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Abstract
Simulations of neural activity at different levels of detail are ubiquitous in modern
neurosciences, aiding the interpretation of experimental data and underlying neural
mechanisms at the level of cells and circuits. Extracellular measurements of brain
signals reflecting transmembrane currents throughout the neural tissue remain
commonplace. The lower frequencies (≲ 300Hz) of measured signals generally stem from
synaptic activity driven by recurrent interactions among neural populations and
computational models should also incorporate accurate predictions of such signals. Due
to limited computational resources, large-scale neuronal network models (≳ 106 neurons
or so) often require reducing the level of biophysical detail and account mainly for times
of action potentials (‘spikes’) or spike rates. Corresponding extracellular signal
predictions have thus poorly accounted for their biophysical origin.

Here we propose a computational framework for predicting spatiotemporal filter
kernels for such extracellular signals stemming from synaptic activity, accounting for the
biophysics of neurons, populations, and recurrent connections. Signals are obtained by
convolving population spike rates by appropriate kernels for each connection pathway
and summing the contributions. Our main results are that kernels derived via linearized
synapse and membrane dynamics, distributions of cells, conduction delay, and volume
conductor model allow for accurately capturing the spatiotemporal dynamics of ground
truth extracellular signals from conductance-based multicompartment neuron networks.
One particular observation is that changes in the effective membrane time constants
caused by persistent synapse activation must be accounted for.
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The work also constitutes a major advance in computational efficacy of accurate,
biophysics-based signal predictions from large-scale spike and rate-based neuron network
models drastically reducing signal prediction times compared to biophysically detailed
network models. This work also provides insight into how experimentally recorded
low-frequency extracellular signals of neuronal activity may be approximately linearly
dependent on spiking activity. A new software tool LFPykernels serves as a reference
implementation of the framework.

Author summary
Understanding the brain’s function and activity in healthy and pathological states
across spatial scales and times spanning entire lives is one of humanity’s great
undertakings. In experimental and clinical work probing the brain’s activity, a variety of
electric and magnetic measurement techniques are routinely applied. However
interpreting the extracellularly measured signals remains arduous due to multiple
factors, mainly the large number of neurons contributing to the signals and complex
interactions occurring in recurrently connected neuronal circuits. To understand how
neurons give rise to such signals, mechanistic modeling combined with forward models
derived using volume conductor theory has proven to be successful, but this approach
currently does not scale to the systems level (encompassing millions of neurons or more)
where simplified or abstract neuron representations typically are used. Motivated by
experimental findings implying approximately linear relationships between times of
neuronal action potentials and extracellular population signals, we provide a
biophysics-based method for computing causal filters relating spikes and extracellular
signals that can be applied with spike times or rates of large-scale neuronal network
models for predictions of population signals without relying on ad hoc approximations.

Introduction 1

Extracellular electric recordings of neuronal activity, either by embedding sharp 2

electrodes in neural tissue [1] or by placing electrodes on top of cortex [2] or on the 3

scalp (electroencephalography – EEG [3]), have a long history in the experimental and 4

clinical neurosciences. The same applies to magnetic recordings outside of the head 5

(magnetoencephalography – MEG [4]). However, the link between the measured brain 6

signals and the underlying neuronal activity remains poorly understood due to the 7

inherent ill-posed inverse problem: The number of contributing sources is large 8

compared to the limited number of discrete locations in- and outside of the brain tissue 9

where one can measure. However, the forward problem is well-posed, given the 10

transmembrane currents in all neurons setting up the activity. Different electric and 11

magnetic signals can be computed by means of so-called volume conductor (VC) theory 12

mapping source currents to each signal type, thus models accounting for the biophysical 13

properties of neurons and networks thereof can now be used to study the link between 14

activity and measurements [5, 6]. 15

Dynamics of biophysically detailed neurons and synaptically coupled networks 16

thereof are typically modeled by solving sets of coupled, linear and non-linear ordinary 17

or partial differential equations describing the dynamics of the neuronal membranes, ion 18

channel conductances, synapses, and so forth (see e.g., [7]). Multicompartment (MC) 19

models have for decades been the go-to tool for geometrically detailed 20

conductance-based neuron models as tailored software solvers are readily available such 21

as NEURON [8], GENESIS [9], and Arbor [10]. For the purpose of computing 22

extracellular electric and magnetic signals, transmembrane currents from the MC 23
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neuron simulation are then combined with the appropriate forward model derived using 24

linear volume conductor theory, as incorporated in software interfacing the neural 25

simulator like LFPy [11,12], NetPyNe [13], and BMTK [14]. For brain tissues, a linear 26

relationship between transmembrane currents and extracellular electric potentials as 27

well as magnetic fields appears well established [3, 15–17]. 28

Illustrated in Fig 1A, neuronal network models may account for different levels of 29

detail, ranging from biophysically detailed MC neuron networks (top level), simplified 30

spiking point-neuron networks (middle level) and population type models accounting for 31

population-averaged activity (bottom level). The different levels may at times be 32

bridged with appropriate mapping of parameters. As illustrated, MC models may be 33

directly combined with VC theory for extracellular signal predictions as these models 34

account for the spatiotemporal distribution of transmembrane currents, while the less 35

detailed models, in particular point-neuron networks and mean-field type population 36

models, do not. Thus in order to relate their activity in terms of spike times or spike 37

rates of the different populations to extracellular signals additional steps are required, 38

here illustrated by some ‘black box’ model taking spikes or equivalent spike rates of each 39

population as input while outputting approximated extracellular signals. 40

Illustrated in Fig 1B, we shall approach this black box problem by models that 41

account for key properties of the biophysically detailed network models (mainly cell 42

model membrane dynamics, spatial distributions of cells and synapses, network 43

connectivity, temporal synapse dynamics), properties which could also be constrained by 44

experimental data. Through a systematic reductionistic approach we first apply the 45

so-called ‘hybrid scheme’ for extracellular signal predictions [18] which entails that 46

presynaptic spike events are first simulated in the actual network in Fig 1B. The spike 47

times are used for synapse activation times in corresponding populations of MC neurons 48

as they would occur in the actual network. We shall approximate synaptic and 49

ion-channel conductances by linearized variants as this allows for simulating 50

approximated extracellular signals using fully linear models. The hybrid scheme 51

predictions are validated against ground truth signals predicted by the true network 52

models. The setup is also used to compute averaged causal spike-signal impulse 53

response functions, ‘kernels’, for each connection pathway. Such hybrid scheme kernels 54

shall be applied with population firing rates to approximate extracellular signals [18, 19]. 55

Expanding on this kernel-based scheme, we here present a novel method to efficiently 56

compute such kernels directly accounting for the biophysics and description of the 57

putative network model and neurons. Their prediction relies on the same linearization 58

steps introduced for the hybrid scheme but may bypass the hybrid scheme altogether. 59

All kernel-based signal predictions are validated against corresponding ground truth 60

signals. The computational schemes investigated here are applicable for predictions of 61

the low-frequency content (≲ 300Hz or so) of the signals usually associated with 62

population activity and network interactions. The final kernel-based predictions can 63

also readily be combined with spike- and rate-based network simulation frameworks. 64

In the above context, we in part consider observations and assumptions of 65

near-linear relationships between times of neuronal action potentials (APs) as well as 66

their extracellularly recorded correlates (‘spikes’), and low-frequency parts (below a few 67

hundred hertz) of extracellularly recorded population signals like local field potential 68

(LFP), EEG, and MEG signals [20–23]. For synaptically coupled neuronal networks, one 69

may consider two main direct neuronal contributors to extracellular population signals. 70

The first is due to presynaptic neurons generating APs observed as extracellular spikes 71

nearby each active neuron in recordings using invasive microelectrodes. The second is 72

due to evoked synaptic currents and associated membrane currents throughout 73

postsynaptic populations following presynaptic APs. AP durations are on the order of 74

milliseconds, APs occur with relative sparsity (low spike rates) and irregularity in 75
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Fig 1. Levels of detail for neuronal network models and roadmap for
approximated brain signal predictions. (A) Biophysically detailed MC neuron
network models at the microscopic scale allow for simulating synaptic connectivity and
whole-cell dynamics, including APs, spike trains and extracellular signals (e.g., the
extracellular potential) using forward models derived via VC theory. Neither less
detailed spiking point-neuron network models nor continuous population type models
(neural mass models, mean-field models, neural field models) towards the mesoscopic
scale facilitate extracellular signal predictions. They require a model translating spike
events or spike rates into representative extracellular signal approximation, here
illustrated by the black box. (B) (1) Detailed networks provide ground truth signals
and spiking activity for successive reduction steps, given a set of neuron and network
parameters (box). (2) The ‘hybrid scheme’ setup [18] relies on simulating MC neuron
populations but omits recurrent network connections. Predictions are governed by spike
times of recurrent networks and may use linearized neural dynamics. (3) The ‘kernel
predictor’ setup relies on a subset of MC neuron simulations and accounts for the
underlying statistics (synapse densities, etc.) of the network, and computes
spatiotemporal spike-to-signal impulse response functions. (4) Firing rates of
presynaptic populations ν(t) are convolved by precomputed kernels H(R, τ) for signal
approximations.
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single-neuron spike trains [24], observed pairwise spike train correlations are on average 76

weak [25,26], and extracellular spike amplitudes decay quickly with distance [27,28]. 77

Extracellular spikes also carry more power toward higher frequencies [27]. The latter 78

synaptic contributions can be small in amplitude per pair of pre- and postsynaptic 79

neurons relative to currents related to each presynaptic AP itself, but each neuron 80

typically targets many neurons via hundred or even thousands of synapses, and 81

recurrent interactions may affect the times of subsequent activations across large neural 82

populations. The dynamics of synapse currents are also relatively slow and can thus be 83

assumed to shape extracellular signals around lower frequencies than presynaptic 84

contributions. We may then assume that mainly synaptic activity governs the 85

low-frequency content of extracellular signals, in part, via a boosting effect on the 86

compound signals by even weak pairwise spike train correlations [18]. 87

Dynamics of neuronal activity are typically nonlinear, one prime example is the 88

model for APs by [29] which also provided a mathematical formalism that remains 89

commonly used to describe different ion-channel dynamics (e.g., [30]). Extracellularly 90

recorded postsynaptic responses following presynaptic AP events can not initially be 91

assumed to be linear, as synaptic currents following activation are not linearly 92

dependent on the synaptic conductance due to membrane potential changes. 93

Furthermore, there may be active (voltage- and calcium-dependent) ion channels 94

present across dendrites resulting in non-linear integration even below AP threshold, 95

and contributions by different activations of multiple synapses may not sum linearly [31]. 96

Synaptic activity may also result in dendritic Ca2+- and NMDA spikes [32]. 97

Thus to explain experimental data implying approximately linear relationships 98

between times of presynaptic spikes and different electric signals, the direct signal 99

contribution by both pre- and postsynaptic activity must sum approximately linearly. 100

Furthermore, for synaptic currents across postsynaptic populations the different 101

contributions by nonlinear synapse and membrane dynamics must be negligible or well 102

explained by linear components around typical working points (e.g., average membrane 103

potentials and spike rates). Still, a number of computational studies assume linearity 104

between presynaptic spike events and corresponding times of synaptic activations and 105

resulting extracellularly recorded signals [18,19,33–38]. Others assume linearity between 106

transmembrane input current and extracellular potentials [39], in part justified by 107

model work wherein dynamics of active ion channels are approximated by linear 108

dynamics [40,41]. Analyses of experimental recordings by [42] also show synaptic 109

currents and the LFP to be strongly coupled using a linear regression model. 110

Henceforth, we shall examine the validity of models that either explicitly or 111

implicitly assume linear relationships between neuronal spiking and extracellular signals. 112

We will do so by comparing the extracellular signals that these models predict with 113

corresponding predictions obtained with biophysically detailed MC neuron networks. 114

Hereby we test the following approaches (hypotheses): (1) Linearized model setups can 115

accurately capture the spatiotemporal features of ground truth extracellular potential 116

and current dipole moment computed from recurrent networks of inherently non-linear 117

constituents. For this testing, we first apply the hybrid prediction scheme [18]. (2) If 118

the linear hybrid scheme implementation accurately captures the ground truth signals, 119

we test whether or not the output extracellular signal predictions can be well captured 120

as a linear and time-invariant causal system, taking population spike rates as input 121

filtered by suitable spatiotemporal causal filters. These sets of filters or ‘kernels’ 122

represent postsynaptic spike-signal impulse responses averaged over pairs of pre- and 123

postsynaptic populations, and are initially computed via the hybrid scheme. (3) 124

Knowledge of the underlying distributions of cells and synapses, conduction delays, 125

linearized cell, and synapse dynamics, and corresponding population spike rates is 126

sufficient information to predict these spatiotemporal causal kernels accurately. 127
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The kernel-based approach can be applied with recurrent neuronal network 128

descriptions using much-simplified neuron representations, like leaky integrate-and-fire 129

(LIF) point neurons, variants thereof, as well as few-compartment neuron models, as the 130

main determinant for the extracellular signals is presynaptic spikes or spike rates. Also, 131

point-neuron networks may accurately mimic experimentally observed spiking activity 132

as well as corresponding MC neuron networks (see e.g., [43]). Then, the 133

computationally costly MC simulations may only be required in order to compute the 134

appropriate sets of kernels, thus reducing compute resource demands by orders of 135

magnitude. This may for instance open for efficient forward-model-based extracellular 136

signal predictions from large-scale point-neuron network models encompassing multiple 137

brain areas [44] or models incorporating realistic cell densities within an area [36,43]. 138

The kernel methodology would also be immediately useful with rate-based frameworks, 139

as also population spike rates of spiking network models may be accurately captured in 140

corresponding population rate models (see e.g., [45–48]). 141

This study is organized as follows: In Materials and methods we first detail a generic 142

biophysically detailed MC neuron network that is used for ground truth signal 143

predictions, and different network configurations. Then we detail a proposed hybrid 144

methodology that allows for separation between simulations of network activity (‘spikes’) 145

and extracellular signals, and the derivation of linearized signal predictions, including 146

our proposed methodology for fast, accurate, and deterministic predictions of kernels. In 147

Results we investigate the properties of neuron models in active and linearized versions, 148

recurrent MC neuron networks and compare the different linear approximations to the 149

corresponding ground truth signals. Then, we showcase the kernel-based methodology 150

to network spiking activity of a recurrent network of leaky integrate-and-fire neurons. 151

In Discussion we consider the implications of this work and possible future steps. 152

Materials and methods 153

Reference multicompartment neuron networks 154

We first define the properties of a generic recurrently connected network of MC neurons 155

used for ground truth signal generation and later signal approximations. For 156

compactness, we choose a symbolic notation similar to [18] wherever possible and 157

provide the model details as a generic ‘recipe’. Their particular values are summarized 158

in this section and Tables 1 to 3. In general terms we: 159

1. Let X ∈ {. . .} and Y ⊆ X denote pre- and postsynaptic populations, respectively. 160

Each population corresponds to separate classes of neurons (derived from 161

anatomy, electrical properties, gene expression, phenomenology, etc.). We let 162

populations in Y be a local subset to allow for remote neuronal populations in X. 163

(Thus X may include remote populations, point processes, external stimuli, and 164

similar, which we will assume give approximately zero direct contributions to the 165

local signals predicted by the full recurrent network model). 166

2. Let lists NX and NY denote the sizes of populations X and Y . 167

3. Let u ∈ {1, . . . , N |N ∈ NX} and v ∈ {1, . . . , N |N ∈ NY } denote pre- and 168

postsynaptic neuron indices, respectively. 169

4. Let rv ∼ r̃Y denote a discretely sampled somatic location of neuron v, where r̃Y 170

describes the probability density function of somatic locations of population Y in 171

3-dimensional (3D) space. 172
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5. Let KY X denote the total number of pairwise connections between presynaptic 173

(source) population X and postsynaptic (target) population Y . Assuming random 174

connectivity with binomial in- and out-degree distributions the corresponding 175

connection probability is then CY X = 1− (1− 1/NYNX)KY X [49]. 176

KY X ≈ CY XNYNX for small connection probabilities. The subscript Y X 177

notation is used throughout this paper to emphasize that these parameters are 178

connection-specific. 179

6. Let kvu ∼ k̃Y X denote the randomly sampled number of synapses (multapses) per 180

connection if a connection exist between neurons u and v. k̃Y X here describes a 181

discrete distribution from which integer numbers greater than 0 are drawn. 182

7. Let probabilities of synapse placement onto postsynaptic compartments indexed 183

by m be proportional to the product LY X(zm)Am, where LY X(z) is a 184

depth-dependent function evaluated at the midpoint of each compartment with 185

surface area Am. Compartments are indexed by m. Synapse placements are 186

drawn randomly kvu times for each pair of connected neurons. 187

8. Let the current for each synapse following activation at time t be described by 188

Isyn(t) = Gsynf(t)(Vm(t)− Esyn) , (1)

where Gsyn denotes the maximum synaptic conductance and f(t) ∈ [0, 1] the 189

temporal kinetics of the synapse. We let f(t) = fY X(t) depend on both the pre- 190

and postsynaptic populations X and Y , respetively. Vm(t) denotes the 191

postsynaptic membrane potential and Esyn ∈ {EsynE , EsynI} denotes the reversal 192

potential of the synapse which is determined by the presynaptic cell type (i.e., 193

excitatory or inhibitory). For simplicity, we will assume that Gsyn is independent 194

of position. We will also assume that Gsyn is static, that is, there are no synaptic 195

plasticity rules or stochastic processes in place. Individual weights are, however, 196

drawn from a distribution described by a probability density function G̃synY X , 197

that is, Gsynvuk ∼ G̃synY X for k = 1, . . . , kvu. The subfix vuk in Gsynvuk denotes 198

the value for the k’th synapse between pre- and postsynaptic neurons u and v, 199

respectively. 200

9. Let the conduction delays resulting from presynaptic action potential generation 201

time to activation time of the synapse be greater than zero and randomly drawn 202

from some distribution as ∆vuk ∼ ∆̃Y X(t). For simplicity, we let conduction 203

delays be independent of cell location and geometry. 204

10. Let the sequence of spike times su(t) =
∑

k δtk =
∑

k δ(t− tk) of each presynaptic 205

neuron u in each population X is recorded throughout the entire simulation 206

duration [0, tsim⟩. We choose to relax this requirement if a population in X 207

represents an external population feeding persistent, uncorrelated events with 208

spectrally ‘flat’ spiking statistics (e.g., fixed-rate Poisson point processes) into the 209

recurrently connected network. We here (and for the remainder of this study) use 210

the compact notation δtk = δ(t− tk) to denote Dirac delta functions centered 211

around the time tk. 212

11. Let the weighted, directed graph representing edges (synaptic connections) 213

between nodes (neurons) for every pair of pre- and postsynaptic populations be 214

stored for purpose of validating the ‘hybrid scheme’ simulations described in the 215

section Hybrid scheme for extracellular signal predictions. This storage 216

requirement may also be relaxed if the total number of synapses over all 217

connections is large enough to make storage infeasible or one could recreate the 218
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full connectivity graph procedurally (at least statistically). Graph weights 219

represent maximum synaptic conductances. The graph also includes the synaptic 220

locations on the postsynaptic neurons, and we will hereby let compartment index 221

m equate to this location. 222

12. Let each postsynaptic neuron v in any population in Y be modeled using the 223

‘standard’ MC neuron formalism such that their transmembrane currents 224

[I
⟨v⟩
m (rm, t)] per compartment indexed by m can be computed. rm denotes their 225

midpoint coordinates. 226

13. Let extracellular signal contributions in different spatial locations (or axes in 227

terms of current dipole moment) be computed and summed up as 228∑
Y

∑NY

v=1 F ⟨v⟩[I
⟨v⟩
m (rm, t)]. The matrix F ⟨v⟩ here denotes a linear mapping of 229

transmembrane currents of cell v to a linearly dependent extracellular signal. The 230

different forward models considered in this study are detailed in 231

Volume-conductor forward models. 232

Reference networks of simplified ball-and-sticks neurons 233

The two-population, recurrent MC neuron network models constructed for this study, 234

fully specified by the enumerated list above and parameter values listed in Table 1, 2 235

and 3, are kept intentionally simple for clarity of results. One main simplification is 236

stylized neuron models with only a subset of ion channels distributed onto soma and 237

dendritic compartments. The ‘E’ cell represents a phenomenological excitatory unit, 238

while the ‘I’ cell represents a phenomenological inhibitory unit. Both share the same 239

subset of passive and active ion channels taken from a biophysically detailed cell 240

model [30], important for action potential generation (transient sodium, Nat; fast, 241

non-activating potassium, SKv1.3) and sub-threshold dynamics (non-specific cation 242

current, Ih). Refer to [30] for details on these ion-channel dynamics. Network 243

parameters were initially tuned by a combination of hand-tuning and parameter value 244

scans, aiming to generate population spiking activity that is asynchronous and irregular 245

(AI) [50] and with biologically plausible averaged spontaneous spike rates 246

(approximately ⟨νE(t)⟩ = 2.5 spikes s−1 for the ‘E’ population; ⟨νI(t)⟩ = 5 spikes s−1 for 247

the ‘I’ population). 248

Reference networks of biophysically detailed neuron models 249

As an additional test of the methodology developed around the above description of a 250

recurrent network of simplified ball-and-sticks MC neuron models, we replace the 251

‘excitatory’ (E) cell type with a biophysically detailed model of a thick-tufted layer 5b 252

pyramidal cell of rat somatosensory cortex [30]. Here, we use model parameter values 253

shown to produce acceptable BAC firing and perisomatic step current firing as 254

summarized in [30, Table 3]. Each individual cell instance in the modified network 255

model is rotated by 4.729 rad and −3.166 rad around the horizontal x− and y−axes, 256

respectively, in order to first align the apical dendrite with the vertical z−axis, before 257

applying a random rotation around the z−axis. By increasing the number of extrinsic 258

synapses distributed on each neuron to kE
ext = 920, the typical population firing rates, 259

and network state is well preserved when compared to the reference network. All other 260

parameters remain as defined in Tables 1 to 3. 261

Reference neuron networks with perturbed synaptic conductances 262

Parts of this study are devoted to the effect of perturbed network parameters in 263

different network instances on our proposed methodology. For this, we incorporated a 264
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Table 1. MC neuron and recurrent network parameters (continued in Table 2).
Symbol Value/definition Description
X {Excitatory (E), inhibitory (I)} Presynaptic cell types/populations
Y X Postsynaptic cell types/populations
NY ∈ {NE, NI} {8192, 1024} Population sizes
r

√
x2 + y2 Radius around vertical z−axis

N (µ, σ)(x) 1√
2πσ2

exp−
(x−µ)2

2σ2 Gaussian distribution
r̃X N (0, 75µm)(z) ∗ r2 for r ∈ [0, 150 µm] Cell body probability density function
CY X 0.05 for all Y and X Pairwise connection probability

(Pairwise Bernoulli; no autapses)

k̃Y X

{
N (2, 0.5)(xi), xi ∈ {1, 2, . . . , 20}, for X = E
N (5, 1)(xi), xi ∈ {1, 2, . . . , 20}, for X = I

Multapse probability mass function

S {soma, apic, basal} Morphology sections

LS

{
{30, 1000, 200} µm for X = E
{30, 200, 200} µm for X = I

Section length

dS

{
{30, 3, 2} µm for X = E
{15, 2, 2} µm for X = I

Section diameter

nSseg

{
{1, 21, 5} for X = E
{1, 5, 5} for X = I

# of segments per section

cm 1 µF cm−2 Membrane capacitance
Ra 100Ω cm Axial resistivity
gSL {0.0000338, 0.0000589, 0.0000589} S cm−2 Passive leak conductance
EL −90mV Passive leak reversal potential
gSNat

{2.04, 0.0213, 0.0213} S cm−2 Nat conductance
ENa 50mV Na+ reversal potential
gSKv3.1

{0.693, 0.000261, 0.000261} S cm−2 Kv3.1 conductance
EK −85mV K+ reversal potential
gSIh {0.0002, 0.002, 0.002} S cm−2 Ih-current conductance

The leak, fast inactivating Na+ (Nat), fast, non-inactivating K+ (Kv3.1) channel and non-specific cation current (Ih)
dynamics are those given in detail in [30]. Capped and discrete distributions are normalized such that the integral or sum
over all values equals 1.
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Table 2. Synaptic parameters for recurrent network (continued from Table 1).
Symbol Value/definition Description

G̃synY X


N (0.15 nS, 0.02 nS)Θ(G) for X = E, Y = E
N (0.125 nS, 0.0125 nS)Θ(G) for X = E, Y = I
N (4.5 nS, 0.45 nS)Θ(G) for X = I, Y = E
N (2.0 nS, 0.2 nS)Θ(G) for X = I, Y = I

Synaptic conductance distributions

EsynX 0mV for X = E, −80mV for X = I Synaptic reversal potential

fY X(t)

(
e−(t−ts)/τ1−e−(t−ts)/τ2

e−τpeak/τ1−e−τpeak/τ2

)
Θ(t− ts)

where τpeak = τ2τ1
τ2−τ1

log( τ2τ1 )
Synaptic temporal kernel

τ1 0.2ms for X = E, 0.1ms for X = I Synaptic rise time constant
τ2 1.8ms for X = E, 9.0ms for X = I Synaptic decay time constant

∆̃Y X


N (1.5ms, 0.3ms)Θ(t− 0.3ms) for X = E, Y = E
N (1.4ms, 0.4ms)Θ(t− 0.3ms) for X = E, Y = I
N (1.3ms, 0.5ms)Θ(t− 0.3ms) for X = I, Y = E
N (1.2ms, 0.6ms)Θ(t− 0.3ms) for X = I, Y = I

Conduction delay distributions

LY X(z)



N (0,100)(z)
3 + 2N (500,100)(z)

3 ,

X = E, Y = E,S \ {soma}
N (50, 100)(z), X = E, Y = I,S \ {soma}
N (−50, 100)(z), X = I, Y = E
N (−100, 100)(z), X = I, Y = I

Depth-dependence, syn. density

GsynY ext 0.2 nS External synapse conductance
Eext 0mV Ext. synapse rev. potential
fY ext(t) fY X(t) Ext. synapse temporal kernel
τ1 0.2ms Ext. synapse rise time constant
τ2 1.8ms Ext. synapse decay time constant
kY ext {465, 160} # ext. synapses per neuron
⟨νext⟩ 40 s−1 (Poisson statistics) Ext. syn. activation rate
∆̃Y ext δ(t) Ext. syn. conduction delay
LY ext 1 Ext. syn. depth dependence

Capped and discrete distributions are normalized such that the integral or sum over all values equals 1.

Table 3. Measurement and simulation parameters for recurrent network (continued from Table 2).
Symbol Value/definition Description
∆t 0.0625ms Temporal step size
tsim 12 000ms Simulation duration
ttransient 2000ms Startup transient duration
C◦ 34 ◦C Simulation temperature
Vm(0) −65mV Initial membrane voltage
su(t)

∑
k δtk for all u ∈ X Spike times tk of neurons u

xch. = ych. [0, . . . , 0] x, y-positions of electrode contacts
zch. [1000, 900, . . . ,−100,−200]µm z-positions of electrode contacts
R [xch.,ych., zch.]

⊤ Electrode contact locations
rcontact 5 µm Electrode contact radiis
ncontact [0, 1, 0] Electrode contact surface normals
σ 0.3 Sm−1 Conductivity
ψ {Ve(R, t),P(t)} Predicted signals
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connection weight scaling factor J ∈ {0.975, 1, 1.025, 1.05, 1.075}, and rescaled recurrent 265

synaptic max conductances G
′
synY X (and parameters derived from them) as 266

G
′
synEE = GsynEEJ

GsynEI/GsynEE , (2)

G
′
synIE = GsynIEJ

GsynII/GsynIE , (3)

G
′
synEI = GsynEIJ

GsynEE/GsynEI , (4)

G
′
synII = GsynIIJ

GsynIE/GsynII . (5)

Effectively, perturbing J shifts the relative balance of excitatory and inhibitory synaptic 267

input in the networks. A factor J = 1 corresponds to our unperturbed reference 268

network. 269

Leaky integrate-and-fire (LIF) point-neuron network 270

As a proof of principle that the ‘kernel method’ (see Kernel-based extracellular signal 271

predictions) can be utilized for ‘live’ extracellular signal predictions with spiking 272

point-neuron network models or other types of networks with abstract neuron 273

representations, we fit connectivity parameters of a phenomenological two-population 274

network of leaky integrate-and-fire (LIF) point neuron network with current-based 275

synapses to mimic the spiking activity of the unperturbed reference network of 276

ball-and-sticks neurons. After initial hand tuning of the network parameters into a 277

reasonable state of activity resembling the reference network’s state, we subsequently 278

used the multi-objective optimization NSGA-II non-dominated sorting genetic 279

algorithm [51] in order to fine tune key network connectivity parameters, namely 280

synaptic weights IsynY X , membrane capacitance of neurons in each population CmX , 281

weight of extrinsic synapses I
ext
syn, and mean value of the conduction delay distributions 282

⟨∆̃Y X⟩. The full network and neuron descriptions are given in Table 4, including 283

best-fit parameters and parameter value boundaries used for the fitting procedure. The 284

network is implemented and simulated in NEST [52, 53], using exact integration for step 285

size ∆t [54]. 286

For the parameter fitting, we used the implementation of the NSGA-II class
pymoo.algorithms.nsga2.NSGA2 provided by the pymoo Python package [55]. We
defined the objective functions to be minimized using the pymoo.optimize.minimize
method as

F1 =
√
(⟨νE(t)⟩ − ⟨νLIF

E (t)⟩)2 , (6)

F2 =
√

(⟨νI(t)⟩ − ⟨νLIF
I (t)⟩)2 , (7)

F3 =
∑

f≤200Hz

√(
SνEνE

(f)− SνLIF
E νLIF

E
(f)

)2

, (8)

F4 =
∑

f≤200Hz

√(
SνIνI

(f)− SνLIF
I νLIF

I
(f)

)2

. (9)

Here, νX(t) and νLIF
X (t) denote population spike rates of the MC and LIF neuron 287

network populations, respectively. SνXνX
(f) and SνLIF

X νLIF
X

(f) denotes population spike 288

rate autospectral power at each frequency f (see Signals and signal analysis methods for 289

details). For this minimization problem, we used an initial population size of 100, and 290

ran the algorithm for 20 generations with default parameters. 291

The pseudo-weight vector approach [55,56] is used to select a solution from the 292

solution set that performs well with respect to all objective functions. The pseudo 293
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weight, a normalized distance measure from the worst solution for each objective 294

function Fi, is herein calculated as: 295

wi =
(Fmax

i − Fi(x))/(F
max
i − Fmin

i )∑M
m=1(F

max
m − Fm(x))/(Fmax

m − Fmin
m )

. (10)

Fmax
i and Fmin

i denotes the maximum and minimum value of Fi(x) in the last 296

generation, respectively. Then, the best-fit parameter vector x where chosen as the one 297

that minimized ∥[w1, w2, w3, w4]
⊤ − [0.25, 0.25, 0.25, 0.25]⊤∥. We here use the 298

implementation provided by the pymoo.factory.get_decision_making method. 299

Hybrid scheme for extracellular signal predictions 300

The so-called ‘hybrid scheme’ [18] is a proposed solution for computing extracellular 301

signals from spiking activity in recurrent neuron network models. This scheme is hybrid 302

in the sense that the spiking activity of recurrent networks is first simulated separately 303

and stored, then stored spike events are loaded and used for synaptic activation times in 304

corresponding populations of MC neuron models set up to predict extracellular signals. 305

In this latter step, synapses are placed on postsynaptic neurons and are activated at 306

times as they would occur in the corresponding recurrent network, negating recurrent 307

connections and spike communication between MC neurons. Thus, the problem of 308

computing signals can be solved in an embarrassingly parallel manner. As the scheme 309

relies on prerecorded spike events, our application of the scheme employs postsynaptic 310

neurons that do not generate APs. 311

Here, we incorporate the hybrid scheme by storing population geometries, spikes, 312

and the full synaptic connectome (placements, weights, conduction delays, pre- and 313

postsynaptic neuron IDs) of the recurrent MC neuron networks to file, and reinstate 314

synaptic placements and activation times in separate simulations without actual 315

recurrent connections. Locations and activation times of extrinsic synapses are not 316

stored directly due to their large count. Here we ensured replicable placements and 317

activation times by fixing the random seeds affecting these. This step allows for 318

computing signals identical to the recurrent model in case the MC neuron models are 319

those of the recurrent network, but here, we shall rely on models where the membrane 320

and synapse dynamics are approximated by linear dynamics. Thus, only signal 321

contributions that stem from synapse activations on postsynaptic neurons are accounted 322

for in predicted signals, while contributions by presynaptic APs are not. The scheme 323

thus lends itself to predictions of signals thought to mainly stem from synaptic activity, 324

that is, LFP, ECoG, EEG, and MEG signals. 325

Linear approximations to synapse and membrane dynamics 326

Here, we describe the different linear approximations to the different constituents of the 327

conductance-based non-linear recurrent neuron network models, calculated via the 328

following steps: 329

1. Approximate conductance-based synapses by equivalent current-based synapses: 330

Isyn(t) = Gsynf(t) (Vm(t)− Esyn)

≈ Gsynf(t)
(
V m − Esyn

)
= Isynf(t) , (11)

where V m denotes the typical postsynaptic potential (or its expectation value). 331

The synapse current magnitude Isyn is constant. Here, we typically recorded 332
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Table 4. LIF network and neuron parameters.
Symbol Value/definition Description
X {E, I} Population names
NX ∈ {NE, NI} {8192, 1024} Population sizes
CY X 0.05 for all Y and X Connection probability

(Pairwise Bernoulli; no autapses)

[CmX ] ∼

{
[270, 310] pF for X = E
[100, 120] pF for X = I

Upper/lower bounds, membrane cap.

CmX {289.1, 110.7} pF Membrane capacitance (best fit)
τm 10ms for all X Membrane time constant
RmX τm/CmX Membrane resistance
EL −65mV for all X Leak reversal potential
Vθ −55mV for all X Spike threshold
Vr EL for all X Spike reset potential
τr 2ms for all X Refractory period
t
⟨u⟩
k if V ⟨u⟩

m (t
⟨u⟩
k ) ≥ Vθ Spike emission times

τm
dV ⟨u⟩

m
dt −V ⟨u⟩

m +RmXIu(t) if ∀k; t /∈
(
t
⟨u⟩
k , t

⟨u⟩
k + τr

]
Sub-threshold dynamics

V
⟨u⟩
m (t) Vr if t ∈

(
t
⟨u⟩
k , t

⟨u⟩
k + τr

]
Reset and refractoriness

[IsynY X ] ∼


[1.1, 1.8] nA for X = E, Y = E
[1.5, 2.1] for X = E, Y = I
[−25,−18] for X = I, Y = E
[−14,−8] for X = I, Y = I

Bounds, mean max. syn. current

IsynY X ∼


N (1.589 nA, 0.1589 nA)Θ(I) for X = E, Y = E
N (2.020 nA, 0.2020 nA)Θ(I) for X = E, Y = I
−N (23.84 nA, 2.384 nA)Θ(I) for X = I, Y = E
−N (8.441 nA, 0.8441 nA)Θ(I) for X = I, Y = I

synapse max. current (best fit)

τsynY X 0.5ms for all Y and X Exp. syn. decay time constant
[∆̃Y X ] [1, 4] ms for all X and Y Bounds, mean conduction delay

∆̃Y X


N (2.520ms, 1.260ms)Θ(t− 0.3ms) for X = E, Y = E
N (1.714ms, 0.857ms)Θ(t− 0.3ms) for X = E, Y = I
N (1.585ms, 0.793ms)Θ(t− 0.3ms) for X = I, Y = E
N (1.149ms, 0.574ms)Θ(t− 0.3ms) for X = I, Y = I

Conduction delay dist. (best fit)

[I
ext
syn] [28, 32] nA Bounds, ext. syn. max. current

I
ext
syn 29.89 nA Ext. syn. max. current (best fit)
kY ext {465, 160} # ext. synapses per neuron
⟨νext⟩ 40 s−1 (Poisson statistics) Ext. syn. activation rate

Capped and discrete distributions are normalized such that the integral or sum over all values equals 1.
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somatic potentials in a subset of neurons in each population of the recurrent MC 333

neuron networks and let V m equate the median somatic potentials. Where noted, 334

we perturb V m by some value or use values obtained across the neuronal 335

morphologies. 336

2. Active ion channel currents on the specific form 337

iw(t) = −gwω(t) (Vm(t)− Ew) (12)

are approximated by equivalent, linearly dependent currents similar to [40, 57]. 338

Here, Ew is the channel reversal potential and ω(t) the gating variable which 339

dynamics are given in terms of an activation time function τw(V ) and activation 340

function ω∞(V ) as 341

τw(Vm(t))
∂ω(t)

∂t
= ω∞(Vm(t))− ω(t) . (13)

If the voltage dynamics of the active compartment is defined by 342

cm
∂Vm(t)

∂t
= −gL (Vm(t)− EL)− gwω(t) (Vm(t)− Ew) + Ia , (14)

one can obtain the so-called quasi-active approximation [40, 57,58] by linearizing 343

each voltage dependent term around the steady state value V m resulting in 344

cm
∂Vm(t)

∂t
= −gL

(
γR

(
Vm(t)− V m

)
+ ηϵ(t)

)
+ Ia , where (15)

γR = 1 +
gwω∞(V m)

gL
, and (16)

η =
gw(V m − Ew)

gL

∂ω∞(V m)

∂Vm
. (17)

Here, an equivalent gating variable is defined as 345

ϵ(t) =
(
ω(t)− ω∞(V m)

)
/
∂ω∞(V m)

∂Vm
, (18)

and its linear dynamics is governed by 346

τw(V m)
∂ϵ(t)

∂t
= Vm(t)− V m − ϵ(t) . (19)

Above, γR denotes the ratio between the total and leak conductance, while η 347

characterize whether the quasi-active current approximation acts as positive 348

(η < 0) or negative (η > 0) feedback. For the special case η = 0 the quasi-active 349

current is ‘frozen’, acting as a passive current [40]. Note that the above sets of 350

equations correspond to channels usually modeled with a single state variable 351

(e.g., Ih-type currents), but generalize also to current types with more than one 352

gating variable (e.g., Na+- and K+ type currents), see [57] for details. 353

3. With linearized active ion channels, the leak reversal potential EL is further 354

modified as 355

EL = V m +
∑
w

gw(V m − Ew)

gL
, (20)

which ensures that the resting potential of the quasi-active model is similar to V m. 356

We note that this modification do not affect extracellular signal predictions where 357

current-based synapses (pt. 1) are used, but is applied anyway as in [40]. 358
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4. In principle one may remove active ion channels omitting the above linearization 359

tricks altogether if their net contributions to the total transmembrane currents 360

can be assumed to be minuscular around typical membrane voltage values. Here 361

however we do account for all channels. 362

5. With current-based synapses (pt. 1), we optionally incorporate the effective 363

membrane conductance geff which amounts to a modified passive leak conductivity. 364

Assuming the total membrane conductance depends only on synaptic currents of 365

recurrent and external connections and the passive leakage current, the total leak 366

membrane conductivity per postsynaptic compartment m of postsynaptic neuron 367

indexed by v is 368

gm(t) = gL +
1

Am

∑
X′∈X∪{ext}

∑
u⊂X′

Gsynvu (fY X′ ∗ su ∗ δ∆vuk
) (t) , (21)

where gL is the specific passive leak conductance, Am compartment area, su(t) 369

the sequence of presynaptic spikes and δ∆vuk
= δ(t−∆vuk) the conduction delay. 370

The asterisk symbol (∗) denotes a temporal convolution. The double sum over 371

presynaptic populations X ′ ∈ X ∪ {ext} and units u ∈ X ′ implies that each 372

presynaptic unit u targeting the compartment is accounted for. We introduce this 373

notation to express that also synapses from external sources (‘ext’) must be 374

accounted for. Assuming a fixed average presynaptic spike rate ⟨νu(t)⟩ and a 375

normalized delay distribution (where
∫∞
0

∆̃Y X(t)dt = 1), the time-averaged 376

effective conductance in each compartment m is approximately 377

geffm = ⟨gm(t)⟩ ≈ gL +
1

Am

∑
X′∈X∪{ext}

∑
u⊂X′

⟨νu(t)⟩Gsynvu

∫ ∞

0

fY X′(t)dt . (22)

Then, the original gL value may be replaced by geffm on a per-compartment basis. 378

Note that we compute values of geffm independently from contributions by 379

linearized active ion-channel contributions (pt. 2), which still contribute to the 380

total sum of conductances. 381

Kernel-based extracellular signal predictions 382

In case the relations between spikes in presynaptic populations and resulting 383

extracellular signals arising mainly from evoked responses in targeted postsynaptic 384

populations are approximately linear, filter- or ‘kernel’-based prediction methods may 385

greatly simplify signal predictions at the level of populations. If we first define the 386

presynaptic population spiking activity as the sequence of Dirac delta functions 387

sX(t) =
∑

u∈X su(t), the signal approximation ψ̂(R, t) ≈ ψ(R, t) may be computed as 388

the sum over linear convolutions 389

ψ̂(R, t) =
∑
X

∑
Y

(sX ∗HY X) (R, t) . (23)

Here, HY X(R, τ) are representative spatiotemporal spike-signal impulse responses for 390

pairs of pre- and postsynaptic populations measured relative to presynaptic spike events 391

at time lag τ = 0. As we deal with spike events and sampled signals on a discrete time 392

grid, it is convenient to redefine the spike sequences sX(t) as spike rates by the 393

temporal binning 394

νX [ti] = ∆t−1

∫ ti+∆t/2

ti−∆t/2

sX(t)dt , (24)
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where ∆t denotes the simulation step size. Then, the above equation can be written as 395

ψ̂(R, t) =
∑
X

∑
Y

(νX ∗HY X) (R, t) . (25)

Throughout this section, we describe two alternative methods to compute such 396

kernels HY X(R, τ), either via the hybrid scheme as in [18], or directly as described 397

below. As the kernels are equivalent to finite impulse responses (FIR) as they are 0 for 398

all time lags τ < ∆t, the linear convolutions can be replaced by a linear filter function 399

implementation (see Signals and signal analysis methods below). 400

Kernel predictions via the hybrid scheme 401

The linear cable equation combined with linearized synapse- and ion-channel dynamics 402

in our application of the hybrid scheme (cf. Hybrid scheme for extracellular signal 403

predictions) provides a relatively straightforward method to compute representative sets 404

of spatiotemporal kernel functions as in [18]. This earlier study shows that a good 405

approximation to the signal ψ(R, t) can be obtained by first measuring kernels averaged 406

over all pre- and postsynaptic neurons in each population X and Y . In order to 407

compute these kernel averages directly using the hybrid scheme, actual network spiking 408

activity is first replaced by simultaneous and deterministic events su(t) = δtX where 409

tX > 0 is a chosen time for each population X, then the signal contributions of each 410

postsynaptic population ψY X(R, t) is computed via the disassociated network model 411

around tX ; and the response is averaged over the presynaptic neurons as 412

HY X(R, τ) =
1

NX
ψY X(R, τ) . (26)

Here, τ denote time relative to tX . Thus these kernels must be causal, that is, by 413

construction HY X(R, τ) = 0 for τ < 0 as any contribution to the signal ψ(R, t) is solely 414

postsynaptic. No signal contributions before the presynaptic spike event at τ = 0 plus 415

the minimum conduction delay is accounted for1. We let the computed kernels span the 416

interval τ ∈ [−τmax, τmax], where τmax denotes a maximum lag value. The postsynaptic 417

responses typically rise and decay back to approximately zero after a few tens of 418

milliseconds. This decay time is related to the time constants relevant to the neuronal 419

dynamics (that is, τm, τsyn, τw, . . .). Throughout this manuscript, we chose 420

τmax = 100ms for computed kernels, which we assume is a few multiples of relevant 421

time constants. 422

Direct kernel predictions from single MC simulations 423

Different from the hybrid scheme kernel method described above, the main aim of this 424

work is to develop a method to directly compute a set of accurate and deterministic 425

kernels ĤY X(R, τ) needed for all connection pathways between pre- and postsynaptic 426

populations X and Y , based on some expectation values for cell and synaptic 427

placements and other network parameters. We aim to replace simulations of populations 428

of MC neurons via the hybrid scheme with a single MC neuron simulation per kernel. 429

Thus the number of MC neuron simulations corresponds to the number of pathways 430

between any population X and Y which is significantly less than the total neuron count 431

in each network. The hat denotes kernels computed using this direct method, in 432

contrast to hybrid scheme kernels. First, we assume that: 433

1Contributions by presynaptic activity, that is, transmembrane currents of presynaptic neurons from
APs and axonal propagation are not accounted for.
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1. The dynamics of the neuronal cables and synaptic input can be approximated as a 434

linear system resulting from the same steps as in Linear approximations to 435

synapse and membrane dynamics. 436

2. Each postsynaptic population can be represented by one typical biophysically 437

detailed neuron model. Effectively, the whole postsynaptic neuron population is 438

collapsed to a single neuron with linearized membranes receiving all inputs, while 439

the effect of the spatial distribution of cells in space is accounted for via the VC 440

forward model (see Modified forward models for deterministic kernel predictions). 441

3. The underlying statistics of synaptic placements and currents are preserved, which 442

allows us to compute the average synaptic current density for each recurrent 443

connection over the whole postsynaptic population ‘neuron’. 444

Accounting for the distribution of neurons along the z-axis and ignoring their 445

radial location, we let the synaptic density be proportional to the membrane area 446

of postsynaptic compartments Am multiplied by a function LY X(z) obtained as 447

the convolution of LY X(z) (see Table 2) and the z−component of r̃Y (defined in 448

Table 1). Hence we compute the expectation value for synaptic in-degree per 449

compartment indexed by m as 450

⟨ksynY Xm⟩ = ⟨k̃Y X⟩KY X

NY

LY X(zm)Am∑
m LY X(zm)Am

, (27)

where zm denotes the midpoint location of each compartment projected on the 451

z-axis, and ⟨k̃Y X⟩ the mean multapse count per connection. With this quantity 452

one may define the per-compartment synaptic input per activation as 453

IsynY Xm(t) = NX⟨ksynY Xm⟩IsynY XfY X(t) . (28)

As above, the term fY X(t) denotes the temporal component of synapse currents 454

for each connection. 455

4. Optionally accounting for the effective leak conductivity, Eq 22 must be modified 456

per compartment as 457

geffm = gL +
1

Am

∑
X′∈X∪{ext}

⟨νX′⟩⟨ksynY X′m⟩GsynY X′

∫ ∞

0

fY X′(t)dt . (29)

As above, we account for the external population ‘ext’ jointly with the main 458

network populations in X. 459

5. Then one may straightforwardly compute the resulting postsynaptic response, 460

that is, the full set of transmembrane currents [Im(rm, τ)], by applying synaptic 461

currents IsynY Xm(τ) in a single MC neuron simulation for all connections between 462

populations X and Y . In order to temporarily compute the approximated kernel 463

functions Ĥtemp
Y X (R, τ) for different extracellular signals, the resulting 464

transmembrane currents must be combined with appropriate forward model 465

matrices F calculated as described below. 466

6. Finally to account for network conduction delay distributions, the intermediate 467

kernels must be filtered in the temporal domain as 468

ĤY X(R, τ) =
(
∆̃Y X ∗ Ĥtemp

Y X

)
(R, τ) . (30)

June 28, 2022 17/57

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.02.28.482256doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482256
http://creativecommons.org/licenses/by-nd/4.0/


Volume-conductor forward models 469

Forward models for reference-network and hybrid scheme signals 470

As derived from volume conductor theory, the different electric and magnetic signals 471

that can be computed from the electric activity of brain cells are linearly dependent on 472

transmembrane currents (see e.g., [5] and references therein). Thus, some arbitrary 473

signals ψ(Rn, t) in M different spatial locations Rn (or directions in case of current 474

dipole moments) from N compartmental sources indexed by m located at rm can be 475

computed as 476

[ψ(Rn, t)] = F [Im(rm, t)] (31)

where F is a matrix with dimensions (M,N) wherein each element fnm is the chosen 477

forward solution mapping the contribution from each source to the corresponding 478

measurement. [Im(rm, t)] denotes the transmembrane currents of compartments m at 479

time t. For the presently used line sources [11, Eq. (4)], the elements of F are 480

calculated using 481

fnm =
1

4πσ∆snm
log

∣∣∣∣∣
√
h2nm + ρ2nm − hnm√
ℓ2i + ρ2nm − ℓnm

∣∣∣∣∣ , (32)

where ρnm is the distance perpendicular to line source (compartment) m, hnm the 482

longitudinal distance from the end of the line source and ℓnm = ∆snm + hnm the 483

longitudinal distance from the start of the line source with length ∆snm to some 484

electrode contact located at Rn. The line-source approximation assumes an infinite 485

homogeneous, isotropic, and linear volume conductor with conductivity σ. Measurement 486

sites are treated as infinitesimally small points, so to mimic the finite extent of contacts 487

of experimental recording electrodes, we apply the ‘disk-electrode’ approximation to the 488

extracellular potential [11, Eq. (6)] by embedding averaged values of fnm from Eq 32 489

for 100 random locations within radius rcontact into F . 490

The approach applies also to other types of measurements that are linearly 491

dependent on the transmembrane current sources, such as the current dipole 492

moment [39]. For calculations of the current dipole moment P the columns of F are 493

simply 494

fm = rm = [xm, ym, zm]⊤ , (33)

where (xm, ym, zm) denotes the midpoint coordinates of each compartment. 495

Modified forward models for deterministic kernel predictions 496

When computing extracellular signals via the kernel predicting scheme we must account 497

for the distributions of cells in space. Here we assume that each population is radially 498

symmetric around the vertical z-axis, homogeneous within some radius R and 499

inhomogeneous along the z−axis as described by a probability density function r̃X (see 500

Table 1). In order to compute extracellular potentials, we use the analytical forward 501

solution for the electric potential from a planar disk with homogeneous current 502

density [59] 503

anm(zn, zm) =
1

2σπR2

(√
(zn − zm)2 +R2 − |zn − zm|

)
, (34)

which is subsequently convolved with the depth-dependence of cell placement 504

g(z) = r̃X · ez (where ez denotes the unit vector along the z−axis), resulting in matrix 505

elements: 506

fnm =

∫ ∞

−∞
anm(zn − z, zm)g(z)dz . (35)
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Here, we solve this convolution integral numerically using the quad method of the 507

scipy.integrate module. Note that we apply the same equation also when predicting 508

kernels for the biophysically detailed neuron network (see Reference networks of 509

biophysically detailed neuron models). This formalism also assumes that the spread of 510

r̃X is ‘vast’ versus typical compartment lengths and contact radii. The planar disk 511

radius R is set equal to the population radius r. 512

To compute the current dipole moment assuming radial symmetry around the z-axis 513

the mapping matrix’ columns are simply modified as 514

fm = [0, 0, zm]⊤ , (36)

where zm denotes the midpoint coordinates of each compartment along the z−axis. We 515

do not account for the distribution of cells along the z-axis as it does not affect the 516

current dipole moment. Due to radial symmetry, the components in the lateral 517

directions are expected to cancel [12,60], hence the corresponding matrix elements are 518

set to zero. 519

Signals and signal analysis methods 520

Throughout this study, the different signals we consider are: membrane potentials 521

Vm(t); spike trains su(t); population firing rates νX(t) obtained by counting spikes per 522

time bin of width ∆t divided by bin width providing a signal with unit spikes s−1 as 523

defined in Eq 24; and raw and low-pass filtered extracellular signals ψ(Rn, t) 524

(extracellular potentials Ve(Rn, t); current dipole moments P(t)). For extracellular 525

signals we consider only frequencies f > 0Hz by subtracting the mean value in each 526

channel for times t > ttransient. 527

For low-pass filter operations, we used an elliptic (Cauer) digital filter design. Here, 528

we used filters of the 2nd order with 0.1 dB maximum ripple in the passband, minimum 529

attenuation of 40 dB in the stopband, and a critical (cutoff) frequency of 100Hz. Filter 530

coefficients were generated using the scipy.signal.ellip function with parameter 531

output=’sos’ (second-order sections). The low-pass filter was applied to the data 532

using the scipy.signal.sosfiltfilt function which implements a forward-backward 533

(zero time-lag) filter operation. 534

In order to quantify relative differences in amplitudes of approximated signals x(t) 535

and ground truth y(t) we defined the ‘ratio of standard deviations’ as 536

rSTD =
STD(x)

STD(y)
. (37)

In order to quantify temporal agreement with signals x(t) and y(t) we computed the 537

squared correlation coefficient (coefficient of determination) R2 at zero time lag as 538

R2 =
COV(x, y)

VAR(x)VAR(y)
. (38)

In order to aggregate our R2 and rSTD metrics for signals computed at different 539

depths, we computed the 10th and 90th percentiles using the implementation of 540

numpy.quantile with quantiles equal to 0.1 and 0.9, respectively. 541

For convolutions, we use the discrete convolution between vectors x and y defined as 542

(x ∗ y)[k] =
∞∑

l=−∞

x[l]y[k − l] . (39)

Here, we used the implementation provided by numpy.convolve with mode=’same’. 543
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Application of discrete FIR filter coefficients h to a signal x (relevant for NEST 544

predictions) is defined as 545

y[k] =
L∑

l=0

h[l]x[k − L] . (40)

Estimates of cross power spectral densities (CPSD) Sxy(f) and power spectral 546

densities (PSD) Sxx(f) of signals x(t) and y(t) use the Welch’s average periodogram 547

method [61] as implemented by scipy.signal.csd. Unless specified otherwise, we use 548

the periodogram settings nfft=2048, noverlap=1536, fs=∆t−1 (in Hz) and 549

detrend=False. When optimizing point-neuron network parameters we used the 550

setting detrend=’constant’ when computing the features F3 and F4. 551

The real-valued coherence (magnitude-squared coherence) between signals x(t) and 552

y(t) we compute via their CPSD and PSD functions as 553

Cxy(f) =
|Sxy(f)|2

Sxx(f)Syy(f)
. (41)

NESTML FIR filter extension 554

In order to incorporate extracellular signal predictions using the computed sets of causal 555

kernels from a point-neuron simulation in NEST (see Leaky integrate-and-fire (LIF) 556

point-neuron network), a finite impulse response (FIR) filter implementation of Eq 40 is 557

now expressed in the NESTML modeling language [62,63]. The FIR filter model is 558

written as a neuron model in NESTML, which takes neuronal spikes as input and 559

computes the filter output while the simulation progresses. The output can then be 560

queried and recorded to file using standard NEST devices. The NESTML toolchain 561

generates C++ code for the model, which is compiled into a NEST extension module, 562

allowing the FIR filter node (or a heterogeneous population of filter nodes) to be 563

instantiated in NEST simulations. 564

As per Eq 40, the FIR filter model defines L as the order of the filter and h as a 565

vector of length L containing the filter coefficients. The values of L and h can be set 566

externally from the simulation script, and in this study we insert filter coefficients from 567

each set of predicted kernels ĤY X(Rn, τ ≥ 0) for each different extracellular signal (see 568

Direct kernel predictions from single MC simulations for details). The input spikes are 569

binned per time step, and the spikes for the last L time steps are stored in a circular 570

buffer x of length L. At every time step during the simulation, the binned input spikes 571

in x are multiplied with filter coefficients in vector h and summed according to Eq 40. 572

The index to vector x is also adjusted such that the appropriate element of the circular 573

buffer is accessed. The resulting filter output is stored in a (scalar) state variable, y, 574

which can be recorded using a multimeter in NEST. 575

Data availability and replicability 576

Codes and software tools 577

This study has been made possible using the following software tools: GCC 11.2.0, 578

mpich 3.4.2, Python 3.9.6, ipython 7.27.0, jupyter-notebook 6.0.3, numpy 1.21.3, scipy 579

1.7.1, matplotlib 3.4.3, pandas 1.3.4, seaborn 0.11.2, pymoo 0.4.2.2, mpi4py 3.1.3, h5py 580

3.5.0, NEURON 8.0.2, MEAutility 1.5.0, LFPykit 0.4, LFPy 2.2.6, LFPykernels 0.1.rc8 581

(github.com/LFPy/LFPykernels, git SHA: 4fd79ab), NEST 3.1 582

(github.com/nest/nest-simulator, git SHA: 512022e54), NESTML 4.0-post-dev 583

(github.com/nest/nestml, git SHA: 0b251ec), parameters 0.2.1 584

(github.com/NeuralEnsemble/parameters, git SHA:b95bac2). 585
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In order to ensure Methods and results reproducibility [64, 65], all simulation codes 586

required to replicate the findings reported here are publicly available at 587

github.com/LFPy/LFPykernels. These include the reference implementation of the 588

methodology which is installable via the usual Python distribution channels as: 589

• pip install --pre lfpykernels # or 590

• pip install git+https://github.com/LFPy/LFPykernels 591

The code repository also includes a Docker recipe file which may be used to build 592

containers with the full software environment required by the simulations and analysis. 593

Versioned releases of the LFPykernels tool is permanently deposited on Zenodo.org [66]. 594

Hardware details 595

All computationally demanding simulations for recurrent networks and reconstructed 596

networks of MC neurons as well as parameter optimizations were performed on the 597

standard compute nodes of the JUSUF compute cluster at the Jülich Supercomputing 598

Centre (JSC), Jülich Research Centre, Jülich, Germany. Each compute node has two 599

AMD EPYC 7742 CPUs (2× 64 physical cores) running at 2.25GHz, 256GB of DDR4 600

RAM running at 3200MHz. The compute nodes are interconnected by InfiniBand 601

HDR100 (Connect-X6). Each MC network simulation ran in parallel distributed across 602

8 compute nodes with 1024 Message Passing Interface (MPI) processes, using the 603

ParTec ParaStation MPI implementation. Point-neuron network simulations were 604

executed using 32 OpenMP threads, 1 core per thread. All relevant software tools were 605

compiled with compilers from GCC. 606

Post-processing, calculations of deterministic kernels, other analysis, and plotting 607

were performed on a MacBook Pro (13-inch, M1, 2020) with 16GB RAM running 608

macOS Big Sur (v11.6) with the Conda (conda.io) package management system with 609

packages from the conda-forge channel (conda-forge.org). 610

Results 611

Neuron models with linearized membrane dynamics 612

The results presented throughout this study rely on three different fully active 613

multicompartment (MC) neuron models, and versions where their voltage-dependent ion 614

channel dynamics are linearized around a chosen membrane voltage value. These 615

linearization steps are detailed in (pts. 2-3 under Linear approximations to synapse and 616

membrane dynamics). The cell morphologies are shown in Fig 2A. The 617

phenomenological ‘ball-and-sticks’ models ‘E’ and ‘I’ represent excitatory and inhibitory 618

neurons in the two-population recurrent network in the following sections, while the 619

biophysically detailed layer 5 pyramidal cell model ‘EHay2011’ [30] later on replaces the 620

ball-and-sticks ‘E’ population (in Methods performance using biophysically detailed cell 621

models). The ‘E’ and ‘I’ neurons are both modeled with a single compartment for the 622

soma, and dendritic sections pointing upwards and downwards along the depth axis. 623

The ‘E’ cell has a prominent apical section 1mm in length while the ‘I’ cell dendritic 624

sections are symmetric around the soma. 625

As a first check comparing active and linearized neuron dynamics in absence of 626

synapses, we stimulate the different cell models with small step-like hyper- and 627

depolarizing input currents to the somatic compartment. The dynamics are linearized 628

around the steady state somatic membrane potentials in absence of stimuli. In panels 629

B-C we compare responses of the ‘E’ and ‘I’ model versions with ‘quasi-active’ linearized 630

versions of the Ih-type channel (biophys:lin) plus frozen dynamics for the Nat- and 631
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Fig 2. Model neurons and somatic responses with active and linearized
ion-channel dynamics. (A) Neuronal geometries of neurons representing excitatory
(E) and inhibitory (I) neurons, as well as a biophysically detailed pyramidal cell model
(EHay2011 [30]) replacing population ‘E’ in the modified network. (B) Excitatory (E)
neuron responses in active and linearized versions. Row 1: Step input current with
variable magnitude injected into the neuron’s soma compartment. Row 2: Somatic
voltage responses to step input currents for the active neuron version. Colors
corresponds to each respective trace in row 1. Row 3: Input responses in the
quasi-active linearized (biophys:lin) version. Row 4: Input responses in the
passive-frozen (biophys:frozen) version. Row 5: Response amplitudes at t = 1200ms
as function of stimulus magnitude. (C) Same as column B but for the inhibitory (I)
neuron model. (D) Same as column B but for the biophysically detailed excitatory
(EHay2011) neuron model.
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SKv1.3 channels as well as the version were also the Ih-type channel is frozen 632

(biophys:frozen). In both cases, the quasi-active versions can capture the 633

sub-threshold dynamics, including the sag and rebound effects explained by the 634

Ih-channel currents. The fully passive-frozen models are effectively similar to models 635

with only passive leak channels, which is reflected in the corresponding responses. These 636

models then perform worse with respect to capturing the sub-threshold dynamics of the 637

fully active versions. Note also that these linearized model neurons can not generate 638

APs for stronger depolarizing input currents, unlike their active counterparts. The row 639

5 panels show the response amplitudes after 100ms stimulus duration, and 640

unsurprisingly the linearized neuron dynamics are linearly dependent on stimulus 641

amplitude. Quasi-active models match the corresponding active model responses well 642

for small stimulus amplitudes. 643

In Fig 2D, the same experiment is performed with the biophysically detailed model 644

neuron [30]. Here, a quasi-active version of the NaP conductance is incorporated in 645

addition to the quasi-active Ih channel, while remaining channels are in their 646

passive-frozen states (biophys:lin). Again, the sub-threshold dynamics for small 647

perturbations are captured by the quasi-active model in an excellent manner, resulting 648

in similar responses below the firing threshold. Similar to our earlier observation, the 649

model version with all passive-frozen dynamics (biophys:frozen) can not capture the 650

somatic response accurately. The same qualitative observations hold true in case current 651

input is delivered to a dendritic location approximately 200µm from the soma (S1 Fig). 652

Reference MC neuron network with extracellular signal 653

predictions 654

Representing our reference networks for generating ground-truth extracellular signals, 655

and spiking activity used for signal approximations, Fig 3A shows the populations of 656

ball-and-sticks neurons and extracellular recording geometry for a phenomenological 657

two-population MC neuron network set up according to pts. 1-13 in Reference 658

multicompartment neuron networks. For this network (as well as networks with 659

perturbed parameters), we predict extracellular potentials at depths highlighted by 660

black circular markers treating compartments as line sources (Eq 32), as well as the 661

current dipole moment (Eq 33). The current dipole moment determines EEG and 662

MEG-like signals, as both can be computed from it using the appropriate forward 663

model [3, 4, 12,60]. Panels B and C show the distributions across depth of somas and 664

instantiated synapses for each pair of pre- and postsynaptic populations, accordingly. 665

All neurons receive depolarizing input by randomly distributed excitatory synaptic 666

input with random activation times. A few somatic membrane potential traces recorded 667

in each population is shown in panel D. The median values V m for a sample size of 668

N = 1024 in each population are used for linearization of ion-channel and synapse 669

dynamics in the following sections. The spike raster plot (Fig 3E) shows the resulting 670

activity to be stable and asynchronous-irregular at biologically plausible rates. The I 671

cells fire more often than the E cells on average, around 5.1Hz and 2.6Hz respectively. 672

Oscillations at the level of the populations are clearly visible in the corresponding 673

spike-count histograms (panel F) and rate spectra (panel G). These oscillations around 674

55Hz can be expected to be expressed in extracellular signals, and indeed the 675

extracellular potential (panel H) shows oscillations with varying amplitudes across 676

depth. We note in passing that the generated extracellular potentials are in line with 677

experimentally observed signals with amplitudes of a few 100µV, with few visible 678

extracellular spike signatures. The oscillations generated by the network are 679

prominently captured also in the current dipole moment (panel I), however only in the 680

vertical z−component Pz. Due to the symmetry of the neural populations around the 681
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z−axis and the cell alignments along the same axis, the orthogonal components Px and 682

Py cancel. Next, we investigate how these signals may be captured by models that only 683

use MC neurons with linearized ion-channel and synapse dynamics and no recurrent 684

connections. 685
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Fig 3. Stylized two-population MC neuron network with ground truth
predictions of extracellular signals. (A) Neuronal populations and electrode
geometry. The network is constructed of one excitatory (‘E’) and one inhibitory (‘I’)
population. Only a subset of cells is shown from each population. The black point
markers along the z-axis denote locations of electrode contact points with separation
100µm. (B) Soma counts per population X along the vertical z-axis in bins of 20µm.
(C) Synapse counts per connection KY X along the vertical z-axis (bin size 20µm).
(D) Somatic potential traces of 10 neurons in populations ‘E’ and ‘I’. The V

⟨E⟩
m and

V
⟨I⟩
m values in each legend denote median soma potentials computed from a subset of

neurons in each population (N = 1024). (E) Network spike raster spanning 500ms of
spontaneous activity. The mean population-averaged firing rates are given shown in the
legend. (F) Per-population spike-count histograms with bin size 1ms. (G) Population
firing-rate power spectra. (H) Extracellular potentials across depth (Ve(R, t)).
(I) Components of the current dipole moment (P(t)) along the x, y, z−axes.
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Hybrid scheme with linearized dynamics accurately captures 686

extracellular signals of the reference network 687

Biophysically detailed as well as simplified networks of spiking point-neuron models can 688

generate realistic spike train statistics of different populations. But, the presently used 689

framework combining MC and VC models is required in order to compute meaningful 690

extracellular population signals such as the LFP. In the hybrid scheme ( [18]; Hybrid 691

scheme for extracellular signal predictions), the simulation of spiking activity in the 692

recurrent network(s) can be performed separately with intermediate storage of spikes, 693

while extracellular signals can be computed via unconnected populations of MC neurons 694

activated by synapses triggered at times as they would have occurred in the actual 695

network. Using the reference recurrent MC neuron network and corresponding spike 696

events and ground-truth extracellular signals shown in Fig 3 we can now, in contrast to 697

our earlier study [18], test this prediction scheme in a self-consistent manner. 698

In this test, we record spikes trains of each neuron and ground truth extracellular 699

potentials and current dipole moment from our reference MC neuron network to file, as 700

well as the randomly instantiated cell locations in space and the full synaptic 701

connectivity including synaptic placements. The resulting connectivity table includes 702

pre- and postsynaptic neuron id, synaptic location (cell morphology coordinate and 703

Cartesian coordinate), maximum synaptic conductance and transmission delay. 704

With the above information, we confirmed we can compute the intra- and 705

extracellular signals matching the ground truth exactly, as initial conditions, neuron 706

models and synaptic activations, etc., can be preserved in absence of actual recurrent 707

connections (result not shown). However, one benefit of the present hybrid scheme, is 708

that it allows simplifying the individual neuron and synaptic dynamics systematically. 709

In particular, we shall assertain that linearized model setups can accurately capture the 710

features of the ground truth extracellular potential (Ve(R, t)) and current dipole 711

moment (P(t)). Here, we shall account for synaptically evoked contributions to the 712

different signals. 713

We first consider 4 hybrid scheme model configurations. These configurations all 714

incorporate the same linear approximation to synaptic currents around the median 715

somatic voltage in each reference network population as described in pt. 1 in Linear 716

approximations to synapse and membrane dynamics. Then, we consider every possible 717

permutation of (1) whether or not to account for changes in the effective membrane leak 718

conductance geff per compartment m due to synaptic activity (see pt. 5 in Linear 719

approximations to synapse and membrane dynamics), and (2) the quasi-active linearized 720

(biophys:lin) and passive-frozen (biophys:frozen) model neuron variants 721

representative of the ‘E’ and ‘I’ population showcased above. See pt. 2-3 in Linear 722

approximations to synapse and membrane dynamics for details on the linearization 723

procedure for voltage-gated ion channel descriptions. 724

By visual inspection of all hybrid scheme predictions in Fig 4, both model setups 725

that account for changes in the effective membrane leak conductance (g_eff:True) in 726

panels C and D accurately capture the spatiotemporal features of the ground truth 727

signals (black lines), including signal amplitudes. The main differences seen here are 728

that the ground truth signals contain high-frequency jitter that is not captured in hybrid 729

scheme predictions as signal contributions by APs are not accounted for by design. 730

Our choice of quasi-active (biophys:lin) or passive-frozen (biophys:frozen) 731

ion-channel dynamics are seen to have remarkably little effect on the predicted signals 732

(in contrast to somatic voltage responses). However, not accounting for membrane 733

conductance contributions by synapses (g_eff:False), results in a clearly detrimental 734

effect on the predicted signals (panels A and B). The most salient observation is that 735

the approximations to extracellular potentials across depth (Ve(R, t)) as well as 736

z−components of the current dipole moment (Pz(t)) are predicted with amplitudes that 737
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Fig 4. Ground truth signals vs. hybrid scheme approximations. Extracellular
potential across depth (top row) and z-component of the current dipole moment (Pz(t),
bottom row) predicted from the MC neuron network model in Fig 3 (black lines) is
compared to predictions made using the hybrid scheme (colored lines), using
current-based synapses and neurons with either passive-frozen or quasi-active
ion-channel dynamics (biophys:frozen vs. biophys:lin), ignoring or accounting for
the effective membrane conductance (g_eff:False/True in panels A-D respectively).

are about a factor 2 too high. The signals also appear to lag behind the ground truth 738

signals by a few ms in the temporal domain. These effects are also observed in a 739

preliminary report on this particular hybrid scheme model configuration [67]. A more 740

thorough analysis and summary of the accuracies of these signal approximations are 741

summarized below in Accurate signal predictions using hybrid scheme and deterministic 742

kernels, and compared also to kernel-based prediction methods. For the remainder of 743

this study, we will thus assume that methods other than the hybrid scheme must also 744

account for changes in the leaky properties of the membrane. This is due to the effect 745

the (effective) membrane time constant has on the integration of synaptic input currents 746

throughout the dendrites and the resulting distributions of transmembrane currents. 747

Kernels for accurate signal predictions 748

So far we have shown that hybrid scheme predictions incorporating linear 749

approximations to the synapse and active ion channel currents accurately capture the 750

extracellular potentials across depth as well as the current dipole moment. This 751

observation implies that the relations between times of presynaptic APs and resulting 752

spatiotemporal distribution of transmembrane currents (and therefore extracellular 753

potentials etc.) of respective postsynaptic neurons are approximately fixed. As the 754

postsynaptic responses can not occur before the spike times of presynaptic neurons, 755

these relationships must also be causal. Throughout this and the next sections, we shall 756

therefore further test the idea that extracellular signal predictions can be well 757

represented as a linear time-invariant (LTI) causal system. Here, we shall compare filter 758

coefficients, or ‘kernels’, obtained at the population level using two different approaches, 759

either via the hybrid scheme setup above, or using a novel, direct, deterministic method 760

based on the idea that the underlying distributions of cell and synapse positions, 761

June 28, 2022 26/57

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.02.28.482256doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482256
http://creativecommons.org/licenses/by-nd/4.0/


synaptic delays, linearized ion-channel, linearized synapse dynamics, and neuronal 762

geometries provide sufficient information to estimate the corresponding causal filters. 763

Our derivation of these deterministic kernels is described in detail in Direct kernel 764

predictions from single MC simulations. In both cases, the kernels represent the 765

population-averaged postsynaptic response of spike events in each presynaptic 766

population, that is, equivalent to ‘spike-signal’ impulse response functions of the system. 767

For corresponding signal predictions evaluated in Accurate signal predictions using 768

hybrid scheme and deterministic kernels, the kernels are applied with population spike 769

rates. Predictions are compared with ground truth signals generated by our reference 770

recurrent MC neuron network (see Reference MC neuron network with extracellular 771

signal predictions). 772

Predicted kernels using the hybrid scheme method 773

As discussed in [18], estimating full sets of kernels for every connected pair of pre- and 774

postsynaptic neurons for signal predictions is intractable in large networks due to the 775

connection count and corresponding kernel count. The study showed that averaged 776

kernels HY X(R, τ) computed for presynaptic (X) and postsynaptic (Y ) populations 777

could accurately capture the corresponding hybrid scheme extracellular potentials by 778

the double sum over the convolution of population firing rates and averaged kernels (see 779

Eq 25). Here, we revisit this approach, adding also current dipole moments to the 780

comparison. 781

First, we take the hybrid scheme simulation above, using current-based synapses and 782

either variant of linearized ion-channel dynamics. We account for changes in the 783

effective membrane leak conductance as above (g_eff:True). Then, ongoing spiking 784

activity in each population is replaced by single synchronous events that allow for 785

computing the full set of population-averaged kernels HY X(R, τ) using Eq 26. The 786

resulting sets of kernels for predicting the extracellular potential and current dipole 787

moment are shown in Fig 5A. Consistent with our earlier observation, only minor 788

differences occur between kernel signals predicted using quasi-active or passive-frozen 789

cable models. The set of kernels reveals non-trivial relationships between spikes by 790

neurons in each population and the extracellular potential across depth due to combined 791

effects of the cable models, synapse model, VC model, etc., and could challenge model 792

assumptions made in other studies like space- and time-separable kernels 793

(e.g., [20, 34, 35]) due to the effect of dendritic integration. 794

The set of kernels also allows for some insight into which connections and 795

populations shape the extracellular signals. Here, the I to E kernels (HEI(R, τ)) have 796

amplitudes that are ∼4-16 times those of the E to E kernels (HEE(R, τ)). Thus any 797

spike in population ‘I’ may give a significant signal contribution from inhibitory 798

synaptic currents in population ‘E’, even if the number of neurons in population ‘E’ is 799

8-fold that of population ‘I’. The dominance of inhibitory over excitatory contributions 800

in the LFP is in agreement with previous reports (e.g., [18, 68]). It should, however, be 801

noted that our choices of synaptic density shape functions for each pathway (LY X(z) 802

defined in Table 2) may significantly affect the corresponding kernel appearances – 803

inhomogeneous synapse densities may result in much stronger responses than 804

homogeneous densities [41, 60,69]. Furthermore, the direct contribution by evoked 805

transmembrane currents on population ‘I’ can be expected to be minor, in part 806

explained by the smaller spatial extents of the neurons and low cell count. 807

Predicted kernels using the direct and deterministic method 808

The kernel calculations via the hybrid scheme above rely on a number of MC neuron 809

simulations proportional to the overall network size, and incur significant computational 810
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Fig 5. Spike-signal impulse response functions (‘kernels’) for extracellular
potentials and current dipole moments. (A) Hybrid scheme spatiotemporal
functions HY X(R, τ) for each connection between every possible pre- and postsynaptic
network population X and Y , respectively. The top row kernels are computed as the
spike-averaged contribution by postsynaptic neurons to the extracellular potential in
electrode contact locations shown in Fig 3A, while the bottom row kernels are computed
as the spike-averaged current dipole moment contribution along the vertical z-axis. The
kernels are computed either using fully passive-frozen (biophys:frozen) or with
quasi-active (biophys:lin) cable models. The kernels are truncated at time lags
τ ∈ [0, 50ms]. (B) Same as panel A, but here the kernels are computed using a
computationally fast and deterministic method accounting for expectation values in
terms of cell and synapse placement.
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costs. Here we rather account for distributions and expectation values in the 811

parameterization of the MC neuron network directly, allowing predictions of an 812

appropriate and accurate set of kernels without instantiating network-equivalent 813

populations of MC neurons. Described fully in Direct kernel predictions from single MC 814

simulations, the constituents needed for these calculations are: linearized versions of the 815

MC neurons representing each population; their distribution in space; probabilities for 816

synaptic placements per compartment for each main connection; synaptic indegree 817

distributions over instantiated connections for each main connection; conduction delay 818

distribution for each main connection and the linearized synapse currents for each main 819

connection. Typical presynaptic spike rates need to be specified as well as pairwise 820

connection probabilities between neurons in each population. Finally, the VC model for 821

each signal is modified to account for radially symmetric cell distributions in space (see 822

Modified forward models for deterministic kernel predictions for details). 823

In contrast to the above hybrid scheme kernels shown in Fig 5A, each kernel now 824

requires only a single MC neuron simulation to compute the population-averaged 825

transmembrane currents following synaptic activation, and account for all other effects 826

by a series of linear convolution operations in the spatial and temporal domains as well 827

as a scaling by the presynaptic population size (see Direct kernel predictions from single 828

MC simulations for details). The set of calculations results in deterministic outcomes, 829

and are fast to compute on laptop computers while high-performance computing 830

resources are generally required for the hybrid scheme setup. From our default 831

parameterization of the MC neuron network (Reference multicompartment neuron 832

networks), the resulting set of approximated kernels ĤY X(R, τ) for each main 833

connections between pre- and postsynaptic populations X and Y is shown in Fig 5B. 834

This new set of kernels appears similar to the averaged kernels computed via the hybrid 835

scheme shown in Fig 5A, suggesting that they may be used interchangeably. The main 836

differences appear to be somewhat reduced amplitudes of the deterministic set of 837

kernels for extracellular potentials in panel B. Next, we shall apply our predicted kernels 838

with corresponding population spike count histograms (‘spike rates’) for signal 839

approximations, and compare their accuracies alongside predictions using the full hybrid 840

scheme against the corresponding ground truth (Hybrid scheme with linearized 841

dynamics accurately captures extracellular signals of the reference network). 842

Accurate signal predictions using hybrid scheme and 843

deterministic kernels 844

With the sets of hybrid scheme kernels (HY X(R, τ)) and approximated kernels 845

(ĤY X(R, τ)) shown in Fig 5 panels A and B, respectively, we now convolve them with 846

the corresponding presynaptic population firing rates νX(t), and sum up the 847

contributions using Eq 25. In all respects, the corresponding signal predictions shown in 848

Fig 6 panels A-D compare very favorably with the ground truth signals generated by 849

the reference network (Fig 3H,I). By visual inspection, neither hybrid scheme 850

predictions (Hybrid scheme with linearized dynamics accurately captures extracellular 851

signals of the reference network, Fig 4) nor kernel-based predictions display clearly 852

distinguishable discrepancies from the ground truth signals in terms of spatiotemporal 853

features and signal amplitudes, except for some high-frequency jitter associated with 854

APs present in the ground truth data. 855

In order to quantify prediction accuracies, we therefore resort to comparing squared 856

Pearson correlation coefficients (R2, Eq 38) and relative differences in their standard 857

deviations (rSTD, Eq 37) between ground truth signals and predictions. We compute 858

these metrics not only for the ‘raw’ signals but also for low-pass (‘LP’) filtered data. 859

Thus by attenuating the higher frequencies typically associated with presynaptic APs 860
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Fig 6. Ground truth signals vs. kernel-based approximations. (A,B) Ground
truth extracellular potential (top) and current dipole moment (bottom) predicted from
the MC neuron network model in Fig 3 compared to predictions made using the hybrid
scheme kernels HY X(R, τ) shown in Fig 5A. The signal approximations are obtained by
convolving presynaptic population firing rates (νX(t)) with respective kernels
(HY X(R, τ)) and summing the contributions. (C,D) Same as panels A and B, using
deterministic kernels ĤY X(R, τ) shown in Fig 5B.

present in the ground truth (see Signals and signal analysis methods for details) a 861

somewhat improved accuracy for the different approximations can be expected. In 862

terms of extracellular potentials and the low-pass filtered counterpart (a.k.a. the LFP), 863

the R2 and rSTD metrics in Fig 7 confirm our visual analysis. The worst-performing 864

configurations are hybrid scheme setups that do not account for changes in the effective 865

membrane time constants (g_eff:False). All other configurations perform well in all 866

channels except ch. 9. Nearby this depth, the sign of the signals flips due to current 867

conservation, perhaps most evident in the dominating kernels HEI(R, τ) and ĤEI(R, τ) 868

shown in Fig 5. Except for the ch. 9 outliers, the observed R2 and rSTD values approach 869

1. Fig 7 panels C and D projects median as well as the 10% and 90% percentiles of R2
870

and rSTD values computed across channels. Here, an overall gain in R2 is seen in all 871

cases in the low-pass filtered data. Overall, our choice of quasi-active vs. passive-frozen 872

membrane dynamics has only a minor effect in terms of the rSTD and R2 metrics. 873

Our findings for the extracellular potentials are mirrored for the approximated 874

z−component of the current dipole moment in panels E and F in Fig 7. All 875

approximations taking into account the effect of the effective membrane leak 876

conductance perform excellently, both with respect to the R2 and rSTD metrics. 877

Similarly, the PSDs of ground truth (black curve) and different approximations to the 878

z-compontent of the current dipole moment in panel G, show that the spectral signal 879

content is well captured below approximately 300Hz. Around similar frequencies, the 880

corresponding coherences (cf. Eq 41) in panel H drop below approximately 50%. 881
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Fig 7. Accuracy of signal predictions vs. ground truth. For each approximation
of extracellular potentials shown in Fig 4 and 6, their accuracy is evaluated in terms of
the (A) squared Pearson correlation coefficient between approximation and ground
truth (R2) and (B) their standard deviation normalized by ground truth signal
standard deviation (rSTD). The filled and white-faced markers denote metrics computed
from raw and low-pass filtered data, respectively. (C) Aggregate R2 and rSTD values
with median, 10% and 90% percentiles along each axis computed from extracellular
potential approximations. Outliers (< 10%, ≥ 90% percentiles) not shown. (D) Same
as panel C for predictions accounting for changes in effective membrane conductance
(g_eff: True). (E) Scatter plot of R2 vs. rSTD for the different approximations to the
z-component of the current dipole moment Pz(t). (F) Same as panel E for predictions
accounting for changes in effective membrane conductance (g_eff:True). (G) PSD of
the z−component of the current dipole moment, comparing ground truth (black line)
versus hybrid- and kernel-based signal approximations (colored lines). Same color
coding as in panel A. (H) Coherence between ground truth z−component of the current
dipole moment and different approximations. Same color coding as in panel A.
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Effect of perturbed parameters on signal predictions with 882

deterministic kernels 883

Predictions of kernels ĤY X(R, τ) and corresponding signals rely on accurate 884

assessments of a number of parameters. Here we choose to investigate the effect on 885

ĤY X(R, τ) of mismatched time-averaged presynaptic population firing rates ⟨νX(t)⟩ 886

(including that of the external population) and choice of V m on our R2 and rSTD 887

metrics. The unperturbed V m ≈ −70mV (Fig 3D), and presynaptic rates ⟨νX(t)⟩ are 888

2.6 s−1, 5.1 s−1 and 40 s−1 for excitatory, inhibitory and external synapses, respectively. 889

The R2 and rSTD statistics are computed for rate-based time-series predictions against 890

corresponding ground truth datas (Fig 3H,I). For brevity, we chose to compute these 891

metrics only for the z−component of the current dipole moment (Pz(t)). In our results 892

above this term appears to be a valid indicator for corresponding metrics computed 893

from extracellular potentials (Ve(R, t)). The parameter ⟨νX(t)⟩ directly affects the 894

calculation of the effective leak conductivity values geffm via Eq 29, while V m affects the 895

linearization steps applied to voltage-gated ion channels and synaptic currents as 896

detailed in Linear approximations to synapse and membrane dynamics. For brevity, we 897

compute kernels employing neuron models with passive-frozen ion-channel dynamics. 898

The contour lines denoting R2 equal to 0.95, 0.98 and 0.99 in Fig 8A demonstrate 899

that a relatively broad range of parameter values results in good temporal agreement 900

between the approximated and ground truth signals. When V m is shifted by −10mV 901

the signal contributions by inhibitory synapses drop significantly as the difference to the 902

inhibitory synapse reversal potential diminishes. If the assumed presynaptic rates are all 903

rescaled to zero (the ratio ⟨ν⋄X⟩/⟨νX⟩ = 0), it amounts to ignoring the effective leak 904

conductivity altogether as geffm = gL. A minor gain may be seen for low-pass filtered 905

data. The rSTD values computed across the same parameter space in Fig 8B show a 906

more gradual dependency on each parameter. Reasonable rSTD values occur alongside 907

the contour line labeled ‘1.0’. 908

Methods performance for perturbed network states 909

So far our Results show that fully linearized model setups can accurately approximate 910

the ground truth extracellular signals of the reference recurrent MC neuron network. 911

The main linearization tricks (detailed in Linear approximations to synapse and 912

membrane dynamics) are (1) approximations of the conductance-based synapses by 913

equivalent current-based synapses and (2) approximations of the active ion 914

conductances by linearized versions. A crucial parameter in both cases is the choice of 915

the postsynaptic membrane potential V m which is assumed constant. Initially, we have 916

chosen the median somatic membrane potential averaged over neurons in each 917

population of the reference networks. However, there are several scenarios where this 918

assumption of near-constant postsynaptic membrane potentials can be expected to fail. 919

This may include the presence of large-conductance synapses where synapse activation 920

may result in significant de- and hyperpolarized postsynaptic membrane potential, as 921

well as synchronous network states where the variance in membrane potentials may 922

increase with the increased strength of the network-generated oscillations. 923

We here chose to assess the accuracy of kernel predictions and kernel-based 924

approximations for perturbed networks in terms of modified connectivity parameters, 925

using sets of kernels estimated directly from neuron models using passive-frozen 926

ion-channel dynamics. For this purpose, we perturb the mean recurrent synaptic 927

connection conductances GsynY X in the reference recurrent MC neuron networks by a 928

factor governed by the parameter J (see Reference neuron networks with perturbed 929

synaptic conductances for details), rerun network simulations in order to provide new 930

ground truth data, spike trains, and somatic potentials, and recompute the set of 931
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Fig 8. Effect of mismatched presynaptic firing rates and membrane
potentials on kernel-based approximations to the current dipole moment
signal. (A) Effect on the R2 metric computed between ground truth z−component of
the current dipole moment (Pz(t)) and corresponding kernel-based approximations. For
each datapoint in each panel, the kernel approximations ĤY X(R, τ) are computed when
shifting the linearization membrane voltage by V

⋄
m − V m and multiplying the

presynaptic firing rates by a factor ⟨ν⋄X⟩/⟨νX⟩. The superscript ⋄ denotes perturbed
values. The panels show R2 computed for kernels assuming passive-frozen
(biophys:frozen) ion-channel dynamics. The left and right columns show R2

computed from raw and low-pass (LP) filtered data, respectively. (B) Same as panels in
A but for the rSTD metric.

June 28, 2022 33/57

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.02.28.482256doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482256
http://creativecommons.org/licenses/by-nd/4.0/


kernels for each J value and derived kernel parameters. The scaling factor affects both 932

the degree of network synchrony and overall spike rates. It also affects the kernel 933

predictions via the updated GsynY X values entering Eqs. (11) and (29). J = 1 934

corresponds to our reference network model introduced above. 935

Our findings, summarized in Fig 9, show in panel A that increasing J results in 936

increased population firing rates and increased degree of synchrony. The increased 937

synchrony results in stronger amplitudes of extracellular potentials in ch. 2 and 11 in 938

panel B as well as the current dipole moment in panel C. The firing rate spectra in 939

panel D also show that the typical oscillation frequency decreases while increasing J , 940

from 55Hz to 31Hz. Reducing J attenuates the firing rates and oscillations. In terms of 941

the temporal agreement between ground-truth and approximated signals (R2, panel E), 942

only the most synchronous activity pattern (J = 1.075) results in reduced performance 943

in the upper channels. In terms of the ratio of signal standard deviations (rSTD, panel 944

F), the particular network state resulting from J = 1.05 yielded the worst performance. 945

The general take home-message inferred from the aggregated R2 and rSTD values in 946

panel G is that asynchronous irregular (AI) network states, at least for this relatively 947

simplistic two-population network, allow for kernel-based signal predictions that well 948

capture the corresponding ground truth signals. More synchronous activity results in 949

reduced performance of our proposed methodology in the upper three channels. 950

As a final test we also recompute the accuracy metrics for Pz(t) in Fig 9H. Also here, 951

reduced performances of the kernel-based method are observed for the more 952

synchronous networks, quantified in terms of rSTD and R2. For the signals we consider, 953

the kernel-based approach works marginally better for the low-frequency signal 954

components, reflected in the improved R2 values over the raw signals. 955

Methods performance using biophysically detailed cell models 956

So far in this paper, we kept the neuron and network model descriptions at a 957

deliberately low level of complexity. However, biological neurons are commonly modeled 958

at a much greater level of biophysical detail both in terms of geometry and in terms of 959

the presence of heterogeneous types of ion channels, and are also used in large-scale MC 960

neuron network simulation studies (e.g., [70]). Here we explore how well extracellular 961

signals of neural activity can be captured using the linearization steps introduced for 962

networks using stylized neurons, in networks incorporating biophysically detailed neuron 963

models. For this purpose, we replace the excitatory neurons in our previous reference 964

networks with a rat layer 5b pyramidal cell model [30], rerun network simulations to 965

regenerate ground truth extracellular signals etc., and repeat the analyses of hybrid- 966

and kernel-based approximations. This detailed neuron model has many more active ion 967

channels than the ball-and-sticks neurons and may produce back-action-potential 968

activated Ca2+ spikes [30]. The network parameterization is kept identical, except for 969

an increased indegree of external excitatory input to this population in order to preserve 970

overall firing rates (see Reference networks of biophysically detailed neuron models for 971

details). The hybrid and kernel-based approximations rely on linearized variants of the 972

biophysically detailed neuron model, showcased in Neuron models with linearized 973

membrane dynamics. To emphasize on effects explained by this change of model neuron, 974

we exclude signal contributions by transmembrane currents of inhibitory neurons in the 975

analysis. 976

Hybrid scheme signal predictions 977

First, we consider the hybrid scheme setup, where spike events of the recurrent network 978

are used for synaptic activation times in populations of neurons but without recurrent 979

connections, and repeat the experiments first set up for the ball-and-sticks networks. 980
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Fig 9. Effect of perturbed MC-network connection weights on kernel-based
signal predictions. (A) Mean population spike rates and raster plots (N = 1024 spike
trains in each population). The scaling factor J rescales all connection weights in each
network simulation. J = 1 corresponds to our unperturbed reference network. (B)
Ground-truth extracellular potential (black lines) and kernel-based approximations at
depth of ch. 2 and 11 (colored lines). (C) Ground-truth and kernel-based
approximation to z−component of current dipole moment. (D) Effect of rescaled
connection weights on firing rate power spectra of populations ‘E’ (top) and ’I’
(bottom). (E) Accuracy of kernel predictions in terms of R2 and (F) rSTD for
kernel-based predictions of raw- and low-pass filtered extracellular potentials. Here,
kernels are in each case computed using ‘biophys:frozen’ ion channel dynamics
accounting for changes in the leak conductance from synaptic conductances
(g_eff:True). (G) Aggregated R2 and rSTD values (median, 10% and 90% percentiles)
across electrode channels. (H) rSTD vs. R2 computed for the z-component of the raw
and low-pass filtered current dipole moment (Pz(t)).
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Summarized in Fig 10; If the effective leak conductance is not accounted for 981

(g_eff:False, panel A,B), signal amplitudes are clearly overestimated. Predictions are 982

in better agreement with the ground truth when the leak conductance contribution from 983

synaptic activation is accounted for (g_eff:True, panels C,D). In contrast to the 984

previous model setup, the ground truth extracellular potential signals contain prominent 985

extracellular spike contributions, in particular across the soma-proximal ch. 9-12. In 986

terms of choice of linearized membrane dynamics, the visual differences are minuscular. 987

Dynamics are linearized around V
⟨E⟩
m = −64.96mV. 988
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Fig 10. Ground truth signals vs. hybrid scheme and kernel-based
approximations. (A-D) Same as Fig 4 and (E-H) Fig 6, but with the excitatory cell
model being replaced by a biophysically detailed pyramidal cell model [30]. Here, only
signal contributions by transmembrane currents of the updated excitatory population
are accounted for.

Kernel based signal predictions 989

Next, we compare spike-to-signal impulse response functions (‘kernels’) computed via 990

the hybrid scheme setup and the computationally fast deterministic method. The 991

resulting set of kernels for connections onto the excitatory population in Fig 11, show 992
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that the deterministic method yields quantitatively similar kernels as the corresponding 993

hybrid-scheme-based method. The differences can in part be explained by the fact that 994

the hybrid implementation employs discrete synapse and cell placements in space, as 995

they occur in the recurrent network used for ground truth signal generation, while the 996

direct method only accounts for the underlying distributions used to set up the 997

recurrent network in the first place. Note that with the reconstructed neuron there is a 998

higher degree of freedom in terms of discrete synapse placements compared to the 999

ball-and-stick neuron. The current dipole moment kernels for the E-to-E and I-to-E 1000

projections remain very similar, although visible differences now occur between the 1001

quasi-active and passive-frozen model neurons. 1002
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Fig 11. Spike-LFP impulse response function averages and predictions.
Similar to panels in Fig 5, but but with the excitatory cell model being replaced by a
biophysically detailed pyramidal cell model [30].

The corresponding signal predictions using these sets of kernels in combination with 1003

population firing rates are shown Fig 10 panels E-H. Similar to the hybrid scheme 1004

predictions in panels A-D, visual inspection reveals only small differences. Thus, we 1005

recompute our accuracy metrics as summarized in Fig 12 including also the hybrid 1006

scheme predictions. Similar to our initial results with ball-and-sticks neuron networks, 1007

the projected accuracies for all approximations remain clustered together if the effective 1008

membrane leak conductance is accounted for. However, the R2 metric is reduced, 1009

particularly in the uppermost channels, while rSTD is increased irrespective of signal 1010

type compared to our earlier results. The different approximations are observed to 1011

perform better in the low-frequency range as contributions by presynaptic APs in the 1012

ground truth signals are attenuated (‘LP’ vs. ‘raw’ data, respectively). The spectra and 1013

coherences comparing ground truth and approximations to Pz(t) in Fig 12 panels G and 1014

H, respectively, show that signal approximations match the ground truth up to 1015

frequencies around 300Hz. 1016

Overall, these observations of reduced performance compared to the ball-and-sticks 1017

cases are unsurprising, as this biophysically detailed cell model by [30] has a much more 1018

elaborate dendritic structure with many thin sections and many more degrees of 1019

freedom in terms of voltage-gated ion channels. Thus, the somatic voltage value we 1020

chose for linearized synapse and membrane dynamics may poorly represent voltage 1021

fluctuations and deviations that may be present, particularly in dendrites located 1022
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bi)∗hys:fr)0e(
g_eff:Tr-e

raw
LP

1 2
rSTD (-)

0.50 0.75
R2 (-)

1.0

1.5

2.0

2.5

r S
TD
 (-
)

C

0.6 0.8
R2 (-)

1.0

1.2

1.4

1.6

D

0.6 0.7 0.8
R2 (-)

1.4

1.6

1.8

2.0

2.2
E

0.80 0.81
R2 (-)

1.39

1.40

1.41

1.42

F

101 102 103
f (H0)

101

104

107

1010

S P
zP

z(f
) (
(A

2  
m

2 /H
0)

G

101 102 103
f (H0)

0.00

0.25

0.50

0.75

1.00

C P
z

̂
P z
(f)

 (-
)

H

Fig 12. Accuracy of signal predictions vs. ground truth. Same as Fig 7, but
with the excitatory cell model being replaced by a biophysically detailed pyramidal cell
model [30], and accounting only for contributions by transmembrane currents of this
updated excitatory population.
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remotely from the soma. Still, all approximations are able to provide excellent insight 1023

into the spatiotemporal properties of the extracellular potential and current dipole 1024

moment (and by extension EEG and MEG-like signals computed from it), more so in 1025

the low-frequency band. 1026

For these kernel predictions we also repeated the experiment where the linearization 1027

voltage (V m) and assumed presynaptic firing rates (⟨νX⟩) are offset in S2 Fig. For the 1028

corresponding predictions of Pz(t), a somewhat better agreement between the 1029

ground-truth and the approximated signal amplitudes can potentially be obtained by 1030

shifting V m by about −5mV. 1031

Methods performance for perturbed network states 1032

Further testing of the kernel-prediction methodology, we repeat our earlier experiment 1033

investigating the effect of perturbed conductances for recurrent synaptic connections on 1034

our proposed methodology, by introducing a variable J affecting GsynY X in 1035

ground-truth generating networks using the biophysically detailed layer 5 neuron model. 1036

Summarized in Fig 13, also here increasing J results in increased strength of network 1037

oscillations (synchrony), but the change of excitatory cell model here also results in slow 1038

synchronous oscillations with periodicity between 150–200ms, while the oscillations in 1039

the 50Hz range remain present. A similar emergence of slow oscillations was observed 1040

in another phenomenological network study relying on the same model neuron [71], but 1041

such activity may also arise in simplified point-neuron networks [50]. As also observed 1042

for the ball-and-sticks neuron networks, the more synchronous network states result in 1043

reduced performance of the kernel-based methodology, particularly in the uppermost 1044

channels of the extracellular potential signal (Ve(R, t)). This observation may be 1045

explained by the lack of recurrent synapses in the apical tuft. 1046

As the typical membrane voltages can be expected to vary dramatically across the 1047

elaborate geometry of the biophysically detailed pyramidal neuron, we check whether or 1048

not the accuracy of the approximated signals can be improved by varying the 1049

linearization voltage V m on a per-compartment basis when computing deterministic sets 1050

of kernels. For each value of J and corresponding network simulation, we computed the 1051

mean membrane potential per compartment across a subset of neurons (N = 1024) and 1052

incorporated the values when computing the set of kernels. Comparing our R2 and rSTD 1053

metrics for Ve(R, t) and Pz(t) for different values of J in S3 Fig, expose that varying 1054

V m across the morphology generally increase signal amplitudes (semi-transparent 1055

markers/lines) when compared to results obtained with our earlier assumption of a 1056

constant value (opaque markers/lines). However, the overall result is inconclusive. 1057

Kernel-based signal predictions from point-neuron networks 1058

Throughout Results we have demonstrated that estimates of linear spike-to-signal 1059

impulse-response functions (‘kernels’) allow for accurate approximations of different 1060

signals by convolving population firing rates with the appropriate sets of kernels and 1061

summing the contributions. So what does this allow for? 1062

One major benefit is that spiking dynamics can with ease be modeled using 1063

recurrently connected networks employing simplified neuron representations, like leaky 1064

integrate-and-fire (LIF) point neurons and variants thereof. Recurrent network models 1065

using biophysically detailed MC neuron models (e.g., [43, 70]) are, in contrast, 1066

intrinsically more difficult to develop due to their vast number of parameters [72], are 1067

comparably slow to simulate even on large-scale high-performance computing facilities, 1068

less amenable for analytical analysis, and henceforth difficult to constrain into 1069

reasonable network states resembling experimental data. Point-neuron networks 1070

mediate all of these important issues. In addition, systematic reductionist approaches 1071
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Fig 13. Effect of perturbed MC-network connection weights on kernel-based
signal predictions. Same as Fig 9, but with the excitatory cell model being replaced
by a biophysically detailed pyramidal cell model [30].

June 28, 2022 40/57

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.02.28.482256doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482256
http://creativecommons.org/licenses/by-nd/4.0/


applied to MC neuron networks allow for capturing their spiking dynamics in equivalent 1072

few-compartment or point-neuron networks [73–75]. But point-neuron networks do not 1073

allow for computing the distribution of transmembrane currents in space needed for 1074

signal predictions, as all in- and out-going currents sum to zero in a point [18]. Using 1075

our direct and deterministic method we can, however, predict sets of kernels ĤY X(R, τ) 1076

for each connectivity pathway via single MC neuron simulations in order to compute 1077

extracellular signals from simplified networks. While reduced networks may not predict 1078

identical spike trains as the corresponding fully detailed networks, their main statistics 1079

(rates, spectra, correlations, etc.) should be preserved, implying that kernel-based signal 1080

predictions from rates remain applicable. 1081

As a proof of principle of this methodology, we constructed a point-neuron network 1082

of the same size as our reference MC-neuron networks and fit its parameters in order to 1083

mimic our reference network’s averaged firing rates and rate power spectra shown in 1084

Fig 3 (see Leaky integrate-and-fire (LIF) point-neuron network for details). Showcased 1085

in Fig 14, the point-neuron network state is asynchronous and irregular (AI) with some 1086

oscillations present in the corresponding spike count histogram (panel A), similar to our 1087

reference network. We here also showcase the different signal contributions by each 1088

pathway (E-to-E and so forth) in panels B-E, using the set of kernels displayed in 1089

Fig 5B and discussed in Predicted kernels using the direct and deterministic method. 1090

The summed contributions are shown in panel F. Here, there are no ground truth 1091

signals to compare to directly, but the extracellular potential signal varies across time 1092

and space in an expected manner, and closely resembles the signals obtained by the 1093

I-to-E pathway. Signal amplitudes are also in the expected ranges set by our 1094

MC-neuron network simulations. 1095

As a final remark, we here compute the firing rates and signals ‘live’ while the 1096

network simulation is running. To reiterate, the kernels are always causal, that is, equal 1097

to zero for any time less than the minimum conduction delay in the network, and of 1098

finite duration. This causal relationship allows for treating the sets of kernels as 1099

finite-impulse-response (FIR) filter coefficients, which are here applied via a custom 1100

network node that receives incoming spike events from each population while the 1101

simulation is running and outputs continuous signals representing the temporally 1102

filtered spike events. For this purpose a FIR filter network node is implemented for the 1103

NEST simulator [52,53] via the NESTML description language [62,63] as detailed in 1104

NESTML FIR filter extension. This network node is also reusable for other spiking 1105

networks in NEST. 1106

Discussion 1107

Summary of findings 1108

The main results presented throughout this paper can be summarized as follows: First, 1109

an assessment of the validity and limitations of different prediction schemes for 1110

extracellular signals from biological neuronal network models assuming linearity 1111

between times of presynaptic action potentials (‘spikes’) and corresponding extracellular 1112

signals. The signals mainly occur due to evoked transmembrane currents on the 1113

postsynaptic neuronal populations. Our finding is that the linearity assumption is valid 1114

if all contributions from the linearized membrane and synapse conductances are 1115

accounted for, resulting in accurate signal predictions. 1116

Secondly, identification of the critical role of the effective membrane time constant 1117

due to persistent activation of recurrent and external synapses on predicted signals. We 1118

found that simply approximating conductance-based synapses by current-based 1119

synapses without accounting for the time-averaged synaptic conductances resulted in 1120
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Fig 14. LIF network spiking activity and forward-model predictions.
(A) Spiking activity and average spike rates of the excitatory (E) and inhibitory (I)
populations of a point neuron network simulation (top), with spike counts in bins of
width ∆t (bottom). (B-E) Contributions to the extracellular potential (top) and
current dipole moment (bottom) by the E to E connection, E to I connection, I to E
connection, and I to I connection, respectively. The signals are equivalently computed
as the convolution between the presynaptic population spike count histogram and
corresponding signal kernel approximations using a FIR filter implementation
concurrently with the spiking simulation. The kernels used are shown in Fig 5B.
(F) Sum over signal contributions in panels B-E.
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overestimated amplitudes and poorer temporal accuracy of the approximated signals. 1121

Third, a new, fast and accurate method to compute averaged spatiotemporal 1122

spike-to-signal impulse response functions (‘kernels’) for connections between pre- and 1123

postsynaptic populations, by accounting for distributions of cells and synapses in space, 1124

linearized synapse, and membrane dynamics, overall connection probabilities, 1125

distributions of synapses per instantiated connection, and connection delay distributions. 1126

As the sets of computed kernels are causal and linearly map population spike events to 1127

the corresponding signals, it allows for efficient signal predictions as in a linear 1128

time-invariant (LTI) causal system, that is, by treating the sets of spatiotemporal 1129

kernels as finite impulse response (FIR) filter coefficients applied to corresponding firing 1130

rates of presynaptic populations. The kernel-based predictions are as accurate as a 1131

hybrid scheme explicitly accounting for neuron and synapse placements in space [18], 1132

but significantly faster. The proposed methodology accounts mainly for signal 1133

contributions resulting from synaptic activations, explaining a large fraction of the 1134

low-frequency components of extracellular signals (≲ 300Hz). 1135

We developed and evaluated the methodology based on recurrently connected 1136

reference networks of MC neurons. For simplicity, we initially opted for 1137

phenomenological ball-and-sticks MC neuron models with active voltage-gated ion 1138

channels distributed all over, representing each population of excitatory (E) and 1139

inhibitory (I) neurons. Synapses are conductance-based. We show that the proposed 1140

methodology is feasible with perturbed network states, as well as for cases where 1141

populations are replaced by biophysically detailed neurons [30] at a level of detail 1142

similar to neuron models implemented in high-profile biophysically detailed network 1143

modeling efforts (e.g., [43, 70]). 1144

As a final proof of principle for the kernel-prediction methodology, we apply a 1145

suitable set of kernels for forward-model predictions from spiking activity in a spiking 1146

point-neuron network model. For this network model, the kernels are applied via a FIR 1147

filter network node receiving presynaptic spike events applying the filter coefficients for 1148

continuous signal predictions during the course of the simulation. The resulting signals 1149

resemble corresponding ground truth signals of the reference MC neuron network. 1150

Kernels versus other estimation methods 1151

The sets of spike-signal kernels we compute using our proposed methodology should not 1152

be confused with corresponding spike-triggered averaged signals (e.g., [76, 77]), which 1153

are intrinsically affected by ongoing network activity, that is, spike train correlations, as 1154

previously shown in [18]. Even if both are linear measures, the spike-triggered averaged 1155

signal will most likely be non-causal and depend on the network state, unless the 1156

spiking activity of the trigger neuron is approximately uncorrelated with the ongoing 1157

activity. The latter scenario may occur for instance for spontaneous activations of 1158

neurons in one brain region (e.g., thalamus) projecting to another area (e.g. 1159

somatosensory or visual cortex, see [78–80]). This so-called monosynaptic, also referred 1160

to as unitary (e.g., by [81]) extracellular response is recently modeled in detail [82], then 1161

using conductance-based synapses but with passive membrane time constants fitted to 1162

available experimental and published data. A similar effort to compute such responses 1163

in the hippocampus was recently published [83]. Fitting such responses to 1164

spatiotemporal kernel shape functions for excitatory and inhibitory presynaptic units in 1165

order to compute LFP signals in point-neuron network models has been proposed [19]. 1166

The sets of kernels we compute do not assume a particular shape, but are derived from 1167

the biophysics of the neurons and network, and can be recomputed for other networks 1168

and populations. 1169

Other, even simpler estimation methods for extracellular potential time series was 1170

proposed by [34], recently extended to EEG signals by [84], by approximating signals by 1171
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weighted and time-shifted sums of excitatory and inhibitory synaptic currents measured 1172

in the network simulation. In contrast to the hybrid- and kernel-based approaches 1173

considered here, these simplified approximations do not explicitly account for any effects 1174

on the predicted signals from the neuronal morphologies, ion-specific channels and the 1175

VC forward model. They also do not account for any signal variation in space except if 1176

combined with some position-dependent scaling factor, and the physical units of the 1177

predicted signals can be considered arbitrary. These simplified schemes may still be 1178

considered a major improvement over ad hoc approaches equating firing rates or 1179

averaged somatic potentials to extracellular signals [34,84]. In the case of scalp EEG 1180

and MEG signal predictions mainly the current dipole moment components normal to 1181

the cortical tissue surface may be predicted with reasonable accuracy and be combined 1182

with an appropriate head forward model [60], allowing for respective signal predictions 1183

along the scalp’s surface. 1184

With the recent advances in the machine-learning (ML) field such as deep 1185

learning [85], a fair assumption is that also ML methods can infer linear/non-linear 1186

relationships between e.g., network spikes and extracellular signals if subjected to 1187

enough observations for training the algorithms. Input-output dynamics of neurons can 1188

be captured by different deep artificial neural network (ANN) architectures [86, 87], and 1189

one could likely extend such models for extracellular signal predictions. One recent 1190

study proposed deep convolutional neural networks for approximated EEG signal 1191

predictions from spike rates [84]. Linear filter-based models have also been proposed for 1192

LFP signals [18, 19,21]. In contrast to our proposed methodology where kernels 1193

mapping population spike rates to extracellular signals are inferred from the biophysical 1194

description and parameters of the biological neuronal network itself, deep learning and 1195

related algorithms generally require experimental or model data for training. In the 1196

present context, the avenue of using ML-based methods to predict kernels from 1197

biophysical network parameters is obfuscated. Using ANNs, it was recently shown that 1198

model LFP signals contain information about underlying network parameters [38]. For 1199

mechanistic models of biological neurons and circuits, one main issue is determining 1200

suitable parameters for viable model output. Here ML-based methods such as deep 1201

neural density estimators may be used for investigating such vast model parameter 1202

landscapes [88]. 1203

Extensions and future works 1204

One main novelty reported here is the proposed method for directly computing kernels 1205

that facilitate efficient calculations of extracellular signals from population spike rates, 1206

as well as a reference implementation in the Python package LFPykernels. We applied 1207

this framework to quite simplified two-population recurrent networks. The framework is, 1208

however, applicable to networks with many more populations. One could for instance 1209

mimic the laminar topology of cortical microcircuits, where each layer consists of 1210

different populations representing the heterogeneous types of cells within each layer as 1211

in [70] and [43]. Based on available anatomical and electrophysiological constraints 1212

either from experiments or detailed models themselves, signal kernels of interest can 1213

then be computed for the different connections independently of simulations of recurrent 1214

network spiking activity. The latter step may then even use simplified neurons (e.g., 1215

spiking point neurons) thus negating the need for high-performance computing facilities. 1216

Extracellular signal predictions can be incorporated in the running simulation as we 1217

have demonstrated here (see Kernel-based signal predictions from point-neuron 1218

networks), or after simulation by computing population spike rates from recorded spike 1219

events, filter these and sum up all contributions. 1220

While we have here mainly focused on the methodology and less on overall 1221

simulation speeds, we note that potential speedup can be of several orders of magnitude. 1222
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The typical simulation times for the recurrent network with biophysically detailed 1223

pyramidal neuron models (see Methods performance using biophysically detailed cell 1224

models) we observe are around 4400 s multiplied by 1024 physical cores for 12 s of 1225

biological time on the high-performance computing resource, while the corresponding 1226

set of kernel predictions take around 150 s on a laptop computer using a single physical 1227

core (see Data availability and replicability for details). This number can potentially be 1228

reduced substantially if the numerical integration of Eq 35 on a per-compartment basis 1229

can be replaced by a closed-form (the MC neuron simulations of transmembrane 1230

currents are quite brief). Further reductions in prediction times may involve other 1231

trivial parallelization schemes, as kernels for different connections can be computed fully 1232

independent of each other, which is also the case for different spatial components of 1233

each spatiotemporal kernel. Code acceleration using for instance Numba2 or Cython3
1234

may also help in this respect. Simulation times and resources required for spike times in 1235

equivalent networks of the same size using simplified neurons (i.e., few-compartment 1236

and point-neuron models) are also substantially less compared to the biophysically 1237

detailed case. For the point-neuron network incorporating the FIR filter operations used 1238

here, the respective network build and simulation times were around 8 s and 235 s with 1239

single-threaded execution on a laptop. Thus the serial time to solution is reduced by a 1240

factor ∼ 104 compared to the MC network simulation. Hence, the avenue of 1241

biophysics-based forward model predictions of extracellular signals in large-scale 1242

networks with millions of spiking point neurons and beyond (e.g., [44]) is opened. 1243

In its present form, there are multiple scenarios where our proposed kernel-prediction 1244

methodology could use either further development or validation. Presently we 1245

investigate the method for networks with a columnar (cylindrical) organization and no 1246

distance-dependency for connections in terms of connection probabilities, synaptic 1247

conductances, and axonal transmission delays within the column-like geometry. Large 1248

scale recurrent network models with (lateral) distance-dependent connectivity and 1249

periodic boundary conditions spanning multiple mm of cortical area has been proposed 1250

at various levels of description (e.g., [36, 43]), but so far our proposed kernel prediction 1251

method is neither developed for nor validated against such models. So far, such lateral 1252

distance-dependent connectivity was accounted for in a phenomenological kernel-based 1253

prediction model [37], and for an experimentally derived kernel-based method [19]. 1254

Furthermore, we assume recurrent networks with static connection weights. But 1255

synapses may be subject to various weight dynamics such as short-term plasticity (STP) 1256

with activity-dependent facilitation and depression, stochasticity, 1257

spike-timing-dependent plasticity (STDP) (see e.g., [89]), as well as structural 1258

plasticity [90]. Out of these, stochasticity is perhaps easier dealt with if probabilities of 1259

synaptic activations are known and independent of activation rate by scaling the 1260

corresponding kernel amplitudes accordingly. Weight changes due to STP are mainly 1261

governed by presynaptic activation intervals hence the average connection weights for 1262

kernel predictions can be determined for known averaged presynaptic rates. STDP may 1263

be harder to account for, but due to the much longer time scales for weight updates, the 1264

option to monitor connection weights during the course of simulation could allow for 1265

recomputing kernels and applying them to each simulation segment. 1266

In terms of signal predictions in network models incorporating recurrent connections 1267

with external populations (representing other areas or nuclei) or interactions with the 1268

external world (e.g., mimicking closed-loop experiments), the present framework for 1269

direct kernel predictions could well account for the additional signal contributions. 1270

Exemplified by a putative network model of the thalamus and somatosensory cortex, 1271

representative sets of kernels must initially be computed for presynaptic spike events of 1272

2numba.pydata.org
3cython.org
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thalamocortical projection neurons targeting subsets of cortical populations given 1273

knowledge of the corresponding anatomy and biophysics. Applying the additional sets 1274

of kernels with presynaptic spike events or spike rates for signal predictions would then 1275

account for locally evoked signal contributions by remote activity, without affecting 1276

network activity itself. In case synaptic weight updates (via STDP for instance) takes 1277

place, the kernels may require recalculations as suggested above. 1278

Our analyses also demonstrate that the accuracies of kernel-based signal predictions 1279

versus corresponding reference signals can be expected to drop when the degree of 1280

synchrony and/or firing rates in the network increases (see Methods performance for 1281

perturbed network states), which we observed by rescaling recurrent synaptic 1282

conductances. Our reference network generates various-strength oscillations in the 1283

gamma range (∼ 55Hz) when driven by external fixed-rate Poisson processes, and we 1284

obtained also slow synchronous oscillations in case of the biophysically detailed neuron 1285

network. We expect to observe similar detrimental effects on prediction errors for 1286

networks with non-stationary activity. Such non-stationarities may include up-and-down 1287

states [91] or result from variable-rate external drive (e.g., representing sensory input), 1288

as the choice for membrane potential when linearizing synapse and ion-channel 1289

dynamics may indeed affect the kernel predictions. Our results of setting the 1290

linearization voltage value on a per-compartment basis are inconclusive, however, but 1291

this idea should be explored further in the future. Still, our hope is that the 1292

kernel-prediction methodology can still give excellent qualitative insight into 1293

extracellular signals from networks expressing non-stationary behavior. 1294

Contrary to our starting point, recurrent MC neuron networks, forward model 1295

predictions from recurrent point-neuron networks pose a potential challenge due to their 1296

inherent lack of detail. Their descriptions may contain no spatial information even if the 1297

network is supposed to mimic a particular brain area, such as the generic somatosensory 1298

cortex column model proposed by [49], representing the local circuitry under a 1mm2
1299

patch of the cortical surface. To compute extracellular potentials from this model 1300

spatial information in terms of neuron geometries and depth-dependencies for synaptic 1301

placements should be determined based on available anatomical data (see [18] for 1302

details). Similarly, the present kernel predictions require MC neuron models 1303

representative of each population, and statistical distributions describing placements of 1304

cells within each population in space, placements of synapses across the neuron models 1305

for each pre and postsynaptic population, numbers of synapses per instantiated 1306

connection. Other parameters may (or may not) be derived from the point-neuron 1307

network description, such as conduction delay distributions and synaptic parameters. 1308

Some may be derived from its activity, such as population firing rates. As such, multiple 1309

concurrent efforts aim to amass such anatomical and electrophysiological detail for 1310

different brain regions and species with corresponding tools for enquiring the data (see 1311

e.g., [92–96]). Such data may be used to derive suitable kernels. 1312

For rate-based frameworks aiming to explain activity in terms of population firing 1313

rates in finite-sized populations (see e.g., [45–48]), special attention should also be taken. 1314

Unless the rate-based models are derived using bottom-up approaches, in contrast to 1315

heuristics or inferred statistically, for instance via dynamical causal model 1316

frameworks [97], use of our proposed kernel prediction scheme also necessitates 1317

specifying parameters such as population cell counts and pairwise connection 1318

probabilities. Otherwise, the resulting kernel amplitudes can be considered arbitrary. If 1319

such parameters indeed can be determined, we do not see any principled reasons why 1320

one could not apply the kernels with continuous population rate predictions as we 1321

already demonstrated with temporally binned population spike rates computed from 1322

spiking networks. 1323

Further extensions of our kernel estimates for continuous neural fields equations 1324
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aiming to explain activity across space [98] should be based on and validated via the 1325

aforementioned laminar network models incorporating lateral distance-dependent 1326

connectivity routines. For discretized spiking point-neuron network models with 1327

distance-dependent connectivity, [99] derived corresponding neural field equations. 1328

Developments in this direction are required for simulation frameworks such as ‘The 1329

Virtual Brain’ (TVB [100]) aiming to relate firing rates across brain areas also with 1330

extracellularly recorded signals such as the EEG, as well as similar tools aimed towards 1331

clinical use [101]. 1332

Finally, we have considered only postsynaptic contributions from synaptic 1333

activations to signals predicted using the hybrid scheme or kernel-based methods. These 1334

approaches are therefore better able to capture the low-frequency parts of the signals as 1335

most clearly demonstrated in our simulations using the biophysically detailed layer 5 1336

pyramidal neuron which resulted in clearly visible extracellular spikes in the 1337

ground-truth extracellular potentials. One could potentially account for signal 1338

contributions by presynaptic events such as somatic APs, backpropagating APs, Ca2+ 1339

and NMDA spikes by computing and superimposing the extracellular signatures of each 1340

event to the signals considered here, in case the network model accounts for times of 1341

such events. Taking such steps would result in non-causal kernel contributions and 1342

would require additional validation against network models using biophysically detailed 1343

neuron models expressing such phenomena. It should however be feasible to incorporate 1344

and could improve the accuracy of the present implementation around frequencies where 1345

spike contributions may dominate in the extracellular signals. 1346

Conclusion 1347

Many of the research successes in the physical sciences have come from an interplay 1348

between modeling and experiments where predictions between physics-based candidate 1349

models have been systematically compared with experiments in an iterative 1350

back-and-forth loop. This approach is sometimes referred to as the ‘virtuous loop’ or 1351

circle [102]. For large-scale network models in the brain, this approach has until now 1352

been hampered by the lack of physics-based forward models able to predict mesoscopic 1353

and macroscopic brain signals like LFPs and EEGs [6]. We believe that the kernel-based 1354

approach presented here could be an important step forward for making such 1355

model-based predictions feasible, thus paving the way for use of the virtuous loop also 1356

in large-scale network neuroscience. 1357

Supporting information 1358
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Active and linearized model neuron responses to dendritic current input. 1361

Same as Fig 2, but with current input in the apical dendrites approximately 200 µm 1362

from the soma compartments of the respective neurons. 1363
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Effect of mismatched presynaptic firing rates and membrane potentials on 1366

kernel-based approximations to the current dipole moment signal. Same as 1367

Fig 8, but for the case where the excitatory (‘E’) population is replaced by biophysically 1368

detailed neuron models [30]. 1369
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Effect of setting the linearization voltage Vm per segment. Same as Fig 13C-F, 1372

but for computed kernels and reconstructed signals either assuming a constant value for 1373

V m across the entire neuron model (circular lines/markers), versus kernel-based 1374

predictions where the V m is set on a per-compartment basis (asterisk markers). For 1375

this, we use averaged values from each reference network simulation providing ground 1376

truth signals for comparison. Same color coding as in Fig 13. 1377
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