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already known pharmacokinetic information or by statistical means.

Here we present an improved normalization method, MIX, that combines the
advantages of both approaches. It couples two normalization terms, one based on
a pharmacokinetic model (PKM) and the other representing a popular statistical
approach, probabilistic quotient normalization (PQN), in a single model.

To test the performance of MIX, we generated synthetic data closely
resembling real finger sweat metabolome measurements. We show that MIX
normalization successfully tackles key weaknesses of the individual strategies: it
(i) reduces the risk of overfitting with PKM, and (ii) contrary to PQN, it allows
to compute sample volumes. Finally, we validate MIX by using real finger sweat
as well as blood plasma metabolome data and demonstrate that MIX allows to
better and more robustly correct for size effects.

In conclusion, the MIX method improves the reliability and robustness of
quantitative biomarker detection in finger sweat and other biofluids, paving the
way for biomarker discovery and hypothesis generation from metabolomic time
course data.
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1 Introduction

In recent years, the analysis of the sweat metabolome has received increased atten-
tion from several fields of study [1-3]. For example, sweat has been in the focus of
forensic scientists since it is possible to analyze metabolomic profiles of finger prints
that have been found (e.g. at a crime scene) [4]. Also, drug testing can easily be
performed on sweat samples. One advantage of this method is to not only identify
already illegal substances but their metabolic degradation products as well, thereby
allowing to distinguish between drug consumption and mere contact [1]. Another
application of sweat metabolomics is in diagnostics for personalized medicine, where
the focus is put on discerning metabolic states of the body and trying to optimize

nutrition and treatment based upon information of biomarkers in sweat [5-7].
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Sweat metabolomics offers several technical advantages. Firstly, sweat is a rich
source of biomolecules and thus offers great potential for biomarker discovery [8, 9].
Secondly, sweat sampling is easy compared to sampling of other biofluids (e.g. blood
or urine). Moreover, it is non-invasive and can in principle be rapidly repeated.

Several sampling methods have been developed [2, 3, 9, 10]. However, most of them
work in a very similar manner: a water absorbing material is put onto the skin’s
surface to collect sweat for some (short) time. Sweat metabolites are subsequently
extracted from this material and analyzed [3, 10]. Methods differ, however, in if and
how they induce sweating. Some methods induce increased sweating by physical
exercise [9] or chemical stimulation [2], whereas in other studies no sweat induction
is performed and the natural sweat rate is sufficient for metabolomic analysis [3, 11].

Regardless of the exact sampling method, most of the above mentioned studies
suffer from one major drawback. The sweat flux is highly variable, depending not
only on interindividual differences, but also on body location, temperature, humid-
ity, exercise and further factors that may change multiple times over the course
of one day [12, 13]. For example, even with conservative estimates a variability of

2 min~! needs to be

sweat flux gsweat On the finger tips between 0.05 and 1 mgcm™
accounted for [13-16]. This is a major challenge for comparative or quantitative
studies, which has been acknowledged by many, e.g. [1, 4, 8, 17-19], however only
actively approached by few — most notably [9].

The key problem is associated to the fact that often one is interested in the
true metabolite concentrations, C € R7metabolites - of 140y o100 Metabolites, which
is obscured by an unknown and time-dependent sweat flux. Thus, the measured
metabolites’ intensities are not proportional to C but to the metabolite mass vector,

M c R mef’lbollteﬁ’

t
M(t) = asample/ C(t/) qsweat(t’) dt/. (1)
t—T1

Here asample and 7 denote the surface area of skin that is sampled, and the time
it takes to collect one sample, respectively. We emphasize that throughout the
manuscript the mass of a metabolite is defined as the measured abundance of the
metabolite in a measured sample, and neither as the molar mass or mass to charge
ratio. Moreover, we acknowledge that without a calibration curve the measured
abundances have an arbitrary peak-area unit and are thus strictly neither abso-
lute masses nor concentrations. The proportionality constant that scales measured
intensities to mass units is determined by the calibration curve. The proper cali-
bration curve is not further discussed here but assumed to be linear and available
when applicable.

Metabolic concentration shifts happen in the span of double-digit minutes to
hours, whereas sampling times are usually low single-digit minutes, therefore it is
possible to assume that C changes little over the integration time 7 [20]. Thus (1)

simplifies to

M(t) = C(t) V(t), (2a)
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with an unknown sweat volume during sampling

t
V(t) = asample/ Gsweat (t/) dt/a (2b)
t—T1

and the problems reads: given M, how can we compute C if we don’t know V7

The need to calculate absolute metabolite concentrations from small biological
samples of unknown volume is not unique to sweat metabolomics, but known
throughout untargeted metabolomics. The problem is commonly referred to as size
effects [21]. For the sake of consistency with previous publications on this topic, we
will use the term "size effects“ throughout this publication. We emphasize that in
this context it specifically refers to perceived differences in measured abundances
due to changing sample volumes and/or dilutions and not to effects of different
numbers of measurements per sample also referred to as sample size effects [22].

Three strategies have been developed to tackle size effects:
Direct Sweat Volume Measurement. Measuring V', for instance via microfluidics
[9, 23, 24], is the most straight forward method to solve (2) and typically very
accurate with minimally required volumes in the range of ~ 5 to 100 uL [9, 23, 24].
However, in case of sweat sampling it may take quite some time, large sample areas
or increased (i.e. induced) sweating to collect enough sweat for robust volume quan-
tification. Another alternative is the volume estimation via paired standards [25],
however, such method increases complexity of sample preparation. Either option
would impede fast and easy sample collection and analysis.
Indirect Sweat Volume Computation. If the chemical kinetics of targeted metabolite
concentrations are known, then kinetic parameters and the sweat volume at each
time point can be simultaneously determined by fitting the measured mass vector
to Equation 2. Recently, we used this strategy to computationally resolve not only
sample volumes in the nL to single digit pL-range but also accurately quantify
personalized metabolic response patterns upon caffeine ingestion [20]. Albeit feasible
for determination of individual differences with knowledge of reaction kinetics, this
method quickly becomes unconstrained when too little prior information is available.
Therefore, it is not suited for the discovery of unknown reaction kinetics. Moreover,
this method requires several sampling time points to allow modeling the kinetics of
different metabolites thereby decreasing simplicity of sampling.
Statistical Normalization. With this approach the aim is to normalize the mass
vector by the apparent mass of a marker that scales proportionally to the sample
volume, so that the ratio becomes (at least approximately) independent of the sam-
ple volume. Various strategies have been developed for untargeted metabolomics;
for example, normalization by total measured signal [26], and singular value
decomposition-based normalization [27]. However, one of the best performing
methods-referred to as probabilistic quotient normalization (PQN) — simply as-
sumes that the median of the ratio of two apparent mass vectors is proportional
to the sample volume [21, 28-30]. Although PQN does not allow one to compute
sample volumes per se, it enables one to assess differential changes [28].

In this study we explore the performance of three different normalization meth-
ods on synthetic data. We illustrate the disadvantages of two previously published
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methods only focusing on either targeted or untargeted metabolites, respectively. A
third normalization method is developed by combining both strategies in a single
MIX model. We show that MIX significantly outperforms its preceding normaliza-
tion methods. To validate the results we use MIX to characterize caffeine metabo-
lization measured in the finger sweat as well as diphenhydramine metabolitzation

measured in blood plasma.

2 Theory

2.1 Probabilistic Quotient Normalization

Definition. Probabilistic quotient normalization (PQN) assumes that for a large,
untargeted set of metabolites the median metabolite concentration fold change be-

tween two samples (e.g. two measured time points, ¢, and t;) is approximately 1,

. Ci(t .

Q€ = median { C;- Etzg } ~1, j €[l Nmetabolites]- (3a)
Consequently, fold changes calculated from M instead of C are proportional to the
ratio of V,

V(t, V(t,
o e V) V) (3b)
V(ts)  V(ts)
with
M .
QM = median {,V](T)} 5 J € [1, nmetabolites]- (30)
Mj (ts)
In order to minimize the influence of experimental errors
M = median {Mj(ti)} . i € [1, Neime points) (4)

often replaces the dedicated sample in ]\,\jj(ts) in the denominator of Equation 3c
[28]. Therefore, the normalization quotient by PQN is calculated as

} ’ ] € [17nmctabolitcs]~ (5)

QPN is a relative measure and distributes around 1. In analogy to Equation 3b,
we define its relation to the (sweat) volume VPN as

IV PQN (t)

QU (t) = e (6)
where V'™ denotes some unknown, time-independent reference (sweat) volume.
Note that with real data only Q¥®N(¢) values can be calculated, but VFQN(¢) as

well as V' remain unknown.
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Discussion. M;ef can be defined in different ways depending on the underlying
data. However, the choice of of reference is usually not critical to the outcome
of PQN [28]. As no control or blank measurements are available and the the
abundances of metabolites can range several orders of magnitudes, in this study
a metabolite-wise median reference was used for QPN calculation. Moreover, PQN
might be sensitive to missing values, however, in this study we only focused on (real
and synthetic) data sets where 100% of values were present.

The biggest advantage of PQN is that no calibration curves and prior knowledge
about changes over time of measured metabolites are required. Moreover, PQN is
independent from the number of sample points measured in a time series. However,
its major drawback is that the normalization quotient is not an absolute quan-
tification and only shows relative changes. I.e. it does not quantify V' as given in
Equation 2 directly with an absolute value, but instead normalizes relative abun-
dances between samples and time points. Another critical assumption is that sweat
metabolite concentrations need to be — on average — constant over the sampled time
series. Whereas this is reasonable to assume for the sweat of healthy humans [20],
one has to take care when investigating disease states (for example cystic fibrosis,
which is known to alter the sweat’s composition [31]).

2.2 Pharmacokinetic Normalization

Definition. In the pharmacokinetic model (PKM) we assume that we know at
least the functional dependence, i.e. the pharmacokinetics, but not necessarily the
value of the k (pharmaco-)kinetic parameters 0 € R for 2 < £ < Npetabolites
metabolites. Without loss of generality we (re-)sort M such that the first ¢ elements
(collected in the vector M@) correspond to metabolites with known pharmacokinetic
dependence, while the remaining netabolites — £ €lements (collected in the vector
I\N/IH) correspond to metabolites with unknown kinetics. Then Equation 2 takes the
form of

M, (t)\  (Ce (:0)) . prm a
(m(o)‘(%(t) )V v ™

with physically meaningful bounds;

Viower bound S VPKM(t) S Vupper bound (7b)

elowcr bound S 0 S euppcr bound- (7C)

VPEM(4) as well as © can be obtained by parametric fitting of MEKM (t). Note that
this allows not only to compute absolute values of CPX¥M(; @) but — with VFEM(¢)
— also of all other concentrations via Cy4 (t) = M., (t)/VEPEM (1),

As VPEM(3) may be different at every time step t;, we need to know the
(pharmaco-)kinetics of at least two metabolites, otherwise the number of parameters
is larger than the number of data points.

Discussion. The biggest advantage of this method is that it can implicitly esti-
mate absolute values of V' without the need of direct measurements. Therefore,
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sweat volumes can become smaller than the minimum required in volumetric meth-
ods and shorter sampling times also become possible. A drawback of this method is
the fact that it is only feasible if one has prior knowledge on relevant pharmacologi-
cal parameters (i.e. ingested dose of metabolites of interest, volume of distribution,
body mass of specimen, range of expected kinetic constants), which is limiting the
approach to studies where at least two metabolites together with their pharma-
cokinetics are well known. Moreover, calibration curves of metabolites of interest,
and sufficiently many samples in a time series are required for robustly fitting the
equation system. In a previously performed sensitivity analysis, an increase in the
quality of fit was observed as the number of samples increased from 15 to 20 time

points per measured time series [20].

2.3 Mixed Normalization
Definition. The mixed normalization model (MIX) is a combination of PQN and
PKM. It is designed to incorporate robust statistics of untargeted metabolomics via

its PQN term as well as an absolute estimation of V' via its PKM term.

Optimal parameters of MIX are found via optimization of two equations,

M, (1)) Cr (:0) ) mix a
T <M5+(t)> =T (sz+ o )V (t)] (8a)

and
7T [QPQN(t)} - 7T [VMIX(t)] (Sb)

where additional transformations 7' (PKM and PQN term) and scaling Z (PQN
term) can be applied to account for random and systematic errors (Section 3.1.1)

and VMIX(t) and 0 are constrained between physically meaningful bounds,

‘/iower bound < VMIX(t) < Vupper bound (80)

elower bound S 0 S eupper bound - (Sd)

E.g. bounds for V' can be calculated by Equation 2a and minimal and maximal

sweat rates from literature.

Discussion. We hypothesize that MIX model can combine the advantages of PQN
and PKM normalization models. Moreover, we believe that MIX inherits the statis-
tical robustness of PQN while simultaneously estimating absolute values as fitted
by PKM. Several prerequisites are necessary for normalization with PKM or MIX.
However, if they are fulfilled, the improved goodness of normalization by using
MIX instead of PKM usually does not come with an additional price as in many
metabolomics studies targeted and untargeted metabolites are measured in combi-

nation and thus all additional data required by MIX is already available.
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3 Methods

3.1 Implementation

A generalized version of PKM and MIX (where an arbitrary number of indepen-
dent metabolite kinetics can be modeled) was implemented as a Python class.
As input it requires the number of metabolites used for kinetic modeling (¢),
a vector of time points as well as the measured mass data (1\7[, matrix with
time points in the rows and metabolites in the columns). MIX additionally takes
a QPN = [QPW(11), ..., QPN £y, ome)]T vector (calculated with the PQN
method from all metabolites, nyetabolites) for all time points of a time series. Upon
optimization (carried out with self.optimize monte_carlo, which is a wrapper
for SciPy’s optimize.curve _fit [32]) the kinetic constants and sweat volumes are

optimized to the measured data by minimizing the functions listed in Equations 9b
and 9c for PKM and MIX respectively:

min(LM*X) = min(£PEM 4 £LPON) (9a)

where

Ttime points NMmetabolites

D DY L[A (T(02yy) - T(Cy vﬁ“ﬁﬂ, (9b)

Mtime points

LPON = 37 L[ =N (ZT(VM); - ZT(Q7N),) Var(T (VM)
i=1

(9¢)

Var(V) is the variance of V (which is the vector of estimated V over all time
points), T is a transformation function, Z is a scaling function, and L is the loss
function. The key difference between PKM and MIX is that the fitted V' in MIX are
biased towards relative abundances as calculated by PQN. An important additional
hyperparameter of the MIX model is A\, which weights the error residuals of £FXM
and L£PAN| Tts calculation is discussed in Section 3.1.1. If A = 1, the MIX model
simplifies again to a pure PKM model.

To summarize, an overview of the differences of PKM and MIX model is given in
Supplementary Table S1 and a flow chart of data processing for MIX normalization

is given in Supplementary Figure 1.

3.1.1 Hyperparameters
Several hyperparameters can be set for the PKM and MIX Python classes.

Kinetic Function. Firstly, it is possible to choose the kinetic function used to
calculate C. In this study we focused on a modified Bateman function F'(¢) with 5

kinetic parameters (kq, ke, co, lag, d):

[ bty +d ifb(t) >0
F#) = { d it b(t) < 0 (102)
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Figure 1 Flow chart for data processing for MIX normalization.
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Figure 2 Examples of concentration time series that can be modeled with the modified
Bateman equation used. The legend shows the kinetic parameters used to create the respective
curves. All parameters are within the bounds that were used for kinetic parameter fitting.

with

(efka(tflag) _ esze(tflag)) . (10b)
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This function was designed to be flexible and able to represent several different
metabolite consumption and production kinetics as exemplified by Figure 2. Intu-
itively, k, and k. correspond to kinetic constants of absorption and elimination of
a metabolite of interest with the unit h™'. ¢y is the total amount of a metabolite
absorbed over the volume of distribution with the unit molL~'. Additionally to
these parameters which are also part of the classical Batman function [33], we here
introduce lag and d. The lag term with the unit h shifts the function along the
X-axis, intuitively defining the starting time point of absorption of a metabolite of
interest, whereas the d term with the unit molL—' shifts the function along the

Y-axis.

Loss Function, L. L calculates the loss value after estimation of the error residuals
of the model (Equation 9). It can be set via self.set_loss_function to either
cauchy_loss or max_cauchy.loss (or max_linear_loss). In both cases the loss
is calculated as a Cauchy distribution of error residuals according to SciPy [32].
The difference, however, is that cauchy_loss only uses the absolute error residuals,
whereas max_cauchy_loss uses the maximum of relative and absolute error residuals
(thus the word max is expressed in its name). The reason for its addition was that
a good performance has been achieved in a previous study [20]. In this study we
used the max_cauchy_loss loss function for PKM models and cauchy_loss for MIX
models. The choice of L is intertwined with the choice of T" which becomes clear in

the following paragraph.

Transformation Function, T. T transforms the measured data M as well as the
calculated QPQN, CV, and V before calculation of the loss (Equation 9). Two
different transformations, none and 1logl10, can be set during initialization with the
argument trans_fun. As originally reported [20] no transformation was done for

PKM (i.e. trans_fun='none'),
T(M) = M. (11a)

For MIX models, however, a log-transform was performed (i.e. trans_fun='1logl0"),

T(M) = log,o(M + 10~%) (11b)

as the error on measured data is considered multiplicative [34] and the sweat vol-
ume log-normally distributed (Supplementary Figure S1). To avoid problems with
concentrations of the size 0 a small number (i.e. the size of optimizer precision [32])
is added.

In a sensitivity analysis study, we tested the quality of normalization of MIX
with different L and T hyperparameters and concluded that a combination of
cauchy_loss for L and 1logl0 for T performed best (Supplementary Figure S2C,
D).
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Scaling Function, Z. Z describes a scaling function performed on 7(QF®N) and
T(V). Scaling is performed to correct for noisy data (see Results Section 4.2.1).
Two strategies can be set with the scale_fun argument during initialization of the
MIX model class, standard or mean. In this study, all MIX models employ standard
scaling, i. e.

T(Q") — mean(T(Q"W))
Std(T(QP?N))

ZT(QPN) = (12a)

We additionally implemented mean scaling which differs depending on the choice of
T with

ZT(QPN) = T(QFN) — mean(T(QFY))  if trans_fun='1logl0’
| T(QPN) /mean(T(QPRN))  if trans_fun='none’.

(12b)

Optimization Strategy. The optimization of both, PKM and MIX models, is done
with a Monte Carlo strategy where the initial parameters sampled randomly from
an uniform distribution between their bounds. Performing a sensitivity analysis, we
previously showed that this method is preferable to a single fitting procedure [20].
In this study the number of Monte Carlo replicates for model fitting was set to 100.

Weighting of MIX Loss Terms. A weighting constant for every measured data
point can be used by the model. In a sensitivity analysis study we found that the
choice of A is not critical to the quality of normalization as long as it is not extremely
tilted to one side (i.e. A close to 0 or 1, Supplementary Figure S2A, B). Thus we
propose a method where the loss terms are weighted by the number of data points
fitted for each of both loss terms, but not by the number of metabolites used in
the calculation of each term (Supplementary Equations S1). For such a method the

solution for A is given by Equation 13.

1

A= ——
+1

(13)
3.1.2 Full and Minimal Models

In this study we differentiate between full and minimal models. With full models we
refer to pharmacokinetic normalization models (PKM or MIX) where all metabolites
of a given data set are used for the pharmacokinetic normalization. This means that,
for example, if Nyetabolites = 20 all 20 metabolites were modeled with the modified
Bateman function and thus in Equations 7a and 8a, £ = Npetabolites and MH is an
empty vector. On the other hand, minimal models are models where only the few,
known, better constrained metabolites were modeled with a kinetic function. This
means that the information used for PKMinima1 does not change upon addition of
synthetic metabolites. Therefore, its goodness of fit measure should stay constant

within statistical variability upon change of nyetabolites- Lhis behaviour was used
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to verify if the simulations worked as intended and no biases in the random num-
ber generation exist. On the other hand MIX,,inima1 model still gained information
from the increase of nyetabolites @S the PQN part of this model was calculated with
all Mypetabolites- Lherefore, changes in the goodness of fit measures for MIXinimal
are expected. We emphasize that the definition of full and minimal models is spe-
cific to this particular study. Here we explicitly set £ = 4, which originates from
previous work where 4 targeted metabolites (caffeine, paraxanthine, theobromine,
theophylline) with known kinetics were measured [20].

m Metabolite #1
2.5 A ® Metabolite #2
€ Metabolite #3
X Metabolite #4
_5 2.0 4
S
o
5
c
S
c 1.5
o
|9
©
=
Y 1.0
o
Q
=
0.5 A
0.0 4

time in h

Figure 3 C for the first four metabolites of the synthetic data. Kinetic parameters used for
calculation are listed in Supplementary Table S2.

3.2 Synthetic Data Creation
Three different types of synthetic data sets were investigated. The first two types
of data sets (sampled from kinetics, Section 3.2.1 and sampled from means and
standard deviations, Section 3.2.2) test the behaviour of normalization models in
extreme cases (either all metabolites describable by pharmacokinetics or all metabo-
lites completely random). Finally, the third type of data set (sampled from real data,
Section 3.2.3) aims to replicate measured finger sweat data as close a possible. In
sum the performance of normalization methods on all three types of data sets can
show how they behave in different situations with different amounts of describable
data.

In all three cases data creation started with a simple toy model closely resembling
the concentration time series of caffeine and its degradation products (paraxanthine,
theobromine, and theophylline) in the finger sweat as described elsewhere [20]. The
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respective parameters are listed in Supplementary Table S2. With them the con-
centration of metabolites #1 to #4 were calculated for 20 time points (between 0
and 15 h in equidistant intervals, Figure 3). Subsequently, new synthetic metabo-
lite concentration time series were sampled and appended to the toy model (i.e.
to the concentration vector, C(t)). Three different synthetic data sampling strate-
gies were tested and their specific details are explained in the following sections.
Next, sweat volumes (V') were sampled from a log-normal distribution truncated at
(0.05 <V < 4ul) closely resembling the distribution of sweat volumes estimated
in our previous publication [20], Supplementary Figure S1. Finally, an experimental
error (€) was sampled for every metabolite and time point from a normal distribu-
tion with a coefficient of variation of 20% and the synthetic data was calculated as

M(t) = diag(C(t) V(1)) e(t). (14)

For every tested condition 100 synthetic data replicates were generated and the
normalization models were fitted.

3.2.1 Sampled Kinetics

In simulation v1, data was generated by sampling kinetic parameters for new
metabolites from an uniform distribution. The distribution was constrained by
the same bounds also used for the PKM and MIX model fitting: (0,0,0,0)T <
(Ko, ke, co,lag,d)T < (3,3,5,15,3)T. Subsequently the concentration time series of
the synthetic metabolites were calculated according to the modified Bateman func-
tion (Equation 10).

3.2.2 Sampled Mean and Standard Deviation

Means and standard deviations of the concentration time series of metabolites were
calculated from untargeted real finger sweat data (for details see Section 3.4). The
probability density function of both can be described by a log-normal distribution
(Supplementary Figure S3). For the data generation of simulation v2, per added
metabolite one mean and one standard deviation were sampled from the fitted dis-
tribution and used as an input for another log-normal distribution from which a
random concentration time series was subsequently sampled. This results in syn-
thetic concentration values that behave randomly and, therefore, cannot be easily
described by our pharmacokinetic models.

3.2.8 Sampled from Real Data

To get an even better approximation to real data, in simulation v3 concentration
time series were directly sampled from untargeted real finger sweat data (for details
see Section 3.4). To do so, the untargeted metabolite M time series data set was
normalized with PQN. As the number of metabolites in this data set was comparably
large (Nmetabolites = 3446) we could assume that the relative error (or rRMSE, for
more explanation see Section 4.1.1) was negligibly small. The resulting values are
strictly speaking fractions of concentrations. However, this does not affect the results
as these values are anyways considered untargeted (i.e. no calibration curve exists)


https://doi.org/10.1101/2022.01.17.476591
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.17.476591; this version posted June 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Gotsmy et al. Page 13 of 31

and thus relative. Therefore, the PQ normalized data set could be used as ground
truth for concentration time series sampling. Subsequently, a subset of the original
ground truth data was sampled for synthetic data generation.

3.2.4 Sampling of Noisy Data

We investigated the influence of background (i.e. noisy) signal on the performance
on QPN (and scaled and transformed variants thereof). To simulate such an envi-
ronment we used data sampled from real data (Section 3.2.3), and applied V only

to a fraction of the C vector,

M #)) . [C @V
(Mn(t)> = diag (Cn(t) ) €. (15)

The noise fraction is given by the number of elements of M and Mn vectors,

length(M,,)
" length(ﬁ) + length(ﬁn)7

where subscript n in Mn, C,, and f,, denotes them as part of the noise.

Simulations were carried out for 20 equidistant noise fractions between 0 < f,, <
0.95 with 7metabolites = 100 and Ngime points = 20 for 100 replicates. The error
residuals of mean and standard scaled QP2N are calculated as

Ntime points

Mean Scaled Error = Z (ZT(QPM); — ZT(V),] (17a)

with Z defined as in Equation 12b and

Ntime points

Standard Scaled Error = Z (ZT(QPN); — ZT (V)] Std(T(V))

(17b)

with Z defined as in Equation 12a. For both cases T is defined as the logarithm
(Equation 11b). We point out that the multiplication with Std(7(V)) for the stan-
dard scaled error is important to make the results comparable, as otherwise the
error would be biased towards the method with smaller scaled standard deviation

regardless of the performance of the scaling.

3.3 Normalization Model Optimization

Normalizing for the sweat volume by fitting kinetics through the measured values
only has a clear advantage over PQN if it is possible to infer absolute sweat vol-
umes and concentration data. In order to be able to do that, some information
about the kinetics and the starting concentrations of metabolites of interest need
to be known. For example, when modeling the caffeine network in our previous

publication [20] we knew that the lag parameter of all metabolites was 0 and that
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the total amount of caffeine ingested (which corresponds to ¢p) was 200 mg. More-
over, we knew that caffeine and its metabolites are not synthesized by humans and
implemented the same strategy into our toy model (corresponding to d). As the toy
model was designed to resemble such a metabolism we translated these informa-
tion to the current study. Therefore, we assumed that the first 4 metabolites in our
toy model had known ¢y, lag, and d parameters. For their corresponding k, and
ke and the parameters of all other metabolites the bounds were set to the same
(0,0,0,0) < (kq, ke, co,lag, d)™ < (3,3,5,15,3)T used in kinetic data generation.
Figure 2 shows examples of concentration time series that can be described with
the modified Bateman function and parameters within the fitting bounds.

3.4 Real Finger Sweat Metabolome Data

The real world finger sweat data was extracted from 37 time series measurements
of Study C from ref. [20]. It was downloaded from MetaboLights (MTBLS2772 and
MTBLS2776).

Preprocessing The metabolome data set was split into two parts: targeted and
untargeted. The targeted data (i.e. the mass time series data for caffeine, parax-
anthine, theobromine, and theophylline) was directly adopted from the math-
ematical model developed by [35]. This data is available on GitHub (https:
//github.com/Gotsmy/finger_sweat).

For the untargeted metabolomics part, the raw data was converted to the mzML
format with the msConvert tool of ProteoWizard (version 3.0.19228-a2fc6edad) [36].
Subsequently, the untargeted detection of metabolites and compounds in the sam-
ples was carried out with MS-DIAL (version 4.70) [37]. A manual retention time
correction was first applied with several compounds present in the majority (more
than 90%) of the samples. These compounds were single chromatographic peaks
with no isomeric compounds present at earlier or later retention times (m/z 697.755
at 5.57 min, m/z 564.359 at 5.10 min, m/z 520.330 at 4.85 min, m/z 476.307 at
4.58 min, m/z 415.253 at 4.28 min, m/z 371.227 at 3.95 min, m/z 327.201 at 3.56
min, m/z 283.175 at 3.13 min, m/z 239.149 at 3.63 min, m/z 166.080 at 1.69 min,
m/z 159.113 at 1.19). After this, untargeted peak detection and automated align-
ment (after the manual alignment) were carried out with the following settings:
Mass accuracy MS1 tolerance: 0.005 Da, Mass accuracy MS2 tolerance: 0.025 Da,
Retention time begin: 0.5 min, Retention time end: 6 min, Execute retention time
correction: yes, Minimum peak height: 1E5, Mass slice width: 0.01 Da, Smoothing
method: Linear weighted moving average, Smoothing level: 3 scans, Minimum peak
width: 5 scans, Alignment reference file: C_D1_I_o_pos_msi_1.mzML, Retention time
tolerance: 0.3 min, MS1 tolerance: 0.015 Da, Blank removal factor: 5 fold change).
No blank-subtraction was carried out as the internal standard caffeine was spiked
into each sample including the blanks. Peak abundances and meta-information were
exported with the Alignment results export functionality.

Subsequently, we excluded isomers within a m/z difference of less than 0.001 Da
and a retention time difference of less than 0.5min. To further reduce features
that are potentially background, features with retention times after 5.5 min as well
as features with minimal sample abundances of < 5 x maximum blank abundance
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(except for the internal standard, caffeine-D9) were excluded from the data set. This
was done on a time series-wise basis, thus the number of untargeted metabolites
considered for normalization differs with a mean of 343 4+ 152 for the 37 time series
of interest.

C

. - - ]
Chcc caffeine | > caffeine >

ko

> Cpamxanthinc —;_>

k3 kr

Cthcobrommc >

Y

Y

Cthcophyllinc —

C[ree caffeine | > Ccaﬂ‘eine - >

Figure 4 Full network (top panel) and subnetwork (bottom panel) of caffeine absorption,
conversion to paraxanthine, theobromine, and theophylline and their elimination. The system
boundary (dashed line) represents the human body.

m € {paraxanthine, theobromine, and theophylline}

Size Effect Normalization In this finger sweat data set, time series of targeted
as well as untargeted metabolomics are listed. The kinetics of the four targeted
metabolites (caffeine, paraxanthine, theobromine, and theophylline) are known. A
reaction network of the metabolites is shown in the top panel of Figure 4. Briefly,
caffeine is first absorbed and then converted into three degradation metabolites.
Additionally, all four metabolites are eliminated from the body. All kinetics can be
described with first order mass action kinetics [38, 39].

In order to assess the performance of the sweat volume normalization methods
the full network was split up into three subnetworks that all contained caffeine
and one degradation metabolite each (Figure 4 bottom panel). The solution of the
first order differential equations describing such network is given in Supplementary
Equations S2a and S2b. Moreover, the 343 & 152 untargeted metabolite time series
were randomly split up into three (almost) equally sized batches and each batch
was assigned to one subnetwork. All three networks were subsequently separately
normalized with PKMpinimar and MIX hinimal methods with kinetic parameters
that were adjusted to the specific reaction network (Figure 4 bottom panel). Sub-
sequently, the kinetic constants (kj, kb, k%, k)) were estimated for 37 measured
concentration time series. Fitting bounds were not changed in comparison to the
original publication [20].
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As all three subnetwork data sets originate from the same finger sweat measure-
ments, the underlying kinetic constants should be exactly identical. As the kinetic
constants of absorption (k¢ = k{) and elimination (kS*f = k) + k%) of caffeine
are estimated in all three subnetworks we used their standard deviation to test the
robustness of the tested normalization methods.

3.5 Real Blood Plasma Metabolome Data

In the study of Panitchpakdi et al. [40] the mass time series of the metabolome
was measured in different body fluids after the uptake of diphenhydramine (DPH).
Here, we focus on data measured in the blood plasma which includes the abundances
of DPH (known kinetics, calibration curve, pharmacological constants) as well as
three of its metabolization products (known kinetics) and the abundances of 13526
untargeted metabolites with unknown kinetics.

Preprocessing The data of peak areas was downloaded from the GNPS plat-
form [41]. To reduce the number of metabolites that are potentially background
and/or noise in the data set, features with minimal sample abundances of <
5 x maximum blank abundance were excluded from the data set on a time series-
wise basis. Thus, the number of untargeted metabolites considered for normalization
differs with a mean of 1017 £ 114 for the 10 time series of interest.

Size Effect Normalization We assume that the kinetics of four metabolites (DPH,
N-desmethyl-DPH, DPH N-glucuronide, and DPH N-glucose) can be described by
the modified Bateman (Equation 10). A reaction network of the metabolites is
shown in Supplementary Figure S4. Briefly, DPH is first absorbed and then — with
unknown intermediates — converted into three degradation metabolites, which are in
turn metabolized further downstream or eliminated. ¢ of DPH was calculated with
pharmacological constants for bioavailability, volume of distribution, and dosage of
DPH as reported in the original publication [40].

Analogously to the normalization performed on finger sweat data, the full network
of four metabolites is split up into three subnetworks with only one, shared, targeted
metabolite (DPH itself), one additional untargeted metabolite with known kinetic
(either N-desmethyl-DPH, DPH N-glucuronide, or DPH N-glucose, Supplementary
Figure S5) and one third of 1017 + 114 untargeted metabolites with unknown ki-
netics. To ensure better convergence during fitting of the models, the M data was
first scaled to values between 0 and 1 by dividing by its metabolite-wise maximum.
This factor can be multiplied again as part of ¢y after the normalization is done.
Thereafter, PKMinimal and MIX 1inima1 models were fitted onto the scaled M data
(with £ = 2) for all ten measured time series. The bounds of parameters were chosen
so that previously reported estimates [40] are well within range: 0 < k < 5h~! for
{k}, KL}, 0 <k < 1h~!for {kb, ki }, c§FH as reported in the original publication nor-
malized by the maximum factor, 0 < ¢f* < 300 for m € {N-desmethyl-DPH, DPH
N-glucuronide, DPH N-glucose} and lag = d = 0 as well as 0.01 <V < 0.03mL.

As all three subnetwork data sets originate from the same plasma time series
measurements, the underlying kinetic constants of DPH should be exactly identical.
As the kinetic constants of absorption (kDPH = kf) and elimination (kDPH = £J)
of DPH are estimated in all three subnetworks we used their standard deviation to
test the robustness of PKM inimal and MIX inimal-
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Figure 5 Relative and absolute normalization performance. In the top row the predicted
|°g10(0j (t:; 9)/Cj (0;0)) (l € {17 ooy Mtime points}v JE {17 ey nmetabolites}) are plotted as a
function of the true, underlying log,y(C;(t;)/C;(0)). The bottom row shows the predicted V' as a
function of the true, underlying V. The columns represent different normalization models (PQN,
PKMpinimal, and MIXqinimal from left to right). As no absolute V' can be calculated from PQN the
bottom left plot is omitted. To illustrate the effect of different RMSE and rRMSE sizes (which
both are calculated from V'), we show their mean over 100 replicates in comparison to the

R2 values calculated from the points plotted. Intuitively rRMSE is a measure of good correlation
on the top row whereas RMSE is a measured of good correlation on the bottom row (high R?, low
rRMSE/RMSE respectively).

3.6 Data Analysis

Goodness of Normalization Two goodness of fit measures are calculated to analyze
the performance of the tested methods. RMSE is the standard deviation of the
residuals of a sampled sweat volume time series vector (V') minus the fitted
sweat volume vector (V1) while rRMSE is the standard deviation of the ratio
of sampled and fitted V vectors normalized by its mean. Intuitively, RMSE is a
measure of how much absolute difference there is between the fit and a true value,
rRMSE on the other hand gives an estimate on how good the fitted sweat volumes
are relative to each other. A visual depiction of RMSE and rRMSE is shown in

Supplementary Figure S6 and their exact definition is given in the equations in 3.3.

Statistical Analysis The significant differences in the mean of goodness of fit mea-
sures were investigated by calculating p values with the non-parametric pairwise
Wilcoxon signed-rank test [42] (SciPy’s stats.wilcoxon function [32]). Significance
levels are indicated by *, ** and *** for p < 0.05, 0.01, and 0.001 respectively.

4 Results
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4.1 Comparison of PKM and MIX

4.1.1 Synthetic Data Simulations

In order to test the performance of different normalization models we generated
100 synthetic data sets with three different methods (simulations v1, v2, v3) and
five different nyetabolites (4, 10, 20, 40, 60) each, where the underlying C, V, and €
values were known. Simulations v1, v2, and v3 differ in the way how C was generated
(kinetic, random, sampled from real data set, respectively). In order to quantify the
normalization model performance, two measures of goodness of normalization were
used for the analysis of the results: RMSE and rRMSE.

To visualize the obtained normalization performances we plotted the results for
simulation v3 and nmetabolites = 60 in Figure 5 for three normalization models (from
left to right column, PQN, PKMinimal, and MIX pinima1)- The top row shows the
predicted log,(C;(t;;0)/C;(0;0)) (i.e. the concentration of each metabolite j at
each time point 7 divided by its concentration at time 0) as a function of the true
log1o(C;(t;)/C;(0)) values. It illustrates the correlation of the relative abundances
of one metabolite across all time points. Good correlations (i.e. high R?) as seen
for PQN and MIX ,inimal result in a low rRMSE measure. On the bottom row of
Figure 5 the absolute values of predicted V are plotted as a function of the true
V. There it becomes evident that good correlations of absolute values result in low
RMSE measures.

In the following sections we will focus on the size of RMSE and rRMSE respec-
tively as they are both calculated from the predicted V' directly. Note that for PQN
no absolute V' can be estimated and, therefore, no RMSE is calculated.

Influence of the Number of Metabolites. We tracked RMSE and rRMSE of normal-
ization methods for different numbers of metabolites (Nmetabolites) t0 investigate how
the methods behave with different amounts of available information. An overview
of their goodness of normalization measures as a function of nyetabolites ON SaM-
pled kinetic data (panels A, B), on completely random data (panels C, D) and on
sampled subsets of real data (panels E, F) is given in Figure 6.

PKMy,; which fits a kinetic function through all possible metabolites (£ =
Nmetabolites) Performs well (low RMSE, low rRMSE) when the C data originates
from a kinetic function (simulation v1, Figure 6A, B). However, when the underly-
ing data does not originate from kinetic time series (simulation v2, Figure 6C, D)
its performance is reduced drastically. For PKMg, this is resembled in an increase
of RMSE (from 0.19 # 0.08 pL to 0.64 + 0.16 pL for npetabolites = 60) as well as of
rRMSE (from 0.08 4= 0.02 to 0.28 + 0.14 for nyetabolites = 60).

Another observation is the behaviour of PQN. Its rRMSE approaches a value
close to 0 with increasing nmetabolites, indifferently on how the underlying data was
generated.

Interestingly, the results from simulation v3 lie between the results from simula-
tion vl and v2. This gets especially evident when comparing the performance of
PKMyy,y in Figure 6. Such a result suggests that not all of the untargeted metabo-
lites measured are completely random, but some can be described with the modified
Bateman function. This leads to the hypothesis that after sweat volume normaliza-
tion, the real finger sweat data (from which values for v3 were sampled) has high
potential for the discovery of unknown kinetics.
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Figure 6 Goodness of normalization measures of synthetic data simulations. The mean for 100
replicates for different sweat volume normalization models is given for RMSE (left column) and
rRMSE (right column). Results for simulations v1, v2, and v3 are shown in rows one, two, and
three, respectively. The error bars represent standard deviations of the replicates. For the PQN
method no RMSE can be calculated.

Exact numbers for RMSE and rRMSE for all normalization methods and
Nmetabolites are given in Supplementary Tables S3 and S4 respectively. Moreover,
pairwise comparisons of RMSE and rRMSE of normalization methods relative to

the results from PKMinimal are plotted in Supplementary Figure S7.
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Figure 7 RMSE measures of simulation v3 with netabolites = 60. The significance between the
methods was calculated on 100 paired replicates with the two-sided Wilcoxon signed-rank test.

Statistical Testing As at Npetabolites = 60 the goodness of normalization measures
start to flatten out, we further investigated this condition for statistical significance.
We used the two-sided non-parameteric Wilcoxon signed-rank test to compare pair-
wise differences in RMSE and rRMSE between the tested models. p-values for all
combinations are given in Supplementary Tables S5 and S6.

As Figure 6 already indicated, the overall best performance in RMSE as well
as TRMSE is observed for the MIX inimar model. For npetabolites = 60 it signifi-
cantly outperforms every other method’s RMSE (Figure 7). Moreover, MIX yinimal s
performance in TRMSE is at least equal to or better than all other tested meth-
ods (Supplementary Table S6) with one exception: the comparison of rRMSE of
MIX pinima1 and PQN in simulation v1 shows significant difference (p = 0.0029),
however, the absolute values of rRMSE are still very similar (0.049 £+ 0.010 and
0.047 4 0.009 respectively). Compared to the previously used PKMinima [20], the
RMSE of MIX hinimal improves by 73 410 %, the rRMSE by 43+ 12 % (Supplemen-
tary Figure S7). Analogously to Figure 7 for simulation v3, the results of simulations
vl and v2 are shown in Supplementary Figure S8 and S9 respectively.

The two-sided version of the Wilcoxon signed-rank test was used to test for any
difference in between multiple normalization methods. After it became evident that
MIX ninimal performed best, we used an one-sided version of the Wilcoxon signed-
rank test to verify if RMSE and rRMSE are significantly decreased by MIXinimal
compared to all other normalization methods. The resulting p-values are listed in
Supplementary Table S7. Again, MIX inimar significantly outperformed all other
tested methods in RMSE and rRMSE except for PQN in any of the simulations.

We, therefore, conclude that normalizing the sweat volume by the MIX ,inimal
method reduces the error for the estimated V' compared to other tested methods.
Compared to PKM, MIX inimal has the advantage that its performance does not
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Figure 8 Time in seconds for optimization of one normalization model in simulation v3. The
error bars represent the standard deviation of normalization times between 100 replicates.

vary if metabolites’ concentration time series can be described with a modified Bate-
man function (i.e. simulations v1, v2 v3 have little influence on its performance).
Therefore, it is especially advantageous if this property cannot be guaranteed.

4.1.2 Computational Performance

Analysis of metabolomics data sets is usually a computationally exhaustive process.
There are several steps in (pre-)processing that need to be executed, many of them
lasting for hours. Therefore, computational time can quickly stack to large numbers.
Normalization models are no exception to this general rule. As nyetabolites i & phar-
macokinetic model increases, the time for optimization of pharmacokinetic models
may become limiting. Therefore, we investigated the average time for one time series
normalization for different methods and different numbers of metabolites.

The computational time spent for one optimization step as a function of
Nmetabolites 1S given in Figure 8 for simulation v3. It increased for some normaliza-
tion models, however not for all of them and not equally. Within the investigated
range, PQN stays well under 1 second per normalization, whereas with PKMg,; the
normalization time increases drastically from 1.6 +1.1s for a model with 4 metabo-
lites to 110 £ 44's for 60 metabolites. Similar normalization times were observed
for MIX¢,; maxing out at 19 £ 22 for nyetabolites = 60. In stark contrast to the
exponential increase in computational power needed for full models are the minimal
models. Their time to optimize stays nearly constant (< 3s) within the investigated
metabolite range (Supplementary Table S8).

Here we demonstrate that MIX ,inima1 18 not only superior to other tested models
in terms of its normalization performance, but also in terms of computational feasi-
bility. We hypothesize that even data sets with thousands of untargeted metabolites
will have a minor impact on its speed.


https://doi.org/10.1101/2022.01.17.476591
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.17.476591; this version posted June 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Gotsmy et al. Page 22 of 31

0.8 1

o
)
|

o
»
L

Std(QF)/Mean(Q}™)

o
N]
.

o.o—|—-- y=—0.68x+0.68| B

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Noise Fraction, f,

Standard Scaled Error
w

Mean Scaled Error

Figure 9 Influence of the fraction of noisy data on the error of PQN calculation. Panel A
illustrates the change of the coefficient of variance of QPN (Y-axis) as the noise fraction (fn,
Y-axis with the same tick labels as the color bar) increases. Panel B shows the error size of
calculated QPN to true V with mean scaling (X-axis) and standard scaling (Y-axis). The color of
points relates to the noise fraction as depicted in the color bar.

4.2 Comparison of PQN and MIX

4.2.1 Influence of Noise on PQN

In untargeted metabolomics it is often difficult to distinguish between metabolites
originating from the actual matrix of interest or from contamination. As PQN
includes all untargeted metabolites in its calculation, metabolites stemming from
contamination might become a problem as their fold change is independent on the
sweat volume, which changes the underlying distributions of quotients. Therefore,
we investigated the influence of different fractions of metabolites originating from
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contamination (i.e. noisy data). Furthermore, we tested if scaling of QF®N values
can counteract errors introduced by noise.

Figure 9A demonstrates the problem of using the probabilistic quotient normal-
ization on noisy raw data. The direction of size effects can still be explained when
noise is present, however, absolute values of the size effects decrease. Thus, in Fig-
ure 9A the coefficient of variation (i.e. the standard deviation over the mean) of
QPQN is a measure for the average value of the estimated size effect over one syn-
thetically generated time series. As the fraction of noise (f,, X-axis) increases the
coefficient of variation decreases drastically and approaches 0 when f,, — 1.

Figure 9B shows the performance of scaling methods to counteract the reduction
of coefficient of variation as described above. The mean scaled error (X-axis) and
standard scaled error (Y-axis) as calculated by Equations 17 are plotted against
each other. When f, < 0.05, mean scaling outperforms standard scaling, however,
thereafter the standard scaled QPN is less erroneous than the mean scaled version.

When incorporating QF®N values to the MIX model it is important to correct for
errors introduced by noise. As this result shows that standard scaling reduces the
detrimental effect of noise on the calculation of QPRN, we used standard scaling
throughout the study for MIX normalization. Moreover, this result underlines the
good performance of standard scaling in biological data sets [43].

4.2.2 Synthetic Data Simulations with Noise

The synthetic data used for the analysis of Section 4.1 did not contain any metabo-
lites that are classified as noise, i.e. their M is not influenced by size effects (Equa-
tion 15). This, however, is not necessarily a realistic assumption as there are many
sources of contaminants in metabolome measurements. Noisy metabolites can be
either introduced by biological means (e.g. metabolites that do not originate from
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sweat but from the surface of the skin in sweat measurements) [44] or by experi-
mental handling [45]. As shown in Figure 9, this noise in data negatively affects the
performance of PQN. Thus, the goodness of PQN in the results of Section 4.1 is
probably overestimated.

To get a more accurate view on the goodness of normalization of PQN and
MIX hinimal, we tested their performance on synthetic data with different fractions
of noise, f,. In order to do so, we created 100 replicates of synthetic data sampled
from real data (i.e. simulation v3) for 10 equidistant noise fractions ranging from
fn =0 to f,, = 0.9 with nyetabolites = 60. In all simulated data, only untargeted
metabolites were affected by the introduction of noise, as we assumed that for tar-
geted metabolites (i.e. £ = 4) with known pharmacokinetic behaviour one can be
highly confident that the measurements are not originating from contaminants.

The rRMSE of PQN and MIX inimal is plotted in Figure 10. Only when zero
noise was present in the synthetic data set, MIX inimal did not improve upon PQN,
however as the fraction of noise increased, MIXinimal Significantly outperformed
PQN in terms of rRMSE. The p-values for all noise fractions are listed in the
Supplementary Table S9.

The difference of rRMSE between PQN and MIX inimal in Figure 10 is related to
the difference of mean and standard scaled errors in Figure 9B. PQN alone cannot
utilize the improved performance of standard scaling as Std(7(V)) has to be known
for its calculation (Equation 17b). However, when normalizing with MIX inimal,
Std(T(V)) can be estimated from the pharmacokinetic part of the model (Equa-
tion 9c¢) significantly improving its quality.

4.3 Application to Real Data

4.8.1 Caffeine Network

Previously, we identified and quantified four metabolites (caffeine, paraxanthine,
theobromine, and theophylline) in a time series after the ingestion of a single dose
of caffeine [20]. To investigate the performance of normalization models on a real
finger sweat data set, we split all measured M time series into three parts that con-
tained pairs of targeted metabolites each, only one shared by all, namely caffeine
(compare Figure 4 top and bottom network). Subsequently we fitted a PKMninimal
and MIX,inimal models (¢ = 2) with adapted kinetics (Methods Section 3.4) through
the three sub data sets. Due to the nature of the metabolite subnetworks (Figure 4
bottom panel) it is possible to calculate two kinetic constants describing the ab-
sorption and elimination of caffeine (kS = &} and kS = k} + k}) in all three cases.
As the data for all three subnetworks was measured in the same experiment we can
assume that the underlying ground truth of these constants has to be the same.
Therefore, by comparing the standard deviation of kinetic constants it is possible
to infer the performance of normalization methods.

In panels A and B of Figure 11 the standard deviations of fitted kinetic con-
stants within one measured M time series are illustrated. Panel A shows that the
standard deviations of the absorption constant of caffeine, k<, of PKMpinimal are
significantly larger than of the MIX phinimal model (p = 5.8 x 1074, n = 37, one-
sided Wilcoxon signed-rank test). Likewise, a significant decrease of the size of
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Figure 11 Method validation with finger sweat (left column) and blood plasma (right column)
data from Brunmair et al., 2021 [20] and Panitchpakdi et al., 2021 [40] respectively. On panels A
to D, the standard deviations of constants of absorption and elimination of caffeine and
diphenhydramine (kS kSf, KDPH kDPH) between the three modeled subnetworks are plotted.
The number of points per method corresponds to the number of concentrations time series
present in both data sets (i.e. 37 and 10 for sweat and plasma respectively). A one-sided Wilcoxon
signed-rank test was used to test for significant differences. Panels E and F show the estimated
concentration time series of caffeine and DPH plotted from the three different subnetworks. The
lines are named after the second metabolite with known kinetic present in the subnetwork,
however they all refer to C' of caffeine and DPH themselves. The colors of curves and the area
between them indicate the results from normalization with PKM yinimal of MIXminimal respectively.

standard deviations of MIX ,inimal Wwas found compared to the previously published
PKM pinimal model (p = 1.5 107°) for the constant of caffeine elimination, kgaf
(panel B, Figure 11).

In panel E of Figure 11 one exemplified normalized C' time series of caffeine
in sweat is depicted as fitted for all three subnetworks with PKM,inimal and
MIX ninimal respectively. The selected time series illustrates the median of differ-
ences in standard deviations between PKMinimal and MIX inimal from panels A
and B of Figure 11. The area enclosed by the Cs of MIX inimal models is smaller
than from PKM yinimal-

We emphasize that in our original study the caffeine degradation directly pro-
duces paraxanthine, theobromine, and theophylline, thus pharmacokinetic param-
eters ko, k3, k4 are explicitly linked [20]. Therefore, the kinetic network resembled


https://doi.org/10.1101/2022.01.17.476591
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.17.476591; this version posted June 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Gotsmy et al. Page 26 of 31

specific kinetics of that metabolic pathway (Figure 4 top panel). In contrast, in
previous sections we assumed that the underlying pathway structure is not known.
Thus parameters are not linked, which implies that parameters are less constrained.
Yet in this section, we demonstrated that the fundamental improvement found by
switching from PKM to a MIX model can be also translated back again to a more
specific metabolic network (Figure 4 bottom panel). In order to support this ar-
gument, we show the applicability of the MIX ,inimal normalization method on a
real finger sweat data set. The results with real data emphasize the validity of the
simulations done on synthetic data sets. They show that, especially when known
metabolic networks are small, the MIX,,inima1 model significantly improves the ro-
bustness of normalization and thus kinetic constants inferred from finger sweat time

series measurements.

4.8.2 Diphenhydramine Network

In the original study [40] the authors measured time series abundances in the blood
plasma after the application of a single dose of diphenhydramine (DPH). M from
targeted DPH (known pharmacological constants, known kinetics) as well as un-
targeted metabolization products (N-desmethyl-DPH, DPH N-glucuronide, DPH-
glucose, known kinetics) and several other untargeted metabolites (unknown kinet-
ics) were reported. Similar to sweat, although less pronounced, plasma also suffers
from size effects (i.e. a systematic error in the measurements) introduced by biolog-
ical means or preanalytical sample handling [46, 47]. Thus, we used the reported
data as a second real data set for validation of the performance of MIX ,inimal. The
validation was performed in analogy to the caffeine study where a full network (Sup-
plementary Figure S4) is split into three subnetworks (Supplementary Figure S5,
for details see Methods Section 3.5).

In panels C and D of Figure 11 the standard deviations of fitted kinetic con-
stants within one measured M and three fitted subnetworks are illustrated. Again,
the standard deviations of kEPH of PKMinimal are significantly larger than of
MIX hinimal (p = 2,0 X% 1073, n = 10, one-sided Wilcoxon signed-rank test, panel Q).
A similar significant decrease of the standard deviations are also found for kPPH
(p = 3.2 1072, panel D).

In panel F of Figure 11 one exemplified, normalized C' time series of DPH
in plasma is depicted as fitted for all three subnetworks with PKMpinima1 and
MIX ninimal respectively. The time series was selected as it is closest to the median
of the differences in standard deviations between PKMjinimal and MIX inimal- It
is visible that the area enclosed by the C resulting from the MIX  inimal model is
smaller than from PKM ,inimal-

This validation illustrates the performance of the normalization models presented
in this study on a data set that was measured independently from the development
of said methods. The results of the plasma validation study are similar to the results
observed for the finger sweat study; again, MIX yinimal improves the robustness (i.e.
reduces standard deviations) of size effect normalization.

Even though there is a significant decrease in the standard deviation of k2T with
MIX pinimar compared to PKMninimal, MIXninimal also produced an outlier (Fig-
ure 11D). The reason for this outlier is that on rare occasions MIX inimal is not able
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to detect any size effects due to convergence issues (Supplementary Figure S10A).
To investigate this results we performed synthetic data simulations (Supplementary
Figure S10B). There, we found that this behaviour of MIX ninimal can be observed
when two different V' vectors are applied to £ and ¢+ metabolites. Therefore, we
hypothesize that the clearly visible malfunction of MIX ,inimal to detect size effects
(i.e. the variance of estimated V is close to 0) gives an indication to scientists that
size effects might not be a major concern in such a data set. In this specific blood
plasma time series measurement, for example, the size effects might have been too
small compared to other error sources to be identified by MIX inimal-

To summarize, with this validation we show that the generalized normalization
models, as implemented in this study can directly be used for the normalization of
real data as long as the modified Bateman function is able to describe the measured
kinetics reasonably well and size effects are large enough to be detectable.

5 Discussion

In this study we present a generalized framework for the PKM normalization model,
first introduced in reference [20]. Moreover, we extend the existing model to incor-
porate untargeted metabolite information, dubbed as MIX model. Both models are
implemented in Python and are available at GitHub https://github.com/Gotsmy/
sweat_normalization.

The quality of normalization methods was tested on synthetic data sets. Synthetic
data sets are necessary as it is impossible to obtain validation data without fun-
damentally changing the (finger) sweat sampling method as described above [20].
However, three different synthetic data generation methods (v1, v2, v3) were em-
ployed to ensure that synthetic data sets are as close to real data as possible. We
found that, when npetabolites = 60, MIXinimal performs equally well or better than
all other tested normalization methods.

Despite true V' values remaining unknown, the real finger sweat data can be used
as validation for relative robustness of normalization methods. There, MIX inimal
significantly outperforms PKM yinimal- The decreased variance of kinetic constants
estimated by MIX inimal likely originates from the fact that QPN does not differ
much for three subsets as long as sufficiently many npetabolites = 60 are present in
each subset. On the other hand, as only few data points are used for PKMinimal
optimization, small errors in one of the two targeted metabolites measured mass
have a high potential to change the normalization result.

Additionally, the performance of PKM pinimal and MIX hinimal were compared on a
blood plasma data set taken from a study independent from any measurements used
for the development of the normalization models. There, we were able to demon-
strate the same improvement from PKMinimal 10 MIX ninimal in normalization
robustness. Moreover, we show that the generalized normalization models as imple-
mented as Python class in this study can be easily used for size effect normalization
with little additional coding necessary.

To recapitulate, the proposed MIX,,inima1 model has several crucial advantages
over other tested methods.

o MIX  inimal significantly outperforms PKMinimal in relative ({fRMSE, —43 +
12 %) and absolute (RMSE, —73+10 %) errors with as little as 60 untargeted
metabolites used as additional information (Figure 7).
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® MIX hinimal is invariant to whether untargeted metabolites follow an easily
describable kinetic concentration curve (Figure 6).

e Without noise, MIX inimal performs equally well as PQN for relative abun-
dances, but additionally it estimates absolute values of V', similar to pharma-
cokinetic (PKM) models (Figure 6).

e When noise is present MIX ,inimal also outperforms PQN for relative abun-
dances (Figure 10).

® MIX inimal performs well in this proof of principle study, moreover, it may be
used as a basis for further improvements. Firstly, different, more sophisticated
statistical normalization methods (e.g. EigenMS [27]) could be used as input
for the PQN part of the model. Secondly, Bayesian priors describing uncer-
tainties of different metabolites could be implemented over the A parameter
in a similar fashion as discussed in reference [48].

e Strikingly, the results showed that for all normalization methods tested the
RMSE and rRMSE values flattened once 60 metabolites were present in the
original information. This suggested that the presented normalization mod-
els, especially MIX ,inimal can be applied even for biomatrices or analytical
methods with as few as 60 compounds measured.

e Although MIX ,inimal Was developed especially with sweat volume normaliza-
tion in mind, it can easily adapted for other biomatrices, e.g. plasma (Fig-
ure 11).

6 Conclusion

In this study we described and defined the MIX metabolomics time series nor-
malization model and compared it to PKM. Subsequently, we elaborated several
advantages of the MIX inimal model over PKM and previously published normal-
ization methods. We are confident that this will further improve the reliability
of metabolomic studies done on finger sweat and other conventional and non-
conventional biofluids. However, we acknowledge that a more thorough investigation
with data sets of several more quantified metabolites and determined sweat volumes
need to be carried out to assess the full potential of the proposed method.
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b part of modified Bateman function

c,C underlying concentration (vector)

co kinetic parameter

d kinetic parameter

F modified Bateman function

fn noise fraction

yref PQN correction factor

7 time point index

7 metabolite index

k kinetic parameter

4 metabolites used for kinetic fitting

4+ metabolites not used for kinetic fitting

L loss

L loss function

lag kinetic parameter

M,M measured mass (vector)

M reference mass for PQN

m/z mass over charge ratio

T metabolites number of metabolites

TNtime points number of time points

P p-value

Qsweat sweat rate

QC median concentration fold change of two samples
M

median mass fold change of two samples
QPN QPAN normalization quotient (vector) calculated by PQN

R?2 coefficient of determination

rRMSE relative measure of goodness of normalization
RMSE absolute measure of goodness of normalization
Std standard deviation

T transformation function

t time

V.,V collected (sweat) volume (vector)

Var variance

vl, v2, v3 synthetic data sets

Z scaling function

€ experimental error vector
0 kinetic parameter vector for fitting
A loss weighting parameter

T time to collect one sample
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