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Abstract 

Wearable sensors are quickly making their way into psychophysiological research, as they 

provide the only way to collect longitudinal and ecologically valid data. The present tutorial 

considers fidelity of physiological measurement with wearable sensors, focusing specifically 

on reliability of the measurement. We elaborate why ensuring reliability for wearables is 

important, and offer statistical tools for assessing wearable reliability for between 

participants and within-participant designs. The tools proposed in this tutorial allow 

estimating measurement reliability (precision) from data readily available from any 

wearable sensor, without referencing benchmark equipment. The framework offered here is 

illustrated in two studies: In Study 1, we applied reliability estimates we offer to a publicly 

available dataset of heart rate measured from 53 participants with 6 different sensors. In 

Study 2 we applied reliability calculations to data collected with one wearable sensor of 

cardiac biometrics (Biostrap) in the wild, outside of the laboratory. Our hope is that by 

systematically quantifying measurement fidelity in different circumstances, researchers will 

eventually be able to make informed choices about specific wearable devices and 

measurement procedures that meet their research goals. 

 
Translational Abstract  

Wearable sensors are the technological breakthrough of this decade. The promise is that 

devices like smart watches will soon monitor many bodily states, providing data to predict 

illnesses and optimize performance. While many studies examine the validity of wearable 

signals, much less attention is paid to their reliability. Here we argue that reliable 

measurements are crucial for indexing physiological states in the daily life of participants. 

We offer a framework and several statistical tools for assessing the reliability of sensors. The 

framework is tested using several brands of commercially available photoplethysmography-

based wrist-worn heart rate sensors. The results show that (1) different brands of wearable 

sensors of heart rate have different between-participant reliability, (2) reliability of heart 

rate and especially heart rate variability varies along with the intensity of activity 

participants engage in, (3) reliability of heart rate and especially heart rate variability is 

higher during sleep than during wakefulness. We conclude that reliability of a wearable 

sensor is not fixed but varies across different contexts and circumstances. Estimating 

reliability is thus a useful way to quantify measurement fidelity for a particular research 

question, a specific new experimental procedure, or a special target population.  

 

Keywords 

wearables, measurement reliability, heart rate, heart rate variability 
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Introduction 
A bathroom scale is a reliable measure of one’s weight, provided one stands still on the scale 

for several moments. Yet one is likely to discard the measurement shown by the scale if one 

is startled by a spider during these moments.  Trying to measure cardiac signals with a 

wearable sensor is a little like trying to measure one’s weight while dancing on the scale. The 

fidelity of the measurement will depend not only on sensor’s accuracy but also on the 

environmental conditions under which the measurement was taken. 

 

The recent rapid proliferation of wearable sensing technology has been accompanied by 

many tests of their validity (Barrios et al., 2019; Bent et al., 2020; Dur et al., 2018; Hernando 

et al., 2018; Kinnunen et al., 2020; Koskimäki et al., 2018; Menghini et al., 2019; Steinberg, 

Yuceege, Mutlu, Korkmaz, Van Mourik, et al., 2017), usually by examining the correlation of 

the wearable’s signal in a quiet environment with that of trusted laboratory equipment (van 

Lier et al., 2020).  What is usually overlooked in these tests is that most laboratory 

measurement procedures severely limit participants’ bodily movements and cognitive 

activities (Berntson et al., 2007). In sharp contrast, wearable devices promise to measure the 

same physiological signals across a wide variety of environments and bodily states.  Yet 

without further testing, there is no guarantee that wearables will yield accurate measurements 

in all contexts. 

 

For example, Empatica’s electrodermal activity (EDA) measurement showed high agreement 

with the EDA measurement taken under laboratory conditions. Yet in a study that measured 

EDA with Empatica for 20 hrs per participant in their daily lives, 78% of the measurements 

were artifacts and no meaningful analysis could be performed with the remaining data (Zheng 

& Poon, 2016). In another study, which aimed to establish the validity of Empatica’s HRV 
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measurement against a Holter ECG monitor in 24-hour ambulatory monitoring, it the 

reported reliability of Empatica’s measurement of heart rate variability (HRV) was lower 

than that of Holter device, and the proportion of missing data was higher (Van Voorhees et 

al., 2022).  

 

The present paper focuses on the question: when can measurement from a wearable device be 

trusted? Keeping in mind that the appeal of wearable sensors is to measure physiology under 

conditions where a benchmark device (e.g., ECG) is not viable, we offer several statistical 

tools that allow assessing measurement fidelity without referencing a second device. The 

tools we offer are based on the concept of reliability (Revelle & Condon, 2019).  

 

It is textbook knowledge that measurement fidelity can be decomposed into two components: 

validity and reliability. Validity denotes measurement accuracy – usually determined as 

correspondence of measurement to another gold-standard measurement of the same variable. 

Reliability refers to measurement precision – that is, consistency of several measurements 

taken in the same conditions and/or with the same equipment. It is useful to distinguish 

between validity and reliability, as can be demonstrated by considering an example of drunk 

dart thrower. What does being drunk do: limit accuracy, limit precision, or does it limit both? 

As shown in Figure 1 (https://conjointly.com/kb/reliability-and-validity/), the two are 

orthogonal. If a drunk lacks accuracy, they behave as in A, being consistently off the mark 

but with reasonable precision.  If they lack precision, they do most poorly in B, though their 

average accuracy is still good.  If they lack both, it is box C.  This example helps understand 

why low reliability makes accuracy hard to determine.  There is too much scatter in the data 

to estimate the mean with confidence. It also helps understand how high reliability does not 
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guarantee accuracy: the dart thrower may be very precise (reliable) but consistently off the 

mark. 

 

 
Figure 1. Illustration of the relationships between validity and reliability using the example of drunk dart 

thrower (image taken from https://conjointly.com/kb/reliability-and-validity/).  

 

We begin by noting that the theory of measurement reliability was originally developed for 

assessing fidelity of subjective reports (questionnaires, ratings); not for physiological 

measures. When participants are responding to questionnaires, one cannot fully control the 

conditions under which they are being filled out (noise, distractions, time pressure) and what 

factors other than the question may be influencing their responses.  Tools to assess response 

reliability were designed to measure this uncertainty.  As we already mentioned, 

physiological measurements were not given the same treatment because it was simply 

assumed that measurements taken in a psychophysiology laboratory occurred under strictly 

regulated conditions (Berntson et al., 2007). However, signals from wearable sensors are 

beset by uncertainty that is more similar to the measurement of questionnaire data than 

laboratory physiological data.  Therefore, in this paper we apply reliability concepts and tools 

to physiological data from a wearable device, in order to estimate measurement reliability. 

Notice that the reliability analyses we propose are performed on data readily available from 

any wearable device, without additional devices and measurements.  

 

A B C D 
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To the best of our knowledge, wearable device reliability has not been considered in detail 

before. Kleckner et al. (Kleckner et al., 2021) mentioned that for a wearable sensor to be 

accurate its measurement has to be reliable, but their proposed framework for choosing a 

wearable device for research offers no guidelines on assessing its reliability. Here we fill this 

gap, by offering several readily accessible tools to estimate reliability of measurement with 

respect to a particular goal. 

 

Definitions 

Measurement reliability refers to the consistency of a measurement when the device is worn 

by different people, at different times, and in different situations; the complement of 

reliability is measurement uncertainty.  Not only does this uncertainty undermine the accurate 

measurement of a physiological state, but it seriously weakens the ability to use the measured 

physiological state as a predictor of other outcomes. Spearman (Spearman, 1904) noted this 

issue long ago, showing that low reliability in a predictor variable directly decreases the 

measured agreement between predictor and outcome variables (Johnson, 1944; Nimon et al., 

2012; Revelle & Condon, 2019). Despite this well-known relationship between measurement 

error and measures of association, many statistical treatments assume that predictor variables 

(e.g., predictors in a regression) are measured without error, simply because accurate 

predictor data is the standard assumption in the application of linear regression (Sklar et al., 

2021). And it turns out, that low predictor reliability weakens the results of many statistical 

tests, not just correlations (Nimon et al., 2012).  Although there are ways to assess reliability 

(Revelle & Condon, 2019) and to correct some statistics for it (Spearman, 1904), many 

researchers do not use them  (Nimon et al., 2012; Revelle & Condon, 2019). To summarize, 

the low reliability of a physiological measurement can prevent one from discovering its true 

association with other variables. 
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It is important to note that not all measurement variability is measurement error.  Rather, 

researchers try to distinguish among sources of potential variance in a measurement, and 

accordingly, the consequences of these various types of variability on measures of reliability 

(Nimon et al., 2012; Revelle & Condon, 2019).  Human physiology is affected by at least two 

broad groups of factors: constitutional factors and situational variables  (Fatisson et al., 2016; 

Shaffer & Ginsberg, 2017).  

 

Constitutional factors refer to enduring or trait-like states of the body. In the case of cardiac 

measurements, these factors can be intuitively linked to gender, age, body mass index, 

physical fitness, and chronic medical conditions. This assembly of stable personal traits has 

predictable influences on, e.g., blood pressure (Printz & Jaworski, 2004), heart rate 

(Sommerfeldt et al., 2019; Zhang et al., 2016), and heart rate variability (Laborde et al., 2017; 

Natarajan et al., 2020; Shaffer & Ginsberg, 2017).  The stability of a person’s physiological 

parameter measured in different situations is thus referred to as between-person reliability 

(sometimes also as “relative reliability”, or parameter level measurement precision– see (van 

Lier et al., 2020)), because it indexes the extent to which a person’s parameter is stable 

relative to other people in different situations. For example, if one’s heart rate (HR) or heart 

rate variability (HRV) is generally high when compared to other people in a laboratory 

testing, then we would expect their HRV assessed by a wearable device to also show that it 

was generally higher than other people’s data measured by the same device.  

 

The second source of cardiac variability – situational factors – refer to physical activity, 

stress level, and other more transient physiological states. For example elevated heart rate 

along with reduced HRV is associated with fever (Karjalainen & Viitasalo, 1986), 
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inflammation (Williams et al., 2019), and acute pain (Chowdhury et al., 2021; Kasaeyan 

Naeini et al., 2021; Koenig et al., 2014; Lim et al., 2019), as well as mental stress (Brosschot 

et al., 2007; Hernando et al., 2018; Hovsepian et al., 2015) and physical effort (Perini & 

Veicsteinas, 2003; Tulppo et al., 1998). It is these situational factors that are spurring much 

of the current interest in wearable devices.  The hope is that tracking users’ heart-rate 

biometrics will provide a useful clue for ensuring their health and wellbeing. For instance, 

studies that compared physically fit people to those who do not exercise as much (between-

participant design) tend to show that physical fitness is associated with higher HRV 

(Buchheit et al., 2005; Rennie et al., 2003; Tulppo et al., 1998). It is plausible to assume then 

that increasing one’s fitness will result in an increase in HRV, when compared to the same 

person’s HRV before training. But confirming this conclusion really calls for a within-person 

study design – i.e., measuring HRV in the same person before and after a change in fitness 

(Janse van Rensburg et al., 2012; Routledge et al., 2010).  A within-person comparison of 

biomarkers therefore calls for the assessment of within-person reliability.  This is also 

sometimes referred to as “absolute reliability,” and it quantifies the stability of a sensor’s 

readings from the same person over time (for a greater in-depth discussion of between and 

within-person reliability see (Revelle & Condon, 2019)).  

 

Measuring between-person reliability 

Between-person reliability refers to the stability of measurement for the same person, across 

time and contexts. In simple words, it is the agreement between measurements taken at 

different times for the same person (see Figure 2 for illustration). Let us consider a single 

measurement as 

��� �  � �  �� �  ���  

where  
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� is the population average,  

� � �� is the average for each participant i, 

���  is measurement error 

 

Using these terms, between participant reliability can be expressed as 

� �  
	�
�

	�
� �  	�

�
 

 

This is the traditional formulation of population Intra-class correlation (ICC - (Bartko, 

1966)). For a specific sample, in its most general form, it can be computed as: 


�� �  
�
�
 � �
�


�
�
 � �� � 1��
�

 

where  

MSBS is the mean sum of squared deviations between the participants 

MSWS is the mean sum of squared deviations within the participants 

k is the number of measurements (which is required to be equal across participants).  

 

Theoretically, ICC varies from -1 to 11, and should be interpreted in the same way as 

correlation coefficient: the closer to 1 the higher the agreement, with ICC > .75 representing 

excellent reliability (Cicchetti, 1994).  

 

Several different forms of ICC are available when modeling additional sources of variance. 

For example, consider a number of patients being examined by several doctors (raters), which 

is a classic case for ICC application. In this case, it is standard to model the variation among 

the raters using two-way ICC, based on the assumption that different people may provide 

                                                 
1
 In practice values close to -1 are not usually observed and would suggest existence of a strong source of 

systematic variance in the measurement. Negative numbers near 0 suggest low reliability. 
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ratings that are systematically different from one another (specific to each rater). For a 

physiological measure, when there is no a-priori reason to assume that individual sensors 

would be systematically different in their measurement, the most general one-way ICC would 

be sufficient.  The formulas above represent one-way ICC, capturing between-participant 

variance (MSBS) against noise variance (MSWS) only. If one wishes to model individual 

variation along with systematic difference between measurement devices (e.g., different 

models) or circumstances (e.g., exercise, stress, rest), then a two-way ICC may be applicable. 

 

In addition to deciding whether one-way or two-way ICC is most appropriate, a decision also 

needs to be made whether to use single measurement or multiple measurements options. 

Single measurement ICC estimates representativeness of a single measurement for the 

person’s parameter value. Multiple measurements ICC estimates representativeness of the 

average across all measurements. For additional details and guidelines see (Liljequist et al., 

2019; Revelle & Condon, 2019). 

Figure 2. Simulated data of 4 measurements per each of 4 participants. Left panel shows an example of low 

discriminability between participants, i.e. low one-way single-measure ICC. Right panel shows a case in which 

each participant’s physiological index is highly individual, resulting in high ICC and high between-participant 

reliability. 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.02.510535doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.02.510535
http://creativecommons.org/licenses/by-nd/4.0/


11 

Measuring within-person reliability 

Within-person reliability refers to the stability of a measurement taken in the same situation, 

for a given person. In the extreme, it would refer to two identical devices producing equal 

measurements when used simultaneously on the same person. For a single device, 

considering measurement as  

��� �  � �  �� � �� � ����  

where �� is a particular situation, within-participant reliability would be the opposite of the 

magnitude of ��� . The conceptual distinction between signal and noise is crucial when 

considering within-person reliability and will depend on a particular design and aims of the 

measurement situation (for further guidance see (Revelle & Condon, 2019)).  

 

Let us consider a simple example. Imagine we are measuring the heart rate of a particular 

person, taking several measurements during rest, a few more measurements during mentally 

stressful activity, and a few more during physical exercise. We would expect high agreement 

within rest measurements, and distinct but clustered measurements during each type of 

activity. Mixed model regression predicting heart rate measured at time 1 from heart rate 

measured at time 2, with situation (rest, mental activity, physical activity, recovery) as the 

random factor takes the following form: 

��� ~ � � ���� �  ��� � 1|��� ���!" 

As in general linear regression approach, beta is the estimate of the association between the 

predictor and the predicted variable. In this case, beta quantifies the amount of agreement 

between measurements taken during each situation. If we test more than one person, we 

should add a random factor of participant, to remove variance associated with individual 

differences and focus on within-participant consistency: 

��� ~ � �  ���� �  ��� � 1|��� ���!" � 1|#����$�#�"�  
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Figure 3A shows an example data simulating 4 participants in 4 types of situations where 

both between- and within-participant reliability (consistency) are high. 

Figure 3. Simulated data of 8 measurements for each of 4 participants, in 4 situations (colour coded). Panel A 

shows an example of high between- and within-participant reliability, where the observations are consistent 

per participant and per situation. Panel B shows example of high between-participant reliability yet low 

within-participant reliability. Panel C shows high within- and low between-participant reliability, where 

datapoints are consistent within a situation yet do not reliably distinguish between different individuals. Panel 

D shows low within- and between-participant reliability. 

 

As can be seen, this type of analysis requires two measurements for the physiological index 

of interest in each situation. Traditionally, with subjective responses to questionnaires, the 

questions were divided into two subsamples by the order of their appearance, taking either 

first and second half of the questionnaire as the two subsamples, or odd vs. even questions (so 

called split-half approach, (Spearman, 1904; Van Norman & Parker, 2018). Unlike 

questionnaires, physiological measurement, especially those obtained with a wearable device 

in ecological settings, is performed over a longer time span than is required to fill out a 

questionnaire, often with the aim of quantifying a change in the person’s state from one 
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measurement to the next. Given the volatility of physiological measurement in time, the 

closer two samples occur in time, the more similar we would expect them to be. In other 

words, it is reasonable to expect that time is a systematic factor that must be taken into 

account. Assigning each datapoint a number by order of its acquisition, then aggregating 

(averaging) all odd and even datapoints allows one to measure consistency between instances 

that are taken as close in time as possible. We will refer to this as time-sensitive sampling. 

An alternative approach that is not time-sensitive might involve dividing all measurements 

into two subsamples randomly. With just one instance of such division, there is a non-zero 

chance that by coincidence the two subsamples will be uncharacteristically similar or 

dissimilar. However, if a random split is performed multiple times, we can estimate within-

participant reliability from the resulting distribution of betas. In the next section, we will 

compare these two methods of dividing the datapoints to provide an assessment of within-

person reliability. 

Empirical examples 
We first apply the approach proposed here to a case of a commercially available PPG-based 

sensors of cardiac biometrics (heart rate and heart rate variability). The main aim of this 

demonstration is to demonstrate how much measurement fidelity of a wearable sensor varies 

with the conditions of everyday life. We focus on the most discussed factors that affect 

measurement fidelity of wearable sensors: (1) the make of the sensor (hardware + software) 

and (2) physical activity of the user (Barrios et al., 2019; Thomson et al., 2019). We do this 

by analyzing a publicly available dataset that contains heart rate recorded by 6 commercially 

available PPG-based sensors (Bent & Dunn, 2021). We then move to apply the framework 

proposed here to data collected outside of the laboratory, where comparison to benchmark 

ECG is not viable. The naturalistic data were collected from 10 healthy participants who were 

wearing another commercially available PPG sensor, Biostrap, for a week. We compare the 
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reliability of data acquired during sleep and during active wakefulness. In addition, to 

demonstrate the relationship between the reliability of a measurement and the magnitude of 

its correlation with another variable (Revelle & Condon, 2019; Spearman, 1904) we test the 

correlation between the two biometrics explored here with a measure of participants’ mood. 

 

Study 1: Reliability of 6 wearable sensors of cardiac 
biometrics 
Bent et al (Bent et al., 2020) conducted a study comparing 6 different wearable devices 

against ECG to determine measurement fidelity of these devices under different conditions. 

The data (beats per minute from each device) are publicly available (Bent & Dunn, 2021). 

Here we analyze this dataset by applying the reliability estimation procedures already 

described to assess the measurement fidelity of the devices without referencing ECG.  We 

compute between- and within-participant reliability for (a) the 6 wearable devices, and (b) 

different activities. 

Method 

A total of 53 participants were tested with 6 wearable sensors while engaging in 4 types of 

activities: rest, paced breathing, physical activity (walking), and typing. In between these 

activities, the sensor was on the participant’s wrist and still recording, and so we include the 

rest period as the 5h type of activity: task transition. Participants were wearing one or two 

devices at a time, repeating the activities several times.  

Results 

Data processing 

Heart rate was measured as beats per minute (BPM). Of these, we removed all the 0 values, 

and then values more than 2 standard deviations above or below each participant’s average. 
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For between-participant reliability, BPM datapoints were averaged per device and activity 

type for each participant. 

Between participant reliability 

A one-way random single-measure ICC(1,1) was computed for the 44-53 participants’ mean 

BPM, separately for each device, with the 5 activity types as the different measurement 

instances. Table 1 and Figure 4 show the results. The 6 devices appear to have unequal 

between-participant reliability, Biovotion showing the highest, and generally good reliability 

of .65 (but also the largest number of participants without data), Empatica and Miband 

showing only fair reliability of .38 and .37 respectively, and the other three devices showing 

good reliability (Cicchetti, 1994).  

Table 1  

Between participant reliability for the 6 wearable sensors, listed in alphabetic order. Number of participants (N) 

varies per sensor because of missing data. 

Device ICC(1,1) 95% CI N 
Apple Watch .54 [.44 .65] 53 
Biovotion .65 [.55 .75] 45 
Empatica .38 [.27 .496] 53 
Garmin .50 [.397 .61] 52 
Fitbit .48 [.37 .59] 53 
Miband .37 [.27 .496] 50 
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Figure 4. Between-participant reliability of the 6 brands of wearables devices. ICC(1,1) is shown, error bars 

represent 95% CI. 

 

To explore measurement fidelity for different activities, we computed ICC(1,1) for the 5 

types of activity, with devices serving as measurement instances. Table 2 shows the results. 

Breathing, transitioning between activities, and rest elicited the most reliable measurements 

across devices (ICC(1,1) of .66, .597, and .54, respectively). Physical activity (walking) and 

typing produced ICC(1,1) of just .37, suggesting that measurement was quite noisy during 

these activities.  

Table 2  

Between participant reliability for the 5 activities, listed in alphabetic order.  

Activity ICC(1,1) 95% CI N 
Breathing .66 [.57 .74] 53 
Physical activity .37 [.27 .48] 53 
Rest .54 [.44 .64] 53 
Task Transition .60 [.51 .69] 53 
Typing .37 [.27 .48] 53 
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Figure 5. Between-participant reliability across wearable devices for the 5 types of activity. ICC(1,1) is shown, 

error bars represent 95% CI. 

 

Interim Discussion 

Between participant reliability was examined in the dataset containing heart rate of 53 

participants measured with 6 devices during 5 types of activities. Reliability varied between 

the 6 devices, with Biovotion and Apple Watch showing highest reliability, closely followed 

by Garmin and Fitbit, with Empatica and Miband showing lower reliability. Interestingly, 

comparison to ECG measurement reported in Bent et al. (Bent et al., 2020) revealed that the 

deviation from ECG was lowest for Apple Watch, followed by Garmin and Fitbit, followed 

by Empatica and Miband, followed by Biovotion. That is, measurement fidelity as assessed 

by comparison to ECG (validity) and as assessed by between participant reliability of the 

measurement itself (reliability) match closely, with Biovotion being the only exception. It is 

textbook that reliability is a necessary, but not sufficient condition for validity of 

measurement. And this is exactly what the data for, e.g., Apple Watch and Miband shows: As 
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reliability of wearable devices decreases across brands, their validity decreases. At the same 

time, Biovotion is a great example of a device that is reliable (not much internal noise), yet 

not valid (does not correspond to a benchmark device). Thus, high reliability does not 

guarantee high validity (see Figure 1). But it is also true that low reliability makes it difficult 

to determine validity at all. However, once validity is established, is it possible that 

measurements are unreliable? We addressed this question by investigating different 

participant activities. 

 

Participants’ activity affected reliability of the measurement as well, with calmer states 

(breathing, transitioning, rest) producing higher reliability than more intense activities 

(walking, typing). This is consistent with multiple previous studies, including Bent at al. 

(Bent et al., 2020), reporting higher reliability for measurements taken during rest, and 

reduced reliability with increased levels of activity.  

 

Within-participant reliability 

Within-participant reliability was assessed using a split-half approach and mixed model regression. 

Because time stamps were not available for the dataset we analyze here, we could not use time-

sensitive approach, and only used a random split-half approach.  

To explore within-participant reliability of the 6 devices, we split each participant’s heart rate 

datapoints during each activity into random halves 1000 times, computing mixed-model regression 

with participant as the random factor each time. Reliability was estimated as the average beta across 

the 1000 iterations. To explore the reliability of measurement during different activities, we split each 

participant’s heart rate as measured with each device into random halves 1000 times, submitting that 

to mixed-model regression every time. 
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Figure 6 and Table 3 show within-participant reliability for the 6 devices. As can be seen from the

table, all devices had excellent reliability in measuring heart rate across different situations within

participant. It can also be seen that reliability of Fitbit was noticeably lower, although still very hi

Table 3  

Within-participant reliability for the 6 wearable sensors, listed in alphabetic order.  

Device Mean Beta SD of Beta across iterations 

Apple Watch 0.988 0.008 

Biovotion 0.998 0.004 

Empatica 0.994 0.006 

Fitbit 0.959 0.016 

Garmin 0.994 0.006 

Miband 0.988 0.009 

 

 

Figure 6. Within-participant reliability of the 6 brands of wearables devices. Error bars represent 1 SD. 

 

Figure 7 and Table 4 show within-participant reliability for the 5 activities. It was also very high 

across the activities, yet transitioning was noticeably less consistent than the other activities.  

Table 4  

Within-participant reliability for the 5 types of activity.  

Activity Mean Beta SD of Beta across iterations 

Breathing 0.986 0.009 

the 

hin 

 high.  

h 
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Phys.Activity 0.993 0.006 

Rest 0.991 0.007 

Transitioning 0.976 0.013 

Typing 0.984 0.009 

 

 

Figure 7. Within-participant reliability for the 5 types of activity. Error bars represent 1 SD. 

 

Discussion 

We have explored within- and between-participant reliability of heart rate measured with 6 

devices during 5 activities. The point of this demonstration was to show how measurement 

fidelity can be estimated without referencing any benchmark device, from the data of a single 

sensor. Noticeable differences in between-participant reliability were observed for the six 

brands of wearable sensors, and for different levels of activity participants engaged in. In 

terms the two components of measurement fidelity – reliability and validity – the data 

complied with textbooks showing that high reliability is a necessary, yet not sufficient 

condition for validity. It shows that validity cannot be inferred from reliability, and that 
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validation of a device is a necessary first step to ensure measurement fidelity under ideal 

(laboratory) conditions. Yet as the analysis of different activity levels shows, even once an 

acceptable level of validity is established under resting conditions, a wearable device can 

produce measurement of suboptimal reliability under more active everyday conditions.  

 

Within-participant reliability was very high across devices and activity levels. Heart rate is a great 

example of a measurement that is highly consistent within-participant (high within-participant 

reliability), but not always acceptable for distinguishing between participants (moderate between-

participant reliability). This most probably reflects the nature of heart rate, which has stable and quite 

narrow limits for a given person, especially during wakeful time. In our next example (Study 2) we 

examine less constrained measure – heart rate variability, and will benchmark how within- and 

between-person reliability is manifested in this measure.  

Study 2: Reliability of Biostrap during sleep and during 
wakeful time 
In this study we tested a commercially available Biostrap wristband sensor for both between-

person and within-person reliability of HR and HRV.  In our treatment of within-person 

reliability, we focus on comparing two diurnal states of the user: wakefulness and sleep. 

Sleep corresponds to time passing with little to no change in the external environment and 

fewer physiological changes than during wakeful periods (e.g., relatively little physical effort, 

no eating or talking, relatively little stress and mental effort). We hypothesized that sleep 

periods would produce less variable and therefore more reliable biometric recordings.  

 

In this study, 10 participants wore a Biostrap device continuously for one week. They were 

instructed to wear the device on their wrist at all times, except when charging the device 

(about 1 hour daily) and when taking a bath or shower.  
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Method 

Participants 

Ten participants (1 male) were recruited through Reservax (https://www.reservax.com), an 

online recruitment platform for behavioral studies. The inclusion criteria were: Participants at 

least 18 years of age, without known heart problems or disease, in generally good health, and 

fluent in written and spoken English. All participants provided informed consent prior to 

participation. Participants were paid a maximum of $100 CAD for participation, based on 

their compliance with study procedures. All 10 participants received the full payment.   

 

Apparatus 

The Biostrap wristband is a commercially available PPG sensor of heart rate 

(https://biostrap.com). Biostrap (formerly Wavelet) has been validated against clinical-grade 

wearable devices and ECG (Dur et al., 2018; Jarchi et al., 2018; Steinberg, Yuceege, Mutlu, 

Korkmaz, van Mourik, et al., 2017). The device uses long wavelength light (red) to detect 

pulse. Automatic sampling is performed once in every 5 minutes (in enhanced mode), each 

recording lasting for 45 seconds at 43 Hz frequency. The raw data are stored on the sensor’s 

internal memory, then transmitted to a smartphone app via Bluetooth connection, and then to 

the Biostrap server where the data is processed.  

 

The output provided by Biostrap includes: heart rate in beats per minute (BPM), heart rate 

variability (HRV) indexed as the root mean square difference between successive heartbeats 

(rMSSD), oxygen saturation, and respiration rate. This information is provided per 

measurement, which can be as frequent as once in every 5 minutes. The sensor also includes 
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an accelerometer, which provides information on the number of steps completed by the 

wearer. Based on a combination of these metrics, sleep onset and offset are detected.  

 

The commercial Biostrap smartphone app ordinarily shows the user their heart rate and heart 

rate variability, number of steps, and a sleep score on the app’s home screen (these metrics 

are shown by default).  It also indicates the battery status and the last time the data were 

synchronized with the app. In this study the app was blinded to participants, so that it was 

unable to display any biometrics; only the battery status was visible to them.  Ecological 

momentary assessments were delivered using Ipromptu smartphone app 

(http://www.ipromptu.net) 

 

Procedure 

Invited participants arrived at the lab in the Department of Psychology at UBC for an 

introductory session, where they were introduced to the Biostrap device, provided personal 

demographic information, and completed questionnaires on emotional, self-control, and 

personality traits (which are not reported here).  

 

Each participant received a fully-charged Biostrap wristband to wear for the duration of the 

study along with a charging plate. The Biostrap app was installed on participants’ 

smartphones and they were instructed on the use the sensor and how to ensure the data were 

synchronized regularly. Instructions to participants emphasized that they were to wear the 

device at all times, including times of exercise and sleep, except for when charging the device 

or taking a shower or bath. Participants wore the Biostrap continuously for 8-11 days 
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In addition, participants were asked to track their emotional state using an ecological 

momentary assessment (EMA) approach. Ipromptu app (http://www.ipromptu.net) was used 

to deliver short surveys 6 times a day, at random times between 8 am and 8 pm. If not 

responded, a prompt repeated twice, with 15-minute intervals, and was available for response 

for several hours. Participants were instructed to respond to at least 1 and as many prompts as 

they could. On each prompt, a 8-question survey asked participants to rate, on a scale from 1 

to 10, how happy / energetic / nervous / afraid / irritable / angry they are and how much pain 

and discomfort they were feeling, in random order. 

 

Participants returned to the lab at least 8 days after their introductory meeting to conclude the 

study. They returned the Biostrap devices, were debriefed about the purpose of the study, and 

paid for their participation. 

 

The study procedures were approved by the institutional Research Ethics Board (approval 

number H19-01197). Data, materials, and analysis code for this study are available at 

https://zenodo.org/badge/latestdoi/520639317. 

Results 

Data processing 

The heart-rate measurements consisted of raw PPG waveforms, which were processed by 

Biostrap’s algorithms in their servers (Dur et al., 2018).  The data presented here were based 

on the aggregated metrics provided by the Biostrap for each successful sample, which 

included beats per minute (BPM) and heart rate variability (HRV), calculated as the root 

mean square difference between successive heartbeats (rMSSD).  Hereafter we will refer to 

HRV for simplicity, instead of rMSSD. These heart-rate measures were further screened for 

artifacts and anomalies in two steps. First, all 0 values were removed (affecting 0% of BPM 
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and an average of 19.26% of HRV samples across all participants).  Second, values 

exceeding each participant’s mean by more than 2 standard deviations over the whole 

observation period were removed (affecting 2.84% of BPM, and 2.19% of HRV across all 

participants). 

 

Participants’ state (asleep vs. awake) was established using the heart-rate indices in the 

following way. We found periods of at least 2 hours in duration when BPM samples were 

successfully recorded at least every 15 minutes.  We then chose the longest such period on 

each day and assumed that it corresponded to sleep. Although time of day was not a criterion 

for determining sleep periods, all the sleep periods established in this way happened to occur 

between 9 pm and 11 am. These criteria allowed us to detect at least 5 periods of sleep for 8 

of 10 participants. We recognize that these criteria do not guarantee that participants were 

awake at all other times, and as such, that this potentially biases awake observations to be 

appear to be more similar to sleep periods. But to anticipate the results, the density and 

reliability of HR and HRV assessment during sleep periods defined in this way were greater 

by orders of magnitude than they were during the defined wakeful times. 

 

Heart-rate data was successfully recorded for only 2 sleep periods for one participant and 

only 1 sleep period for another, and so their data were not included in the analyses. Days with 

only one HRV sample during wakeful times (5 periods across participants) were also 

excluded from the analyses.  All participants had more than one HRV sample during sleep. 

These exclusions left us with 8 participants tracked continuously for 5 to 11 days, and a total 

of 6840 samples for BPM and 5530 samples for HRV. 
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Descriptive statistics 

Figure 8 shows the frequency of successful heart-rate samples for BPM and HRV made 

during wakeful and sleeping periods. The pattern of these two variables was generally 

consistent across participants.  The mean number of BPM samples acquired for waking 

periods was 19.42 (SD = 13.52), and the mean number of sleep samples was 74.6 (SD = 

24.43). The mean number of HRV wakeful samples was 13.65 (SD = 9.63) and the mean of 

sleep samples was 69.70 (SD = 22.63).  

 

Figure 8. Average number of successful measurements of BPM and HRV per participant per day during 

wakefulness and sleep. Panel A shows average number of successful measurements of BPM, panel B shows 

the same data for HRV per day and per participant during wakefulness (orange) and sleep (grey). 

 

Figure 9 shows the mean BPM and HRV for each participant, separately for wakefulness and 

sleep. The figure shows that there are pronounced individual differences in both biometrics, 

with some participants having consistently higher HRV or BPM than others. The variability 

of the wakeful measurements is also visibly larger than the variability of sleep measurements. 

These observations were confirmed by the following analyses. 
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Figure 9. Average HR and HRV per participant during sleep and wakefulness. Panel A: The mean BPM for each 

participant, separated for sleep and wakefulness. Panel B: The mean HRV for each participant, separated for 

sleep and wakefulness. Participants are rank ordered in each panel based on their HRV during sleep. 

Participant 186 had no biometric recordings for wakeful time. 

 

Between participant reliability 

A one-way random single-measure ICC(1,1) was computed for the 8 participants’ mean BPM 

and HRV, separately for wakeful and sleep period samples.  ICC values for were consistently 

higher for sleep periods than for wakeful periods.  This was true for both BPM values (sleep: 

ICC(1,1) = .89.6, 95%CI [.79 .97], p < .001; wakefulness: ICC(1,1) = .55, 95%CI [.34 .83], p 

< .001) and for HRV values (sleep: ICC(1,1) = .84, 95%CI [.70 .95], p < .001; wakeful: 

ICC(1,1) = .39, 95%CI [.19 .73], p < .001). These high ICC values for sleep, along with only 

moderate ICC values for wakefulness, imply that individual differences in heart rate and heart 

rate variability can be measured more reliably with a commercial PPG sensor during sleep 

than wakefulness. 

 

These data suggest that BPM and HRV measured through a commercial wearable device are 

relatively stable between people, meaning that a person whose BPM or HRV is higher than 

other people’s on one day/night is likely to have BPM or HRV higher than other people on 

any other day/night.  
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Within-participant reliability 

Within-participant reliability was assessed using a split-half approach and mixed model regression. 

We compare two methods of splitting the data: time-sensitive (split into odd and even samples, by 

order of measurement) and random (dividing the datapoints into two samples randomly, so that a 

sample from early in the day is equally likely to be paired with a sample from later or earlier in the 

day). For both methods, a mixed model regression is then computed predicting one estimate of the 

biometric (e.g., average of the odd datapoints) from the other estimate (e.g., average of the even 

datapoints), with participant as the random factor (see formula 3), and Satterthwaite’s correction for 

the degrees of freedom. 

   

The time-sensitive method resulted in estimates of the within-participant reliability of BPM and HRV 

illustrated in Figure 10.  Panel A shows that reliability of BPM was very high for the sleep and 

wakeful periods alike. The effect of predictor BPM was highly significant in both models, beta = 

0.99, t(9.17) = 91.8, p < .001 and beta = 0.82, t(18.8) = 7.91, p < .001, respectively. Panel B shows 

that the fit between predictor and criterion for HRV was also generally high during sleep, beta = 0.96, 

t(57) = 51.18, p < .001, but not during wakefulness, beta = .097, t(47.26) = 0.92, p = .36.  

 

Figure 10. Within-participant reliability of HR and HRV during sleep and wakefulness estimated with the time-

sensitive method. Panel A shows within-participant reliability of BPM, panel B of HRV. Data recorded during 
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sleep is shown in red, during wakefulness in blue. Shaded area represents 95% CI, dots represent partial 

residuals. 

 

Random splitting into the subsamples, as mentioned above, can result in extraordinarily low 

or high estimate of reliability. Therefore, we performed the split 1000 times, computing 

mixed-model regression each time. Figure 11 shows distributions of the resulting beta values 

for HR and HRV during sleep and wakefulness. We estimated reliability as the average beta 

across the 1000 iterations.  

 

For BPM, random method produced reliability estimates that were very close to those 

resulting from the time-sensitive approach, if slightly lower during wakeful time, Mbeta_sleep = 

.99, SD = .02, Mbeta_wakeful = .89, SD = .058. For HRV during sleep, reliability from the 

random method was slightly lower than from the time-sensitive approach, Mbeta_sleep = .98, SD 

= .03, supporting our assumptions. However, for wakeful HRV random approach resulted in 

somewhat higher estimated reliability than that produced by time-sensitive method, 

Mbeta_wakeful = .22, SD = .13.  

 

To summarize, the two methods of estimating within-participant reliability revealed that both 

BPM and HRV were highly reliable during sleep, BPM was also very reliable during wakeful 

time, yet reliability of HRV during wakeful time was drastically lower. The two methods 

diverged in assessment of the latter, and not in the predicted direction, with the time-sensitive 

method yielding much lower estimate of reliability. Notice, however, that the number of 

datapoints obtained for HRV during wakeful hours was much lower than for sleep-time HRV 

or for BPM during wakefulness (see descriptive statistics above). Therefore, the amount of 

time separating successive datapoints must have been particularly long for wakeful HRV, 

likely exceeding the period during which we would expect such a volatile measure as is HRV 
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to be stable. The fact that the range of reliability estimates obtained with the random method 

was extremely wide (0.2 – 1) supports this reasoning.  

Figure 11. Within-participant reliability of HR and HRV during sleep and wakefulness estimated with the 

random approach. Top raw shows beta distributions for HR, during sleep (left panel) and wakefulness (right 

panel). Bottom raw shows beta distributions for HRV. The red lines show estimated with the time-sensitive 

method. 

 

Interim discussion 

We have demonstrated how between-person and within-person reliability can be estimated in 

data readily available from a commercial wearable sensor of cardiac biometrics. In case of 

this particular device, between-person reliability as assessed with ICC was excellent for 

sleep-time HR and HRV, but only moderate for wakeful biometrics. Within-person 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.02.510535doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.02.510535
http://creativecommons.org/licenses/by-nd/4.0/


31 

reliability, assessed using split-half and mixed model regression approach, was near-perfect 

for HR during sleep as well as wakeful time, but HRV was only reliable within-person during 

sleep, not during wakefulness.  

 

One immediate consequence of compromised reliability of a measure is the ability to detect 

its relationships with other variables (Spearman, 1904). To demonstrate this, in what follows 

we tested whether BPM and HRV can be predicted from subjectively reported emotional 

states of the participants. Multiple laboratory studies showed that stress and cardiac 

biomarkers are strongly associated, and this relationship was recently replicated with 

wearable sensors (Coutts et al., 2020; Hovsepian et al., 2015). We had no prior hypothesis as 

to which of the biomarkers (BPM, HRV) would produce stronger association if they were 

measured with equal fidelity. 

 

Correlations between biomarkers and subjective emotion  

To analyze subjective emotions captured with the EMA, we averaged the 4 negative emotions 

on each prompt (irritable, afraid, nervous, angry), and the 2 positive emotions (happy, 

energetic). We then averaged responses to all the prompts within one day, which resulted in 

two scores per day: one for positive and one for negative emotions.  

 

We then used these two scores (negative and positive emotions) as predictors in mixed model 

regressions with participants as random factor. We first tested wakeful BPM (and wakeful 

HRV in separate analyses) on the concurrent day as the dependent variables. Then we tested 

the same models on sleep BPM (and sleep HRV in separate analyses), either on the preceding 

night (two models) or following night (two more models). This meant that six models were 

tested in all, prompting us to use Bonferroni corrections to test for significance. The only 
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marginally significant association involved a negative one between sleep-BPM and lower 

negative mood reports on the subsequent reporting day, beta = -2.11, t(40.25) = -2.745, p = 

.054 (Bonferroni corrected). This meant that when a participant experienced higher sleep-

BPM they were less likely to report negative emotions on the following day; when they 

experienced lower sleep-BMP they were more likely to report negative emotions the next 

day. Wakeful-BPM was not reliably associated with either positive or negative emotions, ps 

> .5 (uncorrected). 

 

For HRV, the strongest effect was also one where relatively higher sleep-HRV on a given 

night predicted greater negative emotions on the subsequent day, beta = 4.45, t(40.5) = 1.79, 

p = .081 (uncorrected). Wakeful-HRV was not associated with either positive or negative 

emotions, ps > .2 (uncorrected). 

Figure 12. Association between negative emotions and sleep HR(V). Predicting sleep-BPM (left panel) and 

sleep-HRV (right panel) from negative emotions on a subsequent day. Grey area represents 95% CI. 

Interim discussion 

Our attempt to test the association between mood during a day with cardiac biometrics 

concurrently (wakeful), on preceding or following night, revealed a predictive relationship 

between night-time BPM and mood on subsequent day. We cannot tell from this study 

whether the difference between the results for BPM and HRV stems from difference in 
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reliability only or for other reasons unrelated to measurement fidelity. However, the 

difference between wakeful and sleep BPM in predicting daytime mood is surprising, given 

that both mood and cardiac biometrics change rapidly, so the closer in time they are measured 

the higher we would assume the association to be. It is therefore plausible that the association 

between daytime BPM and mood was compromised by the lower reliability of daytime 

measurement.  

General Discussion  
The validity of data from wearable sensors is now thought to be quite good (Barrios et al., 

2019; Dur et al., 2018; Hernando et al., 2018; Kinnunen et al., 2020; Menghini et al., 2019; 

Steinberg, Yuceege, Mutlu, Korkmaz, van Mourik, et al., 2017). However, the reliability of 

the biometrics captured by these devices in daily life has so far been assumed to be high, but 

it has rarely been tested systematically. Interestingly, recent reports of using wearable sensors 

of HR & HRV outside of laboratory or clinical settings have revealed that validity of data 

from wearable sensors (i.e., correlations with a criterion, usually a medical-grade wearable 

device) in the conditions of everyday life is lower than expected from laboratory studies 

where participants are typically at quiet rest (Galarnyk et al., 2019; Sneddon & Carlin, 2019). 

The finding by Van Voorhees et al. (2022) that reliability of a wearable (Empatica E4) HRV 

measurement across 24 hours was unacceptably low offers an account of low validity of 

wearable sensors outside of a lab. Our examination of wearable data reliability in the present 

study also suggests that day-time measurements of HR and HRV are highly unreliable. Yet 

rather than be discouraged by these data, we suggest focusing on how wearable sensors can 

be used to deliver data that is reliable – and we do so by assessing the sensor’s reliability in 

different situations. This approach has been taken previously in the fields of movement 

science and athletics, where there was a growing awareness of the importance of testing the 

reliability of many forms of sensing technology in varying environmental and situational 
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contexts (Evenson & Spade, 2020; Kobsar et al., 2020; Kooiman et al., 2015; Straiton et al., 

2018). 

 

Here we applied the theory of reliability developed for psychological questionnaires to 

physiological measurements obtained with a wearable device. In doing so, it is important to 

keep in mind the research goals and questions. If measurements are performed for 

comparisons between persons, between-participant reliability should be assessed, e.g., using 

ICC. If, however, the aim of measurement is to detect different states within the same person, 

within-person reliability should be estimated, e.g., using a combination of split-half and 

mixed-model approach. While estimating between-participant reliability is straightforward, 

estimating within-person reliability, without additional devices and measurements, must take 

into account the time-sensitive nature of the measurements being made.  In the case of HR 

and HRV, the passage of time is a critical variable.  Other physiological measurements will 

likely have similar considerations that are specific to the type of measurement being made. 

 

We applied this approach to commercially available PPG sensors of cardiac biometrics, 

showing how between- and within-person reliability could be estimated from open-source 

data.  The results showed that both between- and within-participant reliability of heart rate 

measurement varies for the different brands of wearables. Across different brands, it also 

varies for the different levels of user’s activity. This suggests that even the most reliable of 

the sensors tested (Apple Watch, Biovotion) may produce more or less reliable measurement 

in different circumstances.  

 

Focusing on the Biostrap wearable sensor with or own data, we found that the between 

participant reliability of HR and HRV was excellent during sleep (ICC > .75), but only fair 
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during wakefulness (ICC [.4 .6]). Within-participant reliability of HRV was also found to be 

higher during sleep than during wakefulness. Finally, we found that correlations of HR and 

HRV with a second variable – in our case, subjectively reported mood – were stronger for the 

most reliable metric, sleep-time BPM. Taken as a whole, the present data suggests that the 

wearable sensor we used (Biostrap) provides data that is highly reliable during sleep, and less 

so during wakefulness.  

 

The most popular testing of wearable devices has focused so far on measuring their validity 

during different types of activity (levels of physical activity, usually – (Barrios et al., 2019; 

Thomson et al., 2019)). This is not surprising given that the early vision for the application of 

wearable devices was to regulate exercise load for health or performance optimisation, and 

this is still the primary use of many wearable devices today (Almeida et al., 2019; Thomson 

et al., 2019). These studies have shown that that some measurements cannot be taken reliably 

during physical activity (Almeida et al., 2019). At the same time, other studies have shown 

that the application of wearables is not limited to detecting acute events (such as exercise 

load or acute stress), but that they can be useful in indexing slower fluctuations in the user’s 

state, such as overall physical shape or allostatic stress, which affect one’s long-term health 

and wellbeing (Chuang et al., 2015; Koskimäki et al., 2019). This development opens up a 

unique research opportunity to measure psychophysiology longitudinally, across a variety of 

real-world contexts and extensive time periods (Kleckner et al., 2021). And this purpose 

might be best achieved with measurements taken during acute events or during recovery after 

those events. Indeed, a large body of studies have begun to investigate stress by focusing on 

recovery after stress, rather than on what is going on at the moment of acute stress (Allen et 

al., 2014). The hope is that by systematically quantifying measurement fidelity in different 
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circumstances, researchers will eventually be able to make informed choices about specific 

wearable devices and measurement procedures that meet their research goals.  
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