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ABSTRACT Next-generation sequencing of human genomes reveals millions of missense variants, some of which may lead to
loss of protein function and ultimately disease. We here investigate missense variants in membrane proteins — key drivers in cell
signaling and recognition. We find enrichment of pathogenic variants in the transmembrane region across 19,000 functionally
classified variants in human membrane proteins. To accurately predict variant consequences, one fundamentally needs to
understand the reasons for pathogenicity. A key mechanism underlying pathogenicity in missense variants of soluble proteins
has been shown to be loss of stability. Membrane proteins though are widely understudied. We here interpret for the first time on
a larger scale variant effects by performing structure-based estimations of changes in thermodynamic stability under the usage
of a membrane-specific force-field and evolutionary conservation analyses of 15 transmembrane proteins. We find evidence for
loss of stability being the cause of pathogenicity in more than half of the pathogenic variants, indicating that this is a driving factor
also in membrane-protein-associated diseases. Our findings show how computational tools aid in gaining mechanistic insights
into variant consequences for membrane proteins. To enable broader analyses of disease-related and population variants, we
include variant mappings for the entire human proteome.

SIGNIFICANCE Genome sequencing is revealing thousands of variants in each individual, some of which may increase
disease risks. In soluble proteins, stability calculations have successfully been used to identify variants that are likely
pathogenic due to loss of protein stability and subsequent degradation. This knowledge opens up potential treatment
avenues. Membrane proteins form about 25% of the human proteome and are key to cellular function, however calculations
for disease-associated variants have not systematically been tested on them. Here we present a new protocol for stability
calculations on membrane proteins under the usage of a membrane specific force-field and its proof-of-principle application
on 15 proteins with disease-associated variants. We integrate stability calculations with evolutionary sequence analysis,
allowing us to separate variants where loss of stability is the most likely mechanism from those where other protein properties
such as ligand binding are affected.

INTRODUCTION

Proteins carry out the majority of functions in a cell. While most proteins are robust to some sequence changes (1), other single
amino acid variants may render them non-functional. For nuclear and cytosolic proteins, we and others have shown that the
molecular reason underlying loss of function for human pathogenic variants is often loss of protein stability (2—10). Proteins
affected by such destabilizing variants are recognised by the cellular protein quality control system, leading to degradation and
hence low levels that cause a loss-of-function phenotype (11). For soluble proteins, structure-based calculations of stability
changes upon mutation (AAG) (12) correlate with experimental stability (13—16) as well as high-throughput abundance
measurements (17, 18), allowing us to annotate variants accordingly (19). The loss of stability induced by such variants often
leads to cellular protein degradation. This mechanistic link to degradation is not only interesting from a biophysical perspective
but can also lead to development of treatments that rescue the variant from degradation (20, 21).

Twenty-three percent of sequences in the human proteome encode membrane proteins, including channels, transporters,
enzymes, and receptors such as G-protein coupled receptors (GPCRs) (22). Located at the junction between two compartments
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and often exposed to small molecules in the bloodstream, membrane proteins are key in cell signaling and recognition, as well
as major drug targets (23, 24). Variants in membrane proteins are associated with a number of diseases, including for example
cystic fibrosis, Parkinson’s, Alzheimer’s and atherosclerosis (25-28).

Studying membrane proteins experimentally or computationally is challenging, as the proteins need to be considered in
context of the lipid membrane (29). Furthermore, while many soluble proteins can unfold and refold reversibly, the processes of
synthesis, folding, and assembly are intrinsically linked for membrane proteins (30, 31). In particular, denaturants can perturb
properties of the membrane (or its mimetics) when thermodynamic stability measurements are performed in (near) native
conditions. More recent techniques such as steric trapping or label-free differential scanning fluorimetry aim to avoid those
drawbacks but cannot be applied in a high-throughput manner (32, 33). Therefore, large-scale and easily accessible experimental
data for benchmarking computational tools are sparse. Despite recent methodological advances (34), computational methods
for membrane proteins are not as developed as those for soluble proteins. Furthermore, the diverse experimental studies
measure different levels of unfolding, which further challenges computational method development. Thus, the application
of computational analyses for examining a potential correlation between protein stability, cellular abundance, and function
analogous to that for soluble proteins may be particularly challenging for membrane proteins.

Building on recent force field developments that make computational analysis of membrane proteins more realistic (35),
we here set out to assess whether calculations of the change in folding free energy can be used to identify the subset of
pathogenic variants that are likely caused by loss of stability. In particular, we calculate the change in folding energy between a
wild-type protein and a protein variant (AAG = AGyut — AGwr), where low AAG correspond to substitutions that—in light
of stability—appear well-tolerated, and high AAG for variants that destabilize the protein structure. Of note, the levels of
unfolding or destabilization in vivo do not necessarily have to lead to complete protein unfolding. Partial unfolding may be
sufficient to trigger recognition by the protein quality control system. We first combined several protein annotation databases to
obtain an overview of the number and types of missense variants that are found in membrane proteins. We then analyzed in
more detail 15 human membrane proteins for which high-resolution structural data as well as annotations of pathogenic and
benign variants were available, and calculated AAG values for them. In addition, we used an evolutionary sequence analysis
approach (36) to calculate a value which we term AAE indicating the evolutionary importance of each residue. This and similar
approaches have been shown to be useful in detecting detrimental variants and includes both loss of stability variants and
variants that lose function due to—for example—catalytic impairment of enzymes or mistrafficking (37-39). Multiple recent
works have demonstrated that sequence analysis of conservation is able to capture such non-beneficial variants with high
accuracy (37, 40, 41). The mechanistic reasons for why a variant is not tolerated by evolution, whether it be gain or loss of
function or other aspects such as loss of stability, are not directly apparent, as is the case for many predictors. In the following,
we label AAE with loss of function to facilitate reading. In this work, we use it in combination with loss of stability for dissection
of underlying causes. The combination of AAG and AAE has proven particularly useful for providing mechanistic insight into
loss-of-function variants in soluble proteins (18, 19). We here apply such a combined analysis to gain mechanistic insight into
variant consequences in 15 selected membrane proteins.

METHODS AND MATERIALS

Collection and processing of clinical, population and structural data

To extract all annotated human membrane proteins, we first obtained all unique proteins (UniProt-ID) of the human
proteome (organism=homo sapiens) from the UniProt (https://www.uniprot.org/help/api) (42) and EMBL-EBI
(https://www.ebi.ac.uk/proteins/api/doc/) database. For each UniProt-ID, we then stored its general and amino
acid-based annotations (such as protein domain regions) in UniProt and further selected proteins of the type “TRANSMEM’,
‘INTRAMEM’, “TOPO_DOM’, or ‘LIPID’. This annotation originates from assignment of structural properties or predictions
by TMHMM (https://www.uniprot.org/help/topo_dom). The UniProt-ID of the first transcript is used in the further
mapping and analysis.

We then further filtered the UniProt-ID list so that all remaining proteins have at least one ClinVar (43) or gnomAD
(44) missense variant. gnomAD data were taken from an in-house database built on exome data from gnomAD v2 and
whole-genome data from gnomAD v3 (scripts available at https://github.com/KULL-Centre/PRISM/tree/main/
software/make_prism_files, release-tag v0.1.1). The database was generated by first downloading the vcf files (May
2021), selecting exome GRCh38 liftover for v2 and whole-genome files for v3. The vcf files were then annotated with Variant
Effect Predictor (VEP) with the GRCh38 release 100 human transcripts set from Ensembl. From the annotated vcfs we
established for all protein-level variants, separately in exome and genome data, allele frequencies from the variant allele
count as the sum of all DNA variants leading to the same protein-level variant. Clinvar data were obtained by parsing
the following file: https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz (May
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2021) and only admitting entries that have a rating of at least one star, are single nucleotide variants and mapped to
GRCh38 (script available at https://github.com/KULL-Centre/PRISM/tree/main/software/make_prism_files,
release-tag v0.1.1). The dataset for the entire human proteome is provided at https://sid.erda.dk/sharelink/c3rDfgR8nn,
using a UniProt-AC-based directory structure, e.g., files for GTR1 (UniProt AC P11166) can be found in subdirectory
prism/P1/11/66/.

Next, we extracted all PDB-IDs from RCSB and PDBe with a matching UniProt-ID reference. As not every PDB-ID for a given
UniProt-ID in PDBe could be found in RCSB PDB and vice versa, we searched both databases. We further included phenotype
and genomic disease annotations from OMIM via mim2gene (https://omim.org/static/omim/data/mim2gene.txt)
and MIM, including the proteins’ chromosome information.

The sequences were then aligned to the UniProt sequence using pairwise2.align.globalds (with BLAST defaults) from
Biopython (45), a minimal identity of 0.6, and minimal coverage of 0.1 for alignment acceptance. All residues that do not
match the UniProt sequence were discarded. The final data contained each protein sequence, its UniProt-ID, the secondary
structure prediction by residue, solvent-accessible surface area for each wild-type residue, and UniProt annotations such as
transmembrane region, protein modifications, total allele frequency counts from gnomAD, ClinVar significance statements,
genomic disease annotations, and associated PDB-IDs.

Selection of targets used for computational predictions

To find a set of proteins for our computational sequence and structure analyses, we selected all proteins that have at least one
benign and one pathogenic ClinVar annotation in an experimentally resolved transmembrane region of the protein. This reduced
the number of proteins with gnomAD or ClinVar annotations from 1,504 proteins to 41 proteins. As the Rosetta membrane
energy function has been developed and benchmarked on structures resolved by X-ray crystallography, we selected those,
reducing the protein set to 16. The selected proteins are listed in table 3 and Supporting Data at https://github.com/KULL-
Centre/papers/tree/main/2022/hMP-Xray-Tiemann-et-al.

The structures for each of the chosen proteins have been selected according to their Structure Selection Score (StrucSe_score)
and the number of variants in total and within the transmembrane region. The StrucSel_score is a combination of
method resolution, sequence coverage and identity to the experiment and the wild-type (according to UniProt), includ-
ing an annotation about inserts, deletions, mismatch, non-observes and modified residues. The script is available at
https://github.com/KULL-Centre/PRISM/blob/main/software/scripts/struc_select_sifts.py and the table with the numbers
for each of the proteins at https://github.com/KULL-Centre/papers/blob/main/2022/hMP-Xray-Tiemann-et-al/data (*date*-
count_hMP_anno_splitPDB_Xray_publish.xlsx).

Conservation analysis of variant effects

To calculate the effect of a variant in light of evolution, we used the GEMME algorithm (36) as previously described
(19): We first construct a multiple sequence alignment (MSA) using the sequence of the first transcript of each proteins
UniProt-ID as input to HHBIits (version 2.0.15) (46) with the following settings -e le-10 -i 1 -p 40 -b 1 -B 20000 to search
UniRef30_2020_03_hhsuite.tar.gz (47-49). The MSA is filtered by keeping only positions present in the target sequence and
sequences with less than 50% gaps. We then further follow the GEMME algorithm that predicts the degree of conservation
for all 19 substitutions (AAE). We rank-normalized the AAE values for the entire protein to allow comparison with the other
proteins in the dataset. AAE ~ 0 corresponds to well-tolerated substitutions, whereas AAE = 1 corresponds to rare or absent
variants. Additionally, we extract the sequence coverage of the MSA for each position.

Thermodynamic stability predictions

To calculate changes in thermodynamic stability (AAG), we use Rosetta version v2021.31-dev61729-0-gc7009b3115¢ (GitHub
shal c7009b3115c22daa%efe2805d9d1ebba08426a54). We implemented an in-house pipeline to perform preparation, relaxation,
and AAG calculations of the protein (https://github.com/KULL-Centre/PRISM/tree/main/software/rosetta_ddG_
pipeline, release-tag v0.1.1). Preparation includes cleaning of the PDB structure coordinates (hereafter referred to as structure)
of ligands and alternative rotamers and chains, superposing of the protein into the membrane plane as well as calculation of the
membrane plane, lipid-accessible residues (50) and the solvent-accessible surface area using DSSP (51, 52) (the latter is solely
used for analysis purposes).

To utilize the membrane protein mode in Rosetta, two conditions must be met: first, a membrane plane file, containing
the residues that are within the membrane, needs to be provided; second, the structure of the protein must be centered and
oriented within the membrane, where the membrane thickness follows the z-axis. The membrane plane can be calculated using
a membrane-aligned protein structure. Therefore, protein coordinate translation was performed by structural superposition of
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the protein to its equivalent structure obtained from the Orientations of Proteins in Membranes (OPM) database (53), which
lies already within those coordinates. (If the chosen PDBid is not present in the OPM database, an alternative structure for the
same protein or a close homolog is chosen.) Next, the membrane plane was calculated using Rosetta (54, 55) and the protein
structure was relaxed as described in (56). Finally, AAG values for each variant were calculated as the residual energy of the

variant minus the energy of the wild type.

We performed a benchmark to identify the best protocol to calculate AAGs for membrane proteins. First, we collected
20 experimentally derived AAG datasets of in total 8 different membrane proteins (Table S3). Then, we implemented three
different protocols, namely MP_repack, MP_flex_relax_ddG, and ‘cart_prot’, inspired by work on soluble proteins (12) and
previously published work on membrane proteins (35). MP_repack operates in torsion space and performs a simple repacking
of the side chains within a defined radius after mutagenesis (following the protocol mentioned in (35)). MP_flex_relax_ddG is
inspired by (12) and allows more flexibility to accommodate the variant by allowing backbone relaxation of the variant and
its sequential neighbors, in addition to repacking of side chains within a defined radius. cart_prot follows the same protocol
as MP_flex_relax_ddG but is executed in cartesian space. For all protocols, we used the membrane protein score function
"franklin2019’ (35) that performs comparable to older membrane scoring functions as recently evaluated in (56). Finally, we
selected cart_prot as the computed values gave the best correlation with the experimental data (0.46), and additionally, the
computed values have a high reproducibility, indicated by the low standard deviation for replicates (Fig. S3). As mentioned in
the Limitations section, the correlation of independent experimental studies on the same protein and the same variants (57, 58)

is 0.65.

Enrichment of benign variant counts by gnomAD allele frequency

To evaluate the value of our computational methods to predict variants to be benign or pathogenic using ROC analysis, we
aimed for a large number of benign and pathogenic variants. In our target proteins, we have 324 pathogenic but only 122 benign
variants. We aimed to supplement benign variants with variants from gnomAD. Therefore, we performed a ROC analysis of the
gnomAD allele frequency on the 10,260 benign and 2,360 pathogenic ClinVar variants in the human membrane proteome that
also have a gnomAD allele frequency (Fig. 1C) and obtained an AUC of 0.96 (Fig. S1). This analysis enables calculating a
cutoff to separate benign from pathogenic variants using gnomAD allele frequency via the highest Youden Index (59)). We

thereby obtain a cutoff of 9.9 - 10~ (Fig. 1B). We define group B variants as the union of those that are defined by ClinVar as
benign and those variants that have an allele frequency > 9.9 - 10~ and are not pathogenic (in ClinVar). Consequently, we call

pathogenic variants group A. This results for our target proteins in 324 group A and 283 group B (benign and/or non-rare)

variants across 16 proteins.

Filtering criteria for variant analysis of the 16 target proteins

Prior to analysis, we defined filtering criteria for the calculated AAG and AAE variants to obtain a set of variants with
reliable scores. First, only variants for which both AAG and AAE calculations are available were selected. Second, special
residues involved in disulfide bonds or known modified residues (such as those which bind covalent ligands or palmitoylated
residues) were excluded. Further, variants with a low MSA sequence coverage of fewer than 50 sequences were excluded.
Last, variants that have a positive wild-type Rosetta energy (E.) are excluded from further analyses as those residue
conformers are likely to favor any substitution in order to reduce its energy, likely due to limitations of the Rosetta energy
function. By applying all filters, we obtain a final set of 15 proteins with 220 pathogenic (group A) and 104 group B
(benign and/or non-rare) variants, of which 42 are benign (see Table 3 and for the single filtering steps additional data at

https://github.com/KULL-Centre/papers/tree/main/2022/hMP-Xray-Tiemann-et-al).

Definition of AAG and AAE thresholds and quadrant classification

To analyze the variants in terms of their AAE and AAG scores, we defined cutoffs for each method based on the optimal ROC
value (tradeoff of high specificity versus high sensitivity) to separate group A (pathogenic) and group B (benign and/or non-rare)
variants, in a similar fashion as done for gnomAD allele frequency above. Next, we defined four categories dependent on their

position along the AAE and AAG axes:
(D Quadrant (I) variants have high AAE and AAG and are likely to cause loss of function via loss of stability;

(IT) Quadrant (II) variants have high AAE and low AAG and cause loss of function for other reasons than loss of stability;

(II) Quadrant (III) variants have low AAE and low AAG and are from a structural and evolutionary perspective expected to

be tolerated;
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(IV) Quadrant (1V) variants have low AAE and high AAG and are from an evolutionary perspective expected to be tolerated
but from a structural perspective expected to cause instability;

Definition of protein regions

For analysis purposes, we assigned residues into different regions, based on their solvent accessibility, and their positioning
within the membrane (TM region). Relative solvent-accessibility was calculated using DSSP (51, 52) with a cutoff of 0.3,
placing residues with a smaller value into the category of buried residues. The positioning within the membrane was obtained
as described above. We can thereby divide the protein into four regions:

* Buried: residues with a DSSP < 0.3 and that are placed outside the membrane; this cutoff places residues within contacts
as buried although they might be close to the surface of the protein

» Solvent-accessible: residues with a DSSP > 0.3 and that are placed outside of the membrane
e TM-region () buried: buried residues that are placed within the membrane
e TM-region () solvent-accessible: solvent-accessible residues within the membrane

For additional analysis, we divide residues by whether they are oriented toward the lipids or not. To assess whether a residue
faces toward the lipids, we used a dedicated Rosetta function that returns a true or false value (50). Most of those residues are
within the transmembrane region but there can be exceptions that non-transmembrane residues (either solvent accessible or
buried) can face the lipids by "dipping" into the membrane plane. For Fig. S4C and D, we expended the regions above by 3
more which are subsections of the above (with overlaps, see Fig. S4):

e TM-region () lipid-facing (") buried: buried residues within the membrane that are oriented towards the lipids

e TM-region () lipid-facing () solvent-accessible: solvent-accessible residues within the membrane that are oriented
towards the lipids

e Others: combination of residues that are rare and few in number, such as TM-region () solvent-accessible, lipid-facing
solvent-accessible or lipid-facing () buried

Utilized software
* python3, incl. following third party libraries

— adjustText
— Biopython
— circlify
— matplotlib
— numpy
— pandas
— seaborn
— scipy
— sklearn
— squarify
— xmltodict
— nglview
* Rosetta version 2021.31+HEAD.c7009b3115c¢ (c7009b3115c22daa%efe2805d9d1ebba08426a54, default.linuxgccrelease
mode)
— mp_span_from_pdb (54)

— rosetta_scripts (60)
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FastRelax (61, 62)

MembraneMover (54)

cartesian_ddg (12, 14)

energy function: franklin2019 (35) + cart_bonded=0.5 + fa_water_to_bilayer=1.5

* Scripts available at https://github.com/KULL-Centre/papers/tree/main/2022/hMP-Xray-Tiemann-et-al

hMP statistics (hMP_stats.ipynb)
AAG pipeline benchmark (MP_ddG_benchmark.ipynb)

Xray subset calculations (Xray_subset-calc.ipynb)

Xray subset analysis (Xray_subset-ana.ipynb)
* Pipelines

— PRISM_tools (https://github.com/KULL-Centre/PRISM/software/rosetta_ddG_pipeline, release version v0.1.1)

— PrismData, Fill Variants and struc_select_sifts (https://github.com/KULL-Centre/PRISM/software/scripts, release
version v0.2.2)

¢ Others

— overleaf.com

— Affinity Designer

Limitations of this study

We note several limitations that should be considered when interpreting the results. Our general observations and conclusions
on membrane proteins and their classes are limited by the available data and proteins, partly due to our choice to only analyze
experimental structures with annotated pathogenic and benign variants.

Several membrane proteins, for example channels and cell junction proteins, function as (homo-) oligomers. In this study, we
used structures of the individual proteins for our stability calculations and thereby may miss destabilizing variants in interfaces.
Those variants are more difficult to interpret using stability calculations due to the lack of contacts that are affected by stability.
In addition to missing interactions, conformational changes of the structure or different conformations might alter AAG values,
and several stabilizing variants can be explained due to missing interaction partners in these structures (e.g. R135W, R135L,
and G121V in OPSD are missing either the ligand or an intracellular binding partner).

In general, we do not expect variants to lead to complete protein unfolding but rather a partial unfolding, which allows
recognition by the protein quality control system. Due to limited available experimental data, we are not able to differentiate
stages of unfolding, which might affect the accuracy of the AAG calculations. Furthermore, our membrane protein dataset
is mainly alpha-helical, which is also true for most human membrane proteins; however, the stability score function was
parameterized and benchmarked on bacterial proteins, which are often beta barrels and might fold differently compared to
their helical counterparts. When we compared experimental and computational AAG values, we obtained a Spearman rank
correlation coeflicient of 0.46, leaving uncertainty about the predictability of the extent of loss of stability. It is worth noting that
the correlation between two sets of experimental AAG measurements in GlpG (57, 58) shows a Spearman correlation of 0.65,
and when correlating all experimental datasets with at least 12 overlapping variants we obtain a mean Spearman correlation of
0.6. Preferences for specific amino acid properties in certain environments such as the membrane might be biased by their
values within the respective scoring function. Our results also depend on how different protein regions are defined.

Co-evolutionary sequence conservation measurements cannot give direct insights into the mechanism that causes pathogenic-
ity. Variants labeled lose function here may instead exhibit the more rare gain of function instead. Furthermore, our calculations
of AAE scores depend on the MSA, and we note that using a different MSA, e.g., by changing the E-value cutoff, could shift
some of the AAE values from tolerated to not tolerated.

The filters we apply on the variants are chosen based on literature and experience. A more detailed analysis on the effects of
this filtering (and their cutoffs) with a larger dataset of variants is needed. For now, we applied AUC calculations on each of the
filtering steps to address a potential bias (see Supplementary Material).

Finally and as already discussed above, we combine benign and/or non-rare gnomAD variants into group B. This should
be taken into account when interpreting the results and especially when investigating outliers of group B, as those could be
variants of unknown significance.
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Table 1: Number of variants annotated by ClinVar (as benign, pathogenic, and VUS), gnomAD for all human proteins (including
membrane proteins) and human membrane proteins exclusively. For membrane proteins, the total counts are further divided
into each of the cellular regions they occur in. VUS (ClinVar) includes conflict variants.

human proteins human membrane proteins

all all extracellular cytoplasmic transmembrane other
total 6,526,797 1,867,856 | 574,211 447,435 258,366 587,844
benign 36,770 11,063 3,489 3,544 961 3,069
benign () gnomAD || 33,944 10,260 3,214 3,326 908 2,812
pathogenic 21,107 8,026 2,327 2,233 1,863 1,603
patho. () gnomAD || 6,200 2,360 632 628 454 646
VuS 217,726 64,584 17,451 25,119 6,814 15,200
VUS M gnomAD 116,325 36,700 9,907 14,693 3,574 8,526
only gnomAD 6,251,194 1,784,183 | 550,944 416,539 248,728 567,972

RESULTS AND DISCUSSION
Variant annotations in human membrane proteins

We first set out to obtain an overview of the presence and properties of missense variants in human membrane proteins. We
searched Uniprot (42) for keywords like TRANSMEM (see Methods and Materials for details) and used the results to define a
list of 5,522 proteins that are thought to be embedded in the membrane (Fig. 1A). We subsequently searched the gnomAD
(44) and ClinVar (43) databases for missense variants in the genes encoding these proteins (see Methods and Materials for
additional details). gnomAD is a database aggregating the variants observed in ca. 150,000 exome and genome sequences, and
thus provides a relatively unbiased view of the variants that are present in the human population (44). ClinVar is a database
containing, among other things, missense variants that have been categorized as benign, pathogenic, or variants of uncertain
significance (VUS), the latter indicating that the pathophysiological consequences of the variant are not clear (43). We obtain
almost 1.9 million variants in total for human membrane proteins, which makes up 29% of all human protein variant annotations
(see Table 1). Almost all (98.1%) membrane proteins have at least one variant in gnomAD, and about half (44.0%) have at least
one variant in ClinVar (Fig. 1A). Across the two datasets, we find 1.9 - 10° unique variants in 5,471 membrane proteins. We
excluded synonymous, silent, or deletion variants, which make up 0.3% (5,403 variants) from any further analysis. Nearly
all (99.1%) of the non-synonymous variants are either from gnomAD or are assigned as variants of uncertain significance
in ClinVar, and only 19,089 of the 1.9 million variants have an assigned status of being pathogenic or benign (Fig. 1A and
Table 1), highlighting the scope of the problem of determining variant effects. 38% of all human pathogenic variants are found
within membrane proteins (see Table 1), underlining the importance of method development suited for this protein class.

Variants that are pathogenic are expected to be depleted in the human population compared to those that are benign, and
indeed we find a clear separation of the distributions of allele frequencies between the two classes (Fig. 1C). We also observe
that while 92.7% of benign ClinVar variants have been observed in gnomAD, this is only true for 29.4% of pathogenic variants
(Fig. 1B, Table 1). The separation in the distribution of allele frequencies between pathogenic and benign variants suggests
that variants with allele frequencies > 9.9 - 10 are more likely to be benign than pathogenic (Fig. 1C, cut-off calculated
from the receiver-operator characteristic (ROC) analysis, see Methods and Materials). While the allele frequency in gnomAD
appears to be a good predictor of pathogenicity (area under the curve (AUC) of 0.96; Fig. S1, with similar results for all human
proteins; AUC=0.95), we note that this result should be taken with some caution. First, many ClinVar variants are not found in
gnomAD (Fig. 1B), limiting the practical utility. Second, since the presence in gnomAD might have been used to assign (lack
of) pathogenicity, it is difficult to ensure that the two sets of data are independent.

We analyzed in which regions of the membrane protein structures the ClinVar (Fig. 1D,E) and gnomAD (Table 1) variants
are located. We find that most variants are found in soluble domains, though this is likely due to the fact that these regions makes
up 83% of membrane proteins (Fig. 1D,E). Notably, though, we find that while the numbers of known benign and pathogenic
variants are similar in the different types of soluble regions, there appears to be an almost two-fold excess of pathogenic variants
compared to benign variants in the transmembrane regions (Fig. 1E, Table 1). While we cannot exclude that this enrichment is
in part due to an increased focus on the transmembrane region in clinical research, we suggest—in line with previous work
(63, 64)—that this observation also reflects a decreased mutational tolerance of the transmembrane region.

Membrane proteins are typically defined by their interaction and/or location within the membrane. As not all of them
are located to a similar degree inside the membrane, we divided the complete dataset of 5,796 membrane proteins into their
categories as being single-pass, multi-pass, lipid-anchored, or integral membrane protein (see table 2). We find that most
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Figure 1: Overview of variants in human proteins and human membrane proteins (hMPs) in particular. A. Statistics on protein
and variant annotations, ClinVar/gnomAD annotation, and availability of high-resolution structures mainly on human membrane
proteins. B. ClinVar statistics for benign, pathogenic, and variants of unknown significance (VUS) and their coverage by
gnomAD in human membrane proteins. C. gnomAD allele frequencies for all variants in human membrane proteins observed
in gnomAD. Note that 71% of the pathogenic variants in ClinVar are not in gnomAD and hence missing from this analysis. D.
Percentage of protein regions of different cellular elements across human membrane proteins. *Other’ includes compartments
such as the lumen, mitochondrial matrix, and vesicular compartments. E. Distribution of ClinVar annotations (color scheme as
in B) in different regions of the human membrane proteins.
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Table 2: Number of variants annotated by ClinVar or gnomAD, separated by their membrane protein category: single-pass,
multi-pass, lipid-anchored, integral

Membrane protein category all Single-pass Multi-pass Lipid-anchored Integral

variant counts for all transmembrane all transmembrane all transmembrane all transmembrane all transmembrane
total 1,867,856 258,379 | 861,305 30,480 | 824,532 218,193 | 127,370 0 | 54,649 9,706
benign 11,063 961 4,960 138 4,794 744 817 0 492 79
benign () gnomAD 10,260 908 4,634 132 4,455 699 690 0 481 77
pathogenic 8,026 1,863 2,328 77 4,741 1,719 544 0 413 67
patho. () gnomAD 2,360 454 694 20 1377 412 144 0 145 22
VUS (ClinVar) 64,584 6,814 | 25,707 693 | 29,677 5,784 5,311 0| 3,889 337
VUS N gnomAD 41,511 4,038 17,128 459 19,307 3,371 2,589 0| 2487 208
only gnomAD 1,784,183 248,741 | 828,310 29,572 | 785,320 209,946 | 120,698 0 | 49,855 9,223
protein count 5,796 2,330 2,762 561 143

proteins are single- (40.2%) or multi-pass membrane proteins (47.7%) and also most of the variants are found in these categories
(46.1% and 44.1% of 1,867,856 variants). Looking into the transmembrane region, we see the previously described enrichment
of pathogenic variants especially for multi-pass membrane proteins. This makes the multi-pass membrane protein category
especially interesting for further studying of the role of residues within this region.

To gain a better understanding of the mechanisms causing benign or pathogenic variant consequences, we mapped the variants
onto known protein structures. Despite recent advances in protein structure prediction (65) and analysis using computational
methods (66, 67), we decided to focus our work on experimentally determined structures. Specifically, we searched the protein
databank (68) for structures with at least one variant in the resolved part of the protein structure and found that 27.5% of all
annotated human membrane proteins have at least some part resolved and that 15.1% of the total set of variants are found in the
region covered by these structures (Fig. 1 A, additional data at https://github.com/KULL-Centre/papers/tree/main/2022/hIMP-
Xray-Tiemann-et-al). Of the 281,220 variants found in resolved regions, only 2.2% of those (6,119 variants) have been assigned
as benign (2,089 variants, 18.9% of total benign variants in membrane proteins) or pathogenic (4,030 variants, 50.2% of total
pathogenic variants in membrane proteins) (Table S1).

Computational assessment of stability and evolution shows loss of function due to loss of
stability for ca. 62% of disease variants in selected proteins

To examine the importance of changes in protein stability in membrane proteins for causing loss of function and disease,
we analysed a smaller set of proteins in more detail. Specifically, we searched for proteins that had at least one pathogenic
and one benign variant in the transmembrane region. As our aim was to use the Rosetta software to predict changes in
thermodynamic stability, we focused on protein structures that had been determined via X-ray crystallography as Rosetta has
been developed and benchmarked most extensively on such structures. These requirements narrow down the set to 16 proteins:
six transporters, three ion channels, four GPCRs, two enzymes and one cell junction protein (Table 3 and additional data at
https://github.com/KULL-Centre/papers/tree/main/2022/hMP-Xray-Tiemann-et-al). These 16 proteins represent different types
of membrane proteins with diverse functions, structures, and involvement in different diseases. Of note, these proteins belong to
the class of multi-pass transmembrane proteins and the secondary structure of these proteins is mostly a-helical (> 50%), while
unstructured regions or extended strands add up to 27% (Fig. S2).

Inspired by previous analyses of soluble proteins, we investigated these membrane proteins in terms of structural stability
and sequence conservation. Specifically, we developed and benchmarked a revised Rosetta protocol for stability calculations of
membrane proteins (see Methods and Materials and Supplementary Material). We used this method to calculate the change in
thermodynamic stability (AAG) upon single amino acid substitutions. In each case, we selected a high-resolution structure
(Table 3), and removed any co-crystallised molecules. We also constructed multiple sequence alignments (MSA) of each protein
and used GEMME (Global Epistatic Model for predicting Mutational Effects) (360) to estimate the evolutionary effects of the
variants. Specifically, we calculated a normalized score (AAE) with AAE ~ 0 corresponding to substitutions that—in light of
evolution—appear well tolerated, and AAE = 1 for variants that—based on the evolutionary record—are rare or absent, and
expected to cause loss of function. In analyses of soluble proteins, we have previously found that a high value of AAE is a
good predictor for a variant to cause loss of function and that variants with both high AAE and AAG are likely to cause loss of
function via loss stability and cellular abundance (18).

We calculated AAG and AAE for all variants that have been observed in humans and where the wild-type residue was
resolved using X-ray crystallography. Further, we did not analyze variants at positions where the Rosetta energy function
suggested a potential incompatibility between the experimental structure and the Rosetta energy function (e.g. disulfide
bridges (filter II) or residues with a positive energy where mutations are likely more tolerated by default (=E,, filter IV).),
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Table 3: Overview of proteins analysed in depth, including Uniprot name, protein functional class, protein length and number of
amino acids within the transmembrane (TM) region, number of group A (=pathogenic), group B (=benign and/or non-rare
gnomAD) and benign variants before and after filtering, the sequence depth of the multiple sequence alignment (MSA) used by
GEMME, the Nf(neff/Vlen) of the MSA, the AUC for our two predictors (AAG and AAE) and the MIM disease phenotype.

protein info length before filtering after filtering GEMME AUC MIM
name class all TM || group A | group B | benign || group A | group B | benign || MSA depth Nf(neff/Vien) || AAG | AAE phenotype
NPC1 Transporter 1278 | 277 || 60 36 13 44 12 5 1486 31.43 0.69 | 0.84 || Niemann-Pick disease
OPSD GPCR 348 161 || 67 10 2 41 6 2 1183 49.16 0.79 | 0.69 || Night blindness; Retinitis punctata albescens; Retinitis pigmentosa
GTRI Transporter 492 | 261 || 56 9 4 42 7 2 1772 65.62 0.65 | 0.92 || Dystonia; GLUT1 deficiency syndrome; Epilepsy
AT2A2 | Transporter 1042 | 204 || 12 9 7 8 5 4 1924 4433 0.85 1 Acrokeratosis verruciformis; Darier disease;
ACHB?2 | Ion channel 502 | 86 3 16 12 1 5 3 1789 57.23 0.8 1 Epilepsy
CXB2 Cell Junction || 226 | 83 60 23 8 33 16 5 1351 82.1 0.42 | 0.84 || Deafness; Bart-Pumphrey syndrome; Vohwinkel syndrome:...
S5A2 Enzyme 254 | 84 21 11 5 18 8 5 1177 60.18 0.63 | 09 Pseudovaginal perineoscrotal hypospadias
MC4R | GPCR 332 | 165 | 12 11 2 10 8 1 1265 54.02 0.66 | 0.9 Obesity
AQP2 ITon channel 271 124 || 10 2 1 7 1 1 1326 62.36 1 0.86 || Diabetes insipidus
ACHAA4 | Ion channel 627 85 3 47 32 3 6 4 1107 27.84 0.33 | 0.94 || Epilepsy; Nicotine addiction
JAGNI | Transporter 183 | 84 5 4 3 4 3 3 196 13.45 0.42 | 0.92 || Neutropenia
SMO GPCR 787 147 || 1 25 6 1 7 1 823 17.7 1 0.86 || Curry-Jones syndrome; Pallister-Hall-like syndrome; Basal cell carcinoma
ABCGS8 | Transporter 673 126 || 1 35 11 0 15 3 86 2.14 - Gallbladder disease; Sitosterolemia
ABCGS | Transporter 651 127 || 1 27 9 0 0 0 31 0.81 - - Sitosterolemia
GPT Enzyme 408 | 228 || 7 5 1 6 2 1 1812 64.45 0.5 0.92 || Congenital disorder of glycosylation; Myasthenic syndrome
FZD4 GPCR 537 [ 206 |5 13 6 2 3 2 1055 37.22 083 |1 Exudative vitreoretinopathy; Retinopathy of prematurity
total 324 283 122 220 104 42 0.64 | 0.82

and variants at positions with < 50 sequences in the multiple sequence alignment (see Methods and Materials, Table 3 and
Supporting Data at https://github.com/KULL-Centre/papers/tree/main/2022/hMP-Xray-Tiemann-et-al, table 2022_11_11-
count_hMP_anno_nonsyndel_PDB_publish, tab X-ray_set_app for the variant loss at each of the sequential filtering steps and
further information). After this quality control, we retain 220/324 pathogenic and 42/122 benign variants and lose one protein
(ABCGR) as it does not have any variants left after filtering. We thus analyzed two sets of variants: A is the set of 220 variants
that are described as pathogenic in ClinVar and B is the set of 104 variants that are either assigned as benign in ClinVar and/or
non-rare gnomAD variants that, as discussed above, are more likely to be benign than pathogenic as their allele frequencies in
gnomAD are > 9.9 - 1073 (Fig. | and Fig. S1). In what follows we refer to group B as benign, but note that among the 104
variants in group B only 42 are classified as benign in ClinVar and the remainder comes from gnomAD. To get an indication of
the influence of this filtering process, we performed all AUC measurements also on the respective filtering steps/subsets (see
Extended supplemental figure collection 1 worksheet tab X-ray_set_app_AUC).

To quantify how well AAE and AAG distinguish between the two classes of variants, group A (pathogenic) and group
B (benign and/or non-rare), we constructed a ROC curve and calculated the AUC as a measure of how well each of the
two scores can predict pathogenicity (Fig. 2A). Of note, to ensure our results are not biased by the limited dataset, we
performed a leave-one-protein-out calculations when performing the ROC curves and their derived cutoffs, giving us mean
values with standard deviation for the AUC and mean, min and max cutoffs values. In the following, we report for AUC
by AUCjp, = mean AUC =+ std. Variant counts in the quadrant (and their respective percentages) are determined from
the total cutoffs and the leave-one-protein-out calculations. In the latter, variants that are located inside the min to max
leave-one-protein-out cutoff values are considered as "gray" and contribute to the standard deviation of the reported percentages.
Looking at out complete data, we find that both AAE and AAG can separate the group A and group B variants, though AAE, as
expected, performs better than AAG (AUC 0.82 vs. 0.64; AAE AUC;jp0 = 0.82 £ 0.01, AAG AUGC;p, = 0.62 + 0.01). This is in
line with previous observations for soluble proteins (6, 7, 9, 11) and the hypothesis that many, but not all, pathogenic variants
are destabilized so that AAG calculations can capture these pathogenic variants, but not those caused by other mechanisms for
loss/gain of function.

We further analyzed the group A (pathogenic) and group B (benign and/or non-rare) variants in terms of their AAE and
AAG scores (Fig. 2B). To simplify the discussion, we analyze the variants in terms of whether AAE and AAG are low or high,
with respect to cutoffs from the ROC analysis (see Methods and Materials section). This analysis separates the variants into four
quadrants with only a few variants (14.2%, meanip, = 13.6 + 5.9%) falling in the quadrant of low AAE and high AAG (Fig. 2B
(IV)), which is comparable to previous observations for soluble proteins (18, 19). The three remaining quadrants correspond
roughly to:

(I) Variants that cause loss of function via loss of stability (high AAE and high AAG),

(I) Variants that cause loss of function for other reasons than loss of stability, such as substitutions at key functional sites
(high AAE and low AAG),

(IIT) Variants that are expected to be tolerated both from a structural and evolutionary sequence perspective (low AAE and low
AAG).
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Figure 2: Correlation of ClinVar variants with computational predictors for human membrane proteins. (A) ROC curves of
Rosetta AAG and GEMME AAE with variant counts for each group. AUC standard errors were determined by bootstrapping.
(B) Distribution of group A (pathogenic) and group B (benign and/or non-rare) along AAG and AAE landscape and separation
into quadrants by mean, max and min optimal cutoff obtained from leave-one-protein-out ROC curves. The counts of each
group are shown for the quadrants, the respective number of variants in the uncertain area in brackets.
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As expected, we find that most group B (benign and/or non-rare) variants have low AAE (75%, meany;p, = 73.1 £ 2.9%) and
73% (meanyip, = 75.0 £ 3.9%) of those also low AAG, whereas most pathogenic variants (group A) have large AAE (76.8%,
meanyp, = 76.8 + 0.9%, see Fig. 2B). Among the 167 (2 in gray area) pathogenic variants that have high AAE values, we find
that 62.1% (meanyp, = 61.5 £ 0.6%) also have high AAG values, suggesting that loss of stability plays an important role for
disease in the 15 investigated membrane proteins.

We observe a number of pathogenic variants with very negative AAG that indicates a stabilizing effect on the structure. As
also recently shown by (69), gain of function variants can lead to pathogenicity, those variants we observe might be explained in
a similar way. To confirm, more information and benchmark is needed.

Pathogenic variants in GPCRs, especially in the transmembrane region, lose function mostly by
loss of stability, while this is less prominent in transporters or other protein classes

Our data set contains several members of the main membrane protein classes, namely five transporters (98 group A/pathogenic
+ 62 group B (benign and/or non-rare variants)), three ion channels (11 + 15 variants), four GPCRs (54 + 28 variants)
and two enzymes (24 + 13 variants) (Table 3). We examined the results from our computational predictors to probe for
class-specific trends. In all four classes, evolutionary conservation predictions (AAE) have a high AUC (>0.8), similar to the
analysis with all proteins combined (Table S2). Focusing on the transmembrane region, we find a very high AUC of 0.97
(AUC;1po = 0.98 £ 0.02) for variant classification of transporters (underlying datapoints: 44 pathogenic group A + 10 group B
variants). Interestingly, we find that for GPCRs loss of stability is the main cause of pathogenicity, as indicated by an increased
AUC (0.79, AUCyypo = 0.77 £ 0.05) for AAG predictions (Fig. 3A and Table S2) compared to the complete data set with 15
proteins (AUC=0.64, AUCyy, = 0.62 +0.01, Fig. 2). This is even more prominent for variants located within the transmembrane
region (AUC=0.81, AUC;yp, = 0.81 + 0.03).

In the transmembrane region of GPCRs, 77.4% (meanyjp, = 74.2 +25.8%) of the pathogenic variants have high AAG values
(Fig. 3B), suggesting that their pathogenicity is due to loss of stability. When separating the proteins into specific regions,
namely by whether they are buried, solvent-accessible, and are within and outside the transmembrane regions (Fig. 3C), we see
that those pathogenic variants that lose function via loss of stability are typically buried (Fig. 3C). In contrast, solvent-accessible
pathogenic variants are not found to lose function due to loss of stability, and variants located in those regions are more likely to
be tolerated (11.1% of group A/pathogenic compared to 44.4% of group B variants). Within the transmembrane region, most
variants (90% group A and 97% for group B/benign and/or non-rare) are buried, in contact with other residues. Looking at
pathogenic variants that lose function due to other reasons than loss of stability (quadrant (II)), variants in GPCRs are more
often within the transmembrane (Fig. 3C) compared to all datasets (Fig. 3D), where we see a larger proportion of variants
in buried sites in extracellular or intracellular environments. When we further divide residues into whether they are facing
the lipid bilayer or not, we see that most of those pathogenic variants within the transmembrane region are facing the lipids
while being in contact with other residues as indicated by their buried-ness (supp. Fig. S4) in contrast to their likely benign
counterpart that is seen to be more solvent accessible.

Next, we focused on individual proteins and examined the location and potential mechanism behind disease variants in one
GPCR and one transporter protein. We used the calculated values of AAE and AAG to aid in a structural analysis of the disease
variants in rhodopsin (OPSD; Fig. 4A—4C) and a glucose transporter (GTR1; Fig. 4D—4F). We examined the structures of the
two proteins to find the residues that interact with ligands or co-factors and searched the literature to find residues that are
known to be key to function. We find that many disease variants are located at these residues, suggesting that they directly
disrupt function, and some of them also decrease stability. For example, in OPSD we find a number of disease mutants at
residues that interact with the retinal co-factor as well as residues in e.g. the so-called ionic lock (71) (Fig. 4A and B). Similarly,
many disease variants in GTR1 are located at sites known to interact with a chloride ion that is important for function (70), the
sugar molecule, known inhibitors (72), or residues known to affect transport (70) (Fig. 4C and D).

Looking across the two proteins (Fig. 4), most of the high-AAE, low-AAG disease variants are found at residues that have
known functional roles. We expect such variants in quadrant (I) to lose function due to other reasons than stability (18). This
also includes variation in residues in close proximity to ligands and interaction partners, which were not included in our stability
calculations. Further, we find that many of the disease variants that are not located at known functional sites have both high
values of AAE and AAG, suggesting that these variants instead disrupt the stability of the folded state.

Correlating physicochemical changes with variant effects

We examined the dataset containing all 15 proteins and the amino acid properties within the four quadrants, where quadrant (I)
contains destabilized and quadrant (II) stable variants while both quadrants (I) (I) are—in light of evolution—not tolerated.
Quadrants (IIT) and (IV) are evolutionary tolerated, but quadrant (IIT) contains stable and quadrant (IV) destabilized variants
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Figure 3: Analysis of GPCR variant classification performance and structural differences of variant effects. (A) ROC curve and
(B) distribution of AAG versus AAE plotted for GPCRs for all variants and only for variants within the transmembrane region
(dashed line and diamond symbol). (C) [left] Illustration of the different residue categories used in this work on OPSD, namely,
whether they are inside (blue, and violet) or outside of the transmembrane (TM) region (green and pink), and whether they are
solvent-accessible violet and pink or buried blue and green. The structure on the left shows disease-associated variants, while
the excerpt on the right illustrate solvent-accessible vs. buried, more generally and are for illustration purposes not restricted to
a disease relationship. For more details on how the classes were assigned, see Methods and Materials. On the right, the variant
counts in the four quadrants, separated by their position in the proteins, are shown for group A (pathogenic, full) and group B
(benign and/or non-rare, hashed) variants. (D) Variant counts as seen in (C) are shown summed over all 15 proteins.
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(see Fig. 5A and B, and Methods and Materials for a more detailed quadrant definition). Across all quadrants, hydrophobic
amino acids are most commonly observed (wild-type, 33%; target, 37%), which can be explained by the general preference
for hydrophobic residues in membrane proteins, especially within the TM region (23). Almost 65% of the group B (benign
and/or non-rare) variants located in quadrant (III) have, as expected, the same amino acid property for wild-type and target
(35.1% remain hydrophobic, 21.1% charged, 8.8% polar). For the pathogenic variants that lose function due to loss of stability
(quadrant (I)), we see greater changes in physicochemical properties among those substitutions (Fig. 5A). Interestingly, in
quadrant (IT), where variants lose function due to other reasons than stability, we see mainly hydrophobic target amino acid
types (54.8%, with one third coming from charged to hydrophobic substitutions).

Inspired by the enrichment of pathogenic variants in the transmembrane region (Fig. 1E) that is enriched with hydrophobic
residues (23), we analyze substitutions by physicochemical properties. Specifically, we calculated the median score for AAG and
AAE for each combination of wild-type and target amino acids and arranged the amino acids by hydrophobicity (73) (Fig. 5B).
For variants where the target residue is more hydrophobic (e.g. Arg to Leu, Arg to Trp, or Asp to Tyr variants), we indeed see a
different pattern when looking at the median stability values (AAG) compared to the median AAE values. These variants appear
to be tolerated by protein stability, but not by evolution (Fig. 5B, dashed upper rectangle). In contrast, variants changing the
residue to be less hydrophobic are indicated as not tolerated by evolution and destabilising (Fig. 5B, solid lower rectangle).

CONCLUSIONS

Here, we present an analysis of missense variants and their properties within human membrane proteins. We identified 1.9 - 10
unique variants in 5,471 proteins of which 99.1% are of uncertain significance, and only 19,089 have been classified as
pathogenic or benign. Additionally, we see an almost 2-fold excess of pathogenic variants compared to benign variants in the
transmembrane regions, which make up only 16.1% of the proteins.

We have examined the importance of changes in membrane protein stability for causing loss of function. We analysed 15
proteins and calculated the change in thermodynamic stability (AAG) and evolutionary conservation (AAE). Our ROC analysis
shows good performance in separating benign from pathogenic variants by their sequence conservation (AUC 0.82 for AAE),
and we find that for our 15 analyzed transmembrane proteins ca. 62% of the pathogenic variants cause loss of function via loss
of stability. This indicates that loss of stability indeed plays an important role for disease variants in membrane proteins, in
line with previous findings on soluble proteins, although this needs to be confirmed with studies on larger datasets. In the 15
selected proteins, we observe that most variants have a hydrophobic wild type (33%) or target (37%) amino acid type and
that almost 65% of benign and/or non-rare variants that are likely tolerated as assessed by both AAE and AAG do not change
their amino acid type. Among pathogenic variants that lose function due to loss of stability, substitutions to charged, polar
or hydrophobic are more prominent, while we observe substitutions from more hydrophobic to less hydrophobic residues in
variants that lose function due to other reasons than stability.

When analyzing the different classes of membrane proteins, we observe for transporter proteins that pathogenic variants in
the transmembrane region have an AUC of 0.97 for AAE, and loss of stability does not appear to be the predominant factor in
loss of function for the cell junction protein we examined. In contrast, pathogenic variants in GPCRs lose function mainly via
loss of stability (AUC of 0.79 for AAG). We therefore suggest that pathogenic variants lose function via loss of stability more
often in the transmembrane region of GPCRs than in the other protein classes we examined.

From a more detailed inspection of individual proteins, we found that most of the high-AAE, low-AAG disease variants are
located at positions that have known functional roles, while many of the disease variants that are not located at functional sites
have both high values of AAE and AAG, suggesting that these variants instead disrupt the stability of the folded state.

Our observations underline the importance of stability and the loss thereof in disease-causing variants of membrane proteins
and thereby show how computational tools can aid in interpreting molecular mechanisms that underlie disease. Such functional
understanding may help address the substantial challenge of classifying VUS (74). Given the limited number of variants and
proteins within this study, utilizing recent advantages like the large excess of experimental structures derived from electron
microscopy or computational models from e.g. AlphaFold (75) could enable a broader analysis. We include the collection of
population and ClinVar variants for the entire human proteome to facilitate such studies on membrane proteins and beyond.
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SUPPLEMENTARY MATERIAL
An online supplement to this article can be found by visiting BJ Online at http: //www.biophysj.org.

Supplementary Figures

1.0+ ‘

pathogenic: 2360
benign: 10260

0.8 1

0.6

0.4~

true positive rate (sensitivity)

AUC (gnomAD): 0.96+0.00

0.0 . ! . .
6.0 0.2 0.4 0.6 0.8 1.0
false positive rate (1-specificity)

Figure S1: ROC analysis for gnomAD allele frequencies

Extended supplemental figure collection 1:

Neff values evaluated against GEMME coevolutionary score and sequence coverage per position: 2022_11_11-ddE-neff-coverage.r
Per protein in the X-ray subset three plots are shown: first, the sequence coverage at each residue position vs. neff; second, the

GEMME score (not normalized) vs. neff; third, the GEMME score vs. MSA sequence coverage. For the sequence coverage, our

chosen threshold line is drawn at 50.
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Figure S2: Secondary structure of target dataset calculated using DSSP (52). Abbreviation stand for H = a-helix; B = residue in

isolated B-bridge; E = extended strand, participates in 8 ladder; G = 3-helix (3¢ helix); I = 5 helix (;r-helix); T = hydrogen
bonded turn; S = bend; - = unstructured
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Figure S3: Benchmark of Rosetta AAG calculations for MPs. (A) Comparison of accuracy of stability calculations performed
with different membrane protein score functions but using the same protocol and data set. Data was extracted from (56). (B)
Comparison using different protocols but the same score function (franklin2019; (35)) and was conducted on the benchmark set
described in table S3.
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Figure S4: Protein regions and their overlaps and analysis of GPCR variant classification performance and structural differences
of variant effects. (A) [left] Illustration of the different residue categories used in this work on OPSD, namely, whether they are
inside (dark blue, turquoise, and violet) or outside of the transmembrane (TM) region (green and pink), and their orientation
towards the membrane (lipid-facing: blue and violet), and whether they are solvent-accessible or buried. The structure on the
left shows disease-associated variants, while the two inserts on the right illustrate solvent-accessible vs. buried, and inwards vs.
lipid-facing, more generally and are not restricted to a disease relationship. Variants labeled with other are rare combinations,
e.g., residues within the TM region that are solvent accessible but do not face the membrane, and some at the intersection
between the membrane and the solvent (like lipid-facing but not placed within the TM region; see note in Limitations section).
(B) Overview about the protein region distribution. (C) Similar as Fig. 3C, variant counts in the four quadrants, separated by
their position in the proteins, are shown for group A (pathogenic, full) and group B (benign and/or non-rare, hashed) variants.
(D) Variant counts as seen in (C) are shown summed over all 15 proteins.
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Supplementary Tables
Extended supplemental table 1:

Variant counts per protein: 2022_11_11-count_hMP_anno_nonsyndel_PDB_publish.xlsx The extended supplemen-
tal table is a collection of all displayed data and additional information on the data shown in the main manuscript and the
supplement, including worksheet tabs:

e 2022_05_05-count_hMP_Clinvar_gnomad_PDB_nonsyndel_df" contains a statistic of variant counts and PDB ids for
each human membrane proteins that was experimentally resolved (data fetched by 2022-05-05)

* Variant_annotation: variant count from ClinVar and gnomAD for all human membrane proteins separated by cellular
compartments

* Variant_annotation_hP: variant and protein count from ClinVar and gnomAD for all human proteins

* Variant_annotation_PDB: variant count from ClinVar and gnomAD for all human membrane proteins that are located in
experimentally resolved protein regions, separated by cellular compartments

» Category_variant_annotation: variant count from ClinVar and gnomAD for all human membrane proteins separated by
their membrane protein category and further subdivided into the variants located in the membrane bilayer; protein counts
per category are also added.

* Category_variant_annotation_PDB: variant count from ClinVar and gnomAD for all human membrane proteins that are
located in experimentally resolved protein regions, separated by their membrane protein category and further subdivided
into the variants located in the membrane bilayer; protein counts per category are also added.

* exp_ddg_benchmark: data used for Rosetta stability benchmark (Supplementary Material table S3).
* X-ray_set: X-ray protein information table (equal to table 3

* X-ray_set_app: extended X-ray protein information table including variant counts after each sequential filtering steps and
GEMME/MSA statistics

* X-ray_set_app_AUC: further extended X-ray protein information table (from worksheet tab X-ray_set_app) including
additionally the AUC calculations (error via bootstrapping) for each filtered set of variants and the sequential filtered
remaining data.

* classes: AUC and quadrant variant counts for each protein class in total and in the TM region.
Extended supplemental table 2:

Information of variants for each X-ray PDB with at least 1 benign and 1 pathogenic variant: 2022_05_05-count_hMP_anno_splitPDB_X:
The extended supplemental table is a collection of variant information (ClinVar and gnomAD per cellular compartment) per

protein (each in a separate worksheet tab) per PDB-ID and chain. This is only generated for proteins, where at least one benign

and one pathogenic variant is located in an experimentally resolved region. Further the StrucSel score (see Methods and

Materials) is given, including further information about the PDB


2022_11_11-count_hMP_anno_nonsyndel_PDB_publish.xlsx
2022_05_05-count_hMP_anno_splitPDB_Xray_publish.xlsx
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Table S1: Number of variants annotated by ClinVar or gnomAD for those proteins with at least one experimentally resolved
structure per cellular compartment

all

total 281,220
benign 2,089
benign () gnomAD | 1,951
pathogenic 4,030
patho. () gnomAD 1,046
VUS (ClinVar) 18,882
VUS N gnomAD 9,685
only gnomAD 256,219

Extracellular

112,643
957

883
1,430
326
7,592
3,777
102,664

Cytoplasmic

61,112
495
467
1,118
320
5,962
3,190
53,537

Transmembrane
29,944

169

155

807

208

1,974

908

26,994

other
77,521
4,029
446
3,822
192
3,354
1,810
73,024

Table S2: Variant counts, AUC and variant counts within the quadrants for each protein class. Cutoffs are taken from the
complete dataset.

protein class info after filtering AUC QI QII QIII QIv
class # proteins | subselection || group A | group B || AAG | AAE || group A | group B || group A | group B || group A | group B || group A | group B
Cell Junction | 1 all 33 16 042 | 0.84 || 8 1 12 0 8 11 5 4
TM region 24 8 047 [ 0.78 || 6 1 9 0 4 6 5 1
Enzyme 2 all 24 10 0.62 | 0.83 || 12 0 8 3 2 4 2 3
TM region 6 33 1 0.83 || 4 0 0 1 0 1 2 1
GPCR 4 all 54 24 0.79 | 0.83 || 31 1 12 5 2 14 9 4
TM region 31 11 0.81 | 0.87 || 19 1 6 2 1 5 5 3
Ton channel 3 all 11 12 0.72 | 0.81 || 6 1 3 3 2 8 0 20
TM region 4 3 042 [ 075 || 1 0 2 | 1 2 0 0
Transporter 5 all 98 42 0.63 | 0.82 || 48 3 29 9 12 20 9 10
TM region 44 10 0.71 | 0.97 || 27 0 11 1 2 6 4 3

Table S3: Experimental AAG datasets (all from E. coli) used for benchmarking. Multiple variant counts indicate different pH,
labeling tags or temperatures.

uniprotID  protein  #variants reference
P09391 GLPG 6,3 (76)
P09391 GLPG 69 (58)
P09391 GLPG 142 (57)
P09391 GLPG 20,20,8,8 (77)
P09391 GLPG 2 (78)
POA910 OMPA 19,20 (79)
POA910  OMPA 15 (80)
POA921 PA1 36 (81)
P0A921 PA1 6,6,6 (82)
P0OA921 PA1 49 (83)
P37001 PAGP 20 (84)
P37001 PAGP 19,19 (85)
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