

1 **Neural circuit mechanisms for transforming learned olfactory valences into**
2 **wind-oriented movement**

3 Yoshinori Aso^{1*}, Daichi Yamada², Daniel Bushey¹, Karen Hibbard¹, Megan
4 Sammons¹, Hideo Otsuna¹, Yichun Shuai¹, Toshihide Hige^{2,3,4*}

5 1: Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United
6 States

7 2: Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill,
8 United States

9 3: Department of Cell Biology and Physiology, University of North Carolina at Chapel
10 Hill, Chapel Hill, United States

11 4: Integrative Program for Biological and Genome Sciences, University of North
12 Carolina at Chapel Hill, Chapel Hill, United States

13

14 Contact Info

15 asoy@janelia.hhmi.org

16 hige@email.unc.edu

17

18 **Summary**

19 How memories are used by the brain to guide future action is poorly understood. In
20 olfactory associative learning in *Drosophila*, multiple compartments of the mushroom
21 body act in parallel to assign valence to a stimulus. Here, we show that appetitive
22 memories stored in different compartments induce different levels of upwind locomotion.
23 Using a photoactivation screen of a new collection of split-GAL4 drivers and EM
24 connectomics, we identified a cluster of neurons postsynaptic to the mushroom body
25 output neurons (MBONs) that can trigger robust upwind steering. These UpWind
26 Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of
27 appetitive and aversive memory compartments, respectively. After training, disinhibition
28 from the appetitive-memory MBONs enhances the response of UpWiNs to reward-
29 predicting odors. Blocking UpWiNs impaired appetitive memory and reduced upwind
30 locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of
31 returning to a location where activation was initiated, suggesting an additional role in
32 olfactory navigation. Thus, our results provide insight into how learned abstract valences
33 are gradually transformed into concrete memory-driven actions through divergent and
34 convergent networks, a neuronal architecture that is commonly found in the vertebrate
35 and invertebrate brains.

36

37 **Introduction**

38 Animals assign a valence to a stimulus based on experience. Such learning events
39 induce an enduring modification in the stimulus-evoked activity of the nervous system
40 and ultimately change the behavioral response to future encounters with the same
41 stimulus. In mammals, the amygdala is the primary site for valence assignment during
42 Pavlovian learning (O'Neill et al., 2018). As a neutral sensory stimulus (conditioned
43 stimulus, CS) is paired with punishment or reward (unconditioned stimulus, US), the CS

44 acquires the capacity to evoke valence-specific response patterns in the amygdala
45 (Grewe et al., 2017; Zhang and Li, 2018). However, the circuit process in which these
46 learning-dependent CS representations lead to concrete motor patterns during memory
47 retrieval is poorly understood. Comprehensive understanding of this process requires
48 detailed knowledge of the downstream connectivity of the plastic CS-representing
49 neurons. Nevertheless, it has been shown that amygdala-dependent valence-specific
50 behaviors are mediated by distinct networks (Gore et al., 2015) whose outputs diverge to
51 different projection areas responsible for aversive or appetitive unconditioned responses
52 (Beyeler et al., 2016; Namburi et al., 2015). There is also evidence for an alternative
53 mechanism where neurons capable of eliciting opposing behaviors converge on the
54 same target areas or neurons. For example, GABAergic and glutamatergic projection
55 neurons from the lateral hypothalamus to the ventral tegmental areas (VTA) can evoke
56 appetitive and aversive behaviors, respectively. These projection neurons converge on
57 the same population of GABAergic neurons in VTA to differentially control downstream
58 dopaminergic neurons (Nieh et al., 2016). Thus, both divergent and convergent circuit
59 motifs are considered important for the valence-to-behavior transformation in vertebrates
60 (Tye, 2018).

61
62 Divergent pathways for valence processing are also evident in the memory circuit in
63 *Drosophila* both anatomically and functionally. In fly olfactory learning, the primary site
64 for CS-US association is the mushroom body (MB), where parallel axon fibers of the
65 odor-encoding Kenyon cells (KCs) are segmented into a series of MB compartments that
66 are defined by the dendrites of MB output neurons (MBONs) and axons of US-encoding
67 dopaminergic neurons (DANs) (Aso et al., 2014a; Tanaka et al., 2008)(Figure 1A).
68 While population activity of KCs represents odor identity (Campbell et al., 2013), that of
69 MBONs is less effective in doing so (Hige et al., 2015b). Instead, individual MBONs are

70 considered to encode the valence of stimuli because optogenetic activation of each type
71 of MBONs can elicit either approach or avoidance behavior (Aso et al., 2014b; Owald et
72 al., 2015). However, MBONs do not appear to command specific motor sequences
73 because their activation does not induce stereotyped motor patterns (Aso et al., 2014b).
74 Thus, how abstract valence signals carried by MBONs are translated into concrete motor
75 patterns is unknown.

76

77 The MB compartments are arranged such that the valence of DANs is opposite to that of
78 the corresponding MBONs in a given compartment (Aso et al., 2014b). During learning,
79 coactivation of DANs and KCs induces long-term depression of KC-MBON synapses in
80 a compartment-specific manner (Berry et al., 2018; Cohn et al., 2015; Hige et al., 2015a;
81 Owald et al., 2015). Thus, the prevailing hypothesis is that learning-induced depression
82 in a subset of MBONs tips the collective balance of positive and negative valences
83 represented by the MBON population, which are in balance in naive flies, and thereby
84 biases the odor choice (Heisenberg, 2003; Hige, 2018; Modi et al., 2020; Owald and
85 Waddell, 2015). Supporting this view, photoactivation of multiple types of MBONs
86 encoding the same or opposite valences exerts additive effects for induction of attraction
87 and avoidance (Aso et al., 2014b). This model predicts that the circuits downstream of
88 the MB should be sensitive to skewed activity patterns of the MBON population. Such a
89 computation can be performed by neurons integrating or comparing the output signals of
90 multiple MBONs. In fact, axon terminals of the MBONs are confined to relatively limited
91 brain regions, suggesting that they converge on common neurons (Aso et al., 2014a).
92 The comprehensive EM connectome indeed revealed that 600 out of 1550 postsynaptic
93 neurons of MBONs also receive input from at least one other MBON (Li et al., 2020).
94 However, whether those convergent circuit motifs function to decode the parallel

95 memories formed in the MB and, if so, how they shape motor patterns during memory
96 retrieval are unknown.

97

98 The functional diversity of the MB compartments is not limited to the sign of memory
99 valence. At least 5 out of 15 MB compartments are identified as appetitive memory
100 compartments, and yet they exhibit distinct memory properties (Aso et al., 2014b; Aso
101 and Rubin, 2016). For example, memory formation in the $\alpha 1$ compartment requires
102 relatively long training, but once formed, lasts more than a day. In contrast, memory in
103 $\gamma 5\beta'2\alpha$ requires only a single training to form but is transient and easily overwritten by
104 the subsequent training (Aso and Rubin, 2016; Ichinose et al., 2021; Yamada et al.,
105 n.d.). Compartments are also tuned to distinct types of reward. While $\alpha 1$ memory is
106 essential for nutritional value learning (Yamagata et al., 2015), $\gamma 4$ and $\beta'2$ compartments
107 function in water reward learning (Lin et al., 2014). Despite this diversity, memory
108 formation in any appetitive compartments can promote attraction to the associated odor.
109 The behavioral strategies used to find the source of attractive odors are not analyzed in
110 typical olfactory learning assays (Tully and Quinn, 1985), that measure the relative
111 distributions of flies between learned and control odors. Thus, the roles played by
112 individual appetitive memory compartments in guiding approach to an attractive odor
113 remain unknown.

114

115 By analyzing walking trajectories of individual flies, we found that appetitive memories
116 formed in the $\alpha 1$ compartment are able to bias the turning direction so that a fly move
117 upwind. By photoactivation screening, we identified a single cluster of neurons, UpWiNs,
118 that can promote robust upwind steering and acceleration of locomotion. UpWiNs
119 receive inputs from several types of lateral horn neurons and integrate inhibitory and
120 excitatory inputs from MBON- $\alpha 1$ and MBON- $\alpha 3$, which are the MBONs that convey long-

121 term appetitive or aversive memories, respectively. UpWiNs enhance responses to
122 odors after induction of memory in the $\alpha 1$, and the activity of UpWiNs is required for
123 appetitive memory and memory-driven upwind locomotion. Taken together, our work
124 provides important insights into the process of valence integration, which we show
125 employs a convergent circuit motif commonly found downstream of memory centers, and
126 reveals circuit mechanisms that underlie the gradual transformation from abstract
127 valence to specific motor commands.

128

129 **Results**

130 **Identification of the MB compartments that drive upwind locomotion**

131 To analyze behavioral components of memory-driven odor response, we used a modified
132 four-armed olfactory arena in which odors are delivered through the current of airflow from
133 the four channels at corners to the suction tubing at the center (Figure 1B) (Aso and Rubin,
134 2016; Pettersson, 1970; Vet et al., 1983). The airstream from each channel forms sharp
135 boundaries at the border of quadrants. Each of four quadrants can be filled with an
136 arbitrary odor, but we typically used it either for presentation of a single odor in all
137 quadrants or for binary choice by presenting two odors in diagonal quadrants (Figure 1C).

138 To test whether appetitive olfactory memories created in different MB
139 compartments elicit distinct behaviors during memory retrieval, we first trained flies by
140 pairing an odor as the CS+ with optogenetic activation of one of four sets of DANs. Each
141 set of DANs projects to distinct appetitive memory compartments: $\gamma 5\beta'2a$, $\gamma 4$, $\beta 1\beta 2$ or $\alpha 1$
142 (Huettneroth et al., 2015; Ichinose et al., 2015; Lin et al., 2014; Liu et al., 2012; Yamagata
143 et al., 2015). A second odor was presented without DAN activation as CS- (Figures 1C).
144 These optogenetic activations promoted local release of dopamine in the targeted MB
145 compartments (Sun et al., 2020; Yamada et al., n.d.). We used a pair of odors, Pentyl
146 Acetate (PA) and Ethyl Lactate (EL), that evokes activity in discrete sets of KCs (Campbell

147 et al., 2013). After three training sessions, flies exhibited strong preference to the CS+
148 odor when given a choice between CS+ and CS- odors (Figure 1D). Next, we asked if
149 these MB-compartment-specific memories can drive wind-directed movement when CS+
150 or CS- odors were presented separately for 10 seconds (Figure 1C). We measured the
151 movement of individual flies and their heading angle relative to the upwind direction and
152 analyzed how those parameters changed in response to odors. Despite robust CS+
153 preference in a binary choice, memories in the $\gamma 5\beta'2a$ and the $\gamma 4$ failed to promote
154 significant upwind movement (Figure 1E-F). In contrast, memories in the $\alpha 1$ and the $\beta 1\beta 2$
155 promoted steering and walking upwind in response to the CS+ odor, compared to genetic
156 controls and the “No LED” control group of the same genotype (Figure 1E-F). The memory
157 in the $\alpha 1$ compartment also reduced upwind locomotion in response to CS- odor compared
158 to the genetic control groups. These initial analyses compared averages of all ~20 flies in
159 each movie. By separately analyzing behaviors of individual flies based on their orientation
160 at the onset of odors, we found that memories in the $\alpha 1$ and $\beta 1\beta 2$ biased the direction of
161 turning to steer toward upwind (Figure 1 G). Memories in $\gamma 5\beta'2a$ and $\gamma 4$ did not bias the
162 turning direction, although they promoted flies facing downwind to change orientation in a
163 non-directional manner (Figure 1G and Figure 1-figure supplement 1). These results
164 indicate that appetitive memory retrieval involves distinct behavioral strategies depending
165 on the localization of the memory in the MB. Specifically, MBONs from the $\alpha 1$ and the
166 $\beta 1\beta 2$ compartments, but not those from $\gamma 5\beta'2a$ or $\gamma 4$, appear to be connected to circuit
167 components that drive memory-driven upwind steering.

168

169 **Identification of UpWind Neurons by optogenetic screening**

170 We next set out to identify the circuit elements that function downstream of the MBONs to
171 induce memory-driven, wind-guided locomotion. To enable cell-type-specific experimental
172 manipulation, we have made a large collection of split-GAL4 drivers. Using a subset of

173 these lines, we conducted optogenetic screening to test if activation of certain neurons
174 can promote wind-directed movement. We analyzed how starved flies respond to 10s
175 optogenetic stimulation of various cell types in the circular arena with airflow but no
176 olfactory stimuli (Figure 2). We measured the changes in the fly's distance from the center,
177 heading angle relative to the upwind direction, angular velocity and walking speed.
178 Because returning to the odor plume is a major component of olfactory navigation (Baker,
179 1990; Cardé, 2021), we also measured the probability of a fly returning to its starting
180 location after moving away.

181 Although our screen is not comprehensive in terms of the coverage of the cell types
182 or brain areas, it successfully identified several clear “hits”, which include both known and
183 previously uncharacterized cell types. Most of the lines with phenotypes showed increased
184 upwind locomotion, but we did find four lines, which label SMP120/124, MBON01/03/04
185 or CRE039, that promoted locomotion in the downwind direction (Figure 2 and Figure 2-
186 figure supplement 1 and 2). As previously reported (Matheson et al., 2022), activation of
187 some MBON types including MBON- α 3 (also known as MBON14 or MBON-V3) and
188 MBON- γ 2 α '1 (MBON12) promoted significant upwind locomotion. Figure 2B summarizes
189 the detailed time courses of these behavioral phenotypes before, during and after 10s
190 LED stimulations. These behavioral data can be immediately put into the context of the
191 EM connectome map, since the cell types in each driver lines were morphologically
192 matched by comparing confocal and electron microscope images (see examples in Figure
193 2-figure supplement 2 and 3).

194 Among the split-GAL4 drivers we screened, SS33917 and SS33918 showed the
195 strongest upwind locomotion, especially at the onset of 10s activation period (Figure 2B
196 and Figure 2-figure supplement 1). These driver lines label a similar set of 8-11 neurons
197 (Figure 2-figure supplement 2). Here, we will focus our analysis on this cluster of neurons,

198 which we collectively call UpWind Neurons (UpWiNs), based on their robust activation
199 phenotype and anatomical connections with the $\alpha 1$ compartment (see below).

200

201 **UpWiNs integrate inputs from MBONs**

202 The UpWiNs have extensive arborizations in the dorsolateral area of the brain where
203 MBON- $\alpha 1$ (also known as MBON07) and MBON- $\alpha 3$ send converging axons (Video 1 and
204 2; Figure 3A). The $\alpha 1$ and $\alpha 3$ compartments store appetitive and aversive long-term
205 memories, respectively (Aso and Rubin, 2016; Huetteroth et al., 2015; Ichinose et al.,
206 2015; Jacob and Waddell, 2022; Matheson et al., 2022; Pai et al., 2013; Yamagata et al.,
207 2015). DANs innervating the $\alpha 1$ and $\alpha 3$ compartments respond to sugar or electric
208 shock/heat/bitter, respectively (Jacob and Waddell, 2022; Kirkhart and Scott, 2015;
209 Schnitzer et al., n.d.; Siju et al., 2020; Yamagata et al., 2015). MBON- $\alpha 1$ displays reduced
210 odor response to an odor associated with activation of DANs in $\alpha 1$ (Yamada et al., n.d.),
211 whereas MBON- $\alpha 3$ increases response to an odor associated with sugar reward possibly
212 due to interactions with appetitive memory compartments such as the $\beta 1$ (Li et al., 2020;
213 Plaçais et al., 2013; Takemura et al., 2017; Tanaka et al., 2008) and decreases response
214 to punishment-associated odors (Jacob and Waddell, 2022; Schnitzer et al., n.d.). Both
215 MBONs are required for retrieval of long-term appetitive memory (Ichinose et al., 2015;
216 Plaçais et al., 2013). These previous reports raise the possibility that the UpWiNs defined
217 by the SS33917 driver might play a role in both the upwind locomotion observed during
218 retrieval of an $\alpha 1$ memory (Figure 1) and the activation of MBON- $\alpha 3$ (Matheson et al.,
219 2022)(MB082C data in Figure 2).

220 To test this possibility, we first examined the anatomical connectivity of the UpWiNs. We
221 obtained images of 25 individual neurons in SS33917-split-GAL4 by the multi-color flip-
222 out method and compared them with reconstructed EM-images (Figure 3 and Figure 3
223 supplement 1-3) (Nern et al., 2015; Otsuna et al., n.d.; Scheffer et al., 2020). This analysis

224 identified eleven neurons of five cell types in the hemibrain EM dataset as UpWiN neurons
225 (Figure 3 Figure supplement 1 and 2). Among 11 matched EM-reconstructed neurons of
226 the UpWiNs, four neurons, one SMP353 and three SMP354 neurons, receive direct
227 synaptic input from MBON- α 1 (Figure 3B-E)(Li et al., 2020; Scheffer et al., 2020). SMP354
228 also receives input from MBON- α 3; this strong convergent connectivity is exceptional
229 among the population of the neurons that are postsynaptic to either of the MBONs (Figure
230 3D and Figure 3-figure supplement 4). The rest of the UpWiNs do not have direct
231 connections with these MBONs, but receive indirect input from them (see Figure 3F). The
232 excitatory interconnections within the UpWiN cluster suggests that these neurons may
233 function as a group, even though the connectivity of the individual neurons is
234 heterogeneous. Interestingly, all the UpWiNs provide input to a single neuron, SMP108
235 (Figure 3C), which has the highest number of connections with reward DANs and plays a
236 key role in second-order conditioning (Yamada et al., n.d.). The axon terminals of UpWiNs
237 are immunoreactive to choline acetyltransferase (Yamada et al., n.d.), and therefore likely
238 to be excitatory to the SMP108 and other downstream neurons. The SMP108 is labeled
239 in SS45234 and SS67221, and its activation also promoted upwind locomotion (Figure 2;
240 Figure 2-figure supplement 1).

241

242 To test functional connectivity, we made *in vivo* whole-cell recordings from
243 UpWiNs, while optogenetically activating either MBON- α 3 or MBON- α 1. Neurons were
244 randomly targeted by the electrode among those labeled by R64A11-LexA, which is a
245 broad driver for UpWiNs. R64A11 is a hemi-driver for the DNA-binding domain of the
246 SS33917-split-GAL4. A brief 10 ms stimulation of cholinergic MBON- α 3 evoked a strong
247 excitation in 2 out of 6 UpWiNs examined, whereas glutamatergic MBON- α 1 evoked
248 inhibitory responses in 4 out of 17 UpWiNs (Figure 4A-B). The observed stochasticity of
249 the connectivity is consistent with the EM connectome data. Postsynaptic sites of MBON-

250 $\alpha 1$ and MBON- $\alpha 3$ are juxtaposed on the dendrites of UpWiNs (Figure 3E), implying
251 dendritic integration of these inputs. Since we did not have a LexA driver that selectively
252 labels SMP354, we were unable to specifically target those integrating UpWiNs by
253 electrophysiology. We therefore measured the population activity of UpWiNs at the
254 junction between their dendrites and proximal axons by two-photon calcium imaging in
255 dissected brains. Consistent with the electrophysiological results and the circuit model, we
256 observed a calcium increase upon MBON- $\alpha 3$ activation. Moreover, MBON- $\alpha 1$ activation
257 suppressed the excitatory effect of MBON- $\alpha 3$ when they were activated together (Figure
258 4C). These results indicate that UpWiNs receive and integrate synaptic inputs from
259 MBONs that signal opposite signs of memory valence.

260

261 **UpWiNs acquire enhanced responses to reward-predicting odors**

262 The UpWiN cluster collectively receives olfactory information from the MBONs and lateral
263 horn output neurons (LHONs) (Figure 3C). This anatomy raises the intriguing possibility
264 that UpWiNs have basal odor responses and memories in the MB modify it. To test this
265 possibility, we optogenetically induced appetitive memory and monitored the change in
266 the subsequent odor-evoked electrophysiological activity of UpWiNs. For these
267 experiments, we used another UpWiNs split-GAL4 driver SS67249. This driver was not
268 suitable for behavioral experiments due to stochastic and off-targeted expression but
269 labeled a highly restricted subset (1-3 cells) of UpWiNs including the one resembling the
270 morphology of SMP353 (Figure 5-figure supplement 1). Before training, the UpWiNs
271 showed relatively weak odor responses likely because inhibitory and excitatory inputs
272 cancel each other (Figure 4C). After pairing an odor with optogenetic activation of the
273 reward DANs including those projecting to $\alpha 1$, UpWiNs displayed increased excitatory
274 response to subsequent exposures to the CS+ odor but not to the CS- odor (Figure 5).
275 We observed the enhancement of CS+ response irrespective of the identity of tested CS+

276 odors (OCT or MCH; Figure 5-figure supplement 2). This enhancement of CS+ response
277 can be most easily explained as an outcome of disinhibition from MBON- α 1 whose output
278 had been decreased by memory formation; MBON- α 1 is inhibitory to UpWiNs (Figure 4B)
279 and MBON- α 1 response to the CS+ is reduced following the same training protocol
280 (Yamada et al., n.d.).

281

282 **UpWiNs promote wind-directed behaviors**

283 Having examined the functional connectivity and plasticity of UpWiNs, we revisited
284 behavioral phenotypes caused by optogenetic activation. In the screening experiments
285 shown in Figure 2, since the default wind direction is from the periphery to the center in
286 our olfactory arena, upon activation of UpWiNs, flies moved toward the periphery and
287 increased their mean distance from the center. However, this phenotype might be
288 explained by the avoidance of center area (Besson and Martin, 2005) rather than wind-
289 directed behavior. However, several experiments argue against that possibility. First, the
290 UpWiN activation phenotype was starvation dependent; only starved flies showed robust
291 upwind locomotion upon UpWiN activation (Figure 6A). Second, flies' response to UpWiN
292 activation depended on the rate and direction of the airflow. Flies did not move toward the
293 periphery without airflow (Video 3) and moved toward the center when the direction of
294 airflow was reversed (Figure 6B). Finally, unilateral, or bilateral ablation of aristae, the
295 wind-sensing organ in Drosophila (Yorozu et al., 2009), impaired movement toward the
296 periphery during UpWiN activation (Figure 6C; Video 4). These observations are
297 consistent with a role for UpWiNs in transforming appetitive memory into wind-directed
298 behaviors.

299

300 As observed in memory-driven olfactory responses (Figure 1 and Figure 1-figure
301 supplement 1), the kinematics of behavior at the onset of UpWiN activation depended on

302 the initial orientation of flies relative to the wind-direction (Video 2). Flies transiently
303 increased angular speed during the first ~300ms (Figure 6D). This increased angular
304 speed was observed also in empty-split-GAL4 control flies and considered to be a startle
305 response to activating light. However, direction of turning during this period was
306 significantly biased toward the upwind direction when either of two lines for UpWiNs were
307 used to express CsChrimson (Figure 6E-F). UpWiNs activation also modulated forward
308 walking speed in a manner that depended on the orientation of flies at the onset of the
309 activating light (Figure 6G). The orientation-dependent modulation of turning direction and
310 walking speed observed is similar to that evoked by $\alpha 1$ -specific memory (Figure 1G). In
311 contrast, activation of MBON- $\gamma 2\alpha 1$ with MB077B split-GAL4 modulated forward walking
312 speed and promoted flies that already faced upwind to maintain that orientation but did
313 not cause directional turning toward the upwind direction (Figure 6D-G; see Figure 6-figure
314 supplement 1 for other drivers). These results are consistent with a view that UpWiNs
315 transform memory in a $\alpha 1$ into signals that promote olfactory navigation but do not yet
316 specify lower-level motor parameters (i.e. turning direction and acceleration). Information
317 about wind-direction and UpWiN's activity needs to be integrated somewhere downstream
318 to compute the turn direction. The central complex is the likely brain area for such a
319 computation (Matheson et al., 2022; Okubo et al., 2020).

320

321 **UpWiNs are required for memory-driven upwind locomotion**

322 Finally, we asked if UpWiNs are required for retrieval of sugar-induced appetitive memory.
323 Formation of long-lasting appetitive memory after odor-sugar conditioning relies on the
324 DANs that innervate the $\alpha 1$ compartment (Ichinose et al., 2021; Yamagata et al., 2015).
325 Therefore, we tested the requirement of UpWiNs for 1-day appetitive memory. The control
326 genotypes showed enhanced upwind locomotion in the presence of odors associated with
327 sugar, whereas flies that express the light chain of tetanus toxin (TNT) in UpWiNs showed

328 compromised upwind-locomotion (Figure 7A-B). To test the requirement of UpWiNs
329 specifically during the memory test period, we also attempted experiments with
330 temperature-sensitive *shibire*, which allows reversible block of vesicular release
331 (Kitamoto, 2001). One day after odor-sugar conditioning, blocking synaptic output of
332 UpWiNs only during test period impaired preference to CS+ odor in binary choice
333 compared to the genetic controls (Figure 7C). However, we were unable to analyze wind-
334 directional behaviors in these *shibire* experiments because control flies did not show CS+
335 odor-induced upwind locomotion at restrictive temperature (data not shown) presumably
336 due to increased preference to the peripheral of the arena or altered odor concentration.
337 These results indicate that UpWiNs play a major role in behavior during appetitive memory
338 retrieval but also suggest that their behavioral contribution may not be limited to simple
339 promotion of upwind locomotion. Indeed, the analysis of 10s activation screening data
340 revealed that flies increased the probability of revisiting the location where UpWiNs were
341 activated (Figure 2B), although this data doesn't necessarily indicate induction of spatial
342 memory by UpWiNs and we found that another cell types SMP357-362 defined by
343 SS49755-split-GAL4 caused far more robust revisiting phenotype (Figure 2B; Video 5).
344 Also, optogenetic activation of the UpWiNs could bias spatial distribution of flies between
345 quadrants with and without activating illumination (Figure 7D). This bias is likely due to the
346 airflow-independent function of UpWiNs because the UpWiN activation could increase the
347 probability of revisiting behavior even in the absence of airflow (Figure 7E and Figure 7-
348 figure supplement 1).

349

350 **Discussion**

351 It has been postulated that the valence of learned odors is represented as the relative
352 activity of the MBONs, each of which signals either positive or negative valence assigned
353 in the parallel memory modules. In this study, we identified a cluster of neurons that can

354 decode the differential activity of MBONs encoding opposing valances. Although activity
355 of these neurons strongly induced a coordinated sequence of motor patterns that are
356 deeply related to olfactory navigation, determination of turning direction and walking speed
357 depended on fly's orientation to wind direction. Thus, our findings may mark an important
358 transition point of the circuit, where abstract valence signals encoded by a population of
359 neurons are evaluated and gradually transformed into concrete motor patterns.

360

361 **Memory valence and competing drives**

362 Previous studies in the Drosophila MB have predicted the existence of a valence integration
363 process. First, flies can create appetitive and aversive memories in parallel in different MB
364 compartments after a single learning experience, and those memories compete over the
365 behavioral choice with distinct time courses (Aso et al., 2014b; Aso and Rubin, 2016; Das et
366 al., 2014; Kaun et al., 2011). Second, memory extinction (Felsenberg et al., 2018) and
367 reversal learning (McCurdy et al., 2021) create a memory trace in a MB compartment, which
368 neutralizes the effect of the original memory traces that persist in other MB compartments.
369 Third, attraction and avoidance behaviors induced by photoactivation of multiple types of
370 MBONs can be largely explained by the additive effects of individual activation (Aso et al.,
371 2014b).

372

373 These studies support the “valence-balance model”, where learning-induced plasticity in the
374 MB tips the balance of the valence signals of the MBON population (Heisenberg, 2003; Hige,
375 2018; Modi et al., 2020; Owald and Waddell, 2015). The mode of synaptic integration
376 observed in the UpWiNs matches the expectation from this model. UpWiNs receive direct
377 inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory

378 compartments, respectively. When both presynaptic MBONs were activated, which mimicked
379 the naive state (i.e. no depression in either of the MBONs), those inputs canceled each other,
380 resulting in no net excitation (Figure 4). When plasticity was induced in the inhibitory
381 appetitive-memory MBONs, which mimics appetitive memory formation, the odor response
382 was enhanced (Figure 5). Thus, UpWiNs are able to decode the unbalanced activity of
383 MBONs encoding opposing valence. Given the prevalence of convergent circuit motifs in the
384 downstream circuits of the MB (Li et al., 2020), we predict that similar synaptic integration of
385 those output neurons that signal the same or opposite stimulus valences controls other
386 components of olfactory behaviors. Convergence of valence signals might also occur
387 between the MB and LH, which is the other olfactory center parallel to the MB and is thought
388 to mediate innate behavior. In fact, one MBON type sends its axon to the LH and causes
389 learning-dependent modulation of the activity of food-odor-responding neurons (Dolan et al.,
390 2018). UpWiNs also receive abundant input from the LH neurons, suggesting that UpWiNs
391 also play an important role in integrating the innate and learned valances. The use of
392 divergent and convergent pathways to process valence signals, like those we describe here,
393 appear to be an evolutionarily conserved strategy that is observed, for example, in the
394 vertebrate amygdala and its associated brain areas (Tye, 2018).

395

396 **UpWiNs and olfactory navigation**

397 In addition to valence integration, UpWiNs play an important role in wind-guided behavior.
398 Wind direction provides a critical cue for olfactory navigation in natural environments where
399 odorants are propagated by the stream of airflow. Male moths have an astonishing ability to
400 track the source of attractant pheromones emitted from females located over a mile away,
401 and have been used as a model for olfactory navigation (Cardé, 2021; Kanzaki and Ikeda,

402 1994; Vergassola et al., 2007). Male moths react to the intermittent plume of pheromone by
403 series of cast-surge-cast actions (Baker, 1990). In a wind tunnel experiment, *Cadra cautella*
404 moths began cross-wind casting following withdrawal of the pheromone plume. Upon contact
405 with a single puff of pheromone, moths surged upwind after a delay of approximately 200 ms
406 to re-orient themselves. In our optogenetic experiments, activation of UpWiNs increased
407 angular velocity with a similar time scale and biased turning direction toward the upwind
408 direction (Figure 6D-F). In addition to promoting an upwind surge, UpWiNs activation
409 increased the probability of returning to the location where activation was applied even after
410 the cessation of both optogenetic activation and airflow (Figure 7 and Figure 7-figure
411 supplement 1). Therefore, UpWiNs alone may be able to promote a series of cast-surge-cast
412 reactions when flies navigate intermittent plumes of reward-predicting odors. Furthermore,
413 as the third function, UpWiNs relay information about reward-predicting odor to the
414 downstream neuron SMP108, which in turn feeds excitatory inputs to multiple DANs to
415 instruct formation of second-order memories (Yamada et al., n.d.). Interestingly, the patterns
416 of DAN population responses to SMP108 or UpWiNs activation are similar to those observed
417 when flies are walking toward vinegar in a virtual environment (Zolin et al., 2021). Together
418 with the evidence of inputs from the lateral horn neurons, this may indicate that UpWiNs is
419 also responsible for upwind locomotion to innately attractive odors and can be the causal
420 source of action correlates in DANs. All three of these UpWiNs functions likely contribute to
421 olfactory navigation in complex environments. Our study was limited to walking behaviors,
422 and the role of UpWiNs in flight behaviors remains to be investigated. UpWiNs are also well-
423 positioned to influence internal state to promote selective processing of wind and olfactory
424 stimuli.

425 Recent studies in *Drosophila* have provided insights into detailed neural circuit
426 mechanisms of wind sensation and olfactory navigation. Both flying and walking flies
427 turn upwind and increase locomotion speed when they encounter an attractive odor
428 (Álvarez-Salvado et al., 2018; Steck et al., 2012; van Breugel and Dickinson, 2014).
429 Airflow is detected by displacement of aristae and the Johnston organ sensory neurons
430 (Kamikouchi et al., 2006; Yorozu et al., 2009), and left-right asymmetry is computed by
431 the downstream neurons to represent wind direction in the central complex (Matheson et
432 al., 2022; Okubo et al., 2020; Suver et al., 2019). Fictive appetitive and aversive training
433 using optogenetic activation of DANs can promote and suppress the upwind locomotion,
434 respectively (Handler et al., 2019), suggesting that retrieval of associative memory to
435 drive behavior utilizes this same navigational strategy. Activation of a set of input
436 neurons of the fan-shaped body (FB), which is a part of the central complex known as
437 the navigation center of insects, can induce robust upwind locomotion (Matheson et al.,
438 2022). The FB is one of the major downstream targets of MBONs (Li et al., 2020;
439 Scaplen et al., 2021), while also receiving input from neurons representing wind
440 directions (Matheson et al., 2022). Although these studies point to the importance of the
441 central complex as the integration site of information about learned odor and wind
442 direction, much remains to be learned about how the valence signals conveyed by
443 MBONs influence upwind locomotion.

444 Based on the EM connectome data, SMP108 appears to be the most prominent
445 neuron postsynaptic to UpWiNs. Activation of SMP108 was able to promote upwind
446 locomotion, but the behavioral components differed from UpWiNs activation (Figure 2),
447 and blocking SMP108 did not affect retrieval of appetitive memory (Yamada et al., n.d.).
448 Therefore, UpWiNs may evoke upwind behavior through other downstream cells. FB6D,
449 FB6I and FB6T appear to be other major downstream neurons of UpWiNs (Figure 3C).
450 The top 3 downstream neurons of FB6D are hDeltaF, hDeltaC and hDeltaK. hDeltaC is

451 the columnar cell type of the FB that is known to integrate wind-directional cues and
452 information of innately attractive odor to promote upwind behavior (Matheson et al., 2022).
453 Our screening also identified that co-activation of hDeltaB, hDeltaD and hDeltaE can
454 promote robust upwind locomotion (Figure 2 and Figure 2-figure supplement 1). Thus
455 these hDelta cell types likely function together to regulate wind-directed locomotion. EM-
456 connectome-guided follow-up studies on other cell types with significant upwind/downwind
457 phenotypes (Figure 2) will help generate a comprehensive understanding of olfactory
458 navigation circuits.

459

460 **Compartment-specific contribution to anemotaxis**

461 One highlight of our study is the finding that memories stored in different MB compartments
462 use different behavioral strategies during retrieval. Although gaining a full description of
463 those behavioral strategies is beyond the scope of the present study, we can speculate on
464 the potential biological significance of the differential contributions to anemotaxis—
465 movement in response to air currents—behaviors by MB compartments.

466 First, the difference in the type of memory stored in different compartments is likely
467 to be a key factor. Based on the circuit connectivity and behavioral data, UpWiNs are
468 responsible for upwind locomotion driven by the memory stored in the $\alpha 1$ compartment.
469 Compared to other DANs for appetitive memory, the DANs in the $\alpha 1$ only weakly respond
470 to sugar (Yamagata et al., 2015), and write a memory slowly even when optogenetically
471 activated (Aso and Rubin, 2016; Yamada et al., n.d.). Once formed with repetitive training,
472 the memory in the $\alpha 1$ lasts over a day and is most resistant to extinction (Aso and Rubin,
473 2016; Huetteroth et al., 2015; Ichinose et al., 2015; Yamada et al., n.d.; Yamagata et al.,

474 2015). These features collectively indicate that flies undergo wind-guided olfactory
475 navigation only when they expect a robust reward associated with the odor.

476 Second, the MB must operate with different downstream circuits in adults and larva.

477 Holometabolous insects undergo complete metamorphosis by which body structures of
478 larvae abruptly develop into adult's form through pupal stage. In *Drosophila*, behavioral
479 components of olfactory navigation and relevant neural circuits also undergo striking
480 changes through metamorphosis. *Drosophila* larvae hatch from eggs with already
481 developed circuits of olfaction and an MB that consists of ~70 mature KCs, 7 DANs and 24
482 MBONs (Eichler et al., 2017). The first instar larval MB circuit is numerically simpler than
483 that of the adult but can support associative learning (Pauls et al., 2010). Larval *drosophila*
484 perform innate and memory-based olfactory navigation by modulating rate of head casting
485 and reorientation based on concentration gradient of odors measured over time (Fishilevich
486 et al., 2005; Saumweber et al., 2018). Although larvae can sense wind and use it to avoid
487 aversive odors (Jovanic et al., 2019), they do not use the wind direction to localize the source
488 of attractive odors as adults do. The adult airflow-sensing organ (i.e., *aristae*), relevant
489 neural circuits such as the central complex, legs and wings all develop during
490 metamorphosis. Therefore, the metamorphosing MB circuit must adopt new interacting
491 partners to transform stored memories into adult-specific anemotaxis behaviors.

492 The EM connectome of larval and adult MB circuits revealed many cell types with
493 similar morphology, which are in some cases labeled by the same genetic driver lines (Aso
494 et al., 2014a; Eichler et al., 2017; Li et al., 2020). To unambiguously match larval and adult
495 cell types, a recent study followed full developmental trajectories of larval MB cell types into
496 the adult MB by immobilizing expression patterns of genetic driver lines (Truman et al.,
497 2022). Intriguingly, a large fraction of MBONs and DANs survive through metamorphosis

498 and become a part of the adult MB circuit. For instance, among 17 types of larval MBONs
499 examined, 10 types developed into adult MBONs. These larval-origin MBONs arborize their
500 dendrites in the γ or β' lobes. Our experiments indicated that appetitive memories in $\gamma 4$ and
501 $\gamma 5\beta'2a$ compartments can bias the choice between quadrants filled with CS+ and CS- odors
502 but do not promote walking toward upwind (Figure 1). This could be because the γ lobe
503 stores both olfactory and visual memories (Vogt et al., 2016, 2014); walking upwind does
504 not help get closer to visual cues associated with reward. On the other hand, α/β KCs,
505 MBON- $\alpha 1$, MBON- $\alpha 3$, MBON- $\beta 1 > \alpha$ are adult specific cell types. Notably, MBON- $\beta 1 > \alpha$
506 innervates the α lobe and is directly connected with MBON- $\alpha 1$ and MBON- $\alpha 3$, suggesting
507 that UpWiNs may integrate information from the $\beta 1$, $\alpha 1$ and $\alpha 3$. These anatomical
508 observations suggest that the adult-specific output pathways of MB may be dedicated to
509 anemotaxis. In naturalistic olfactory conditioning with sugar reward, flies form parallel
510 appetitive memories in compartments of both larval-origin and adult-specific MBONs. Future
511 EM-connectome-guided studies will elucidate how the adult MB integrates parallel
512 memories to synthesize navigational strategies by blending anemotactic and other
513 behavioral components.

514

515 **Acknowledgments**

516 We thank Gerald M. Rubin, Glenn Turner, Ashok Litwin-Kumar, Daisuke Hattori, Gowri
517 Turvo, Huai-ti Lin and members of the Y.A. and T.H. labs for valuable discussion and
518 comments on the manuscript. We thank Feng Li, Marisa Dreher, Christina Christoforou,
519 Kari Close and the members of Janelia FlyEM, Flylight, fly facility, Project Technical
520 Resource and scientific computing for technical support. D.Y. was supported by Toyobo
521 Biotechnology Foundation Postdoctoral Fellowship and Japan Society for the Promotion

522 of Science Overseas Research Fellowship. Y.A. was supported by HHMI. T.H. was
523 supported by NIH (R01DC018874), NSF (2034783), BSF (2019026) and UNC Junior
524 Faculty Development Award.

525 **Declaration of interests**

526 The authors declare no competing interests.

527 **CONTACT FOR REAGENT AND RESOURCE SHARING**

528 Further information and requests for resources and reagents should be directed to and will
529 be fulfilled by Yoshinori Aso (aso@janelia.hhmi.org) or Toshihide Hige
530 (hige@email.unc.edu)

531 **METHOD DETAILS**

532 **Fly strains**

533 *Drosophila melanogaster* strains were reared at 22C and 60% humidity on standard
534 cornmeal food in a 12:12 hour light:dark cycle. 4-10-day-old adult females were used 2-4
535 days after sorting them on a Peltier cold plate. For flies expressing CsChrimson (Klapoetke
536 et al., 2014) the food was supplemented with retinal (0.2 mM all-trans-retinal prior to eclosion
537 and then 0.4 mM). Driver and effector lines are listed in KEY RESOURCE TABLE and
538 genotypes used by each figure are listed below. The new collection of split-GAL4 drivers was
539 designed based on confocal image databases (<http://flweb.janelia.org>)(Jenett et al., 2012),
540 and screening expression patterns of p65ADZp and ZpGAL4DBD combinations as described
541 previously (Aso et al., 2014a; Pfeiffer et al., 2010). Confocal stacks of new split-GAL4 driver
542 lines used in this study are available at <http://www.janelia.org/split-gal4>.

543 **Olfactory conditioning**

544 Olfactory conditioning was performed as previously described (Aso and Rubin, 2016).
545 Groups of approximately 20 females of 4–10 d post-eclosion were trained and tested using
546 the modified four-field olfactory arena (Aso and Rubin, 2016; Pettersson, 1970) equipped
547 with a 627nm LED board (34.9 μ W/mm² at the position of the flies) and odor mixers. The
548 flow rate of input air from each of the four arms was maintained at 100 mL/min throughout
549 the experiments by mass-flow controllers, and air was pulled from the central hole at
550 400 mL/min. Odors were delivered to the arena by switching the direction of airflow to the
551 tubes containing diluted odors using solenoid valves. The odors were diluted in paraffin
552 oil: pentyl acetate (PA: 1:10000) and ethyl lactate (EL: 1:10000). Sugar conditioning was
553 performed by using tubes with sucrose absorbed Whatman 3 MM paper that was dried
554 before use as previously described (Krashes and Waddell, 2008; Liu et al., 2012). For
555 conditioning with optogenetic activation of DANs, 60 s of odor was paired with 30 times 1
556 s of red LED light with 1s gaps. LED pulses started 5 s after the opening of odor valves.
557 Before conditioning, flies were starved for 40-48 hour on 1% agar. Videography was

558 performed at 30 frames per second and analyzed using Flytracker
559 (<https://github.com/kristinbranson/FlyTracker>) or Fiji. For experiments using one day
560 memory retention, flies were kept in agar vials at 21C after first-order conditioning. For
561 testing olfactory memories, the distribution of flies in the four quadrants was measured for
562 60 s. The performance index (PI) is defined as a mean of [(number of flies in the two
563 diagonal quadrants filled with odor one) - (number of flies in other two quadrants filled with
564 odor two or air)]/(total number of flies) during the final 30 s of the 60 s test period. The
565 average PI of reciprocal experiments is shown in figures to cancel out potential position
566 bias and innate odor preference.

567 **Airflow response**

568 For testing airflow directional response, each fly's distance from center (r_i) was measured.
569 The radius of the arena, r_{arena} , was 50 mm. Because of the circular shape of the arena, the
570 area of particular r bin is larger as r increases. For instance, the area of $40 < r < 50$ mm is 9
571 times larger than the area of $0 < r < 10$ mm. When flies distribute randomly in the arena, the
572 mean r_i is $1/\sqrt{2}$. To normalize this area difference we used the square of (r_i/r_{arena}) as
573 an area-normalized distance from the center index. To calculate upwind displacement,
574 the mean of area-normalized distance from center at each time point in each movie was
575 subtracted by the area-normalized distance at the onset of activating illumination or odor
576 presentation. To compensate for the delay between the switch of solenoid valves and
577 delivery of the odor (~2 s) as well as the time to fill the arena with odorized air (~3 s), the
578 onset of odor was taken to be 3.5 seconds after the switch of solenoid valves. For analysis
579 of individual trajectories, only flies that were more than 3 mm away from the edge of the
580 arena were analyzed. Trajectories with too abrupt changes of angle (more than 180
581 degree) or position (more than 5mm) in one frame were considered as tracking errors and
582 excluded from the analysis. The direction toward the center of the arena, where suction
583 tubing is connected, was designed as +/-180 degrees relative to the upwind direction. For
584 analyzing the influence of initial orientation on directional turning and forward walking
585 speed, subsets of trajectories were analyzed by grouping them into +/- 30 degree bins of
586 initial angle.

587

588 **Electrophysiology**

589 Electrophysiological experiments were performed as previously described (Yamada et al.,
590 n.d.). Briefly, flies were collected on the day of eclosion and kept in the dark on all-trans-
591 retinal food (0.5 mM) until experiments for 48-72 hr. The patch pipettes (6-7 M Ω) were filled
592 with the pipette solution containing (in mM): L-potassium aspartate, 140; HEPES, 10; EGTA,
593 1.1; CaCl₂, 0.1; Mg-ATP, 4; Na-GTP, 0.5 with pH adjusted to 7.3 with KOH (265 mOsm).
594 The preparation was continuously perfused with saline containing (in mM): NaCl, 103; KCl,
595 3; CaCl₂, 1.5; MgCl₂, 4; NaHCO₃, 26; N-tris(hydroxymethyl) methyl-2-aminoethane-sulfonic
596 acid, 5; NaH₂PO₄, 1; trehalose, 10; glucose, 10 (pH 7.3 when bubbled with 95% O₂ and 5%
597 CO₂, 275 mOsm). UpWiNs were visually identified by fluorescence signals expressed by
598 specific drivers. Whole-cell recordings were made using the Axon MultiClamp 700B amplifier
599 (Molecular Devices). Cells were held at around -60 mV by injecting hyperpolarizing current,
600 which was typically less than 10 pA. Signals were low-pass filtered at 5 kHz and digitized at
601 10 kHz before being acquired and analyzed by custom MATLAB scripts (MathWorks).
602 Subthreshold odor responses were quantified by averaging the mean depolarization above
603 the baseline during 0 to 1.2 s after odor onset. Saturated head-space vapors of odors were
604 presented to flies after 1 % air dilution using a custom odor delivery system. 625 nm LEDs
605 were used to deliver photostimulation at 17 mW/mm² through the objective lens.

606

607 **Calcium imaging**

608 All experiments were performed on female flies, 3-7 days after eclosion. Brains were
609 dissected in a saline bath (103 mM NaCl, 3 mM KCl, 2 mM CaCl₂, 4 mM MgCl₂, 26 mM
610 NaHCO₃, 1 mM NaH₂PO₄, 8 mM trehalose, 10 mM glucose, 5 mM TES, bubbled with 95%
611 O₂ / 5% CO₂). After dissection, the brain was positioned anterior side up on a coverslip in
612 a Sylgard dish submerged in 3 ml saline at 20°C. The sample was imaged with a resonant
613 scanning 2-photon microscope with near-infrared excitation (920 nm, Spectra-Physics,
614 INSIGHT DS DUAL) and a 25X objective (Nikon MRD77225 25XW). The microscope was
615 controlled using ScanImage 2016 (Vidrio Technologies). Images were acquired over a 231
616 μm × 231 μm × 42 μm volume with a step size at 2 μm. The field of view included 512 × 512
617 pixel resolution taken at approximately 1.07 Hz frame rate. The excitation power during
618 imaging was 19 mW.

619 For photostimulation, the light-gated ion channel Chrimson88 was activated with a 660-
620 nm LED (M660L3 Thorlabs) coupled to a digital micromirror device (Texas Instruments
621 DLPC300 Light Crafter) and combined with the imaging path using a FF757-DiO1 dichroic
622 (Semrock). On the emission side, the primary dichroic was Di02-R635 (Semrock), the
623 detection arm dichroic was 565DCXR (Chroma), and the emission filters were FF03-525/50
624 and FF01-625/90 (Semrock). Photostimulation occurred over a 1 s period at a 12 μW/mm²
625 intensity over 9 consecutive trials interspersed by a 30 s period. The light intensity was
626 measured using a Thorlabs S170C power sensor.

627 When quantifying the GCaMP fluorescence, ROIs corresponding to mushroom body
628 compartments were drawn using custom python scripts on images showing the maximum
629 intensity over time. Mean intensity changes within these ROIs were measured in the time
630 series images. Final intensity measurements subtracted a background ROI that was drawn
631 in a region with no fluorescence. Baseline fluorescence is the mean fluorescence over a 5 s
632 time period before stimulation started. The ΔF was then divided by baseline to normalize the
633 signal (ΔF/F). The mean responses from the 9 trials were calculated for each animal (5-11
634 samples per driver).

635

636 **Analysis of connectivity and morphology**

637 The information was retrieved from neuPrint (neuprint.janelia.org) hosting the “hemibrain”
638 dataset (Scheffer et al., 2020), which is a publicly accessible web site
639 (<https://doi.org/10.25378/janelia.12818645.v1>). For cell types, we cited cell type assignments
640 reported in Scheffer et al., 2020. Only connections of the cells in the right hemisphere were
641 used due to incomplete connectivity in the left hemisphere (Zheng et al., 2018). Connectivity
642 data was then imported into Cytoscape (<https://cytoscape.org/>) for generating circuit
643 diagrams that were edited using Adobe Illustrator. The 3D renderings of neurons presented
644 were generated using the visualization tools of NeuTu (Zhao et al., 2018) or VVD viewer
645 (https://github.com/takashi310/VVD_Viewer); (Wan et al., 2012). Morphological similarity of
646 individual neurons in SS33917 driver was performed by NBLAST (Costa et al., 2016).

647

648 **Immunohistochemistry**

649 Brains and ventral nerve cord of 4-10 days old females were dissected, fixed and
650 immunolabeled as previously described using the antibodies listed in Key Resource
651 Table (Aso et al., 2014a; Nern et al., 2015).

652

653 **Statistics**

654 Statistical comparisons were performed on Graphpad Prism or MATLAB using the Kruskal
655 Wallis test followed by Dunn's post-test for multiple comparison, t-te tests, or two-way

656 ANOVA followed by Tukey's post hoc multiple comparisons test as designated in figure
 657 legends.
 658
 659

660 **Detailed fly genotypes used by figures**

Figure	Genotype
Figure 1D-H Figure 1-Figure supplement 1	w/w, 20xUAS-CsChrimson-mVenus attP18;+/MB043C-split-GAL4 w/w, 20xUAS-CsChrimson-mVenus attP18;+/MB213B-split-GAL4 w/w, 20xUAS-CsChrimson-mVenus attP18;+/MB312C-split-GAL4 w/w, 20xUAS-CsChrimson-mVenus attP18;MB109B/MB315C-split-GAL4 w/w, 20xUAS-CsChrimson-mVenus attP18;+/Empty-split-GAL4
Figure 2 Figure 2 -figure supplement 1 and 2	w/w, 20xUAS-CsChrimson-mVenus attP18;Split-GAL4/+
Figure 3A	w/w, 20xUAS-CsChrimson-mVenus attP18;SS33917-Split-GAL4/+
Figure 3 - figure supplement 2	pBPhsFlp2::PEST in attP3; pJFRC201-10XUAS-FRT>STOP>FRT-myr::smGFP-HA in VK0005, pJFRC240-10XUAS- FRT>STOP>FRT-myr::smGFP-V5-THS-10XUAS-FRT>STOP>FRT-myr::smGFP-FLAG in su(Hw)attP1/SS33917-split-GAL4
Figure 4A	LexAop2-Syn21-opGCaMP6s (JK16F), LexAop2-Syn21-opGCaMP6s (SuHwattP8), 10XUAS-Syn21-Chrimson88-tdT-3.1 (attP18)/+; R64A11-LexAp65 (JK73A)/MB082C
Figure 4B	LexAop2-Syn21-opGCaMP6s (JK16F), LexAop2-Syn21-opGCaMP6s (SuHwattP8), 10XUAS-Syn21-Chrimson88-tdT-3.1 (attP18)/+; R64A11-LexAp65 (JK73A)/MB310C
Figure 4C	LexAop2-Syn21-opGCaMP6s (JK16F), LexAop2-Syn21-opGCaMP6s (SuHwattP8), 10XUAS-Syn21-Chrimson88-tdT-3.1 (attP18); G0239-GAL4/G0239-GAL4; R64A11-LexAp65 (JK73A)/+ LexAop2-Syn21-opGCaMP6s (JK16F), LexAop2-Syn21-opGCaMP6s (SuHwattP8), 10XUAS-Syn21-Chrimson88-tdT-3.1 (attP18); G0239-GAL4/G0239-GAL4; R64A11-LexAp65 (JK73A)/MB310C LexAop2-Syn21-opGCaMP6s (JK16F), LexAop2-Syn21-opGCaMP6s (SuHwattP8), 10XUAS-Syn21-Chrimson88-tdT-3.1 (attP18); G0239-GAL4+/+; R64A11-LexAp65 (JK73A)/MB310C
Figure 5	13XLexAop2-IVS-p10-ChrimsonR-mVenus (attP18); 58E02-LexAp65 (attP40)/ss67249-split1; pJFRC28-10XUAS-IVS-GFP-p10 (SuHwattP1) / ss67249-split2
Figure 5 -figure supplement 1	pBPhsFlp2::PEST in attP3; pJFRC201-10XUAS-FRT>STOP>FRT-myr::smGFP-HA in VK0005, pJFRC240-10XUAS- FRT>STOP>FRT-myr::smGFP-V5-THS-10XUAS-FRT>STOP>FRT-myr::smGFP-FLAG in su(Hw)attP1/SS67249-split-GAL4
Figure 5 -figure supplement 2	13XLexAop2-IVS-p10-ChrimsonR-mVenus (attP18); 58E02-LexAp65 (attP40)/ss67249-split1; pJFRC28-10XUAS-IVS-GFP-p10 (SuHwattP1) / ss67249-split2
Figure 6	w/w, 20xUAS-CsChrimson-mVenus attP18;SS33917-Split-GAL4/+ w/w, 20xUAS-CsChrimson-mVenus attP18;SS33918-Split-GAL4/+ w/w, 20xUAS-CsChrimson-mVenus attP18;MB077B-Split-GAL4/+ w/w, 20xUAS-CsChrimson-mVenus attP18;Empty-Split-GAL4/+
Figure 6 -figure supplement 1	w/w, 20xUAS-CsChrimson-mVenus attP18;Split-GAL4/+

Figure 7A-B	w ⁺ ;SS33917-split-GAL4 ^{+/} w ⁺ ; SS33917-split-GAL4UAS-TNT (II) w ⁺ ; Empty-split-GAL4UAS-TNT (II)
Figure 7C	w/w;VT007746-p65ADZp in attP40/20xUAS-Shbire-p10 in VK00005 w/w;R64A11-ZpGAL4DBD in attP2/20xUAS-Shbire-p10 in VK00005 w/w;SS33917(VT007746-p65ADZp in attP40; R64A11-ZpGAL4DBD in attP2)/20xUAS-Shbire-p10 in VK00005 w/w;Empty-split-GAL4/20xUAS-Shbire-p10 in VK00005
Figure 7D	w/w, 20xUAS-CsChrimson-mVenus attP18;SS33917 ^{+/} w/w, 20xUAS-CsChrimson-mVenus attP18;Empty-split-GAL4 ^{+/}
Figure 7E	w/w, 20xUAS-CsChrimson-mVenus attP18;SS33917 ^{+/} w/w, 20xUAS-CsChrimson-mVenus attP18;SS33918 ^{+/} w/w, 20xUAS-CsChrimson-mVenus attP18;SS49755 ^{+/} w/w, 20xUAS-CsChrimson-mVenus attP18;Empty-split-GAL4 ^{+/}
Figure 7 -figure supplement 1	w/w, 20xUAS-CsChrimson-mVenus attP18;SS33917 ^{+/} w/w, 20xUAS-CsChrimson-mVenus attP18;SS33918 ^{+/} w/w, 20xUAS-CsChrimson-mVenus attP18;SS49755 ^{+/} w/w, 20xUAS-CsChrimson-mVenus attP18;Gr64f-GAL4;Gr64f-GAL4 ^{+/} w/w, 20xUAS-CsChrimson-mVenus attP18;Empty-split-GAL4 ^{+/}

661 **Data and Code Availability**

662 The confocal images of expression patterns are available online
663 (<http://www.janelia.org/split-gal4>). The values used for figures are summarized in
664 Supplementary File 2. The design files of the olfactory arena are available at flintbox
665 (<https://hhmi.flintbox.com/technologies/c65b2ddd-3cc1-44d9-a95d-73e08723f724>).

666 **Supplemental information**

667

668 **Video 1. Activation phenotype of UpWiNs**

669 An example movie of UpWiN activation in SS33917>CsChrimson flies used in Figure 2. The
670 red square at the bottom right corner indicates the 10s period when the red LED was turned
671 on. The small circles indicate the centroid of flies and triangles indicate the orientation of
672 flies.

673

674

675 **Video 2. Activation phenotype of UpWiNs depends on the initial orientation**

676 Cropped movies of individual SS33917>CsChrimson flies centered and reoriented based on
677 the position and the angle to upwind at the onset of the activating illumination (related to
678 Figure 2 and Figure 6D-G). The red square at the bottom right corner of each panel indicates
679 when the red LED was turned on. The small circles indicate the centroid of flies and triangles
680 indicate the orientation of flies. The airflow direction was from the top to the bottom of each
681 panel.

682

683

684 **Video 3. Activation phenotype of UpWiNs without airflow**

685 An example movie of UpWiN activation in SS33917>CsChrimson flies without airflow (related
686 to Figure 6B).

687

688

689 **Video 4. Activation phenotype of UpWiNs depends on the intact aristae**
690 An example UpWiN activation phenotype in an SS33917>CsChrimson fly that lacked the
691 arista on the right side (related to Figure 6C).

692
693 **Video 5. Return phenotype induced by SMP357-362 activation**
694

695 An example movie of SMP357-362 activation in SS49755>CsChrimson flies. The red square
696 at the bottom right corner indicates the 10s period when the red LED was turned on. The
697 small circles indicate the centroid of flies and triangles indicate the orientation of flies.
698 Trajectories of flies after turning off LED are shown as lines connecting centroids over time.

699

700

701

702 **Supplementary File 1: KEY RESOURCES TABLE**

703 **Supplementary File 2: Data TABLE**

704

705

706

707

708 **References**

709 Alvarez-Salvado E, Licata AM, Connor EG, McHugh MK, King BMN, Stavropoulos N,
710 Victor JD, Crimaldi JP, Nagel KI. 2018. Elementary sensory-motor transformations
711 underlying olfactory navigation in walking fruit-flies. *Elife* **7**:e37815.

712 Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo T-TB, Dionne H, Abbott LF, Axel R,
713 Tanimoto H, Rubin GM. 2014a. The neuronal architecture of the mushroom body
714 provides a logic for associative learning. *Elife* **3**:e04577.

715 Aso Y, Rubin GM. 2016. Dopaminergic neurons write and update memories with cell-
716 type-specific rules. *Elife* **5**. doi:10.7554/eLife.16135

717 Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais P-Y, Robie
718 AA, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo T-TB, Chen N,
719 Korff W, Nitabach MN, Heberlein U, Preat T, Branson KM, Tanimoto H, Rubin GM.
720 2014b. Mushroom body output neurons encode valence and guide memory-based
721 action selection in *Drosophila*. *Elife* **3**:e04580.

722 Baker TC. 1990. Upwind flight and casting flight : Complementary phasic and tonic
723 systems used for location of sex pheromone sources by male moth. *Proc 10th Int
724 Symp Olfaction and Taste, Oslo* **18-25**.

725 Berry JA, Phan A, Davis RL. 2018. Dopamine Neurons Mediate Learning and Forgetting
726 through Bidirectional Modulation of a Memory Trace. *Cell Rep* **25**:651–662.e5.

727 Besson M, Martin J-R. 2005. Centrophobism/thigmotaxis, a new role for the mushroom
728 bodies in *Drosophila*. *J Neurobiol* **62**:386–396.

729 Beyeler A, Namburi P, Glober GF, Simonnet C, Calhoon GG, Conyers GF, Luck R,
730 Wildes CP, Tye KM. 2016. Divergent Routing of Positive and Negative Information
731 from the Amygdala during Memory Retrieval. *Neuron* **90**:348–361.

732 Bogovic JA, Otsuna H, Heinrich L, Ito M, Jeter J, Meissner G, Nern A, Colonell J,
733 Malkesman O, Ito K, Saalfeld S. 2020. An unbiased template of the *Drosophila* brain
734 and ventral nerve cord. *PLoS One* **15**:e0236495.

735 Campbell RAA, Honegger KS, Qin H, Li W, Demir E, Turner GC. 2013. Imaging a
736 population code for odor identity in the *Drosophila* mushroom body. *J Neurosci*
737 **33**:10568–10581.

738 Cardé RT. 2021. Navigation Along Windborne Plumes of Pheromone and Resource-

739 Linked Odors. *Annu Rev Entomol* **66**:317–336.

740 Cohn R, Morantte I, Ruta V. 2015. Coordinated and Compartmentalized
741 Neuromodulation Shapes Sensory Processing in Drosophila. *Cell* **163**:1742–1755.

742 Costa M, Manton JD, Ostrovsky AD, Prohaska S, Jefferis GSXE. 2016. NBLAST: Rapid,
743 Sensitive Comparison of Neuronal Structure and Construction of Neuron Family
744 Databases. *Neuron* **91**:293–311.

745 Das G, Klappenbach M, Vrontou E, Perisse E, Clark CM, Burke CJ, Waddell S. 2014.
746 Drosophila learn opposing components of a compound food stimulus. *Curr Biol*
747 **24**:1723–1730.

748 Dolan M-J, Belliart-Guérin G, Bates AS, Frechter S, Lampin-Saint-Amaux A, Aso Y,
749 Roberts RV, Schlegel P, Wong A, Hammad A, Bock D, Rubin GM, Preat T, Plaçais
750 P-Y, Jefferis GSXE. 2018. Communication from Learned to Innate Olfactory
751 Processing Centers Is Required for Memory Retrieval in Drosophila. *Neuron*
752 **100**:651–668.e8.

753 Eckstein N, Bates AS, Du M, Hartenstein V, Jefferis GSX, Funke J. n.d.
754 Neurotransmitter Classification from Electron Microscopy Images at Synaptic Sites
755 in Drosophila. doi:10.1101/2020.06.12.148775

756 Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, Saumweber T,
757 Huser A, Eschbach C, Gerber B, Fetter RD, Truman JW, Priebe CE, Abbott LF,
758 Thum AS, Zlatic M, Cardona A. 2017. The complete connectome of a learning and
759 memory centre in an insect brain. *Nature*. doi:10.1038/nature23455

760 Felsenberg J, Jacob PF, Walker T, Barnstedt O, Edmondson-Stait AJ, Pleijzier MW, Otto
761 N, Schlegel P, Sharifi N, Perisse E, Smith CS, Lauritzen JS, Costa M, Jefferis
762 GSXE, Bock DD, Waddell S. 2018. Integration of Parallel Opposing Memories
763 Underlies Memory Extinction. *Cell* **175**:709–722.e15.

764 Fishilevich E, Domingos AI, Asahina K, Naef F, Vosshall LB, Louis M. 2005. Chemotaxis
765 behavior mediated by single larval olfactory neurons in Drosophila. *Curr Biol*
766 **15**:2086–2096.

767 Gore F, Schwartz EC, Brangers BC, Aladi S, Stujenske JM, Likhtik E, Russo MJ, Gordon
768 JA, Salzman CD, Axel R. 2015. Neural Representations of Unconditioned Stimuli in
769 Basolateral Amygdala Mediate Innate and Learned Responses. *Cell* **162**:134–145.

770 Grewe BF, Gründemann J, Kitch LJ, Lecoq JA, Parker JG, Marshall JD, Larkin MC,
771 Jercog PE, Grenier F, Li JZ, Lüthi A, Schnitzer MJ. 2017. Neural ensemble
772 dynamics underlying a long-term associative memory. *Nature* **543**:670–675.

773 Handler A, Graham TGW, Cohn R, Morantte I, Siliciano AF, Zeng J, Li Y, Ruta V. 2019.
774 Distinct Dopamine Receptor Pathways Underlie the Temporal Sensitivity of
775 Associative Learning. *Cell* **178**:60–75.e19.

776 Heisenberg M. 2003. Mushroom body memoir: from maps to models. *Nat Rev Neurosci*
777 **4**:266–275.

778 Hige T. 2018. What can tiny mushrooms in fruit flies tell us about learning and memory?
779 *Neuroscience Research*. doi:10.1016/j.neures.2017.05.002

780 Hige T, Aso Y, Modi MN, Rubin GM, Turner GC. 2015a. Heterosynaptic Plasticity
781 Underlies Aversive Olfactory Learning in Drosophila. *Neuron* **88**:985–998.

782 Hige T, Aso Y, Rubin GM, Turner GC. 2015b. Plasticity-driven individualization of
783 olfactory coding in mushroom body output neurons. *Nature* **526**:258–262.

784 Huettneroth W, Perisse E, Lin S, Klappenbach M, Burke C, Waddell S. 2015. Sweet taste
785 and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. *Curr
786 Biol* **25**:751–758.

787 Ichinose T, Aso Y, Yamagata N, Abe A, Rubin GM, Tanimoto H. 2015. Reward signal in
788 a recurrent circuit drives appetitive long-term memory formation. *Elife* **4**:e10719.

789 Ichinose T, Kanno M, Wu H, Yamagata N, Sun H, Abe A, Tanimoto H. 2021. Mushroom

790 body output differentiates memory processes and distinct memory-guided
791 behaviors. *Curr Biol* **31**:1294–1302.e4.

792 Jacob PF, Waddell S. 2022. Spaced Training Forms Complementary Long-Term
793 Memories of Opposite Valence in Drosophila. *Neuron* **110**:2703.

794 Jenett A, Rubin GM, Ngo T-TB, Shepherd D, Murphy C, Dionne H, Pfeiffer BD,
795 Cavallaro A, Hall D, Jeter J, Iyer N, Fetter D, Hausenfluck JH, Peng H, Trautman
796 ET, Svirskas RR, Myers EW, Iwinski ZR, Aso Y, DePasquale GM, Enos A, Hulamm
797 P, Lam SCB, Li H-H, Laverty TR, Long F, Qu L, Murphy SD, Rokicki K, Safford T,
798 Shaw K, Simpson JH, Sowell A, Tae S, Yu Y, Zugates CT. 2012. A GAL4-driver line
799 resource for Drosophila neurobiology. *Cell Rep* **2**:991–1001.

800 Jovanic T, Winding M, Cardona A, Truman JW, Gershow M, Zlatic M. 2019. Neural
801 Substrates of Drosophila Larval Anemotaxis. *Curr Biol* **29**:554–566.e4.

802 Kamikouchi A, Shimada T, Ito K. 2006. Comprehensive classification of the auditory
803 sensory projections in the brain of the fruit fly Drosophila melanogaster. *J Comp
804 Neurosci* **499**:317–356.

805 Kanzaki R, Ikeda A. 1994. Morphology and Physiology of Pheromone-Triggered Flip-
806 Flopping Descending Interneurons of the Male Silkworm Moth, *Bombyx mori*.
807 *Olfaction and Taste XI*. doi:10.1007/978-4-431-68355-1_348

808 Kaun KR, Azanchi R, Maung Z, Hirsh J, Heberlein U. 2011. A Drosophila model for
809 alcohol reward. *Nature Neuroscience*. doi:10.1038/nn.2805

810 Kirkhart C, Scott K. 2015. Gustatory learning and processing in the Drosophila
811 mushroom bodies. *J Neurosci* **35**:5950–5958.

812 Kitamoto T. 2001. Conditional modification of behavior in Drosophila by targeted
813 expression of a temperature-sensitive shibire allele in defined neurons. *J Neurobiol*
814 **47**:81–92.

815 Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK,
816 Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY,
817 Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK-S, Boyden
818 ES. 2014. Independent optical excitation of distinct neural populations. *Nat Methods*
819 **11**:338–346.

820 Krashes MJ, Waddell S. 2008. Rapid consolidation to a radish and protein synthesis-
821 dependent long-term memory after single-session appetitive olfactory conditioning
822 in Drosophila. *J Neurosci* **28**:3103–3113.

823 Li F, Lindsey JW, Marin EC, Otto N, Dreher M, Dempsey G, Stark I, Bates AS, Pleijzier
824 MW, Schlegel P, Nern A, Takemura S-Y, Eckstein N, Yang T, Francis A, Braun A,
825 Parekh R, Costa M, Scheffer LK, Aso Y, Jefferis GS, Abbott LF, Litwin-Kumar A,
826 Waddell S, Rubin GM. 2020. The connectome of the adult Drosophila mushroom
827 body provides insights into function. *eLife* **9**. doi:10.7554/eLife.62576

828 Lin S, Owald D, Chandra V, Talbot C, Huettneroth W, Waddell S. 2014. Neural correlates
829 of water reward in thirsty Drosophila. *Nat Neurosci* **17**:1536–1542.

830 Liu C, Plaçais P-Y, Yamagata N, Pfeiffer BD, Aso Y, Friedrich AB, Siwanowicz I, Rubin
831 GM, Preat T, Tanimoto H. 2012. A subset of dopamine neurons signals reward for
832 odour memory in Drosophila. *Nature* **488**:512–516.

833 Matheson AMM, Lanz AJ, Medina AM, Licata AM, Currier TA, Syed MH, Nagel KI. 2022.
834 A neural circuit for wind-guided olfactory navigation. *Nat Commun* **13**:4613.

835 McCurdy LY, Sareen P, Davoudian PA, Nitabach MN. 2021. Dopaminergic mechanism
836 underlying reward-encoding of punishment omission during reversal learning in
837 Drosophila. *Nat Commun* **12**:1115.

838 Modi MN, Shuai Y, Turner GC. 2020. The Mushroom Body: From Architecture to
839 Algorithm in a Learning Circuit. *Annu Rev Neurosci* **43**:465–484.

840 Namburi P, Beyeler A, Yorozu S, Calhoon GG, Halbert SA, Wichmann R, Holden SS,

841 Mertens KL, Anahtar M, Felix-Ortiz AC, Wickersham IR, Gray JM, Tye KM. 2015. A
842 circuit mechanism for differentiating positive and negative associations. *Nature*
843 **520**:675–678.

844 Nern A, Pfeiffer BD, Rubin GM. 2015. Optimized tools for multicolor stochastic labeling
845 reveal diverse stereotyped cell arrangements in the fly visual system. *Proc Natl
846 Acad Sci U S A* **112**:E2967–76.

847 Nieh EH, Vander Weele CM, Matthews GA, Presbrey KN, Wichmann R, Leppla CA,
848 Izadmehr EM, Tye KM. 2016. Inhibitory Input from the Lateral Hypothalamus to the
849 Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral
850 Activation. *Neuron* **90**:1286–1298.

851 Okubo TS, Patella P, D'Alessandro I, Wilson RI. 2020. A Neural Network for Wind-
852 Guided Compass Navigation. *Neuron* **107**:924–940.e18.

853 O'Neill P-K, Gore F, Salzman CD. 2018. Basolateral amygdala circuitry in positive and
854 negative valence. *Curr Opin Neurobiol* **49**:175–183.

855 Otsuna H, Ito M, Kawase T. n.d. Color depth MIP mask search: a new tool to expedite
856 Split-GAL4 creation. doi:10.1101/318006

857 Owald D, Felsenberg J, Talbot CB, Das G, Perisse E, Huetteroth W, Waddell S. 2015.
858 Activity of defined mushroom body output neurons underlies learned olfactory
859 behavior in *Drosophila*. *Neuron* **86**:417–427.

860 Owald D, Waddell S. 2015. Olfactory learning skews mushroom body output pathways
861 to steer behavioral choice in *Drosophila*. *Curr Opin Neurobiol* **35**:178–184.

862 Pai T-P, Chen C-C, Lin H-H, Chin A-L, Lai JS-Y, Lee P-T, Tully T, Chiang A-S. 2013.
863 *Drosophila* ORB protein in two mushroom body output neurons is necessary for
864 long-term memory formation. *Proc Natl Acad Sci U S A* **110**:7898–7903.

865 Pauls D, Selcho M, Gendre N, Stocker RF, Thum AS. 2010. *Drosophila* larvae establish
866 appetitive olfactory memories via mushroom body neurons of embryonic origin. *J
867 Neurosci* **30**:10655–10666.

868 Pettersson J. 1970. An Aphid Sex Attractant. *Insect Systematics & Evolution*.
869 doi:10.1163/187631270x00357

870 Pfeiffer BD, Ngo T-TB, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM. 2010.
871 Refinement of tools for targeted gene expression in *Drosophila*. *Genetics* **186**:735–
872 755.

873 Plaçais P-Y, Trannoy S, Friedrich AB, Tanimoto H, Preat T. 2013. Two pairs of
874 mushroom body efferent neurons are required for appetitive long-term memory
875 retrieval in *Drosophila*. *Cell Rep* **5**:769–780.

876 Saumweber T, Rohwedder A, Schleyer M, Eichler K, Chen Y-C, Aso Y, Cardona A,
877 Eschbach C, Kobler O, Voigt A, Durairaja A, Mancini N, Zlatic M, Truman JW, Thum
878 AS, Gerber B. 2018. Functional architecture of reward learning in mushroom body
879 extrinsic neurons of larval *Drosophila*. *Nat Commun* **9**:1104.

880 Scaplen KM, Talay M, Fisher JD, Cohn R, Sorkaç A, Aso Y, Barnea G, Kaun KR. 2021.
881 Transsynaptic mapping of mushroom body output neurons. *eLife* **10**.
882 doi:10.7554/eLife.63379

883 Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura S-Y, Hayworth KJ, Huang GB,
884 Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT,
885 Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D,
886 Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H,
887 Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P,
888 Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS,
889 Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S,
890 Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie
891 SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi

892 O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM,
893 Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott
894 AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A,
895 Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang
896 T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GS, Ito K,
897 Saalfeld S, George R, Meinertzhagen IA, Rubin GM, Hess HF, Jain V, Plaza SM.
898 2020. A connectome and analysis of the adult central brain. *Elife* **9**.
899 doi:10.7554/eLife.57443

900 Schnitzer M, Huang C, Luo J, Woo SJ, Roitman L, Li J, Pieribone V, Kannan M, Vasan
901 G. n.d. Dopamine signals integrate innate and learnt valences to regulate memory
902 dynamics. doi:10.21203/rs.3.rs-1915648/v1

903 Siju KP, Štih V, Aimon S, Gjorgjieva J, Portugues R, Grunwald Kadow IC. 2020. Valence
904 and State-Dependent Population Coding in Dopaminergic Neurons in the Fly
905 Mushroom Body. *Curr Biol* **30**:2104–2115.e4.

906 Steck K, Veit D, Grandy R, Badia SBI, Badia SBI, Mathews Z, Verschure P, Hansson
907 BS, Knaden M. 2012. A high-throughput behavioral paradigm for Drosophila
908 olfaction - The Flywalk. *Sci Rep* **2**:361.

909 Sun F, Zhou J, Dai B, Qian T, Zeng J, Li X, Zhuo Y, Zhang Y, Wang Y, Qian C, Tan K,
910 Feng J, Dong H, Lin D, Cui G, Li Y. 2020. Next-generation GRAB sensors for
911 monitoring dopaminergic activity in vivo. *Nat Methods* **17**:1156–1166.

912 Suver MP, Matheson AMM, Sarkar S, Damiata M, Schoppik D, Nagel KI. 2019.
913 Encoding of Wind Direction by Central Neurons in Drosophila. *Neuron* **102**:828–
914 842.e7.

915 Takemura S, Aso Y, Hige T, Wong A, Lu Z, Xu CS. 2017. A connectome of a learning
916 and memory center in the adult Drosophila brain. *Elife*.

917 Tanaka NK, Tanimoto H, Ito K. 2008. Neuronal assemblies of the Drosophila mushroom
918 body. *J Comp Neurol* **508**:711–755.

919 Truman JW, Price J, Miyares RL, Lee T. 2022. Metamorphosis of memory circuits in
920 Drosophila reveal a strategy for evolving a larval brain. *bioRxiv*.
921 doi:10.1101/2022.06.09.495452

922 Tully T, Quinn WG. 1985. Classical conditioning and retention in normal and mutant
923 Drosophila melanogaster. *J Comp Physiol A* **157**:263–277.

924 Tye KM. 2018. Neural Circuit Motifs in Valence Processing. *Neuron* **100**:436–452.

925 van Breugel F, Dickinson MH. 2014. Plume-tracking behavior of flying Drosophila
926 emerges from a set of distinct sensory-motor reflexes. *Curr Biol* **24**:274–286.

927 Vergassola M, Villermaux E, Shraiman BI. 2007. “Infotaxis” as a strategy for searching
928 without gradients. *Nature*. doi:10.1038/nature05464

929 Vet LEM, Van Lenteren JC, Heymans M, Meelis E. 1983. An airflow olfactometer for
930 measuring olfactory responses of hymenopterous parasitoids and other small
931 insects. *Physiological Entomology*. doi:10.1111/j.1365-3032.1983.tb00338.x

932 Vogt K, Aso Y, Hige T, Knapek S, Ichinose T, Friedrich AB, Turner GC, Rubin GM,
933 Tanimoto H. 2016. Direct neural pathways convey distinct visual information to
934 Drosophila mushroom bodies. *Elife* **5**. doi:10.7554/eLife.14009

935 Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, Tanimoto H. 2014.
936 Shared mushroom body circuits underlie visual and olfactory memories in
937 Drosophila. *Elife* **3**:e02395.

938 Wan Y, Otsuna H, Chien C-B, Hansen C. 2012. FluoRender: An Application of 2D Image
939 Space Methods for 3D and 4D Confocal Microscopy Data Visualization in
940 Neurobiology Research. *IEEE Pac Vis Symp* 201–208.

941 Yamada D, Bushey D, Feng L, Hibbard K, Sammons M, Funke J, Litwin-Kumar A, Hige
942 T, Aso Y. n.d. Hierarchical architecture of dopaminergic circuits enables second-

943 order conditioning in *Drosophila*. doi:10.1101/2022.03.30.486484
944 Yamagata N, Ichinose T, Aso Y, Plaçais P-Y, Friedrich AB, Sima RJ, Preat T, Rubin GM,
945 Tanimoto H. 2015. Distinct dopamine neurons mediate reward signals for short- and
946 long-term memories. *Proc Natl Acad Sci U S A* **112**:578–583.
947 Yorozu S, Wong A, Fischer BJ, Dankert H, Kernan MJ, Kamikouchi A, Ito K, Anderson
948 DJ. 2009. Distinct sensory representations of wind and near-field sound in the
949 *Drosophila* brain. *Nature* **458**:201–205.
950 Zhang X, Li B. 2018. Population coding of valence in the basolateral amygdala. *Nat
951 Commun* **9**:1–14.
952 Zhao T, Olbris DJ, Yu Y, Plaza SM. 2018. NeuTu: Software for Collaborative, Large-
953 Scale, Segmentation-Based Connectome Reconstruction. *Front Neural Circuits*
954 **12**:101.
955 Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M, Milkie D, Torrens O, Price
956 J, Fisher CB, Sharifi N, Calle-Schuler SA, Kmecova L, Ali IJ, Karsh B, Trautman ET,
957 Bogovic JA, Hanslovsky P, Jefferis GSXE, Kazhdan M, Khairy K, Saalfeld S, Fetter
958 RD, Bock DD. 2018. A Complete Electron Microscopy Volume of the Brain of Adult
959 *Drosophila melanogaster*. *Cell* **174**:730–743.e22.
960 Zolin A, Cohn R, Pang R, Siliciano AF, Fairhall AL, Ruta V. 2021. Context-dependent
961 representations of movement in *Drosophila* dopaminergic reinforcement pathways.
962 *Nat Neurosci* **24**:1555–1566.

963

964

965 **Figure Legends**

966 **Figure 1. Memories in specific set of MB-compartments drive upwind locomotion**

967 (A) A conceptual diagram of the mushroom body circuit. The colored rectangles
968 represent individual MB compartments.
969 (B) A diagram of a four-armed olfactory arena. In each experiment, approximately 20
970 female flies were introduced into the circular arena.
971 (C) Protocols for optogenetic training and the two different memory tests used in this
972 work.
973 (D) Appetitive memories assessed by binary choice between CS+ and CS- odors
974 immediately after training with optogenetic activation of DANs that express CsChrimson
975 with drivers indicated in E. N=14-24.
976 (E) Time course of the area normalized mean of fly's position relative to the center of the
977 arena as compared with its mean position at odor onset and the cosine of the angle
978 between the fly's orientation and the upwind direction (See Methods). Flies of each
979 genotype were trained with three protocols: 1) Petyl Acetate (PA) was paired with the
980 LED activating illumination and Ethyl Lactate (EL) was unpaired. 2) EL was paired with
981 LED and PA was unpaired. 3) Neither odor was paired (No LED). Lines and filled areas
982 around lines are mean and SEM. N=24-60.
983 (F) The delta of distance from the center at the end of the 10s odor period. Each dot
984 represents data from individual trials. Black lines are mean and SEM. *, p<0.05; ***,
985 p<0.001; Dunn's multiple comparison tests compared to empty-split-GAL4 control,
986 following Kruskal-Wallis test; N=24-60. The upwind displacements of MB213B and
987 MB043C in response to CS+ odor were also significantly higher than the control when
988 trial averages of 6 movies were compared.

989 (G) Cumulative angle of turning and forward walking speed during the first 10 frames
990 (333ms; a time window we used for optogenetic experiments in Figure 6) following odor
991 onset are plotted against initial angle to upwind, smoothed with +/- 30-degree bin. The
992 number of trajectories analyzed for (CS+, CS-, No LED) conditions for
993 MB109B+MB315C, MB312C, MB213B and MB043C were (531, 562, 167), (710, 758,
994 814), (920, 1039, 919) and (449, 768, 531), respectively. Only flies that were 3mm or
995 more from the edge of the arena were analyzed.

996 (H) The violin-plots of the cumulative angle of turn to the upwind orientation during the
997 first 10 frames (333ms) of odor onset. Only flies that oriented -90 to -150 or +90 to 150
998 degrees to the upwind direction at odor onset were analyzed. N=122, 137, 233, 239, 99
999 for empty-split-GAL4, MB109B+MB315C, MB312C, MB213B and MB043C, respectively.
1000 *, p<0.05; **, p<0.001; Dunn's multiple comparison tests compared to empty-split-GAL4
1001 control, following Kruskal-Wallis test.

1002
1003 **Figure 1-figure supplement 1. Memory-based modulation of walking speed and**
1004 **angular speed depends on the fly's initial angle to the upwind direction**

1005 (A-E) The cosine of the angle to upwind direction, angular speed and forward walking
1006 speed are separately plotted for flies oriented downwind or upwind at odor onset (Time =
1007 0 s). Only flies that were at least 3 mm away from the edge of the arena were analyzed.
1008 The source data are identical to Figure 1E-H.

1009
1010 **Figure 2. Identification of UpWiNs by activation screening**

1011 (A) Mean displacement of fly's position relative to the center of the arena during
1012 activation of various cell types defined by the indicated driver lines. Dunn's multiple
1013 comparison tests compared to empty-split-GAL4 control, following Kruskal-Wallis test;*,
1014 p<0.05; **, p<0.01; ***, p<0.001, N=18-132; Black asterisks indicate p<0.05 without
1015 correction for multiple comparisons. The median, first and third quartiles, 10 and 90
1016 percentiles are displayed with outlier data points. See Figure 2-figure supplement 1 and
1017 <http://www.janelia.org/split-gal4> for expression patterns of CsChrimson in these driver
1018 lines.

1019 (B) Z-scores for five parameters for 2s time bins (T1 to T2) before, during (bold
1020 numbers) and after the 10s activation period. For calculating the probability of return,
1021 15s long trajectories of each fly following each time point (t1) were analyzed. A fly was
1022 considered to revisit the original location at time0 if it moved away more than 10mm and
1023 came back to within 3mm distance from that location at time0 within 15s. High Z-score at
1024 8-10s time bin indicate that flies tended to move back to their location at 8-10s by 23-25s
1025 (i.e. mostly dark period after LED was turned off).

1026 **Figure 2-figure supplement 1. Activation phenotypes of “hit” lines**

1027 Time courses of five behavioral parameters are shown for driver lines with significant
1028 upwind locomotion (i.e. delta distance from center) phenotypes in Figure 2. Lines and
1029 shaded areas around lines are mean and SEM; split-GAL4>CsChrimson-mVenus are
1030 shown in blue and empty-split-Gal4>CsChrimson-mVenus in gray.

1031 **Figure 2-figure supplement 2. Expression patterns of “hit” lines**

1032 Projection of confocal microscopy stacks for expression patterns of CsChrimson-
1033 mVenus driven by designated split-GAL4 driver lines in brains and ventral nerve cords.

1034 Confocal stacks are available at <https://splitgal4.janelia.org>

1035 **Figure 2-figure supplement 3. LM-EM matching of cell types in SS49899**

1036 (A) The fan-shaped body neurons in SS49899 driver that were visualized with myr-
1037 smGFP-HA (green) and synaptotagmin-smGFP-V5 (magenta). The outlines of the
1038 standard brain and the mushroom body are shown in gray. Other driver lines with similar
1039 expression patterns are listed.

1040 (B) The corresponding EM reconstructed neurons, which were matched by comparing
1041 projection patterns in the standard brain and referring MCFO images of split-GAL4.
1042 Confocal stacks are available at <https://splitgal4.janelia.org>

1043 **Figure 2-figure supplement 4. LM-EM matching of cell types in SS49755**

1044 (A) The SMP neurons in SS49755 driver that were visualized with myr-smGFP-HA
1045 (green) and synaptotagmin-smGFP-V5 (magenta). The outlines of the standard brain
1046 and the mushroom body are shown in gray. Other driver lines with similar expression
1047 patterns are listed.

1048 (B) The corresponding EM reconstructed neurons, which were matched by comparing
1049 projection patterns in the standard brain and referring MCFO images of split-GAL4.
1050 Confocal stacks are available at <https://splitgal4.janelia.org>

1051

1052 **Figure 3. Connectivity of UpWiNs**

1053 (A) The expression pattern of CsChrimson-mVenus driven by split-GAL4 line SS33917.

1054 (B) Eleven EM-reconstructed neurons that correspond to UpWiNs defined by the
1055 SS33917 driver were identified by analyzing the morphology of individual neurons
1056 (Figure 3-figure supplement 1 and 2) and are displayed with outline of the MB and the
1057 standard brain. Individual neurons are color-coded to indicate the cell type to which they
1058 were assigned.

1059 (C) Connectivity of UpWiNs with major upstream and downstream neurons that have at
1060 least 20 connections with one of the 11 UpWiNs. The hemibrain bodyIDs of each neuron
1061 is shown as well as their assignment to specific cell types. Numbers indicate the number
1062 of synapses from the upstream neurons to UpWin neurons (left) or from the UpWiNs to
1063 the downstream neurons (right).

1064 (D) Interneurons downstream to MBON- α 1 and MBON- α 3. Colors of dots indicate
1065 neurotransmitter prediction (Eckstein et al., n.d.). See Figure 3-figure supplement 3 for
1066 more detail.

1067 (E) Predicted postsynaptic sites in SMP353 and SMP354 (gray), which are juxtaposed to
1068 presynaptic sites from MBON- α 1 (green) and MBON- α 3 (orange).

1069 (F) Interconnectivity between UpWiNs. The numbers indicate the summed number of
1070 connections. The numbers in parentheses indicate the number of neurons per cell type.

1071

1072 **Figure 3-figure supplement 1. Candidate UpWiNs in hemibrain EM images**

1073 (A) Frontal and dorsal projection of 11 EM-reconstructed neurons that were matched
1074 with confocal images of UpWiNs within the standard brain (Bogovic et al., 2020) (see
1075 Figure 3-figure supplement 2). Pseudo colors were assigned to each of five cell types.
1076 The arrowhead and arrow indicate common axonal tract and terminal area in the SMP.
1077 IDs of each neuron are displayed. The somas of these neurons are clustered near the tip
1078 of the vertical lobe of the MB, and they share the tracts for the primary neurite and
1079 axons, whereas the branching patterns of their dendrites exhibit cell-type-specific
1080 characteristics, which were used for cell type matching.
1081 (B-L) Projections of individual neurons. The arrows indicate dendritic branches that are
1082 characteristic to each cell type.

1083
1084

1085 **Figure 3-figure supplement 2. Single cell images of neurons in SS33917**

1086 (A-Y) Frontal projections of segmented multi-color flip-out images of SS33917 (colored)
1087 with corresponding EM neuron (gray). The arrows indicate dendritic branches that are
1088 characteristic to each cell type.

1089
1090
1091

**Figure 3-figure supplement 3. NBLAST clustering of single cell images of neurons
in SS33917**

1092 MCFO single cell images of SS33917 driver were clustered into 6 groups, which were
1093 nearly identical to the manual annotation.

1094
1095

Figure 3-figure supplement 4. Downstream neurons of MBON- α 1 and MBON- α 3

1096 Connectivity from MBON- α 1 and MBON- α 3 to downstream neurons that receive at least
1097 10 connections.

1098
1099

Figure 4. UpWiNs integrate excitatory and inhibitory synaptic inputs from MBONs.

1100 (A) Functional connectivity between MBON- α 3 and UpWiNs. Chrimson88-tdTomato was
1101 expressed in MBON- α 3 by MB082C split-GAL4, and the photostimulation responses
1102 were measured by whole-cell current-clamp recording in randomly selected UpWiNs
1103 labeled by R64A11-LexA. 2 out of 6 neurons (4 flies) showed excitatory response. Mean
1104 voltage traces from individual connected (orange) and unconnected UpWiNs (gray) are
1105 overlaid. The connection was strong enough to elicit spikes (black; single-trial response
1106 in one of the connected UpWiNs). Magenta vertical line indicates photostimulation (10
1107 msec).

1108 (B) Functional connectivity between MBON- α 1 and UpWiNs. Chrimson88-tdTomato
1109 expression in MBON- α 1 was driven by MB310C split-GAL4. 4 out of 17 neurons (12
1110 flies) showed inhibitory response. Mean voltage traces from individual connected (green)
1111 and unconnected UpWiNs (gray) are overlaid.

1112 (C) Integration of synaptic inputs from MBON- α 3 and MBON- α 1. Population responses
1113 of UpWiNs were measured by two-photon calcium imaging at the junction between
1114 dendrites and axonal tracts (mean $\Delta F/F \pm SEM$) while photostimulating MBON- α 3
1115 (orange; $n = 5$), MBON- α 1 (green; $n = 11$) or both (black; $n = 7$). Expression of
1116 GCaMP6s was driven by R64A11-LexA, and Chrimson88-tdTomato by G0239-GAL4

1118 (MBON- α 3) and/or MB310C (MBON- α 1). Photostimulation: 1 sec (magenta). While
1119 activation of MBON- α 1 did not evoke detectable inhibition in the calcium signal, it
1120 effectively canceled the excitation by MBON- α 3.
1121

1122 **Figure 5. Optogenetic appetitive conditioning enhances the response to the**
1123 **conditioned odor in UpWiNs.**

1124 (A) Optogenetic conditioning was performed by pairing photostimulation of PAM-DANs
1125 with odor presentation. Expression of ChrimsonR-mVenus was driven by 58E02-LexA,
1126 and *in vivo* whole-cell recordings were made from UpWINs labeled by GFP using
1127 SS67249-split-GAL4. 1-min presentation of OCT was paired with LED stimulation (1 ms,
1128 2 Hz, 120 times), followed by 1-min presentation of MCH alone.
1129 (B) Representative recording from a single fly. Gray bars indicate 1-s odor presentation.
1130 (C) Mean (\pm SEM) odor responses ($n = 6$). Spikes were removed by a low-pass filter.
1131 (D) Summary data of mean (\pm SEM) odor-evoked membrane depolarization. Gray lines
1132 indicate data from individual neurons. Responses to OCT were potentiated ($p < 0.01$;
1133 repeated-measures two-way ANOVA followed by Tukey's post hoc multiple comparisons
1134 test), while those to MCH did not change ($p = 0.9$).
1135

1136 **Figure 5 – figure supplement 1. Expression patterns of SS67249**

1137 (A) Expression of CsChrimson-mVenus driven by SS67249.
1138 (B-D) MCFO image of neurons in SS67249 (red) and SMP353 (gray) with outline of the
1139 MB and the standard brain.
1140

1141 **Figure 5 – figure supplement 2. Reciprocal experiment of optogenetic appetitive**
1142 **conditioning.**

1143 (A) Experimental design and protocol. Same as Figure 5 except that MCH was paired
1144 with DAN photostimulation.
1145 (B) Representative recording from a single fly. Gray bars indicate 1-s odor presentation.
1146 (C) Mean (\pm SEM) odor responses ($n = 5$). Spikes were removed by a low-pass filter.
1147 (D) Summary data of mean (\pm SEM) odor-evoked membrane depolarization. Gray lines
1148 indicate data from individual neurons. Responses to MCH were potentiated ($p < 0.001$;
1149 repeated-measures two-way ANOVA followed by Tukey's post hoc multiple comparisons
1150 test), while those to OCT did not change ($p = 0.4$).
1151

1152 **Figure 6. Activity of UpWiNs bias turning direction**

1153 (A) Fed or 40-48 hours starved flies were compared to assess requirement of starved
1154 status for UpWiNs to promote upwind locomotion. $N=14$ (fed) and 16 (starved); ***,
1155 $p < 0.001$, Mann-Whitney test;
1156 (B) Upwind locomotion during the 10s activation of UpWiNs in the arena with various
1157 rates of airflow. $N=9-16$; **, $p < 0.01$; Dunn's multiple comparison tests compared to the
1158 zero flow condition.
1159 (C) Right side or both sides of arista were ablated one-day prior to experiments to
1160 measure upwind response during UpWiN activation. $N=20$ (intact) and 40 (unilateral and
1161 bilateral); ***, $p < 0.001$; Dunn's multiple comparison tests compared to the intact control.
1162 (D) Behavioral kinematics of UpWiN activation. The trajectories of individual flies during
1163 first 1.5s of 10s LED period were grouped to initially facing downwind or upwind if
1164 $\cos(\text{upwind angle})$ was above 0.5 or below -0.5, respectively.
1165 (E) Cumulative angle of turning and forward walking speed during the first 10 frames
1166 (333ms) after the onset of LED plotted against initial angle to upwind smoothened with
1167 +/- 30 degree bin. The number of trajectories analyzed for (SS33917, SS33918,

1168 MB077B, Empty-split-GAL4) were (2492, 3362, 772, 1582), respectively. Only flies that
1169 were at least 3mm away from the edge of the arena were analyzed.
1170 (F-G) The violin-plots of the cumulative angle of turn to the upwind orientation or forward
1171 walking speed during the first 10 frames (333ms) of odor onset. Only flies that oriented -
1172 90 to -150 or +90 to 150 degrees to upwind at the odor onset were analyzed. N=444,
1173 540, 231, 219 for SS33917, SS33918, MB077B, Empty-split-GAL4, respectively. **,
1174 p<0.01; ***, p<0.001; Dunn's multiple comparison for the selected pairs, following
1175 Kruskal-Wallis test.
1176

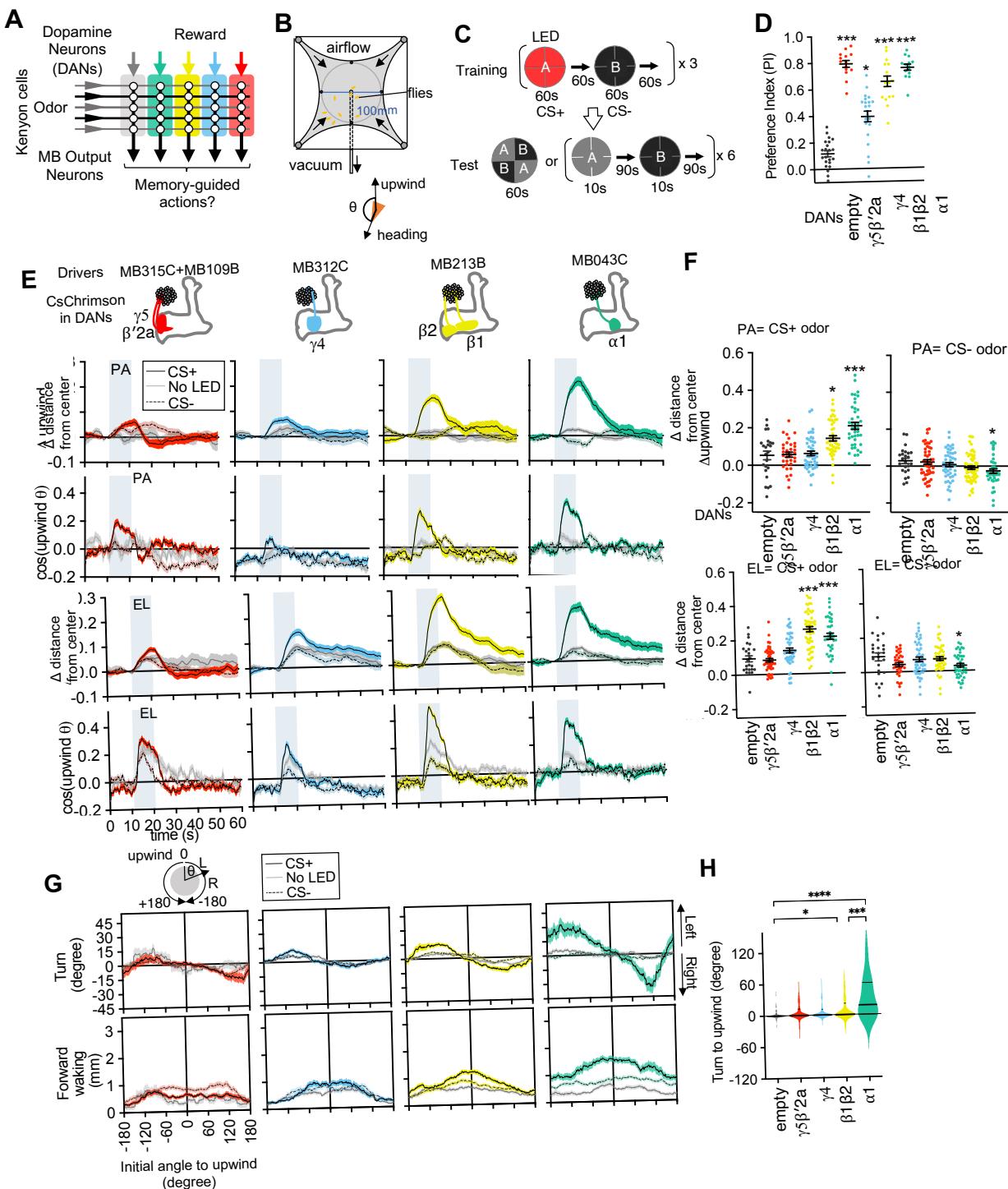
1177 **Figure 6-figure supplement 1**

1178 (A-E) The cosine of angle to upwind, angular speed and forward walking speed are
1179 separately plotted for flies oriented downwind or upwind at the odor onset. Only flies that
1180 were 3mm away from the edge of the arena were analyzed. The source data are
1181 identical to Figure 2.
1182
1183

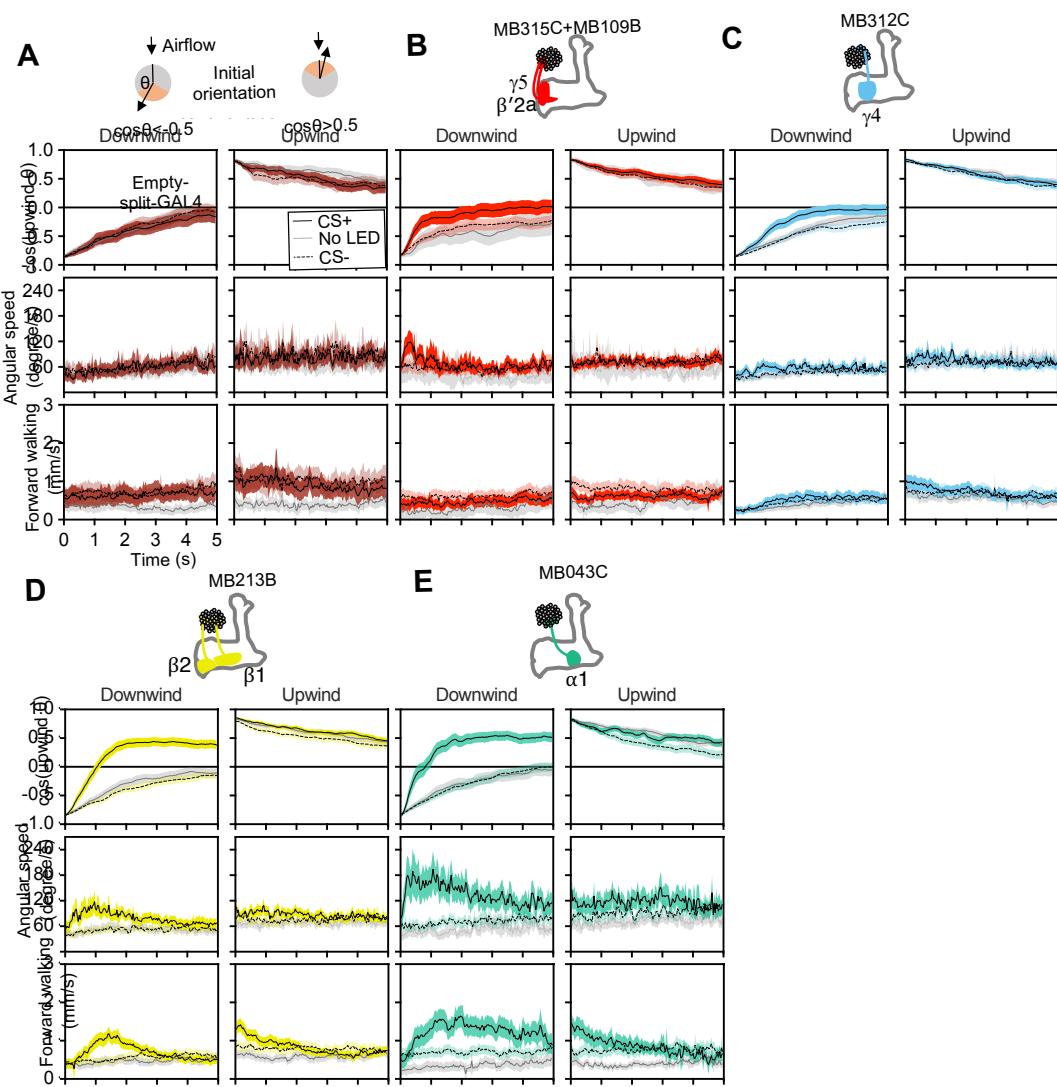
1184 **Figure 7. UpWiNs are required for memory-driven upwind locomotion**

1185 (A) Upwind response to the odor associated with sugar in control genotypes and flies
1186 that express TNT in UpWiNs.

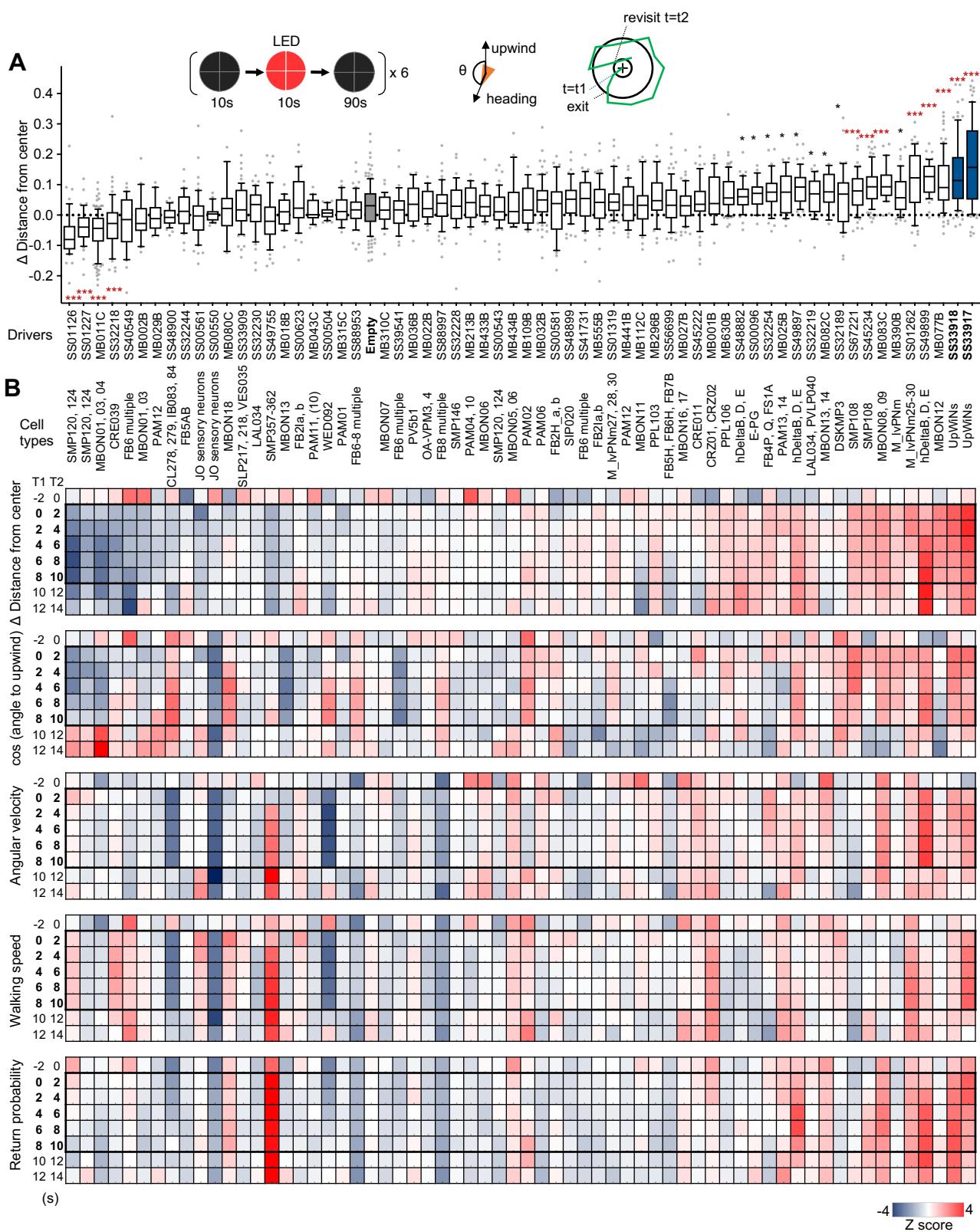
1187 (B) Time course of upwind response.

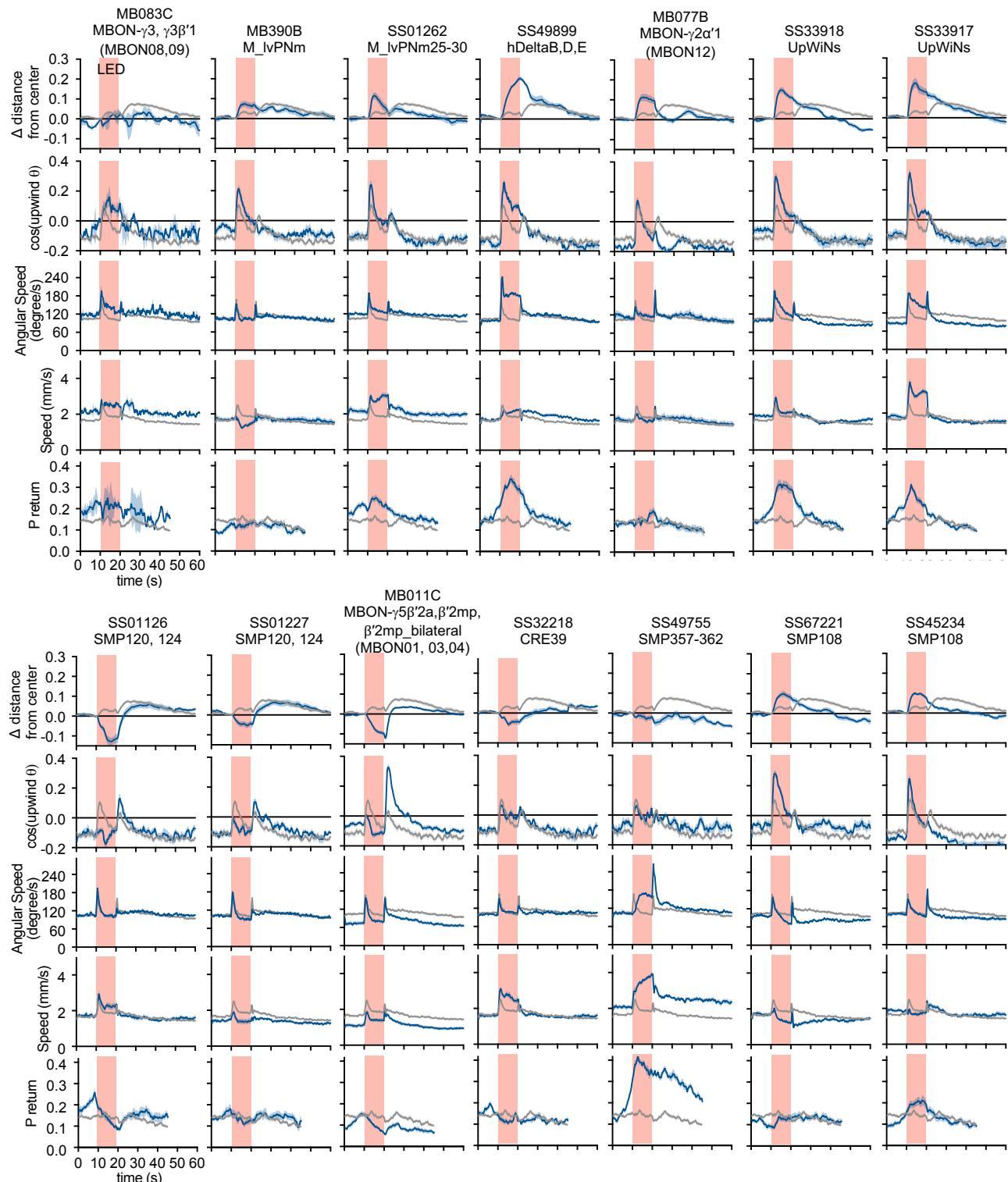

1188 (C) Appetitive memories of control genotypes and flies expressing shibire in UpWiNs
1189 were tested one-day after odor-sugar conditioning at restrictive or permissive
1190 temperature.

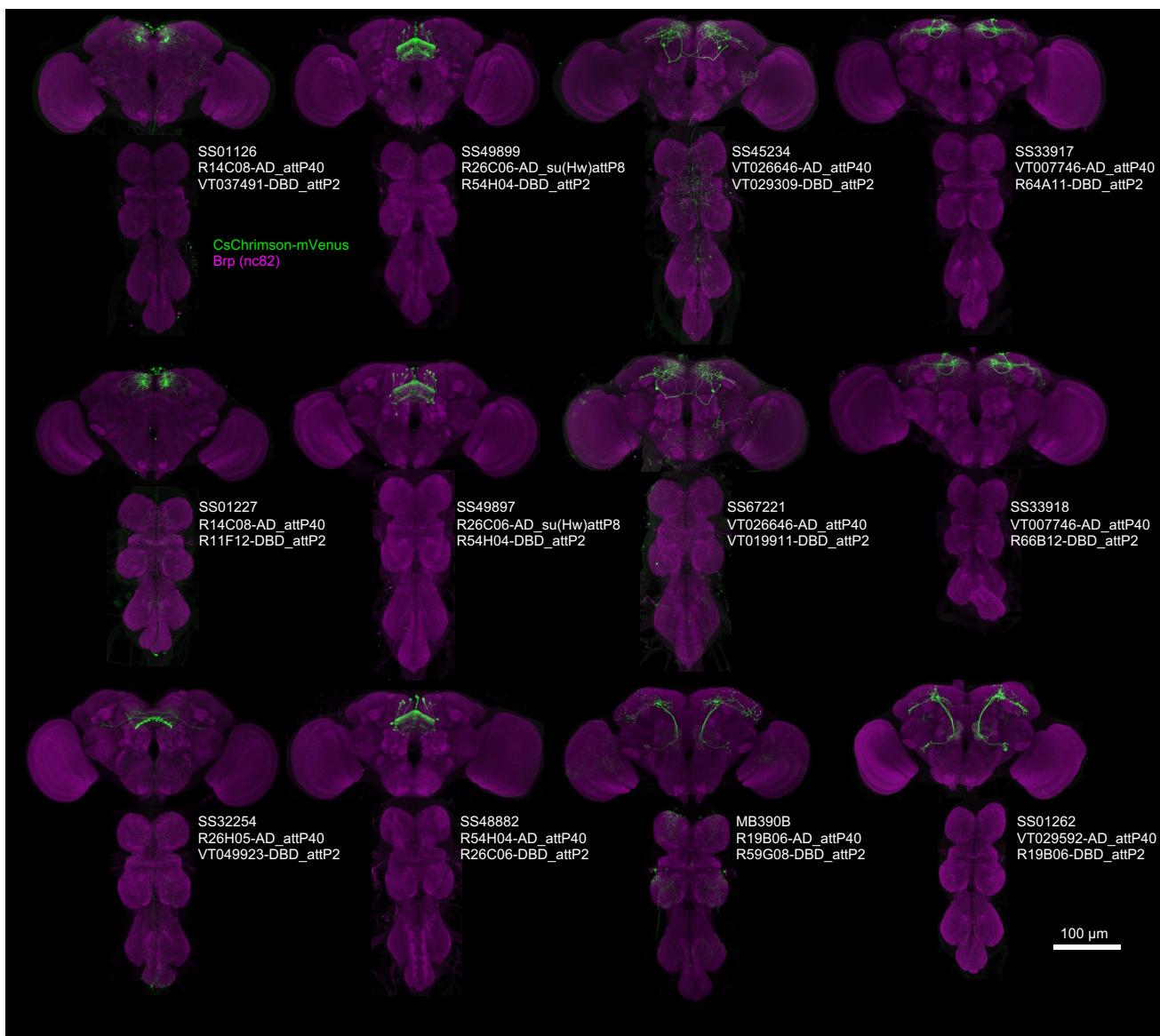
1191 (D) Time course of fly's preference to quadrants with red LED light by
1192 SS33917>CsChrimson (blue) or empty-split-GAL4>CsChrimson (gray). The preference
1193 to red LED quadrants during the last 5s of two 30s activation period was significantly
1194 higher for SS33917>CsChrimson flies (right).

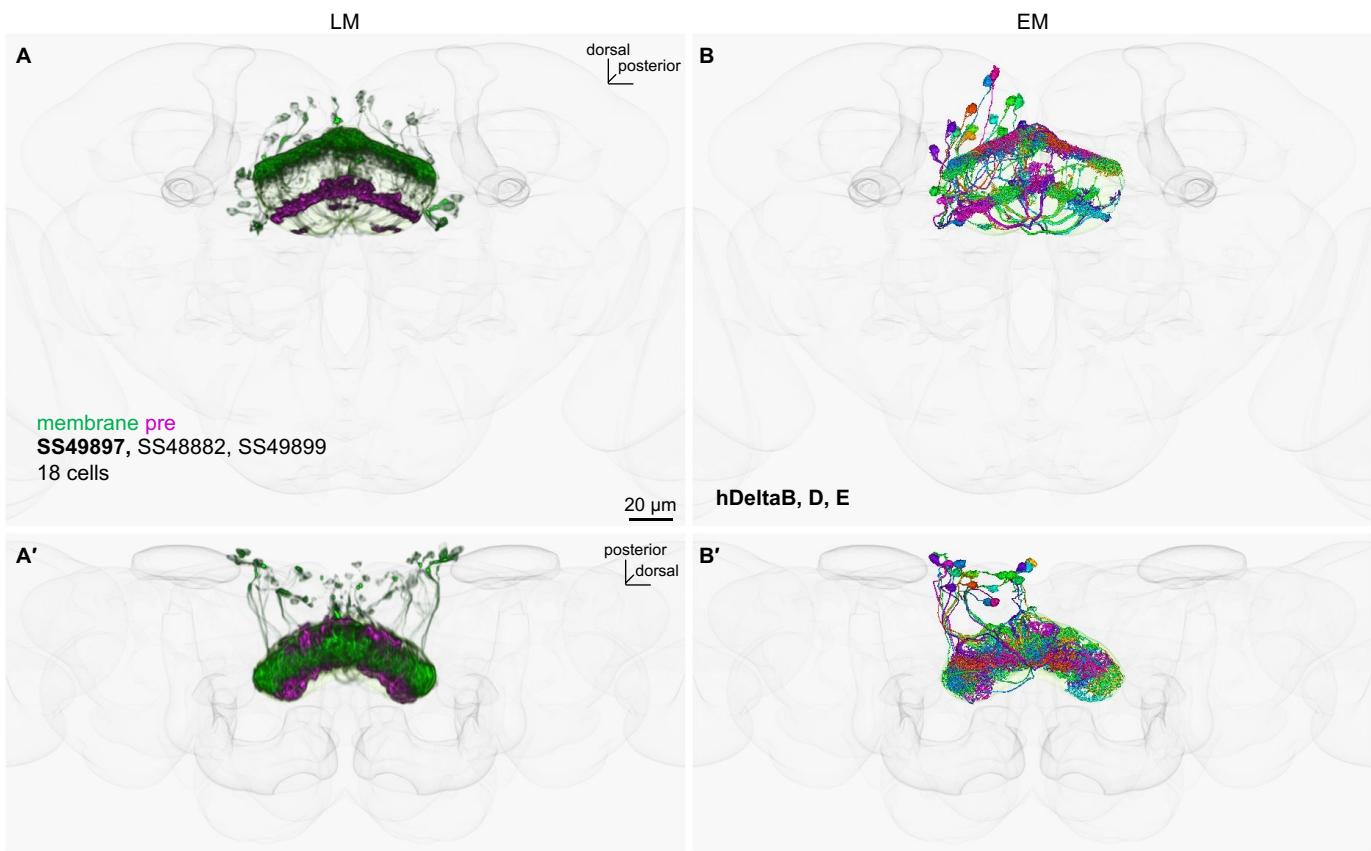

1195 (E) The probability of returning to the location where LED stimulation was terminated
1196 were measured as in Figure 2, but without airflow. See Figure 7-figure supplement 1 for
1197 the time courses and other parameters. UpWiN drivers are shown together with
1198 SS49755 from the screen.
1199

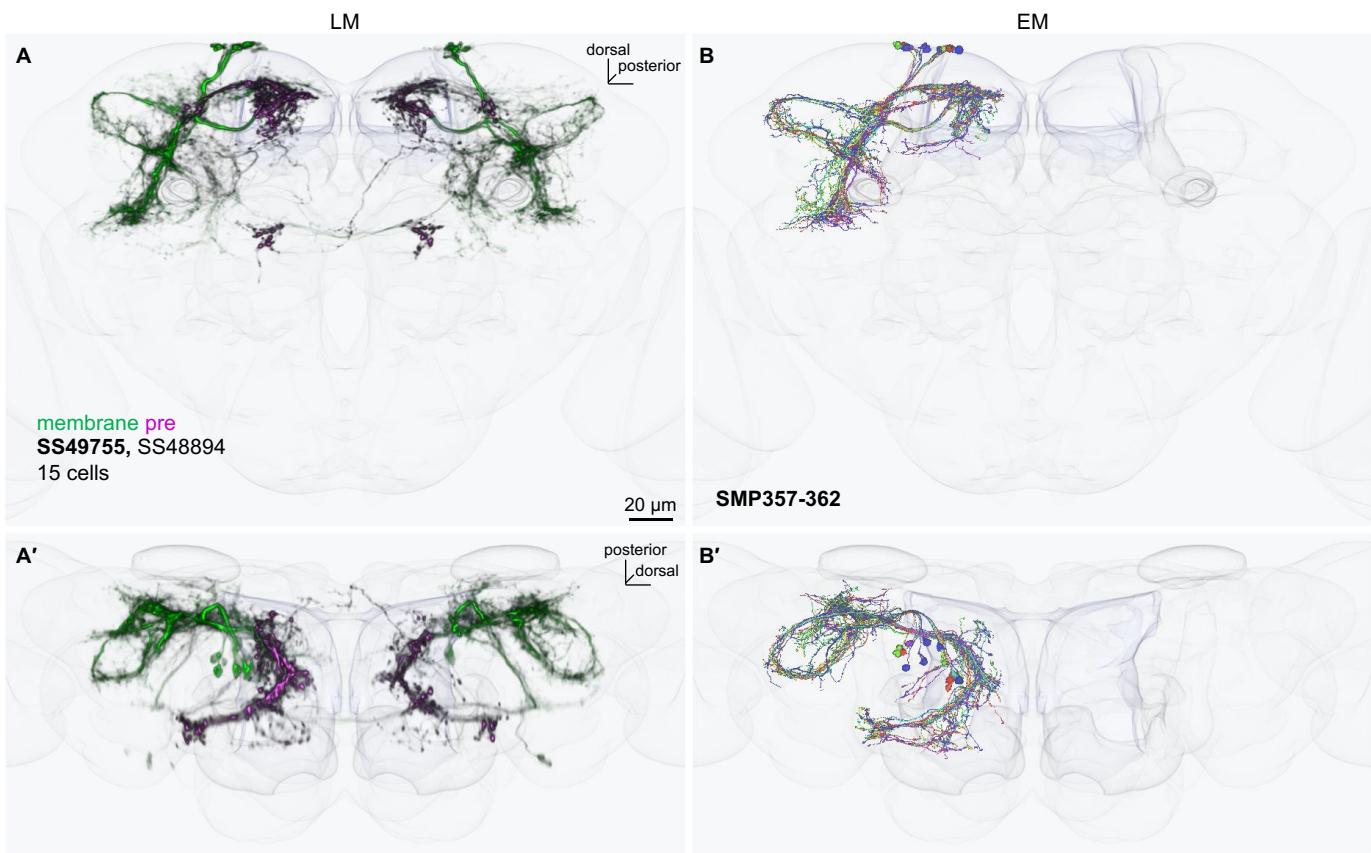
1200 **Figure 7-figure supplement 1 UpWiN activation phenotypes without airflow**

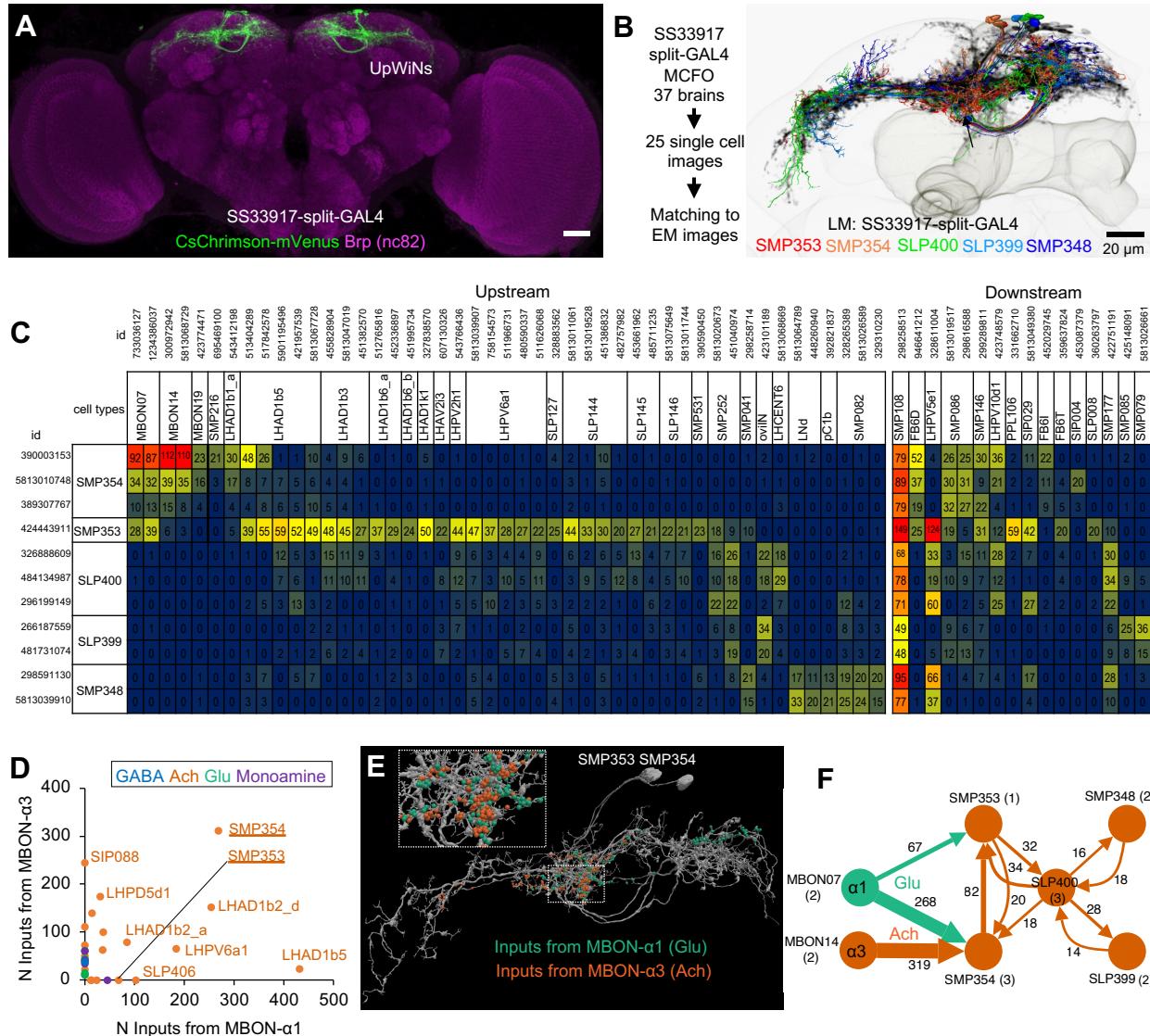

1201 Time course of the five parameters shown in Figure 2-figure supplement 1 but in the
1202 absence of airflow. Lines and filled areas around lines are mean and SEM; CsChrimson-
1203 expressing flies (blue) and empty-split-GAL4 control (gray).
1204

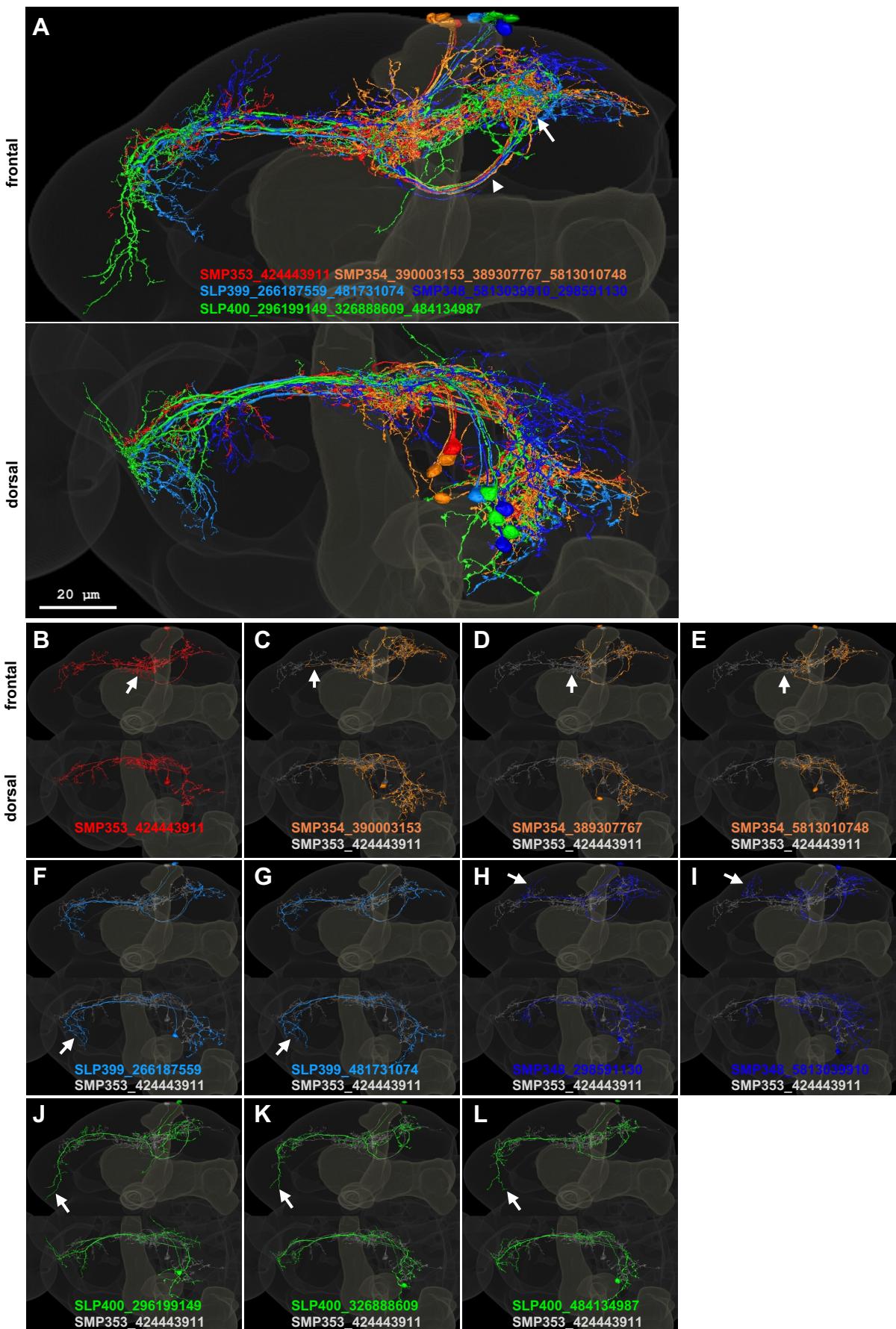

Figure 1

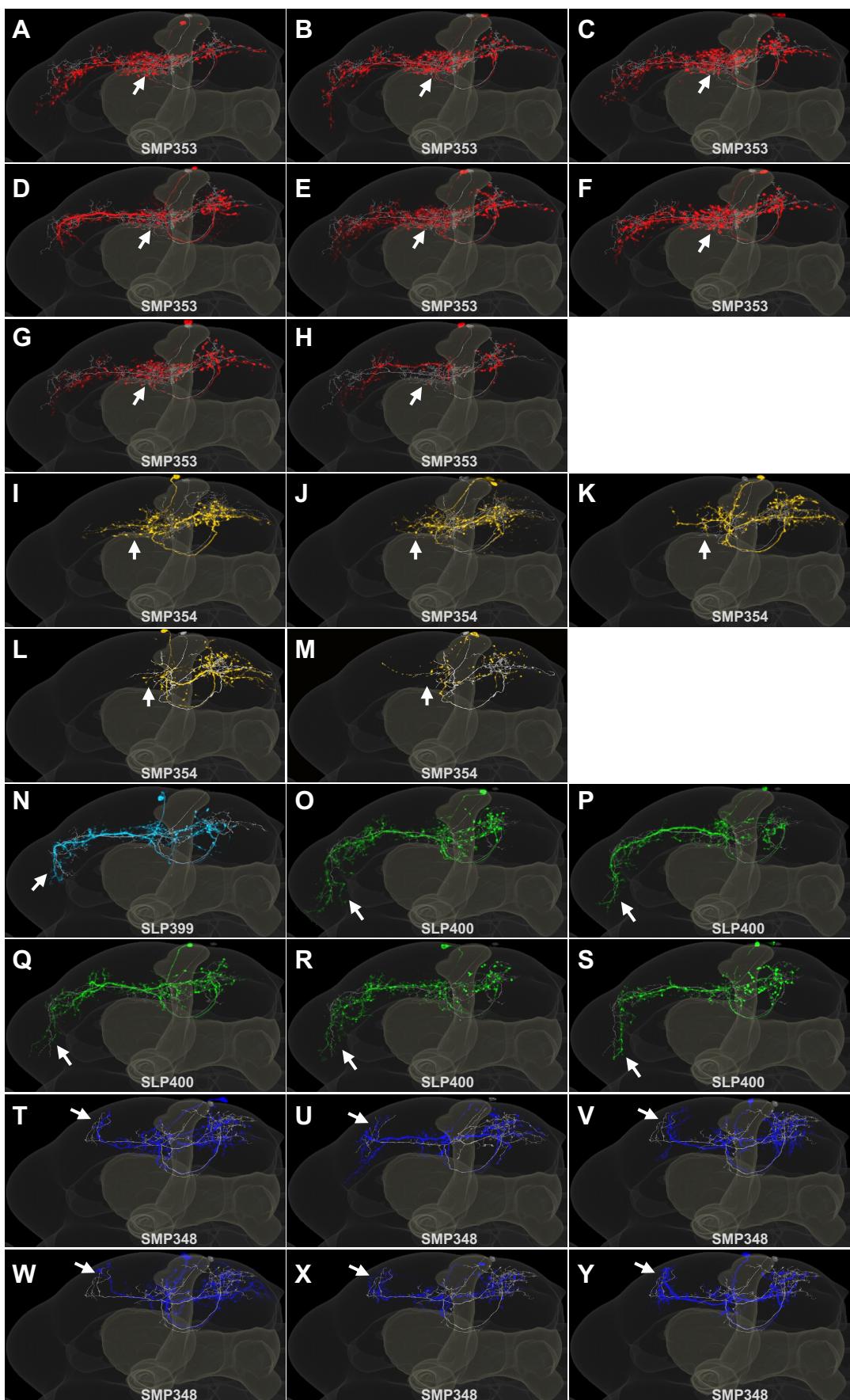

Figure 1-figure supplement 1


Figure 2


Figure 2-figure Supplement 1


Figure 2-figure Supplement 2


Figure 2-figure Supplement 3


Figure 2-figure Supplement 4

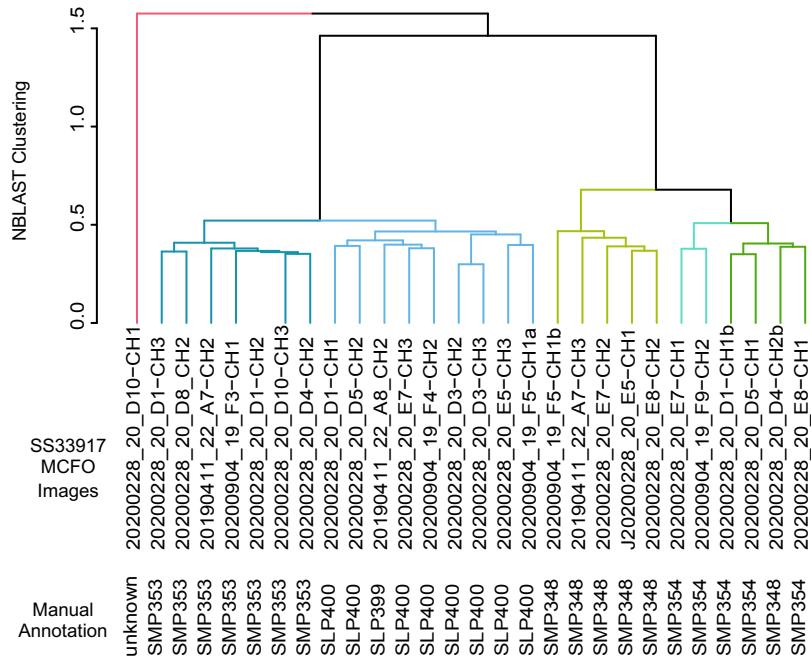
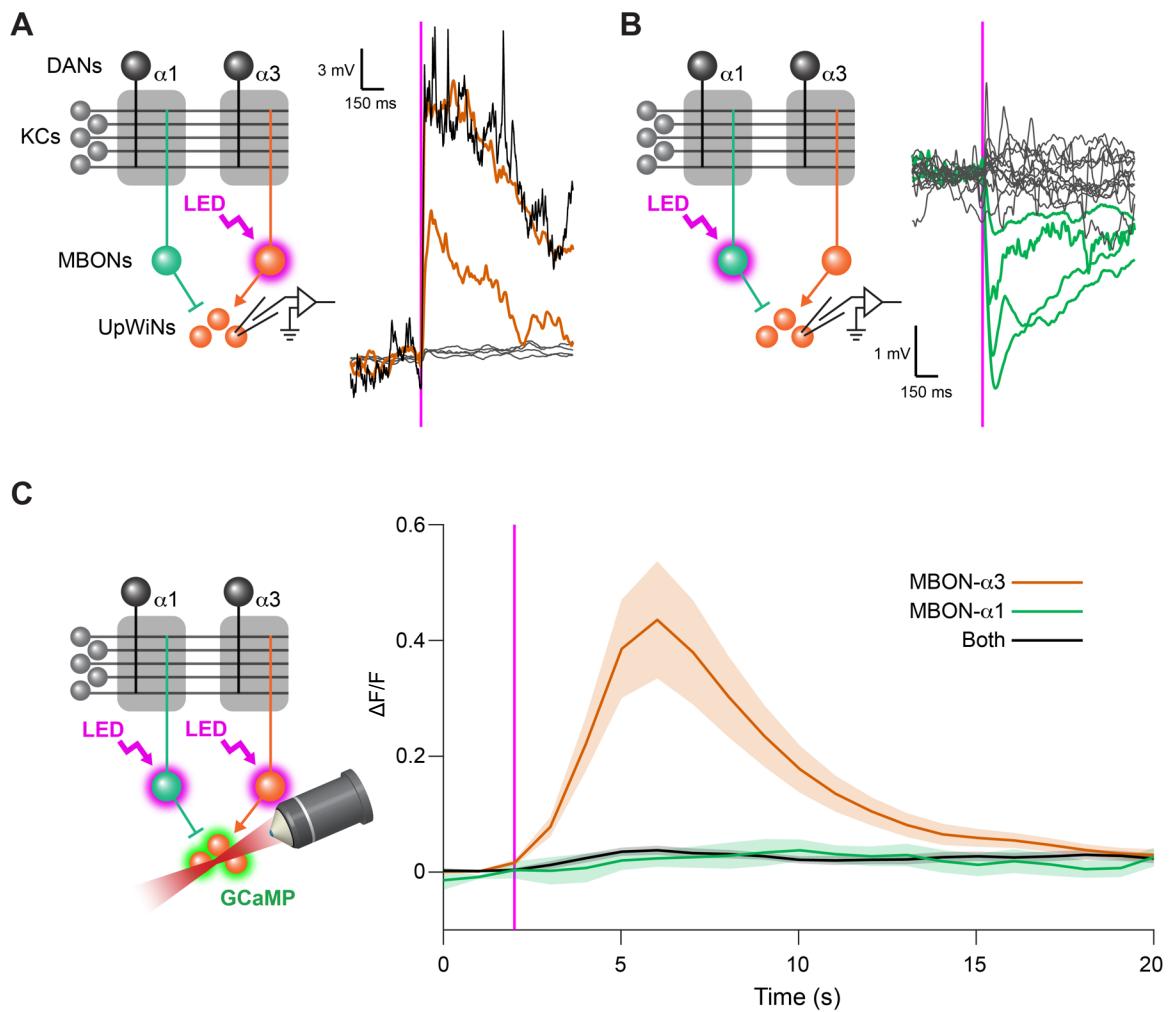
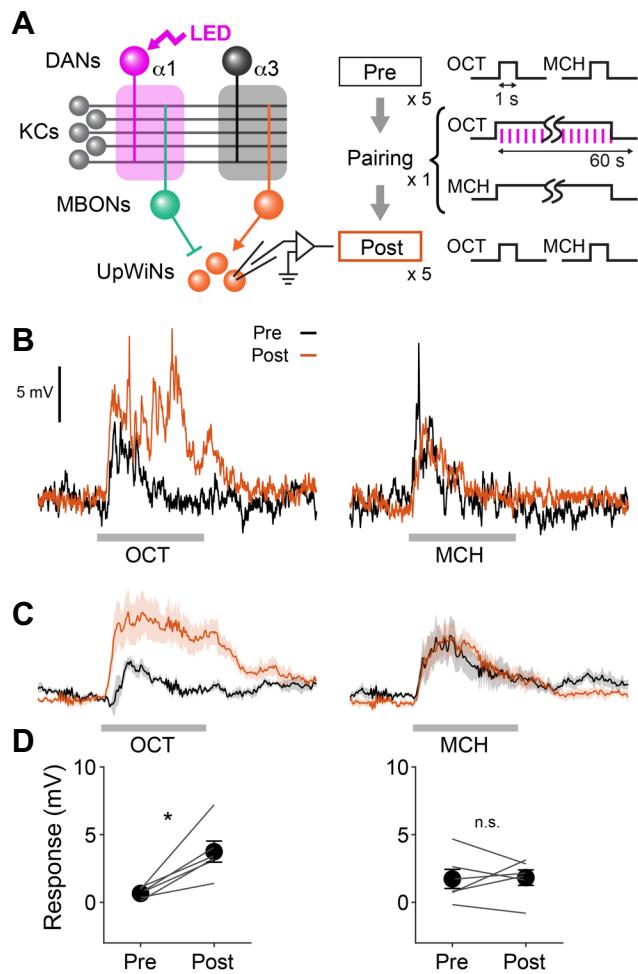
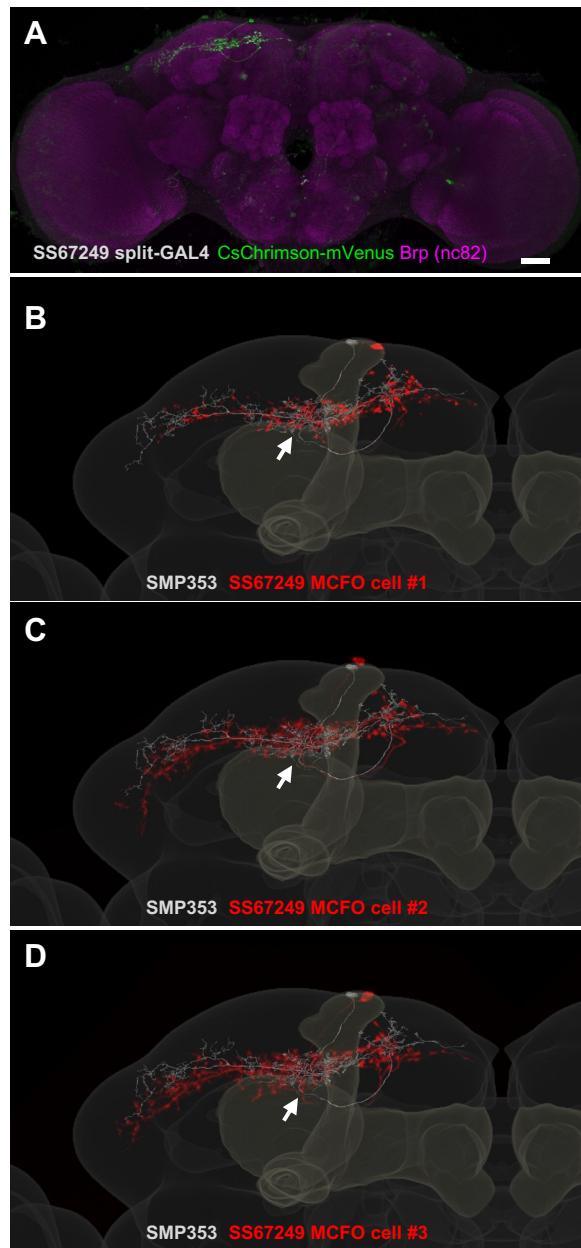

Figure 3

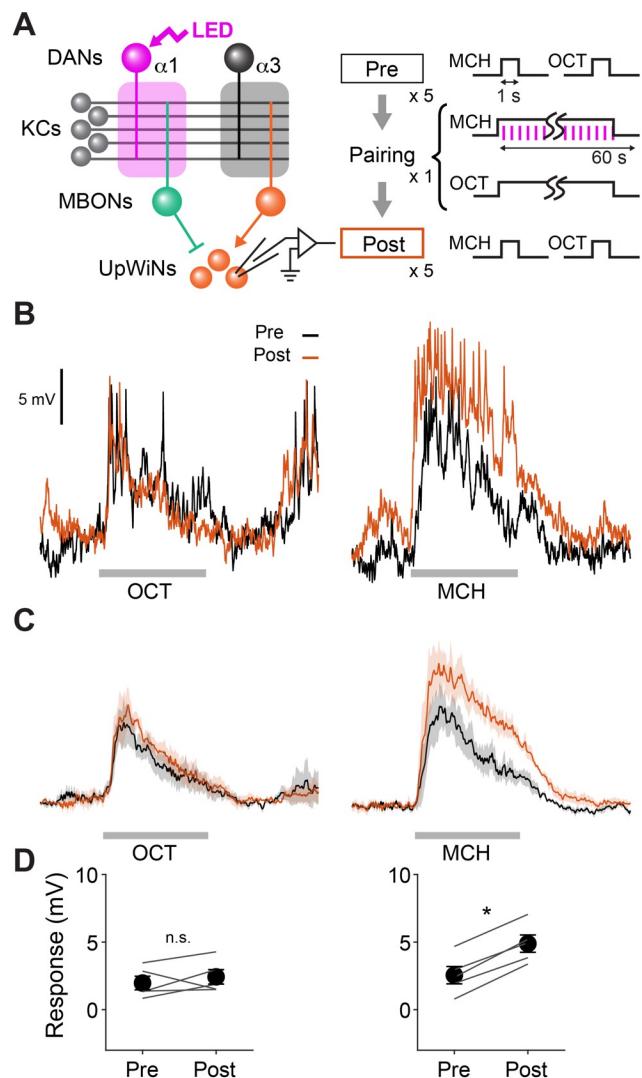
Figure 3-figure supplement 1

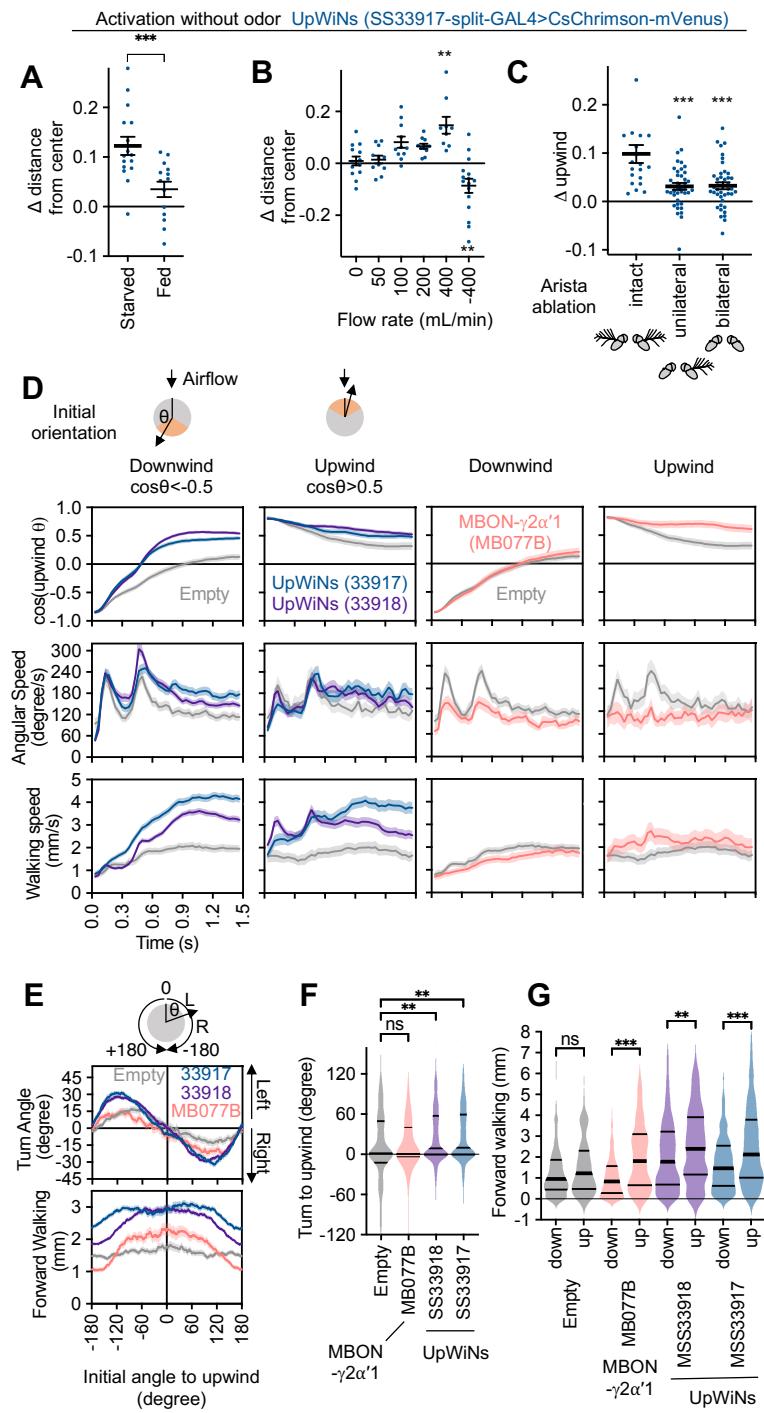

Figure 3-figure supplement 2

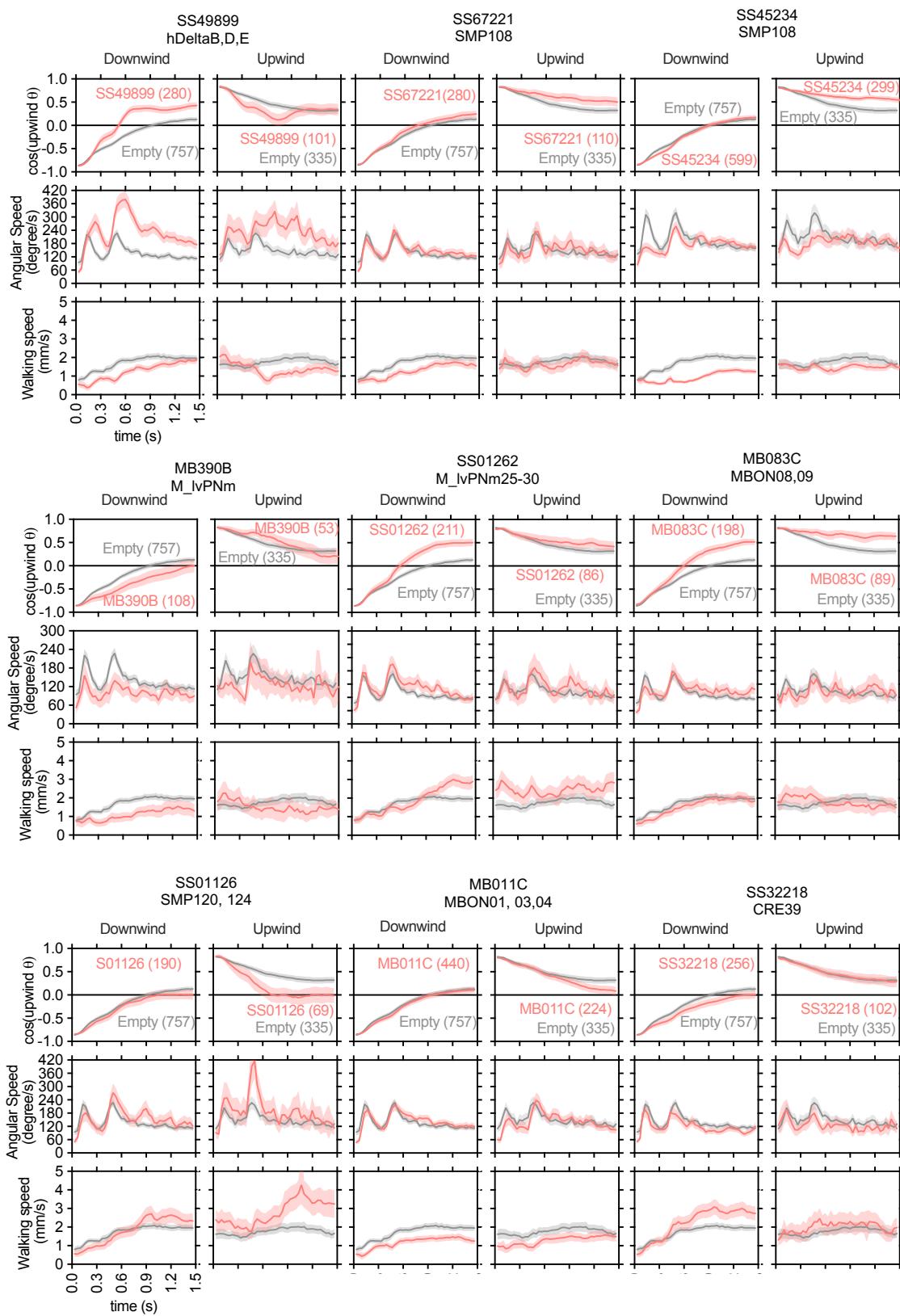

Figure 3-figure supplement 3

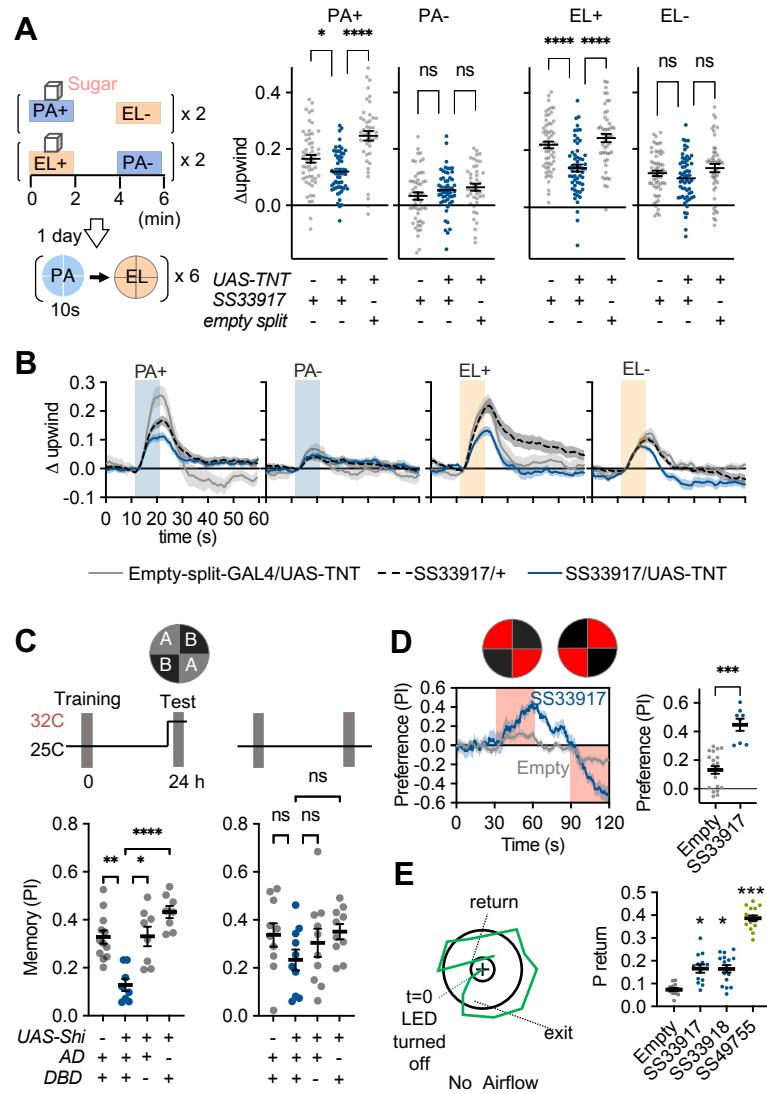
Cell type	Transmitter	MB compartments												EM id														
		M BN007	M BN014	M BN01	a1	a3	a9	y ² B ₂ a	y ² a ₁	a ₂	B ₂ B ² a	y ¹ y ₂	a ₂ c ₅	y ⁴ y ² y ₂	M BN05	M BN06	M BN09	M BN19	M BN16	M BN05	M BN17	M BN21	M BN15	M BN17-like	M BN04	M BN03	M BN10	
LHAD1b5	ACh	431	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	42197539, 513404289, 517842578, 5813067728, 5901195496,	
SMP354	ACh	268	311	0	0	0	0	0	0	0	0	0	0	0	56	0	0	0	0	0	0	0	0	0	0	0	0	389307767, 390003153, 5813010748
LHAD1b2_d	ACh	253	152	258	59	53	13	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	544107243, 730562988	
LHPV6a1	ACh	183	66	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	480590337, 480594756, 480599437, 480945354, 481627444, 511625768, 511626068, 511626286, 511996731, 543684107, 574468840, 581301232, 5813039907, 758154573	
SLP406	ACh	102	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	512377806	
LHAD1b2_a	ACh	84	79	240	62	47	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	544107335, 5813013202, 606461310, 673426956, 769199010, 824349873	
SMP353	ACh	67	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	424448911	
PPM1201	DA	45	0	0	0	0	0	0	317	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	792040502, 950229431	
SPM031	ACh	36	100	206	106	0	51	0	0	165	28	0	0	0	0	0	0	32	0	0	0	10	0	0	0	0	51783849, 579230376	
LHAD1K1	ACh	35	63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	32783870	
LHPD5d1	ACh	30	174	231	53	0	41	0	0	0	86	0	0	0	43	0	0	11	11	0	0	0	0	0	0	0	387568523, 5813055800	
LHAD1b6_a	ACh	23	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	425471220, 452336897, 512765816	
LHAD1b3	ACh	14	140	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	451382570, 455828904, 5813047019	
LHAD1b2_c	ACh	13	0	40	11	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	543321179, 574040939, 5813052205, 782274975	
LHAD1b2_b	ACh	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	483017681, 573683436, 5813022459	
SIP088	ACh	0	245	0	0	23	193	0	54	0	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	331011085	
LHPV2h1	DA	0	112	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	543766436	
SMP549	ACh	0	73	0	12	0	0	0	0	0	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	32956197, 455229034	
SIP016	Glu	0	62	0	53	114	0	0	0	0	0	0	0	50	0	0	10	0	0	0	0	0	0	0	0	0	51818952, 578893446, 579596940, 612648076	
5-HT	HTPPMDP01	0	61	0	0	10	0	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	297230760, 297908801	
		0	51	0	0	0	0	0	0	0	58	0	0	0	0	0	0	0	0	0	0	0	0	0	0	298612190		
		0	45	0	128	169	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2944502004, 486812022, 548203966, 549219101		
		0	42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	392645419, 5813021223	
		0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	29859271, 5813068707	
LHCENT9	GABA	0	38	33	0	0	96	0	145	0	48	0	16	0	11	0	25	0	0	0	0	0	0	0	0	0	330268940	
SLP129_a	DA	0	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5813012028	
LHAV6a9	ACh	0	22	0	0	0	0	0	0	0	0	0	0	0	21	0	0	0	0	0	0	0	0	0	0	0	329581837, 360254511, 391954490	
SMP170	Glu	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	29626157, 361700223	
SMP194	ACh	0	11	0	23	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	613338546	
SLP176	Glu	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	329596187, 389575937, 390969968, 41958136, 420952125, 5813010255	


Figure 3 – figure supplement 4


Figure 4


Figure 5


Figure 5 – figure supplement 1


Figure 5 – figure supplement 2

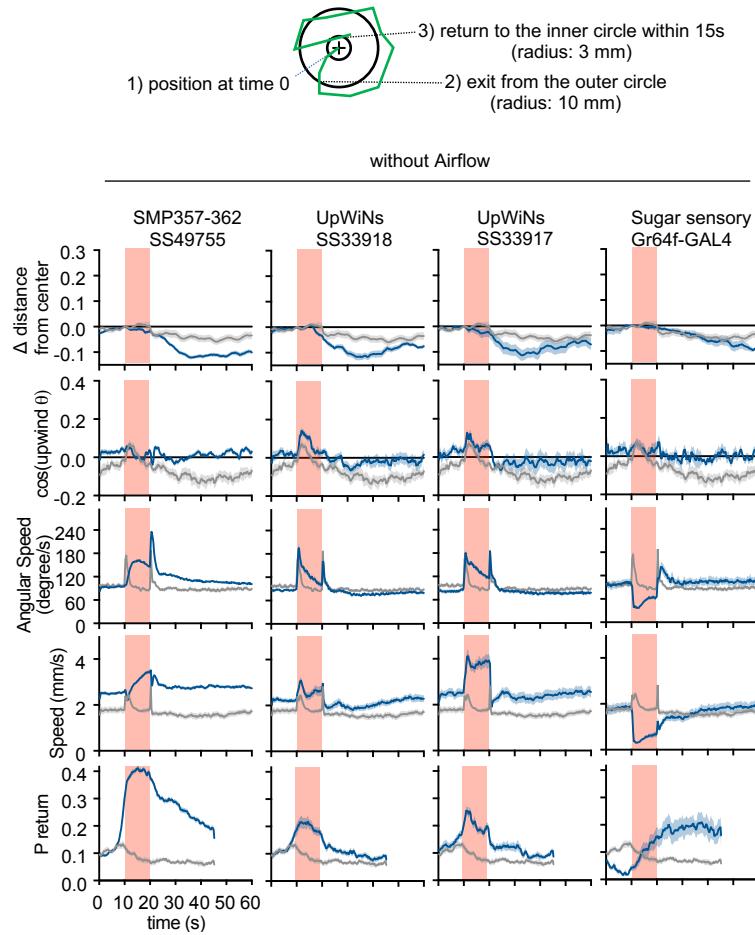

Figure 6

Figure 6-figure Supplement 1

Figure 7

Figure 7-figure supplement 1