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Abstract 

Epithelial-mesenchymal transition (EMT) is a change in cell shape and mobility that occurs during normal 
development or cancer metastasis. Multiple intermediate EMT states reflecting hybrid epithelial and 
mesenchymal phenotypes were observed in various physiological and pathological conditions. Previous 
theoretical models explaining the intermediate EMT states rely on multiple regulatory loops involving 
transcriptional feedback. These models produce three or four attractors with a given set of rate constants, 
which is incompatible with experimentally observed non-genetic heterogeneity reflecting a continuum-like 
EMT spectrum. EMT is regulated by many microRNAs that typically bind transcripts of EMT-related genes 
via multiple binding sites. It was unclear whether post-transcriptional regulations associated with the 
microRNA binding sites alone can stabilize intermediate EMT states. Here, we used models describing the 
post-transcriptional regulations with elementary reaction networks, finding that cooperative RNA 
degradation via multiple microRNA binding sites can generate four-attractor systems without 
transcriptional feedback. We identified many specific, experimentally supported instances of network 
structures predicted to permit intermediate EMT states. Furthermore, transcriptional feedback and the 
newly identified intermediates-enabling circuits can be combined to produce even more intermediate EMT 
states in both modular and emergent manners. Finally, multisite-mediated cooperative RNA degradation 
can increase the distribution of gene expression in the EMT spectrum and support the phenotypic continuum 
without the need of higher noise. Our work reveals a previously unknown role of cooperative RNA 
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degradation and microRNA in EMT, providing a theoretical framework that can help to bridge the gap 
between mechanistic models and single-cell experiments.  
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Introduction 

Epithelial-mesenchymal transition (EMT) is a cell state change required for embryogenesis, postnatal 
development, and some diseases’ progression including metastasis (1, 2). During EMT, epithelial cells lose 
their apical-basal polarity and gain the ability to migrate. The transition is not a binary switch: intermediate 
cellular phenotypes between epithelial (E) and mesenchymal (M) states have been found in development, 
mammalian cell lines, fibrosis, and tumors (3-7). These intermediate EMT states may possess 
characteristics of both E and M phenotypes, which can be important for cell- or tissue- level functions such 
as collective cell migration (8). Recent single-cell transcriptomic studies using individual cell lines provide 
additional evidence for the existence of multiple intermediate EMT states (5, 9-11). To investigate the 
mechanistic basis of the intermediate states, theoretical and experimental approaches were used to 
demonstrate that interconnected transcriptional feedback loops can support intermediate EMT states (6, 12-
14), but the existing mechanistic models can produce only one or two intermediate EMT states with a set 
of biochemical rate constants reflecting one cell type. Contrary to these models, it was recently shown that 
accurate description of EMT dynamics in a single mammary epithelial cell line requires at least several 
more intermediate states (15). This finding is consistent with the transcriptomic data showing a continuum-
like EMT spectrum which possibly contains many stable intermediate cell states (5, 9-11). These 
observations indicate that an improved theoretical foundation of the intermediate EMT states is needed to 
bridge the gap between models and experimental data. 

It was shown that EMT involves extensive post-transcriptional regulation by microRNAs (miRNAs): more 
than one hundred miRNAs were found to be significantly associated with EMT (16, 17). Both epithelial-
associated miRNAs and mesenchymal-associated miRNAs have been identified, inhibiting mesenchymal 
genes (M genes) and epithelial genes (E genes) respectively. Mechanistically, this miRNA-mediated 
inhibition is through mRNA degradation and translation repression upon miRNA-mRNA binding (18). It 
was recently shown that multiple epithelial-associated microRNAs can inhibit in a strongly cooperative 
manner (17), further supporting the roles of miRNAs in EMT. While existing models describing 
intermediate EMT states often include miRNA regulations, these models require multiple transcriptional 
feedback loops (6, 12, 13). However, it is unclear whether intermediate EMT states can arise from simpler, 
more common gene regulatory networks. 

In this work, we use mathematical models describing elementary RNA reaction networks to show that 
cooperative RNA degradation can generate intermediate EMT states in the absence of transcriptional 
feedback. We use bioinformatic approaches to demonstrate that the topologies of gene regulatory networks 
allowing multiple intermediate cell states are widespread in the EMT system. Furthermore, transcriptional 
and post-transcriptional mechanisms can be combined to support larger numbers of intermediate EMT 
states in both modular and emergent manners. Finally, we use a comprehensive EMT model to show that 
cooperative RNA degradation can facilitate the formation of a phenotypic continuum. Our work reveals a 
previously unknown mechanism for intermediate EMT states and provides a new theoretical framework for 
understanding the perplexing EMT spectrums in development and disease progression. 
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Results 

 

Cooperative RNA degradation generates intermediate EMT states in the absence of transcriptional 
feedback 

Based on recent theories and experiments showing post-transcriptional mechanisms for bistability (19), we 
hypothesized that intermediate EMT states can arise without transcriptional feedback. To test the hypothesis, 
we first considered models with mass-action kinetics describing interactions between microRNAs and 
mRNAs as well as their synthesis and degradation. It was previously proved that with arbitrary positive rate 
constants, an mRNA with one microRNA binding site (the MMI1 Model) can have only one stable steady 
state, and that an mRNA with two microRNA binding sites (the MMI2 Model) can have at most two stable 
steady states (19). In addition, systematic search with biologically relevant parameter sets showed that, like 
the MMI2 Model, an mRNA with three microRNA binding sites (the MMI3 Model) can have at most two 
stable steady states (19). We therefore built a model containing an mRNA with four microRNA binding 
sites (the MMI4 Model). In the first version of the MMI4 Model, the four microRNA binding sites are 
bound by one microRNA. The two RNAs can form four types of complexes through complementarity-
based binding, i.e. 1:𝑛𝑛 (𝑛𝑛 ∈ (1,2,3,4)) complex where 𝑛𝑛 represents the number of microRNA molecules in 
each complex (Figure 1A). The two RNAs are allowed to be degraded independently with distinct rate 
constants in the complexes. Details of all models can be found in the supplemental information. We 
randomly sampled parameter values within biologically plausible ranges. Out of 107 sampled parameter 
sets, we found 1,732 that generated three stable steady states (i.e. three attractors, i.e. tristability, Figure 
1B-C) and none that generated four attractors (tetrastability). The parameter sets allowing three attractors 
contained degradation rate constants that are individually plausible, but collectively unusual. For example, 
the most extreme degradation rates are often found in unsaturated complexes (example parameter sets of 
interest can be found in the supplemental information), which would require the mRNA to be strongly 
stabilized by the binding of additional microRNA molecules. This single-microRNA MMI4 Model is 
therefore not likely to drive multistability in vivo. 

While the MMI4 Model with single microRNA is applicable to EMT (e.g. miR-200c has five putative 
binding sites on the 3’UTR of ZEB1 (20), more examples in Figure 1D), allowing the four binding sites to 
be bound by different microRNAs in the model makes it more flexible to capture a greater number of 
instances of post-transcriptional EMT circuits with potentially more realistic parameter sets. We therefore 
considered a modified version of the MMI4 Model which describes two microRNAs each with two binding 
sites on the mRNA (Figure 1E). This structure indeed allowed the MMI4 Model to produce three- and four-
attractor systems with more biologically plausible parameter progressions. These systems contain 
intermediate EMT states that may be related to the widely observed phenotypes (Figure 1F-G). Almost all 
parameter sets permitting intermediate EMT states, 4,973 out of 5,000 systems with at least three attractors, 
involved cooperative degradation of RNAs. The cooperativity is generated by the enhanced degradation 
rate constant of the mRNA in 1:2 complex with a microRNA compared to the 1:1 complex or by reduced 
degradation rate constant of the microRNA in 1:2 complex compared to the 1:1 complex (Figure 1H, Figure 
S1). Cooperative mRNA degradation is observed experimentally (21); functionally cooperative microRNA 
stabilization might arise through steric blocking of microRNA-degrading factors (22). Three instances of 
the two-microRNA MMI4 Model are shown in Figure 1I. 
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Figure 1. Multistability in the MMI4 Models. (A) Reactions in the one-microRNA MMI4 Model, which 
has four binding sites for the same microRNA on one mRNA. Wide rectangles, mRNA; squares, microRNA; 
horizontal arrows, transcription; colored arrows, RNA degradation; curved arrows, binding/unbinding. (B) 
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Example tristable systems from the one-microRNA MMI4 Model. Points represent attractors in the space 
of free mRNA vs. free microRNA concentration. Attractors of the same system/parameterization are joined 
by lines of the same color. AU, arbitrary units. (C) Bifurcation diagrams showing the steady states of free 
mRNA (left) and free microRNA (right) as a function of the mRNA transcription rate 𝑘𝑘𝑅𝑅 from the brown 
system in B. Each steady state is colored the same in both plots. Dashed lines, unstable steady states. 
Parameter values in supplemental information. (D) Other EMT-related examples of the one-microRNA 
MMI4 Model. (E) Reactions in the two-microRNA MMI4 Model, which has two binding sites for each of 
two microRNAs on one mRNA. (F) Example tetrastable systems from the two-microRNA MMI4 Model 
in the space of free mRNA vs. free microRNA 1 (left) or free microRNA 2 (right). Order of attractors 
connected by each line is the same in both subplots. (G) Bifurcation diagrams showing the steady states of 
free mRNA (left), free microRNA 1 (middle), and free microRNA 2 (right) as a function of the mRNA 
transcription rate from the green system in F. Parameter values in supplemental information. (H) Left: 
Scatterplot of functional cooperativities in mRNA degradation (𝛼𝛼2,0/𝛼𝛼1,0) and microRNA 1 degradation 
(𝛽𝛽1,2,0/𝛽𝛽1,1,0 ) rates due to second microRNA 1 binding in 5,000 3- or 4-attractor systems. Marginal 
distributions are Gaussian kernel density estimates. Right: Comparison of multistable cooperativity 
distributions for both microRNAs to distribution of 50,000 randomly sampled parameter sets. (I) Other 
EMT-related examples of the two-microRNA MMI4 Model. 

 

EMT is regulated by a large gene regulatory network, in which many genes are targeted by multiple 
microRNAs (6, 12, 13, 23). Furthermore, the MMI2 Model can generate bistable systems (19). We therefore 
asked whether connecting two MMI2 modules (the Chained-MMI2 Model, Figure 2A) can enable 
intermediate EMT states. While this single connection can represent an EMT transcription factor regulating 
another, this network still does not contain any transcriptional feedback. We found that the Chained-MMI2 
Model was able to generate intermediate EMT states in terms of the target gene expression (Figure 2B). 
We next considered another scenario where one EMT gene is regulated by two EMT transcription factors, 
each involved in an MMI2 module (the Co-targeting-MMI2 Model, Figure 2C). With this model, 
intermediate EMT states were observed in terms of the expression of the final target EMT gene (Figure 
2D), arising in a combinatorial manner from the multiple upstream bistable systems. 

In summary, we showed that a model with a total of four microRNA binding sites on either one or two 
EMT genes can generate intermediate EMT states. In each of the four versions of the model, cooperative 
RNA degradation supports the formation of these intermediate states.  
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Figure 2. Tetrastability from transcriptionally connected MMI2 targets. (A) Reactions in the Chained-
MMI2 Model, in which the protein product of one MMI2 target gene transcriptionally regulates another 
MMI2 target gene. Either microRNA site on each mRNA is allowed to be bound first. Hollow arrows, 
translation; dashed pointed arrow, transcriptional activation; stars, proteins. (B) Example tetrastable 
systems from the Chained-MMI2 Model in the space of Protein 2 vs. Protein 1 (left) or free microRNA 2 
(right). Each system has four different expression levels of Protein 2, which are monotonically 
anticorrelated to free microRNA 2 levels. (C) Reactions in the Co-targeting-MMI2 Model, in which two 
MMI2 target genes encode proteins that both transcriptionally regulate a third downstream gene. Either 
microRNA site on each mRNA is allowed to be bound first. Dashed blunt arrow, transcriptional repression. 
(D) Example tetrastable systems from the Co-targeting-MMI2 Model in the space of the downstream 
mRNA expression vs. Protein 1 (left) or Protein 2 (right). Each system has four different expression levels 
of the downstream gene. 

 

Network topologies permitting intermediate states driven by post-transcriptional mechanisms are 
common in EMT regulation 

We have shown some specific examples of the intermediates-enabling EMT circuits, but how generally 
common are these circuits in the EMT system? To address this question, we examined a previously curated 
list of core EMT genes (24). Among them, 232 were classified as E genes and 191 as M genes. In addition, 
we used a list of 133 microRNAs, each with experimental evidence supporting its role in EMT (17). With 
these lists and the TargetScan program for microRNA binding site prediction (20), we first identified 46 
EMT genes regulated by a total of four binding sites of one or two EMT microRNAs (Figure 1D/I, Figure 
S2).  
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To enumerate the instances of the dual MMI2 Models (Figure 2) that permit intermediate EMT states, we 
used TRRUST2 and OmniPath, two databases containing experimentally supported transcriptional 
regulations (25, 26). We first limited the search to direct regulations of one EMT gene by another, each 
involved in an MMI2 module (the Chained-MMI2 Model, Figure 2A), finding 8 instances of this topology. 
In addition, we found 18 instances of the Co-targeting-MMI2 Model (Figure 2C, Figure S3), again with the 
assumption of direct regulation. When we changed the assumption to regulation with up to 5 regulatory 
‘edges’, we found 171 and 1,312 instances of the Chained-MMI2 Model and the Co-targeting-MMI2 Model 
respectively. Note that these distinct instances are only based on different combinations of EMT genes. 
Considering combinations of EMT-associated microRNA binding sites would yield much larger numbers 
of instances. 

Overall, our results indicate that the post-transcriptionally driven, intermediates-enabling topologies are 
common in the EMT system. In fact, 55 of 423 classically defined EMT genes are involved in direct-
regulation topologies. 

 

 

Modular and emergent synergies between post-transcriptional and transcriptional networks in 
generating EMT states 

It is well known that transcriptional positive feedback loops can generate bistability (27). This type of 
feedback loop is common in the core EMT regulatory network (6). We next asked whether combining a 
module consisting of a transcriptional feedback loop (abbreviated as transcriptional module) with a post-
transcriptionally driven, intermediates-enabling module (abbreviated as post-transcriptional module) can 
generate even more intermediate EMT states (28). To test this, we first selected a bistability-enabling 
parameter set for a representative transcriptional module containing two mutually activating transcription 
factors (Figure 3A Module 1). We next selected a parameter set for a tetrastability-enabling post-
transcriptional module, the Chained-MMI2 Model (Figure 2A, Figure 3A Module 2). Without altering the 
values of parameters unique to each module, we considered new values for the parameters that conflict, 
namely the transcription and translation rates of the upstream gene in the Chained-MMI2 Model. We found 
that there existed values between each pair of original models’ values that allowed the addition of at least 
one intermediate state to the existing states generated by the post-transcriptional module (Figure 3B). It is 
remarkable that the addition of intermediate states was achieved without altering the biochemical rate 
constants within each module, suggesting feasibility of this phenotypic change through evolution. 
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Figure 3. Synergies between transcriptional and post-transcriptional multistability. (A) The model 
resulting from combining a transcriptional mutual activation module (genes 0 and 1, purple shading) with 
a Chained-MMI2 module (genes 1 and 2, orange shading). (B) Example five- and six-attractor systems 
produced by combining bistable transcriptional mutual activation parameter sets with tetrastable Chained-
MMI2 parameter sets. All concentrations are in arbitrary units. (C) The model resulting from adding 
transcriptional repression of the microRNA to the MMI2 Model. (D) Bifurcation diagrams showing the 
steady states of protein (left) and free microRNA (right) levels with respect to the mRNA transcription rate. 
Tristability can emerge from the addition of the transcriptional repression to MMI2. (E) The addition of 
transcriptional repressions to the two-microRNA MMI4 Model. The mRNA-microRNA complexes are 
hidden for compactness. (F) Example five-attractor systems emerging from the addition of transcriptional 
repressions to the two-microRNA MMI4 Model. 
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The modular characteristic of combining transcriptional and post-transcriptional mechanisms for generating 
multistable systems is applicable to EMT, but there might also exist an “emergent” synergy between the 
transcriptional and post-transcriptional regulations: a transcriptional module may not be multistable by 
itself, but when it is combined with a multistable, post-transcriptional module, additional attractor(s) can 
arise. Indeed, we found that adding a single transcriptional repression of a microRNA to a bistability-
enabling MMI2 module involving the same gene gave rise to an intermediate state (Figure 3D). 
Mechanistically, the emergence of this intermediate cell state was due to the emergent feedback loop 
between the microRNA and mRNA, consisting of both transcriptional and post-transcriptional regulations 
(Figure 3C). It was previously shown that this type of hybrid feedback system is common in biology (29). 
Importantly, the well-known Zeb1-miR200 feedback loop contains this network topology (30). Our results 
indicate that the previously known tristability-enabling structure containing Zeb1-miR200 feedback loop 
and an additional transcriptional feedback loop is not the minimal topology for generating an EMT 
intermediate state (12, 13). Likewise, we found that adding transcriptional repression to the two-microRNA 
MMI4 Model permits the appearance of a fifth attractor (Figure 3E-F). 

In summary, our results suggest that the post-transcriptional and transcriptional networks commonly 
observed in the EMT system can be combined in both modular and emergent fashions to generate additional 
intermediate phenotypes. 

 

A multiple-feedback-mechanism EMT network generates a 7-state EMT continuum 

How does the RNA-degradation based mechanism for multistability contribute to the formation of 
intermediate EMT states in networks larger than simple motifs? To address this question, we selected a 
basal EMT model published recently: Subbalakshmi et al. showed that a network containing three 
transcription factors and thirteen transcriptional regulations can generate a three- or four-attractor EMT 
system with biologically meaningful parameters (31). While there are numerous existing EMT models for 
tetrastable systems, we chose the Subbalakshmi et al. model because only one microRNA was considered 
in the model, and it serves as a good basal model for us to test the effect of cooperative RNA degradation 
by adding more biologically relevant microRNA binding sites sequentially to the system.  

As the basal model contains inhibition of ZEB1 and SNAI2 by miR-200 without explicit modeling of 
multiple complexes, we added an additional binding site on ZEB1 to the model (Figure 4A) and selected a 
parameter set representing cooperative RNA degradation. As expected, the model with two binding sites of 
miR-200 produced a system with five attractors (Figure 4B), i.e. an additional intermediate EMT state was 
generated compared to the previously published results. We next considered another microRNA, miR-101, 
that regulates ZEB1 (32) and is repressed by Slug and Snail (23, 33) (Figure 4D). Note that including these 
additional regulations does not generate any additional transcriptional feedback loops. The inclusion of this 
microRNA allowed yet two additional intermediate EMT states, resulting in a seven-attractor EMT system 
(Figure 4E blue).  
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Figure 4. Combining transcriptional and post-transcriptional regulation produces many attractors 
and a continuum in epithelial-mesenchymal space. (A) Structure of the Subbalakshmi et al. model 
extended with two explicitly modeled miR-200 binding sites on ZEB1. mRNA-microRNA complexes are 
hidden for compactness. (B) Example 5-attractor systems from the model in A shown in the gene expression 
space of Zeb1 protein vs. E-cadherin protein, Slug protein, or free miR-200. (C) Quasi-potential diagram 
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showing the stochastic gene expression landscape of the blue system in B under multiplicative noise in the 
space of E-cadherin protein vs. Zeb1 protein. Deeper regions and brighter color correspond to more likely 
gene expression states. Spheres, deterministic attractors. (D) Structure of the Subbalakshmi et al. model 
further extended with miR-101 targeting one site on ZEB1, transcriptionally repressed by Slug and Snail. 
(E) 7-attractor (blue), 6-attractor (orange), and 5-attractor (green) systems from the model in D. All 
concentrations are in arbitrary units. (F) Quasi-potential (QP) diagram of the 7-attractor blue system in E. 
(G) Quasi-potential diagram of the 5-attractor green system in E. 

 

To test the effect of the cooperative RNA degradation on the EMT system with transcriptional noise, we 
performed stochastic simulations of the one-microRNA Subbalakshmi et al. network (Figure 4A-C) and the 
extended model with two microRNAs (Figure 4D-G), applying the same level of multiplicative noise to all 
RNAs, complexes, and proteins in each model. Based on the steady state distributions of molecules from 
at least 480 simulations each representing a cell from a population, we constructed the quasi-steady state 
landscape to visualize the multi-attractor systems under the influence of noise. We found that the 
cooperative RNA degradation via multiple binding sites not only gave rise to gene expression states near 
the additional attractors as expected (Figure 4F yellow), but also resulted in broader distributions of gene 
expression further from the attractors (Figure 4F orange, compare to Figure 4C). While the wider 
distribution of epithelial and mesenchymal marker genes is not simply an artifact of simulating the more 
complex model—not every parameter set of the two-microRNA model exhibited such an extreme 
distribution (Figure 4G)—the new complexes involving the additional microRNA might generally provide 
more axes in concentration space along which fluctuations, amplified in impact by functional cooperativity 
in degradation rates, can push the system toward a different state. 

In summary, in a larger EMT network containing both transcriptional and post-transcriptional regulations, 
cooperative RNA degradation via multiple microRNA binding sites gave rise to additional attractors and a 
broader distribution of gene expression, reflecting the EMT continuum observed in recent single-cell 
transcriptome data.  
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Discussion 

Intermediate, or hybrid, EMT phenotypes have been widely observed in several biological contexts. In this 
work, we have used mathematical models to demonstrate a new mechanism for generating intermediate 
EMT states based on first principles of gene regulation. This finding can serve as a step towards the 
reconciliation of the observed EMT continuum with transcriptomic studies and the three or four discrete 
EMT states captured by previous models. While the observed EMT continuum may be alternatively 
explained by large subpopulations of cells en route to different attractors, recent work using cell-state 
transition models to explain experimental data showed that models with only a few states cannot describe 
the time-course EMT data accurately (15). The newly identified post-transcriptional mechanism for 
generating intermediate states provides a foundation for the additional EMT states necessary to explain 
expression data at the gene regulation level. A recent study showed that similar post-transcriptional 
reactions can generate oscillations on slow timescales in addition to multistability (34), which suggests 
another possibility that the EMT continuum may be supported by a combination of point attractors and 
cyclic attractors. 

Cooperativity of microRNA binding sites has been widely observed (17, 35, 36). In particular, Cursons et 
al. showed high cooperativity between multiple microRNAs in controlling EMT (17). In this work, we 
modeled the cooperativity of microRNA binding sites in the form of synergistic mRNA degradation, which 
was also experimentally observed, and synergistic microRNA stabilization. There are other forms of 
biologically plausible synergy between binding sites, such as cooperative binding affinities, cooperative 
translational inhibition, and cooperative inhibition at the network level which involves one microRNA 
binding to 3’UTRs of multiple mRNAs (e.g. miR-200 in the last model of this study) (21, 37). We expect 
that some of these mechanisms can be used to support stable intermediate cell phenotypes. Future work is 
necessary to systematically compare the functions of these molecular mechanisms and to identify their 
existence in specific biological contexts. Nonetheless, the prevalence of the multi-site microRNA 
interactions with individual and groups of mRNAs in EMT and other systems suggests that these regulatory 
networks have nontrivial emergent functions. 

In this study, we showed similar and modularizable performances of transcriptional and post-transcriptional 
mechanisms in generating intermediate EMT states. These two mechanisms are different in their cellular 
locations. While it may be beneficial for cells to combine both nuclear (transcriptional) and cytosolic (post-
transcriptional) machineries to achieve the desired goal of stabilizing intermediate states, the post-
transcriptional mechanism may be advantageous in terms of avoiding some sources of noise. This is because 
transcription is subject to significant noise levels due to the low numbers of DNA coding for the regulatory 
products, whereas post-transcriptional mechanisms involve large numbers of molecules (38), which reduces 
intrinsic noise. Therefore, we expect that the proposed RNA-centric mechanism for stabilizing intermediate 
EMT states can be an efficient strategy for cells to adopt hybrid phenotypes with cytosolic reactions without 
the need for transcriptional regulatory systems. 

The motivation to build our models derived from inconsistencies between existing EMT models that predict 
a paucity of EMT intermediate states, and experimental single-cell transcriptomic data that have been 
interpreted to support a wealth of states in a phenotypic continuum (10, 11, 39). Nonetheless, it is plausible 
that some of the intermediate states should be favored, perhaps in relation with microenvironmental factors 
such as nutrient availability and cytokines. The models we present here can guide experimentation designed 
to validate the role of microRNAs to stabilize a constrained number of intermediate cell phenotypes both 
in physiologic and pathologic systems beyond EMT. For example, in Small Cell Lung Cancer, a phenotypic 
continuum spanning neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states was recently 
described based on Archetype Analysis (AA) of experimental data (40, 41). NE to non-NE transitions 
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(NnNT) bear many similarities to EMT, particularly as it pertains increased metastatic properties of non-
NE cells, and the similarity of transcriptional signatures (42). Similar to the EMT phenotypic continuum, 
AA identified a phenotypic continuum for SCLC NE and non-NE subtypes, which gene expression 
enrichment links to cellular task they are optimized for, such as secretion, proliferation or motility. In this 
continuum, cells may be specialist at one task, or be suboptimal generalists at one or more tasks. Thus, the 
intermediate generalist phenotypes arise from task trade-offs, so that they can perform suboptimally to be 
in tune with the microenvironment that they experience. The continuum then becomes dominated by Pareto 
optimality. Interrogating the role of microRNAs in NnNT intermediates will provide mechanistic 
underpinnings for plasticity and high metastatic propensity of SCLC tumors. Our modeling approach is an 
excellent starting point for streamlining these experiments. In summary, future studies may reveal that post-
transcriptional mechanisms are widely used by mammalian cells for generating intermediate states, both 
for EMT and other differentiation systems. Our mathematical models will aid in designing experiments to 
test this possibility. 
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Methods 

Model construction 

Each model is described by a system of ordinary differential equations (ODEs). Dynamics of molecular 
species are described by two types of function: mass-action kinetics is used to model elementary reactions, 
i.e. the basal processes of RNA transcription/maturation, constitutive RNA decay, mRNA-microRNA 
binding and unbinding, regulated decay of each RNA member of each complex, translation, and protein 
decay; if applicable to the model, Hill functions are used to describe regulated transcription rates as in 
HiLoop models (43). The models based on the Subbalakshmi et al. network follow the form used there and 
by Lu et al. (a slightly modified form of Hill functions) (13, 31). In all models, each type of RNA within 
each type of complex is assigned a regulated degradation factor representing the change in its degradation 
rate in the complex relative to its free state (34). Binding and unbinding in RNA complexes is always 
modeled explicitly to ensure that each microRNA molecule acts on only one mRNA at once, though 
Subbalakshmi et al.’s allowance of incomplete translation repression by microRNA binding (44) is 
followed.  

For simulation, the set of reactions is converted to a system of ODEs, one for each RNA, protein, or complex. 
A species’ rate of change is the sum of the rates of the reactions that produce or consume it, weighted by 
the net change in the species’ amount caused by the reaction. As an example, the ODEs for the one-
microRNA MMI4 Model are 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑅𝑅 − 𝑅𝑅 − 4𝜅𝜅on𝑅𝑅𝑅𝑅 + 𝜅𝜅off𝐶𝐶1 + 𝛽𝛽1𝛾𝛾𝐶𝐶1 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑟𝑟 − 𝛾𝛾𝑟𝑟 + �(−(5 − 𝑛𝑛)𝜅𝜅on𝐶𝐶𝑛𝑛−1𝑟𝑟 + 𝑛𝑛𝜅𝜅off𝐶𝐶𝑛𝑛 + 𝑛𝑛𝛼𝛼𝑛𝑛𝐶𝐶𝑛𝑛)
4

𝑛𝑛=1

(1) 

𝑑𝑑𝐶𝐶𝑛𝑛
𝑑𝑑𝑑𝑑

= (5 − 𝑛𝑛)𝜅𝜅on𝐶𝐶𝑛𝑛−1𝑟𝑟 − (4 − 𝑛𝑛)𝜅𝜅on𝐶𝐶𝑛𝑛𝑟𝑟 − 𝑛𝑛𝜅𝜅off𝐶𝐶𝑛𝑛 + (𝑛𝑛 + 1)𝜅𝜅off𝐶𝐶𝑛𝑛+1 − 𝛼𝛼𝑛𝑛𝐶𝐶𝑛𝑛 − 𝑛𝑛𝛽𝛽𝑛𝑛𝛾𝛾𝐶𝐶𝑛𝑛
+ (𝑛𝑛 + 1)𝛽𝛽𝑛𝑛+1𝛾𝛾𝐶𝐶𝑛𝑛+1 for 𝑛𝑛 ∈ (1, 2, 3, 4), 

where 𝑅𝑅 is the concentration of free mRNA, 𝑟𝑟 is the concentration of free microRNA, and 𝐶𝐶𝑛𝑛 is the total 
concentration of complexes with 𝑛𝑛 microRNA molecules bound to an mRNA molecule except 𝐶𝐶0 ≔ 𝑅𝑅 and 
𝐶𝐶5 ≔ 0. The regulated mRNA decay reactions, for example, which occur at rate 𝛼𝛼𝑛𝑛𝐶𝐶𝑛𝑛, destroy one unit of 
complex 𝐶𝐶𝑛𝑛 but produce 𝑛𝑛 units of free microRNA 𝑟𝑟. 𝑘𝑘𝑅𝑅 and 𝑘𝑘𝑟𝑟 are transcription rate constants for the two 
RNAs. 𝜅𝜅on and 𝜅𝜅off are association and dissociation rate constants respectively. 𝛾𝛾 is the decay rate constant 
of free microRNA relative to the free mRNA. 𝛼𝛼𝑛𝑛 and 𝛽𝛽𝑛𝑛 (defined as regulated degradation factors) describe 
how fast the mRNA and microRNA, respectively, are degraded in the 1:𝑛𝑛 complex relative to their free 
forms. All variables and parameters have been scaled to dimensionless quantities as described in a recent 
study (34).  

The reactions, rates, and parameters in each model are listed in the supplementary material. 

 

Parameter sampling for identifying multiple attractors 

The likelihood of the single-microRNA MMI4 Model to generate multiple attractors was tested by sampling 
all regulated degradation factors independently from a log-uniform distribution on [2−3, 24] following 
previous work (34, 45), the microRNA association constant from a log-uniform distribution on [103, 106], 
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and the microRNA transcription rate from a log-uniform distribution on [2−4, 21]. The conditions for the 
two-microRNA MMI4 Model to produce multiple attractors were investigated by sampling from the same 
parameter regions independently for each microRNA. Kernel density estimates were computed by SciPy 
(46) with standard settings. When simply searching for example parameter sets rather than characterizing 
the parameter space, subregions that provided computational efficiency were selected empirically from 
plausible regions similar to previous work (34). Parameters of interest for each model are provided in the 
supplementary material. 

To test for multiple attractors, each parameterized system was simulated starting from at least 100 initial 
conditions which span at least five powers of 5 in a log-uniform manner, drawn from a Sobol quasirandom 
sequence (47). The initial concentration of each free RNA species was determined by one dimension of the 
Sobol hypercube, protein initial concentrations were set to their coding mRNA’s initial concentration times 
the translation rate, and other species’ initial concentrations were zero. Deterministic simulation with 
Tellurium (48) proceeded for at least 100 time units up to a maximum of 1,000 time units until the system 
reached a steady state as determined by the 2-norm of the derivatives vector falling below 10−7. Simulation 
endpoint concentration vectors 𝑎𝑎 and 𝑏𝑏 were considered equivalent attractors if their difference’s 2-norm 
|𝑎𝑎 − 𝑏𝑏|2 was less than 10−4 times the number of species 𝑛𝑛, or if |𝑎𝑎 − 𝑏𝑏|2 < 0.3 min(|𝑎𝑎|2, |𝑏𝑏|2) < 0.01𝑛𝑛. 

 

Numerical bifurcation analysis 

Bifurcation diagrams were created with the AUTO2000 plugin for Tellurium 2.2.0 (48), scanning 
backwards from a high monostable signal value. 

 

Enumeration of instances of network topologies 

The number of potential MMI4 EMT target genes was determined simply by testing each EMT-implicated 
gene (24) for the presence of four binding sites of EMT-implicated microRNAs (17) using TargetScan (20). 

For the topologies that combine transcriptional and posttranscription regulation, the TRRUST2 network 
(25) and transcriptional subgraph of the OmniPath network (26) as preprocessed for HiLoop (43) were 
added together except for regulations given opposite signs by the two networks. TargetScan was again used 
to filter the EMT genes to those matching the MMI2 Model. The existence of a regulatory path from each 
EMT MMI2 gene to every other, up to the specified path length of 1 or 5, was tested in the combined 
transcriptional network using NetworkX (49). Each ordered pair with such a directed path was considered 
an instance of the Chained-MMI2 topology. 

The list of EMT MMI2 genes that, directly or indirectly via the combined network, transcriptionally 
regulates each EMT gene was similarly obtained. If an unordered pair of EMT MMI2 genes regulated the 
same EMT target gene without common dependencies on any intermediate genes, the partially ordered 
triple of regulators and target was considered an instance of the Co-targeting-MMI2 topology. The 
condition of no common intermediates avoids counting subnetworks in which one MMI2 gene regulates 
the target through the other MMI2 gene, an arrangement which may have different dynamics, and non-
minimal subnetworks in which the target is downstream of an already co-targeted gene. 
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Stochastic simulation and quasi-potential landscape 

We performed stochastic simulations for the modified 3-TF model with various microRNA binding sites 
by adding an independent multiplicative noise term to each ODE. Divergence arising from negative 
concentrations was reduced by applying the Zero-Reaction remedy (50). Starting with a population of an 
equal number of cells at each deterministic attractor, we solved the stochastic ODEs at a noise intensity of 
0.2 for 200 time units using DifferentialEquations.jl (51).  

To visualize the epithelial-mesenchymal gene expression space in which the stochastic system fluctuates in 
the long term, the concentrations of Zeb1 and E-cadherin protein were extracted for each simulated cell at 
intervals of 5 time units starting at time 150. To avoid distortions from temporarily negative concentrations, 
timepoints with either component less than 10−7 were not used. Quasi-potential landscapes (52) were 
rendered with potential 𝑈𝑈(𝑥𝑥) = − log𝑃𝑃S(𝑥𝑥), where 𝑃𝑃S(𝑥𝑥) is the probability density function computed by 
scikit-learn’s 2-dimensional Gaussian kernel density estimate (53) of bandwidth 0.14 on the base-2 
logarithm of E-cadherin protein and the base-10 logarithm of Zeb1 protein, as Zeb1’s expression was more 
variable under the parameter values tested.  
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