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Abstract

Simulations of neural activity at different levels of detail are ubiquitous in modern
neurosciences, aiding the interpretation of experimental data and underlying neural
mechanisms at the level of cells and circuits. Extracellular measurements of brain
signals reflecting transmembrane currents throughout the neural tissue remain
commonplace. The lower frequencies (< 300Hz) of measured signals generally stem from
synaptic activity driven by recurrent interactions among neural populations and
computational models should also incorporate accurate predictions of such signals. Due
to limited computational resources, large-scale neuronal network models (> 10% neurons
or s0) often require reducing the level of biophysical detail and account mainly for times
of action potentials (‘spikes’) or spike rates. Corresponding extracellular signal
predictions have thus poorly accounted for their biophysical origin.

Here we propose a computational framework for predicting spatiotemporal filter
kernels for such extracellular signals stemming from synaptic activity, accounting for the
biophysics of neurons, populations, and recurrent connections. Signals are obtained by
convolving population spike rates by appropriate kernels for each connection pathway
and summing the contributions. Our main results are that kernels derived via linearized
synapse and membrane dynamics, distributions of cells, conduction delay, and volume
conductor model allow for accurately capturing the spatiotemporal dynamics of ground
truth extracellular signals from conductance-based multicompartment neuron networks.
One particular observation is that changes in the effective membrane time constants
caused by persistent synapse activation must be accounted for.
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The work also constitutes a major advance in computational efficacy of accurate,
biophysics-based signal predictions from large-scale spike and rate-based neuron network
models drastically reducing signal prediction times compared to biophysically detailed
network models. This work also provides insight into how experimentally recorded
low-frequency extracellular signals of neuronal activity may be approximately linearly
dependent on spiking activity. A new software tool LFPykernels serves as a reference
implementation of the framework.

Author summary

Understanding the brain’s function and activity in healthy and pathological states
across spatial scales and times spanning entire lives is one of humanity’s great
undertakings. In experimental and clinical work probing the brain’s activity, a variety of
electric and magnetic measurement techniques are routinely applied. However
interpreting the extracellularly measured signals remains arduous due to multiple
factors, mainly the large number of neurons contributing to the signals and complex
interactions occurring in recurrently connected neuronal circuits. To understand how
neurons give rise to such signals, mechanistic modeling combined with forward models
derived using volume conductor theory has proven to be successful, but this approach
currently does not scale to the systems level (encompassing millions of neurons or more)
where simplified or abstract neuron representations typically are used. Motivated by
experimental findings implying approximately linear relationships between times of
neuronal action potentials and extracellular population signals, we provide a
biophysics-based method for computing causal filters relating spikes and extracellular
signals that can be applied with spike times or rates of large-scale neuronal network
models for predictions of population signals without relying on ad hoc approximations.

Introduction

Extracellular electric recordings of neuronal activity, either by embedding sharp
electrodes in neural tissue [1] or by placing electrodes on top of cortex [2]| or on the
scalp (electroencephalography — EEG [3]), have a long history in the experimental and
clinical neurosciences. The same applies to magnetic recordings outside of the head
(magnetoencephalography — MEG [4]). However, the link between the measured brain
signals and the underlying neuronal activity remains poorly understood due to the
inherent ill-posed inverse problem: The number of contributing sources is large
compared to the limited number of discrete locations in- and outside of the brain tissue
where one can measure. However, the forward problem is well-posed, given the
transmembrane currents in all neurons setting up the activity. Different electric and
magnetic signals can be computed by means of so-called volume conductor (VC) theory
mapping source currents to each signal type, thus models accounting for the biophysical
properties of neurons and networks thereof can now be used to study the link between
activity and measurements [5, 6].

Dynamics of biophysically detailed neurons and synaptically coupled networks
thereof are typically modeled by solving sets of coupled, linear and non-linear ordinary
or partial differential equations describing the dynamics of the neuronal membranes, ion
channel conductances, synapses, and so forth (see e.g., [7]). Multicompartment (MC)
models have for decades been the go-to tool for geometrically detailed
conductance-based neuron models as tailored software solvers are readily available such
as NEURON [8], GENESIS [9], and Arbor [10]. For the purpose of computing
extracellular electric and magnetic signals, transmembrane currents from the MC
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neuron simulation are then combined with the appropriate forward model derived using
linear volume conductor theory, as incorporated in software interfacing the neural
simulator like LFPy [11,12], NetPyNe [13], and BMTK [14]. For brain tissues, a linear
relationship between transmembrane currents and extracellular electric potentials as
well as magnetic fields appears well established [3,15-17].

Tllustrated in Fig 1A, neuronal network models may account for different levels of
detail, ranging from biophysically detailed MC neuron networks (top level), simplified
spiking point-neuron networks (middle level) and population type models accounting for
population-averaged activity (bottom level). The different levels may at times be
bridged with appropriate mapping of parameters. As illustrated, MC models may be
directly combined with VC theory for extracellular signal predictions as these models
account for the spatiotemporal distribution of transmembrane currents, while the less
detailed models, in particular point-neuron networks and mean-field type population
models, do not. Thus in order to relate their activity in terms of spike times or spike
rates of the different populations to extracellular signals additional steps are required,
here illustrated by some ‘black box’ model taking spikes or equivalent spike rates of each
population as input while outputting approximated extracellular signals.

Tllustrated in Fig 1B, we shall approach this black box problem by models that
account for key properties of the biophysically detailed network models (mainly cell
model membrane dynamics, spatial distributions of cells and synapses, network
connectivity, temporal synapse dynamics), properties which could also be constrained by
experimental data. Through a systematic reductionistic approach we first apply the
so-called ‘hybrid scheme’ for extracellular signal predictions [18] which entails that
presynaptic spike events are first simulated in the actual network in Fig 1B. The spike
times are used for synapse activation times in corresponding populations of MC neurons
as they would occur in the actual network. We shall approximate synaptic and
ion-channel conductances by linearized variants as this allows for simulating
approximated extracellular signals using fully linear models. The hybrid scheme
predictions are validated against ground truth signals predicted by the true network
models. The setup is also used to compute averaged causal spike-signal impulse
response functions, ‘kernels’, for each connection pathway. Such hybrid scheme kernels

shall be applied with population firing rates to approximate extracellular signals [18,19].

Expanding on this kernel-based scheme, we here present a novel method to efficiently
compute such kernels directly accounting for the biophysics and description of the
putative network model and neurons. Their prediction relies on the same linearization
steps introduced for the hybrid scheme but may bypass the hybrid scheme altogether.
All kernel-based signal predictions are validated against corresponding ground truth
signals. The computational schemes investigated here are applicable for predictions of
the low-frequency content (< 300Hz or so) of the signals usually associated with
population activity and network interactions. The final kernel-based predictions can
also readily be combined with spike- and rate-based network simulation frameworks.
In the above context, we in part consider observations and assumptions of
near-linear relationships between times of neuronal action potentials (APs) as well as
their extracellularly recorded correlates (‘spikes’), and low-frequency parts (below a few
hundred hertz) of extracellularly recorded population signals like local field potential
(LFP), EEG, and MEG signals [20-23]. For synaptically coupled neuronal networks, one

may consider two main direct neuronal contributors to extracellular population signals.

The first is due to presynaptic neurons generating APs observed as extracellular spikes
nearby each active neuron in recordings using invasive microelectrodes. The second is
due to evoked synaptic currents and associated membrane currents throughout
postsynaptic populations following presynaptic APs. AP durations are on the order of
milliseconds, APs occur with relative sparsity (low spike rates) and irregularity in
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Fig 1. Levels of detail for neuronal network models and roadmap for
approximated brain signal predictions. (A) Biophysically detailed MC neuron
network models at the microscopic scale allow for simulating synaptic connectivity and
whole-cell dynamics, including APs, spike trains and extracellular signals (e.g., the
extracellular potential) using forward models derived via VC theory. Neither less
detailed spiking point-neuron network models nor continuous population type models
(neural mass models, mean-field models, neural field models) towards the mesoscopic
scale facilitate extracellular signal predictions. They require a model translating spike
events or spike rates into representative extracellular signal approximation, here
illustrated by the black box. (B) (1) Detailed networks provide ground truth signals
and spiking activity for successive reduction steps, given a set of neuron and network
parameters (box). (2) The ‘hybrid scheme’ setup [18] relies on simulating MC neuron
populations but omits recurrent network connections. Predictions are governed by spike
times of recurrent networks and may use linearized neural dynamics. (3) The ‘kernel
predictor’ setup relies on a subset of MC neuron simulations and accounts for the
underlying statistics (synapse densities, etc.) of the network, and computes
spatiotemporal spike-to-signal impulse response functions. (4) Firing rates of
presynaptic populations v(t) are convolved by precomputed kernels H(R, 7) for signal
approximations.
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single-neuron spike trains [24], observed pairwise spike train correlations are on average
weak [25,26], and extracellular spike amplitudes decay quickly with distance [27,28].
Extracellular spikes also carry more power toward higher frequencies [27]. The latter
synaptic contributions can be small in amplitude per pair of pre- and postsynaptic
neurons relative to currents related to each presynaptic AP itself, but each neuron
typically targets many neurons via hundred or even thousands of synapses, and
recurrent interactions may affect the times of subsequent activations across large neural
populations. The dynamics of synapse currents are also relatively slow and can thus be
assumed to shape extracellular signals around lower frequencies than presynaptic
contributions. We may then assume that mainly synaptic activity governs the
low-frequency content of extracellular signals, in part, via a boosting effect on the
compound signals by even weak pairwise spike train correlations [18].

Dynamics of neuronal activity are typically nonlinear, one prime example is the
model for APs by [29] which also provided a mathematical formalism that remains
commonly used to describe different ion-channel dynamics (e.g., [30]). Extracellularly
recorded postsynaptic responses following presynaptic AP events can not initially be
assumed to be linear, as synaptic currents following activation are not linearly
dependent on the synaptic conductance due to membrane potential changes.
Furthermore, there may be active (voltage- and calcium-dependent) ion channels
present across dendrites resulting in non-linear integration even below AP threshold,

and contributions by different activations of multiple synapses may not sum linearly [31].

Synaptic activity may also result in dendritic Ca®*- and NMDA spikes [32].

Thus to explain experimental data implying approximately linear relationships
between times of presynaptic spikes and different electric signals, the direct signal
contribution by both pre- and postsynaptic activity must sum approximately linearly.
Furthermore, for synaptic currents across postsynaptic populations the different
contributions by nonlinear synapse and membrane dynamics must be negligible or well
explained by linear components around typical working points (e.g., average membrane
potentials and spike rates). Still, a number of computational studies assume linearity
between presynaptic spike events and corresponding times of synaptic activations and
resulting extracellularly recorded signals [18,19,33-38]. Others assume linearity between
transmembrane input current and extracellular potentials [39], in part justified by
model work wherein dynamics of active ion channels are approximated by linear
dynamics [40,41]. Analyses of experimental recordings by [42] also show synaptic
currents and the LFP to be strongly coupled using a linear regression model.

Henceforth, we shall examine the validity of models that either explicitly or

implicitly assume linear relationships between neuronal spiking and extracellular signals.

We will do so by comparing the extracellular signals that these models predict with
corresponding predictions obtained with biophysically detailed MC neuron networks.
Hereby we test the following approaches (hypotheses): (1) Linearized model setups can
accurately capture the spatiotemporal features of ground truth extracellular potential
and current dipole moment computed from recurrent networks of inherently non-linear
constituents. For this testing, we first apply the hybrid prediction scheme [18]. (2) If
the linear hybrid scheme implementation accurately captures the ground truth signals,
we test whether or not the output extracellular signal predictions can be well captured
as a linear and time-invariant causal system, taking population spike rates as input
filtered by suitable spatiotemporal causal filters. These sets of filters or ‘kernels’
represent postsynaptic spike-signal impulse responses averaged over pairs of pre- and
postsynaptic populations, and are initially computed via the hybrid scheme. (3)
Knowledge of the underlying distributions of cells and synapses, conduction delays,
linearized cell, and synapse dynamics, and corresponding population spike rates is
sufficient information to predict these spatiotemporal causal kernels accurately.
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The kernel-based approach can be applied with recurrent neuronal network
descriptions using much-simplified neuron representations, like leaky integrate-and-fire
(LIF) point neurons, variants thereof, as well as few-compartment neuron models, as the
main determinant for the extracellular signals is presynaptic spikes or spike rates. Also,
point-neuron networks may accurately mimic experimentally observed spiking activity
as well as corresponding MC neuron networks (see e.g., [43]). Then, the
computationally costly MC simulations may only be required in order to compute the
appropriate sets of kernels, thus reducing compute resource demands by orders of
magnitude. This may for instance open for efficient forward-model-based extracellular
signal predictions from large-scale point-neuron network models encompassing multiple
brain areas [44] or models incorporating realistic cell densities within an area [36,43].
The kernel methodology would also be immediately useful with rate-based frameworks,
as also population spike rates of spiking network models may be accurately captured in
corresponding population rate models (see e.g., [45-48]).

This study is organized as follows: In Materials and methods we first detail a generic
biophysically detailed MC neuron network that is used for ground truth signal
predictions, and different network configurations. Then we detail a proposed hybrid
methodology that allows for separation between simulations of network activity (‘spikes’)
and extracellular signals, and the derivation of linearized signal predictions, including
our proposed methodology for fast, accurate, and deterministic predictions of kernels. In
Results we investigate the properties of neuron models in active and linearized versions,
recurrent MC neuron networks and compare the different linear approximations to the
corresponding ground truth signals. Then, we showcase the kernel-based methodology
to network spiking activity of a recurrent network of leaky integrate-and-fire neurons.
In Discussion we consider the implications of this work and possible future steps.

Materials and methods

Reference multicompartment neuron networks

We first define the properties of a generic recurrently connected network of MC neurons
used for ground truth signal generation and later signal approximations. For
compactness, we choose a symbolic notation similar to [18] wherever possible and
provide the model details as a generic ‘recipe’. Their particular values are summarized
in this section and Tables 1 to 3. In general terms we:

1. Let X €{...} and Y C X denote pre- and postsynaptic populations, respectively.

Each population corresponds to separate classes of neurons (derived from
anatomy, electrical properties, gene expression, phenomenology, etc.). We let
populations in Y be a local subset to allow for remote neuronal populations in X.
(Thus X may include remote populations, point processes, external stimuli, and
similar, which we will assume give approximately zero direct contributions to the
local signals predicted by the full recurrent network model).

2. Let lists Nx and Ny denote the sizes of populations X and Y.

3. Let ue {l,...,N|IN € Nx}and v € {1,...,N|N € Ny} denote pre- and
postsynaptic neuron indices, respectively.

4. Let r, ~ Ty denote a discretely sampled somatic location of neuron v, where ry
describes the probability density function of somatic locations of population Y in
3-dimensional (3D) space.
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10.

11.

Let Ky x denote the total number of pairwise connections between presynaptic
(source) population X and postsynaptic (target) population Y. Assuming random
connectivity with binomial in- and out-degree distributions the corresponding
connection probability is then Cy x = 1 — (1 — 1/ Ny Ny )&vx [49)].

Ky x =~ Cyx Ny Nx for small connection probabilities. The subscript Y X
notation is used throughout this paper to emphasize that these parameters are
connection-specific.

Let kyy ~ ky x denote the randomly sampled number of synapses (multapses) per

connection if a connection exist between neurons v and v. ky x here describes a
discrete distribution from which integer numbers greater than 0 are drawn.

Let probabilities of synapse placement onto postsynaptic compartments indexed
by m be proportional to the product Ly x(zm)Am, where Ly x (2) is a
depth-dependent function evaluated at the midpoint of each compartment with
surface area A,,. Compartments are indexed by m. Synapse placements are
drawn randomly k., times for each pair of connected neurons.

Let the current for each synapse following activation at time ¢ be described by

ISyn(t) = éSynf(t)(Vm(t) - Esyn) 5 (1)

where Gyy, denotes the maximum synaptic conductance and f(¢) € [0, 1] the
temporal kinetics of the synapse. We let f(t) = fy x(t) depend on both the pre-
and postsynaptic populations X and Y, respetively. Vi, (t) denotes the
postsynaptic membrane potential and Egy,, € {Esyng, Esyns} denotes the reversal
potential of the synapse which is determined by the presynaptic cell type (i.e.,
excitatory or inhibitory). For simplicity, we will assume that ésyn is independent
of position. We will also assume that ésyn is static, that is, there are no synaptic
plasticity rules or stochastic processes in place. Individual weights are, however,
drawn from a distribution described by a probability density function Geyny x,
that is, ésym,uk ~ ésy,lyx for k =1,...,kyy. The subfix vuk in ésynvuk denotes
the value for the £’th synapse between pre- and postsynaptic neurons v and v,
respectively.

Let the conduction delays resulting from presynaptic action potential generation
time to activation time of the synapse be greater than zero and randomly drawn
from some distribution as A, ~ Ay x(t). For simplicity, we let conduction
delays be independent of cell location and geometry.

Let the sequence of spike times s, (t) = Y, 0, = >, 0(t — t) of each presynaptic
neuron u in each population X is recorded throughout the entire simulation
duration [0, tsm). We choose to relax this requirement if a population in X
represents an external population feeding persistent, uncorrelated events with
spectrally ‘flat’ spiking statistics (e.g., fixed-rate Poisson point processes) into the
recurrently connected network. We here (and for the remainder of this study) use
the compact notation d;, = §(¢t — tj) to denote Dirac delta functions centered
around the time ;.

Let the weighted, directed graph representing edges (synaptic connections)
between nodes (neurons) for every pair of pre- and postsynaptic populations be
stored for purpose of validating the ‘hybrid scheme’ simulations described in the
section Hybrid scheme for extracellular signal predictions. This storage
requirement may also be relaxed if the total number of synapses over all
connections is large enough to make storage infeasible or one could recreate the
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full connectivity graph procedurally (at least statistically). Graph weights
represent maximum synaptic conductances. The graph also includes the synaptic
locations on the postsynaptic neurons, and we will hereby let compartment index
m equate to this location.

12. Let each postsynaptic neuron v in any population in Y be modeled using the
‘standard” MC neuron formalism such that their transmembrane currents
[Iri}) ) (rm,t)] per compartment indexed by m can be computed. r,, denotes their
midpoint coordinates.

13. Let extracellular signal contributions in different spatial locations (or axes in
terms of current dipole moment) be computed and summed up as
Dy ZJUV:YI Fv) [Ié,f>(r,,b, t)]. The matrix F(*) here denotes a linear mapping of
transmembrane currents of cell v to a linearly dependent extracellular signal. The
different forward models considered in this study are detailed in
Volume-conductor forward models.

Reference networks of simplified ball-and-sticks neurons

The two-population, recurrent MC neuron network models constructed for this study,
fully specified by the enumerated list above and parameter values listed in Table 1, 2
and 3, are kept intentionally simple for clarity of results. One main simplification is
stylized neuron models with only a subset of ion channels distributed onto soma and
dendritic compartments. The ‘E’ cell represents a phenomenological excitatory unit,
while the ‘T’ cell represents a phenomenological inhibitory unit. Both share the same
subset of passive and active ion channels taken from a biophysically detailed cell
model [30], important for action potential generation (transient sodium, Nay; fast,
non-activating potassium, SKy1 3) and sub-threshold dynamics (non-specific cation
current, Ij,). Refer to [30] for details on these ion-channel dynamics. Network
parameters were initially tuned by a combination of hand-tuning and parameter value
scans, aiming to generate population spiking activity that is asynchronous and irregular
(AI) [50] and with biologically plausible averaged spontaneous spike rates
(approximately (vg(t)) = 2.5spikess™! for the ‘E’ population; (v1(t)) = 5spikess™! for
the ‘I’ population).

Reference networks of biophysically detailed neuron models

As an additional test of the methodology developed around the above description of a
recurrent network of simplified ball-and-sticks MC neuron models, we replace the
‘excitatory’ (E) cell type with a biophysically detailed model of a thick-tufted layer 5b
pyramidal cell of rat somatosensory cortex [30]. Here, we use model parameter values
shown to produce acceptable BAC firing and perisomatic step current firing as
summarized in [30, Table 3|. Each individual cell instance in the modified network
model is rotated by 4.729rad and —3.166 rad around the horizontal z— and y—axes,
respectively, in order to first align the apical dendrite with the vertical z—axis, before
applying a random rotation around the z—axis. By increasing the number of extrinsic

synapses distributed on each neuron to kE, = 920, the typical population firing rates,

ext —
and network state is well preserved when compared to the reference network. All other

parameters remain as defined in Tables 1 to 3.

Reference neuron networks with perturbed synaptic conductances

Parts of this study are devoted to the effect of perturbed network parameters in
different network instances on our proposed methodology. For this, we incorporated a
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Table 1. MC neuron and recurrent network parameters (continued in Table 2).

Symbol Value/definition Description
X {Excitatory (E), inhibitory (I)} Presynaptic cell types/populations
Y X Postsynaptic cell types/populations
Ny € {Ng, Ni} | {8192,1024} Population sizes
r V2 + g2 Radius around vertical z—axis
2
N(p, o) (x) \/2;7 exp o Gaussian distribution
Tx N(0,75pm)(2) * r2 for r € [0, 150 pm] Cell body probability density function
Cyx 0.05 for all Y and X Pairwise connection probability
(Pairwise Bernoulli; no autapses)
ky x {N(Q’ 05)(@:),z: € {1,2,...,20}, for X = E Multapse probability mass function
NG ) (2), 2 € {1,2,...,20}, for X =1
S {soma, apic, basal} Morphology sections
s {30,1000,200} pm for X = E Section length
{30, 200,200} pm for X =1
ds {80,3,2} yum for X' = E Section diameter
{15,2,2} pm for X =1
nfeg E: i,l’Bi}fcferX:_IE # of segments per section
Cm 1pF em ™2 Membrane capacitance
R, 1002 cm Axial resistivity
g2 {0.0000338, 0.0000589, 0.0000589} S cm 2 Passive leak conductance
Ey, —90mV Passive leak reversal potential
TRa, {2.04,0.0213,0.0213} Scm ™2 Na; conductance
Fxa 50 mV Na™ reversal potential
gﬁvg_l {0.693,0.000261,0.000261} S cm—?2 Kvs.; conductance
Ex —85mV K™ reversal potential
a0 {0.0002,0.002,0.002} S cm ™2 Iy-current conductance

The leak, fast inactivating Na™ (Nay), fast, non-inactivating K™ (Kvs 1) channel and non-specific cation current (1)

dynamics are those given in detail in [30]. Capped and discrete distributions are normalized such that the integral or sum

over all values equals 1.
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Table 2. Synaptic parameters for recurrent network (continued from Table 1).

Symbol | Value/definition Description
N(0.1518,0.02n8)0(G) for X =E, Y = E
~ 0.125n8S,0.0125nS)O(G) for X =E, Y =1
Geyny X M > nS)O(G) for ’ Synaptic conductance distributions
N(4.518,0.45n8)0(G) for X =LY =E
N(2.0n8,0.2n8)0(G) for X =LY =1
Egynx OmV for X = E, —80mV for X =1 Synaptic reversal potential
(e,(t,m/n_e,(t,tﬁ)/v) ot —t,)
frx(t) e~ Tpeak/T1_g~Tpeak/ T2 5 Synaptic temporal kernel
where Tpear = 7271 log(%)
51 0.2ms for X =E, 0.1ms for X =1 Synaptic rise time constant
Ty 1.8ms for X = E, 9.0ms for X =1 Synaptic decay time constant
N(1.5ms,0.3ms)O(t —0.3ms) for X =E, Y =E
~ 1.4 0.4ms)O(t — 0.3ms) for X =E Y =1
Ay x N (1-4ms, 0.4 ms)0( ms) for ’ Conduction delay distributions
N(1.3ms,0.5ms)0O(t —0.3ms) for X =LY =E
N(1.2ms,0.6 ms)O(t — 0.3ms) for X =LY =1
N(0,100)(2) | 2N (500,100)(2)
3 3 J
X =E,Y=E,S\ {soma}
Lyx(z) N(50,100)(2), X =E, Y =1,8\ {soma} Depth-dependence, syn. density
N(=50,100)(2),X =LY =E
N(-100,100)(2), X =LY =1
6Synycxt 0.2nS External synapse conductance
Eexy 0mV Ext. synapse rev. potential
frext(t) | frx(t) Ext. synapse temporal kernel
1 0.2ms Ext. synapse rise time constant
T2 1.8ms Ext. synapse decay time constant
kyext {465, 160} # ext. synapses per neuron
(Vext) 4051 (Poisson statistics) Ext. syn. activation rate
Ay ext (t) Ext. syn. conduction delay
Ly ext 1 Ext. syn. depth dependence

Capped and discrete distributions are normalized such that the integral or sum over all values equals 1.

Table 3. Measurement and simulation parameters for recurrent network (continued from Table 2).

Symbol Value/definition Description

At 0.0625 ms Temporal step size

tsim 12000 ms Simulation duration
tiransient 2000 ms Startup transient duration
c° 34°C Simulation temperature
Vin(0) —65mV Initial membrane voltage
Su(t) > p 0t forallue X Spike times tj of neurons u

Xch. = Ych. [O,,O]

Zch. [1000, 900, . .., —100, —200]pm
R [Xch.a Yech., Zch.]—r

Tcontact 5 pm

Ncontact [07 17 0]

o 0.3Sm™!

¥ {Vo(R, 1), P(t)}

x, y-positions of electrode contacts
z-positions of electrode contacts
Electrode contact locations
Electrode contact radiis

Electrode contact surface normals
Conductivity

Predicted signals
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connection weight scaling factor J € {0.975,1,1.025,1.05,1.075}, and rescaled recurrent
synaptic max conductances é;yny x (and parameters derived from them) as

—/

GsynEE ésynEE JésynEI/asynEE 7 (2)
é;anE ésanE Jésynn/ésynm ; (3)
é;ynEI ésynEI JéSY“EE/ésynEI , (4)
é;ynll = ésynHJésy"IE/asynH . (5)

Effectively, perturbing J shifts the relative balance of excitatory and inhibitory synaptic
input in the networks. A factor J = 1 corresponds to our unperturbed reference
network.

Leaky integrate-and-fire (LIF) point-neuron network

As a proof of principle that the ‘kernel method’ (see Kernel-based extracellular signal
predictions) can be utilized for ‘live’ extracellular signal predictions with spiking
point-neuron network models or other types of networks with abstract neuron
representations, we fit connectivity parameters of a phenomenological two-population
network of leaky integrate-and-fire (LIF) point neuron network with current-based
synapses to mimic the spiking activity of the unperturbed reference network of
ball-and-sticks neurons. After initial hand tuning of the network parameters into a
reasonable state of activity resembling the reference network’s state, we subsequently
used the multi-objective optimization NSGA-II non-dominated sorting genetic
algorithm [51] in order to fine tune key network connectivity parameters, namely
synaptic weights Isyny x, membrane capacitance of neurons in each population Cp,x,

—ext

weight of extrinsic synapses [ and mean value of the conduction delay distributions

syn’
(Ayx). The full network and neuron descriptions are given in Table 4, including
best-fit parameters and parameter value boundaries used for the fitting procedure. The
network is implemented and simulated in NEST [52,53], using exact integration for step
size At [54].

For the parameter fitting, we used the implementation of the NSGA-II class
pymoo.algorithms.nsga2.NSGA2 provided by the pymoo Python package [55]. We
defined the objective functions to be minimized using the pymoo.optimize.minimize
method as

Fr =/ (ve(t) — VHF (1) (6)
Fy = /(e (0) — (W ()2 (7)

Fy= Y \/(SVEVE(f) - SuglFuglF(f)>2 : (8)

£<200 Hz

Fe 3 (S = Supgor(1) )

<200 Hz

Here, vx(t) and v}F (#) denote population spike rates of the MC and LIF neuron

network populations, respectively. S, .., (f) and SZ,)L(IFV)L(IF( f) denotes population spike
rate autospectral power at each frequency f (see Signals and signal analysis methods for
details). For this minimization problem, we used an initial population size of 100, and
ran the algorithm for 20 generations with default parameters.

The pseudo-weight vector approach [55,56] is used to select a solution from the
solution set that performs well with respect to all objective functions. The pseudo
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weight, a normalized distance measure from the worst solution for each objective
function F;, is herein calculated as:

(F™ = Fy(x)) /(B — P
3 et (FR = Fin (%)) /(Fgpx — Fiin)

m=1

(10)

w; =

Fmax and F™" denotes the maximum and minimum value of F;(x) in the last
generation, respectively. Then, the best-fit parameter vector x where chosen as the one
that minimized ||[wy, w2, w3, w4 " — [0.25,0.25,0.25,0.25] T ||. We here use the
implementation provided by the pymoo.factory.get_decision_making method.

Hybrid scheme for extracellular signal predictions

The so-called ‘hybrid scheme’ [18] is a proposed solution for computing extracellular

signals from spiking activity in recurrent neuron network models. This scheme is hybrid
in the sense that the spiking activity of recurrent networks is first simulated separately
and stored, then stored spike events are loaded and used for synaptic activation times in

corresponding populations of MC neuron models set up to predict extracellular signals.

In this latter step, synapses are placed on postsynaptic neurons and are activated at
times as they would occur in the corresponding recurrent network, negating recurrent
connections and spike communication between MC neurons. Thus, the problem of
computing signals can be solved in an embarrassingly parallel manner. As the scheme
relies on prerecorded spike events, our application of the scheme employs postsynaptic
neurons that do not generate APs.

Here, we incorporate the hybrid scheme by storing population geometries, spikes,
and the full synaptic connectome (placements, weights, conduction delays, pre- and
postsynaptic neuron IDs) of the recurrent MC neuron networks to file, and reinstate
synaptic placements and activation times in separate simulations without actual
recurrent connections. Locations and activation times of extrinsic synapses are not
stored directly due to their large count. Here we ensured replicable placements and
activation times by fixing the random seeds affecting these. This step allows for
computing signals identical to the recurrent model in case the MC neuron models are
those of the recurrent network, but here, we shall rely on models where the membrane
and synapse dynamics are approximated by linear dynamics. Thus, only signal
contributions that stem from synapse activations on postsynaptic neurons are accounted
for in predicted signals, while contributions by presynaptic APs are not. The scheme
thus lends itself to predictions of signals thought to mainly stem from synaptic activity,
that is, LFP, ECoG, EEG, and MEG signals.

Linear approximations to synapse and membrane dynamics

Here, we describe the different linear approximations to the different constituents of the
conductance-based non-linear recurrent neuron network models, calculated via the
following steps:

1. Approximate conductance-based synapses by equivalent current-based synapses:
() (Vin(t) — Esyn)

nf(t> (Vm - Esyn)

- Isynf(t) ) (11)

where V,, denotes the typical postsynaptic potential (or its expectation value).
The synapse current magnitude Iy, is constant. Here, we typically recorded

Loyn(t)

n

~

Gsy
Gsy
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Table 4. LIF network and neuron parameters.

Symbol Value/definition Description
X {E, I} Population names
Nx € {Ng, N1} | {8192,1024} Population sizes
Cyx 0.05 for all Y and X Connection probability
(Pairwise Bernoulli; no autapses)
[Crnx] ~ {[2707 310] pF* for X =B Upper/lower bounds, membrane cap.
[100,120] pF for X =1
Cmx {289.1,110.7} pF Membrane capacitance (best fit)
Tm 10 ms for all X Membrane time constant
Ru.x Tm/Cmx Membrane resistance
Er, —65mV for all X Leak reversal potential
Vo —55mV for all X Spike threshold
Vi Ep, for all X Spike reset potential
Ty 2ms for all X Refractory period
t,i" if Vi (tk,“>) >Vy Spike emission times
Tm d‘f;tu) erﬁ") + RuxL,(t) if VE; t ¢ (t,iw,t,iu) + 7 Sub-threshold dynamics
A (t) Viifte (75,<C >,t<u> W Reset and refractoriness
11,18 nAfor X =E,Y =E
[Tsyny x| ~ F ;572_1]1;)2;:)( ? IYYi I . Bounds, mean max. syn. current
[14,—8] for X =1Y =1
J\/(l.589 nA,0.1589nA)O(I) for X =E,Y =E
7 ) N(2:02004,0202004)0(1) for X =E,Y =1 I b (best it
X _N(23.841A,2.384nA)0(]) for X =LY = E YNAPSE Tax. Clirrent 1best &
—N(8.441nA,0.8441nA)O(I) for X =LY =1
TsynY X 0.5ms for all Y and X Exp. syn. decay time constant
[Ayx] [1,4] ms for all X and Y Bounds, mean conduction delay
N (2.520ms, 1.260 ms)O(t — 0.3ms) for X =E,Y = E
Ryx N(1.714ms,0.857ms)O(t — 0.3ms) for X =E, Y =1 Conduction delay dist. (best fit)
N (1.585ms, 0.793 ms)O(t — 0.3ms) for X =LY = E
N(1.149ms,0.574 ms)O(t — 0.3ms) for X =LY =1
[Tz;;] [28,32] nA Bounds, ext. syn. max. current
72;1 29.89nA Ext. syn. max. current (best fit)
kyext {465, 160} # ext. synapses per neuron
(Vext) 40s™1 (Poisson statistics) Ext. syn. activation rate

Capped and discrete distributions are normalized such that the integral or sum over all values equals 1.
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somatic potentials in a subset of neurons in each population of the recurrent MC
neuron networks and let V,, equate the median somatic potentials. Where noted,

we perturb V,, by some value or use values obtained across the neuronal
morphologies.

2. Active ion channel currents on the specific form

iw(t) = —guw(t) (Vin(t) — Ew)

(12)

are approximated by equivalent, linearly dependent currents similar to [40,57].
Here, E,, is the channel reversal potential and w(t) the gating variable which

dynamics are given in terms of an activation time function 7 (V') and activ
function w (V) as

B (t)

TW(VIn(t))W = WOO(Vm(t)) - W(t) .
If the voltage dynamics of the active compartment is defined by
OV (t _ _
en 200 G (Vi) — Br) ~ Fuol) (VD) — B) + T

ation

(13)

(14)

one can obtain the so-called quasi-active approzimation [40, 57, 58] by linearizing

each voltage dependent term around the steady state value V, resulting in

V()

cmT = -7 (fyR (Vm(t) — Vm) + ne(t)) + I, , where
w o= 1+ 7gwwoj(Vm) , and
gL
_ gw(vm - Ew) awoo (Vm)
= 9 Vi

Here, an equivalent gating variable is defined as

0woo (V)

€(t) = (w(t) — e (Vi) /2

and its linear dynamics is governed by

De(t) —
5 Vin(t) = Vi —€(t) .

Above, yr denotes the ratio between the total and leak conductance, while

Tw (Vm )

(19)

Ui

characterize whether the quasi-active current approximation acts as positive

(n < 0) or negative (n > 0) feedback. For the special case n = 0 the quasi-active
current is ‘frozen’; acting as a passive current [40]. Note that the above sets of
equations correspond to channels usually modeled with a single state variable

(e.g., In-type currents), but generalize also to current types with more than
gating variable (e.g., Na™- and KT type currents), see [57] for details.

one

3. With linearized active ion channels, the leak reversal potential Fy, is further

modified as -
?w(vm — EW)
gL

)

EL:Vm+Z

which ensures that the resting potential of the quasi-active model is similar t

(20)

o Vm.

We note that this modification do not affect extracellular signal predictions where

current-based synapses (pt. 1) are used, but is applied anyway as in [40].
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4. In principle one may remove active ion channels omitting the above linearization
tricks altogether if their net contributions to the total transmembrane currents
can be assumed to be minuscular around typical membrane voltage values. Here
however we do account for all channels.

5. With current-based synapses (pt. 1), we optionally incorporate the effective

membrane conductance gegr which amounts to a modified passive leak conductivity.

Assuming the total membrane conductance depends only on synaptic currents of
recurrent and external connections and the passive leakage current, the total leak
membrane conductivity per postsynaptic compartment m of postsynaptic neuron
indexed by v is

gm(t) = §L + Ai Z Z ésynvu (fYX’ * Sy 5Avu,k) (t) ’ (21)

™ X'eXU{ext} uCX’

where gy, is the specific passive leak conductance, A,, compartment area, s, (t)
the sequence of presynaptic spikes and da,,,,
The asterisk symbol (x) denotes a temporal convolution. The double sum over
presynaptic populations X’ € X U {ext} and units v € X’ implies that each
presynaptic unit u targeting the compartment is accounted for. We introduce this
notation to express that also synapses from external sources (‘ext’) must be
accounted for. Assuming a fixed average presynaptic spike rate (1, (t)) and a
normalized delay distribution (where [;* Ay x (t)dt = 1), the time-averaged
effective conductance in each compartment m is approximately

gotm = o) %+ 7= O D (D) Copnon /0 Tt (22)

™ XreXU{ext} uCX’

Then, the original g;, value may be replaced by gefr, On a per-compartment basis.

Note that we compute values of gesf,, independently from contributions by
linearized active ion-channel contributions (pt. 2), which still contribute to the
total sum of conductances.

Kernel-based extracellular signal predictions

In case the relations between spikes in presynaptic populations and resulting
extracellular signals arising mainly from evoked responses in targeted postsynaptic
populations are approximately linear, filter- or ‘kernel’-based prediction methods may
greatly simplify signal predictions at the level of populations. If we first define the
presynaptic population spiking activity as the sequence of Dirac delta functions

sx(t) = > ,ex Su(t), the signal approximation (R, t) ~ (R, t) may be computed as
the sum over linear convolutions

PR, =D D (sx * Hyx) (R,1) . (23)

Here, Hy x (R, T) are representative spatiotemporal spike-signal impulse responses for
pairs of pre- and postsynaptic populations measured relative to presynaptic spike events
at time lag 7 = 0. As we deal with spike events and sampled signals on a discrete time
grid, it is convenient to redefine the spike sequences sx (t) as spike rates by the
temporal binning

tiJrAt/Q
vxlt] =ac [ o X0 (24)
t;—At
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where At denotes the simulation step size. Then, the above equation can be written as
PR, =D (vx * Hyx) (R,1) . (25)
X Y

Throughout this section, we describe two alternative methods to compute such
kernels Hy x (R, 7), either via the hybrid scheme as in [18], or directly as described
below. As the kernels are equivalent to finite impulse responses (FIR) as they are 0 for
all time lags 7 < At, the linear convolutions can be replaced by a linear filter function
implementation (see Signals and signal analysis methods below).

Kernel predictions via the hybrid scheme

The linear cable equation combined with linearized synapse- and ion-channel dynamics
in our application of the hybrid scheme (cf. Hybrid scheme for extracellular signal
predictions) provides a relatively straightforward method to compute representative sets
of spatiotemporal kernel functions as in [18]. This earlier study shows that a good
approximation to the signal ¥)(R,t) can be obtained by first measuring kernels averaged
over all pre- and postsynaptic neurons in each population X and Y. In order to
compute these kernel averages directly using the hybrid scheme, actual network spiking
activity is first replaced by simultaneous and deterministic events s, (t) = d;,, where
tx > 0 is a chosen time for each population X, then the signal contributions of each
postsynaptic population ¥y x (R, t) is computed via the disassociated network model
around tx; and the response is averaged over the presynaptic neurons as

Hyx(R,7) = NLXT/)YX(Rw 7). (26)

Here, 7 denote time relative to tx. Thus these kernels must be causal, that is, by
construction Hy x (R, 7) =0 for 7 < 0 as any contribution to the signal ¥(R, ) is solely
postsynaptic. No signal contributions before the presynaptic spike event at 7 = 0 plus
the minimum conduction delay is accounted for'. We let the computed kernels span the
interval 7 € [—Tmax, Tmax), Where Tmax denotes a maximum lag value. The postsynaptic
responses typically rise and decay back to approximately zero after a few tens of
milliseconds. This decay time is related to the time constants relevant to the neuronal
dynamics (that is, 7w, Teyn, Tw, - . .). Throughout this manuscript, we chose

Tmax = 100ms for computed kernels, which we assume is a few multiples of relevant
time constants.

Direct kernel predictions from single MC simulations

Different from the hybrid scheme kernel method described above, the main aim of this
work is to develop a method to directly compute a set of accurate and deterministic
kernels Hy x (R, 7) needed for all connection pathways between pre- and postsynaptic
populations X and Y, based on some expectation values for cell and synaptic
placements and other network parameters. We aim to replace simulations of populations
of MC neurons via the hybrid scheme with a single MC neuron simulation per kernel.
Thus the number of MC neuron simulations corresponds to the number of pathways
between any population X and Y which is significantly less than the total neuron count
in each network. The hat denotes kernels computed using this direct method, in
contrast to hybrid scheme kernels. First, we assume that:

1Contributions by presynaptic activity, that is, transmembrane currents of presynaptic neurons from
APs and axonal propagation are not accounted for.
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1. The dynamics of the neuronal cables and synaptic input can be approximated as a

linear system resulting from the same steps as in Linear approximations to
synapse and membrane dynamics.

. Each postsynaptic population can be represented by one typical biophysically
detailed neuron model. Effectively, the whole postsynaptic neuron population is
collapsed to a single neuron with linearized membranes receiving all inputs, while
the effect of the spatial distribution of cells in space is accounted for via the VC

forward model (see Modified forward models for deterministic kernel predictions).

. The underlying statistics of synaptic placements and currents are preserved, which
allows us to compute the average synaptic current density for each recurrent
connection over the whole postsynaptic population ‘neuron’.

Accounting for the distribution of neurons along the z-axis and ignoring their
radial location, we let the synaptic density be proportional to the membrane area
of postsynaptic compartments A,, multiplied by a function Ly x(z) obtained as
the convolution of Ly x(z) (see Table 2) and the z—component of ¥y (defined in
Table 1). Hence we compute the expectation value for synaptic in-degree per
compartment indexed by m as

<EYX>KYX Ly x (Zm)Am
Ksyn m/) = ; 27
< ynY X > NY Zm ACYX(Zm)Am ( )

where z,, denotes the midpoint location of each compartment projected on the
z-axis, and (ky x) the mean multapse count per connection. With this quantity
one may define the per-compartment synaptic input per activation as

IsanXm (t) = NX<ksanXm>IsanXfYX (t> . (28)

As above, the term fy x (t) denotes the temporal component of synapse currents
for each connection.

. Optionally accounting for the effective leak conductivity, Eq 22 must be modified
per compartment as

1 o oo
Geffm = gL + T Z <VX’><ksanX/m>GsanX’ A fYX’(t)dt . (29)

™ X’eXU{ext}

As above, we account for the external population ‘ext’ jointly with the main
network populations in X.

. Then one may straightforwardly compute the resulting postsynaptic response,
that is, the full set of transmembrane currents [I,,(r,,, 7)], by applying synaptic
currents Isyny xm(7) in a single MC neuron simulation for all connections between
populations X and Y. In order to temporarily compute the approximated kernel
functions H;“f;?p(R, 7) for different extracellular signals, the resulting
transmembrane currents must be combined with appropriate forward model
matrices F calculated as described below.

. Finally to account for network conduction delay distributions, the intermediate
kernels must be filtered in the temporal domain as

ﬁyxanr)z(zyx*ﬁﬁ;ﬂ(R,ﬂ. (30)
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Volume-conductor forward models
Forward models for reference-network and hybrid scheme signals

As derived from volume conductor theory, the different electric and magnetic signals
that can be computed from the electric activity of brain cells are linearly dependent on
transmembrane currents (see e.g., [5] and references therein). Thus, some arbitrary
signals ¥(R,,,t) in M different spatial locations R,, (or directions in case of current
dipole moments) from N compartmental sources indexed by m located at r,, can be
computed as

(PR, )] = Fllm(rm, t)] (31)

where F is a matrix with dimensions (M, N) wherein each element f,,,, is the chosen
forward solution mapping the contribution from each source to the corresponding
measurement. [I,(r,,,t)] denotes the transmembrane currents of compartments m at
time ¢. For the presently used line sources [11, Eq. (4)], the elements of F are

calculated using
1 \/h2 2 — hnm
47FUA5nm, \ é? + p%m - énm,

where pp,, is the distance perpendicular to line source (compartment) m, h,,, the
longitudinal distance from the end of the line source and ¢,,, = ASpm + hnm the
longitudinal distance from the start of the line source with length As,,,, to some
electrode contact located at R,,. The line-source approximation assumes an infinite
homogeneous, isotropic, and linear volume conductor with conductivity o. Measurement
sites are treated as infinitesimally small points, so to mimic the finite extent of contacts
of experimental recording electrodes, we apply the ‘disk-electrode’ approximation to the
extracellular potential [11, Eq. (6)] by embedding averaged values of f,,, from Eq 32
for 100 random locations within radius r¢ongact into F.

The approach applies also to other types of measurements that are linearly
dependent on the transmembrane current sources, such as the current dipole
moment [39]. For calculations of the current dipole moment P the columns of F are
simply

frm

fm =Iy, = [Imayma Zm]T , (33)

where (2, Ym, 2m) denotes the midpoint coordinates of each compartment.

Modified forward models for deterministic kernel predictions

When computing extracellular signals via the kernel predicting scheme we must account
for the distributions of cells in space. Here we assume that each population is radially
symmetric around the vertical z-axis, homogeneous within some radius R and
inhomogeneous along the z—axis as described by a probability density function rx (see
Table 1). In order to compute extracellular potentials, we use the analytical forward
solution for the electric potential from a planar disk with homogeneous current
density [59]

1

= W ( (zn - Zm)2 + R? — ‘Zn - Zm‘) s (34)

Anm (Zna Zm)
which is subsequently convolved with the depth-dependence of cell placement
g(z) =Tx - e, (where e, denotes the unit vector along the z—axis), resulting in matrix
elements:

frm = /OO nm (20 — 2, 2m)9(2)dz . (35)

— 00
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Here, we solve this convolution integral numerically using the quad method of the
scipy.integrate module. Note that we apply the same equation also when predicting
kernels for the biophysically detailed neuron network (see Reference networks of
biophysically detailed neuron models). This formalism also assumes that the spread of
Ty is ‘vast’ versus typical compartment lengths and contact radii. The planar disk
radius R is set equal to the population radius 7.

To compute the current dipole moment assuming radial symmetry around the z-axis
the mapping matrix’ columns are simply modified as

fm = [O,O,Zm]T ) (36)

where z,, denotes the midpoint coordinates of each compartment along the z—axis. We
do not account for the distribution of cells along the z-axis as it does not affect the
current dipole moment. Due to radial symmetry, the components in the lateral
directions are expected to cancel [12,60], hence the corresponding matrix elements are
set to zero.

Signals and signal analysis methods

Throughout this study, the different signals we consider are: membrane potentials
Vin(t); spike trains s, (t); population firing rates vx (t) obtained by counting spikes per
time bin of width At divided by bin width providing a signal with unit spikess™! as
defined in Eq 24; and raw and low-pass filtered extracellular signals ¥(R.,,t)
(extracellular potentials V,(R,,,t); current dipole moments P(t)). For extracellular
signals we consider only frequencies f > 0Hz by subtracting the mean value in each
channel for times t > tansient -

For low-pass filter operations, we used an elliptic (Cauer) digital filter design. Here,
we used filters of the 2nd order with 0.1 dB maximum ripple in the passband, minimum
attenuation of 40 dB in the stopband, and a critical (cutoff) frequency of 100 Hz. Filter
coefficients were generated using the scipy.signal.ellip function with parameter
output=’sos’ (second-order sections). The low-pass filter was applied to the data
using the scipy.signal.sosfiltfilt function which implements a forward-backward
(zero time-lag) filter operation.

In order to quantify relative differences in amplitudes of approximated signals x(t)
and ground truth y(¢) we defined the ‘ratio of standard deviations’ as

STD(z)
T = — 37
TP STD(y) o
In order to quantify temporal agreement with signals z(¢) and y(¢) we computed the
squared correlation coefficient (coefficient of determination) R? at zero time lag as

R2 _ COV(I’,y)

~ VAR(z)VAR(y) (38)

In order to aggregate our R? and rgrp metrics for signals computed at different
depths, we computed the 10th and 90th percentiles using the implementation of
numpy . quantile with quantiles equal to 0.1 and 0.9, respectively.

For convolutions, we use the discrete convolution between vectors x and y defined as

o0

(@xy)lkl= Y allylk—1]. (39)

l=—o00

Here, we used the implementation provided by numpy.convolve with mode=’same’.
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Application of discrete FIR filter coefficients h to a signal = (relevant for NEST
predictions) is defined as

L
ylk] = " hlljalk — L] . (40)
1=0
Estimates of cross power spectral densities (CPSD) Sg, (f) and power spectral
densities (PSD) Sy, (f) of signals z(t) and y(t) use the Welch’s average periodogram
method [61] as implemented by scipy.signal.csd. Unless specified otherwise, we use
the periodogram settings nfft=2048, noverlap=1536, fs=At~! (in Hz) and
detrend=False. When optimizing point-neuron network parameters we used the
setting detrend=’constant’ when computing the features F3 and Fj.
The real-valued coherence (magnitude-squared coherence) between signals z(t) and
y(t) we compute via their CPSD and PSD functions as

[Say ()1

Ol = g 15

(41)

NESTML FIR filter extension

In order to incorporate extracellular signal predictions using the computed sets of causal
kernels from a point-neuron simulation in NEST (see Leaky integrate-and-fire (LIF)
point-neuron network), a finite impulse response (FIR) filter implementation of Eq 40 is
now expressed in the NESTML modeling language [62,63]. The FIR filter model is
written as a neuron model in NESTML, which takes neuronal spikes as input and
computes the filter output while the simulation progresses. The output can then be
queried and recorded to file using standard NEST devices. The NESTML toolchain
generates C+-+ code for the model, which is compiled into a NEST extension module,
allowing the FIR filter node (or a heterogeneous population of filter nodes) to be
instantiated in NEST simulations.

As per Eq 40, the FIR filter model defines L as the order of the filter and h as a
vector of length L containing the filter coefficients. The values of L and h can be set
externally from the simulation script, and in this study we insert filter coefficients from
each set of predicted kernels Hy x (Ry,, T > 0) for each different extracellular signal (see
Direct kernel predictions from single MC simulations for details). The input spikes are
binned per time step, and the spikes for the last L time steps are stored in a circular
buffer x of length L. At every time step during the simulation, the binned input spikes
in x are multiplied with filter coefficients in vector A and summed according to Eq 40.
The index to vector x is also adjusted such that the appropriate element of the circular
buffer is accessed. The resulting filter output is stored in a (scalar) state variable, y,
which can be recorded using a multimeter in NEST.

Data availability and replicability
Codes and software tools

This study has been made possible using the following software tools: GCC 11.2.0,
mpich 3.4.2, Python 3.9.6, ipython 7.27.0, jupyter-notebook 6.0.3, numpy 1.21.3, scipy
1.7.1, matplotlib 3.4.3, pandas 1.3.4, seaborn 0.11.2, pymoo 0.4.2.2, mpidpy 3.1.3, hbpy
3.5.0, NEURON 8.0.2, MEAutility 1.5.0, LFPykit 0.4, LFPy 2.2.6, LFPykernels 0.1.rc8
(github.com/LFPy/LFPykernels, git SHA: 4fd79ab), NEST 3.1
(github.com /nest /nest-simulator, git SHA: 512022e54), NESTML 4.0-post-dev
(github.com /nest /nestml, git SHA: 0b251ec), parameters 0.2.1

(github.com /NeuralEnsemble /parameters, git SHA:b95bac2).
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In order to ensure Methods and results reproducibility [64,65], all simulation codes
required to replicate the findings reported here are publicly available at
github.com/LFPy/LFPykernels. These include the reference implementation of the
methodology which is installable via the usual Python distribution channels as:

e pip install --pre lfpykernels # or
e pip install git+https://github.com/LFPy/LFPykernels

The code repository also includes a Docker recipe file which may be used to build

containers with the full software environment required by the simulations and analysis.
Versioned releases of the LFPykernels tool is permanently deposited on Zenodo.org [66].

Hardware details

All computationally demanding simulations for recurrent networks and reconstructed
networks of MC neurons as well as parameter optimizations were performed on the
standard compute nodes of the JUSUF compute cluster at the Jiilich Supercomputing
Centre (JSC), Jilich Research Centre, Jiilich, Germany. Each compute node has two
AMD EPYC 7742 CPUs (2 x 64 physical cores) running at 2.25 GHz, 256 GB of DDR4
RAM running at 3200 MHz. The compute nodes are interconnected by InfiniBand
HDR100 (Connect-X6). Each MC network simulation ran in parallel distributed across
8 compute nodes with 1024 Message Passing Interface (MPI) processes, using the
ParTec ParaStation MPI implementation. Point-neuron network simulations were
executed using 32 OpenMP threads, 1 core per thread. All relevant software tools were
compiled with compilers from GCC.

Post-processing, calculations of deterministic kernels, other analysis, and plotting
were performed on a MacBook Pro (13-inch, M1, 2020) with 16 GB RAM running
macOS Big Sur (v11.6) with the Conda (conda.io) package management system with
packages from the conda-forge channel (conda-forge.org).

Results

Neuron models with linearized membrane dynamics

The results presented throughout this study rely on three different fully active
multicompartment (MC) neuron models, and versions where their voltage-dependent ion
channel dynamics are linearized around a chosen membrane voltage value. These
linearization steps are detailed in (pts. 2-3 under Linear approximations to synapse and
membrane dynamics). The cell morphologies are shown in Fig 2A. The
phenomenological ‘ball-and-sticks’ models ‘E’ and ‘I’ represent excitatory and inhibitory
neurons in the two-population recurrent network in the following sections, while the
biophysically detailed layer 5 pyramidal cell model ‘Epay2011’ [30] later on replaces the
ball-and-sticks ‘E’ population (in Methods performance using biophysically detailed cell
models). The ‘E’ and ‘I’ neurons are both modeled with a single compartment for the
soma, and dendritic sections pointing upwards and downwards along the depth axis.
The ‘E’ cell has a prominent apical section 1 mm in length while the ‘I’ cell dendritic
sections are symmetric around the soma.

As a first check comparing active and linearized neuron dynamics in absence of
synapses, we stimulate the different cell models with small step-like hyper- and
depolarizing input currents to the somatic compartment. The dynamics are linearized
around the steady state somatic membrane potentials in absence of stimuli. In panels
B-C we compare responses of the ‘E’ and ‘I’ model versions with ‘quasi-active’ linearized
versions of the Ij-type channel (biophys:1lin) plus frozen dynamics for the Nai- and
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Fig 2. Model neurons and somatic responses with active and linearized
ion-channel dynamics. (A) Neuronal geometries of neurons representing excitatory
(E) and inhibitory (I) neurons, as well as a biophysically detailed pyramidal cell model
(Enay2011 [30]) replacing population ‘E’ in the modified network. (B) Excitatory (E)
neuron responses in active and linearized versions. Row 1: Step input current with
variable magnitude injected into the neuron’s soma compartment. Row 2: Somatic

voltage responses to step input currents for the active neuron version. Colors
corresponds to each respective trace in row 1. Row 3: Input responses in the
quasi-active linearized (biophys:1lin) version. Row 4: Input responses in the
passive-frozen (biophys:frozen) version. Row 5: Response amplitudes at ¢ = 1200 ms

as function of stimulus magnitude. (C) Same as column B but for the inhibitory (I)
neuron model. (D) Same as column B but for the biophysically detailed excitatory

(EHay2011) neuron model.
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SK,1.3 channels as well as the version were also the I;-type channel is frozen
(biophys:frozen). In both cases, the quasi-active versions can capture the
sub-threshold dynamics, including the sag and rebound effects explained by the
I,-channel currents. The fully passive-frozen models are effectively similar to models
with only passive leak channels, which is reflected in the corresponding responses. These
models then perform worse with respect to capturing the sub-threshold dynamics of the
fully active versions. Note also that these linearized model neurons can not generate
APs for stronger depolarizing input currents, unlike their active counterparts. The row
5 panels show the response amplitudes after 100 ms stimulus duration, and
unsurprisingly the linearized neuron dynamics are linearly dependent on stimulus
amplitude. Quasi-active models match the corresponding active model responses well
for small stimulus amplitudes.

In Fig 2D, the same experiment is performed with the biophysically detailed model
neuron [30]. Here, a quasi-active version of the Nap conductance is incorporated in
addition to the quasi-active I}, channel, while remaining channels are in their
passive-frozen states (biophys:1lin). Again, the sub-threshold dynamics for small
perturbations are captured by the quasi-active model in an excellent manner, resulting
in similar responses below the firing threshold. Similar to our earlier observation, the
model version with all passive-frozen dynamics (biophys:frozen) can not capture the
somatic response accurately. The same qualitative observations hold true in case current

input is delivered to a dendritic location approximately 200 pm from the soma (S1 Fig).

Reference MC neuron network with extracellular signal
predictions

Representing our reference networks for generating ground-truth extracellular signals,
and spiking activity used for signal approximations, Fig 3A shows the populations of
ball-and-sticks neurons and extracellular recording geometry for a phenomenological
two-population MC neuron network set up according to pts. 1-13 in Reference
multicompartment neuron networks. For this network (as well as networks with
perturbed parameters), we predict extracellular potentials at depths highlighted by
black circular markers treating compartments as line sources (Eq 32), as well as the
current dipole moment (Eq 33). The current dipole moment determines EEG and
MEG-like signals, as both can be computed from it using the appropriate forward
model [3,4,12,60]. Panels B and C show the distributions across depth of somas and
instantiated synapses for each pair of pre- and postsynaptic populations, accordingly.
All neurons receive depolarizing input by randomly distributed excitatory synaptic
input with random activation times. A few somatic membrane potential traces recorded
in each population is shown in panel D. The median values V,, for a sample size of

N = 1024 in each population are used for linearization of ion-channel and synapse
dynamics in the following sections. The spike raster plot (Fig 3E) shows the resulting
activity to be stable and asynchronous-irregular at biologically plausible rates. The I
cells fire more often than the E cells on average, around 5.1 Hz and 2.6 Hz respectively.
Oscillations at the level of the populations are clearly visible in the corresponding
spike-count histograms (panel F) and rate spectra (panel G). These oscillations around
55 Hz can be expected to be expressed in extracellular signals, and indeed the
extracellular potential (panel H) shows oscillations with varying amplitudes across
depth. We note in passing that the generated extracellular potentials are in line with
experimentally observed signals with amplitudes of a few 100 pV, with few visible
extracellular spike signatures. The oscillations generated by the network are
prominently captured also in the current dipole moment (panel I), however only in the
vertical z—component P,. Due to the symmetry of the neural populations around the
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z—axis and the cell alignments along the same axis, the orthogonal components P, and

P, cancel. Next, we investigate how these signals may be captured by models that only

use MC neurons with linearized ion-channel and synapse dynamics and no recurrent

connections.
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Fig 3. Stylized two-population MC neuron network with ground truth
predictions of extracellular signals. (A) Neuronal populations and electrode
geometry. The network is constructed of one excitatory (‘E’) and one inhibitory (‘I’)
population. Only a subset of cells is shown from each population. The black point
markers along the z-axis denote locations of electrode contact points with separation
100 pm. (B) Soma counts per population X along the vertical z-axis in bins of 20 pm.
(C) Synapse counts per connection Ky x along the vertical z-axis (bin size 20 pm).

(D) Somatic potential traces of 10 neurons in populations ‘E’ and ‘I’. The fo) and

v

values in each legend denote median soma potentials computed from a subset of

neurons in each population (N = 1024). (E) Network spike raster spanning 500 ms of

spontaneous activity. The mean population-averaged firing rates are given shown in the
legend. (F') Per-population spike-count histograms with bin size 1 ms. (G) Population
firing-rate power spectra. (H) Extracellular potentials across depth (Vo(R,t)).

(I) Components of the current dipole moment (P(t)) along the z,y, z—axes.
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Hybrid scheme with linearized dynamics accurately captures
extracellular signals of the reference network

Biophysically detailed as well as simplified networks of spiking point-neuron models can
generate realistic spike train statistics of different populations. But, the presently used
framework combining MC and VC models is required in order to compute meaningful
extracellular population signals such as the LFP. In the hybrid scheme ( [18]; Hybrid
scheme for extracellular signal predictions), the simulation of spiking activity in the
recurrent network(s) can be performed separately with intermediate storage of spikes,
while extracellular signals can be computed via unconnected populations of MC neurons
activated by synapses triggered at times as they would have occurred in the actual
network. Using the reference recurrent MC neuron network and corresponding spike
events and ground-truth extracellular signals shown in Fig 3 we can now, in contrast to
our earlier study [18], test this prediction scheme in a self-consistent manner.

In this test, we record spikes trains of each neuron and ground truth extracellular
potentials and current dipole moment from our reference MC neuron network to file, as
well as the randomly instantiated cell locations in space and the full synaptic
connectivity including synaptic placements. The resulting connectivity table includes
pre- and postsynaptic neuron id, synaptic location (cell morphology coordinate and
Cartesian coordinate), maximum synaptic conductance and transmission delay.

With the above information, we confirmed we can compute the intra- and
extracellular signals matching the ground truth exactly, as initial conditions, neuron
models and synaptic activations, etc., can be preserved in absence of actual recurrent
connections (result not shown). However, one benefit of the present hybrid scheme, is
that it allows simplifying the individual neuron and synaptic dynamics systematically.
In particular, we shall assertain that linearized model setups can accurately capture the
features of the ground truth extracellular potential (Vo(R,t)) and current dipole
moment (P(t)). Here, we shall account for synaptically evoked contributions to the
different signals.

We first consider 4 hybrid scheme model configurations. These configurations all
incorporate the same linear approximation to synaptic currents around the median
somatic voltage in each reference network population as described in pt. 1 in Linear
approximations to synapse and membrane dynamics. Then, we consider every possible
permutation of (1) whether or not to account for changes in the effective membrane leak
conductance gog per compartment m due to synaptic activity (see pt. 5 in Linear
approximations to synapse and membrane dynamics), and (2) the quasi-active linearized
(biophys:1in) and passive-frozen (biophys:frozen) model neuron variants
representative of the ‘E’ and ‘I’ population showcased above. See pt. 2-3 in Linear
approximations to synapse and membrane dynamics for details on the linearization
procedure for voltage-gated ion channel descriptions.

By visual inspection of all hybrid scheme predictions in Fig 4, both model setups
that account for changes in the effective membrane leak conductance (g_eff:True) in
panels C and D accurately capture the spatiotemporal features of the ground truth
signals (black lines), including signal amplitudes. The main differences seen here are
that the ground truth signals contain high-frequency jitter that is not captured in hybrid
scheme predictions as signal contributions by APs are not accounted for by design.

Our choice of quasi-active (biophys:1in) or passive-frozen (biophys:frozen)
ion-channel dynamics are seen to have remarkably little effect on the predicted signals
(in contrast to somatic voltage responses). However, not accounting for membrane
conductance contributions by synapses (g_eff:False), results in a clearly detrimental
effect on the predicted signals (panels A and B). The most salient observation is that
the approximations to extracellular potentials across depth (Vo(R,t)) as well as
z—components of the current dipole moment (P, (t)) are predicted with amplitudes that

June 28, 2022

25/57


https://doi.org/10.1101/2022.02.28.482256
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.28.482256; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A B C D
. Zz >
ch.l1+— ground truthw S 1,—— ground truth ,L/\J E 1 —— ground truthw\,i E | —— ground truth __ ,\J 1S
. biophys:lin i biophys:frozen I ] ___ biophys:lin biophys:frozen |’T
ch.24 _ g_eff:False o~ g_eff:False AR, N LT g effiTrue 1 g_eff:True Ay N

AR Y

ANANNNANNAAA, «/\r\/\/\/\z\/\/\a\wzv WAANNNAMNNMAAA,
w\nAJ\/\z S\ iAAy 1 AN Arromse
APV \//\/\w*’\/ 1
FINA AR AN
~4.J'\,~/\A/\/-/V\»\\/“"’W/- AfWV\/\/W’V AN Vs
TN A Aettp S AN s AN A s
ﬂ'«fvv\!’\f"«’\ra"’ AL TPV B i 20 b i 2 ittt nl
A\Jv\/ \) /\«\ [j(«,«j\ 1 NI
Sl j oy
] ) \;\ mJ\U g

AU\ VAYAVUREE

JARAN, ’\ SNt AAANMA R ~A
. e . e
Q Q
WA NAAAA S NN M S
< <

T T TN T TN T T
2000 2100 2200 2000 2100 2200 2000 2100 2200 2000 2100 2200
t (ms) t (ms) t (ms) t (ms)

Fig 4. Ground truth signals vs. hybrid scheme approximations. Extracellular
potential across depth (top row) and z-component of the current dipole moment (P,(t),
bottom row) predicted from the MC neuron network model in Fig 3 (black lines) is
compared to predictions made using the hybrid scheme (colored lines), using
current-based synapses and neurons with either passive-frozen or quasi-active
ion-channel dynamics (biophys:frozen vs. biophys:1lin), ignoring or accounting for
the effective membrane conductance (g_eff:False/True in panels A-D respectively).

are about a factor 2 too high. The signals also appear to lag behind the ground truth
signals by a few ms in the temporal domain. These effects are also observed in a
preliminary report on this particular hybrid scheme model configuration [67]. A more
thorough analysis and summary of the accuracies of these signal approximations are
summarized below in Accurate signal predictions using hybrid scheme and deterministic
kernels, and compared also to kernel-based prediction methods. For the remainder of
this study, we will thus assume that methods other than the hybrid scheme must also
account for changes in the leaky properties of the membrane. This is due to the effect
the (effective) membrane time constant has on the integration of synaptic input currents
throughout the dendrites and the resulting distributions of transmembrane currents.

Kernels for accurate signal predictions

So far we have shown that hybrid scheme predictions incorporating linear
approximations to the synapse and active ion channel currents accurately capture the
extracellular potentials across depth as well as the current dipole moment. This
observation implies that the relations between times of presynaptic APs and resulting
spatiotemporal distribution of transmembrane currents (and therefore extracellular
potentials etc.) of respective postsynaptic neurons are approximately fixed. As the
postsynaptic responses can not occur before the spike times of presynaptic neurons,
these relationships must also be causal. Throughout this and the next sections, we shall
therefore further test the idea that extracellular signal predictions can be well
represented as a linear time-invariant (LTT) causal system. Here, we shall compare filter
coefficients, or ‘kernels’, obtained at the population level using two different approaches,
either via the hybrid scheme setup above, or using a novel, direct, deterministic method
based on the idea that the underlying distributions of cell and synapse positions,
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synaptic delays, linearized ion-channel, linearized synapse dynamics, and neuronal
geometries provide sufficient information to estimate the corresponding causal filters.
Our derivation of these deterministic kernels is described in detail in Direct kernel
predictions from single MC simulations. In both cases, the kernels represent the
population-averaged postsynaptic response of spike events in each presynaptic

population, that is, equivalent to ‘spike-signal’ impulse response functions of the system.

For corresponding signal predictions evaluated in Accurate signal predictions using
hybrid scheme and deterministic kernels, the kernels are applied with population spike
rates. Predictions are compared with ground truth signals generated by our reference
recurrent MC neuron network (see Reference MC neuron network with extracellular
signal predictions).

Predicted kernels using the hybrid scheme method

As discussed in [18], estimating full sets of kernels for every connected pair of pre- and
postsynaptic neurons for signal predictions is intractable in large networks due to the
connection count and corresponding kernel count. The study showed that averaged
kernels Hy x (R, 7) computed for presynaptic (X) and postsynaptic (Y') populations
could accurately capture the corresponding hybrid scheme extracellular potentials by
the double sum over the convolution of population firing rates and averaged kernels (see
Eq 25). Here, we revisit this approach, adding also current dipole moments to the
comparison.

First, we take the hybrid scheme simulation above, using current-based synapses and
either variant of linearized ion-channel dynamics. We account for changes in the
effective membrane leak conductance as above (g_eff:True). Then, ongoing spiking
activity in each population is replaced by single synchronous events that allow for
computing the full set of population-averaged kernels Hy x (R, 7) using Eq 26. The
resulting sets of kernels for predicting the extracellular potential and current dipole
moment are shown in Fig 5A. Consistent with our earlier observation, only minor
differences occur between kernel signals predicted using quasi-active or passive-frozen
cable models. The set of kernels reveals non-trivial relationships between spikes by
neurons in each population and the extracellular potential across depth due to combined
effects of the cable models, synapse model, VC model, etc., and could challenge model
assumptions made in other studies like space- and time-separable kernels
(e.g., [20,34,35]) due to the effect of dendritic integration.

The set of kernels also allows for some insight into which connections and
populations shape the extracellular signals. Here, the I to E kernels (Hg1(R, 7)) have
amplitudes that are ~4-16 times those of the E to E kernels (Hgg (R, 7)). Thus any
spike in population ‘I’ may give a significant signal contribution from inhibitory
synaptic currents in population ‘E’; even if the number of neurons in population ‘E’ is
8-fold that of population ‘I’. The dominance of inhibitory over excitatory contributions
in the LFP is in agreement with previous reports (e.g., [18,68]). It should, however, be
noted that our choices of synaptic density shape functions for each pathway (Ly x(z)
defined in Table 2) may significantly affect the corresponding kernel appearances —
inhomogeneous synapse densities may result in much stronger responses than
homogeneous densities [41,60,69]. Furthermore, the direct contribution by evoked
transmembrane currents on population ‘I’ can be expected to be minor, in part
explained by the smaller spatial extents of the neurons and low cell count.

Predicted kernels using the direct and deterministic method

The kernel calculations via the hybrid scheme above rely on a number of MC neuron
simulations proportional to the overall network size, and incur significant computational
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Fig 5. Spike-signal impulse response functions (‘kernels’) for extracellular
potentials and current dipole moments. (A) Hybrid scheme spatiotemporal
functions Hy x (R, 7) for each connection between every possible pre- and postsynaptic
network population X and Y, respectively. The top row kernels are computed as the
spike-averaged contribution by postsynaptic neurons to the extracellular potential in
electrode contact locations shown in Fig 3A, while the bottom row kernels are computed
as the spike-averaged current dipole moment contribution along the vertical z-axis. The
kernels are computed either using fully passive-frozen (biophys:frozen) or with
quasi-active (biophys:1lin) cable models. The kernels are truncated at time lags

7 € [0,50ms]. (B) Same as panel A, but here the kernels are computed using a
computationally fast and deterministic method accounting for expectation values in
terms of cell and synapse placement.
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costs. Here we rather account for distributions and expectation values in the
parameterization of the MC neuron network directly, allowing predictions of an
appropriate and accurate set of kernels without instantiating network-equivalent
populations of MC neurons. Described fully in Direct kernel predictions from single MC
simulations, the constituents needed for these calculations are: linearized versions of the
MC neurons representing each population; their distribution in space; probabilities for
synaptic placements per compartment for each main connection; synaptic indegree
distributions over instantiated connections for each main connection; conduction delay
distribution for each main connection and the linearized synapse currents for each main
connection. Typical presynaptic spike rates need to be specified as well as pairwise
connection probabilities between neurons in each population. Finally, the VC model for
each signal is modified to account for radially symmetric cell distributions in space (see
Modified forward models for deterministic kernel predictions for details).

In contrast to the above hybrid scheme kernels shown in Fig 5A, each kernel now
requires only a single MC neuron simulation to compute the population-averaged
transmembrane currents following synaptic activation, and account for all other effects
by a series of linear convolution operations in the spatial and temporal domains as well
as a scaling by the presynaptic population size (see Direct kernel predictions from single
MC simulations for details). The set of calculations results in deterministic outcomes,
and are fast to compute on laptop computers while high-performance computing
resources are generally required for the hybrid scheme setup. From our default
parameterization of the MC neuron network (Reference multicompartment neuron
networks), the resulting set of approximated kernels H yx (R, 7) for each main
connections between pre- and postsynaptic populations X and Y is shown in Fig 5B.
This new set of kernels appears similar to the averaged kernels computed via the hybrid
scheme shown in Fig 5A, suggesting that they may be used interchangeably. The main
differences appear to be somewhat reduced amplitudes of the deterministic set of
kernels for extracellular potentials in panel B. Next, we shall apply our predicted kernels
with corresponding population spike count histograms (‘spike rates’) for signal
approximations, and compare their accuracies alongside predictions using the full hybrid
scheme against the corresponding ground truth (Hybrid scheme with linearized
dynamics accurately captures extracellular signals of the reference network).

Accurate signal predictions using hybrid scheme and
deterministic kernels

With the sets of hybrid scheme kernels (Hy x (R, 7)) and approximated kernels

(f[y x (R, 7)) shown in Fig 5 panels A and B, respectively, we now convolve them with
the corresponding presynaptic population firing rates vx(¢), and sum up the
contributions using Eq 25. In all respects, the corresponding signal predictions shown in
Fig 6 panels A-D compare very favorably with the ground truth signals generated by
the reference network (Fig 3H,I). By visual inspection, neither hybrid scheme
predictions (Hybrid scheme with linearized dynamics accurately captures extracellular
signals of the reference network, Fig 4) nor kernel-based predictions display clearly
distinguishable discrepancies from the ground truth signals in terms of spatiotemporal
features and signal amplitudes, except for some high-frequency jitter associated with
APs present in the ground truth data.

In order to quantify prediction accuracies, we therefore resort to comparing squared
Pearson correlation coefficients (R?, Eq 38) and relative differences in their standard
deviations (rstp, Eq 37) between ground truth signals and predictions. We compute
these metrics not only for the ‘raw’ signals but also for low-pass (‘LP’) filtered data.
Thus by attenuating the higher frequencies typically associated with presynaptic APs
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Fig 6. Ground truth signals vs. kernel-based approximations. (A,B) Ground
truth extracellular potential (top) and current dipole moment (bottom) predicted from
the MC neuron network model in Fig 3 compared to predictions made using the hybrid

scheme kernels Hy x (R, 7) shown in Fig 5A. The signal approximations are obtained by

convolving presynaptic population firing rates (vx (t)) with respective kernels
(Hyx(R,7)) and summing the contributions. (C,D) Same as panels A and B, using
deterministic kernels Hy x (R, 7) shown in Fig 5B.

present in the ground truth (see Signals and signal analysis methods for details) a
somewhat improved accuracy for the different approximations can be expected. In

terms of extracellular potentials and the low-pass filtered counterpart (a.k.a. the LFP),

the R? and rgrp metrics in Fig 7 confirm our visual analysis. The worst-performing
configurations are hybrid scheme setups that do not account for changes in the effective
membrane time constants (g_eff:False). All other configurations perform well in all
channels except ch. 9. Nearby this depth, the sign of the signals flips due to current
conservation, perhaps most evident in the dominating kernels Hg;(R,7) and Hg; (R, 7)
shown in Fig 5. Except for the ch. 9 outliers, the observed R? and rg1p values approach
1. Fig 7 panels C and D projects median as well as the 10% and 90% percentiles of R?
and rgTp values computed across channels. Here, an overall gain in R? is seen in all
cases in the low-pass filtered data. Overall, our choice of quasi-active vs. passive-frozen
membrane dynamics has only a minor effect in terms of the rg1p and R? metrics.

Our findings for the extracellular potentials are mirrored for the approximated
z—component of the current dipole moment in panels E and F in Fig 7. All
approximations taking into account the effect of the effective membrane leak
conductance perform excellently, both with respect to the R? and rgpp metrics.
Similarly, the PSDs of ground truth (black curve) and different approximations to the
z-compontent of the current dipole moment in panel G, show that the spectral signal
content is well captured below approximately 300 Hz. Around similar frequencies, the
corresponding coherences (cf. Eq 41) in panel H drop below approximately 50 %.
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Fig 7. Accuracy of signal predictions vs. ground truth. For each approximation
of extracellular potentials shown in Fig 4 and 6, their accuracy is evaluated in terms of
the (A) squared Pearson correlation coefficient between approximation and ground
truth (R?) and (B) their standard deviation normalized by ground truth signal
standard deviation (rgrp). The filled and white-faced markers denote metrics computed
from raw and low-pass filtered data, respectively. (C) Aggregate R? and rgtp values
with median, 10 % and 90 % percentiles along each axis computed from extracellular
potential approximations. Outliers (< 10 %, > 90 % percentiles) not shown. (D) Same
as panel C for predictions accounting for changes in effective membrane conductance
(g_eff: True). (E) Scatter plot of R? vs. rgrp for the different approximations to the
z-component of the current dipole moment P, (t). (F) Same as panel E for predictions
accounting for changes in effective membrane conductance (g_eff:True). (G) PSD of
the z—component of the current dipole moment, comparing ground truth (black line)
versus hybrid- and kernel-based signal approximations (colored lines). Same color
coding as in panel A. (H) Coherence between ground truth z—component of the current
dipole moment and different approximations. Same color coding as in panel A.
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Effect of perturbed parameters on signal predictions with
deterministic kernels

Predictions of kernels Hy x (R, 7) and corresponding signals rely on accurate
assessments of a number of parameters. Here we choose to investigate the effect on
Hy x (R, 7) of mismatched time-averaged presynaptic population firing rates (vx(t))
(including that of the external population) and choice of Vm on our R? and rsrp
metrics. The unperturbed V,, ~ —70mV (Fig 3D), and presynaptic rates (vx(t)) are

2.6s71, 5.157! and 40s~! for excitatory, inhibitory and external synapses, respectively.

The R? and rgrp statistics are computed for rate-based time-series predictions against
corresponding ground truth datas (Fig 3H,I). For brevity, we chose to compute these
metrics only for the z—component of the current dipole moment (P, (¢)). In our results
above this term appears to be a valid indicator for corresponding metrics computed
from extracellular potentials (Vo (R,t)). The parameter (vx(t)) directly affects the
calculation of the effective leak conductivity values gefs,, via Eq 29, while V, affects the
linearization steps applied to voltage-gated ion channels and synaptic currents as
detailed in Linear approximations to synapse and membrane dynamics. For brevity, we
compute kernels employing neuron models with passive-frozen ion-channel dynamics.

The contour lines denoting R? equal to 0.95, 0.98 and 0.99 in Fig SA demonstrate
that a relatively broad range of parameter values results in good temporal agreement
between the approximated and ground truth signals. When V, is shifted by —10 mV
the signal contributions by inhibitory synapses drop significantly as the difference to the
inhibitory synapse reversal potential diminishes. If the assumed presynaptic rates are all
rescaled to zero (the ratio (v%)/(vx) = 0), it amounts to ignoring the effective leak
conductivity altogether as gettr, = gr,- A minor gain may be seen for low-pass filtered
data. The rgTp values computed across the same parameter space in Fig 8B show a
more gradual dependency on each parameter. Reasonable rgTp values occur alongside
the contour line labeled ‘1.0’

Methods performance for perturbed network states

So far our Results show that fully linearized model setups can accurately approximate
the ground truth extracellular signals of the reference recurrent MC neuron network.
The main linearization tricks (detailed in Linear approximations to synapse and
membrane dynamics) are (1) approximations of the conductance-based synapses by
equivalent current-based synapses and (2) approximations of the active ion
conductances by linearized versions. A crucial parameter in both cases is the choice of
the postsynaptic membrane potential V', which is assumed constant. Initially, we have
chosen the median somatic membrane potential averaged over neurons in each
population of the reference networks. However, there are several scenarios where this

assumption of near-constant postsynaptic membrane potentials can be expected to fail.

This may include the presence of large-conductance synapses where synapse activation
may result in significant de- and hyperpolarized postsynaptic membrane potential, as
well as synchronous network states where the variance in membrane potentials may
increase with the increased strength of the network-generated oscillations.

We here chose to assess the accuracy of kernel predictions and kernel-based
approximations for perturbed networks in terms of modified connectivity parameters,
using sets of kernels estimated directly from neuron models using passive-frozen
ion-channel dynamics. For this purpose, we perturb the mean recurrent synaptic
connection conductances ésyny x in the reference recurrent MC neuron networks by a
factor governed by the parameter J (see Reference neuron networks with perturbed
synaptic conductances for details), rerun network simulations in order to provide new
ground truth data, spike trains, and somatic potentials, and recompute the set of
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Fig 8. Effect of mismatched presynaptic firing rates and membrane
potentials on kernel-based approximations to the current dipole moment
signal. (A) Effect on the R? metric computed between ground truth z—component of
the current dipole moment (P, (t)) and corresponding kernel-based approximations. For
each datapoint in each panel, the kernel approximations Hyx (R, 7) are computed when
shifting the linearization membrane voltage by V:n — V. and multiplying the
presynaptic firing rates by a factor (v$%)/(vx). The superscript ¢ denotes perturbed
values. The panels show R? computed for kernels assuming passive-frozen
(biophys:frozen) ion-channel dynamics. The left and right columns show R?
computed from raw and low-pass (LP) filtered data, respectively. (B) Same as panels in
A but for the rgrp metric.
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kernels for each J value and derived kernel parameters. The scaling factor affects both
the degree of network synchrony and overall spike rates. It also affects the kernel
predictions via the updated ésyny x values entering Egs. (11) and (29). J =1
corresponds to our reference network model introduced above.

Our findings, summarized in Fig 9, show in panel A that increasing J results in
increased population firing rates and increased degree of synchrony. The increased
synchrony results in stronger amplitudes of extracellular potentials in ch. 2 and 11 in
panel B as well as the current dipole moment in panel C. The firing rate spectra in
panel D also show that the typical oscillation frequency decreases while increasing J,
from 55 Hz to 31 Hz. Reducing J attenuates the firing rates and oscillations. In terms of
the temporal agreement between ground-truth and approximated signals (R?, panel E),
only the most synchronous activity pattern (J = 1.075) results in reduced performance
in the upper channels. In terms of the ratio of signal standard deviations (rsTp, panel
F), the particular network state resulting from J = 1.05 yielded the worst performance.
The general take home-message inferred from the aggregated R? and rgrp values in
panel G is that asynchronous irregular (AI) network states, at least for this relatively
simplistic two-population network, allow for kernel-based signal predictions that well
capture the corresponding ground truth signals. More synchronous activity results in
reduced performance of our proposed methodology in the upper three channels.

As a final test we also recompute the accuracy metrics for P, (¢) in Fig 9H. Also here,
reduced performances of the kernel-based method are observed for the more
synchronous networks, quantified in terms of rgrp and R2. For the signals we consider,
the kernel-based approach works marginally better for the low-frequency signal
components, reflected in the improved R? values over the raw signals.

Methods performance using biophysically detailed cell models

So far in this paper, we kept the neuron and network model descriptions at a
deliberately low level of complexity. However, biological neurons are commonly modeled
at a much greater level of biophysical detail both in terms of geometry and in terms of
the presence of heterogeneous types of ion channels, and are also used in large-scale MC
neuron network simulation studies (e.g., [70]). Here we explore how well extracellular
signals of neural activity can be captured using the linearization steps introduced for
networks using stylized neurons, in networks incorporating biophysically detailed neuron
models. For this purpose, we replace the excitatory neurons in our previous reference
networks with a rat layer 5b pyramidal cell model [30], rerun network simulations to
regenerate ground truth extracellular signals etc., and repeat the analyses of hybrid-
and kernel-based approximations. This detailed neuron model has many more active ion
channels than the ball-and-sticks neurons and may produce back-action-potential
activated Ca?* spikes [30]. The network parameterization is kept identical, except for
an increased indegree of external excitatory input to this population in order to preserve
overall firing rates (see Reference networks of biophysically detailed neuron models for
details). The hybrid and kernel-based approximations rely on linearized variants of the
biophysically detailed neuron model, showcased in Neuron models with linearized
membrane dynamics. To emphasize on effects explained by this change of model neuron,
we exclude signal contributions by transmembrane currents of inhibitory neurons in the
analysis.

Hybrid scheme signal predictions

First, we consider the hybrid scheme setup, where spike events of the recurrent network
are used for synaptic activation times in populations of neurons but without recurrent
connections, and repeat the experiments first set up for the ball-and-sticks networks.
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Fig 9. Effect of perturbed MC-network connection weights on kernel-based
signal predictions. (A) Mean population spike rates and raster plots (N = 1024 spike
trains in each population). The scaling factor J rescales all connection weights in each
network simulation. J =1 corresponds to our unperturbed reference network. (B)
Ground-truth extracellular potential (black lines) and kernel-based approximations at
depth of ch. 2 and 11 (colored lines). (C) Ground-truth and kernel-based
approximation to z—component of current dipole moment. (D) Effect of rescaled
connection weights on firing rate power spectra of populations ‘E’ (top) and T’
(bottom). (E) Accuracy of kernel predictions in terms of R? and (F) rgp for
kernel-based predictions of raw- and low-pass filtered extracellular potentials. Here,
kernels are in each case computed using ‘biophys:frozen’ ion channel dynamics
accounting for changes in the leak conductance from synaptic conductances
(g_eff:True). (G) Aggregated R? and rgrp values (median, 10 % and 90 % percentiles)
across electrode channels. (H) rgrp vs. R? computed for the z-component of the raw
and low-pass filtered current dipole moment (P, (t)).
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Summarized in Fig 10; If the effective leak conductance is not accounted for
(g_eff:False, panel A B), signal amplitudes are clearly overestimated. Predictions are
in better agreement with the ground truth when the leak conductance contribution from
synaptic activation is accounted for (g_eff:True, panels C,D). In contrast to the
previous model setup, the ground truth extracellular potential signals contain prominent
extracellular spike contributions, in particular across the soma-proximal ch. 9-12. In

terms of choice of linearized membrane dynamics, the visual differences are minuscular.

. . . (B
Dynamics are linearized around V' = —64.96 mV.
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Fig 10. Ground truth signals vs. hybrid scheme and kernel-based
approximations. (A-D) Same as Fig 4 and (E-H) Fig 6, but with the excitatory cell
model being replaced by a biophysically detailed pyramidal cell model [30]. Here, only
signal contributions by transmembrane currents of the updated excitatory population
are accounted for.

Kernel based signal predictions

Next, we compare spike-to-signal impulse response functions (‘kernels’) computed via
the hybrid scheme setup and the computationally fast deterministic method. The
resulting set of kernels for connections onto the excitatory population in Fig 11, show
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that the deterministic method yields quantitatively similar kernels as the corresponding
hybrid-scheme-based method. The differences can in part be explained by the fact that
the hybrid implementation employs discrete synapse and cell placements in space, as
they occur in the recurrent network used for ground truth signal generation, while the
direct method only accounts for the underlying distributions used to set up the
recurrent network in the first place. Note that with the reconstructed neuron there is a
higher degree of freedom in terms of discrete synapse placements compared to the
ball-and-stick neuron. The current dipole moment kernels for the E-to-E and I-to-E
projections remain very similar, although visible differences now occur between the
quasi-active and passive-frozen model neurons.
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L e e
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Fig 11. Spike-LFP impulse response function averages and predictions.
Similar to panels in Fig 5, but but with the excitatory cell model being replaced by a

biophysically detailed pyramidal cell model [30].

The corresponding signal predictions using these sets of kernels in combination with
population firing rates are shown Fig 10 panels E-H. Similar to the hybrid scheme
predictions in panels A-D, visual inspection reveals only small differences. Thus, we
recompute our accuracy metrics as summarized in Fig 12 including also the hybrid
scheme predictions. Similar to our initial results with ball-and-sticks neuron networks,
the projected accuracies for all approximations remain clustered together if the effective
membrane leak conductance is accounted for. However, the R? metric is reduced,
particularly in the uppermost channels, while rgrp is increased irrespective of signal
type compared to our earlier results. The different approximations are observed to
perform better in the low-frequency range as contributions by presynaptic APs in the
ground truth signals are attenuated (‘LP’ vs. ‘raw’ data, respectively). The spectra and
coherences comparing ground truth and approximations to P,(t) in Fig 12 panels G and
H, respectively, show that signal approximations match the ground truth up to

frequencies around 300 Hz.

Overall, these observations of reduced performance compared to the ball-and-sticks
cases are unsurprising, as this biophysically detailed cell model by [30] has a much more
elaborate dendritic structure with many thin sections and many more degrees of
freedom in terms of voltage-gated ion channels. Thus, the somatic voltage value we
chose for linearized synapse and membrane dynamics may poorly represent voltage
fluctuations and deviations that may be present, particularly in dendrites located
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Fig 12. Accuracy of signal predictions vs. ground truth. Same as Fig 7, but
with the excitatory cell model being replaced by a biophysically detailed pyramidal cell
model [30], and accounting only for contributions by transmembrane currents of this
updated excitatory population.
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remotely from the soma. Still, all approximations are able to provide excellent insight
into the spatiotemporal properties of the extracellular potential and current dipole
moment (and by extension EEG and MEG-like signals computed from it), more so in
the low-frequency band.

For these kernel predictions we also repeated the experiment where the linearization
voltage (V) and assumed presynaptic firing rates ((vx)) are offset in S2 Fig. For the
corresponding predictions of P, (t), a somewhat better agreement between the
ground-truth and the approximated signal amplitudes can potentially be obtained by
shifting V,,, by about —5mV.

Methods performance for perturbed network states

Further testing of the kernel-prediction methodology, we repeat our earlier experiment
investigating the effect of perturbed conductances for recurrent synaptic connections on
our proposed methodology, by introducing a variable J affecting Gsyny x in
ground-truth generating networks using the biophysically detailed layer 5 neuron model.
Summarized in Fig 13, also here increasing J results in increased strength of network
oscillations (synchrony), but the change of excitatory cell model here also results in slow
synchronous oscillations with periodicity between 150-200 ms, while the oscillations in
the 50 Hz range remain present. A similar emergence of slow oscillations was observed
in another phenomenological network study relying on the same model neuron [71], but
such activity may also arise in simplified point-neuron networks [50]. As also observed
for the ball-and-sticks neuron networks, the more synchronous network states result in
reduced performance of the kernel-based methodology, particularly in the uppermost
channels of the extracellular potential signal (V;(R,t)). This observation may be
explained by the lack of recurrent synapses in the apical tuft.

As the typical membrane voltages can be expected to vary dramatically across the
elaborate geometry of the biophysically detailed pyramidal neuron, we check whether or
not the accuracy of the approximated signals can be improved by varying the
linearization voltage V, on a per-compartment basis when computing deterministic sets
of kernels. For each value of J and corresponding network simulation, we computed the
mean membrane potential per compartment across a subset of neurons (N = 1024) and
incorporated the values when computing the set of kernels. Comparing our R? and rstp
metrics for Vo(R,t) and P,(t) for different values of J in S3 Fig, expose that varying
V m across the morphology generally increase signal amplitudes (semi-transparent
markers/lines) when compared to results obtained with our earlier assumption of a
constant value (opaque markers/lines). However, the overall result is inconclusive.

Kernel-based signal predictions from point-neuron networks

Throughout Results we have demonstrated that estimates of linear spike-to-signal
impulse-response functions (‘kernels’) allow for accurate approximations of different
signals by convolving population firing rates with the appropriate sets of kernels and
summing the contributions. So what does this allow for?

One major benefit is that spiking dynamics can with ease be modeled using
recurrently connected networks employing simplified neuron representations, like leaky
integrate-and-fire (LIF) point neurons and variants thereof. Recurrent network models
using biophysically detailed MC neuron models (e.g., [43,70]) are, in contrast,
intrinsically more difficult to develop due to their vast number of parameters [72], are
comparably slow to simulate even on large-scale high-performance computing facilities,
less amenable for analytical analysis, and henceforth difficult to constrain into
reasonable network states resembling experimental data. Point-neuron networks
mediate all of these important issues. In addition, systematic reductionist approaches
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Fig 13. Effect of perturbed MC-network connection weights on kernel-based
signal predictions. Same as Fig 9, but with the excitatory cell model being replaced
by a biophysically detailed pyramidal cell model [30].
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applied to MC neuron networks allow for capturing their spiking dynamics in equivalent
few-compartment or point-neuron networks [73-75]. But point-neuron networks do not
allow for computing the distribution of transmembrane currents in space needed for
signal predictions, as all in- and out-going currents sum to zero in a point [18]. Using
our direct and deterministic method we can, however, predict sets of kernels Hy x(R,7)
for each connectivity pathway via single MC neuron simulations in order to compute
extracellular signals from simplified networks. While reduced networks may not predict
identical spike trains as the corresponding fully detailed networks, their main statistics
(rates, spectra, correlations, etc.) should be preserved, implying that kernel-based signal
predictions from rates remain applicable.

As a proof of principle of this methodology, we constructed a point-neuron network
of the same size as our reference MC-neuron networks and fit its parameters in order to
mimic our reference network’s averaged firing rates and rate power spectra shown in
Fig 3 (see Leaky integrate-and-fire (LIF) point-neuron network for details). Showcased
in Fig 14, the point-neuron network state is asynchronous and irregular (AI) with some
oscillations present in the corresponding spike count histogram (panel A), similar to our
reference network. We here also showcase the different signal contributions by each
pathway (E-to-E and so forth) in panels B-E, using the set of kernels displayed in
Fig 5B and discussed in Predicted kernels using the direct and deterministic method.
The summed contributions are shown in panel F. Here, there are no ground truth
signals to compare to directly, but the extracellular potential signal varies across time
and space in an expected manner, and closely resembles the signals obtained by the
I-to-E pathway. Signal amplitudes are also in the expected ranges set by our
MC-neuron network simulations.

As a final remark, we here compute the firing rates and signals ‘live’ while the
network simulation is running. To reiterate, the kernels are always causal, that is, equal
to zero for any time less than the minimum conduction delay in the network, and of
finite duration. This causal relationship allows for treating the sets of kernels as
finite-impulse-response (FIR) filter coefficients, which are here applied via a custom
network node that receives incoming spike events from each population while the
simulation is running and outputs continuous signals representing the temporally
filtered spike events. For this purpose a FIR filter network node is implemented for the
NEST simulator [52,53] via the NESTML description language [62,63] as detailed in
NESTML FIR filter extension. This network node is also reusable for other spiking
networks in NEST.

Discussion

Summary of findings

The main results presented throughout this paper can be summarized as follows: First,
an assessment of the validity and limitations of different prediction schemes for
extracellular signals from biological neuronal network models assuming linearity
between times of presynaptic action potentials (‘spikes’) and corresponding extracellular
signals. The signals mainly occur due to evoked transmembrane currents on the
postsynaptic neuronal populations. Our finding is that the linearity assumption is valid
if all contributions from the linearized membrane and synapse conductances are
accounted for, resulting in accurate signal predictions.

Secondly, identification of the critical role of the effective membrane time constant
due to persistent activation of recurrent and external synapses on predicted signals. We
found that simply approximating conductance-based synapses by current-based
synapses without accounting for the time-averaged synaptic conductances resulted in
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Fig 14. LIF network spiking activity and forward-model predictions.

(A) Spiking activity and average spike rates of the excitatory (E) and inhibitory (I)
populations of a point neuron network simulation (top), with spike counts in bins of
width At (bottom). (B-E) Contributions to the extracellular potential (top) and
current dipole moment (bottom) by the E to E connection, E to I connection, I to E
connection, and I to I connection, respectively. The signals are equivalently computed
as the convolution between the presynaptic population spike count histogram and
corresponding signal kernel approximations using a FIR filter implementation
concurrently with the spiking simulation. The kernels used are shown in Fig 5B.

(F) Sum over signal contributions in panels B-E.
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overestimated amplitudes and poorer temporal accuracy of the approximated signals.

Third, a new, fast and accurate method to compute averaged spatiotemporal
spike-to-signal impulse response functions (‘kernels’) for connections between pre- and
postsynaptic populations, by accounting for distributions of cells and synapses in space,
linearized synapse, and membrane dynamics, overall connection probabilities,
distributions of synapses per instantiated connection, and connection delay distributions.
As the sets of computed kernels are causal and linearly map population spike events to
the corresponding signals, it allows for efficient signal predictions as in a linear
time-invariant (LTT) causal system, that is, by treating the sets of spatiotemporal
kernels as finite impulse response (FIR) filter coefficients applied to corresponding firing
rates of presynaptic populations. The kernel-based predictions are as accurate as a
hybrid scheme explicitly accounting for neuron and synapse placements in space [18],
but significantly faster. The proposed methodology accounts mainly for signal
contributions resulting from synaptic activations, explaining a large fraction of the
low-frequency components of extracellular signals (< 300 Hz).

We developed and evaluated the methodology based on recurrently connected
reference networks of MC neurons. For simplicity, we initially opted for
phenomenological ball-and-sticks MC neuron models with active voltage-gated ion
channels distributed all over, representing each population of excitatory (E) and
inhibitory (I) neurons. Synapses are conductance-based. We show that the proposed
methodology is feasible with perturbed network states, as well as for cases where
populations are replaced by biophysically detailed neurons [30] at a level of detail
similar to neuron models implemented in high-profile biophysically detailed network
modeling efforts (e.g., [43,70]).

As a final proof of principle for the kernel-prediction methodology, we apply a
suitable set of kernels for forward-model predictions from spiking activity in a spiking
point-neuron network model. For this network model, the kernels are applied via a FIR
filter network node receiving presynaptic spike events applying the filter coefficients for
continuous signal predictions during the course of the simulation. The resulting signals
resemble corresponding ground truth signals of the reference MC neuron network.

Kernels versus other estimation methods

The sets of spike-signal kernels we compute using our proposed methodology should not
be confused with corresponding spike-triggered averaged signals (e.g., [76,77]), which
are intrinsically affected by ongoing network activity, that is, spike train correlations, as
previously shown in [18]. Even if both are linear measures, the spike-triggered averaged
signal will most likely be non-causal and depend on the network state, unless the
spiking activity of the trigger neuron is approximately uncorrelated with the ongoing
activity. The latter scenario may occur for instance for spontaneous activations of
neurons in one brain region (e.g., thalamus) projecting to another area (e.g.
somatosensory or visual cortex, see [78-80]). This so-called monosynaptic, also referred
to as unitary (e.g., by [81]) extracellular response is recently modeled in detail [82], then
using conductance-based synapses but with passive membrane time constants fitted to
available experimental and published data. A similar effort to compute such responses
in the hippocampus was recently published [83]. Fitting such responses to
spatiotemporal kernel shape functions for excitatory and inhibitory presynaptic units in
order to compute LFP signals in point-neuron network models has been proposed [19].
The sets of kernels we compute do not assume a particular shape, but are derived from
the biophysics of the neurons and network, and can be recomputed for other networks
and populations.

Other, even simpler estimation methods for extracellular potential time series was
proposed by [34], recently extended to EEG signals by [84], by approximating signals by
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weighted and time-shifted sums of excitatory and inhibitory synaptic currents measured
in the network simulation. In contrast to the hybrid- and kernel-based approaches
considered here, these simplified approximations do not explicitly account for any effects
on the predicted signals from the neuronal morphologies, ion-specific channels and the
VC forward model. They also do not account for any signal variation in space except if
combined with some position-dependent scaling factor, and the physical units of the
predicted signals can be considered arbitrary. These simplified schemes may still be
considered a major improvement over ad hoc approaches equating firing rates or
averaged somatic potentials to extracellular signals [34,84]. In the case of scalp EEG
and MEG signal predictions mainly the current dipole moment components normal to
the cortical tissue surface may be predicted with reasonable accuracy and be combined
with an appropriate head forward model [60], allowing for respective signal predictions
along the scalp’s surface.

With the recent advances in the machine-learning (ML) field such as deep
learning [85], a fair assumption is that also ML methods can infer linear/non-linear
relationships between e.g., network spikes and extracellular signals if subjected to
enough observations for training the algorithms. Input-output dynamics of neurons can
be captured by different deep artificial neural network (ANN) architectures [86,87], and
one could likely extend such models for extracellular signal predictions. One recent
study proposed deep convolutional neural networks for approximated EEG signal
predictions from spike rates [84]. Linear filter-based models have also been proposed for
LFP signals [18,19,21]. In contrast to our proposed methodology where kernels
mapping population spike rates to extracellular signals are inferred from the biophysical
description and parameters of the biological neuronal network itself, deep learning and
related algorithms generally require experimental or model data for training. In the
present context, the avenue of using ML-based methods to predict kernels from
biophysical network parameters is obfuscated. Using ANNSs, it was recently shown that
model LFP signals contain information about underlying network parameters [38]. For
mechanistic models of biological neurons and circuits, one main issue is determining
suitable parameters for viable model output. Here ML-based methods such as deep
neural density estimators may be used for investigating such vast model parameter
landscapes [88].

Extensions and future works

One main novelty reported here is the proposed method for directly computing kernels
that facilitate efficient calculations of extracellular signals from population spike rates,
as well as a reference implementation in the Python package LFPykernels. We applied
this framework to quite simplified two-population recurrent networks. The framework is,
however, applicable to networks with many more populations. One could for instance
mimic the laminar topology of cortical microcircuits, where each layer consists of
different populations representing the heterogeneous types of cells within each layer as
in [70] and [43]. Based on available anatomical and electrophysiological constraints
either from experiments or detailed models themselves, signal kernels of interest can
then be computed for the different connections independently of simulations of recurrent
network spiking activity. The latter step may then even use simplified neurons (e.g.,

spiking point neurons) thus negating the need for high-performance computing facilities.

Extracellular signal predictions can be incorporated in the running simulation as we
have demonstrated here (see Kernel-based signal predictions from point-neuron
networks), or after simulation by computing population spike rates from recorded spike
events, filter these and sum up all contributions.

While we have here mainly focused on the methodology and less on overall

simulation speeds, we note that potential speedup can be of several orders of magnitude.
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The typical simulation times for the recurrent network with biophysically detailed
pyramidal neuron models (see Methods performance using biophysically detailed cell
models) we observe are around 4400 s multiplied by 1024 physical cores for 12s of
biological time on the high-performance computing resource, while the corresponding
set of kernel predictions take around 150s on a laptop computer using a single physical
core (see Data availability and replicability for details). This number can potentially be
reduced substantially if the numerical integration of Eq 35 on a per-compartment basis
can be replaced by a closed-form (the MC neuron simulations of transmembrane
currents are quite brief). Further reductions in prediction times may involve other
trivial parallelization schemes, as kernels for different connections can be computed fully
independent of each other, which is also the case for different spatial components of
each spatiotemporal kernel. Code acceleration using for instance Numba” or Cython®
may also help in this respect. Simulation times and resources required for spike times in
equivalent networks of the same size using simplified neurons (i.e., few-compartment
and point-neuron models) are also substantially less compared to the biophysically
detailed case. For the point-neuron network incorporating the FIR filter operations used
here, the respective network build and simulation times were around 8s and 235s with
single-threaded execution on a laptop. Thus the serial time to solution is reduced by a
factor ~ 10* compared to the MC network simulation. Hence, the avenue of
biophysics-based forward model predictions of extracellular signals in large-scale
networks with millions of spiking point neurons and beyond (e.g., [44]) is opened.

In its present form, there are multiple scenarios where our proposed kernel-prediction
methodology could use either further development or validation. Presently we
investigate the method for networks with a columnar (cylindrical) organization and no
distance-dependency for connections in terms of connection probabilities, synaptic
conductances, and axonal transmission delays within the column-like geometry. Large
scale recurrent network models with (lateral) distance-dependent connectivity and
periodic boundary conditions spanning multiple mm of cortical area has been proposed
at various levels of description (e.g., [36,43]), but so far our proposed kernel prediction
method is neither developed for nor validated against such models. So far, such lateral
distance-dependent connectivity was accounted for in a phenomenological kernel-based
prediction model [37], and for an experimentally derived kernel-based method [19].

Furthermore, we assume recurrent networks with static connection weights. But
synapses may be subject to various weight dynamics such as short-term plasticity (STP)
with activity-dependent facilitation and depression, stochasticity,
spike-timing-dependent plasticity (STDP) (see e.g., [89]), as well as structural
plasticity [90]. Out of these, stochasticity is perhaps easier dealt with if probabilities of
synaptic activations are known and independent of activation rate by scaling the
corresponding kernel amplitudes accordingly. Weight changes due to STP are mainly
governed by presynaptic activation intervals hence the average connection weights for
kernel predictions can be determined for known averaged presynaptic rates. STDP may
be harder to account for, but due to the much longer time scales for weight updates, the
option to monitor connection weights during the course of simulation could allow for
recomputing kernels and applying them to each simulation segment.

In terms of signal predictions in network models incorporating recurrent connections
with external populations (representing other areas or nuclei) or interactions with the
external world (e.g., mimicking closed-loop experiments), the present framework for
direct kernel predictions could well account for the additional signal contributions.
Exemplified by a putative network model of the thalamus and somatosensory cortex,
representative sets of kernels must initially be computed for presynaptic spike events of

2numba.pydata.org

3cython.org
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thalamocortical projection neurons targeting subsets of cortical populations given
knowledge of the corresponding anatomy and biophysics. Applying the additional sets
of kernels with presynaptic spike events or spike rates for signal predictions would then
account for locally evoked signal contributions by remote activity, without affecting
network activity itself. In case synaptic weight updates (via STDP for instance) takes
place, the kernels may require recalculations as suggested above.

Our analyses also demonstrate that the accuracies of kernel-based signal predictions
versus corresponding reference signals can be expected to drop when the degree of
synchrony and/or firing rates in the network increases (see Methods performance for
perturbed network states), which we observed by rescaling recurrent synaptic
conductances. Our reference network generates various-strength oscillations in the
gamma range (~ 55Hz) when driven by external fixed-rate Poisson processes, and we
obtained also slow synchronous oscillations in case of the biophysically detailed neuron
network. We expect to observe similar detrimental effects on prediction errors for
networks with non-stationary activity. Such non-stationarities may include up-and-down
states [91] or result from variable-rate external drive (e.g., representing sensory input),
as the choice for membrane potential when linearizing synapse and ion-channel
dynamics may indeed affect the kernel predictions. Our results of setting the
linearization voltage value on a per-compartment basis are inconclusive, however, but
this idea should be explored further in the future. Still, our hope is that the
kernel-prediction methodology can still give excellent qualitative insight into
extracellular signals from networks expressing non-stationary behavior.

Contrary to our starting point, recurrent MC neuron networks, forward model
predictions from recurrent point-neuron networks pose a potential challenge due to their
inherent lack of detail. Their descriptions may contain no spatial information even if the
network is supposed to mimic a particular brain area, such as the generic somatosensory
cortex column model proposed by [49], representing the local circuitry under a 1 mm?
patch of the cortical surface. To compute extracellular potentials from this model
spatial information in terms of neuron geometries and depth-dependencies for synaptic
placements should be determined based on available anatomical data (see [18] for
details). Similarly, the present kernel predictions require MC neuron models
representative of each population, and statistical distributions describing placements of
cells within each population in space, placements of synapses across the neuron models
for each pre and postsynaptic population, numbers of synapses per instantiated
connection. Other parameters may (or may not) be derived from the point-neuron
network description, such as conduction delay distributions and synaptic parameters.
Some may be derived from its activity, such as population firing rates. As such, multiple
concurrent efforts aim to amass such anatomical and electrophysiological detail for
different brain regions and species with corresponding tools for enquiring the data (see
e.g., [92-96]). Such data may be used to derive suitable kernels.

For rate-based frameworks aiming to explain activity in terms of population firing
rates in finite-sized populations (see e.g., [45-48]), special attention should also be taken.
Unless the rate-based models are derived using bottom-up approaches, in contrast to
heuristics or inferred statistically, for instance via dynamical causal model
frameworks [97], use of our proposed kernel prediction scheme also necessitates
specifying parameters such as population cell counts and pairwise connection
probabilities. Otherwise, the resulting kernel amplitudes can be considered arbitrary. If
such parameters indeed can be determined, we do not see any principled reasons why
one could not apply the kernels with continuous population rate predictions as we
already demonstrated with temporally binned population spike rates computed from
spiking networks.

Further extensions of our kernel estimates for continuous neural fields equations
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aiming to explain activity across space [98] should be based on and validated via the
aforementioned laminar network models incorporating lateral distance-dependent
connectivity routines. For discretized spiking point-neuron network models with
distance-dependent connectivity, [99] derived corresponding neural field equations.
Developments in this direction are required for simulation frameworks such as ‘The
Virtual Brain’ (TVB [100]) aiming to relate firing rates across brain areas also with
extracellularly recorded signals such as the EEG, as well as similar tools aimed towards
clinical use [101].

Finally, we have considered only postsynaptic contributions from synaptic
activations to signals predicted using the hybrid scheme or kernel-based methods. These
approaches are therefore better able to capture the low-frequency parts of the signals as
most clearly demonstrated in our simulations using the biophysically detailed layer 5
pyramidal neuron which resulted in clearly visible extracellular spikes in the
ground-truth extracellular potentials. One could potentially account for signal
contributions by presynaptic events such as somatic APs, backpropagating APs, Ca?"
and NMDA spikes by computing and superimposing the extracellular signatures of each
event to the signals considered here, in case the network model accounts for times of
such events. Taking such steps would result in non-causal kernel contributions and
would require additional validation against network models using biophysically detailed
neuron models expressing such phenomena. It should however be feasible to incorporate
and could improve the accuracy of the present implementation around frequencies where
spike contributions may dominate in the extracellular signals.

Conclusion

Many of the research successes in the physical sciences have come from an interplay
between modeling and experiments where predictions between physics-based candidate
models have been systematically compared with experiments in an iterative
back-and-forth loop. This approach is sometimes referred to as the ‘virtuous loop’ or
circle [102]. For large-scale network models in the brain, this approach has until now
been hampered by the lack of physics-based forward models able to predict mesoscopic
and macroscopic brain signals like LFPs and EEGs [6]. We believe that the kernel-based
approach presented here could be an important step forward for making such
model-based predictions feasible, thus paving the way for use of the virtuous loop also
in large-scale network neuroscience.

Supporting information

S1 Fig.
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Effect of mismatched presynaptic firing rates and membrane potentials on
kernel-based approximations to the current dipole moment signal. Same as

Fig 8, but for the case where the excitatory (‘E’) population is replaced by biophysically
detailed neuron models [30].
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