predicted resistance mutation candidates by removing all mutations that cannot

arise within two DNA base substitutions. Whether an amino acid can be reached within two DNA base
substitutions is determined by the algorithm described in section 2.2, and if it cannot, then that particular
mutation is assigned a mutational probability of 0 and pruned.

3. Results

3.1. RESISTOR Identifies 8 Known Resistance Mutations in EGFR

We evaluated a total of 1257 sequences across the three TKIs for EGFR. Among these sequences, the av-
erage conformation space size for computing a complex’s partition function was ∼ 1.3×107. After we ran
the RESISTOR algorithm on these sequences, a total of 108 mutants were predicted as resistance-conferring
candidates for all three inhibitors combined from a purely thermodynamic and probabilistic basis, i.e. these
mutations were required to lower affinity of the drug in relation to the endogenous ligand (K∗ Positive
and Negative Design, Fig. 1A-D) and could be formed in patients by less than three base pair exchanges
(Calculating Mutational Probabilities, Fig. 1F-I). To further prioritize mutations and identify those that are
most likely to be clinically relevant, we then computed the Pareto frontier over the four axes for each drug

1In the future, c0 could be learned from running RESISTOR on a resistance mutation dataset for homologous systems and
examining the K∗ scores.
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(Fig. 1J). Remarkably, out of these 108 candidates, RESISTOR correctly prioritized eight clinically signifi-
cant resistance mutants, with 7 of the 8 in the Pareto frontier of the corresponding inhibitor and the remaining
mutant in the 2nd Pareto rank (see Table 1). A detailed description of the result for each inhibitor is included
in the sections below.

RESISTOR Identifies Clinically-Relevant Resistance Mutations in EGFR
Osimertinib Erlotinib Gefitinib

L792H# T790M†# T790M †#

G796R†# G796D#

G796S#

G796D#

G796C#

Table 1: RESISTOR correctly identified 8 resistance mutations in EGFR to erlotinib, gefitinib, and osimertinib. For osimer-
tinib, G796R, G796S, G796D, and G796C were on the RESISTOR-identified Pareto frontier. L792H was in the 2nd Pareto rank.
For erlotinib, both T790M and G796D were on the Pareto frontier. For gefitinib, T790M was also on the Pareto frontier. Previous
studies have documented all of these resistance mutations as occurring in the clinic [50–57]. † indicates that RESISTOR predicted
the mechanism of resistance to be improved binding of the endogenous ligand to the mutant. # indicates that RESISTOR predicted
the mechanism of resistance to be decreased binding of the drug to the mutant. Note that these predicted mechanisms are only
attributed here if the predicted change in the log10(∆K∗)≥ 0.5.

3.1.1. EGFR Treated with Erlotinib and Gefitinib

Of the 462 sequences evaluated for the TKI erlotinib, RESISTOR identified 50 as candidate resistance muta-
tions. Pareto ranking placed 19 sequences on the frontier, 13 sequences in the second rank, and 11, 6, and 1
sequences in the third, fourth, and fifth ranks, respectively. RESISTOR correctly identified two clinically sig-
nificant mutations, T790M and G796D, as being on the Pareto frontier [50, 51]. This is encouraging because
T790M is, by far, the most prevalent resistance mutation that occurs in lung adenocarcinoma treated with
erlotinib [58]. Similarly, for gefitinib, RESISTOR evaluated 438 sequences and identified 22 as candidate
resistance mutants. The most relevant clinical mutant, T790M, is found on the Pareto frontier.

3.1.2. EGFR and Osimertinib

RESISTOR evaluated 357 OSPREY-predicted structures of EGFR bound with osimertinib and EGFR bound
with its endogenous ligand. Of those, 36 were predicted as resistance candidates. Pareto optimization placed
16 sequences on the frontier, 2 sequences in rank 2, 8 sequences in rank 3, 1 sequence in rank 4, and 5
sequences in rank 5. RESISTOR correctly identified five clinically significant resistance mutations to osimer-
tinib: L792H, G796R, G796S, G796D, and G796C [52–57], and while L792H was in the 2nd Pareto rank,
all of the other correctly predicted resistance mutations are on the Pareto frontier.

Two osimertinib resistance mutations in particular stand out: L792H and G796D (see Fig. 2). Both of these
mutants have appeared in the clinic [52–54, 57]. OSPREY generated an ensemble of the bound positive and
negative complexes upon mutation, providing an explanatory model for how resistance occurs. In both cases,
the mutant sidechains are much bulkier than the wildtype sidechain (Fig. 2A and D) and thus are predicted
to clash with the original osimertinib binding pose (Fig. 2B and E). Consequently, in both cases the ligand
is predicted to translate and rotate to create additional space for the mutant sidechains (Fig. 2C and F). We
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hypothesize that this movement weakens the other molecular interactions osimertinib makes in the EGFR
active site.

In the case of G796D, there are additional factors that contribute to acquired resistance. First, the mutation
to aspartate introduces a negative charge, which probably leads to electrostatic repulsion with the carbonyl
oxygen of the osimertinib amide (Fig. 2F, highlighted with a dashed oval). In addition, the exit vector of
the hydrogen bound to the amide nitrogen does not allow a hydrogen bond with the aspartate. Second, the
allyl-group of osimertinib must be in close proximity to C797 for covalent bond formation. In fact, C797
is so important to osimertinib’s efficacy that mutations at residue 797 confer resistance [59, 60]. Even if
osimertinib still binds to G796D, the allyl group would have to move away from C797 (Fig. 2F, highlighted
with a black arrow). This would prevent covalent bond formation and thus reduce the efficacy of osimertinib
considerably. Lastly, it is likely that the mutation away from glycine reduces the conformational flexibility
of the loop, incurring an entropic penalty while also plausibly making it more difficult to properly align
osimertinib and C797.

3.2. RESISTOR Predicts New Resistance Mutations in BRAF and Provides Structural Models

In addition to retrospective validation by comparison to existing clinical data for EGFR, we used RESISTOR

to predict how mutations in the BRAF active site could confer resistance. Specifically, we used RESIS-
TOR to predict which of 1214 BRAF sequences would be resistant to four TKIs—vemurafenib, dabrafenib,
encorafenib, and PLX8394. On the Pareto frontier for vemurafenib are 13 mutations, for dabrafenib 16
mutations, for encorafenib 15 mutations, and for PLX8394 15 mutations. The full sets of predictions are
included in the supplementary tables S4-S7. To validate RESISTOR’s predictions, we compared its predic-
tions with two sources of experimental data: a saturation mutagenesis variant effect assay from Wagenaar et
al. [61] and a cell-based kinase conformation reporter assay termed KinCon by Stefan and colleagues [62,
63]. Furthermore we carried out new KinCon experiments on a number of RESISTOR predictions to validate
RESISTOR’s predictive capabilities.

3.2.1. Retrospective and prospective validation of RESISTOR predictions using the BRAF KinCon biosensor reporter

KinCon, developed by Stefan and colleagues, is an in-cell protein-fragment complementation assay (PCA)
that provides a readout of the activity conformation change of full-length BRAF upon mutation or exposure
to different inhibitors [64]. KinCon’s bioluminescence assay functions by appending parts of a luceriferase
enzyme to the N- and C-termini of full-length BRAF and observing the amount of bioluminescence, in-
dicating whether BRAF favors an open, catalytically active or a closed, autoinhibited conformation (see
Fig. 3A) [64]. Stefan and colleagues have demonstrated that activation of BRAF either via upstream reg-
ulators such as EGFR and GTP activated Ras or via tumorigenic mutations cause BRAF to favor an open
conformation [62, 63]. The inhibitors bind to BRAF in the ATP binding site and cause BRAF’s N- and
C-termini to interact, shifting BRAF back towards a more closed, intermediate state (see Fig. 3A) [62–64].
This implies that for inhibitor binding and BRAF closing to occur, a mutation (or a combination of mutations
and/or upstream signaling events) needs first to induce an open conformation. Not all clinically observed
BRAF mutations cause opening, even if they activate the MAPK pathway (e.g. L472C) [63, 65]. In the same
vein, not all BRAF resistance mutants show increased kinase activity, in fact several are classified as kinase
impaired [63, 65, 66]. One prominent mutation that shows both increased kinase activity and induces an
open conformation is V600E (Fig. 3B). Inhibitor treatment shifts the V600E conformational equilibrium
towards a more closed state [62, 63]. In contrast, the gatekeeper mutations T529M and T529I do not confer
opening of the kinase conformation and are thus insensitive to inhibitor treatment [62]. However, in combi-
nation with V600E these mutations do confer resistance to BRAF inhibitors to varying degrees. Given that
we model a state that is permissive of ligand binding at the outset (i.e., the ligand-bound BRAF complex),
our RESISTOR calculations align very well with the reported KinCon measurements of double mutants (e.g.
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Fig. 2: Structural models predicted by OSPREY agree with experimental data and explain mechanisms of Osimertinib
resistance to EGFR mutations L792H and G796D. Structural models predicted by OSPREY of EGFR wildtype (blue) and
resistance mutations (red) bound to osimertinib (yellow sticks). The histidine (A) and glutamate (D) side chains (red sticks) in the
EGFR L792H (A) and G796D (D) mutations are bulkier than the wildtype leucine (A) and glycine (C) residues (blue sticks). They
clash with osimertinib in its original binding pose as highlighted by the sphere representation in panels B and E. (C+F) To allow
for accommodation of osimertinib in the modelled EGFR mutant structures (red sticks), the inhibitor’s position within the binding
pocket moves from the experimentally determined binding pose (yellow sticks). Movements are indicated by black arrows. (F) In
case of the G796D mutation, the carboxylate moiety of D796 is predicted to be in close proximity to the osimertinib amide oxygen
(highlighted with the dashed circle), thus leading to electrostatic repulsion. This mutation site is adjacent to C797, which reacts with
the allyl-moiety of osimertinib to form a covalent bond in the wildtype. Due to the steric and electrostatic properties of the G796D
mutant, the allyl group is located further away from C797 in the model, thus preventing covalent bond formation. The movement
of the allyl group is indicated by the black arrow.
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V600E/T529M and V600E/T529I).
Specifically, the RESISTOR predictions of resistance concord with the previous KinCon biosensor re-

sults for V600E/T529M and V600E/T529I for three of the four inhibitors: vemurafenib, dabrafenib, and
PLX8394 [62]. In the case of vemurafenib treatment, the proportion of open to closed conformations in the
V600E/T529I mutant is not significantly different from the untreated V600E mutant, indicating vemurafenib
treatment is not closing the conformational distribution in the double mutant [62]. These data agree with the
RESISTOR calculation of the ratios of the log10 K∗ scores, which predict that both double mutants are re-
sistant to vemurafenib, with V600E/T529M more resistant. Treatment of BRAF with PLX8394 follows the
same pattern as vemurafenib, namely the V600E/T529I mutant’s closed population increases only 1.2 fold
compared to the untreated mutant, and the PLX8394-treated V600E/T529M mutant does not noticeably
alter the conformational distribution [62]. In contrast, the PLX8394-treated V600E mutant’s closed popu-
lation increases ∼3 fold compared to the untreated population, indicating V600E sensitivity to PLX8394
(see Fig. 3C). RESISTOR correctly predicted the V600E/T529I and V600E/T529M double mutants are re-
sistant to PLX8394, with the change in the ratio of the log10 K∗ scores of the two mutants suggesting that
V600E/T529M confers greater resistance. In the case of dabrafenib, treatment of the V600E/T529I mutant
closed the conformational distribution (2.4 fold more closed compared to untreated) more than treatment
of the V600E mutation (2 fold more closed compared to untreated), whereas dabrafenib treatment of the
V600E/T529M mutant increased the closed conformational population less effectively than the V600E mu-
tant alone (1.4 fold vs. 2 fold). This again agrees with the RESISTOR predictions, namely that V600E/T529I
remains sensitive to dabrafenib but V600E/T529M is resistant. RESISTOR predicted that the V600E/T529I
and V600E/T529M mutants would be resistant to encorafenib, but the KinCon data indicates that these
mutants may actually retain sensitivity to encorafenib, as the inhibitor induces BRAF’s closed state.

In addition, all inhibitors except dabrafenib were predicted to be sensitive against the G466V mutation
and showed closing the of kinase conformation [63]. However, in case of dabrafenib, the response was
comparable to vemurafenib, although vemurafenib was classified as sensitive. Notably, previous KinCon
experiments showed that G466V (and G466R and G466E [66], see below) impaired kinase function con-
sistent with the reduced endogenous ligand binding predicted by RESISTOR (see “All BRAF Predictions”
supplementary table) [63].

In addition to the above retrospective validation, we chose a few mutations and evaluated them using the
KinCon reporter. We selected the mutants G466E, G466R, V471F, L505H, and G593D because they were
prioritized by RESISTOR for at least one of the investigated inhibitors and were reported as patient mutations
in either the COSMIC [58] or cBioPortal (using the curated set of non-redundant studies) [67, 68] databases
(see Table 2).

Mutation Vemurafenib Dabrafenib Encorafenib PLX8394 COSMIC cBioPortal
G466E - 1 - - 49 31
G466R - 1 - - 17 3
V471F - - 2 3 5 2
L505H - - 3 - 8 10
G593D 1 1 1 1 4 0

Table 2: Prioritized BRAF mutations selected for experimental testing. We selected these mutants because they were prioritized
by RESISTOR for at least one of the investigated inhibitors and were reported as patient mutations in either the COSMIC or cBioPor-
tal. The numbers in the first four columns indicate the RESISTOR-predicted Pareto rank with melanoma mutational probabilities.
The numbers in the last two columns indicate the number of patient samples containing the mutation reported in the respective
database (access date 12/01/2022). Absence of a Pareto rank indicates RESISTOR predicted the mutant would remain sensitive to
the drug.

The expression-normalized basal biosensor signal suggests that both G466E and G466R mutants shift
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Fig. 3: (A) Schematic depiction of Renilla luciferase (RLuc; F1: fragment 1, F2: fragment 2) PCA-based BRAF kinase confor-
mation (KinCon) reporter system. Conformational rearrangement of the reporter upon (de)activation of the kinase are indicated.
Closed kinase conformation induces complementation of RLuc PCA fragments resulting in increased RLuc-emitted biolumines-
cence signal. (B) Domain organization of the BRAF-KinCon reporter (top) and basal bioluminescent signals of the BRAF-wt
(black), V600E (red), and novel mutant (grey) KinCon biosensors. Bars represent the mean signals, relative to BRAF-wt, in relative
light units (RLU) with SD of four independent experiments (nodes). Raw bioluminescence signals were normalized on reporter
expression levels, determined through western blotting. Asterisk indicates level of significance versus the wild type BRAF biosen-
sor. (C) BRAF-KinCon biosensor dynamics, induced via treatment with respective BRAFi (1µM for 1h) prior to bioluminescence
measurement. BRAF wt and V600E KinCon variants serve as control (left). The novel mutants are shown in a separate bar chart
(right). Bars represent the mean signals, relative to the DMSO control, in relative light units (RLU) with SEM of four indepen-
dent experiments (nodes). All experiments were performed in HEK293T cells 48 hours post transfection. *p < 0.05; **p < 0.01;
***p < 0.001; n.s., not significant by t-test.
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the conformation to an opened state, comparable to the highly oncogenic V600E variant and similar to
the effect of the common non-small-cell lung cancer mutation G466V [63]. The V471F, L505H and G593D
mutations, in contrast, did not appear to induce a change in the active conformation (Fig. 3B). When exposed
to BRAF inhibitors (Fig. 3C), G466E and G466R mutants showed the highest fold increase of the biosensor
signal for all four inhibitors tested. The majority of inhibitors, three out of four, were predicted as sensitive
against these mutants. RESISTOR predicted G466E and G466R to be resistant to dabrafenib, and while
RESISTOR predicted dabrafenib had lower sensitivity compared to encorafenib and PLX8394 (which is
consistent with the KinCon results), dabrafenib-treated mutants shifted to a closed comformation at least as
much as vemurafenib-treated mutants did. The L505H and G593D KinCon mutants were not affected by
any inhibitors, as those mutations do not shift the kinase into an active opened kinase conformation which is
required for inhibitor binding. While vemurafenib and dabrafenib do not appear to affect the V471F mutant,
encorafenib and PLX8394 did induce a closing of the kinase, suggesting that the structural properties of the
inhibitor determine the binding affinity to this mutant. This is particularly intriguing, given that the V471F
mutation was selected because we predicted it would confer resistance to encorafenib and PLX8394. While
the KinCon results suggest that these two compounds still retain binding to the V471F mutant, the mutant
itself did not induce a significant opening of the kinase confirmation required for ligand binding. For the
latter three mutations (i.e. L505H, G593D, and V471F), it would therefore be required to induce the open
conformation some other way, for example by introducing the V600E mutation similar to T529I and T529M
described above, to investigate whether resistance would develop to the inhibitors [62].

3.2.2. Retrospective validation of RESISTOR predictions using BRAF saturation mutagenesis experiments

Wagenaar et al’s 2014 study examined the effects of BRAF inhibitor binding site mutations on inhibitor effi-
cacy [61]. To do so, they carried out targeted saturation mutagenesis on the BRAF vemurafenib binding site
in the A375 human melanoma cell line and challenged the mutants with vemurafenib over a three week pe-
riod [61]. They then sequenced the emergent clones and measured the IC50 values of a subset of the mutants.
Importantly, they demonstrated correlation between a mutant’s deep sequencing enrichment, i.e. the increase
in the amount of an amino acid sequence in a sample before and after the addition of an inhibitor, and its
IC50 value [61]. We therefore compared their enrichment data to the RESISTOR predictions and determined
RESISTOR’s vemurafenib resistance prediction specificity to be 91%. There were five RESISTOR-predicted
resistance mutations that had increased enrichment over the three week period: T529M already discussed
above (enriched 47.96 fold above the V600E baseline, which was the experiment’s largest change in en-
richment), T529L (enriched 18.57 fold above baseline), T529F (enriched 7.87 fold above baseline), G593I
(enriched 4.84 fold above baseline), and L514E (enriched 3.73 fold above baseline). Furthermore, Wagenaar
et al. determined the relative IC50 values of T529M, T529L, and G593I which were, respectively, 2.05, 2.16,
and 3.19 times larger than the IC50 for vemurafenib applied to the V600E mutant. The IC50 of T529F and
L514E were not determined.

To further elucidate the molecular mechanisms conferring resistance to the G593I and L514E mutants,
we analyzed the OSPREY-predicted structural models. While neither mutant requires a movement of vemu-
rafenib (Fig. 4A) akin to what was observed in the EGFR and osimertinib structures (Fig. 2), the mutations
still lead to a loss of favorable interactions and/or the introduction of energetically unfavorable contacts.
The residue G593 (Fig. 4B) may facilitate structural adaptions required for BRAF to accommodate the ve-
murafenib propyl sulfonamide moiety in the rear of the ATP binding site and the G593L mutations may
thus constrain the flexibility of this loop region. In addition, the leucine side chain may project near to
the fluoro-substituted central phenyl ring and introduce steric clashes (Fig. 4C). The neighboring D594
backbone interacts with the vemurafenib sulphonamide-nitrogen (Fig. 4B), and this interaction would be
weakened in the G593L mutant. Furthermore, residue L514 makes a range of hydrophobic contacts with
vemurafenib (Fig. 4D), including the central phenyl ring and the propyl-chain, which are lost in the L514E
mutant (Fig. 4E).
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Fig. 4: Structural analysis of BRAF mutations G593I and L514E. (A) No major movements were required for vemurafenib to
bind to the G593I (yellow) and L514E (orange) mutation in comparison to the wild type binding pose (blue). (B) BRAF G593 is lo-
cated on the N-terminus of the activation loop and may facilitate conformational changes required to accommodate the vemurafenib
propyl sulfonamide moiety in the back of the pocket. The backbone of the neighboring D594 residue interacts with the sulfonamide
nitrogen of vemurafenib as indicated by black dashed lines. (C) Mutation of G593 to L not only restricts flexibility of the loop, but
also puts the leucine side chain in too close proximity to the fluoro-substituted phenyl ring (highlighted with the dashed circle). (D)
Residue L514 is involved in a variety of hydrophobic contacts with vemurafenib (indicated by yellow arrows), which are lost in the
L514E mutant (E).
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3.3. Complexity

There are a number of distinct steps in RESISTOR, each of which has its own complexity. While there are
sublinear K∗ algorithms, such as BBK∗ [69] with MARK∗ [49], these algorithms so far have only been
applied to positive and negative design with optimization of specific multiple objectives, such as minimiz-
ing/maximizing the bound (respectively unbound) state partition functions and their ratios for computing
binding affinity or stability. COMETS [32] provably does multistate design optimizing arbitrary constrained
linear combinations of GMEC energies, but COMETS does not model the partition functions required for
calculating binding affinity. A provable ensemble-based algorithm analogous to COMETS for arbitrary mul-
tistate design optimization is yet to be developed. Thus, general multistate K∗ design remains, unfortunately,
a problem linear in the number of sequences and thus exponential in the number of mutable residues.

Computing K∗ itself, as a ratio of partition functions built from the thermodynamic ensembles of the
bound to unbound states, can be expensive [70–72]. In order to reduce the number of K∗ problems to solve,
COMETS is employed as a pruning mechanism for all sequences in which there are more than one mutation.
Without COMETS, RESISTOR would need to compute sN K∗ scores, where s is the number of states and N
is the number of sequences. With COMETS, RESISTOR is able to avoid computing many of these K∗ scores,
as COMETS has been shown in practice to reduce the number of required GMEC calculations by over 99%
and to reduce N for continuous designs by 96%, yielding an overall speedup of over 5×105-fold [32]. Since
in this study we considered only single residue mutations we omitted the COMETS pruning step, but in any
use of RESISTOR that considers multiple simultaneously mutable residues we believe COMETS’ empirical
sublinearity will make the difference between feasible and infeasible searches.

Moreover, by using an approximation containing fixed partition function size and sparse residue interac-
tion graphs, we can use the BWM∗ algorithm [73] to compute the K∗ scores in time O(nw2q

3
2 w + kn logq),

where w is the branch-width and q the number of rotamers per residue. When we have w = O(1) this is
polynomial time. In this study we found that the ε-approximation algorithms using adaptively-sized par-
tition functions, such as BBK∗ with MARK∗, were fast enough. However, for larger problems the sparse
approximations allow us to approximate the necessary K∗ scores for resistance prediction in time exponen-
tial only in the branch-width, and thus polynomial time for fixed branch-widths.

4. Discussion

In this work, we report RESISTOR, a computational algorithm to systematically investigate protein mu-
tations and identify those that have a high likelihood of lowering drug potency in comparison to native
substrates. In addition, we analyze the probability that such a mutation is generated in cancer patients and
thus likely of clinical importance. Our algorithm is novel, bringing the power of Pareto optimization and
computational protein design together and applying them for the first time to predict resistance mutations.
The Pareto ranking provides an objective way of prioritizing the most relevant mutations for experimental
testing. In addition, we used computationally predicted input structures of ligand-target complexes whenever
experimental data was lacking. This is an important step towards expanding the applicability of RESISTOR,
as we have found that, perhaps surprisingly, the availability of high-resolution experimental ligand-target
structures still can present a major bottleneck in computational protein design.

We have applied RESISTOR to two case studies, EGFR and BRAF, in a retrospective manner and, in case
of BRAF, also included prospective experimental data for validation. In EGFR and BRAF, the algorithm
correctly identified resistance mutations. Using the vemurafenib data by Wagenaar and colleagues [61],
which is the most comprehensive dataset on BRAF mutations and vemurafenib resistance, we determined
RESISTOR’s vemurafenib resistance prediction specificity and sensitivity to be 91% and 31%, respectively.
In a data-rich setting such as proteomics (e.g. [74]), the sensitivity could be regarded as low. However, the
prediction of antineoplastic resistance mutations is a sparse data problem. Comprehensive datasets on drug
resistance mutations on specific targets are virtually non-existent. We speculate that the reason for this can
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be found in the large number of individual mutants that must be generated and tested. For example, in our
study we used RESISTOR to investigate 462, 438, and 357 individual mutants for Erlotinib, Gefitinib, and
Osimertinib, respectively. While this is computationally feasible, it far exceeds the testing capacities of most
experimental groups. Clinical resistance data is even more limited. Furthermore, even for those mutations
that have been confirmed to confer clinical resistance in patients, the underlying molecular mechanisms
often remain uninvestigated.

RESISTOR prioritizes escape mutations causing ablation of inhibitor binding and/or tighter substrate bind-
ing (the latter as a proxy for KM). However, mutations affecting the drug target could also mediate resistance
via other molecular processes such as altering the stability of conformational states or protein-protein in-
teractions. In addition, clinical resistance is caused by several different mechanisms, of which the relative
importance of escape mutations can vary greatly. In some kinases, such as c-Abl, EGFR, and FLT3, active
site escape mutations are the main cause of acquired resistance [75]. In other kinases, such as BRAF, escape
mutations are not the main mechanism of acquired resistance [76]. Rather, splice variants, amplification,
and mutations in related genes such as N-RAS, MEK1, MEK2, IGF-1R, and AKT comprise the majority of
cases of clinical resistance [76]. From this perspective, the specificity of RESISTOR for BRAF and vemu-
rafenib is remarkable and the sensitivity is in line with the fraction of resistance mutations whose aetiology
is definitively escape via active site mutation.

We believe that the remaining gap can be closed in future work by modelling additional conformational
flexibility, kinetics, and the protein-protein interactions of additional effectors. Yet, despite these limitations,
RESISTOR is able to prioritize mutations that are demonstrated to confer resistance in patients. Specifically,
our results show that detailed and combinatorial thermodynamic computations can form the basis for pre-
dicting escape mutations to TKIs. In the future, since some resistance mutations exploit kinetic phenomena,
kinetics could be incorporated for a more comprehensive model.

5. Conclusions

RESISTOR fills an important void in the science of predicting resistance mutations by providing an algo-
rithm to enumerate the entire Pareto frontier of multiple resistance-causing criteria. It is, to our knowledge,
the first algorithm to apply Pareto optimization to predicting resistance mutations. By categorizing predicted
resistance mutations by their Pareto rank, it allows the drug discovery community to prioritize escape mu-
tations on the Pareto frontier. RESISTOR also provides structural justification for the mechanism of each
predicted escape mutation by generating an ensemble of predicted structural models upon mutation. In this
study, we have applied RESISTOR to predict resistance mutations in EGFR and BRAF for a number of dif-
ferent therapeutics. We demonstrate that RESISTOR can also be applied to computationally generated input
structures, although the accuracy of the results may be somewhat diminished compared to experimentally
determined structures of target-ligand complexes. However, computationally-derived models can still pro-
vide useful insights, especially when considering that the availability of experimental structures appears as
major bottleneck. While RESISTOR as described herein optimizes over 4 objectives, as a general method
any number of diverse objectives could be added. RESISTOR can be applied not only to cancer therapeutics,
but also to antimicrobial or antiviral drug design. Thus it provides an important tool to the drug discovery
community to design drugs that are less prone to resistance.
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Structural and thermodynamic basis for the binding of TMC114, a next-generation human immunod-
eficiency virus type 1 protease inhibitor. Journal of virology 78, 12012–12021 (2004).

10. Shen, Y., Altman, M. D., Ali, A., Nalam, M. N., Cao, H., Rana, T. M., Schiffer, C. A. & Tidor, B.
Testing the substrate-envelope hypothesis with designed pairs of compounds. ACS chemical biology 8,
2433–2441 (2013).

11. Frey, K. M., Georgiev, I., Donald, B. R. & Anderson, A. C. Predicting resistance mutations using pro-
tein design algorithms. Proceedings of the National Academy of Sciences 107, 13707–13712 (2010).

12. Gainza, P., Nisonoff, H. M. & Donald, B. R. Algorithms for protein design. Current opinion in struc-
tural biology 39, 16–26 (2016).

13. Reeve, S. M., Gainza, P., Frey, K. M., Georgiev, I., Donald, B. R. & Anderson, A. C. Protein design al-
gorithms predict viable resistance to an experimental antifolate. Proceedings of the National Academy
of Sciences 112, 749–754 (2015).

14. Yan, X.-E., Zhu, S.-J., Liang, L., Zhao, P., Choi, H. G. & Yun, C.-H. Structural basis of mutant-
selectivity and drug-resistance related to CO-1686. Oncotarget 8, 53508 (2017).

15. Yun, C.-H., Mengwasser, K. E., Toms, A. V., Woo, M. S., Greulich, H., Wong, K.-K., Meyerson, M. &
Eck, M. J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for
ATP. Proceedings of the National Academy of Sciences 105, 2070–2075 (2008).

17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.01.18.476733doi: bioRxiv preprint 

https://www.cdc.gov/drugresistance/index.html
https://www.cdc.gov/drugresistance/index.html
https://doi.org/10.1101/2022.01.18.476733
http://creativecommons.org/licenses/by/4.0/


16. Yoshikawa, S., Kukimoto-Niino, M., Parker, L., Handa, N., Terada, T., Fujimoto, T., Terazawa, Y.,
Wakiyama, M., Sato, M., Sano, S., et al. Structural basis for the altered drug sensitivities of non-small
cell lung cancer-associated mutants of human epidermal growth factor receptor. Oncogene 32, 27–38
(2013).

17. Georgiev, I., Lilien, R. H. & Donald, B. R. The minimized dead-end elimination criterion and its appli-
cation to protein redesign in a hybrid scoring and search algorithm for computing partition functions
over molecular ensembles. Journal of computational chemistry 29, 1527–1542 (2008).

18. Hallen, M. A., Martin, J. W., Ojewole, A., Jou, J. D., Lowegard, A. U., Frenkel, M. S., Gainza, P.,
Nisonoff, H. M., Mukund, A., Wang, S., Holt, G. T., Zhou, D., Dowd, E. & Donald, B. R. OSPREY 3.0:
Open-source protein redesign for you, with powerful new features. Journal of computational chemistry
39, 2494–2507 (2018).

19. Reeve, S. M., Scocchera, E. W., Narendran, G., Keshipeddy, S., Krucinska, J., Hajian, B., Ferreira, J.,
Nailor, M., Aeschlimann, J., Wright, D. L. & Anderson, A. C. MRSA isolates from united states hos-
pitals carry dfrg and dfrk resistance genes and succumb to propargyl-linked antifolates. Cell chemical
biology 23, 1458–1467 (2016).

20. Kaserer, T. & Blagg, J. Combining mutational signatures, clonal fitness, and drug affinity to define
drug-specific resistance mutations in cancer. Cell chemical biology 25, 1359–1371 (2018).

21. Parker, A. S., Choi, Y., Griswold, K. E. & Bailey-Kellogg, C. Structure-guided deimmunization of
therapeutic proteins. Journal of Computational Biology 20, 152–165 (2013).

22. Choi, Y., Griswold, K. E. & Bailey-Kellogg, C. Structure-based redesign of proteins for minimal T-cell
epitope content. Journal of computational chemistry 34, 879–891 (2013).

23. Salvat, R. S., Parker, A. S., Choi, Y., Bailey-Kellogg, C. & Griswold, K. E. Mapping the Pareto op-
timal design space for a functionally deimmunized biotherapeutic candidate. PLoS Comput Biol 11,
e1003988 (2015).

24. Griswold, K. E. & Bailey-Kellogg, C. Design and engineering of deimmunized biotherapeutics. Cur-
rent opinion in structural biology 39, 79–88 (2016).

25. Choi, Y., Ndong, C., Griswold, K. E. & Bailey-Kellogg, C. Computationally driven antibody engi-
neering enables simultaneous humanization and thermostabilization. Protein Engineering, Design and
Selection 29, 419–426 (2016).

26. Salvat, R. S., Verma, D., Parker, A. S., Kirsch, J. R., Brooks, S. A., Bailey-Kellogg, C. & Griswold,
K. E. Computationally optimized deimmunization libraries yield highly mutated enzymes with low
immunogenicity and enhanced activity. Proceedings of the National Academy of Sciences 114, E5085–
E5093 (2017).

27. He, L., Friedman, A. M. & Bailey-Kellogg, C. A divide-and-conquer approach to determine the Pareto
frontier for optimization of protein engineering experiments. Proteins: Structure, Function, and Bioin-
formatics 80, 790–806 (2012).

28. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, A. V., Bignell,
G. R., Bolli, N., Borg, A., Børresen-Dale, A.-L., et al. Signatures of mutational processes in human
cancer. Nature 500, 415–421 (2013).

29. Alexandrov, L. B., Kim, J., Haradhvala, N. J., Huang, M. N., Ng, A. W. T., Wu, Y., Boot, A., Covington,
K. R., Gordenin, D. A., Bergstrom, E. N., et al. The repertoire of mutational signatures in human
cancer. Nature 578, 94–101 (2020).

30. Gainza, P., Roberts, K. E. & Donald, B. R. Protein design using continuous rotamers. PLoS computa-
tional biology 8, e1002335 (2012).

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.01.18.476733doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476733
http://creativecommons.org/licenses/by/4.0/
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62. Röck, R., Mayrhofer, J. E., Torres-Quesada, O., Enzler, F., Raffeiner, A., Raffeiner, P., Feichtner, A.,
Huber, R. G., Koide, S., Taylor, S. S., et al. BRAF inhibitors promote intermediate BRAF (V600E)
conformations and binary interactions with activated RAS. Science advances 5, eaav8463 (2019).
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Box 1: Progress and Potential
Targeted cancer drugs developed over the past two decades have been instrumental in treating certain types
of cancer and extending patient lifespans. These drugs include kinase inhibitors targeting EGFR and BRAF,
two important enzymes of the mitogen-activated protein kinase pathway whose dysregulation can lead to
many types of cancer, including melanoma and non-small cell lung cancer. The inhibitors are effective for
a period of time but the tumors often develop resistance to the drugs, leading once again to cancer progres-
sion. The ability to predict how an enzyme target can develop drug resistance would allow for a proactive,
resistance-aware approach to drug design. Our new algorithm RESISTOR uses structure-based computational
design to predict how different mutations in an enzyme will affect a drug’s efficacy. It pairs these predictions
with empirical data on how likely a mutation is to occur in a given cancer type, which allows researchers to
identify “mutational hotspots,” or particular places where mutations are most likely to cause drug resistance.
These predictions provide designers new insights during the drug development process that should allow for
the quicker development of more durable and longer-lasting cancer therapeutics.
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STAR Methods

Resource Availability:

Lead contact: Further information and requests for resources and reagents should be directed to and will
be fulfilled by the lead contact, Bruce Donald (brd+cellsys22@cs.duke.edu).

Materials availability: Materials are available upon request to the Lead Contact.

Data and code availability:

• OSPREY design specifications and mutational signature probabilities required to reproduce the pre-
dictions in this paper have been deposited at in the Harvard Dataverse and are publicly available as of
the date of publication. DOIs are listed in the key resources table.

• The version of OSPREY used in this paper has been deposited in the Harvard Dataverse and is
publicly available as of the date of publication. DOIs are listed in the key resources table. For
new empirical designs, we recommend using the latest version of OSPREY available for free at
http://www.cs.duke.edu/donaldlab/osprey.php. All code for the OSPREY software package is also
available on GitHub at https://github.com/donaldlab/OSPREY3, and is free and open-source.

• Any additional information required to reanalyze the data reported in this paper is available from the
lead contact upon request.

Experimental Model and Subject Details:

Cell Culture and Antibodies: HEK293T cells were grown in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum (FBS). Transient transfections were performed with
Transfectin reagent (Bio-Rad, 1703352). Mouse anti-BRAF (Santa Cruz, F-7: sc-5284) antibody was used
to determine biosensor expression levels.
Method Details:

Preparation of Empirical and Docked Structures for K∗ Predictions: The crystal structures used
for the EGFR predictions were adopted from Kaserer and Blagg’s 2018 publication [20]. A full description
of the PDB entries used can be found in that paper’s section Table S7, and details on how the structures
were prepared for OSPREY predictions is in that paper’s section Structure Selection and Preparation.

For BRAF, the crystal structures of vemurafenib (PDB id 3og7 [48]) and dabrafenib (PDB id 4xv2 [47]) in
complex with BRAF V600E were selected as input for RESISTOR. Both structures have been prepared using
the default setting of the Protein Preparation Wizard [77] in Maestro [78]. In the case of encorafenib and
PLX8394, crystal structures of structurally closely related, but not the identical, molecules were available.
These experimental complexes were used to generate encorafenib and PLX8394 models. Encorafenib was
docked into PDB id 4xv3 [47] using the default settings of the induced fit docking procedure in Mae-
stro [78–81]. For validation, the co-crystallized ligand PLX7922 was re-docked. The highest scored docking
pose of encorafenib was selected for further investigation. We found that the conserved substructures in
encorafenib and PLX7922 aligned very well in this docking pose.

For PLX8394, re-docking of the co-crystallized ligand PLX7904 (PDB id 4xv1 [47]) failed with the induced
fit docking procedure, but was successful using a rigid docking workflow in GOLD version 5.8.0 [82]. The
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binding site was defined as 6 Å around the ligand and the water molecule HOH905 was set to toggle and
spin. The default settings of all other parameters were used.

An experimental structure of the endogenous ligand ADP was available, however, BRAF adopted in
inactive conformation in this complex. Apo BRAF in its active conformation (PDB id 4mne [83]) was
thus combined with ANP-bound protein kinase c-src (PDB id 2src [84]) to generate an active, endogenous
ligand-bound BRAF complex. This model was used as template to build a BRAF:ADP homology model
in the Molecular Operating Environment [85] using the default settings. This included refinement steps to
resolve potential steric clashes in the rather crude ANP-BRAF input template.

For all complexes, water molecules not involved in mediating interactions between the ligand and the target
were deleted and only residues with a 12 Å radius around the ligand were kept in the final input structures.

Evaluation of Ligand Affinity: The command line interface of OSPREY was used to generate distinct
YAML design files for each residue within 5 Å of a ligand. These YAML design files specify the input
structures, the mutable residues, the flexible residues, and connectivity templates for OSPREY. To create
the forcefield parameters files for the inhibitors and endogenous ligands, we used the Antechamber program
in the AmberTools software package [86]. Then, to calculate the K∗ scores we used OSPREY with the
following command input:

osprey affinity --design <YAML design file> --epsilon 0.63 --frcmod
<force field modification file> --stability-threshold -1

where <YAML design file> was replaced with the individual YAML design file and <force
field modification file> was replaced with the AmberTools-generated file. The YAML design
and forcefield modification files used in this study are available in the Harvard Dataverse (see Key Resources
Table).

Luciferase PCA analyses: We transiently overexpressed indicated versions of the Rluc-PCA–based
KinCon biosensors in 24-well plate formats. Experiments were performed 48h post transfection. For the
luciferase-PCA measurements, the growth medium was carefully removed and the cells were washed with
phosphate-buffered saline (PBS). Cell suspensions were transferred to 96-well plates and subjected to
luminescence analysis using the PHERAstar FSX (BMG Labtech). Luciferase luminescence signals were
integrated for 10 seconds following addition of the Rluc substrate benzyl-coelenterazine (NanoLight, #301).
Cell lysates were prepared post RLU measurements. Expression levels of the biosensor were determined
via western blot analysis.

Quantification and Statistical Analysis:

In Fig. 3, the student’s T-test was used to evaluate whether the mean of the RLU of a mutant was significantly
different from that of the relative DMSO control. The SEM was used with n = 4. Significance was defined
to three different p-levels, where *p < 0.05, **p < 0.01, and ***p < 0.001.
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S1. The K∗ algorithm

K∗ is an ε-accurate algorithm for computing a provable approximation to the affinity constant Ka. It is
implemented in the OSPREY computational protein design software package [18, 87]. K∗ is defined as
the quotient of the bound to unbound partition functions of a protein:ligand system for a given amino acid
sequence. For a proof that K∗ approximates Ka see Appendix A of [87].

K∗ calculates an ε-accurate partition function for three structures: the bound protein:ligand complex (de-
noted PL), the unbound protein (denoted P), and the unbound ligand (denoted L). Let X be an arbitrary
state, X ∈ {P,L,PL}. The partition function is a summation of the Boltzmann-weighted energies for all of
the conformations in the thermodynamic ensemble of X . Let s denote an arbitrary amino acid sequence, then
the partition function of s in state X (which we donate as qX (s)) is:

qX (s) = ∑
c∈QX (s)

exp
−E(c)

RT
, (6)

where QX (s) is the entire conformational ensemble of sequence s in state X , and c is a single conformation
from that ensemble. E(c) is the energy of conformation c. R is the ideal gas constant and T is the temperature
in absolute Kelvin.

The K∗ score for a sequence s approximates Ka:

K∗(s) =
qPL(s)

qP(s)qL(s)
. (7)

By using an A∗ search over QX (s) to generate an ordered, gap-free list of low energy conformations, the
K∗ algorithms generates an ε-approximation of the partition function qX (s) and the ensemble-complete K∗

value. This approximation is known as the K∗ score.
Inputs to the K∗ algorithm include 1) an input structure; 2) a conformation library; 3) an energy function;

4) ε , and; 5) flexibility and mutability choices.

S2. Empirical RESISTOR runtimes

The RESISTOR computation entails three stages: 1) computing the positive and negative K∗ designs; 2)
assigning mutational signature probabilities to each mutation, and; 3) run Pareto optimization over the four
axes. Steps 2 and 3 empirically take a negligible amount of time, on the order of seconds. Step 1, however,
computes two partition functions for each sequence and can take more time. Figure S1 shows the empirical
runtime (in seconds) that it took our computers to run the positive and negative K∗ designs, where a design
mutated a residue to each of the 19 other possible amino acids.
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Fig. S1: Positive and negative design runtimes for a residue location. Each dot represents the amount of time (in seconds) that
RESISTOR took to compute the positive and negative K∗ designs for a given mutation location. This means that each dot represents
the computation of 40 K∗ scores. The computation times range from 813 seconds to 972465 seconds, with the average being 40630
seconds or 1015 seconds per sequence. The different colors represent the particular kinase/inhibitor pair. The designs were run on
a 24-core, 48-thread Intel Xeon processor with 4 Nvidia Titan V GPUs.
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S3. EGFR Pareto Frontier

Table S1: All RESISTOR resistance mutation predictions for EGFR with erlotinib. “Pos” is the position of the residue. “WT AA” is
the wildtype identity of the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability for
the mutation from “WT AA” to “Mut AA” in lung adenocarcinoma. “ATP WT” and “ATP Mut” are the K∗ scores of the endogenous
ligand with the wildtype and mutant residues, respectively. “Drug WT” and “Drug Mut” are the K∗ scores of erlotinib with the
wildtype and mutant residues, respectively. “Count” is number of resistance mutations at the position. “Rank” is the Pareto rank of
the mutation. Note: K∗ scores are in log10 units where possible and 0 where there is predicted to be no binding.

Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
718 LEU PHE 0.000247 19.05 17.16 25.26 0 8 1
718 LEU HIP 0.00042 19.05 18.86 25.26 -62.44 8 1
718 LEU HIE 0.00042 19.05 18.92 25.26 -61.9 8 1
723 PHE VAL 0.000316 19.06 19.14 25.20 0 5 1
723 PHE LEU 0.00827 19.06 19.05 25.20 0 5 1
726 VAL PHE 0.000509 19.04 19.71 25.24 0 2 1
743 ALA ASP 0.0109 19.14 13.51 25.22 0 4 1
790 THR LYS 0.00738 19.14 19.54 25.17 22.01 4 1
790 THR MET 0.00602 19.14 19.79 25.17 23.89 4 1
791 GLN PRO 0.0023 19.12 19.22 25.19 0 3 1
791 GLN LYS 0.0163 19.12 19.1 25.19 0 3 1
796 GLY TRP 2.06E-05 18.99 19.13 25.42 0 12 1
796 GLY LEU 4.41E-05 18.99 19.55 25.42 -25.46 12 1
796 GLY GLU 0.000154 18.99 18.88 25.42 1.16 12 1
796 GLY PHE 0.000176 18.99 19.48 25.42 4.68 12 1
796 GLY ARG 0.00286 18.99 19.54 25.42 9.36 12 1
796 GLY ASP 0.00532 18.99 19.15 25.42 18.29 12 1
796 GLY CYS 0.00384 18.99 19.28 25.42 21.71 12 1
796 GLY SER 0.00643 18.99 19.23 25.42 22.24 12 1
718 LEU GLY 8.49E-06 19.05 18.15 25.26 0 8 2
718 LEU TRP 1.75E-05 19.05 17.96 25.26 0 8 2
718 LEU HID 0.00042 19.05 18.9 25.26 -60.92 8 2
718 LEU ARG 0.00238 19.05 19.41 25.26 22.5 8 2
726 VAL TRP 4.82E-05 19.04 19.51 25.24 0 2 2
745 LYS ILE 0.000243 18.98 19.05 25.18 0 5 2
745 LYS MET 0.00516 18.98 18.97 25.18 0 5 2
790 THR ARG 0.00139 19.14 19.32 25.17 11.4 4 2
791 GLN GLY 1.81E-05 19.12 19.06 25.19 0 3 2
796 GLY TYR 4.34E-05 18.99 19.48 25.42 -13.32 12 2
796 GLY ASN 5.25E-05 18.99 19.36 25.42 21 12 2
796 GLY HIE 1.88E-05 18.99 19.55 25.42 23.68 12 2
800 ASP GLY 0.00153 19.06 19.13 25.21 0 1 2
718 LEU LYS 0.00027 19.05 19.22 25.26 22.98 8 3
723 PHE ASP 8.41E-07 19.06 18.98 25.20 0 5 3
745 LYS HIE 6.76E-05 18.98 18.85 25.18 0 5 3
745 LYS THR 0.00126 18.98 18.71 25.18 0 5 3
790 THR ASN 0.000219 19.14 19.16 25.17 21.87 4 3
793 MET ASN 0.000104 19.04 18.93 25.16 0 1 3
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Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
796 GLY THR 3.45E-05 18.99 19.28 25.42 16.88 12 3
844 LEU TRP 1.9E-05 18.99 19.02 25.45 -17.34 4 3
844 LEU HID 0.00042 18.99 18.8 25.45 22.65 4 3
844 LEU HIE 0.00042 18.99 18.74 25.45 22.63 4 3
854 THR ASN 0.000262 19.01 19.09 25.43 21.08 1 3
723 PHE ALA 5.72E-07 19.06 18.98 25.20 0 5 4
723 PHE GLY 5.92E-07 19.06 18.91 25.20 0 5 4
743 ALA CYS 7.34E-05 19.14 14.53 25.22 0 4 4
743 ALA GLU 7.74E-05 19.14 4.17 25.22 0 4 4
745 LYS HID 6.76E-05 18.98 18.81 25.18 0 5 4
844 LEU HIP 0.00042 18.99 18.57 25.45 22.42 4 4
743 ALA ARG 1.73E-05 19.14 6.55 25.22 0 4 5

Table S2: All RESISTOR resistance mutation predictions for EGFR with gefitinib. “Pos” is the position of the residue. “WT AA” is
the wildtype identity of the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability for
the mutation from “WT AA” to “Mut AA” in lung adenocarcinoma. “ATP WT” and “ATP Mut” are the K∗ scores of the endogenous
ligand with the wildtype and mutant residues, respectively. “Drug WT” and “Drug Mut” are the K∗ scores of gefitinib with the
wildtype and mutant residues, respectively. “Count” is number of resistance mutations at the position. “Rank” is the Pareto rank of
the mutation. Note: K∗ scores are in log10 units where possible and 0 where there is predicted to be no binding.

Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
718 LEU PHE 0.000247 19.05 17.16 26.94 -23.15 7 1
718 LEU TRP 1.75E-05 19.05 17.96 26.94 1.76 7 1
718 LEU HIP 0.00042 19.05 18.86 26.94 4.5 7 1
718 LEU HID 0.00042 19.05 18.9 26.94 4.92 7 1
718 LEU HIE 0.00042 19.05 18.92 26.94 4.99 7 1
718 LEU ARG 0.00238 19.05 19.41 26.94 23.69 7 1
743 ALA GLU 7.74E-05 19.14 4.17 26.93 -49.27 2 1
777 LEU HID 0.000281 19.05 19.04 26.86 0 1 1
790 THR ARG 0.00139 19.14 19.32 26.95 12.73 4 1
790 THR LYS 0.00738 19.14 19.54 26.95 23.21 4 1
790 THR MET 0.00602 19.14 19.79 26.95 25.06 4 1
796 GLY LEU 4.41E-05 18.99 19.55 26.88 22.57 1 1
844 LEU TRP 1.9E-05 18.99 19.02 26.97 -28.99 4 1
718 LEU LYS 0.00027 19.05 19.22 26.94 24.45 7 2
726 VAL PHE 0.000509 19.04 19.71 26.94 25.26 1 2
743 ALA ARG 1.73E-05 19.14 6.55 26.93 -4.31 2 2
745 LYS ILE 0.000243 18.98 19.05 26.88 16.99 1 2
790 THR ASN 0.000219 19.14 19.16 26.95 23.52 4 2
844 LEU HIP 0.00042 18.99 18.57 26.97 23.69 4 2
844 LEU HID 0.00042 18.99 18.8 26.97 23.97 4 2
844 LEU HIE 0.00042 18.99 18.74 26.97 23.94 4 2
854 THR ASN 0.000262 19.01 19.09 26.98 20.61 1 2
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Table S3: All RESISTOR resistance mutation predictions for EGFR with osimertinib. “Pos” is the position of the residue. “WT AA”
is the wildtype identity of the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability for
the mutation from “WT AA” to “Mut AA” in lung adenocarcinoma. “ATP WT” and “ATP Mut” are the K∗ scores of the endogenous
ligand with the wildtype and mutant residues, respectively. “Drug WT” and “Drug Mut” are the K∗ scores of osimertinib with the
wildtype and mutant residues, respectively. “Count” is number of resistance mutations at the position. “Rank” is the Pareto rank of
the mutation. Note: K∗ scores are in log10 units where possible and 0 where there is predicted to be no binding.

Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
718 LEU TRP 1.75E-05 19.05 17.96 27.51 0 9 1
718 LEU PHE 0.000247 19.05 17.16 27.51 0 9 1
718 LEU HIP 0.00042 19.05 18.86 27.51 -38.77 9 1
718 LEU HIE 0.00042 19.05 18.92 27.51 -38.57 9 1
718 LEU MET 0.0108 19.05 19.44 27.51 25.52 9 1
719 GLY VAL 0.017 19.05 14.7 27.50 20.75 2 1
726 VAL TRP 4.82E-05 19.04 19.51 27.48 0 3 1
743 ALA ASP 0.0109 19.14 13.51 27.43 17.5 3 1
796 GLY TRP 2.06E-05 18.99 19.13 27.38 -97.39 14 1
796 GLY TYR 4.34E-05 18.99 19.48 27.38 -61.59 14 1
796 GLY PHE 0.000176 18.99 19.48 27.38 -41.78 14 1
796 GLY LEU 4.41E-05 18.99 19.55 27.38 -3.75 14 1
796 GLY ARG 0.00286 18.99 19.54 27.38 10.61 14 1
796 GLY ASP 0.00532 18.99 19.15 27.38 14.96 14 1
796 GLY CYS 0.00384 18.99 19.28 27.38 21.85 14 1
796 GLY SER 0.00643 18.99 19.23 27.38 24.76 14 1
718 LEU HID 0.00042 19.05 18.9 27.51 -37.61 9 2
718 LEU ARG 0.00238 19.05 19.41 27.51 20.16 9 2
723 PHE ILE 0.00209 19.06 19.5 27.45 25.68 1 2
792 LEU HIP 0.00486 19.03 18.88 27.47 24.98 3 2
792 LEU HIE 0.00486 19.03 18.93 27.47 25.07 3 2
792 LEU HID 0.00486 19.03 18.98 27.47 25.15 3 2
796 GLY GLU 0.000154 18.99 18.88 27.38 2.49 14 2
796 GLY HIE 1.88E-05 18.99 19.55 27.38 11.32 14 2
796 GLY ASN 5.25E-05 18.99 19.36 27.38 18.38 14 2
718 LEU LYS 0.00027 19.05 19.22 27.51 24.7 9 3
719 GLY THR 4.02E-05 19.05 17.76 27.50 20.4 2 3
726 VAL ARG 2.32E-05 19.04 17.68 27.48 21.62 3 3
726 VAL LYS 5.39E-05 19.04 17.07 27.48 21.87 3 3
743 ALA GLU 7.74E-05 19.14 4.17 27.43 0.47 3 3
796 GLY HID 1.88E-05 18.99 19.49 27.38 11.69 14 3
796 GLY THR 3.45E-05 18.99 19.28 27.38 22.43 14 3
844 LEU TRP 1.9E-05 18.99 19.02 27.56 22.12 1 3
796 GLY HIP 1.88E-05 18.99 19.46 27.38 12.09 14 4
718 LEU GLY 8.49E-06 19.05 18.15 27.51 24.02 9 5
743 ALA ARG 1.73E-05 19.14 6.55 27.43 12.58 3 5
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S4. BRAF Pareto Frontier

Table S4: All RESISTOR resistance mutation predictions for BRAF with dabrafenib. “Pos” is the position of the residue. “WT AA”
is the wildtype identity of the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability
for the mutation from “WT AA” to “Mut AA” in melanoma. “ATP WT” and “ATP Mut” are the K∗ scores of the endogenous
ligand with the wildtype and mutant residues, respectively. “Drug WT” and “Drug Mut” are the K∗ scores of dabrafenib with the
wildtype and mutant residues, respectively. “Count” is number of resistance mutations at the position. “Rank” is the Pareto rank of
the mutation. Note: K∗ scores are in log10 units where possible and 0 where there is predicted to be no binding.

Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
466 GLY ARG 5.84E-02 18.80 10.53 37.16 -167.92 11 1
466 GLY LYS 2.38E-02 18.80 11.79 37.16 -52.4 11 1
466 GLY GLU 2.19E-01 18.80 12.89 37.16 21.32 11 1
471 VAL LEU 4.43E-04 18.65 19.67 37.26 25.1 6 1
508 THR ARG 2.95E-04 18.59 18.59 37.23 -118.81 4 1
535 SER PRO 1.30E-03 18.72 18.65 37.26 0 1 1
593 GLY PHE 1.99E-06 18.66 20.07 37.17 0 16 1
593 GLY TYR 3.58E-05 18.66 19.86 37.17 0 16 1
593 GLY ARG 7.80E-04 18.66 16.17 37.17 0 16 1
593 GLY GLU 2.76E-04 18.66 18.73 37.17 -60.32 16 1
593 GLY ASN 1.34E-03 18.66 19.16 37.17 -39.82 16 1
593 GLY ASP 1.63E-02 18.66 18.89 37.17 -29.79 16 1
593 GLY CYS 1.66E-03 18.66 19.06 37.17 17.46 16 1
593 GLY VAL 9.35E-04 18.66 19.18 37.17 28.45 16 1
593 GLY ILE 4.55E-05 18.66 19.8 37.17 30.24 16 1
593 GLY SER 6.09E-02 18.66 18.83 37.17 34.27 16 1
466 GLY GLN 7.24E-05 18.80 12.55 37.16 11.37 11 2
466 GLY ASP 7.51E-04 18.80 17.06 37.16 18.64 11 2
466 GLY VAL 2.51E-03 18.80 13.44 37.16 29.23 11 2
467 SER PRO 7.37E-04 18.62 18.85 37.15 30.42 1 2
481 ALA LYS 2.74E-04 18.58 17.32 36.98 -4.22 8 2
481 ALA LEU 7.06E-05 18.58 18.68 36.98 9.97 8 2
481 ALA GLU 1.21E-03 18.58 17.92 36.98 22.11 8 2
505 LEU ARG 8.61E-04 18.59 18.58 36.85 16.53 5 2
508 THR LYS 9.16E-04 18.59 18.59 37.23 27.22 4 2
514 LEU ARG 5.22E-05 18.57 17.18 37.10 21.32 12 2
514 LEU ILE 1.65E-03 18.57 18.4 37.10 32.55 12 2
529 THR PHE 3.77E-05 18.58 15.91 36.99 -125.31 11 2
529 THR MET 1.74E-05 18.58 18.65 36.99 -8.16 11 2
529 THR ASN 9.96E-04 18.58 18.55 36.99 34.54 11 2
593 GLY HIE 1.66E-05 18.66 19.58 37.17 0 16 2
593 GLY THR 2.67E-05 18.66 19.06 37.17 27.33 16 2
464 GLY GLN 7.24E-05 18.58 2.95 37.09 11.05 1 3
466 GLY THR 5.47E-05 18.80 14.85 37.16 29.21 11 3
481 ALA ILE 5.14E-05 18.58 14.2 36.98 21.38 8 3
481 ALA VAL 1.46E-03 18.58 17.77 36.98 33.45 8 3
505 LEU SER 2.78E-05 18.59 18.58 36.85 35.02 5 3
514 LEU PRO 1.21E-03 18.57 18.12 37.10 33.34 12 3
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Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
527 ILE LEU 6.37E-05 18.60 18.61 37.30 33.5 1 3
593 GLY HIP 1.66E-05 18.66 19.56 37.17 0 16 3
514 LEU SER 2.27E-04 18.57 18.1 37.10 34.19 12 4
593 GLY HID 1.66E-05 18.66 19.55 37.17 0 16 4
471 VAL MET 8.44E-06 18.65 18.96 37.26 27.83 6 5
481 ALA ARG 1.53E-05 18.58 17.02 36.98 -15.13 8 5
481 ALA ASP 4.39E-06 18.58 19.21 36.98 31.9 8 5
508 THR GLU 1.05E-05 18.59 18.59 37.23 35 4 5
514 LEU PHE 1.53E-05 18.57 18.19 37.10 0 12 5
578 LYS TYR 5.24E-06 18.55 18.39 37.11 -143.76 1 5
593 GLY TRP 4.78E-06 18.66 18.83 37.17 0 16 5
593 GLY LEU 3.87E-07 18.66 19.35 37.17 -85.52 16 5
466 GLY PRO 1.77E-07 18.80 18.27 37.16 0 11 6
466 GLY TRP 2.10E-06 18.80 13.1 37.16 0 11 6
466 GLY LEU 4.82E-06 18.80 9.74 37.16 -39.41 11 6
466 GLY CYS 3.82E-06 18.80 17.62 37.16 27.45 11 6
469 GLY PRO 1.77E-07 18.60 18.75 37.10 0 1 6
471 VAL PRO 5.74E-07 18.65 17.88 37.26 0 6 6
471 VAL ARG 3.03E-07 18.65 18.99 37.26 23.05 6 6
471 VAL GLU 9.01E-07 18.65 18.82 37.26 31.61 6 6
481 ALA GLN 1.80E-06 18.58 18.37 36.98 15.47 8 6
508 THR GLN 2.51E-06 18.59 18.59 37.23 33.59 4 6
513 ILE ARG 1.06E-06 18.57 18.57 37.09 -30.17 2 6
513 ILE TYR 2.73E-06 18.57 18.57 37.09 27.86 2 6
514 LEU HIP 3.37E-07 18.57 17.68 37.10 25.98 12 6
514 LEU HID 3.37E-07 18.57 17.72 37.10 26.06 12 6
514 LEU LYS 1.68E-06 18.57 17.37 37.10 32.25 12 6
514 LEU MET 2.51E-06 18.57 18.42 37.10 33.68 12 6
528 VAL ARG 5.57E-07 18.57 18.61 37.01 -72.34 1 6
529 THR TYR 1.12E-06 18.58 18.58 36.99 -10.9 11 6
529 THR ARG 4.98E-07 18.58 18.6 36.99 -4.95 11 6
529 THR LYS 1.74E-06 18.58 18.57 36.99 4.7 11 6
529 THR LEU 3.10E-06 18.58 18.56 36.99 26.71 11 6
532 CYS HID 4.44E-06 18.49 14.39 37.09 26.54 7 6
532 CYS HIP 4.44E-06 18.49 14.51 37.09 26.79 7 6
532 CYS HIE 4.44E-06 18.49 12.48 37.09 25.2 7 6
532 CYS ILE 1.16E-06 18.49 18.82 37.09 34.28 7 6
532 CYS VAL 2.11E-06 18.49 18.7 37.09 34.77 7 6
471 VAL HID 6.58E-07 18.65 17.61 37.26 33.79 6 7
505 LEU GLY 6.90E-08 18.59 18.58 36.85 34.62 5 7
505 LEU GLN 1.84E-06 18.59 18.6 36.85 34.82 5 7
514 LEU HIE 3.37E-07 18.57 17.72 37.10 27.35 12 7
514 LEU GLY 3.88E-08 18.57 18.03 37.10 33.68 12 7
514 LEU ALA 9.24E-07 18.57 18.09 37.10 34.25 12 7
529 THR HID 6.68E-08 18.58 18.58 36.99 -10.11 11 7
529 THR HIE 6.68E-08 18.58 18.58 36.99 -4.75 11 7
529 THR ASP 2.37E-06 18.58 18.51 36.99 34.7 11 7
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Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
531 TRP PRO 5.44E-07 18.51 16.76 37.07 0 1 7
505 LEU ALA 5.28E-07 18.59 18.58 36.85 35 5 8
529 THR HIP 6.68E-08 18.58 18.58 36.99 -6.63 11 8

Table S5: All RESISTOR resistance mutation predictions for BRAF with vemurafenib. “Pos” is the position of the residue. “WT AA”
is the wildtype identity of the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability
for the mutation from “WT AA” to “Mut AA” in melanoma. “ATP WT” and “ATP Mut” are the K∗ scores of the endogenous
ligand with the wildtype and mutant residues, respectively. “Drug WT” and “Drug Mut” are the K∗ scores of vemurafenib with the
wildtype and mutant residues, respectively. “Count” is number of resistance mutations at the position. “Rank” is the Pareto rank of
the mutation. Note: K∗ scores are in log10 units where possible and 0 where there is predicted to be no binding.

Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
471 VAL LEU 0.000443 18.65 19.67 33.41 29.39 4 1
481 ALA THR 0.0177 18.58 18.99 33.27 30.69 9 1
529 THR ILE 0.0202 18.58 18.57 33.45 29.33 10 1
535 SER PRO 0.0013 18.72 18.65 33.65 0 1 1
593 GLY PHE 1.99E-06 18.66 20.07 33.47 0 16 1
593 GLY TYR 3.58E-05 18.66 19.86 33.47 0 16 1
593 GLY ARG 0.00078 18.66 16.17 33.47 -231.93 16 1
593 GLY ASN 0.00134 18.66 19.16 33.47 -103.95 16 1
593 GLY ASP 0.0163 18.66 18.89 33.47 -26.78 16 1
593 GLY CYS 0.00166 18.66 19.06 33.47 19.89 16 1
593 GLY VAL 0.000935 18.66 19.18 33.47 21.09 16 1
593 GLY ILE 4.55E-05 18.66 19.8 33.47 23.08 16 1
593 GLY SER 0.0609 18.66 18.83 33.47 31.33 16 1
463 ILE TYR 2.55E-05 18.60 15.94 33.42 -124.43 4 2
481 ALA GLU 0.00121 18.58 17.92 33.27 11.12 9 2
481 ALA VAL 0.00146 18.58 17.77 33.27 28.52 9 2
505 LEU PHE 0.00544 18.59 18.58 33.45 27.01 3 2
505 LEU ARG 0.000861 18.59 18.58 33.45 27.41 3 2
508 THR ARG 0.000295 18.59 18.59 33.45 12.91 2 2
508 THR LYS 0.000916 18.59 18.59 33.45 21.18 2 2
514 LEU ILE 0.00165 18.57 18.4 33.43 30.08 11 2
532 CYS ARG 0.000812 18.49 13.04 33.28 -10.66 9 2
593 GLY HIE 1.66E-05 18.66 19.58 33.47 0 16 2
593 GLY GLU 0.000276 18.66 18.73 33.47 -12.82 16 2
593 GLY THR 2.67E-05 18.66 19.06 33.47 20.72 16 2
481 ALA LEU 7.06E-05 18.58 18.68 33.27 18.19 9 3
481 ALA LYS 0.000274 18.58 17.32 33.27 18.46 9 3
514 LEU ARG 5.22E-05 18.57 17.18 33.43 22.28 11 3
514 LEU GLN 8.77E-05 18.57 17.02 33.43 27.9 11 3
514 LEU SER 0.000227 18.57 18.1 33.43 30.81 11 3
529 THR MET 1.74E-05 18.58 18.65 33.45 -8.52 10 3
529 THR PHE 3.77E-05 18.58 15.91 33.45 5.09 10 3
593 GLY HIP 1.66E-05 18.66 19.56 33.47 0 16 3
481 ALA ILE 5.14E-05 18.58 14.2 33.27 24.57 9 4
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Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
593 GLY HID 1.66E-05 18.66 19.55 33.47 0 16 4
471 VAL MET 8.44E-06 18.65 18.96 33.41 31.15 4 5
481 ALA ARG 1.53E-05 18.58 17.02 33.27 19.55 9 5
481 ALA ASP 4.39E-06 18.58 19.21 33.27 24.15 9 5
514 LEU PHE 1.53E-05 18.57 18.19 33.43 0 11 5
593 GLY TRP 4.78E-06 18.66 18.83 33.47 0 16 5
593 GLY LEU 3.87E-07 18.66 19.35 33.47 -237.44 16 5
463 ILE HIE 5.14E-06 18.60 18.06 33.42 30.11 4 6
463 ILE HID 5.14E-06 18.60 18.08 33.42 30.75 4 6
466 GLY PRO 1.77E-07 18.80 18.27 33.48 0 1 6
471 VAL PRO 5.74E-07 18.65 17.88 33.41 0 4 6
471 VAL GLU 9.01E-07 18.65 18.82 33.41 31.34 4 6
481 ALA GLN 1.8E-06 18.58 18.37 33.27 -15.45 9 6
514 LEU HIP 3.37E-07 18.57 17.68 33.43 25.66 11 6
514 LEU HID 3.37E-07 18.57 17.72 33.43 25.78 11 6
514 LEU GLY 3.88E-08 18.57 18.03 33.43 30.29 11 6
514 LEU ALA 9.24E-07 18.57 18.09 33.43 30.82 11 6
516 PHE ARG 4.47E-06 18.59 18.58 33.51 29.7 1 6
529 THR TYR 1.12E-06 18.58 18.58 33.45 -114.94 10 6
529 THR ARG 4.98E-07 18.58 18.6 33.45 -34.39 10 6
529 THR LYS 1.74E-06 18.58 18.57 33.45 -7.92 10 6
529 THR LEU 3.1E-06 18.58 18.56 33.45 28.04 10 6
532 CYS HIP 4.44E-06 18.49 14.51 33.28 -0.94 9 6
532 CYS HIE 4.44E-06 18.49 12.48 33.28 -2.8 9 6
532 CYS ILE 1.16E-06 18.49 18.82 33.28 27.39 9 6
532 CYS VAL 2.11E-06 18.49 18.7 33.28 29.58 9 6
463 ILE HIP 5.14E-06 18.60 17.51 33.42 30.23 4 7
505 LEU MET 3.58E-07 18.59 18.6 33.45 25.88 3 7
514 LEU HIE 3.37E-07 18.57 17.72 33.43 25.91 11 7
529 THR HIE 6.68E-08 18.58 18.58 33.45 10.11 10 7
531 TRP PRO 5.44E-07 18.51 16.76 33.25 0 1 7
532 CYS HID 4.44E-06 18.49 14.39 33.28 -0.66 9 7
532 CYS THR 2.67E-07 18.49 18.32 33.28 30.91 9 7
514 LEU GLU 5.81E-08 18.57 17.36 33.43 28 11 8
529 THR HIP 6.68E-08 18.58 18.58 33.45 10.86 10 8
529 THR HID 6.68E-08 18.58 18.58 33.45 11.36 10 8

Table S6: All RESISTOR resistance mutation predictions for BRAF with encorafenib. “Pos” is the position of the residue. “WT AA”
is the wildtype identity of the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability
for the mutation from “WT AA” to “Mut AA” in melanoma. “ATP WT” and “ATP Mut” are the K∗ scores of the endogenous
ligand with the wildtype and mutant residues, respectively. “Drug WT” and “Drug Mut” are the K∗ scores of encorafenib with the
wildtype and mutant residues, respectively. “Count” is number of resistance mutations at the position. “Rank” is the Pareto rank of
the mutation. Note: K∗ scores are in log10 units where possible and 0 where there is predicted to be no binding.

Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
471 VAL LEU 0.000443 18.65 19.67 38.16 28.68 10 1
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Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
481 ALA LEU 7.06E-05 18.58 18.68 38.13 -24.05 8 1
481 ALA GLU 0.00121 18.58 17.92 38.13 10.6 8 1
529 THR ILE 0.0202 18.58 18.57 38.12 31.23 12 1
532 CYS ARG 0.000812 18.49 13.04 38.06 -19.78 9 1
535 SER PRO 0.0013 18.72 18.65 38.18 0 1 1
593 GLY TYR 3.58E-05 18.66 19.86 38.09 0 17 1
593 GLY ARG 0.00078 18.66 16.17 38.09 -2.33 17 1
593 GLY ILE 4.55E-05 18.66 19.8 38.09 2.23 17 1
593 GLY VAL 0.000935 18.66 19.18 38.09 7.05 17 1
593 GLY ASN 0.00134 18.66 19.16 38.09 28.19 17 1
593 GLY ASP 0.0163 18.66 18.89 38.09 28.87 17 1
593 GLY PHE 1.99E-06 18.66 20.07 38.09 30.05 17 1
593 GLY CYS 0.00166 18.66 19.06 38.09 34.56 17 1
593 GLY SER 0.0609 18.66 18.83 38.09 35.04 17 1
471 VAL PHE 0.000785 18.65 16.37 38.16 26 10 2
481 ALA LYS 0.000274 18.58 17.32 38.13 7.23 8 2
514 LEU ARG 5.22E-05 18.57 17.18 38.14 20.73 10 2
529 THR MET 1.74E-05 18.58 18.65 38.12 -18.87 12 2
529 THR PHE 3.77E-05 18.58 15.91 38.12 0.72 12 2
529 THR ASN 0.000996 18.58 18.55 38.12 33.77 12 2
536 SER ASN 0.0137 18.63 18.53 38.02 34.35 3 2
583 PHE TYR 0.00408 18.60 18.68 38.10 29.81 9 2
593 GLY HIE 1.66E-05 18.66 19.58 38.09 0 17 2
593 GLY GLU 0.000276 18.66 18.73 38.09 22.97 17 2
593 GLY THR 2.67E-05 18.66 19.06 38.09 24.19 17 2
593 GLY ALA 0.000254 18.66 18.8 38.09 35.61 17 2
463 ILE TYR 2.55E-05 18.60 15.94 38.08 9.07 3 3
481 ALA ILE 5.14E-05 18.58 14.2 38.13 30.63 8 3
481 ALA VAL 0.00146 18.58 17.77 38.13 34.23 8 3
505 LEU HIP 0.00146 18.59 18.59 38.08 35.98 2 3
514 LEU GLN 8.77E-05 18.57 17.02 38.14 31.64 10 3
536 SER ASP 5.03E-05 18.63 18.21 38.02 33.54 3 3
583 PHE VAL 0.000214 18.60 17.05 38.10 33.2 9 3
583 PHE ILE 0.00316 18.60 17.45 38.10 34.49 9 3
583 PHE SER 0.00262 18.60 16.86 38.10 34.31 9 3
593 GLY HIP 1.66E-05 18.66 19.56 38.09 0 17 3
505 LEU HID 0.00146 18.59 18.59 38.08 36.08 2 4
593 GLY HID 1.66E-05 18.66 19.55 38.09 0 17 4
471 VAL PRO 5.74E-07 18.65 17.88 38.16 0 10 5
471 VAL ARG 3.03E-07 18.65 18.99 38.16 18.89 10 5
471 VAL MET 8.44E-06 18.65 18.96 38.16 21.35 10 5
481 ALA GLN 1.8E-06 18.58 18.37 38.13 -7.07 8 5
481 ALA ARG 1.53E-05 18.58 17.02 38.13 1.87 8 5
481 ALA ASP 4.39E-06 18.58 19.21 38.13 30.87 8 5
514 LEU PHE 1.53E-05 18.57 18.19 38.14 -25.54 10 5
529 THR ARG 4.98E-07 18.58 18.6 38.12 -6.65 12 5
532 CYS HIP 4.44E-06 18.49 14.51 38.06 -40.5 9 5
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Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
532 CYS HIE 4.44E-06 18.49 12.48 38.06 -40.74 9 5
533 GLU PRO 3.22E-07 18.58 18.63 38.12 0 1 5
593 GLY LEU 3.87E-07 18.66 19.35 38.09 19.61 17 5
593 GLY TRP 4.78E-06 18.66 18.83 38.09 19.1 17 5
463 ILE HIE 5.14E-06 18.60 18.06 38.08 35.28 3 6
471 VAL GLU 9.01E-07 18.65 18.82 38.16 35.77 10 6
529 THR TYR 1.12E-06 18.58 18.58 38.12 19.14 12 6
529 THR LYS 1.74E-06 18.58 18.57 38.12 20.27 12 6
529 THR HIE 6.68E-08 18.58 18.58 38.12 21.51 12 6
529 THR LEU 3.1E-06 18.58 18.56 38.12 22.42 12 6
531 TRP PRO 5.44E-07 18.51 16.76 38.04 0 1 6
532 CYS HID 4.44E-06 18.49 14.39 38.06 -40.35 9 6
532 CYS ILE 1.16E-06 18.49 18.82 38.06 30.25 9 6
532 CYS VAL 2.11E-06 18.49 18.7 38.06 30.4 9 6
583 PHE ARG 5.91E-06 18.60 17.17 38.10 32.32 9 6
583 PHE THR 1.13E-05 18.60 16.91 38.10 32.78 9 6
583 PHE MET 5.94E-06 18.60 18.39 38.10 35.48 9 6
463 ILE HID 5.14E-06 18.60 18.08 38.08 35.51 3 7
471 VAL HIP 6.58E-07 18.65 17.42 38.16 30.52 10 7
471 VAL HID 6.58E-07 18.65 17.61 38.16 31.08 10 7
471 VAL TYR 1.33E-06 18.65 16.37 38.16 31.46 10 7
514 LEU HIP 3.37E-07 18.57 17.68 38.14 31.73 10 7
514 LEU HID 3.37E-07 18.57 17.72 38.14 31.87 10 7
514 LEU LYS 1.68E-06 18.57 17.37 38.14 33.97 10 7
514 LEU MET 2.51E-06 18.57 18.42 38.14 35.5 10 7
529 THR HID 6.68E-08 18.58 18.58 38.12 20.75 12 7
529 THR ASP 2.37E-06 18.58 18.51 38.12 34.9 12 7
536 SER LEU 5.47E-07 18.63 17.44 38.02 30.59 3 7
583 PHE TRP 9.45E-07 18.60 13.08 38.10 24.17 9 7
583 PHE GLY 1.52E-06 18.60 16.63 38.10 33.81 9 7
471 VAL HIE 6.58E-07 18.65 17.28 38.16 30.93 10 8
514 LEU HIE 3.37E-07 18.57 17.72 38.14 32.04 10 8
529 THR HIP 6.68E-08 18.58 18.58 38.12 20.97 12 8
532 CYS THR 2.67E-07 18.49 18.32 38.06 35.12 9 8
514 LEU GLU 5.81E-08 18.57 17.36 38.14 32.45 10 9
514 LEU GLY 3.88E-08 18.57 18.03 38.14 35.47 10 9

Table S7: All RESISTOR resistance mutation predictions for BRAF with PLX8394. “Pos” is the position of the residue. “WT AA” is
the wildtype identity of the amino acid. “Mut AA” is the resistance mutation. “Sig Prob” is the mutational signature probability for
the mutation from “WT AA” to “Mut AA” in melanoma. “ATP WT” and “ATP Mut” are the K∗ scores of the endogenous ligand with
the wildtype and mutant residues, respectively. “Drug WT” and “Drug Mut” are the K∗ scores of PLX8394 with the wildtype and
mutant residues, respectively. “Count” is number of resistance mutations at the position. “Rank” is the Pareto rank of the mutation.
Note: K∗ scores are in log10 units where possible and 0 where there is predicted to be no binding.

Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
471 VAL LEU 0.000443 18.645 19.67 31.624 29.38 3 1
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Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
513 ILE PHE 0.00146 18.569 18.57 31.663 0 1 1
529 THR ILE 0.0202 18.583 18.57 32.196 12.61 14 1
535 SER PRO 0.0013 18.717 18.65 31.813 0 5 1
535 SER LEU 0.00156 18.717 19.09 31.813 24.04 5 1
593 GLY PHE 1.99E-06 18.659 20.07 31.991 0 16 1
593 GLY TYR 3.58E-05 18.659 19.86 31.991 0 16 1
593 GLY ARG 0.00078 18.659 16.17 31.991 -248.98 16 1
593 GLY GLU 0.000276 18.659 18.73 31.991 -61.35 16 1
593 GLY ASN 0.00134 18.659 19.16 31.991 -56.56 16 1
593 GLY ASP 0.0163 18.659 18.89 31.991 -29.16 16 1
593 GLY VAL 0.000935 18.659 19.18 31.991 6.66 16 1
593 GLY CYS 0.00166 18.659 19.06 31.991 12.77 16 1
593 GLY ILE 4.55E-05 18.659 19.8 31.991 22.76 16 1
593 GLY SER 0.0609 18.659 18.83 31.991 28.13 16 1
463 ILE TYR 2.55E-05 18.596 15.94 31.621 -260.1 5 2
481 ALA LEU 7.06E-05 18.575 18.68 32.195 2.47 8 2
481 ALA LYS 0.000274 18.575 17.32 32.195 3.05 8 2
481 ALA GLU 0.00121 18.575 17.92 32.195 12.04 8 2
505 LEU ARG 0.000861 18.589 18.58 31.429 24.96 4 2
508 THR ARG 0.000295 18.594 18.59 31.461 -115.96 2 2
508 THR LYS 0.000916 18.594 18.59 31.461 12.12 2 2
514 LEU ILE 0.00165 18.57 18.4 31.667 21.52 10 2
514 LEU ARG 5.22E-05 18.57 17.18 31.667 21.09 10 2
529 THR PHE 3.77E-05 18.583 15.91 32.196 -106.19 14 2
529 THR MET 1.74E-05 18.583 18.65 32.196 -28.68 14 2
529 THR VAL 4.99E-05 18.583 18.72 32.196 28.05 14 2
529 THR ASN 0.000996 18.583 18.55 32.196 27.98 14 2
532 CYS ARG 0.000812 18.49 13.04 31.578 -0.71 9 2
535 SER ILE 0.000391 18.717 19.02 31.813 28.17 5 2
535 SER TYR 0.00262 18.717 18.68 31.813 29.19 5 2
593 GLY HIE 1.66E-05 18.659 19.58 31.991 0 16 2
593 GLY THR 2.67E-05 18.659 19.06 31.991 6.63 16 2
471 VAL PHE 0.000785 18.645 16.37 31.624 27.32 3 3
481 ALA ILE 5.14E-05 18.575 14.2 32.195 16.28 8 3
481 ALA VAL 0.00146 18.575 17.77 32.195 27.92 8 3
514 LEU VAL 0.000522 18.57 18.3 31.667 27.8 10 3
514 LEU PRO 0.00121 18.57 18.12 31.667 29.31 10 3
593 GLY HIP 1.66E-05 18.659 19.56 31.991 0 16 3
593 GLY HID 1.66E-05 18.659 19.55 31.991 0 16 4
471 VAL MET 8.44E-06 18.645 18.96 31.624 30.12 3 5
481 ALA ARG 1.53E-05 18.575 17.02 32.195 -7 8 5
481 ALA ASP 4.39E-06 18.575 19.21 32.195 26.65 8 5
505 LEU TYR 8.68E-06 18.589 18.59 31.429 13.95 4 5
514 LEU PHE 1.53E-05 18.57 18.19 31.667 0 10 5
535 SER ARG 1.91E-06 18.717 18.84 31.813 26.28 5 5
593 GLY TRP 4.78E-06 18.659 18.83 31.991 0 16 5
593 GLY LEU 3.87E-07 18.659 19.35 31.991 -172.14 16 5
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Pos WT AA Mut AA Sig Prob ATP WT ATP Mut Drug WT Drug Mut Count Rank
463 ILE HIE 5.14E-06 18.596 18.06 31.621 14.78 5 6
463 ILE HIP 5.14E-06 18.596 17.51 31.621 14.5 5 6
463 ILE HID 5.14E-06 18.596 18.08 31.621 23.91 5 6
481 ALA GLN 1.8E-06 18.575 18.37 32.195 -57.06 8 6
516 PHE THR 3.77E-06 18.593 18.56 32.276 29.08 1 6
528 VAL ARG 5.57E-07 18.569 18.61 32.223 21.75 1 6
529 THR TYR 1.12E-06 18.583 18.58 32.196 0 14 6
529 THR ARG 4.98E-07 18.583 18.6 32.196 -73.94 14 6
529 THR LEU 3.1E-06 18.583 18.56 32.196 -40.25 14 6
529 THR LYS 1.74E-06 18.583 18.57 32.196 -16.49 14 6
532 CYS HIP 4.44E-06 18.49 14.51 31.578 10.43 9 6
532 CYS HIE 4.44E-06 18.49 12.48 31.578 8.45 9 6
532 CYS ILE 1.16E-06 18.49 18.82 31.578 28.7 9 6
532 CYS VAL 2.11E-06 18.49 18.7 31.578 29 9 6
505 LEU MET 3.58E-07 18.589 18.6 31.429 28.4 4 7
505 LEU GLN 1.84E-06 18.589 18.6 31.429 29.15 4 7
514 LEU HIP 3.37E-07 18.57 17.68 31.667 24.27 10 7
514 LEU HIE 3.37E-07 18.57 17.72 31.667 24.93 10 7
514 LEU HID 3.37E-07 18.57 17.72 31.667 25.66 10 7
529 THR HIP 6.68E-08 18.583 18.58 32.196 -75.31 14 7
529 THR HID 6.68E-08 18.583 18.58 32.196 -74.57 14 7
529 THR HIE 6.68E-08 18.583 18.58 32.196 -73.8 14 7
529 THR ASP 2.37E-06 18.583 18.51 32.196 27.31 14 7
529 THR CYS 1.13E-07 18.583 18.53 32.196 29.46 14 7
531 TRP PRO 5.44E-07 18.512 16.76 31.57 0 1 7
532 CYS HID 4.44E-06 18.49 14.39 31.578 10.57 9 7
514 LEU GLU 5.81E-08 18.57 17.36 31.667 26.07 10 8
514 LEU LYS 1.68E-06 18.57 17.37 31.667 28.06 10 8
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