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Abstract

Metabolomic time course analyses of biofluids are highly relevant for clinical
diagnostics. However, many sampling methods suffer from unknown sample sizes
commonly known as size effects. This prevents absolute quantification of
biomarkers. Recently, several mathematical post acquisition normalization
methods have been developed to overcome these problems either by exploiting
already known pharmacokinetic information or by statistical means.
Here we present an improved normalization method, MIX, that combines the

advantages of both approaches. It couples two normalization terms, one based on
a pharmacokinetic model (PKM) and the other representing a popular statistical
approach, probabilistic quotient normalization (PQN), in a single model.
To test the performance of MIX, we generated synthetic data closely

resembling real finger sweat metabolome measurements. We show that MIX
normalization successfully tackles key weaknesses of the individual strategies: it
(i) reduces the risk of overfitting with PKM, and (ii) contrary to PQN, it allows
to compute sample volumes. Finally, we validate MIX by using real finger sweat
as well as blood plasma metabolome data and demonstrate that MIX allows to
better and more robustly correct for size effects.
In conclusion, the MIX method improves the reliability and robustness of

quantitative biomarker detection in finger sweat and other biofluids, paving the
way for biomarker discovery and hypothesis generation from metabolomic time
course data.
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1 Introduction

In recent years, the analysis of the sweat metabolome has received increased atten-

tion from several fields of study [1–3]. For example, sweat has been in the focus of

forensic scientists since it is possible to analyze metabolomic profiles of finger prints

that have been found (e.g. at a crime scene) [4]. Also, drug testing can easily be

performed on sweat samples. One advantage of this method is to not only identify

already illegal substances but their metabolic degradation products as well, thereby

allowing to distinguish between drug consumption and mere contact [1]. Another

application of sweat metabolomics is in diagnostics for personalized medicine, where

the focus is put on discerning metabolic states of the body and trying to optimize

nutrition and treatment based upon information of biomarkers in sweat [5–7].
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Sweat metabolomics offers several technical advantages. Firstly, sweat is a rich

source of biomolecules and thus offers great potential for biomarker discovery [8, 9].

Secondly, sweat sampling is easy compared to sampling of other biofluids (e.g. blood

or urine). Moreover, it is non-invasive and can in principle be rapidly repeated.

Several sampling methods have been developed [2, 3, 9, 10]. However, most of them

work in a very similar manner: a water absorbing material is put onto the skin’s

surface to collect sweat for some (short) time. Sweat metabolites are subsequently

extracted from this material and analyzed [3, 10]. Methods differ, however, in if and

how they induce sweating. Some methods induce increased sweating by physical

exercise [9] or chemical stimulation [2], whereas in other studies no sweat induction

is performed and the natural sweat rate is sufficient for metabolomic analysis [3, 11].

Regardless of the exact sampling method, most of the above mentioned studies

suffer from one major drawback. The sweat flux is highly variable, depending not

only on interindividual differences, but also on body location, temperature, humid-

ity, exercise and further factors that may change multiple times over the course

of one day [12, 13]. For example, even with conservative estimates a variability of

sweat flux qsweat on the finger tips between 0.05 and 1mg cm−2 min−1 needs to be

accounted for [13–16]. This is a major challenge for comparative or quantitative

studies, which has been acknowledged by many, e.g. [1, 4, 8, 17–19], however only

actively approached by few – most notably [9].

The key problem is associated to the fact that often one is interested in the

true metabolite concentrations, C ∈ Rnmetabolites , of nmetabolites metabolites, which

is obscured by an unknown and time-dependent sweat flux. Thus, the measured

metabolites’ intensities are not proportional to C but to the metabolite mass vector,

M̃ ∈ Rnmetabolites ,

M̃(t) = asample

∫ t

t−τ

C(t′) qsweat(t
′) dt′. (1)

Here asample and τ denote the surface area of skin that is sampled, and the time

it takes to collect one sample, respectively. We emphasize that throughout the

manuscript the mass of a metabolite is defined as the measured abundance of the

metabolite in a measured sample, and neither as the molar mass or mass to charge

ratio. Moreover, we acknowledge that without a calibration curve the measured

abundances have an arbitrary peak-area unit and are thus strictly neither abso-

lute masses nor concentrations. The proportionality constant that scales measured

intensities to mass units is determined by the calibration curve. The proper cali-

bration curve is not further discussed here but assumed to be linear and available

when applicable.

Metabolic concentration shifts happen in the span of double-digit minutes to

hours, whereas sampling times are usually low single-digit minutes, therefore it is

possible to assume that C changes little over the integration time τ [20]. Thus (1)

simplifies to

M̃(t) ≈ C(t) V (t), (2a)
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with an unknown sweat volume during sampling

V (t) := asample

∫ t

t−τ

qsweat(t
′) dt′, (2b)

and the problems reads: given M̃, how can we compute C if we don’t know V ?

The need to calculate absolute metabolite concentrations from small biological

samples of unknown volume is not unique to sweat metabolomics, but known

throughout untargeted metabolomics. The problem is commonly referred to as size

effects [21]. For the sake of consistency with previous publications on this topic, we

will use the term ”size effects“ throughout this publication. We emphasize that in

this context it specifically refers to perceived differences in measured abundances

due to changing sample volumes and/or dilutions and not to effects of different

numbers of measurements per sample also referred to as sample size effects [22].

Three strategies have been developed to tackle size effects:

Direct Sweat Volume Measurement. Measuring V , for instance via microfluidics

[9, 23, 24], is the most straight forward method to solve (2) and typically very

accurate with minimally required volumes in the range of ∼ 5 to 100µL [9, 23, 24].

However, in case of sweat sampling it may take quite some time, large sample areas

or increased (i.e. induced) sweating to collect enough sweat for robust volume quan-

tification. Another alternative is the volume estimation via paired standards [25],

however, such method increases complexity of sample preparation. Either option

would impede fast and easy sample collection and analysis.

Indirect Sweat Volume Computation. If the chemical kinetics of targeted metabolite

concentrations are known, then kinetic parameters and the sweat volume at each

time point can be simultaneously determined by fitting the measured mass vector

to Equation 2. Recently, we used this strategy to computationally resolve not only

sample volumes in the nL to single digit µL-range but also accurately quantify

personalized metabolic response patterns upon caffeine ingestion [20]. Albeit feasible

for determination of individual differences with knowledge of reaction kinetics, this

method quickly becomes unconstrained when too little prior information is available.

Therefore, it is not suited for the discovery of unknown reaction kinetics. Moreover,

this method requires several sampling time points to allow modeling the kinetics of

different metabolites thereby decreasing simplicity of sampling.

Statistical Normalization. With this approach the aim is to normalize the mass

vector by the apparent mass of a marker that scales proportionally to the sample

volume, so that the ratio becomes (at least approximately) independent of the sam-

ple volume. Various strategies have been developed for untargeted metabolomics;

for example, normalization by total measured signal [26], and singular value

decomposition-based normalization [27]. However, one of the best performing

methods–referred to as probabilistic quotient normalization (PQN) – simply as-

sumes that the median of the ratio of two apparent mass vectors is proportional

to the sample volume [21, 28–30]. Although PQN does not allow one to compute

sample volumes per se, it enables one to assess differential changes [28].

In this study we explore the performance of three different normalization meth-

ods on synthetic data. We illustrate the disadvantages of two previously published
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methods only focusing on either targeted or untargeted metabolites, respectively. A

third normalization method is developed by combining both strategies in a single

MIX model. We show that MIX significantly outperforms its preceding normaliza-

tion methods. To validate the results we use MIX to characterize caffeine metabo-

lization measured in the finger sweat as well as diphenhydramine metabolitzation

measured in blood plasma.

2 Theory
2.1 Probabilistic Quotient Normalization

Definition. Probabilistic quotient normalization (PQN) assumes that for a large,

untargeted set of metabolites the median metabolite concentration fold change be-

tween two samples (e.g. two measured time points, tr and ts) is approximately 1,

QC = median

{
Cj(tr)

Cj(ts)

}
≈ 1, j ∈ [1,nmetabolites]. (3a)

Consequently, fold changes calculated from M̃ instead of C are proportional to the

ratio of V ,

QM = QC
V (tr)

V (ts)
≈

V (tr)

V (ts)
(3b)

with

QM = median

{
M̃j(tr)

M̃j(ts)

}
, j ∈ [1,nmetabolites]. (3c)

In order to minimize the influence of experimental errors

M ref
j = median

{
M̃j(ti)

}
, i ∈ [1,ntime points] (4)

often replaces the dedicated sample in M̃j(ts) in the denominator of Equation 3c

[28]. Therefore, the normalization quotient by PQN is calculated as

QPQN(t) = median

{
M̃j(t)

M ref
j

}
, j ∈ [1,nmetabolites]. (5)

QPQN is a relative measure and distributes around 1. In analogy to Equation 3b,

we define its relation to the (sweat) volume V PQN as

QPQN(t) =
V PQN(t)

V ref
, (6)

where V ref denotes some unknown, time-independent reference (sweat) volume.

Note that with real data only QPQN(t) values can be calculated, but V PQN(t) as

well as V ref remain unknown.
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Discussion. M ref
j can be defined in different ways depending on the underlying

data. However, the choice of of reference is usually not critical to the outcome

of PQN [28]. As no control or blank measurements are available and the the

abundances of metabolites can range several orders of magnitudes, in this study

a metabolite-wise median reference was used for QPQN calculation. Moreover, PQN

might be sensitive to missing values, however, in this study we only focused on (real

and synthetic) data sets where 100% of values were present.

The biggest advantage of PQN is that no calibration curves and prior knowledge

about changes over time of measured metabolites are required. Moreover, PQN is

independent from the number of sample points measured in a time series. However,

its major drawback is that the normalization quotient is not an absolute quan-

tification and only shows relative changes. I.e. it does not quantify V as given in

Equation 2 directly with an absolute value, but instead normalizes relative abun-

dances between samples and time points. Another critical assumption is that sweat

metabolite concentrations need to be – on average – constant over the sampled time

series. Whereas this is reasonable to assume for the sweat of healthy humans [20],

one has to take care when investigating disease states (for example cystic fibrosis,

which is known to alter the sweat’s composition [31]).

2.2 Pharmacokinetic Normalization

Definition. In the pharmacokinetic model (PKM) we assume that we know at

least the functional dependence, i.e. the pharmacokinetics, but not necessarily the

value of the k (pharmaco-)kinetic parameters θ ∈ Rk for 2 ≤ ℓ ≤ nmetabolites

metabolites. Without loss of generality we (re-)sort M̃ such that the first ℓ elements

(collected in the vector M̃ℓ) correspond to metabolites with known pharmacokinetic

dependence, while the remaining nmetabolites − ℓ elements (collected in the vector

M̃ℓ+) correspond to metabolites with unknown kinetics. Then Equation 2 takes the

form of(
M̃ℓ (t)

M̃ℓ+(t)

)
=

(
Cℓ (t;θ)

Cℓ+(t)

)
V PKM(t) (7a)

with physically meaningful bounds;

Vlower bound ≤ V PKM(t) ≤ Vupper bound, (7b)

θlower bound ≤ θ ≤ θupper bound. (7c)

V PKM(t) as well as θ can be obtained by parametric fitting of M̃PKM
ℓ (t). Note that

this allows not only to compute absolute values of CPKM
ℓ (t;θ) but – with V PKM(t)

– also of all other concentrations via Cℓ+(t) = M̃ℓ+(t)/V
PKM(t).

As V PKM(ti) may be different at every time step ti, we need to know the

(pharmaco-)kinetics of at least two metabolites, otherwise the number of parameters

is larger than the number of data points.

Discussion. The biggest advantage of this method is that it can implicitly esti-

mate absolute values of V without the need of direct measurements. Therefore,
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sweat volumes can become smaller than the minimum required in volumetric meth-

ods and shorter sampling times also become possible. A drawback of this method is

the fact that it is only feasible if one has prior knowledge on relevant pharmacologi-

cal parameters (i.e. ingested dose of metabolites of interest, volume of distribution,

body mass of specimen, range of expected kinetic constants), which is limiting the

approach to studies where at least two metabolites together with their pharma-

cokinetics are well known. Moreover, calibration curves of metabolites of interest,

and sufficiently many samples in a time series are required for robustly fitting the

equation system. In a previously performed sensitivity analysis, an increase in the

quality of fit was observed as the number of samples increased from 15 to 20 time

points per measured time series [20].

2.3 Mixed Normalization

Definition. The mixed normalization model (MIX) is a combination of PQN and

PKM. It is designed to incorporate robust statistics of untargeted metabolomics via

its PQN term as well as an absolute estimation of V via its PKM term.

Optimal parameters of MIX are found via optimization of two equations,

T

[(
M̃ℓ (t)

M̃ℓ+(t)

)]
= T

[(
Cℓ (t;θ)

Cℓ+(t)

)
V MIX(t)

]
(8a)

and

ZT
[
QPQN(t)

]
= ZT

[
VMIX(t)

]
(8b)

where additional transformations T (PKM and PQN term) and scaling Z (PQN

term) can be applied to account for random and systematic errors (Section 3.1.1)

and V MIX(t) and θ are constrained between physically meaningful bounds,

Vlower bound ≤ V MIX(t) ≤ Vupper bound, (8c)

θlower bound ≤ θ ≤ θupper bound. (8d)

E.g. bounds for V can be calculated by Equation 2a and minimal and maximal

sweat rates from literature.

Discussion. We hypothesize that MIX model can combine the advantages of PQN

and PKM normalization models. Moreover, we believe that MIX inherits the statis-

tical robustness of PQN while simultaneously estimating absolute values as fitted

by PKM. Several prerequisites are necessary for normalization with PKM or MIX.

However, if they are fulfilled, the improved goodness of normalization by using

MIX instead of PKM usually does not come with an additional price as in many

metabolomics studies targeted and untargeted metabolites are measured in combi-

nation and thus all additional data required by MIX is already available.
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3 Methods
3.1 Implementation

A generalized version of PKM and MIX (where an arbitrary number of indepen-

dent metabolite kinetics can be modeled) was implemented as a Python class.

As input it requires the number of metabolites used for kinetic modeling (ℓ),

a vector of time points as well as the measured mass data (M̃, matrix with

time points in the rows and metabolites in the columns). MIX additionally takes

a QPQN = [QPQN(t1), ...,Q
PQN(tntime points)]

T vector (calculated with the PQN

method from all metabolites, nmetabolites) for all time points of a time series. Upon

optimization (carried out with self.optimize monte carlo, which is a wrapper

for SciPy’s optimize.curve fit [32]) the kinetic constants and sweat volumes are

optimized to the measured data by minimizing the functions listed in Equations 9b

and 9c for PKM and MIX respectively:

min(LMIX) = min(LPKM + LPQN) (9a)

where

LPKM =

ntime points∑
i=1

nmetabolites∑
j=1

L

[
λ
(
T (M̃ij)− T (Cij V MIX

i )
)2]

, (9b)

LPQN =

ntime points∑
i=1

L
[
(1− λ)

(
ZT (VMIX)i − ZT (QPQN)i

)2
Var(T (VMIX))

]
,

(9c)

Var(V) is the variance of V (which is the vector of estimated V over all time

points), T is a transformation function, Z is a scaling function, and L is the loss

function. The key difference between PKM and MIX is that the fitted V in MIX are

biased towards relative abundances as calculated by PQN. An important additional

hyperparameter of the MIX model is λ, which weights the error residuals of LPKM

and LPQN. Its calculation is discussed in Section 3.1.1. If λ = 1, the MIX model

simplifies again to a pure PKM model.

To summarize, an overview of the differences of PKM and MIX model is given in

Supplementary Table S1 and a flow chart of data processing for MIX normalization

is given in Supplementary Figure 1.

3.1.1 Hyperparameters

Several hyperparameters can be set for the PKM and MIX Python classes.

Kinetic Function. Firstly, it is possible to choose the kinetic function used to

calculate C. In this study we focused on a modified Bateman function F (t) with 5

kinetic parameters (ka, ke, c0, lag, d):

F (t) =

{
b(t) + d if b(t) ≥ 0

d if b(t) < 0
(10a)
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Data set of targeted/ un-

targeted metabolome time

series measurements.

Identify ℓ metabolites

with known kinetics.

Calculate QPQN

from the whole data set.

Calculate M̃ from

measured abundances.

Search literature for ranges

of pharmacokinetic parameters.

Input M̃ as target values

for CV estimation.

Input ranges as bounds for

pharmacokinetic modeling.
Input QPQN as target for

relative V differences.

Set hyperparameters:

λ, Z, T , L.

Optimize MIX model.

Estimates for individual

kinetic parameters.
Estimates for V.

Figure 1 Flow chart for data processing for MIX normalization.

Figure 2 Examples of concentration time series that can be modeled with the modified
Bateman equation used. The legend shows the kinetic parameters used to create the respective
curves. All parameters are within the bounds that were used for kinetic parameter fitting.

with

b(t) = c0
ka

ke − ka

(
e−ka(t−lag) − e−ke(t−lag)

)
. (10b)
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This function was designed to be flexible and able to represent several different

metabolite consumption and production kinetics as exemplified by Figure 2. Intu-

itively, ka and ke correspond to kinetic constants of absorption and elimination of

a metabolite of interest with the unit h−1. c0 is the total amount of a metabolite

absorbed over the volume of distribution with the unit mol L−1. Additionally to

these parameters which are also part of the classical Batman function [33], we here

introduce lag and d. The lag term with the unit h shifts the function along the

X-axis, intuitively defining the starting time point of absorption of a metabolite of

interest, whereas the d term with the unit mol L−1 shifts the function along the

Y-axis.

Loss Function, L. L calculates the loss value after estimation of the error residuals

of the model (Equation 9). It can be set via self.set loss function to either

cauchy loss or max cauchy loss (or max linear loss). In both cases the loss

is calculated as a Cauchy distribution of error residuals according to SciPy [32].

The difference, however, is that cauchy loss only uses the absolute error residuals,

whereas max cauchy loss uses the maximum of relative and absolute error residuals

(thus the word max is expressed in its name). The reason for its addition was that

a good performance has been achieved in a previous study [20]. In this study we

used the max cauchy loss loss function for PKM models and cauchy loss for MIX

models. The choice of L is intertwined with the choice of T which becomes clear in

the following paragraph.

Transformation Function, T . T transforms the measured data M̃ as well as the

calculated QPQN, CV , and V before calculation of the loss (Equation 9). Two

different transformations, none and log10, can be set during initialization with the

argument trans fun. As originally reported [20] no transformation was done for

PKM (i.e. trans fun='none'),

T (M̃) = M̃. (11a)

For MIX models, however, a log-transform was performed (i.e. trans fun='log10'),

T (M̃) = log10(M̃+ 10−8) (11b)

as the error on measured data is considered multiplicative [34] and the sweat vol-

ume log-normally distributed (Supplementary Figure S1). To avoid problems with

concentrations of the size 0 a small number (i.e. the size of optimizer precision [32])

is added.

In a sensitivity analysis study, we tested the quality of normalization of MIX

with different L and T hyperparameters and concluded that a combination of

cauchy loss for L and log10 for T performed best (Supplementary Figure S2C,

D).
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Scaling Function, Z. Z describes a scaling function performed on T (QPQN) and

T (V). Scaling is performed to correct for noisy data (see Results Section 4.2.1).

Two strategies can be set with the scale fun argument during initialization of the

MIX model class, standard or mean. In this study, all MIX models employ standard

scaling, i. e.

ZT (QPQN) =
T (QPQN)−mean(T (QPQN))

Std(T (QPQN))
. (12a)

We additionally implemented mean scaling which differs depending on the choice of

T with

ZT (QPQN) =

{
T (QPQN)−mean(T (QPQN)) if trans fun='log10'
T (QPQN)/mean(T (QPQN)) if trans fun='none'.

(12b)

Optimization Strategy. The optimization of both, PKM and MIX models, is done

with a Monte Carlo strategy where the initial parameters sampled randomly from

an uniform distribution between their bounds. Performing a sensitivity analysis, we

previously showed that this method is preferable to a single fitting procedure [20].

In this study the number of Monte Carlo replicates for model fitting was set to 100.

Weighting of MIX Loss Terms. A weighting constant for every measured data

point can be used by the model. In a sensitivity analysis study we found that the

choice of λ is not critical to the quality of normalization as long as it is not extremely

tilted to one side (i.e. λ close to 0 or 1, Supplementary Figure S2A, B). Thus we

propose a method where the loss terms are weighted by the number of data points

fitted for each of both loss terms, but not by the number of metabolites used in

the calculation of each term (Supplementary Equations S1). For such a method the

solution for λ is given by Equation 13.

λ =
1

ℓ+ 1
(13)

3.1.2 Full and Minimal Models

In this study we differentiate between full and minimal models. With full models we

refer to pharmacokinetic normalization models (PKM or MIX) where all metabolites

of a given data set are used for the pharmacokinetic normalization. This means that,

for example, if nmetabolites = 20 all 20 metabolites were modeled with the modified

Bateman function and thus in Equations 7a and 8a, ℓ = nmetabolites and M̃ℓ+ is an

empty vector. On the other hand, minimal models are models where only the few,

known, better constrained metabolites were modeled with a kinetic function. This

means that the information used for PKMminimal does not change upon addition of

synthetic metabolites. Therefore, its goodness of fit measure should stay constant

within statistical variability upon change of nmetabolites. This behaviour was used
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to verify if the simulations worked as intended and no biases in the random num-

ber generation exist. On the other hand MIXminimal model still gained information

from the increase of nmetabolites as the PQN part of this model was calculated with

all nmetabolites. Therefore, changes in the goodness of fit measures for MIXminimal

are expected. We emphasize that the definition of full and minimal models is spe-

cific to this particular study. Here we explicitly set ℓ = 4, which originates from

previous work where 4 targeted metabolites (caffeine, paraxanthine, theobromine,

theophylline) with known kinetics were measured [20].

Figure 3 C for the first four metabolites of the synthetic data. Kinetic parameters used for
calculation are listed in Supplementary Table S2.

3.2 Synthetic Data Creation

Three different types of synthetic data sets were investigated. The first two types

of data sets (sampled from kinetics, Section 3.2.1 and sampled from means and

standard deviations, Section 3.2.2) test the behaviour of normalization models in

extreme cases (either all metabolites describable by pharmacokinetics or all metabo-

lites completely random). Finally, the third type of data set (sampled from real data,

Section 3.2.3) aims to replicate measured finger sweat data as close a possible. In

sum the performance of normalization methods on all three types of data sets can

show how they behave in different situations with different amounts of describable

data.

In all three cases data creation started with a simple toy model closely resembling

the concentration time series of caffeine and its degradation products (paraxanthine,

theobromine, and theophylline) in the finger sweat as described elsewhere [20]. The
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respective parameters are listed in Supplementary Table S2. With them the con-

centration of metabolites #1 to #4 were calculated for 20 time points (between 0

and 15 h in equidistant intervals, Figure 3). Subsequently, new synthetic metabo-

lite concentration time series were sampled and appended to the toy model (i.e.

to the concentration vector, C(t)). Three different synthetic data sampling strate-

gies were tested and their specific details are explained in the following sections.

Next, sweat volumes (V ) were sampled from a log-normal distribution truncated at

(0.05 ≤ V ≤ 4µL) closely resembling the distribution of sweat volumes estimated

in our previous publication [20], Supplementary Figure S1. Finally, an experimental

error (ϵ) was sampled for every metabolite and time point from a normal distribu-

tion with a coefficient of variation of 20% and the synthetic data was calculated as

M̃(t) = diag
(
C(t) V (t)

)
ϵ(t). (14)

For every tested condition 100 synthetic data replicates were generated and the

normalization models were fitted.

3.2.1 Sampled Kinetics

In simulation v1, data was generated by sampling kinetic parameters for new

metabolites from an uniform distribution. The distribution was constrained by

the same bounds also used for the PKM and MIX model fitting: (0, 0, 0, 0)T ≤
(ka, ke, c0, lag, d)

T ≤ (3, 3, 5, 15, 3)T. Subsequently the concentration time series of

the synthetic metabolites were calculated according to the modified Bateman func-

tion (Equation 10).

3.2.2 Sampled Mean and Standard Deviation

Means and standard deviations of the concentration time series of metabolites were

calculated from untargeted real finger sweat data (for details see Section 3.4). The

probability density function of both can be described by a log-normal distribution

(Supplementary Figure S3). For the data generation of simulation v2, per added

metabolite one mean and one standard deviation were sampled from the fitted dis-

tribution and used as an input for another log-normal distribution from which a

random concentration time series was subsequently sampled. This results in syn-

thetic concentration values that behave randomly and, therefore, cannot be easily

described by our pharmacokinetic models.

3.2.3 Sampled from Real Data

To get an even better approximation to real data, in simulation v3 concentration

time series were directly sampled from untargeted real finger sweat data (for details

see Section 3.4). To do so, the untargeted metabolite M̃ time series data set was

normalized with PQN. As the number of metabolites in this data set was comparably

large (nmetabolites = 3446) we could assume that the relative error (or rRMSE, for

more explanation see Section 4.1.1) was negligibly small. The resulting values are

strictly speaking fractions of concentrations. However, this does not affect the results

as these values are anyways considered untargeted (i.e. no calibration curve exists)
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and thus relative. Therefore, the PQ normalized data set could be used as ground

truth for concentration time series sampling. Subsequently, a subset of the original

ground truth data was sampled for synthetic data generation.

3.2.4 Sampling of Noisy Data

We investigated the influence of background (i.e. noisy) signal on the performance

on QPQN (and scaled and transformed variants thereof). To simulate such an envi-

ronment we used data sampled from real data (Section 3.2.3), and applied V only

to a fraction of the C vector,(
M̃ (t)

M̃n(t)

)
= diag

(
C (t)V (t)

Cn(t)

)
ϵ. (15)

The noise fraction is given by the number of elements of M̃ and M̃n vectors,

fn =
length(M̃n)

length(M̃) + length(M̃n)
, (16)

where subscript n in M̃n,Cn, and fn denotes them as part of the noise.

Simulations were carried out for 20 equidistant noise fractions between 0 ≤ fn ≤
0.95 with nmetabolites = 100 and ntime points = 20 for 100 replicates. The error

residuals of mean and standard scaled QPQN are calculated as

Mean Scaled Error =

ntime points∑
i

[
ZT (QPQN)i − ZT (V)i

]
(17a)

with Z defined as in Equation 12b and

Standard Scaled Error =

ntime points∑
i

[
ZT (QPQN)i − ZT (V))i

]
Std(T (V))

(17b)

with Z defined as in Equation 12a. For both cases T is defined as the logarithm

(Equation 11b). We point out that the multiplication with Std(T (V)) for the stan-

dard scaled error is important to make the results comparable, as otherwise the

error would be biased towards the method with smaller scaled standard deviation

regardless of the performance of the scaling.

3.3 Normalization Model Optimization

Normalizing for the sweat volume by fitting kinetics through the measured values

only has a clear advantage over PQN if it is possible to infer absolute sweat vol-

umes and concentration data. In order to be able to do that, some information

about the kinetics and the starting concentrations of metabolites of interest need

to be known. For example, when modeling the caffeine network in our previous

publication [20] we knew that the lag parameter of all metabolites was 0 and that
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the total amount of caffeine ingested (which corresponds to c0) was 200mg. More-

over, we knew that caffeine and its metabolites are not synthesized by humans and

implemented the same strategy into our toy model (corresponding to d). As the toy

model was designed to resemble such a metabolism we translated these informa-

tion to the current study. Therefore, we assumed that the first 4 metabolites in our

toy model had known c0, lag, and d parameters. For their corresponding ka and

ke and the parameters of all other metabolites the bounds were set to the same

(0, 0, 0, 0)T ≤ (ka, ke, c0, lag, d)
T ≤ (3, 3, 5, 15, 3)T used in kinetic data generation.

Figure 2 shows examples of concentration time series that can be described with

the modified Bateman function and parameters within the fitting bounds.

3.4 Real Finger Sweat Metabolome Data

The real world finger sweat data was extracted from 37 time series measurements

of Study C from ref. [20]. It was downloaded from MetaboLights (MTBLS2772 and

MTBLS2776).

Preprocessing The metabolome data set was split into two parts: targeted and

untargeted. The targeted data (i.e. the mass time series data for caffeine, parax-

anthine, theobromine, and theophylline) was directly adopted from the math-

ematical model developed by [35]. This data is available on GitHub (https:

//github.com/Gotsmy/finger_sweat).

For the untargeted metabolomics part, the raw data was converted to the mzML

format with the msConvert tool of ProteoWizard (version 3.0.19228-a2fc6eda4) [36].

Subsequently, the untargeted detection of metabolites and compounds in the sam-

ples was carried out with MS-DIAL (version 4.70) [37]. A manual retention time

correction was first applied with several compounds present in the majority (more

than 90%) of the samples. These compounds were single chromatographic peaks

with no isomeric compounds present at earlier or later retention times (m/z 697.755

at 5.57 min, m/z 564.359 at 5.10 min, m/z 520.330 at 4.85 min, m/z 476.307 at

4.58 min, m/z 415.253 at 4.28 min, m/z 371.227 at 3.95 min, m/z 327.201 at 3.56

min, m/z 283.175 at 3.13 min, m/z 239.149 at 3.63 min, m/z 166.080 at 1.69 min,

m/z 159.113 at 1.19). After this, untargeted peak detection and automated align-

ment (after the manual alignment) were carried out with the following settings:

Mass accuracy MS1 tolerance: 0.005 Da, Mass accuracy MS2 tolerance: 0.025 Da,

Retention time begin: 0.5 min, Retention time end: 6 min, Execute retention time

correction: yes, Minimum peak height: 1E5, Mass slice width: 0.01 Da, Smoothing

method: Linear weighted moving average, Smoothing level: 3 scans, Minimum peak

width: 5 scans, Alignment reference file: C D1 I o pos ms1 1.mzML, Retention time

tolerance: 0.3 min, MS1 tolerance: 0.015 Da, Blank removal factor: 5 fold change).

No blank-subtraction was carried out as the internal standard caffeine was spiked

into each sample including the blanks. Peak abundances and meta-information were

exported with the Alignment results export functionality.

Subsequently, we excluded isomers within a m/z difference of less than 0.001Da

and a retention time difference of less than 0.5min. To further reduce features

that are potentially background, features with retention times after 5.5min as well

as features with minimal sample abundances of < 5 ×maximum blank abundance
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(except for the internal standard, caffeine-D9) were excluded from the data set. This

was done on a time series-wise basis, thus the number of untargeted metabolites

considered for normalization differs with a mean of 343± 152 for the 37 time series

of interest.

cfree caffeine ccaffeine

cparaxanthine

ctheobromine

ctheophylline

k1 k5

k2

k3

k4

k6

k7

k8

cfree caffeine ccaffeine

cm

k′1 k′3

k′2 k′4

Figure 4 Full network (top panel) and subnetwork (bottom panel) of caffeine absorption,
conversion to paraxanthine, theobromine, and theophylline and their elimination. The system
boundary (dashed line) represents the human body.
m ∈ {paraxanthine, theobromine, and theophylline}

Size Effect Normalization In this finger sweat data set, time series of targeted

as well as untargeted metabolomics are listed. The kinetics of the four targeted

metabolites (caffeine, paraxanthine, theobromine, and theophylline) are known. A

reaction network of the metabolites is shown in the top panel of Figure 4. Briefly,

caffeine is first absorbed and then converted into three degradation metabolites.

Additionally, all four metabolites are eliminated from the body. All kinetics can be

described with first order mass action kinetics [38, 39].

In order to assess the performance of the sweat volume normalization methods

the full network was split up into three subnetworks that all contained caffeine

and one degradation metabolite each (Figure 4 bottom panel). The solution of the

first order differential equations describing such network is given in Supplementary

Equations S2a and S2b. Moreover, the 343± 152 untargeted metabolite time series

were randomly split up into three (almost) equally sized batches and each batch

was assigned to one subnetwork. All three networks were subsequently separately

normalized with PKMminimal and MIXminimal methods with kinetic parameters

that were adjusted to the specific reaction network (Figure 4 bottom panel). Sub-

sequently, the kinetic constants (k′1, k
′
2, k

′
3, k

′
4) were estimated for 37 measured

concentration time series. Fitting bounds were not changed in comparison to the

original publication [20].
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As all three subnetwork data sets originate from the same finger sweat measure-

ments, the underlying kinetic constants should be exactly identical. As the kinetic

constants of absorption (kcafa = k′1) and elimination (kcafe = k′2 + k′3) of caffeine

are estimated in all three subnetworks we used their standard deviation to test the

robustness of the tested normalization methods.

3.5 Real Blood Plasma Metabolome Data

In the study of Panitchpakdi et al. [40] the mass time series of the metabolome

was measured in different body fluids after the uptake of diphenhydramine (DPH).

Here, we focus on data measured in the blood plasma which includes the abundances

of DPH (known kinetics, calibration curve, pharmacological constants) as well as

three of its metabolization products (known kinetics) and the abundances of 13526

untargeted metabolites with unknown kinetics.

Preprocessing The data of peak areas was downloaded from the GNPS plat-

form [41]. To reduce the number of metabolites that are potentially background

and/or noise in the data set, features with minimal sample abundances of <

5 ×maximum blank abundance were excluded from the data set on a time series-

wise basis. Thus, the number of untargeted metabolites considered for normalization

differs with a mean of 1017± 114 for the 10 time series of interest.

Size Effect Normalization We assume that the kinetics of four metabolites (DPH,

N-desmethyl-DPH, DPH N-glucuronide, and DPH N-glucose) can be described by

the modified Bateman (Equation 10). A reaction network of the metabolites is

shown in Supplementary Figure S4. Briefly, DPH is first absorbed and then – with

unknown intermediates – converted into three degradation metabolites, which are in

turn metabolized further downstream or eliminated. c0 of DPH was calculated with

pharmacological constants for bioavailability, volume of distribution, and dosage of

DPH as reported in the original publication [40].

Analogously to the normalization performed on finger sweat data, the full network

of four metabolites is split up into three subnetworks with only one, shared, targeted

metabolite (DPH itself), one additional untargeted metabolite with known kinetic

(either N-desmethyl-DPH, DPH N-glucuronide, or DPH N-glucose, Supplementary

Figure S5) and one third of 1017 ± 114 untargeted metabolites with unknown ki-

netics. To ensure better convergence during fitting of the models, the M̃ data was

first scaled to values between 0 and 1 by dividing by its metabolite-wise maximum.

This factor can be multiplied again as part of c0 after the normalization is done.

Thereafter, PKMminimal and MIXminimal models were fitted onto the scaled M̃ data

(with ℓ = 2) for all ten measured time series. The bounds of parameters were chosen

so that previously reported estimates [40] are well within range: 0 ≤ k ≤ 5 h−1 for

{k′1, k′3}, 0 ≤ k ≤ 1 h−1 for {k′2, k′4}, cDPH
0 as reported in the original publication nor-

malized by the maximum factor, 0 ≤ cm0 ≤ 300 for m ∈ {N-desmethyl-DPH, DPH

N-glucuronide, DPH N-glucose} and lag = d = 0 as well as 0.01 ≤ V ≤ 0.03mL.

As all three subnetwork data sets originate from the same plasma time series

measurements, the underlying kinetic constants of DPH should be exactly identical.

As the kinetic constants of absorption (kDPH
a = k′1) and elimination (kDPH

e = k′2)

of DPH are estimated in all three subnetworks we used their standard deviation to

test the robustness of PKMminimal and MIXminimal.
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Figure 5 Relative and absolute normalization performance. In the top row the predicted
log10(Cj(ti;θ)/Cj(0;θ)) (i ∈ {1, ...,ntime points}, j ∈ {1, ...,nmetabolites}) are plotted as a
function of the true, underlying log10(Cj(ti)/Cj(0)). The bottom row shows the predicted V as a
function of the true, underlying V . The columns represent different normalization models (PQN,
PKMminimal, and MIXminimal from left to right). As no absolute V can be calculated from PQN the
bottom left plot is omitted. To illustrate the effect of different RMSE and rRMSE sizes (which
both are calculated from V ), we show their mean over 100 replicates in comparison to the
R2 values calculated from the points plotted. Intuitively rRMSE is a measure of good correlation
on the top row whereas RMSE is a measured of good correlation on the bottom row (high R2, low
rRMSE/RMSE respectively).

3.6 Data Analysis

Goodness of Normalization Two goodness of fit measures are calculated to analyze

the performance of the tested methods. RMSE is the standard deviation of the

residuals of a sampled sweat volume time series vector (Vtrue) minus the fitted

sweat volume vector (Vfit), while rRMSE is the standard deviation of the ratio

of sampled and fitted V vectors normalized by its mean. Intuitively, RMSE is a

measure of how much absolute difference there is between the fit and a true value,

rRMSE on the other hand gives an estimate on how good the fitted sweat volumes

are relative to each other. A visual depiction of RMSE and rRMSE is shown in

Supplementary Figure S6 and their exact definition is given in the equations in 3.3.

Statistical Analysis The significant differences in the mean of goodness of fit mea-

sures were investigated by calculating p values with the non-parametric pairwise

Wilcoxon signed-rank test [42] (SciPy’s stats.wilcoxon function [32]). Significance

levels are indicated by *, **, and *** for p ≤ 0.05, 0.01, and 0.001 respectively.

4 Results
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4.1 Comparison of PKM and MIX

4.1.1 Synthetic Data Simulations

In order to test the performance of different normalization models we generated

100 synthetic data sets with three different methods (simulations v1, v2, v3) and

five different nmetabolites (4, 10, 20, 40, 60) each, where the underlying C, V , and ϵ

values were known. Simulations v1, v2, and v3 differ in the way howC was generated

(kinetic, random, sampled from real data set, respectively). In order to quantify the

normalization model performance, two measures of goodness of normalization were

used for the analysis of the results: RMSE and rRMSE.

To visualize the obtained normalization performances we plotted the results for

simulation v3 and nmetabolites = 60 in Figure 5 for three normalization models (from

left to right column, PQN, PKMminimal, and MIXminimal). The top row shows the

predicted log10(Cj(ti;θ)/Cj(0;θ)) (i.e. the concentration of each metabolite j at

each time point i divided by its concentration at time 0) as a function of the true

log10(Cj(ti)/Cj(0)) values. It illustrates the correlation of the relative abundances

of one metabolite across all time points. Good correlations (i.e. high R2) as seen

for PQN and MIXminimal result in a low rRMSE measure. On the bottom row of

Figure 5 the absolute values of predicted V are plotted as a function of the true

V . There it becomes evident that good correlations of absolute values result in low

RMSE measures.

In the following sections we will focus on the size of RMSE and rRMSE respec-

tively as they are both calculated from the predicted V directly. Note that for PQN

no absolute V can be estimated and, therefore, no RMSE is calculated.

Influence of the Number of Metabolites. We tracked RMSE and rRMSE of normal-

ization methods for different numbers of metabolites (nmetabolites) to investigate how

the methods behave with different amounts of available information. An overview

of their goodness of normalization measures as a function of nmetabolites on sam-

pled kinetic data (panels A, B), on completely random data (panels C, D) and on

sampled subsets of real data (panels E, F) is given in Figure 6.

PKMfull which fits a kinetic function through all possible metabolites (ℓ =

nmetabolites) performs well (low RMSE, low rRMSE) when the C data originates

from a kinetic function (simulation v1, Figure 6A, B). However, when the underly-

ing data does not originate from kinetic time series (simulation v2, Figure 6C, D)

its performance is reduced drastically. For PKMfull this is resembled in an increase

of RMSE (from 0.19± 0.08µL to 0.64± 0.16µL for nmetabolites = 60) as well as of

rRMSE (from 0.08± 0.02 to 0.28± 0.14 for nmetabolites = 60).

Another observation is the behaviour of PQN. Its rRMSE approaches a value

close to 0 with increasing nmetabolites, indifferently on how the underlying data was

generated.

Interestingly, the results from simulation v3 lie between the results from simula-

tion v1 and v2. This gets especially evident when comparing the performance of

PKMfull in Figure 6. Such a result suggests that not all of the untargeted metabo-

lites measured are completely random, but some can be described with the modified

Bateman function. This leads to the hypothesis that after sweat volume normaliza-

tion, the real finger sweat data (from which values for v3 were sampled) has high

potential for the discovery of unknown kinetics.
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Figure 6 Goodness of normalization measures of synthetic data simulations. The mean for 100
replicates for different sweat volume normalization models is given for RMSE (left column) and
rRMSE (right column). Results for simulations v1, v2, and v3 are shown in rows one, two, and
three, respectively. The error bars represent standard deviations of the replicates. For the PQN
method no RMSE can be calculated.

Exact numbers for RMSE and rRMSE for all normalization methods and

nmetabolites are given in Supplementary Tables S3 and S4 respectively. Moreover,

pairwise comparisons of RMSE and rRMSE of normalization methods relative to

the results from PKMminimal are plotted in Supplementary Figure S7.
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Figure 7 RMSE measures of simulation v3 with nmetabolites = 60. The significance between the
methods was calculated on 100 paired replicates with the two-sided Wilcoxon signed-rank test.

Statistical Testing As at nmetabolites = 60 the goodness of normalization measures

start to flatten out, we further investigated this condition for statistical significance.

We used the two-sided non-parameteric Wilcoxon signed-rank test to compare pair-

wise differences in RMSE and rRMSE between the tested models. p-values for all

combinations are given in Supplementary Tables S5 and S6.

As Figure 6 already indicated, the overall best performance in RMSE as well

as rRMSE is observed for the MIXminimal model. For nmetabolites = 60 it signifi-

cantly outperforms every other method’s RMSE (Figure 7). Moreover, MIXminimal’s

performance in rRMSE is at least equal to or better than all other tested meth-

ods (Supplementary Table S6) with one exception: the comparison of rRMSE of

MIXminimal and PQN in simulation v1 shows significant difference (p = 0.0029),

however, the absolute values of rRMSE are still very similar (0.049 ± 0.010 and

0.047± 0.009 respectively). Compared to the previously used PKMminimal [20], the

RMSE of MIXminimal improves by 73±10%, the rRMSE by 43±12% (Supplemen-

tary Figure S7). Analogously to Figure 7 for simulation v3, the results of simulations

v1 and v2 are shown in Supplementary Figure S8 and S9 respectively.

The two-sided version of the Wilcoxon signed-rank test was used to test for any

difference in between multiple normalization methods. After it became evident that

MIXminimal performed best, we used an one-sided version of the Wilcoxon signed-

rank test to verify if RMSE and rRMSE are significantly decreased by MIXminimal

compared to all other normalization methods. The resulting p-values are listed in

Supplementary Table S7. Again, MIXminimal significantly outperformed all other

tested methods in RMSE and rRMSE except for PQN in any of the simulations.

We, therefore, conclude that normalizing the sweat volume by the MIXminimal

method reduces the error for the estimated V compared to other tested methods.

Compared to PKM, MIXminimal has the advantage that its performance does not
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Figure 8 Time in seconds for optimization of one normalization model in simulation v3. The
error bars represent the standard deviation of normalization times between 100 replicates.

vary if metabolites’ concentration time series can be described with a modified Bate-

man function (i.e. simulations v1, v2 v3 have little influence on its performance).

Therefore, it is especially advantageous if this property cannot be guaranteed.

4.1.2 Computational Performance

Analysis of metabolomics data sets is usually a computationally exhaustive process.

There are several steps in (pre-)processing that need to be executed, many of them

lasting for hours. Therefore, computational time can quickly stack to large numbers.

Normalization models are no exception to this general rule. As nmetabolites in a phar-

macokinetic model increases, the time for optimization of pharmacokinetic models

may become limiting. Therefore, we investigated the average time for one time series

normalization for different methods and different numbers of metabolites.

The computational time spent for one optimization step as a function of

nmetabolites is given in Figure 8 for simulation v3. It increased for some normaliza-

tion models, however not for all of them and not equally. Within the investigated

range, PQN stays well under 1 second per normalization, whereas with PKMfull the

normalization time increases drastically from 1.6±1.1 s for a model with 4 metabo-

lites to 110 ± 44 s for 60 metabolites. Similar normalization times were observed

for MIXfull maxing out at 19 ± 22 s for nmetabolites = 60. In stark contrast to the

exponential increase in computational power needed for full models are the minimal

models. Their time to optimize stays nearly constant (< 3 s) within the investigated

metabolite range (Supplementary Table S8).

Here we demonstrate that MIXminimal is not only superior to other tested models

in terms of its normalization performance, but also in terms of computational feasi-

bility. We hypothesize that even data sets with thousands of untargeted metabolites

will have a minor impact on its speed.
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Figure 9 Influence of the fraction of noisy data on the error of PQN calculation. Panel A
illustrates the change of the coefficient of variance of QPQN (Y-axis) as the noise fraction (fn,
Y-axis with the same tick labels as the color bar) increases. Panel B shows the error size of
calculated QPQN to true V with mean scaling (X-axis) and standard scaling (Y-axis). The color of
points relates to the noise fraction as depicted in the color bar.

4.2 Comparison of PQN and MIX

4.2.1 Influence of Noise on PQN

In untargeted metabolomics it is often difficult to distinguish between metabolites

originating from the actual matrix of interest or from contamination. As PQN

includes all untargeted metabolites in its calculation, metabolites stemming from

contamination might become a problem as their fold change is independent on the

sweat volume, which changes the underlying distributions of quotients. Therefore,

we investigated the influence of different fractions of metabolites originating from
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Figure 10 Comparison of the rRMSE of PQN and MIXminimal on data with different fractions
of noise. Significant differences in rRMSE between PQN and MIXminimal were tested with an
one-sided pairwise Wilcoxon signed-rank test.

contamination (i.e. noisy data). Furthermore, we tested if scaling of QPQN values

can counteract errors introduced by noise.

Figure 9A demonstrates the problem of using the probabilistic quotient normal-

ization on noisy raw data. The direction of size effects can still be explained when

noise is present, however, absolute values of the size effects decrease. Thus, in Fig-

ure 9A the coefficient of variation (i.e. the standard deviation over the mean) of

QPQN is a measure for the average value of the estimated size effect over one syn-

thetically generated time series. As the fraction of noise (fn, X-axis) increases the

coefficient of variation decreases drastically and approaches 0 when fn → 1.

Figure 9B shows the performance of scaling methods to counteract the reduction

of coefficient of variation as described above. The mean scaled error (X-axis) and

standard scaled error (Y-axis) as calculated by Equations 17 are plotted against

each other. When fn ≤ 0.05, mean scaling outperforms standard scaling, however,

thereafter the standard scaled QPQN is less erroneous than the mean scaled version.

When incorporating QPQN values to the MIX model it is important to correct for

errors introduced by noise. As this result shows that standard scaling reduces the

detrimental effect of noise on the calculation of QPQN, we used standard scaling

throughout the study for MIX normalization. Moreover, this result underlines the

good performance of standard scaling in biological data sets [43].

4.2.2 Synthetic Data Simulations with Noise

The synthetic data used for the analysis of Section 4.1 did not contain any metabo-

lites that are classified as noise, i.e. their M̃ is not influenced by size effects (Equa-

tion 15). This, however, is not necessarily a realistic assumption as there are many

sources of contaminants in metabolome measurements. Noisy metabolites can be

either introduced by biological means (e.g. metabolites that do not originate from
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sweat but from the surface of the skin in sweat measurements) [44] or by experi-

mental handling [45]. As shown in Figure 9, this noise in data negatively affects the

performance of PQN. Thus, the goodness of PQN in the results of Section 4.1 is

probably overestimated.

To get a more accurate view on the goodness of normalization of PQN and

MIXminimal, we tested their performance on synthetic data with different fractions

of noise, fn. In order to do so, we created 100 replicates of synthetic data sampled

from real data (i.e. simulation v3) for 10 equidistant noise fractions ranging from

fn = 0 to fn = 0.9 with nmetabolites = 60. In all simulated data, only untargeted

metabolites were affected by the introduction of noise, as we assumed that for tar-

geted metabolites (i.e. ℓ = 4) with known pharmacokinetic behaviour one can be

highly confident that the measurements are not originating from contaminants.

The rRMSE of PQN and MIXminimal is plotted in Figure 10. Only when zero

noise was present in the synthetic data set, MIXminimal did not improve upon PQN,

however as the fraction of noise increased, MIXminimal significantly outperformed

PQN in terms of rRMSE. The p-values for all noise fractions are listed in the

Supplementary Table S9.

The difference of rRMSE between PQN and MIXminimal in Figure 10 is related to

the difference of mean and standard scaled errors in Figure 9B. PQN alone cannot

utilize the improved performance of standard scaling as Std(T (V)) has to be known

for its calculation (Equation 17b). However, when normalizing with MIXminimal,

Std(T (V)) can be estimated from the pharmacokinetic part of the model (Equa-

tion 9c) significantly improving its quality.

4.3 Application to Real Data

4.3.1 Caffeine Network

Previously, we identified and quantified four metabolites (caffeine, paraxanthine,

theobromine, and theophylline) in a time series after the ingestion of a single dose

of caffeine [20]. To investigate the performance of normalization models on a real

finger sweat data set, we split all measured M̃ time series into three parts that con-

tained pairs of targeted metabolites each, only one shared by all, namely caffeine

(compare Figure 4 top and bottom network). Subsequently we fitted a PKMminimal

and MIXminimal models (ℓ = 2) with adapted kinetics (Methods Section 3.4) through

the three sub data sets. Due to the nature of the metabolite subnetworks (Figure 4

bottom panel) it is possible to calculate two kinetic constants describing the ab-

sorption and elimination of caffeine (kcafa = k′1 and kcafe = k′2+k′3) in all three cases.

As the data for all three subnetworks was measured in the same experiment we can

assume that the underlying ground truth of these constants has to be the same.

Therefore, by comparing the standard deviation of kinetic constants it is possible

to infer the performance of normalization methods.

In panels A and B of Figure 11 the standard deviations of fitted kinetic con-

stants within one measured M̃ time series are illustrated. Panel A shows that the

standard deviations of the absorption constant of caffeine, kcafa , of PKMminimal are

significantly larger than of the MIXminimal model (p = 5.8 × 10−4,n = 37, one-

sided Wilcoxon signed-rank test). Likewise, a significant decrease of the size of
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Figure 11 Method validation with finger sweat (left column) and blood plasma (right column)
data from Brunmair et al., 2021 [20] and Panitchpakdi et al., 2021 [40] respectively. On panels A
to D, the standard deviations of constants of absorption and elimination of caffeine and
diphenhydramine (kcafa , kcafe , kDPH

a , kDPH
e ) between the three modeled subnetworks are plotted.

The number of points per method corresponds to the number of concentrations time series
present in both data sets (i.e. 37 and 10 for sweat and plasma respectively). A one-sided Wilcoxon
signed-rank test was used to test for significant differences. Panels E and F show the estimated
concentration time series of caffeine and DPH plotted from the three different subnetworks. The
lines are named after the second metabolite with known kinetic present in the subnetwork,
however they all refer to C of caffeine and DPH themselves. The colors of curves and the area
between them indicate the results from normalization with PKMminimal or MIXminimal respectively.

standard deviations of MIXminimal was found compared to the previously published

PKMminimal model (p = 1.5 10−5) for the constant of caffeine elimination, kcafe

(panel B, Figure 11).

In panel E of Figure 11 one exemplified normalized C time series of caffeine

in sweat is depicted as fitted for all three subnetworks with PKMminimal and

MIXminimal respectively. The selected time series illustrates the median of differ-

ences in standard deviations between PKMminimal and MIXminimal from panels A

and B of Figure 11. The area enclosed by the Cs of MIXminimal models is smaller

than from PKMminimal.

We emphasize that in our original study the caffeine degradation directly pro-

duces paraxanthine, theobromine, and theophylline, thus pharmacokinetic param-

eters k2, k3, k4 are explicitly linked [20]. Therefore, the kinetic network resembled
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specific kinetics of that metabolic pathway (Figure 4 top panel). In contrast, in

previous sections we assumed that the underlying pathway structure is not known.

Thus parameters are not linked, which implies that parameters are less constrained.

Yet in this section, we demonstrated that the fundamental improvement found by

switching from PKM to a MIX model can be also translated back again to a more

specific metabolic network (Figure 4 bottom panel). In order to support this ar-

gument, we show the applicability of the MIXminimal normalization method on a

real finger sweat data set. The results with real data emphasize the validity of the

simulations done on synthetic data sets. They show that, especially when known

metabolic networks are small, the MIXminimal model significantly improves the ro-

bustness of normalization and thus kinetic constants inferred from finger sweat time

series measurements.

4.3.2 Diphenhydramine Network

In the original study [40] the authors measured time series abundances in the blood

plasma after the application of a single dose of diphenhydramine (DPH). M̃ from

targeted DPH (known pharmacological constants, known kinetics) as well as un-

targeted metabolization products (N-desmethyl-DPH, DPH N-glucuronide, DPH-

glucose, known kinetics) and several other untargeted metabolites (unknown kinet-

ics) were reported. Similar to sweat, although less pronounced, plasma also suffers

from size effects (i.e. a systematic error in the measurements) introduced by biolog-

ical means or preanalytical sample handling [46, 47]. Thus, we used the reported

data as a second real data set for validation of the performance of MIXminimal. The

validation was performed in analogy to the caffeine study where a full network (Sup-

plementary Figure S4) is split into three subnetworks (Supplementary Figure S5,

for details see Methods Section 3.5).

In panels C and D of Figure 11 the standard deviations of fitted kinetic con-

stants within one measured M̃ and three fitted subnetworks are illustrated. Again,

the standard deviations of kDPH
a of PKMminimal are significantly larger than of

MIXminimal (p = 2, 0×10−3,n = 10, one-sided Wilcoxon signed-rank test, panel C).

A similar significant decrease of the standard deviations are also found for kDPH
e

(p = 3.2 10−2, panel D).

In panel F of Figure 11 one exemplified, normalized C time series of DPH

in plasma is depicted as fitted for all three subnetworks with PKMminimal and

MIXminimal respectively. The time series was selected as it is closest to the median

of the differences in standard deviations between PKMminimal and MIXminimal. It

is visible that the area enclosed by the C resulting from the MIXminimal model is

smaller than from PKMminimal.

This validation illustrates the performance of the normalization models presented

in this study on a data set that was measured independently from the development

of said methods. The results of the plasma validation study are similar to the results

observed for the finger sweat study; again, MIXminimal improves the robustness (i.e.

reduces standard deviations) of size effect normalization.

Even though there is a significant decrease in the standard deviation of kDPH
e with

MIXminimal compared to PKMminimal, MIXminimal also produced an outlier (Fig-

ure 11D). The reason for this outlier is that on rare occasions MIXminimal is not able
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to detect any size effects due to convergence issues (Supplementary Figure S10A).

To investigate this results we performed synthetic data simulations (Supplementary

Figure S10B). There, we found that this behaviour of MIXminimal can be observed

when two different V vectors are applied to ℓ and ℓ+ metabolites. Therefore, we

hypothesize that the clearly visible malfunction of MIXminimal to detect size effects

(i.e. the variance of estimated V is close to 0) gives an indication to scientists that

size effects might not be a major concern in such a data set. In this specific blood

plasma time series measurement, for example, the size effects might have been too

small compared to other error sources to be identified by MIXminimal.

To summarize, with this validation we show that the generalized normalization

models, as implemented in this study can directly be used for the normalization of

real data as long as the modified Bateman function is able to describe the measured

kinetics reasonably well and size effects are large enough to be detectable.

5 Discussion
In this study we present a generalized framework for the PKM normalization model,

first introduced in reference [20]. Moreover, we extend the existing model to incor-

porate untargeted metabolite information, dubbed as MIX model. Both models are

implemented in Python and are available at GitHub https://github.com/Gotsmy/

sweat_normalization.

The quality of normalization methods was tested on synthetic data sets. Synthetic

data sets are necessary as it is impossible to obtain validation data without fun-

damentally changing the (finger) sweat sampling method as described above [20].

However, three different synthetic data generation methods (v1, v2, v3) were em-

ployed to ensure that synthetic data sets are as close to real data as possible. We

found that, when nmetabolites ≥ 60, MIXminimal performs equally well or better than

all other tested normalization methods.

Despite true V values remaining unknown, the real finger sweat data can be used

as validation for relative robustness of normalization methods. There, MIXminimal

significantly outperforms PKMminimal. The decreased variance of kinetic constants

estimated by MIXminimal likely originates from the fact that QPQN does not differ

much for three subsets as long as sufficiently many nmetabolites = 60 are present in

each subset. On the other hand, as only few data points are used for PKMminimal

optimization, small errors in one of the two targeted metabolites measured mass

have a high potential to change the normalization result.

Additionally, the performance of PKMminimal and MIXminimal were compared on a

blood plasma data set taken from a study independent from any measurements used

for the development of the normalization models. There, we were able to demon-

strate the same improvement from PKMminimal to MIXminimal in normalization

robustness. Moreover, we show that the generalized normalization models as imple-

mented as Python class in this study can be easily used for size effect normalization

with little additional coding necessary.

To recapitulate, the proposed MIXminimal model has several crucial advantages

over other tested methods.

• MIXminimal significantly outperforms PKMminimal in relative (rRMSE, −43±
12%) and absolute (RMSE, −73±10%) errors with as little as 60 untargeted

metabolites used as additional information (Figure 7).
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• MIXminimal is invariant to whether untargeted metabolites follow an easily

describable kinetic concentration curve (Figure 6).

• Without noise, MIXminimal performs equally well as PQN for relative abun-

dances, but additionally it estimates absolute values of V , similar to pharma-

cokinetic (PKM) models (Figure 6).

• When noise is present MIXminimal also outperforms PQN for relative abun-

dances (Figure 10).

• MIXminimal performs well in this proof of principle study, moreover, it may be

used as a basis for further improvements. Firstly, different, more sophisticated

statistical normalization methods (e.g. EigenMS [27]) could be used as input

for the PQN part of the model. Secondly, Bayesian priors describing uncer-

tainties of different metabolites could be implemented over the λ parameter

in a similar fashion as discussed in reference [48].

• Strikingly, the results showed that for all normalization methods tested the

RMSE and rRMSE values flattened once 60 metabolites were present in the

original information. This suggested that the presented normalization mod-

els, especially MIXminimal can be applied even for biomatrices or analytical

methods with as few as 60 compounds measured.

• Although MIXminimal was developed especially with sweat volume normaliza-

tion in mind, it can easily adapted for other biomatrices, e.g. plasma (Fig-

ure 11).

6 Conclusion
In this study we described and defined the MIX metabolomics time series nor-

malization model and compared it to PKM. Subsequently, we elaborated several

advantages of the MIXminimal model over PKM and previously published normal-

ization methods. We are confident that this will further improve the reliability

of metabolomic studies done on finger sweat and other conventional and non-

conventional biofluids. However, we acknowledge that a more thorough investigation

with data sets of several more quantified metabolites and determined sweat volumes

need to be carried out to assess the full potential of the proposed method.
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b part of modified Bateman function

C,C underlying concentration (vector)
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d kinetic parameter

F modified Bateman function

fn noise fraction

V ref PQN correction factor

i time point index
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ℓ metabolites used for kinetic fitting

ℓ+ metabolites not used for kinetic fitting

L loss

L loss function
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nmetabolites number of metabolites

ntime points number of time points

p p-value

qsweat sweat rate

QC median concentration fold change of two samples

QM median mass fold change of two samples

QPQN,QPQN normalization quotient (vector) calculated by PQN

R2 coefficient of determination

rRMSE relative measure of goodness of normalization

RMSE absolute measure of goodness of normalization

Std standard deviation

T transformation function

t time

V , V collected (sweat) volume (vector)

Var variance

v1, v2, v3 synthetic data sets

Z scaling function

ϵ experimental error vector

θ kinetic parameter vector for fitting

λ loss weighting parameter

τ time to collect one sample
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