

1 **Mutational scans reveal differential evolvability of *Drosophila* promoters and
2 enhancers**

3

4 **Authors:** Xueying C. Li^{1,*}, Timothy Fuqua¹, Maria Elize van Breugel¹, and Justin Crocker^{1,*}

5 ¹ European Molecular Biology Laboratory, Heidelberg, Germany

6 * Corresponding authors: X.C.L., xueying.li@embl.de, J.C., justin.crocker@embl.de

7 **Quote:**

8 “Regulators, mount up [at transcriptional promoters].” - Warren G & Nate Dogg, 1994

9 **Abstract**

10 Rapid enhancer and slow promoter evolution have been demonstrated through comparative
11 genomics. However, it is not clear how this information is encoded genetically and if this can be
12 used to place evolution in a predictive context. Part of the challenge is that our understanding of
13 the potential for regulatory evolution is biased primarily toward natural variation or limited
14 experimental perturbations. Here, to explore the evolutionary capacity of promoter variation, we
15 surveyed an unbiased mutation library for three promoters in *Drosophila melanogaster*. We
16 found that mutations in promoters had limited to no effect on spatial patterns of gene expression.
17 Compared to developmental enhancers, promoters are more robust to mutations and have more
18 access to mutations that can increase gene expression, suggesting that their low activity might be
19 a result of selection. Consistent with these observations, increasing the promoter activity at the
20 endogenous locus of *shavenbaby* led to increased transcription yet limited phenotypic changes.
21 Taken together, developmental promoters may encode robust transcriptional outputs allowing
22 evolvability through the integration of diverse developmental enhancers.

23

24 Introduction

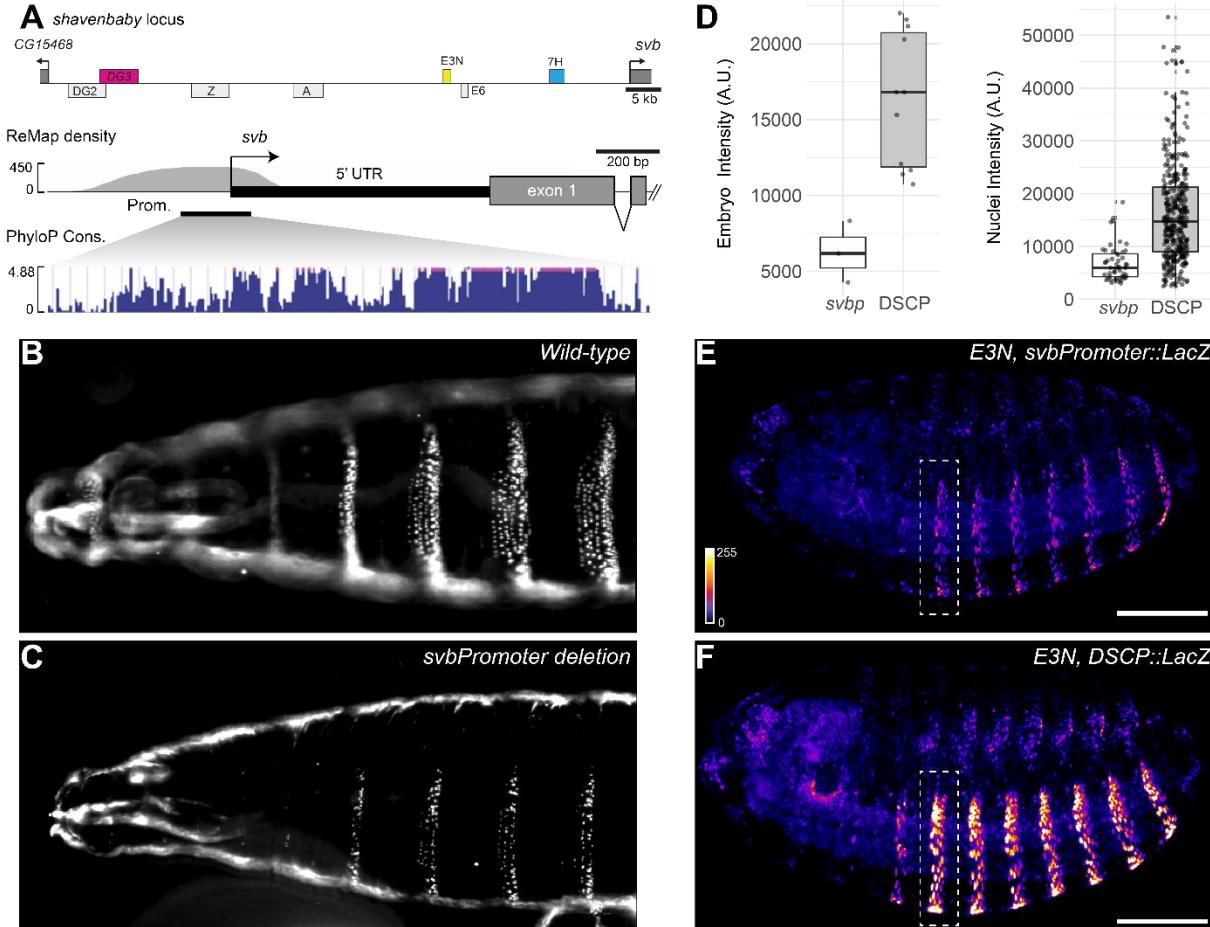
25 Mutations may be largely random, but the loci of evolution are not. Through analyzing
26 causal variants underlying natural variation, previous studies have found that specific genes or
27 nucleotide substitutions are more often used in evolution than others (Stern and Orgogozo 2008;
28 Chan et al. 2010; Martin and Orgogozo 2013). For example, *cis*-regulatory changes are shown to
29 be favored by long-term evolution and morphological traits (Stern and Orgogozo 2008), although
30 their relative contribution to evolution compared to coding changes is still under debate
31 (Hoekstra and Coyne 2007; Stern and Orgogozo 2009). Therefore, evolution may be predictable
32 if we gain a more comprehensive understanding of the roles of different kinds of molecular
33 changes and their possible contributions to evolution. However, the ability to predict evolution
34 requires a full construction of the genotype-to-fitness map, which is difficult to achieve by
35 analyzing naturally occurring variations that are limited in number and shaped by selection
36 (Perkins et al. 2022).

37 Mutational scans of regulatory and coding sequences in microorganisms and cell lines
38 have begun to map genotype-to-phenotype relationships in broad sequence spaces (Patwardhan
39 et al. 2012; Li et al. 2016; Venkataram et al. 2016; Kinsler et al. 2020) and to reveal principles of
40 regulatory grammar (Sharon et al. 2012; Kwasnieski et al. 2012; Qi et al. 2022) and adaptation
41 (Metzger et al. 2015; Park et al. 2022). However, such data have been largely lacking for
42 developmental systems, where the additional challenge is to understand how mutations impact
43 the spatial and temporal pattern of gene expression across development and populations.
44 Recently, mutational scans have been applied to developmental enhancers in fruit flies, where it
45 was found that almost all mutations altered gene expression (Fuqua et al. 2020). This study was
46 further extended to additional elements (Galupa et al. 2022), suggesting that developmental
47 enhancers are often sensitive to perturbation, and may be highly constrained.

48 Metazoan promoters are traditionally thought to be functionally separated from
49 enhancers, with the former primarily interacting with the transcription machinery (e.g. Pol II)
50 and the latter interacting with transcription factors carrying spatial and temporal information.
51 However, recent studies suggest that the boundary between promoters and enhancers can be
52 blurry: enhancers can initiate certain levels of transcription, just like promoters, and many known
53 promoters can influence transcription initiation of other genes, which is the classical definition of

54 enhancers (Haberle and Stark 2018; Andersson and Sandelin 2020; Ramalingam et al. 2022).
55 From an evolutionary standpoint, it has been found that rapid evolution of enhancers is a general
56 feature of mammalian genomes (Villar et al. 2015). In contrast, the genomic enrichment of key
57 histone marks H3K27 acetylation and H3K4 trimethylation associated with promoters was
58 partially or fully conserved across these species, suggesting that there is slow evolution of
59 promoters in animal genomes. However, it is not known how this information is encoded
60 genetically at developmental promoters, which have been distinguished from “housekeeping”
61 promoters by their distinct properties in the epigenetic and sequence signatures (Lenhard et al.
62 2012), the level of PolII stalling (Zeitlinger et al. 2007) and enhancer preferences (Zabidi et al.
63 2015).

64 Here, to understand if mutations in developmental promoters have a different distribution
65 of effects on gene expression from those in enhancers, we examined random mutation libraries
66 of three *Drosophila* promoters and compared them to a previously surveyed *Drosophila E3N*
67 enhancer. In contrast with the previous findings that enhancers may be highly sensitive to
68 mutations (Fuqua et al. 2020), we found that mutations in these promoters sometimes change the
69 level of gene expression, but never the spatial pattern of expression. Together, these findings
70 suggest that developmental promoters may encode robust transcriptional outputs allowing
71 evolvability through the integration of diverse developmental enhancers.


72

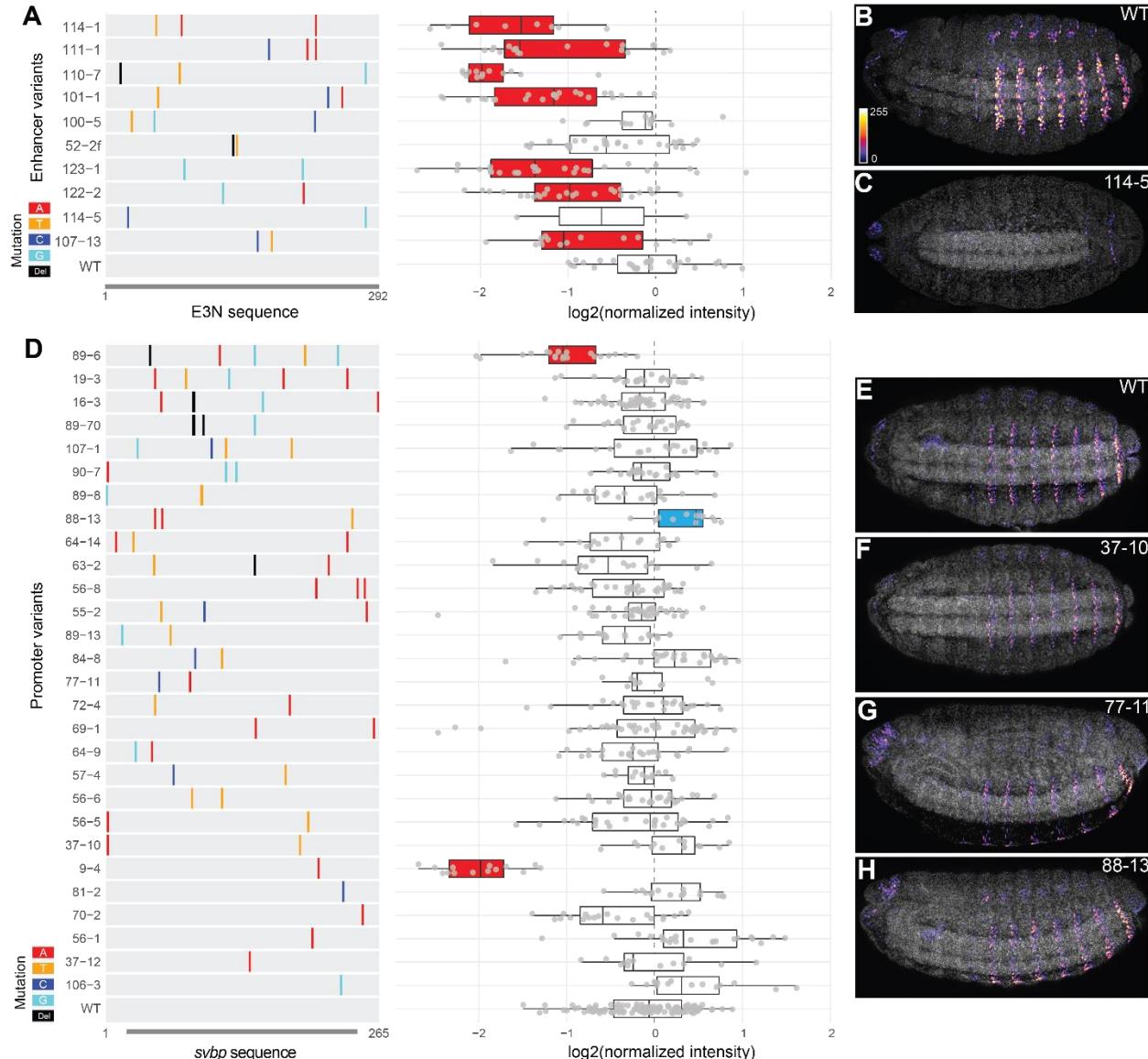
73 **Results**

74 We focused our analyses on the regulatory sequences of *shavenbaby* (*svb*), a gene that
75 encodes an essential regulator of trichome development in *Drosophila*. The evolution of the *svb*
76 regulatory regions has been extensively studied due to contributions to phenotypic evolution
77 across many *Drosophila* species (Sucena and Stern 2000; Frankel et al. 2011; Crocker et al.
78 2015; Preger-Ben Noon et al. 2018). Through these works, seven transcriptional enhancers have
79 been characterized for *svb*; each integrates information from multiple patterning networks giving
80 rise to the overall expression of *svb* across the embryo (**Fig. 1A**).

81 To explore how the native *svb* promoter integrates these diverse activities, we tested the
82 activity of the *svb* promoter (*svbp*) using integrated reporter gene assays. The *svbp* shows high

83 regulatory activity based on ReMap density (Hammal et al. 2022) and is conserved among
84 *Drosophila* species (Siepel et al. 2005) (**Fig. 1A**). It does not contain TATA-box or other strong
85 transcription motifs, consistent with signatures of developmentally regulated promoters in
86 *Drosophila* (Lenhard et al. 2012). Deletion of *svbp* resulted in severe depletion of ventral
87 trichomes (**Fig. 1B-C**), recapitulating the *svb* mutant phenotype (Payre et al. 1999). In order to
88 understand how different promoters control levels and patterns of transcription activities driven
89 by developmental enhancers, we generated reporter constructs of *svb* promoter and *Drosophila*
90 synthetic core promoter (DSCP), an artificially engineered promoter known to drive high levels
91 of expression (Pfeiffer et al. 2008). Both promoters were placed downstream of the *E3N*
92 enhancer of *svb*, which drives expression in a pattern of eight stripes in the abdominal region (A1
93 to A8) in stage 15 embryos (Fuqua et al. 2020). We found that the two promoters drove different
94 levels of reporter gene expression in the stripes, using the second abdominal stripe (A2) as a
95 focal region for quantification (**Fig. 1D**, **Fig. S1**). The nuclei intensity from *DSCP* was on
96 average 2.4-fold higher than that of *svbp*. However, we found no differences in the overall
97 patterns of gene expression in the stripes (**Fig. 1E-F**).

98


99 **Fig. 1. LacZ expression driven by *svb* promoter and *DSCP*.** (A) *shavenbaby* locus. The regulatory
100 region of *svb* spans ~87kb, consisting of seven enhancer regions (top) (Stern and Frankel 2013). The
101 promoter of *svb* is 226bp-long, with high regulatory activity (ReMap score, middle) and conservation
102 level (PhyloP score of 124 insects, bottom). (B, C) Cuticles of wild-type and *svbp* deletion flies,
103 respectively. (D) Levels of *lacZ* expression driven by *svb* promoter (*svbp*) and *DSCP* under the control of
104 *E3N*. Nuclei intensity was quantified by extracting average intensity around local maxima of A2 stripe
105 (shown by white boxes in E and F). Left, mean intensity per embryo, p < 0.01. Right, nuclei intensity
106 across embryos, p < 0.001. A. U., arbitrary unit. P values were from Wilcoxon tests. (E, F)
107 Representative images of stage15 embryos, showing the pattern of *LacZ* expression in abdominal stripes
108 driven by *E3N-svbp* and *E3N-DSCP* respectively, detected by anti-beta-Gal staining. Scale bar = 100 um.

109

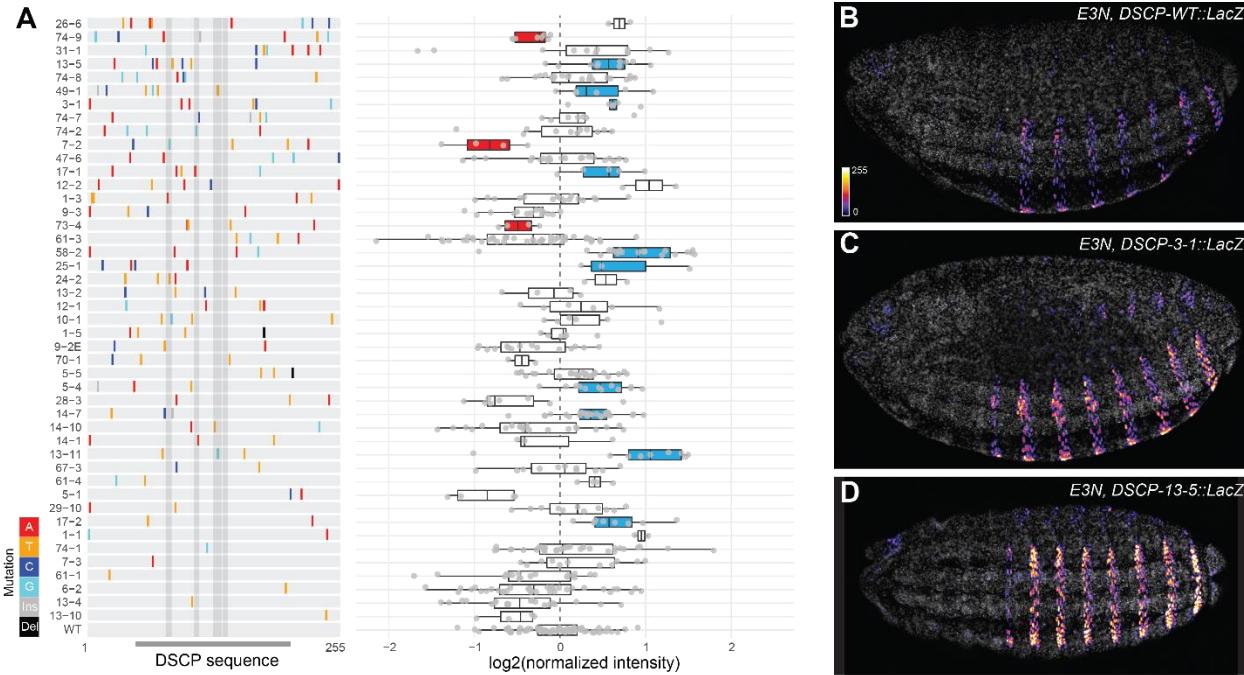
110 In order to understand the evolutionary potential of promoters in regulating the level and
111 pattern of gene expression in a developmental context, we generated random mutation libraries
112 of *svbp* and *DSCP* at a mutation rate of 1-2%, in a similar manner to our previous mutational
113 scan on the *E3N* enhancer (Fuqua et al. 2020). In the previous study, almost all mutations in *E3N*

114 affected the level and/or the pattern of gene expression. We independently recapitulated these
115 results by analyzing ten randomly selected lines with 2-3 mutations from the *E3N* library. We
116 found that all ten lines had reduced number of nuclei expressing *lacZ* [**Fig. 2A-C, Fig S2**, also
117 see (Fuqua et al. 2020; Galupa et al. 2022) for complete analysis of the *E3N* library], consistent
118 with the previous finding that enhancers encode dense spatial information (Fuqua et al. 2020; Le
119 Poul et al. 2020; Galupa et al. 2022). Seven of them also showed reduced level of expression
120 (FDR-adjusted $p < 0.05$, Wilcoxon test, **Fig. 2A**). In contrast, we analyzed 28 *svb* promoter
121 variants (**Fig. 2D-H**), together covering 58 base pairs, and did not find any variants changing the
122 pattern of gene expression (representative images in **Fig. 2F-H**). Unlike the enhancer, only two
123 variants showed significantly lower expression than the wild-type *svb* promoter (**Fig. 2D**).
124 Furthermore, one line showed higher level of expression compared to the wild-type promoter.
125 Given that the two libraries had a comparable mutation rate (both on average 1%), our results
126 suggest that developmental promoters are more robust than enhancers when subjected to the
127 same mutation load.

128

129

130 **Fig. 2. Different mutational profiles of svb enhancer and promoter.** (A) Mutations and expression
 131 level of *E3N* variants, with representative images in (B-C). (D) Mutations and expression level of *svb*
 132 promoter variants, with representative images in (E-H). The mutant lines were ordered by the number of
 133 mutations, from low (bottom) to high (top). Colored lines show the position and identity of mutations.
 134 Del, deletion. The level of expression was represented by mean intensity of nuclei in the A2 stripe in each
 135 embryo, normalized to internal wild-type controls within each batch. The color of boxplots indicates
 136 significant difference from wild-type, tested by Wilcoxon test within batches (FDR-adjusted $p < 0.05$):
 137 red, reduced expression. Blue, increased expression. The grey channel in (B-C) and (E-H) shows DAPI
 138 staining.

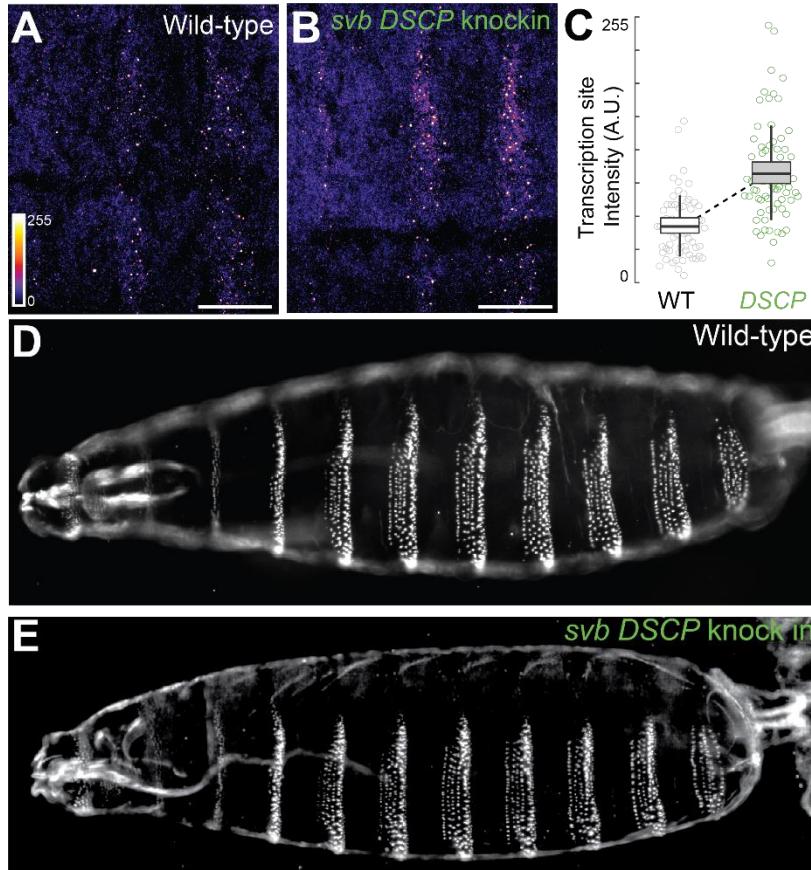

139

140 We next extended our analysis to the *Drosophila* synthetic core promoter (DSCP). The
 141 DSCP was created by adding initiator (Inr) motif, motif ten element (MTE) and downstream

142 promoter element (DPE) to a TATA-containing promoter of the developmental gene *even-skipped*
143 (*eve*) — creating one of the strongest promoters available in fruit flies (Pfeiffer et al. 2008). We
144 quantitatively analyzed 45 variants of DSCP, with the number of mutations ranging from 1-8
145 across the 255bp-long sequence and an average mutation rate of 1.5% (**Fig. 3**). There were 117
146 nucleotide positions mutated in total, and 9 of them fell in the four functional motifs mentioned
147 above (shaded regions in the left panel of **Fig. 3A**). We found that mutations in DSCP changed
148 the expression level of the reporter gene more often than those in *svbp*, with 13 mutant lines
149 showing significant changes, suggesting that the endogenous *svb* promoter might be more robust
150 than the synthetic promoter. Among the variants showing changes in expression, there was no
151 apparent correlation between the effect size and the number or the location of mutations.
152 Interestingly, although DSCP drove high level of expression, mutations in DSCP increased its
153 activity even further in 10 mutant lines. It suggests that developmental promoters such as those
154 of *svb* and *eve* have the evolutionary potential to drive higher expression not only through the
155 transcriptional motifs but also through additional mutations. Due to the multiple mutational paths
156 that led to higher-levels of expression, it is possible that developmental promoters have been
157 selected to maintain low transcription activity during evolution.

158 Consistent with our findings from the *svbp*, mutations in the DSCP did not change
159 patterns of gene expression, supported by the 45 lines quantified above (e.g. **Fig. 3B-D**) and 21
160 additional DSCP variants examined quantitatively (**Fig. S3A-C**). To further validate these
161 results, we generated a mutation library of the *hsp70* promoter (*hsp70p*), a promoter commonly
162 used to drive constitutive expression in *Drosophila*. Similarly, we did not find any variants
163 causing a change in the expression pattern in the 31 variants examined (covering 74 out of 268
164 bp) (**Fig. S3D-F**). Together, these results are consistent with the traditional view of promoters
165 encoding little spatial information (Serfling et al. 1985).

166


167

168 **Fig. 3. Mutational profiles of *Drosophila* synthetic core promoter.** (A) Mutations and expression level
169 of DSCP variants, with representative images in (B-D). The variants were ordered by the number of
170 mutations, from low (bottom) to high (top). Grey shades show regions of TATA, Inr, and MTE-DPE
171 motifs, respectively. Colored lines show the position and identity of mutations. Ins, insertion. Del,
172 deletion. The level of expression was represented by mean intensity of nuclei in A2 stripes in each
173 embryo, normalized to internal wild-type controls within each batch. The color of boxplots indicates
174 significant difference from the wild-type promoter, tested by Wilcoxon test within batches on lines with a
175 minimum sample size of three embryos (FDR-adjusted $p < 0.05$): red, reduced expression. Blue,
176 increased expression. The grey channel in (B-D) shows DAPI staining. The images were background-
177 subtracted and displayed in the same intensity range.

178

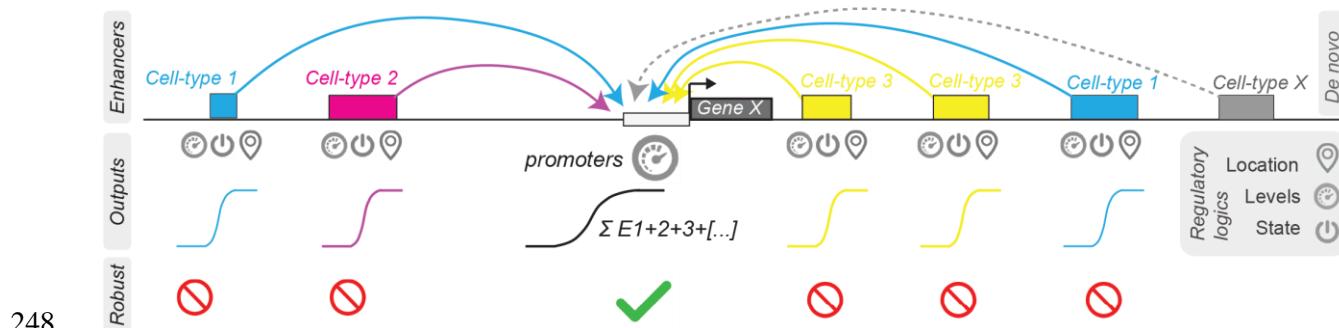
179 Although reporter constructs allowed us to examine the promoter variants in a controlled
180 setting, it remains unknown whether the changes in transcription can lead to phenotypic
181 outcomes at the endogenous locus, where complex promoter-enhancer interactions are involved.
182 Therefore, we next tested if a change in the promoter activity at the endogenous locus could lead
183 to phenotypic outcomes. We knocked out the *svb* promoter at its endogenous locus and replaced
184 it with DSCP using CRISPR/Cas9. We found that the stronger DSCP promoter produced higher
185 levels of transcription based on the local levels of nascent *svb* transcription compared to the
186 endogenous promoter (Fig. 4A-C), consistent with the finding from reporter constructs.
187 However, the changes in transcription levels did not directly translate into morphological
188 changes, i.e., the pattern of ventral trichomes in larval cuticles (Fig. 4D-E): the DSCP knock-in

189 rescued the knock-out phenotype (severe depletion of trichomes, **Fig. 1**) to the wild-type level,
190 but there was no apparent differences in the trichome patterns from the wild-type.

191
192 **Fig. 4. Replacing *svb* promoter with *DSCP* at its endogenous locus.** (A, B) Transcription sites of *svb* in
193 stage 15 embryos, detected by fluorescent in situ hybridization. Scale bar = 20 μ m. (C) Transcription site
194 intensity, quantified across 3 embryos for each genotype. A. U., arbitrary unit. (D-E) Cuticles of wild-
195 type and *svb* Δ ::*DSCP* larvae, showing ventral trichomes.

196
197 **Discussion**

198 Although it remains debatable whether enhancers and promoters are functionally
199 different elements from a transcription perspective (Haberle and Stark 2018; Andersson and
200 Sandelin 2020), there is evidence that they are under different selective pressures, and possible
201 evolutionary constraints. For example, comparative studies have shown that enhancer sequences
202 undergo rapid sequence divergence while maintaining their regulatory functions via binding site
203 turnover, consistent with stabilizing selection (Ludwig et al. 2000; Arnold et al. 2014). Gains and


204 losses of enhancers were also found to be frequent in different lineages (Arnold et al. 2014;
205 Villar et al. 2015). Changes in promoters tend to be neutral (Hoffman and Birney 2010),
206 consistent with our findings. They have also been shown to evolve slower than enhancers in
207 mammals (Villar et al. 2015), but the level of constraint on promoters can differ among different
208 types of promoters (Carninci et al. 2006), with highly constrained promoters associated with
209 developmental functions (Lindblad-Toh et al. 2011).

210 Empirical characterization of the mutational space of enhancers and promoters in a
211 developmental context was only made possible recently through mutational scans (Fuqua et al.
212 2020) and automation of embryo handling (Fuqua et al. 2021). Recent mutational scans have
213 found that developmental enhancers encode dense regulatory information and are strongly
214 constrained (Fuqua et al. 2020; Le Poul et al. 2020; Galupa et al. 2022). In this study, we found
215 that *Drosophila* promoters have different mutational profiles from enhancers. At a comparable
216 mutation rate to the previously published *E3N* enhancer library (Fuqua et al. 2020), variants in
217 our promoter libraries did not show any changes in the pattern of gene expression (**Fig. 2-3, Fig.**
218 **S3**), whereas almost all mutant lines of *E3N* changed the pattern (**Fig. 2, Fig. S2**). Mutations in
219 promoters can change the level of expression in either direction (**Fig. 2-3**), whereas mutations in
220 enhancers tended to reduce expression (**Fig. 2**) (Fuqua et al. 2020; Galupa et al. 2022). Together,
221 these findings suggest that *Drosophila* promoters might be more robust to mutations than
222 enhancers. Interestingly, this difference seems to exist in yeast promoters, if one considers a
223 yeast promoter to be a mixture of enhancer (binding transcription factors) and promoter
224 (initiating transcription) sequences: in the study of *TDH3* promoter, mutations in transcription
225 factor binding sites (“enhancer”) greatly reduced transcription whereas other mutations only
226 fine-tuned the level of expression (Metzger et al. 2015). Additionally, our results indicated that
227 promoters might have little potential to evolve new spatial patterns of expression, consistent with
228 a previous finding that promoters were less likely to be repurposed as enhancers than the other
229 way around in mammalian evolution (Carelli et al. 2018). However, this observation remains to
230 be tested with more promoters and beyond the context of reporter constructs. Furthermore, the
231 effects of promoter variants on the level of gene expression did not correlate with the number or
232 the location (e.g. in TATA or other motifs) of mutations (**Fig 2-3**), suggesting that regulatory

233 information might be randomly distributed in these promoters and a saturated mutational scan
234 might be required to fully decode the regulatory potential of promoter sequences.

235 When comparing *svb* promoter and DSCP, it is clear that the endogenous *svb* promoter
236 had low activity (**Fig. 1**), consistent with previous views (Haberle and Stark 2018). The fact that
237 both *svbp* and DSCP had access to mutations that can increase the expression level (**Fig. 2-3**)
238 suggested that the low activity of endogenous promoters might be a result of selection.
239 Developmental promoters in multicellular organisms might have been selected to maintain a
240 basal level of activity to enable more precise gene-expression outputs. Furthermore, the high-
241 activity, artificially engineered promoter was more “evolvable” (or “breakable”) in the sense that
242 many mutations led to changes in the level of gene expression, whereas the low-activity,
243 endogenous *svb* promoter was relatively robust to mutations, suggesting that developmental
244 promoters might have evolved to encode robust transcriptional outputs. This robustness may
245 facilitate evolvability through the rapid integration of developmental enhancers that drive cell-
246 type specific expression patterns – including novel or coopted elements (**Fig. 5**).

247

249 **Fig. 5. Model of enhancer and promoter evolution.** Cell type-specific enhancers encode information for
250 the location, levels and states of gene expression, whereas promoters encode information for the level of
251 gene expression and integrate the transcriptional outputs from multiple enhancers. Promoters are
252 relatively robust to mutations, allowing evolutionary changes through enhancers, including novel or
253 coopted changes.

254

255 Although promoters seem to be more robust to mutations than enhancers, the *svb*
256 promoter shows high level of sequence conservation, suggesting a certain degree of constraint.
257 This could be explained by the fact that one gene has only one promoter but can have multiple

258 enhancers with redundant roles. Perturbation of promoters at their endogenous loci often have
259 large phenotypic effects (Lee and Wu 2006; Yokoshi et al. 2022) whereas perturbation of
260 redundant enhancers may only manifest its effects under challenging conditions (Frankel et al.
261 2010; Perry et al. 2010; Osterwalder et al. 2018). In our study, we found that deletion of *svb*
262 promoter led to severe reduction of trichomes, similar to *svb* knockout phenotypes (Delon et al.
263 2003). However, changes in promoter activity at the endogenous locus of *svb* by knocking-in
264 DSCP did not cause a change in larval trichome patterns (**Fig. 4**), suggesting that changes in
265 transcription level could be buffered by downstream network (Stern and Orgogozo 2008),
266 consistent with developmental traits being highly robust systems (Siegal and Bergman 2002;
267 Payne and Wagner 2015), or be above a threshold needed to elicit downstream patterning (Delon
268 et al. 2003).

269 Together, ours and previous studies (Fuqua et al. 2020; Galupa et al. 2022) highlight the
270 power of mutational scans in providing insights for developmental evolution. This approach
271 allows us to fully explore “the possible and the actual” (Jacob 1982) of *cis*-regulatory evolution,
272 which is currently lacking especially in a developmental context. The differential constraints
273 observed in different *cis*-regulatory elements can help us predict where evolutionarily relevant
274 substitutions could occur within a locus. They also support the previous findings that the
275 evolution of *svb* consists of multiple small-effect substitutions throughout the locus in different
276 *Drosophila* species (Frankel et al. 2011; Preger-Ben Noon et al. 2018). In the future, mutational
277 scans by allele replacement at the endogenous loci will provide further insights into the fitness
278 landscape of regulatory elements in a developmental context, paralleling those in
279 microorganisms (Metzger et al. 2015; Venkataram et al. 2016) and cell lines (Sanjana et al.
280 2016).

281

282 **Methods**

283 *Promoter libraries*

284 Random mutation libraries of *Drosophila* synthetic core promoter (DSCP), *hsp70* and *svb*
285 promoters were synthesized at Genscript with a mutation rate of 10-20 point mutations per kb. In
286 particular, the DSCP sequence (155 bp) was flanked by 50 bp-long sequences from *hsp70p* at

287 each end, and the *svbp* sequence (226 bp) was flanked by 19- and 20 bp-long sequences from
288 *hsp70p* at each end, respectively. The flanking sequences were also subjected to mutagenesis.
289 The variants were cloned into E3N-placZattB (Fuqua et al. 2020) to replace the wild-type *hsp70*
290 promoter, which was positioned downstream of an *E3N* enhancer and upstream of a *lacZ* reporter
291 (Fuqua et al. 2020). The libraries were integrated into the fly genome at the attP2 site, with the
292 injection service provided by GenetiVision. G0 transformants were crossed to w1118, and their
293 offspring (F1) were screened for the presence of the construct by eye color. The red-eye F1 flies
294 were individually crossed to w1118 to establish isogenic lines, which were subsequently
295 homozygosed by sibling crosses. The mutant lines were then sequenced to identify mutations in
296 the promoters, with primer 5'- CCAAGTTGGTGGAGTTCTATAATTCC – 3' or 5'-
297 AGGCATTGGGTGTGAGTTCTTC - 3'. The sequences are listed in **Table S1**.

298 *Embryo collection and immunostaining*

299 Embryos were collected from an overnight laying period at 25°C, using a standard
300 fixation protocol (Galupa et al. 2022). During fixation and staining, a wild-type promoter control
301 was always included in each batch, to account for batch effects.

302 Expression of *lacZ* was detected with a chicken anti-βGal antibody (1:500, abcam
303 ab9361). ELAV was stained with mouse anti-ELAV supernatant (1:25, Developmental Studies
304 Hybridoma Bank Elav-9F8A9) as a fiducial marker. For DSCP, *E3N* and *hsp70p* libraries, as
305 well as for comparing DSCP and *svbp* activity (data in **Fig. 1, Fig. 3 and Fig. S2-3**), AlexaFluor
306 488 and 633 (1:500) were used as secondary antibodies for βGal and ELAV, respectively. Due to
307 the extremely weak signal of *svbp* lines, we used extra staining steps for the *svbp* mutation
308 library to enhance the signal (data in **Fig. 2**). After a secondary incubation of AlexaFluor
309 555/488 (goat anti chicken, 1:500), Biotin conjugate was used as tertiary antibody (donkey anti
310 sheep, 1:500, 1hr incubation) and NeutrAvidin 550 was used for quaternary staining (1:500,
311 30min to 1hr incubation). AlexaFluor 488/647 (1:500) was used as the secondary antibody for
312 ELAV in this case.

313 The stained embryos of DSCP and *svbp* libraries were mounted in ProLong Gold with
314 DAPI. A subset of DSCP lines and all of the *hsp70p* lines were mounted in benzyl
315 alcohol/benzyl benzoate (BABB) (Fuqua et al. 2021) and were analyzed qualitatively due to

316 lower imaging quality. The mutation libraries were imaged on a Zeiss LSM 880 confocal
317 microscope with an automated pipeline under a 20x objective (air, 0.8 NA) as previously
318 described (Fuqua et al. 2021) or manually under the same setting. Embryos used for comparison
319 between DSCP and *svb* promoter in **Fig. 1** were imaged manually under a 25x (oil, 0.8 NA)
320 objective.

321 *Quantification of lacZ expression*

322 We focused on cells in the second abdominal stripe (A2) in stage 15 embryos for
323 analyzing the pattern and intensity of *lacZ* expression. In each embryo, the A2 region was
324 manually selected, max-projected, and background-subtracted with a rolling ball radius of 50
325 pixels. To select for *LacZ*-expressing cells in the region, we first performed a Gaussian blur with
326 a radius of 2 pixels to remove noise, and then identified regions of interest (ROIs) by
327 automatically thresholding the image with the Otsu method in ImageJ (**Fig. S1A**). The ROIs
328 were applied to the background-subtracted image and analyzed with the `Analyze Particles`
329 function to extract mean intensity of each ROI. Mean intensity per embryo was calculated by
330 $I_e = \frac{\sum i_R \times A_R}{\sum A_R}$, where i_R was the mean intensity and A_R was the area of the ROI, respectively.

331 The embryo mean intensity of mutant lines was compared to the wild-type in the same
332 batch with Wilcoxon test. In the case where two biological replicates from different batches
333 showed inconsistency in expression changes (i.e. one was different from wild-type and other was
334 not), we took a conservative approach and removed both of them. A few *svbp* lines (57-4, 19-3,
335 64-14, 69-1, 89-13, 89-70, 90-7) were imaged along with two wild-type controls that were
336 different from the control of other batches, and their intensities were scaled to the other control
337 by linear conversion, to eliminate differences caused by background variation in the different
338 controls. The data were normalized to the control line in each batch when combined in one plot.
339 Data from biological replicates were merged.

340 To compare expression level between DSCP and *svbp*, we extracted nucleus intensity by
341 identifying local maxima with a prominence of 2000 and selecting a circular region with a radius
342 of 0.55 um around each local maximum. Mean intensity of the circular regions was extracted
343 from the background-subtracted images (**Fig. S1B**).

344 *Allele replacement with CRISPR*

345 We performed allele replacement following a two-step process, using a 3XP3-RFP
346 marker as an intermediate step to easily select for integration events (Lamb et al. 2017). A 182-
347 bp-long sequence of *svb* promoter immediately upstream of *svb* 5'UTR was targeted with two
348 gRNAs, 5'-cgagatattcgccgttgctc-3' and 5'-gaatacagtaagttgcgagc-3', which were cloned into
349 pCFD4. A repair template containing the 3XP3-RFP sequence (1.86kb) (Lamb et al. 2017) and a
350 983bp-long homology arm at each end was synthesized and cloned into pUC57. The gRNA (75
351 ng/ul) and the repair template (225 ng/ul) were mixed and injected into a fly stock expressing
352 Cas9 in the germline (BDSC#51324: w[1118]; PBac{y[+mDint2] GFP[E.3xP3]=vas-
353 Cas9}VK00027). Flies from the injection were crossed to an FM6 balancer and subsequently
354 screened for RFP expression in the eyes, which indicates successful replacement of *svb* promoter
355 by the 3XP3-RFP cassette. The RFP-positive transformants were then homozygosed for both
356 RFP and GFP markers to establish a fly line for the second round of allele replacement.

357 In the second round, we replaced the 3XP3-RFP sequence with the DSCP sequence. The
358 gRNAs were designed based on the fused sequence of *svb* locus and 3XP3-RFP cassette: 5'-
359 GGTACCGTACGAGATCTCTC-3' and 5'-GGCGCCTAAGGATCGATAGC-3', cloned into
360 pCFD4. The repair template contained a 255-bp-long DSCP sequence and the same homology
361 arms as above. A mixture of plasmids carrying gRNAs and repair template was injected into the
362 RFP-positive line mentioned above. Flies from the injection were crossed to an RFP/FM6 line
363 and screened for loss of RFP. The resulting transformants were then homozygosed to establish a
364 stable line of *svbPromoterΔ::DSCP* genotype. The integration was confirmed by PCR and
365 sequencing.

366 *Fluorescent in situ hybridization*

367 *svb* transcripts were detected with DIG-labeled probes of *svb* as per (Tsai et al. 2019).
368 Fixed *Drosophila* embryos were mounted in ProLong Gold + DAPI mounting media (Molecular
369 Probes, Eugene, OR) and imaged on a Zeiss LSM 880 confocal microscope with FastAiryscan
370 under a 63x objective (Carl Zeiss Microscopy, Jena, Germany). Inside nuclei with *svb*
371 transcription sites, the center of the transcription site was identified using the find maximum
372 function of Fiji/ImageJ. A circle with a diameter of 12 pixels [0.85 μm, region of interest (ROI)]

373 centered on the transcription site was then created. The integrated fluorescent intensity inside the
374 ROI was then reported. The intensity presented in the figures is the per-pixel average intensity
375 with the maximum readout of the sensor normalized to 255.

376 *Cuticle preparation*

377 Embryos from an overnight laying period were dechorionated with bleach and left in
378 distilled water at room temperature for 24h. After 24h, the hatched larvae were transferred onto a
379 glass slide and mounted in Hoyer's medium mixed with lactic acid (1:1). The slide was baked at
380 55°C for 2 days before being imaged with dark field microscopy.

381

382 **Supplementary Material**

383 **Figure S1.** Quantification of *LacZ* expression in A2 cells.

384 **Figure S2.** Expression pattern of *E3N* variants.

385 **Figure S3.** Additional data for DSCP and *hsp70p* variants.

386 **Table S1.** Variant sequences used in this study.

387

388 **Acknowledgement**

389 We thank Alessandra Reversi and Matthew Benton for providing the injection service at EMBL.
390 We thank Noa Ottlie Borst for her help with in situ stainings, Natalia Misunou for reading the
391 manuscript, and other members of the Crocker group for their input on the project. X.C.L. is
392 supported by a fellowship from the European Molecular Biology Laboratory Interdisciplinary
393 Postdoc Programme (EIPOD) under Marie Skłodowska-Curie Actions COFUND (664726).
394 Research in the Crocker lab is supported by the European Molecular Biology Laboratory
395 (EMBL).

396

397 **Author contributions**

398 Conceptualization: X.C.L., T.F., M.E.B., J.C. Investigation: X.C.L., T.F., M.E.B., J.C.
399 Methodology: X.C.L., T.F., J.C. Formal analysis: X.C.L., J.C. Data curation: X.C.L.
400 Visualization: X.C.L., J.C. Software: X.C.L., T.F., J.C. Supervision: J.C. Project administration:
401 X.C.L., J.C. Funding acquisition: J.C. Writing, original draft: X.C.L., J.C. Writing, review &
402 editing: X.C.L., T.F., M.E.B., J.C.

403

404 **Competing interests**

405 The authors declare no competing interests.

406

407 **References**

408 Andersson R, Sandelin A. 2020. Determinants of enhancer and promoter activities of regulatory
409 elements. *Nat Rev Genet.* 21(2):71–87. doi:10.1038/s41576-019-0173-8.

410 Arnold CD, Gerlach D, Spies D, Matts JA, Sytnikova YA, Pagani M, Lau NC, Stark A. 2014.
411 Quantitative genome-wide enhancer activity maps for five *Drosophila* species show functional
412 enhancer conservation and turnover during *cis*-regulatory evolution. *Nat Genet.* 46(7):685–692.
413 doi:10.1038/ng.3009.

414 Carelli FN, Liechti A, Halbert J, Warnefors M, Kaessmann H. 2018. Repurposing of promoters
415 and enhancers during mammalian evolution. *Nat Commun.* 9(1):1–11. doi:10.1038/s41467-018-
416 06544-z.

417 Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CAM,
418 Taylor MS, Engström PG, Frith MC, et al. 2006. Genome-wide analysis of mammalian promoter
419 architecture and evolution. *Nat Genet.* 38(6):626–635. doi:10.1038/ng1789.

420 Chan YF, Marks ME, Jones FC, Villarreal G, Shapiro MD, Brady SD, Southwick AM, Absher
421 DM, Grimwood J, Schmutz J, et al. 2010. Adaptive Evolution of Pelvic Reduction in
422 Sticklebacks by Recurrent Deletion of a Pitx1 Enhancer. *Science* (80-). 327(5963):302–305.
423 doi:10.1126/science.1182213.

424 Crocker J, Abe N, Rinaldi L, McGregor AP, Frankel N, Wang S, Alsawadi A, Valenti P, Plaza S,

425 Payre F, et al. 2015. Low Affinity Binding Site Clusters Confer Hox Specificity and Regulatory
426 Robustness. *Cell*. 160(1–2):191–203. doi:10.1016/j.cell.2014.11.041.

427 Delon I, Chanut-Delalande H, Payre F. 2003. The Ovo/Shavenbaby transcription factor specifies
428 actin remodelling during epidermal differentiation in *Drosophila*. *Mech Dev*. 120(7):747–758.
429 doi:10.1016/S0925-4773(03)00081-9.

430 Frankel N, Davis G, Vargas D, Wang S, Payre F, Stern DL. 2010. Phenotypic robustness
431 conferred by apparently redundant transcriptional enhancers. *Nature*. 466(7305):490–493.
432 doi:10.1038/nature09158.Phenotypic.

433 Frankel N, Erezyilmaz DF, McGregor AP, Wang S, Payre F, Stern DL. 2011. Morphological
434 evolution caused by many subtle-effect substitutions in regulatory DNA. *Nature*. 474(7353):598–
435 603. doi:10.1038/nature10200.

436 Fuqua T, Jordan J, van Breugel ME, Halavatyi A, Tischer C, Polidoro P, Abe N, Tsai A, Mann
437 RS, Stern DL, et al. 2020. Dense and pleiotropic regulatory information in a developmental
438 enhancer. *Nature*. 587(7833):235–239. doi:10.1038/s41586-020-2816-5.

439 Fuqua T, Jordan J, Halavatyi A, Tischer C, Richter K, Crocker J. 2021. An open-source semi-
440 automated robotics pipeline for embryo immunohistochemistry. *Sci Rep*. 11(1):1–16.
441 doi:10.1038/s41598-021-89676-5.

442 Galupa R, Alvarez-Canales G, Borst NO, Fuqua T, Gandara L, Misunou N, Richter K, Alves
443 MRP, Karumbi E, Perkins ML, et al. 2022. Enhancer architecture and chromatin accessibility
444 constrain phenotypic space during development. *bioRxiv*. 38(1):2022.06.02.494376.
445 doi:10.1101/2022.06.02.494376.

446 Haberle V, Stark A. 2018. Eukaryotic core promoters and the functional basis of transcription
447 initiation. *Nat Rev Mol Cell Biol*. 19(10):621–637. doi:10.1038/s41580-018-0028-8.

448 Hammal F, de Langen P, Bergon A, Lopez F, Ballester B. 2022. ReMap 2022: a database of
449 Human, Mouse, *Drosophila* and *Arabidopsis* regulatory regions from an integrative analysis of
450 DNA-binding sequencing experiments. *Nucleic Acids Res*. 50(D1):D316–D325.
451 doi:10.1093/nar/gkab996.

452 Hoekstra HE, Coyne JA. 2007. The locus of evolution: evo devo and the genetics of adaptation.
453 Evolution. 61(5):995–1016. doi:10.1111/j.1558-5646.2007.00105.x.

454 Hoffman MM, Birney E. 2010. An effective model for natural selection in promoters. Genome
455 Res. 20(5):685–692. doi:10.1101/gr.096719.109.

456 Jacob F. 1982. The possible and the actual. University of Washington Press.

457 Kinsler G, Geiler-Samerotte K, Petrov D. 2020. Fitness variation across subtle environmental
458 perturbations reveals local modularity and global pleiotropy of adaptation. Elife. 9:1–52.
459 doi:10.7554/ELIFE.61271.

460 Kwasnieski JC, Mogno I, Myers CA, Corbo JC, Cohen BA. 2012. Complex effects of nucleotide
461 variants in a mammalian cis -regulatory element. doi:10.1073/pnas.1210678109.

462 Lamb AM, Walker EA, Wittkopp PJ. 2017. Tools and strategies for scarless allele replacement
463 in *Drosophila* using CRISPR/Cas9. Fly (Austin). 11(1):53–64.
464 doi:10.1080/19336934.2016.1220463.

465 Lee AM, Wu CT. 2006. Enhancer-promoter communication at the yellow gene of *Drosophila*
466 *melanogaster*: Diverse promoters participate in and regulate trans interactions. Genetics.
467 174(4):1867–1880. doi:10.1534/genetics.106.064121.

468 Lenhard B, Sandelin A, Carninci P. 2012. Metazoan promoters: emerging characteristics and
469 insights into transcriptional regulation. Nat Rev Genet. 13(4):233–245. doi:10.1038/nrg3163.

470 Li C, Qian W, Maclean CJ, Zhang J. 2016. The fitness landscape of a tRNA gene. Science (80-).
471 352(6287):837–840. doi:10.1126/science.aae0568.

472 Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, Kheradpour P, Ernst J,
473 Jordan G, Mauceli E, et al. 2011. A high-resolution map of human evolutionary constraint using
474 29 mammals. Nature. 478(7370):476–482. doi:10.1038/nature10530.

475 Ludwig MZ, Bergman C, Patel NH, Kreitman M. 2000. Evidence for stabilizing selection in a
476 eukaryotic enhancer element. Nature. 403(6769):564–567. doi:10.1038/35000615.

477 Martin A, Orgogozo V. 2013. The loci of repeated evolution: A catalog of genetic hotspots of
478 phenotypic variation. Evolution (N Y). 67(5):1235–1250. doi:10.1111/evo.12081.

479 Metzger BPH, Yuan DC, Gruber JD, Duveau F, Wittkopp PJ. 2015. Selection on noise
480 constrains variation in a eukaryotic promoter. *Nature*. 521(7552):344–347.
481 doi:10.1038/nature14244.

482 Osterwalder M, Barozzi I, Tissiéres V, Fukuda-Yuzawa Y, Mannion BJ, Afzal SY, Lee EA, Zhu
483 Y, Plajzer-Frick I, Pickle CS, et al. 2018. Enhancer redundancy provides phenotypic robustness
484 in mammalian development. *Nature*. 554(7691):239–243. doi:10.1038/nature25461.

485 Park Y, Metzger BPH, Thornton JW. 2022. Epistatic drift causes gradual decay of predictability
486 in protein evolution. *Science* (80-). 376(6595):823–830. doi:10.1126/science.abn6895.

487 Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, Smith RP, May D, Lee C, Andrie JM, Lee SI,
488 Cooper GM, et al. 2012. Massively parallel functional dissection of mammalian enhancers in
489 vivo. *Nat Biotechnol*. 30(3):265–270. doi:10.1038/nbt.2136.

490 Payne JL, Wagner A. 2015. Mechanisms of mutational robustness in transcriptional regulation.
491 *Front Genet*. 6(OCT):1–10. doi:10.3389/fgene.2015.00322.

492 Payre F, Vincent A, Carreño S. 1999. ovo/svb Integrates Wingless and DER pathways to control
493 epidermis differentiation. *Nature*. 400(6741):271–275. doi:10.1038/22330.

494 Perkins ML, Gandara L, Crocker J. 2022. A synthetic synthesis to explore animal evolution and
495 development. *Philos Trans R Soc B Biol Sci*. 377(1855):20200517. doi:10.1098/rstb.2020.0517.

496 Perry MW, Boettiger AN, Bothma JP, Levine M. 2010. Shadow Enhancers Foster Robustness of
497 Drosophila Gastrulation. *Curr Biol*. 20(17):1562–1567.
498 doi:<https://doi.org/10.1016/j.cub.2010.07.043>.

499 Pfeiffer BD, Jenett A, Hammonds AS, Ngo T-TB, Misra S, Murphy C, Scully A, Carlson JW,
500 Wan KH, Laverty TR, et al. 2008. Tools for neuroanatomy and neurogenetics in Drosophila.
501 *Proc Natl Acad Sci*. 105(28):9715–9720. doi:10.1073/pnas.0803697105.

502 Le Poul Y, Xin Y, Ling L, Mühling B, Jaenichen R, Hörl D, Bunk D, Harz H, Leonhardt H,
503 Wang Y, et al. 2020. Deciphering the regulatory logic of a Drosophila enhancer through
504 systematic sequence mutagenesis and quantitative image analysis.
505 doi:10.1101/2020.06.24.169748.

506 Preger-Ben Noon E, Sabarís G, Ortiz DM, Sager J, Liebowitz A, Stern DL, Frankel N. 2018.
507 Comprehensive Analysis of a cis-Regulatory Region Reveals Pleiotropy in Enhancer Function.
508 *Cell Rep.* 22(11):2809–2817. doi:10.1016/j.celrep.2018.02.073.

509 Qi Z, Jung C, Bandilla P, Ludwig C, Heron M, Sophie Kiesel A, Museridze M, Philippou-
510 Massier J, Nikolov M, Renna Max Schnepf A, et al. 2022. Large-scale analysis of Drosophila
511 core promoter function using synthetic promoters. *Mol Syst Biol.* 18(2):1–26.
512 doi:10.15252/msb.20209816.

513 Ramalingam V, Yu X, Slaughter BD, Unruh JR, Brennan KJ, Onyshchenko A, Lange JJ,
514 Natarajan M, Buck M, Zeitlinger J. 2022. Lola-I is a developmentally regulated promoter
515 pioneer factor. *bioRxiv*.:2022.04.25.489272.

516 Sanjana NE, Wright J, Zheng K, Shalem O, Fontanillas P, Joung J, Cheng C, Regev A, Zhang F.
517 2016. High-resolution interrogation of functional elements in the noncoding genome. *Science*
518 (80-). 353(6307):1545–1549. doi:10.1126/science.aaf7613.

519 Serfling E, Jasin M, Schaffner W. 1985. Enhancers and eukaryotic gene transcription. *Trends*
520 *Genet.* 1(C):224–230. doi:10.1016/0168-9525(85)90088-5.

521 Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, Levo M, Zeevi D, Keren L, Yakhini Z,
522 Weinberger A, Segal E. 2012. Inferring gene regulatory logic from high-throughput
523 measurements of thousands of systematically designed promoters. *Nat Biotechnol.* 30(6):521–
524 530. doi:10.1038/nbt.2205.

525 Siegal ML, Bergman A. 2002. Waddington’s canalization revisited: Developmental stability and
526 evolution. *Proc Natl Acad Sci U S A.* 99(16):10528–10532. doi:10.1073/pnas.102303999.

527 Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J,
528 Hillier LW, Richards S, et al. 2005. Evolutionarily conserved elements in vertebrate, insect,
529 worm, and yeast genomes. *Genome Res.* 15(8):1034–1050.

530 Stern DL, Frankel N. 2013. The structure and evolution of cis -regulatory regions: the
531 shavenbaby story. *Philos Trans R Soc B Biol Sci.* 368(1632):20130028.
532 doi:10.1098/rstb.2013.0028.

533 Stern DL, Orgogozo V. 2008. The loci of evolution: how predictable is genetic evolution?
534 Evolution (N Y). 62(9):2155–77. doi:10.1111/j.1558-5646.2008.00450.x.

535 Stern DL, Orgogozo V. 2009. Is Genetic Evolution Predictable? Science (80-). 323(5915):746–
536 751. doi:10.1126/science.1158997.

537 Sucena E, Stern DL. 2000. Divergence of larval morphology between *Drosophila sechellia* and
538 its sibling species caused by cis-regulatory evolution of ovo/shaven-baby. Proc Natl Acad Sci U
539 S A. 97(9):4530–4.

540 Tsai A, Alves MRP, Crocker J. 2019. Multi-enhancer transcriptional hubs confer phenotypic
541 robustness. *Elife*. 8:1–17. doi:10.7554/eLife.45325.

542 Venkataram S, Dunn B, Li Y, Agarwala A, Chang J, Ebel ER, Geiler-Samerotte K, Hérissant L,
543 Blundell JR, Levy SF, et al. 2016. Development of a Comprehensive Genotype-to-Fitness Map
544 of Adaptation-Driving Mutations in Yeast. *Cell*. 166(6):1585–1596.e22.
545 doi:10.1016/j.cell.2016.08.002.

546 Villar D, Berthelot C, Aldridge S, Rayner TF, Lukk M, Pignatelli M, Park TJ, Deaville R,
547 Erichsen JT, Jasinska AJ, et al. 2015. Enhancer Evolution across 20 Mammalian Species. *Cell*.
548 160(3):554–566. doi:10.1016/j.cell.2015.01.006.

549 Yokoshi M, Kawasaki K, Cambón M, Fukaya T. 2022. Dynamic modulation of enhancer
550 responsiveness by core promoter elements in living *Drosophila* embryos. *Nucleic Acids Res*.
551 50(1):92–107. doi:10.1093/nar/gkab1177.

552 Zabidi MA, Arnold CD, Schernhuber K, Pagani M, Rath M, Frank O, Stark A. 2015. Enhancer-
553 core-promoter specificity separates developmental and housekeeping gene regulation. *Nature*.
554 518(7540):556–559. doi:10.1038/nature13994.

555 Zeitlinger J, Stark A, Kellis M, Hong JW, Nechoev S, Adelman K, Levine M, Young RA. 2007.
556 RNA polymerase stalling at developmental control genes in the *Drosophila melanogaster*
557 embryo. *Nat Genet*. 39(12):1512–1516. doi:10.1038/ng.2007.26.

558