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Abstract

Wearable sensors are quickly making their way into psychophysiological research, as they
provide the only way to collect longitudinal and ecologically valid data. The present tutorial
considers fidelity of physiological measurement with wearable sensors, focusing specifically
on reliability of the measurement. We elaborate why ensuring reliability for wearables is
important, and offer statistical tools for assessing wearable reliability for between
participants and within-participant designs. The tools proposed in this tutorial allow
estimating measurement reliability (precision) from data readily available from any
wearable sensor, without referencing benchmark equipment. The framework offered here is
illustrated in two studies: In Study 1, we applied reliability estimates we offer to a publicly
available dataset of heart rate measured from 53 participants with 6 different sensors. In
Study 2 we applied reliability calculations to data collected with one wearable sensor of
cardiac biometrics (Biostrap) in the wild, outside of the laboratory. Our hope is that by
systematically quantifying measurement fidelity in different circumstances, researchers will
eventually be able to make informed choices about specific wearable devices and
measurement procedures that meet their research goals.

Translational Abstract

Wearable sensors are the technological breakthrough of this decade. The promise is that
devices like smart watches will soon monitor many bodily states, providing data to predict
illnesses and optimize performance. While many studies examine the validity of wearable
signals, much less attention is paid to their reliability. Here we argue that reliable
measurements are crucial for indexing physiological states in the daily life of participants.
We offer a framework and several statistical tools for assessing the reliability of sensors. The
framework is tested using several brands of commercially available photoplethysmography-
based wrist-worn heart rate sensors. The results show that (1) different brands of wearable
sensors of heart rate have different between-participant reliability, (2) reliability of heart
rate and especially heart rate variability varies along with the intensity of activity
participants engage in, (3) reliability of heart rate and especially heart rate variability is
higher during sleep than during wakefulness. We conclude that reliability of a wearable
sensor is not fixed but varies across different contexts and circumstances. Estimating
reliability is thus a useful way to quantify measurement fidelity for a particular research
question, a specific new experimental procedure, or a special target population.
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Introduction

A bathroom scaleis areliable measure of one’ s weight, provided one stands still on the scale
for several moments. Yet oneislikely to discard the measurement shown by the scale if one
is startled by a spider during these moments. Trying to measure cardiac signals with a
wearable sensor is alittle like trying to measure one's weight while dancing on the scale. The
fidelity of the measurement will depend not only on sensor’s accuracy but also on the

environmental conditions under which the measurement was taken.

The recent rapid proliferation of wearable sensing technology has been accompanied by
many tests of their validity (Barrios et a., 2019; Bent et al., 2020; Dur et a., 2018; Hernando
et a., 2018; Kinnunen et al., 2020; Koskimaki et al., 2018; Menghini et al., 2019; Steinberg,
Y uceege, Mutlu, Korkmaz, Van Mourik, et a., 2017), usually by examining the correlation of
the wearable’s signal in aquiet environment with that of trusted laboratory equipment (van
Lier et al., 2020). What is usually overlooked in these tests is that most laboratory
measurement procedures severely limit participants' bodily movements and cognitive
activities (Berntson et a., 2007). In sharp contrast, wearable devices promise to measure the
same physiological signals across awide variety of environments and bodily states. Y et
without further testing, there is no guarantee that wearables will yield accurate measurements

in all contexts.

For example, Empatica’s electrodermal activity (EDA) measurement showed high agreement
with the EDA measurement taken under laboratory conditions. Y et in a study that measured
EDA with Empatica for 20 hrs per participant in their daily lives, 78% of the measurements
were artifacts and no meaningful analysis could be performed with the remaining data (Zheng

& Poon, 2016). In another study, which aimed to establish the validity of Empatica’'s HRV
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measurement against a Holter ECG monitor in 24-hour ambulatory monitoring, it the
reported reliability of Empatica’s measurement of heart rate variability (HRV) was lower
than that of Holter device, and the proportion of missing data was higher (Van Voorhees et

a., 2022).

The present paper focuses on the question: when can measurement from a wearable device be
trusted? Keeping in mind that the appeal of wearable sensors is to measure physiology under
conditions where a benchmark device (e.g., ECG) is not viable, we offer several sttistical
tools that allow assessing measurement fidelity without referencing a second device. The

tools we offer are based on the concept of reliability (Revelle & Condon, 2019).

It is textbook knowledge that measurement fidelity can be decomposed into two components:
validity and reliability. Validity denotes measurement accuracy — usually determined as
correspondence of measurement to another gold-standard measurement of the same variable.
Reliability refers to measurement precision —that is, consistency of several measurements
taken in the same conditions and/or with the same equipment. It is useful to distinguish
between validity and reliability, as can be demonstrated by considering an example of drunk
dart thrower. What does being drunk do: limit accuracy, limit precision, or doesit limit both?
As shown in Figure 1 (https://conjointly.com/kb/reliability-and-validity/), the two are
orthogonal. If adrunk lacks accuracy, they behave asin A, being consistently off the mark
but with reasonable precision. If they lack precision, they do most poorly in B, though their
average accuracy isstill good. If they lack both, it isbox C. This example helps understand
why low reliability makes accuracy hard to determine. There istoo much scatter in the data

to estimate the mean with confidence. It also helps understand how high reliability does not
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guarantee accuracy: the dart thrower may be very precise (reliable) but consistently off the

mark.

Rellable Yalld Nelther Rellable  Both Reliable

Mot Vald Not Rellable Nor Yalld And Valld
Figure 1. lllustration of the relationships between validity and reliability using the example of drunk dart
thrower {image taken from https://conjointly.com/kb/reliability-and-validity/).

We begin by noting that the theory of measurement reliability was originally developed for
assessing fidelity of subjective reports (questionnaires, ratings); not for physiological
measures. When parti cipants are responding to questionnaires, one cannot fully control the
conditions under which they are being filled out (noise, distractions, time pressure) and what
factors other than the question may be influencing their responses. Tools to assess response
reliability were designed to measure this uncertainty. As we already mentioned,
physiological measurements were not given the same treatment because it was simply
assumed that measurements taken in a psychophysiology laboratory occurred under strictly
regulated conditions (Berntson et al., 2007). However, signals from wearable sensors are
beset by uncertainty that is more similar to the measurement of questionnaire data than
laboratory physiological data. Therefore, in this paper we apply reliability concepts and tools
to physiological data from awearable device, in order to estimate measurement reliability.
Notice that the reliability analyses we propose are performed on data readily available from

any wearable device, without additional devices and measurements.
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To the best of our knowledge, wearable device reliability has not been considered in detail
before. Kleckner et a. (Kleckner et al., 2021) mentioned that for a wearable sensor to be
accurate its measurement has to be reliable, but their proposed framework for choosing a
wearable device for research offers no guidelines on assessing its reliability. Here we fill this
gap, by offering several readily accessible tools to estimate reliability of measurement with

respect to aparticular goal.

Definitions

M easurement reliability refers to the consistency of a measurement when the device is worn
by different people, at different times, and in different situations; the complement of
reliability is measurement uncertainty. Not only does this uncertainty undermine the accurate
measurement of a physiological state, but it seriously weakens the ability to use the measured
physiological state as a predictor of other outcomes. Spearman (Spearman, 1904) noted this
issue long ago, showing that low reliability in a predictor variable directly decreases the
measured agreement between predictor and outcome variables (Johnson, 1944; Nimon et al.,
2012; Revelle & Condon, 2019). Despite this well-known relationship between measurement
error and measures of association, many statistical treatments assume that predictor variables
(e.g., predictorsin aregression) are measured without error, simply because accurate
predictor datais the standard assumption in the application of linear regression (Sklar et al.,
2021). And it turns out, that low predictor reliability weakens the results of many statistical
tests, not just correlations (Nimon et a., 2012). Although there are ways to assess reliability
(Revelle & Condon, 2019) and to correct some statistics for it (Spearman, 1904), many
researchers do not use them (Nimon et al., 2012; Revelle & Condon, 2019). To summarize,
the low reliability of a physiological measurement can prevent one from discovering its true

association with other variables.
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It isimportant to note that not all measurement variability is measurement error. Rather,
researchers try to distinguish among sources of potential variance in a measurement, and
accordingly, the consequences of these various types of variability on measures of reliability
(Nimon et al., 2012; Revelle & Condon, 2019). Human physiology is affected by at least two
broad groups of factors: constitutional factors and situational variables (Fatisson et al., 2016;

Shaffer & Ginsberg, 2017).

Constitutional factors refer to enduring or trait-like states of the body. In the case of cardiac
measurements, these factors can be intuitively linked to gender, age, body mass index,
physical fitness, and chronic medical conditions. This assembly of stable personal traits has
predictable influences on, e.g., blood pressure (Printz & Jaworski, 2004), heart rate
(Sommerfeldt et al., 2019; Zhang et al., 2016), and heart rate variability (Laborde et a., 2017;
Natargjan et al., 2020; Shaffer & Ginsberg, 2017). The stability of a person’s physiological
parameter measured in different situations is thus referred to as between-per son reliability
(sometimes also as “relative reliability”, or parameter level measurement precision— see (van
Lier et al., 2020)), because it indexes the extent to which a person’s parameter is stable
relative to other people in different situations. For example, if one’s heart rate (HR) or heart
rate variability (HRV) is generally high when compared to other people in alaboratory
testing, then we would expect their HRV assessed by a wearable device to also show that it

was generally higher than other people’ s data measured by the same device.

The second source of cardiac variability — situational factors — refer to physical activity,
stress level, and other more transient physiological states. For example elevated heart rate

along with reduced HRYV is associated with fever (Karjalainen & Viitasalo, 1986),
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inflammation (Williams et a., 2019), and acute pain (Chowdhury et al., 2021; Kasaeyan
Naeini et al., 2021; Koenig et al., 2014; Lim et al., 2019), as well as mental stress (Brosschot
et a., 2007; Hernando et al., 2018; Hovsepian et al., 2015) and physical effort (Perini &
Veicsteinas, 2003; Tulppo et al., 1998). It is these situational factors that are spurring much
of the current interest in wearable devices. The hope is that tracking users’ heart-rate
biometrics will provide a useful clue for ensuring their health and wellbeing. For instance,
studies that compared physically fit people to those who do not exercise as much (between-
participant design) tend to show that physical fitness is associated with higher HRV
(Buchheit et al., 2005; Rennie et al., 2003; Tulppo et al., 1998). It is plausible to assume then
that increasing one’s fitness will result in an increase in HRV, when compared to the same
person’s HRV before training. But confirming this conclusion really calls for a within-person
study design —i.e., measuring HRV in the same person before and after a change in fitness
(Janse van Rensburg et al., 2012; Routledge et a., 2010). A within-person comparison of
biomarkers therefore calls for the assessment of within-person reliability. Thisisalso
sometimes referred to as “absolute reliability,” and it quantifies the stability of a sensor’s
readings from the same person over time (for a greater in-depth discussion of between and

within-person reliability see (Revelle & Condon, 2019)).

Measuring between-person reliability

Between-person reliability refers to the stability of measurement for the same person, across
time and contexts. In simple words, it is the agreement between measurements taken at
different times for the same person (see Figure 2 for illustration). Let us consider asingle
measurement as

xij: [,l+ T'i+ vij

where
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u isthe population average,
u + r; isthe average for each participant i,

v;; IS measurement error

Using these terms, between participant reliability can be expressed as

o2
p= 5
of + o2

Thisisthetraditional formulation of population Intra-class correlation (ICC - (Bartko,

1966)). For a specific sample, in its most general form, it can be computed as:

MSBS — MSWS

I =
CC= USBS ¥ (k= DMSWs

where
MSBS s the mean sum of squared deviations between the participants
MSWSis the mean sum of squared deviations within the participants

k is the number of measurements (which is required to be equal across participants).

Theoretically, ICC varies from -1 to 1*, and should be interpreted in the same way as
correlation coefficient: the closer to 1 the higher the agreement, with ICC > .75 representing

excellent reliability (Cicchetti, 1994).

Several different forms of ICC are available when modeling additional sources of variance.
For example, consider a number of patients being examined by several doctors (raters), which
isaclassic case for ICC application. In this case, it is standard to model the variation among

the raters using two-way ICC, based on the assumption that different people may provide

1 . .
In practice values close to -1 are not usually observed and would suggest existence of a strong source of
systematic variance in the measurement. Negative numbers near O suggest low reliability.
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ratings that are systematically different from one another (specific to each rater). For a
physiological measure, when there isno a-priori reason to assume that individual sensors
would be systematically different in their measurement, the most general one-way 1CC would
be sufficient. The formulas above represent one-way |CC, capturing between-participant
variance (M SBS) against noise variance (MSWS) only. If one wishes to model individual
variation along with systematic difference between measurement devices (e.g., different

models) or circumstances (e.g., exercise, stress, rest), then atwo-way 1CC may be applicable.

In addition to deciding whether one-way or two-way ICC is most appropriate, a decision also
needs to be made whether to use single measurement or multi ple measurements options.
Single measurement 1CC estimates representativeness of a single measurement for the
person’s parameter value. Multiple measurements |CC estimates representativeness of the
average across al measurements. For additional details and guidelines see (Liljequist et al.,

2019; Revelle & Condon, 2019).

ICC(1,1) = -0.173 IcC(1,1) =.74
. !
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Figure 2. Simulated data of 4 measurements per each of 4 participants. Left panel shows an example of low
discriminability between participants, i.e. low one-way single-measure ICC. Right panel shows a case in which
each participant’s physiological index is highly individual, resulting in high ICC and high between-participant
reliability.
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Measuring within-person reliability

Within-person reliability refersto the stability of a measurement taken in the same situation,
for a given person. In the extreme, it would refer to two identical devices producing equal
measurements when used simultaneously on the same person. For asingle device,
considering measurement as

xij: y+ T'i+ Sj+ vijk

where s; is a particular situation, within-participant reliability would be the opposite of the
magnitude of v, . The conceptual distinction between signal and noiseis crucia when
considering within-person reliability and will depend on a particular design and aims of the

measurement situation (for further guidance see (Revelle & Condon, 2019)).

Let us consider asimple example. Imagine we are measuring the heart rate of a particular
person, taking several measurements during rest, a few more measurements during mentally
stressful activity, and afew more during physical exercise. We would expect high agreement
within rest measurements, and distinct but clustered measurements during each type of
activity. Mixed model regression predicting heart rate measured at time 1 from heart rate
measured at time 2, with situation (rest, mental activity, physical activity, recovery) as the
random factor takes the following form:

HR, ~ a + beta * HR, + 1|situation
Asin general linear regression approach, beta is the estimate of the association between the
predictor and the predicted variable. In this case, beta quantifies the amount of agreement
between measurements taken during each situation. If we test more than one person, we
should add a random factor of participant, to remove variance associated with individual

differences and focus on within-participant consistency:

HR, ~ a+ betax HR, + 1|situation + 1|participant

11
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Figure 3A shows an example data ssmulating 4 participantsin 4 types of situations where

both between- and within-participant reliability (consistency) are high.
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Figure 3. Simulated data of 8 measurements for each of 4 participants, in 4 situations (colour coded). Panel A
shows an example of high between- and within-participant reliability, where the observations are consistent
per participant and per situation. Panel B shows example of high between-participant reliability yet low
within-participant reliability. Panel C shows high within- and low between-participant reliability, where
datapoints are consistent within a situation yet do not reliably distinguish between different individuals. Panel
D shows low within- and between-participant reliability.

As can be seen, thistype of analysis requires two measurements for the physiological index

of interest in each situation. Traditionally, with subjective responses to questionnaires, the
questions were divided into two subsamples by the order of their appearance, taking either
first and second half of the questionnaire as the two subsamples, or odd vs. even questions (so
called split-half approach, (Spearman, 1904; Van Norman & Parker, 2018). Unlike
questionnaires, physiological measurement, especially those obtained with awearable device
in ecological settings, is performed over alonger time span than is required to fill out a

questionnaire, often with the aim of quantifying a change in the person’s state from one

12
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measurement to the next. Given the volatility of physiological measurement in time, the
closer two samples occur in time, the more similar we would expect them to be. In other
words, it is reasonable to expect that time is a systematic factor that must be taken into
account. Assigning each datapoint a number by order of its acquisition, then aggregating
(averaging) al odd and even datapoints allows one to measure consistency between instances
that are taken as close in time as possible. We will refer to this as time-sensitive sampling.
An alternative approach that is not time-sensitive might involve dividing all measurements
into two subsamples randomly. With just one instance of such division, there isanon-zero
chance that by coincidence the two subsamples will be uncharacteristically similar or
dissimilar. However, if arandom split is performed multiple times, we can estimate within-
participant reliability from the resulting distribution of betas. In the next section, we will
compare these two methods of dividing the datapoints to provide an assessment of within-

person reliability.

Empirical examples
We first apply the approach proposed here to a case of a commercially available PPG-based

sensors of cardiac biometrics (heart rate and heart rate variability). The main aim of this
demonstration is to demonstrate how much measurement fidelity of a wearable sensor varies
with the conditions of everyday life. We focus on the most discussed factors that affect
measurement fidelity of wearable sensors: (1) the make of the sensor (hardware + software)
and (2) physical activity of the user (Barrios et al., 2019; Thomson et al., 2019). We do this
by analyzing a publicly available dataset that contains heart rate recorded by 6 commercially
available PPG-based sensors (Bent & Dunn, 2021). We then move to apply the framework
proposed here to data collected outside of the |aboratory, where comparison to benchmark
ECG isnot viable. The naturalistic data were collected from 10 healthy participants who were

wearing another commercially available PPG sensor, Biostrap, for a week. We compare the

13
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reliability of data acquired during sleep and during active wakefulness. In addition, to
demonstrate the relationship between the reliability of a measurement and the magnitude of
its correlation with another variable (Revelle & Condon, 2019; Spearman, 1904) we test the

correlation between the two biometrics explored here with a measure of participants' mood.

Study 1: Reliability of 6 wearable sensors of cardiac
biometrics

Bent et a (Bent et al., 2020) conducted a study comparing 6 different wearable devices
against ECG to determine measurement fidelity of these devices under different conditions.
The data (beats per minute from each device) are publicly available (Bent & Dunn, 2021).
Here we analyze this dataset by applying the reliability estimation procedures already
described to assess the measurement fidelity of the devices without referencing ECG. We
compute between- and within-participant reliability for (a) the 6 wearable devices, and (b)

different activities.

Method
A total of 53 participants were tested with 6 wearable sensors while engaging in 4 types of

activities: rest, paced breathing, physical activity (walking), and typing. In between these
activities, the sensor was on the participant’s wrist and still recording, and so we include the
rest period as the 5" type of activity: task transition. Participants were wearing one or two

devices at atime, repeating the activities several times.

Results

Data processing

Heart rate was measured as beats per minute (BPM). Of these, we removed all the O values,

and then values more than 2 standard deviations above or below each participant’s average.
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For between-participant reliability, BPM datapoints were averaged per device and activity

type for each participant.

Between participant reliability

A one-way random single-measure |CC(1,1) was computed for the 44-53 participants’ mean
BPM, separately for each device, with the 5 activity types as the different measurement
instances. Table 1 and Figure 4 show the results. The 6 devices appear to have unequal
between-participant reliability, Biovotion showing the highest, and generally good reliability
of .65 (but also the largest number of participants without data), Empatica and Miband
showing only fair reliability of .38 and .37 respectively, and the other three devices showing

good reliability (Cicchetti, 1994).

Table 1

Between participant reliability for the 6 wearable sensors, listed in alphabetic order. Number of participants (N)
varies per sensor because of missing data.

Device ICC(1,1) 95% CI N
Apple Watch 54 [.44 .65] 53
Biovotion .65 [.55.75] 45
Empatica .38 [.27 .496] 53
Garmin .50 [.397 .61] 52
Fitbit 48 [.37 .59 53
Miband 37 [.27 .496] 50
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Figure 4. Between-participant reliability of the 6 brands of wearables devices. ICC(1,1) is shown, error bars
represent 95% Cl.

To explore measurement fidelity for different activities, we computed ICC(1,1) for the 5
types of activity, with devices serving as measurement instances. Table 2 shows the results.
Breathing, transitioning between activities, and rest elicited the most reliable measurements
across devices (ICC(1,1) of .66, .597, and .54, respectively). Physical activity (walking) and
typing produced ICC(1,1) of just .37, suggesting that measurement was quite noisy during

these activities.

Table 2

Between participant reliability for the 5 activities, listed in alphabetic order.

Activity ICC(L,1) 95% ClI N
Breathing .66 [.57.74] 53
Physical activity 37 [.27 .48] 53
Rest 54 [.44 .64] 53
Task Transition .60 [.51.69] 53

Typing 37 [.27 .48] 53
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Figure 5. Between-participant reliability across wearable devices for the 5 types of activity. ICC(1,1} is shown,
error bars represent 95% Cl.

Interim Discussion

Between participant reliability was examined in the dataset containing heart rate of 53
participants measured with 6 devices during 5 types of activities. Reliability varied between
the 6 devices, with Biovotion and Apple Watch showing highest reliability, closely followed
by Garmin and Fitbit, with Empatica and Miband showing lower reliability. Interestingly,
comparison to ECG measurement reported in Bent et al. (Bent et al., 2020) revealed that the
deviation from ECG was lowest for Apple Watch, followed by Garmin and Fitbit, followed
by Empatica and Miband, followed by Biovotion. That is, measurement fidelity as assessed
by comparison to ECG (validity) and as assessed by between participant reliability of the
measurement itself (reliability) match closely, with Biovotion being the only exception. It is
textbook that reliability is anecessary, but not sufficient condition for validity of

measurement. And thisis exactly what the data for, e.g., Apple Watch and Miband shows: As
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reliability of wearable devices decreases across brands, their validity decreases. At the same
time, Biovotion is agreat example of adevicethat is reliable (not much internal noise), yet
not valid (does not correspond to a benchmark device). Thus, high reliability does not
guarantee high validity (see Figure 1). But it is also true that low reliability makes it difficult
to determine validity at all. However, once validity is established, isit possible that
measurements are unreliable? We addressed this question by investigating different

participant activities.

Participants' activity affected reliability of the measurement as well, with calmer states
(breathing, transitioning, rest) producing higher reliability than more intense activities
(walking, typing). Thisis consistent with multiple previous studies, including Bent at al.
(Bent et al., 2020), reporting higher reliability for measurements taken during rest, and

reduced reliability with increased levels of activity.

Within-participant reliability
Within-participant reliability was assessed using a split-half approach and mixed model regression.

Because time stamps were not available for the dataset we analyze here, we could not use time-
sensitive approach, and only used a random split-half approach.

To explore within-participant reliability of the 6 devices, we split each participant’s heart rate
datapoints during each activity into random halves 1000 times, computing mixed-model regression
with participant as the random factor each time. Reliability was estimated as the average beta across
the 1000 iterations. To explore the reliability of measurement during different activities, we split each
participant’s heart rate as measured with each device into random halves 1000 times, submitting that

to mixed-model regression every time.
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Figure 6 and Table 3 show within-participant reliability for the 6 devices. As can be seen from the
table, all devices had excellent reliability in measuring heart rate across different situations within

participant. It can also be seen that reliability of Fitbit was noticeably lower, although still very high.

Table 3

Within-participant reliability for the 6 wearable sensors, listed in alphabetic order.
Device Mean Beta SD of Beta across iterations
Apple Watch 0.988 0.008
Biovotion 0.998 0.004
Empatica 0.994 0.006
Fitbit 0.959 0.016
Garmin 0.994 0.006
Miband 0.988 0.009

Mean Beta
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Figure 6. Within-participant reliability of the 6 brands of wearables devices. Error bars represent 1 SD.

Figure 7 and Table 4 show within-participant reliability for the 5 activities. It was also very high

across the activities, yet transitioning was noticeably less consistent than the other activities.

Table 4

Within-participant reliability for the 5 types of activity.

Activity Mean Beta SD of Beta across iterations
Breathing 0.986 0.009
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Phys.Activity 0.993 0.006
Rest 0.991 0.007
Transitioning 0.976 0.013
Typing 0.984 0.009
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Figure 7. Within-participant reliability for the 5 types of activity. Error bars represent 1 SD.

Discussion

We have explored within- and between-participant reliability of heart rate measured with 6
devices during 5 activities. The point of this demonstration was to show how measurement
fidelity can be estimated without referencing any benchmark device, from the data of asingle
sensor. Noticeable differences in between-participant reliability were observed for the six
brands of wearable sensors, and for different levels of activity participants engaged in. In
terms the two components of measurement fidelity — reliability and validity — the data
complied with textbooks showing that high reliability is a necessary, yet not sufficient

condition for validity. It shows that validity cannot be inferred from reliability, and that
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validation of adeviceis anecessary first step to ensure measurement fidelity under ideal
(laboratory) conditions. Y et as the analysis of different activity levels shows, even once an
acceptable level of validity is established under resting conditions, a wearable device can

produce measurement of suboptimal reliability under more active everyday conditions.

Within-participant reliability was very high across devices and activity levels. Heart rate is a great
example of a measurement that is highly consistent within-participant (high within-partici pant
reliability), but not always acceptable for distinguishing between participants (moderate between-
participant reliability). This most probably reflects the nature of heart rate, which has stable and quite
narrow limits for a given person, especially during wakeful time. In our next example (Study 2) we
examine less constrained measure — heart rate variability, and will benchmark how within- and

between-person reliability is manifested in this measure.

Study 2: Reliability of Biostrap during sleep and during
wakeful time

In this study we tested a commercially available Biostrap wristband sensor for both between-
person and within-person reliability of HR and HRV. In our treatment of within-person
reliability, we focus on comparing two diurnal states of the user: wakefulness and sleep.
Sleep corresponds to time passing with little to no change in the external environment and
fewer physiological changes than during wakeful periods (e.g., relatively little physical effort,
no eating or talking, relatively little stress and mental effort). We hypothesized that sleep

periods would produce less variable and therefore more reliable biometric recordings.
In this study, 10 participants wore a Biostrap device continuously for one week. They were
instructed to wear the device on their wrist at al times, except when charging the device

(about 1 hour daily) and when taking a bath or shower.
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Method

Participants

Ten participants (1 male) were recruited through Reservax (https.//www.reservax.com), an
online recruitment platform for behavioral studies. The inclusion criteria were: Participants at
least 18 years of age, without known heart problems or disease, in generally good health, and
fluent in written and spoken English. All participants provided informed consent prior to
participation. Participants were paid a maximum of $100 CAD for participation, based on

their compliance with study procedures. All 10 participants received the full payment.

Apparatus

The Biostrap wristband is acommercially available PPG sensor of heart rate

(https://biostrap.com). Biostrap (formerly Wavelet) has been validated against clinical-grade

wearable devices and ECG (Dur et al., 2018; Jarchi et a., 2018; Steinberg, Y uceege, Mutlu,
Korkmaz, van Mourik, et al., 2017). The device uses long wavelength light (red) to detect
pulse. Automatic sampling is performed once in every 5 minutes (in enhanced mode), each
recording lasting for 45 seconds at 43 Hz frequency. The raw data are stored on the sensor’s
internal memory, then transmitted to a smartphone app via Bluetooth connection, and then to

the Biostrap server where the datais processed.

The output provided by Biostrap includes. heart rate in beats per minute (BPM), heart rate
variability (HRV) indexed as the root mean square difference between successive heartbeats
(rMSSD), oxygen saturation, and respiration rate. This information is provided per

measurement, which can be as frequent as oncein every 5 minutes. The sensor also includes
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an accelerometer, which provides information on the number of steps completed by the

wearer. Based on a combination of these metrics, sleep onset and offset are detected.

The commercial Biostrap smartphone app ordinarily shows the user their heart rate and heart
rate variability, number of steps, and a sleep score on the app’s home screen (these metrics
are shown by default). It also indicates the battery status and the last time the data were
synchronized with the app. In this study the app was blinded to participants, so that it was
unable to display any biometrics; only the battery status was visible to them. Ecological
momentary assessments were delivered using |promptu smartphone app

(http://www.ipromptu.net)

Procedure

Invited participants arrived at the lab in the Department of Psychology at UBC for an
introductory session, where they were introduced to the Biostrap device, provided personal
demographic information, and completed questionnaires on emational, self-control, and

personality traits (which are not reported here).

Each participant received a fully-charged Biostrap wristband to wear for the duration of the
study along with a charging plate. The Biostrap app was installed on participants’
smartphones and they were instructed on the use the sensor and how to ensure the data were
synchronized regularly. Instructions to participants emphasized that they were to wear the
device at all times, including times of exercise and sleep, except for when charging the device

or taking a shower or bath. Participants wore the Biostrap continuously for 8-11 days
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In addition, participants were asked to track their emotional state using an ecological

momentary assessment (EMA) approach. |promptu app (http://www.ipromptu.net) was used

to deliver short surveys 6 times aday, at random times between 8 am and 8 pm. If not
responded, a prompt repeated twice, with 15-minute intervals, and was available for response
for several hours. Participants were instructed to respond to at least 1 and as many prompts as
they could. On each prompt, a 8-question survey asked participants to rate, on a scale from 1
to 10, how happy / energetic / nervous/ afraid / irritable / angry they are and how much pain

and discomfort they were feeling, in random order.

Participants returned to the lab at least 8 days after their introductory meeting to conclude the
study. They returned the Biostrap devices, were debriefed about the purpose of the study, and

paid for their participation.

The study procedures were approved by the institutional Research Ethics Board (approval
number H19-01197). Data, materials, and analysis code for this study are available at

https://zenodo.org/badge/latestdoi/520639317.

Results

Data processing

The heart-rate measurements consisted of raw PPG waveforms, which were processed by
Biostrap’s algorithms in their servers (Dur et al., 2018). The data presented here were based
on the aggregated metrics provided by the Biostrap for each successful sample, which
included beats per minute (BPM) and heart rate variability (HRV), calculated as the root
mean square difference between successive heartbeats (rMSSD). Hereafter we will refer to
HRV for simplicity, instead of rIMSSD. These heart-rate measures were further screened for

artifacts and anomalies in two steps. First, al 0 values were removed (affecting 0% of BPM
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and an average of 19.26% of HRV samples across all participants). Second, values
exceeding each participant’s mean by more than 2 standard deviations over the whole
observation period were removed (affecting 2.84% of BPM, and 2.19% of HRV across all

participants).

Participants' state (asleep vs. awake) was established using the heart-rate indices in the
following way. We found periods of at least 2 hours in duration when BPM samples were
successfully recorded at least every 15 minutes. We then chose the longest such period on
each day and assumed that it corresponded to sleep. Although time of day was not acriterion
for determining sleep periods, al the sleep periods established in this way happened to occur
between 9 pm and 11 am. These criteriaallowed us to detect at |east 5 periods of sleep for 8
of 10 participants. We recognize that these criteria do not guarantee that participants were
awake at al other times, and as such, that this potentially biases awake observations to be
appear to be more similar to sleep periods. But to anticipate the results, the density and
reliability of HR and HRV assessment during sleep periods defined in this way were greater

by orders of magnitude than they were during the defined wakeful times.

Heart-rate data was successfully recorded for only 2 sleep periods for one participant and
only 1 sleep period for another, and so their data were not included in the analyses. Days with
only one HRV sample during wakeful times (5 periods across partici pants) were also
excluded from the analyses. All participants had more than one HRV sample during sleep.
These exclusions left us with 8 participants tracked continuously for 5 to 11 days, and atotal

of 6840 samples for BPM and 5530 samples for HRV.
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Descriptive statistics

Figure 8 shows the frequency of successful heart-rate samples for BPM and HRV made
during wakeful and sleeping periods. The pattern of these two variables was generally
consistent across participants. The mean number of BPM samples acquired for waking
periods was 19.42 (SD = 13.52), and the mean number of sleep samples was 74.6 (SD =
24.43). The mean number of HRV wakeful samples was 13.65 (SD = 9.63) and the mean of

sleep samples was 69.70 (SD = 22.63).

N of BPM samples
[ ] L ] *e » 8 0
N CFHRV samples

Figure 8. Average number of successful measurements of BPM and HRV per participant per day during
wakefulness and sleep. Panel A shows average number of successful measurements of BPM, panel B shows
the same data for HRV per day and per participant during wakefulness (orange) and sleep (grey).

Figure 9 shows the mean BPM and HRV for each participant, separately for wakefulness and
sleep. The figure shows that there are pronounced individual differences in both biometrics,
with some participants having consistently higher HRV or BPM than others. The variability
of the wakeful measurementsis also visibly larger than the variability of sleep measurements.

These observations were confirmed by the following analyses.
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Figure 9. Average HR and HRYV per participant during sleep and wakefulness. Panel A: The mean BPM for each
participant, separated for sleep and wakefulness. Panel B: The mean HRV for each participant, separated for
sleep and wakefulness. Participants are rank ordered in each panel based on their HRV during sleep.
Participant 186 had no biometric recordings for wakeful time.

Between participant reliability

A one-way random single-measure |CC(1,1) was computed for the 8 participants’ mean BPM
and HRV, separately for wakeful and sleep period samples. |CC values for were consistently
higher for sleep periods than for wakeful periods. This was true for both BPM values (sleep:
ICC(1,1) = .89.6, 95%Cl [.79 .97], p < .001; wakefulness: ICC(1,1) = .55, 95%CI [.34 .83], p
<.001) and for HRV values (sleep: ICC(1,1) = .84, 95%CI [.70 .95], p < .001; wakeful:
ICC(1,1) =.39, 95%CI [.19 .73], p < .001). These high ICC values for sleep, along with only
moderate |CC values for wakefulness, imply that individual differencesin heart rate and heart
rate variability can be measured more reliably with acommercial PPG sensor during sleep

than wakefulness.

These data suggest that BPM and HRV measured through a commercial wearable device are
relatively stable between people, meaning that a person whose BPM or HRV is higher than

other peopl€e's on one day/night is likely to have BPM or HRV higher than other people on

any other day/night.
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Within-participant reliability

Within-participant reliability was assessed using a split-half approach and mixed model regression.
We compare two methods of splitting the data: time-sensitive (split into odd and even samples, by
order of measurement) and random (dividing the datapoints into two samples randomly, so that a
sample from early in the day is equally likely to be paired with asample from later or earlier in the
day). For both methods, a mixed model regression is then computed predicting one estimate of the
biometric (e.g., average of the odd datapoints) from the other estimate (e.g., average of the even

datapoints), with participant as the random factor (see formula 3), and Satterthwaite’s correction for

the degrees of freedom.

The time-sensitive method resulted in estimates of the within-participant reliability of BPM and HRV
illustrated in Figure 10. Panel A shows that reliability of BPM was very high for the sleep and
wakeful periods alike. The effect of predictor BPM was highly significant in both models, beta =
0.99, 1(9.17) = 91.8, p < .001 and beta = 0.82, t(18.8) = 7.91, p < .001, respectively. Panel B shows
that the fit between predictor and criterion for HRV was also generally high during sleep, beta = 0.96,

t(57) = 51.18, p < .001, but not during wakefulness, beta = .097, t(47.26) = 0.92, p = .36.

a0

User State

—— Asleep

criterion BPM
criterion HRV

=== Awake

70 BO 80 25 50 5 100

predictor BPM predictor HRV

Figure 10. Within-participant reliability of HR and HRV during sleep and wakefulness estimated with the time-
sensitive method. Panel A shows within-participant reliability of BPM, panel B of HRV. Data recorded during
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sleep is shown in red, during wakefulness in blue. Shaded area represents 95% Cl, dots represent partial
residuals.

Random splitting into the subsamples, as mentioned above, can result in extraordinarily low
or high estimate of reliability. Therefore, we performed the split 1000 times, computing
mixed-model regression each time. Figure 11 shows distributions of the resulting beta values
for HR and HRV during sleep and wakefulness. We estimated reliability as the average beta

across the 1000 iterations.

For BPM, random method produced reliability estimates that were very close to those
resulting from the time-sensitive approach, if slightly lower during wakeful time, Mpeta seep =
.99, D = .02, Mpeta waketul = -89, SD = .058. For HRV during sleep, reliability from the
random method was slightly lower than from the time-sensitive approach, Mueta seep = .98, SD
= .03, supporting our assumptions. However, for wakeful HRV random approach resulted in
somewhat higher estimated reliability than that produced by time-sensitive method,

Mbeta_wakefm = .22, D =.13.

To summarize, the two methods of estimating within-participant reliability revealed that both
BPM and HRV were highly reliable during sleep, BPM was aso very reliable during wakeful
time, yet reliability of HRV during wakeful time was drastically lower. The two methods
diverged in assessment of the latter, and not in the predicted direction, with the time-sensitive
method yielding much lower estimate of reliability. Notice, however, that the number of
datapoints obtained for HRV during wakeful hours was much lower than for sleep-time HRV
or for BPM during wakefulness (see descriptive statistics above). Therefore, the amount of
time separating successive datapoints must have been particularly long for wakeful HRV,

likely exceeding the period during which we would expect such avolatile measure asis HRV
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to be stable. The fact that the range of reliability estimates obtained with the random method

was extremely wide (0.2 — 1) supports this reasoning.

120/ 100
100/
sl
80|
. : «
a o
g ool g
& £
40
40
20|
20/
0 Ve 0
00 20 .40 .60 .80  1.00 00 .20 .40 .60 .80  1.00
1504 100
80|
100/
E g 60
3 g
g g
L [
a0/
50
20/
0 0
.00 20 .40 60 .80  1.00 00 20 40 60 80  1.00

Figure 11. Within-participant reliability of HR and HRV during sleep and wakefulness estimated with the
random approach. Top raw shows beta distributions for HR, during sleep (left panel) and wakefulness (right
panel). Bottom raw shows beta distributions for HRV. The red lines show estimated with the time-sensitive

method.

Interim discussion

We have demonstrated how between-person and within-person reliability can be estimated in
data readily available from a commercial wearable sensor of cardiac biometrics. In case of
this particular device, between-person reliability as assessed with ICC was excellent for

sleep-time HR and HRV, but only moderate for wakeful biometrics. Within-person

30


https://doi.org/10.1101/2022.10.02.510535
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.02.510535; this version posted October 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

reliability, assessed using split-half and mixed model regression approach, was near-perfect
for HR during sleep as well as wakeful time, but HRV was only reliable within-person during

sleep, not during wakefulness.

One immediate conseguence of compromised reliability of a measure is the ability to detect
its relationships with other variables (Spearman, 1904). To demonstrate this, in what follows
we tested whether BPM and HRV can be predicted from subjectively reported emotional
states of the participants. Multiple laboratory studies showed that stress and cardiac
biomarkers are strongly associated, and this relationship was recently replicated with
wearable sensors (Coutts et al., 2020; Hovsepian et al., 2015). We had no prior hypothesis as
to which of the biomarkers (BPM, HRV) would produce stronger association if they were

measured with equal fidelity.

Correlations between biomarkers and subjective emotion

To analyze subjective emotions captured with the EMA, we averaged the 4 negative emotions
on each prompt (irritable, afraid, nervous, angry), and the 2 pasitive emotions (happy,
energetic). We then averaged responses to all the prompts within one day, which resulted in

two scores per day: one for positive and one for negative emotions.

We then used these two scores (negative and positive emotions) as predictors in mixed model
regressions with participants as random factor. We first tested wakeful BPM (and wakeful
HRYV in separate analyses) on the concurrent day as the dependent variables. Then we tested
the same models on sleep BPM (and sleep HRV in separate analyses), either on the preceding
night (two models) or following night (two more models). This meant that six models were

tested in al, prompting us to use Bonferroni corrections to test for significance. The only
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marginally significant association involved a negative one between sleep-BPM and lower
negative mood reports on the subsequent reporting day, beta =-2.11, t(40.25) = -2.745, p =
.054 (Bonferroni corrected). This meant that when a participant experienced higher sleep-
BPM they were less likely to report negative emotions on the following day; when they
experienced lower sleep-BMP they were more likely to report negative emotions the next
day. Wakeful-BPM was not reliably associated with either positive or negative emotions, ps

> .5 (uncorrected).

For HRV, the strongest effect was also one where relatively higher sleep-HRV on agiven
night predicted greater negative emotions on the subsequent day, beta = 4.45, t(40.5) = 1.79,
p =.081 (uncorrected). Wakeful-HRV was not associated with either positive or negative

emotions, ps> .2 (uncorrected).
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Figure 12. Association between negative emotions and sleep HR(V). Predicting sleep-BPM (left panel) and
sleep-HRV (right panel) from negative emotions on a subsequent day. Grey area represents 95% Cl.

Interim discussion

Our attempt to test the association between mood during a day with cardiac biometrics
concurrently (wakeful), on preceding or following night, revealed a predictive relationship
between night-time BPM and mood on subsequent day. We cannot tell from this study

whether the difference between the results for BPM and HRV stems from differencein
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reliability only or for other reasons unrelated to measurement fidelity. However, the
difference between wakeful and sleep BPM in predicting daytime mood is surprising, given
that both mood and cardiac biometrics change rapidly, so the closer in time they are measured
the higher we would assume the association to be. It is therefore plausible that the association
between daytime BPM and mood was compromised by the lower reliability of daytime

measurement.

General Discussion

The validity of datafrom wearable sensors is now thought to be quite good (Barrios et al.,
2019; Dur et a., 2018; Hernando et al., 2018; Kinnunen et al., 2020; Menghini et al., 2019;
Steinberg, Y uceege, Mutlu, Korkmaz, van Mourik, et al., 2017). However, the reliability of
the biometrics captured by these devicesin daily life has so far been assumed to be high, but
it has rarely been tested systematically. Interestingly, recent reports of using wearable sensors
of HR & HRV outside of laboratory or clinical settings have revealed that validity of data
from wearable sensors (i.e., correlations with a criterion, usually a medical-grade wearable
device) in the conditions of everyday life is lower than expected from laboratory studies
where participants are typically at quiet rest (Galarnyk et al., 2019; Sneddon & Carlin, 2019).
The finding by Van Voorhees et al. (2022) that reliability of a wearable (Empatica E4) HRV
measurement across 24 hours was unacceptably low offers an account of low validity of
wearable sensors outside of alab. Our examination of wearable data reliability in the present
study also suggests that day-time measurements of HR and HRV are highly unreliable. Y et
rather than be discouraged by these data, we suggest focusing on how wearable sensors can
be used to deliver datathat is reliable — and we do so by assessing the sensor’ s reliability in
different situations. This approach has been taken previously in the fields of movement
science and athletics, where there was a growing awareness of the importance of testing the

reliability of many forms of sensing technology in varying environmental and situational
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contexts (Evenson & Spade, 2020; Kobsar et a., 2020; Kooiman et al., 2015; Straiton et al.,

2018).

Here we applied the theory of reliability developed for psychological questionnairesto
physiological measurements obtained with awearable device. In doing so, it isimportant to
keep in mind the research goals and questions. If measurements are performed for
comparisons between persons, between-participant reliability should be assessed, e.g., using
ICC. If, however, the aim of measurement is to detect different states within the same person,
within-person reliability should be estimated, e.g., using a combination of split-half and
mixed-model approach. While estimating between-participant reliability is straightforward,
estimating within-person reliability, without additional devices and measurements, must take
into account the time-sensitive nature of the measurements being made. In the case of HR
and HRV, the passage of timeisacritical variable. Other physiological measurements will

likely have similar considerations that are specific to the type of measurement being made.

We applied this approach to commercially available PPG sensors of cardiac biometrics,
showing how between- and within-person reliability could be estimated from open-source
data. The results showed that both between- and within-participant reliability of heart rate
measurement varies for the different brands of wearables. Across different brands, it also
varies for the different levels of user’s activity. This suggests that even the most reliable of
the sensors tested (Apple Watch, Biovotion) may produce more or less reliable measurement

in different circumstances.

Focusing on the Biostrap wearable sensor with or own data, we found that the between

participant reliability of HR and HRV was excellent during sleep (ICC > .75), but only fair
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during wakefulness (ICC [.4 .6]). Within-participant reliability of HRV was also found to be
higher during sleep than during wakefulness. Finally, we found that correlations of HR and
HRV with a second variable —in our case, subjectively reported mood — were stronger for the
most reliable metric, sleep-time BPM. Taken as awhole, the present data suggests that the
wearable sensor we used (Biostrap) provides data that is highly reliable during sleep, and less

so during wakefulness.

The most popular testing of wearable devices has focused so far on measuring their validity
during different types of activity (levels of physical activity, usualy — (Barrios et al., 2019;
Thomson et a., 2019)). Thisis not surprising given that the early vision for the application of
wearable devices was to regulate exercise load for health or performance optimisation, and
thisis still the primary use of many wearable devices today (Almeidaet al., 2019; Thomson
et a., 2019). These studies have shown that that some measurements cannot be taken reliably
during physical activity (Almeidaet al., 2019). At the same time, other studies have shown
that the application of wearablesis not limited to detecting acute events (such as exercise
load or acute stress), but that they can be useful in indexing slower fluctuations in the user’s
state, such as overall physical shape or alostatic stress, which affect one’s long-term health
and wellbeing (Chuang et al., 2015; Koskiméki et al., 2019). This development opens up a
unique research opportunity to measure psychophysiology longitudinally, across a variety of
real-world contexts and extensive time periods (Kleckner et al., 2021). And this purpose
might be best achieved with measurements taken during acute events or during recovery after
those events. Indeed, a large body of studies have begun to investigate stress by focusing on
recovery after stress, rather than on what is going on at the moment of acute stress (Allen et

a., 2014). The hope is that by systematically quantifying measurement fidelity in different

35


https://doi.org/10.1101/2022.10.02.510535
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.02.510535; this version posted October 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

circumstances, researchers will eventually be able to make informed choices about specific

wearable devices and measurement procedures that meet their research goals.
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