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Abstract
Design randomizations and spatial corrections have increased understanding of 

genotypic, spatial, and residual effects in field experiments, but precisely measuring 
spatial heterogeneity in the field remains a challenge. To this end, our study evaluated 
approaches to improve spatial modeling using high-throughput phenotypes (HTP) via 
unoccupied aerial vehicle (UAV) imagery. The normalized difference vegetation index 
(NDVI) was measured by a multi-spectral MicaSense camera and ImageBreed. 
Contrasting to baseline agronomic trait spatial correction and a baseline multi-trait 
model, a two-stage approach that quantified NDVI local environmental effects (NLEE) 
was proposed. Firstly, NLEE were separated from additive genetic effects over the 
growing season using two-dimensional spline (2DSpl), separable autoregressive (AR1) 
models, or random regression models (RR). Secondly, the NLEE were leveraged within 
agronomic trait genomic best linear unbiased prediction (GBLUP) either modeling an 
empirical covariance for random effects, or by modeling fixed effects as an average of 
NLEE across time or split among three growth phases. Modeling approaches were 
tested using simulation data and Genomes-to-Fields (G2F) hybrid maize (Zea mays L.) 
field experiments in 2015, 2017, 2019, and 2020 for grain yield, grain moisture, and ear 
height. The two-stage approach improved heritability, model fit, and genotypic effect 
estimation compared to all baseline models. Electrical conductance and elevation from 
a 2019 soil survey significantly improved model fit, while 2DSpl NLEE were most 
correlated to the soil parameters and grain yield 2DSpl effects. Simulation of field 
effects demonstrated improved specificity for RR models. In summary, NLEE increased 
experimental accuracy and understanding of field spatio-temporal heterogeneity.

Introduction
The importance of controlling for environmental heterogeneity in agricultural field 

experiments is critical to obtain accurate estimates of varietal performance and 
treatment effects (Smith, Cullis, and Thompson 2005; Van Es and Van Es 1993; 
Brownie, Bowman, and Burton 1993; Xu 2016). In plant breeding where soil 
composition, elevation, slope, curvature, water content, nutrient availability, and 
management can vary within field experiments, the genotypic effects driving important 
agronomic traits become confounded with local environment effects (LEE). 
Randomization in experimental designs can help control errors from spatial variation to 
a large degree (Piepho, Möhring, and Williams 2013; Hoefler et al. 2020), but in early 
stage trials where replication is limited, it is important to account for spatial variation. 
Statistical approaches, such as the separable autoregressive process and the two-
dimensional spline model, have advanced to capture local dependence effects between 
experimental plots (Arthur R. Gilmour et al. 1997; Covarrubias-Pazaran 2016). Such 
spatial effects derive local dependencies from distance-based random covariance 

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.18.512728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512728
http://creativecommons.org/licenses/by-nc-nd/4.0/


structures (e.g. plots that are close to each other are more interdependent than those 
farther away), but these models often make simplifying assumptions of a consistent rate
of decay in interdependency across the entire field. Nonetheless, statistically modeling 
spatial effects using linear mixed models has improved experimental accuracy in plant 
breeding (Rodríguez-Álvarez et al. 2018; Robbins, Backlund, and Schnelle 2012; Copati
et al. 2021; Bernardeli et al. 2021; Smith, Cullis, and Thompson 2005).

Spatial heterogeneity can change over the growing season, due to weather and 
management conditions as well as plant development characteristics. The relationship 
of time on spatial effects can be explored through univariate and multivariate spatial 
models. Also, repeated measurements in time allow estimation of permanent 
environment (PE) effects from random regression (RR) models, providing a purely 
temporal representation of spatial heterogeneity. To effectively apply these statistical 
approaches, measurements should largely span the field; however, it can be difficult 
and expensive to objectively measure phenotypic traits repeatedly across a field 
experiment, as seen with quantitative disease resistance traits (Poland and Nelson 
2011; Reynolds et al. 2019). Therefore, cost-effective remote sensing approaches are 
necessary for studying LEE in the field across time.

Through the use of unoccupied aerial vehicles (UAVs) and other systems, aerial 
imaging can reliably and cost-effectively measure high-throughput phenotypes (HTPs) 
for all experimental plots in the field across the growing season (White et al. 2012; 
Andrade-Sanchez et al. 2014; Sagan et al. 2019; Sun et al. 2021). A widely studied 
class of aerial image HTPs are vegetation indices (VI) that include the normalized 
difference vegetation index (NDVI) (Gitelson et al. 2002; Hunt et al. 2013). VI provide 
physiologically relevant image features that can track variance such as photosynthetic 
activity, and have successfully measured chlorophyll content, canopy extent, biomass, 
and water use efficiency among other plant attributes (Thorp et al. 2018; Delegido et al. 
2011; Bannari et al. 2007; Babar et al. 2006). Promising model-derived HTPs from 
images exist, such as latent-space and convolutional neural network (CNN) features; 
however, our study focused on NDVI LEE (NLEE) from linear mixed models to offer a 
standardized approach for quantifying latent spatial heterogeneity and field 
environmental effects (Gage, Richards, and Lepak 2019; Taghavi Namin et al. 2018; 
Wiesner-Hanks et al. 2019; Feldmann et al. 2021).

While phenotypic data are critical in plant breeding, genomic data are arguably of
equal importance. Applying whole-genome marker data for genomic prediction (GP) is 
now feasible with the proliferation of genotyping technologies (Meuwissen, Hayes, and 
Goddard 2001). Genomic best linear unbiased prediction (GBLUP) has been 
extensively applied to predict traits in animals and plants from genome-wide single 
nucleotide polymorphism (SNP) markers, including in maize and wheat (Rutkoski et al. 
2012; Daetwyler et al. 2013). GBLUP can predict traits from genome-wide SNP marker 
data by modeling the covariance of additive genetic effects as a genomic relationship 
matrix (GRM) (VanRaden 2008).
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VI can improve GP through multivariate approaches by leveraging genetic 
correlations between the VI and agronomic traits of interest, as demonstrated for grain 
yield in wheat and biomass in soybean (Rutkoski et al. 2016; Sakurai et al. 2021). While
multi-trait models leverage genetic correlations across traits to improve predictions, 
residual correlations exist between NDVI and grain yield in maize (Anche et al. 2020). 
Recent studies have successfully proposed two-stage approaches for incorporating 
HTP, such as detecting spatial effects using the SpATS package in the first stage and 
then creating P-spline hierarchical growth models in the second stage (Pérez-Valencia 
et al. 2022). Furthermore, modeling approaches for integrating HTP, genomic 
information, and environmental information can be generalized into the genotype-to-
phenotype (G2P) model framework (van Eeuwijk et al. 2019); however, modeling NLEE 
into GP has not previously been widely explored and field tested. 

Building on previous work, our study proposed a two-stage approach for 
improving spatial corrections in GP. The first stage separated NLEE from additive 
genetic effects in the HTP temporally, using either spatial corrections or RR models, to 
quantify the LEE in the field. The second stage summarized the NLEE within GBLUP for
the agronomic traits using two distinct implementations, either modeling a plot-to-plot 
covariance of random effects (L) or modeling fixed effects (FE). The proposed approach
studied the following two questions utilizing simulated data and several years of hybrid 
maize field experiments. Firstly, are NLEE, estimated by spatial effects and PE effects, 
consistently able to detect across the growing season the spatial heterogeneity affecting
end-of-season agronomic traits? Secondly, can NLEE be used in the proposed two-
stage models to improve spatial corrections for GP of agronomic traits?

Materials and Methods

Field Experiments
As part of the Genomes to Fields (G2F) program, inbred and hybrid maize (Zea 

mays L.) field evaluations were planted at the Musgrave Research Farm (MRF) in 
Aurora, NY (McFarland et al. 2020). Of importance to this study were the hybrid maize 
experiments planted in 2015 (https://doi.org/10.25739/erxg-yn49), 2017 
(https://doi.org/10.25739/w560-2114), 2019 (https://doi.org/10.25739/t651-yy97), and 
2020 (https://doi.org/10.25739/hzzs-a865), named 2015_NYH2, 2017_NYH2, 
2019_NYH2, and 2020_NYH2, respectively. Each experimental plot was seeded in two-
row plantings. In all field experiments, the following agronomic traits were measured: 
grain yield (GY) (bu/acre), grain moisture (GM) (%), and ear height (EH) (cm).

Experimental variation across the years arose from the maize hybrids planted, 
the field sites utilized, the weather conditions experienced during the growing seasons, 
and the time points at which imaging events occurred. Figure S1 illustrated the time 
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points at which high-throughput phenotypes (HTP) were extracted, as well as the 
growing degree days (GDD) and cumulative precipitation (CP) on those days. GDD 
were calculated for each imaging event time point from the planting date of the 
experiment and were found using daily weather data for the ground station at MRF 
(GHCND:USC00300331) accessed via the NOAA NCEI NCDC database. The 
evidenced variation in GDD and CP across years highlighted the necessity to collect as 
many imaging events as possible over the growing season.

Aerial Image Collection and Processing
A MicaSense RedEdge 5-channel multi-spectral camera mounted onto an 

unoccupied aerial vehicle (UAV) captured images in the blue, green, red, near infrared, 
and red-edge spectra. The UAV flew at an altitude of 25m to 30m and at a speed of 6 
km/hr. To complete a flight, the pre-programmed, serpentine flight plans required 
approximately 35 min to traverse the 3km path. At least 80% overlap along both image 
axes was ensured in the collected images.

Each flight produced approximately 5,000 images from the MicaSense camera. 
The images were then processed into orthophotomosaics using Pix4dMapper 
photogrammetry software. To produce reflectance calibrated raster images, this 
software used the MicaSense radiometric calibration panel images captured 
immediately prior to each UAV flight, as well as illumination metadata embedded in 
each capture by the MicaSense camera. Orthophotomosaic images were produced with
approximately 1cm per pixel resolution ground sample distance (GSD). The resulting 
reflectance orthophoto images were then uploaded into ImageBreed, which enabled 
plot-polygon templates to be created and assigned to the field experimental design 
(Morales, Kaczmar, et al. 2020). Figure S2 illustrates a representative near-infrared 
(NIR) reflectance orthophoto image from 2019_NYH2 taken on August 15, 2019, with 
the plot-polygons overlaid. Normalized difference vegetation index (NDVI) HTP were 
extracted from ImageBreed, derived from the plot image mean pixel value (Gitelson et 
al. 2002; Hunt et al. 2013; Patrignani and Ochsner 2015; Bhandari et al. 2021). The 
image, field experiment, phenotypic, and genotypic data within ImageBreed are FAIR 
and queryable through openly described APIs (Selby et al. 2019; Wilkinson et al. 2016).

Flights in 2015, 2017, and 2019 were scheduled approximately once per week, 
while 2020 targeted a frequency of twice per week. Technical problems and poor 
weather conditions, such as clouds, rain, and high winds, resulted in fewer imaging 
events being suitable for HTP extraction. To separate the HTP imaging event dates into 
biological growth stages, GDD ranges were defined to account for the early vegetative 
phase (P0) at 0 to 1225 GDD, the active reproductive phase (P1) at 1226 to 1800 GDD,
and the late reproductive phase (P2) at 1801 to 2500 GDD. The three GDD ranges 
captured periods where NDVI was first steadily increasing, then plateauing, and finally 
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steadily decreasing. Table 1 summarized the growth stage distribution of imaging event 
dates for which HTP were successfully extracted.

Table 1: Summary of UAV imaging dates for which HTP were successfully extracted in 
the 2015, 2017, 2019, and 2020 field experiments. Growth stages of P0, P1, and P2 
map to early, active, and late reproductive phases broadly defined as 0 to 1225 GDD, 
1226 to 1800 GDD, and 1801 to 2500 GDD, respectively.

Field 
Experiment

Planting
Date

Field 
Location

Growth Stage:
P0

Growth Stage:
P1

Growth Stage:
P2

2015_NYH2 May 7, 
2015

MRF, 
Field P

July 21 Aug 7, Aug 20 Sept 10

2017_NYH2 May 18, 
2017

MRF, 
Field Y

June 12 Aug 2, Aug 
17, Sept 1

Sept 6, Sept 
12, Sept 24

2019_NYH2 May 23, 
2019

MRF, 
Field N

July 16, July 
24, July 29

Aug 5, Aug 15 Sept 10

2020_NYH2 May 22, 
2020

MRF, 
Field D

June 29, July 
9, July 15, 
July 18

July 22, July 
28, Aug 1

Aug 20, Aug 
26, Sept 9, 
Sept 18, Oct 2

Soil Information
In 2019 at the MRF, a ground conductivity meter (EM38-MK2, Geonics, Canada) 

surveyed Field N where the G2F hybrid maize field experiment was planted. The EM-38
probe used electrical inductance to characterize variation originating from a combination
of factors including soil salinity, soil texture, water content, water retention, soil type, 
and soil nutrients (Heil and Schmidhalter 2017). The goals for the soil information in this
study were to (1) better understand driving factors for the detected NLEE from the aerial
imagery, and (2) determine whether a soil survey was a practical alternative to aerial 
imagery for improving agronomic GP in the second stage. Due to planting rotations and 
other logistical concerns, the G2F experiments conducted in 2015, 2017, 2019, and 
2020 were all in distinct field locations as shown in Table 1; therefore, the soil 
information in this study could only be applied to the 2019 experiment.

The soil survey was conducted prior to the hybrids being planted by passing the 
probe over the field in a dual-serpentine pattern, with 9 passes in the east-west 
orientation and 24 passes in the north-south orientation. The georeferenced elevation 
(Alt) and apparent electrical conductance (EC) data were then interpolated over the 
entire field using ordinary Kriging in R (Pebesma 2004). The interpolated raster was 
produced using a spherical variogram model at a resolution of  WGS84 units 
covering 120 by 200 cells. Figure S3 illustrates (A) a map of the collected EM38 soil 
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survey, (B) the region to interpolate into, and in (C) and (D) the interpolated soil EC and 
Alt across the field, respectively. Finally, a mean value for the soil EC and Alt was 
extracted using ImageBreed for each plot in the 2019_NYH2 field experiment.

In order to approximate soil curvature as elevation gradients, first and second 
two-dimensional numerical derivatives were computed on the plot-level soil EC and 
altitude measurements, denoted as  (dEC),  (d2EC),  (dAlt), and  
(d2Alt), respectively. Two-dimensional numerical derivatives were computed by 
averaging the differences between a given plot and the three immediately adjacent rings
encircling it. Figure S4 illustrated heatmaps of the extracted plot-level soil EC and Alt, 
along with the first and second derivatives.

Genotyping Data
Through the G2F program, genotype-by-sequencing (GBS) resulted in 945,574 

SNP markers across the genome for 1577 samples representing a total of 1325 unique 
maize inbred lines (https://doi.org/10.25739/frmv-wj25) (McFarland et al. 2020; Elshire 
et al. 2011). The resulting genome-wide variant call format (VCF) data were queried for 
the hybrids in the 2015, 2017, 2019, and 2020 field experiments (Morales, Bauchet, et 
al. 2020; Morales et al. 2022; Danecek et al. 2011). Due to minor typographical errors 
(e.g. Mo17 vs MO17), data cleaning was required prior to mapping the sample 
identifiers in the VCF to the field experiment genotype identifiers and to the pedigree 
information for the maize hybrids. Genotypes were filtered for SNPs with minor allele 
frequency < 5% or with > 40% missing data, and for samples containing > 20% missing 
data. Genomic relationship matrices (GRMs) were computed using the A.mat function in
rrBLUP, with missing data imputed as the mean genotype (Endelman 2011; VanRaden 
2008); therefore, only an additive genetic relationships were modeled (Griffing 1956). 

Given that many of the evaluated maize hybrids in the G2F program originated 
as bi-parental crosses of the genotyped inbred lines and that the inbred lines are 
unrelated to each other, hybrid maize genotypes were computed by averaging over the 
parental GRMs. Specifically, the GRMs among the pollen parents and seed parents 
were computed independently, and then the hybrid’s relationship was computed as an 
average among one half of the inbred parental relationships. If a hybrid’s parental 
inbred lines were not genotyped, then the hybrid was included in the GRM with a 
diagonal value of one and off-diagonal values of zero.

HTP Spatial Heterogeneity
The first question of this study was whether NDVI LEE (NLEE), which was 

estimated by spatial and PE effects, consistently detected across the growing season 
the spatial heterogeneity affecting end-of-season agronomic traits. Therefore, the first 
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stage of the proposed two-stage approach focused on measuring spatial heterogeneity 
in NDVI across the growing season.

Variance in the collected HTP observations, , was modeled as arising from 
genetic variance among the maize hybrids, , and from environmental sources of 
variance,  (Falconer and Mackay 2009). In mixed model matrix notation this was 
formulated as

 (Equation 1)

where  was a vector of phenotypic observations and  was an incidence matrix 
mapping phenotypic values to the fixed effects, . The random effects  and  
represented the additive genetic and local environment, respectively, and the incidence 
matrices  and  linked the random effects  and , respectively, to the 
observations.

The spatial model fitted either a single HTP time point or multiple HTP time 
points, a distinction referred to as the univariate or multivariate cases. In the univariate 
case, spatial models were run independently for each of the collected HTP time points. 
In contrast, the multivariate case fitted several collected HTP time points in a single 
model, such that, the vector  represented HTP observations taken at different time 

points across the growing season, .
In the univariate spatial case, the variance of the random additive genetic effect 

was defined as
 

 (Equation 2)

where the matrix  represented the GRM between evaluated hybrids and was of order
 denoting the total number of hybrids  (VanRaden 2008). The multivariate case 

defined this as

 (Equation 3)

where the unstructured matrix  was of order  denoting the number of time points 
involved and  was the Kronecker product. The advantage of the multivariate approach 
was to explicitly model genetic covariances between time points.
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Two methods for modeling environmental spatial variation were investigated, 
namely 2DSpl and AR1 models. The 2DSpl method created  as a function of the 
row ( ) and column ( ) position of the plot in the field and can be written as

 (Equation 4)

where  was the vector product and  was a smoothing function (Rodríguez-
Álvarez et al. 2018). The 2DSpl models were fitted using Sommer in R (R 3.6.3, 
Sommer 4.1.3) (Covarrubias-Pazaran 2016). In the univariate case, named 2DSplU, the
variance of the spatial effect followed

 (Equation 5)

where  was an identity matrix with order equal to the total number of plots  in the 
experiment. In the multivariate case, named 2DSplM, the spatial variance was defined 
as

 (Equation 6)

where the diagonal matrix  was of order  denoting the number of time points.
Contrastingly, the AR1 method explicitly defined a separable autoregressive 

covariance structure. In the univariate case, named AR1U, the spatial variance was 
defined as

(Equation 7)

where  was a shorthand for the illustrated separable autoregressive structure,  and
 were correlations among rows and columns, respectively, and  and  indicated

the dimensions for the matrices as the total number of rows and columns, respectively. 
With the AR1 model, experimental plots which were farther away had correlations which
decreased exponentially on a unit-by-unit basis (e.g. ). In the 
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multivariate case, named AR1M, the variance of the random spatial effect was written 
as

 (Equation 8)

where the diagonal matrix  was of order  denoting the number of time points and
the matrix  was the same as in the univariate case. The AR1 methods were fitted 
using ASReml-R (R 3.6.3, ASReml-R 4.1.0.126) (A. R. Gilmour et al. 2002). In the 
tested univariate and multivariate spatial models, the random residual error, , followed

 and , respectively, where  was the error variance and 
was unstructured.

As an alternative to spatial mixed models, random regression (RR) models were 
explored for separating permanent environmental (PE) NLEE from additive genetic 
effects (Schaeffer 2004; Kirkpatrick, Lofsvold, and Bulmer 1990; Van der Werf, 
Goddard, and Meyer 1998; Arnold, Kruuk, and Nicotra 2019). PE offered a purely 
longitudinal representation of the spatial heterogeneity in the field. The RR model for a 
repeated measurement was written as

 (Equation 9)

where  was the th observation on the th genotype at time  belonging to the th 
fixed factor. This study defined a single fixed effect, , for the replicate nested with the 
imaging event date. The variable  represented the additive genetic effect for the th 
genotype, while the variable  denoted the PE effect for an experimental plot  planted 
in the field. The incidence covariables  and  mapped the random genetic and PE 
effects, respectively, to the observations. The variables  and  represented the 
total order of the random regression functions, and  was the heterogeneous 
random residual error. 

The RR model was written in mixed model matrix notation as in Equation 1, 
however, the incidence matrices  and  are structured to account for the random 
regression covariance function coefficients, and  and  denoted the random additive 
genetic and PE regression coefficients, respectively. The overall variance was written 

as ; in this equation,  
represented the GRM and  represented a plot-to-plot covariance matrix capturing 
environmental effects, ideally computed from envirotyping information. Envirotyping 
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aimed to uniquely define the complete environment of an organism by including soil, 
climate, and developmental parameters; however, this study focused on applying NLEE 
(Xu 2016).

Notably different from the spatial mixed models described previously, the 
incidence matrices  and  can be structured to contain continuous variables 
representing time in the form of GDD for models using Legendre polynomials or linear 
spline functions. Also, the additive genetic variance for any hybrid at a specific time 

point ( ) and the additive genetic covariance for any hybrid between two time points (

) can be calculated using  and , respectively, 
where  and  are vectors of the continuous random regression function evaluated at 

time points  and , respectively. Similar expressions for the PE variance ( ) and 

covariance ( ) can be written as  and , 
respectively. In this study, solutions to the RR model were found using the BLUPF90 
family of programs (Misztal et al. 2002).

The RR model had computational benefits over the spatial mixed models 
described previously. Firstly, the number of variance components to estimate was equal

to , following the order  and  of the random regression functions, 
regardless of the number of time points  represented in the observations . Secondly, 
continuous curves for the random additive genetic and PE effects could be evaluated for
any time point because the random regression coefficients fit a covariance function. 
Thirdly, there was flexibility in the type of regression function that can be fitted, for 
instance, splines versus Legendre polynomials; in this study, third order Legendre 
polynomials were considered (Szeg 1939). Fourthly, flexible specification of  allowed 
envirotyping information to be accounted for in the model.

This study explored six different structures for the PE covariance matrix . The 
first approach, named RRID, defined , where  was the identity matrix. This 
approach treated all experimental plots as independent. The second approach, named 
RREuc, computed  using the inverse Euclidean distances between experimental plots 
and standardized between 0 and 1. This was written as

, where  was an element of  denoting the 
relationship between plot  and , and the variables , , , and  were the row and 
column positions of the plot, respectively. The inverse was used to give plots which 
were farther away from each other a smaller value than plots which were nearby. The 
third approach, named RRSoilEC, computed an empirical correlation matrix  from plot-
level values of soil EC, dEC, and d2EC. The fourth approach, named RRSoilAlt, 
computed an empirical correlation matrix  from plot-level values of soil Alt, dAlt, and 
d2Alt. The fifth approach, named RR2DSpl, created an empirical correlation matrix  
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from the NLEE random spatial effects resulting from the 2DSplM model. The sixth 
approach, named RRAR1, created an empirical correlation matrix  from the NLEE 
random spatial effects resulting from the AR1M model.

The presented models allowed estimation of additive genetic and local 
environmental random effects; however, the true genetic and environmental effects 
were unknown to us. Therefore, to evaluate the robustness of the tested models and 
their ability to detect field environment features, six different simulation scenarios were 
conducted. The simulation methods are described in File S1. The simulations were 
designed to represent purely environmental effects in the field, such as due to soil 
heterogeneity, altitude, and soil elevation gradients. Six simulations named the Linear, 
1D-N, 2D-N, AR1xAR1, and RD simulation, were each tested by varying the correlation 
across time to be 0.75, 0.90, and 1.00 and by setting the simulated variance to be 10%, 
20%, and 30% of the total phenotypic variance.

Evaluating the accuracy of the simulation process was a five-step procedure. 
Firstly, for a target model, meaning one of the first-stage univariate/multivariate spatial 
mixed models or RR models, NLEE were separated from additive genetic effects 
present in the real NDVI HTP for a given field experiment. Secondly, the computed 
NLEE were subtracted from the NDVI HTP in order to minimize latent spatio-temporal 
effects in the NDVI. Thirdly, the target simulation values, meaning one of the six 
simulation processes, were scaled between 0 and 1, then subsequently scaled to 
account for either 10%, 20%, or 30% of the observed NDVI phenotypic variation, and 
finally were added onto the minimized NDVI HTP. Fourthly, the target model computed 
LEE for the simulation-adjusted NDVI HTP. Fifthly, the recovered LEE were correlated 
against the true target simulation values, returning prediction accuracy.

Agronomic Genomic Prediction
The second question in this study was whether the longitudinal NDVI or NLEE 

data could be used to improve spatial corrections, specifically for genomic prediction 
(GP) of agronomic traits. Firstly, the following baseline models were defined under the 
GBLUP framework. The baseline GBLUP model was written as

 (Equation 10)

where  was the agronomic trait of interest,  was for fixed effects like replication,  
was the random additive genetic effect of the hybrid,  and  were incidence matrices 
linking effects to , and  was the residual error. The variance of the random additive 

genetic effect was defined as  where  was the GRM and  was the 

additive genetic variance. The error variance was defined as  where  
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was the residual variance. Control GBLUP models named G, G+2DSpl, and G+AR1, 
written respectively as

 (Equation 11a)

 (Equation 11b)
 (Equation 11c)

were used as baseline models for agronomic genomic prediction and  was a fixed 
effect for replication linked to corresponding incidence matrix . Equation 11a was the
simplest GBLUP case. Incorporating spatial corrections, Equations 11b and 11c added 
2DSpl and AR1 random effects, respectively, to account for the row and column 
positions of the plots in the field on which the agronomic trait was measured. Equation 
11b followed the 2DSpl definition from Equation 4, while Equation 11c followed the AR1 
definition from Equation 7. Importantly, these three baseline models did not leverage 
information from the first stage or from the aerial image HTP measurements.

A final baseline defined the multi-trait model (M) in Equation 12,

 (Equation 12)

where  was a vector of both the HTP NDVI time points and the agronomic trait (e.g. GY
or EH or GM),  was a fixed effect for replicate nested with trait,  was a vector of 
the random additive genetic effects for all traits, and  was the random residual 
variance. The random additive genetic ( ) and residual ( ) covariances were 
unstructured across the traits, as in Equation 3. Given the difficulty of fitting large 
numbers of traits in M, only the two HTP NDVI timepoints with the highest correlation to 
GY were included in .

Secondly, to improve on the baseline GBLUP models first-stage NLEE were 
integrated into the second stage following two implementations. The first 
implementation modeled the NLEE as a plot-to-plot covariance structure for random 
effects (L), following:

 (Equation 13)

The variance of the random plot effects  followed , where  was an 
empirical matrix derived from correlating the NLEE for all plots across time points.. This 
model was similar to Equation 11c in which the AR1 process explicitly defined a plot-to-
plot covariance structure; however, rather than define distance-based assumptions, 
Equation 13 utilized observed spatial heterogeneity. The second column of Table 2 
summarized the tested L two-stage model names in relation to the first-stage.

Alternatively, fixed factor effects (FE) were defined and followed four variations:
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 (Equation 14a)
 (Equation 14b)

 (Equation 14c)
 (Equation 14d)

In Equation 14a the fixed factor  performed a continuous regression on the average
first-stage NLEE across all time points, accounting for fixed effects . Alternatively, 
Equation 14b performed a continuous regression on the fixed factors , , and  by 
splitting time points into the previously defined P0, P1, and P2 growth phases, 
respectively, and then averaging the first-stage NLEE within each. This model 
accounted for fixed effects , , and  for the P0, P1, and P2 growth phases, 
respectively. Equation 14c and 15d used binned fixed effects derived by reassigning the
first-stage NLEE to quartile factors (1=0-25%, 2=26-50%, 3=51-75%, 4=76-100%), 
representing poor, marginal, good, and high performing levels. The  fixed factor in 
Equation 14c was computed by averaging over all time points, while the , , and  
factors in Equation 14d were computed by splitting the time points into the P0, P1, and 
P2 growth phases, respectively, and then averaging within each. Columns 3 to 6 of 
Table 2 summarize the tested FE two-stage model names in relation to the first-stage.

Table 2: Listed are all non-soil two-stage models tested in this study. The first column 
listed the first-stage models used to separate additive genetic effects from NDVI local 
environment effects (NLEE). Subsequent columns listed models where the second-
stage was implemented as a plot-to-plot covariance (L), as a continuous average fixed 
effect (Havg), as three distinct continuous fixed effects (H3), as a binned average fixed 
effect, and as three distinct binned fixed effects (F3).

Stage-1 
Model

Stage-2 L 
Model

Stage-2 Havg 
Model

Stage-2 H3 
Model

Stage-2 Favg 
Model

Stage-2 F3 
Model

2DSplU G+L_2DSplU G+Havg_2DSplU G+H3_2DSplU G+Favg_2DSplU G+F3_2DSplU

2DSplM G+L_2DSplM G+Havg_2DSplM G+H3_2DSplM G+Favg_2DSplM G+F3_2DSplM

AR1U G+L_AR1U G+Havg_AR1U G+H3_AR1U G+Favg_AR1U G+F3_AR1U

AR1M G+L_AR1M G+Havg_AR1M G+H3_AR1M G+Favg_AR1M G+F3_AR1M

RRID G+L_RRID G+Havg_RRID G+H3_RRID G+Favg_RRID G+F3_RRID

RREuc G+L_RREuc G+Havg_RREuc G+H3_RREuc G+Favg_RREuc G+F3_RREuc

RR2DSpl G+L_RR2DSpl G+Havg_RR2DSpl G+H3_RR2DSpl G+Favg_RR2DSpl G+F3_RR2DSpl

RRAR1 G+L_RRAR1 G+Havg_RRAR1 G+H3_RRAR1 G+Favg_RRAR1 G+F3_RRAR1

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.18.512728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512728
http://creativecommons.org/licenses/by-nc-nd/4.0/


Soil altitude and EC were measured in 2019, enabling Equations 13, 14a, and 
14c to account for soil information rather than first-stage NLEE. It was not possible to 
test Equation 14b or 14d with soil information because only a single soil measurement 
was collected. Representing Equation 13, a model named G+L_RRSoilEC constructed

 by correlating soil EC, dEC, and d2EC, while a model named G+L_RRSoilAlt 
constructed  by correlating soil Alt, dAlt, and d2Alt. Using soil measurements in 
Equation 14a, models named G+Havg_Soil_Alt, G+Havg_Soil_dAlt, 
G+Havg_Soil_d2Alt, G+Havg_Soil_EC, G+Havg_Soil_dEC, and G+Havg_Soil_d2EC 
represented  derived from the plot-level soil Alt, dAlt, d2Alt, EC, dEC, and d2EC, 
respectively. Whereas for Equation 14c, models named G+Favg_Soil_Alt, 
G+Favg_Soil_dAlt, G+Favg_Soil_d2Alt, G+Favg_Soil_EC, G+Favg_Soil_dEC, and 
G+Favg_Soil_d2EC represented  derived from the plot-level soil Alt, dAlt, d2Alt, EC,
dEC, and d2EC, respectively.

Model performance was tested by measuring heritability, model fit, and genotypic
effect estimation across replicates. Narrow-sense genomic heritability  was defined as

 where  was the additive genetic variance and  was the residual 
error variance. Heritability gives insight into the degree to which additive genetic effects 
are driving phenotypic variation over residual error. Model fit was defined as the 
correlation between fitted model predictions  and the true phenotypic values , written 
as . Finally, genotypic effect estimation across replicates, written as

, involved first partitioning the agronomic trait datasets by replicate, then 
running the target model on each replicate, and finally correlating the random genetic 
effect estimates, , across the replicates. The field experiments in this study lent 
themselves to testing  because two contiguous replicates were 
designated in all fields. Genotypic effect estimation across replicates was the primary 
model metric in this study because it is an important indicator for whether a spatial 
correction has effectively accounted for field heterogeneity.

Results and Discussion

Local Environmental Effects
Before turning attention to the NDVI HTP, spatial corrections for the agronomic 

traits of grain yield (GY), grain moisture (GM), and ear height (EH) were computed. As 
defined in Equation 11b, Figure 1 illustrates heatmaps of the 2DSpl spatial effects over 
the rows and columns of the experimental plots in the 2017_NYH2, 2019_NYH2, and 
2020_NYH2 field experiments. Each year the trial was planted in a distinct field location.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.18.512728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512728
http://creativecommons.org/licenses/by-nc-nd/4.0/


The heatmaps resolved major, poorly performing regions for GY and EH centered 
around the row-column positions of (35,2), (19,8), and (25,6) in 2017_NYH2, 
2019_NYH2, and 2020_NYH2, respectively. For all three experiments, an inverse 
spatial pattern was visible for GY and GM, while a similar spatial pattern was visible for 
GY and EH. The same pattern between traits was evidenced in 2015_NYH2, illustrated 
in Figure S7. In 2015_NYH2 a poor performing region for GY and EH was centered 
near the row-column position of (88,9). In all four years, the proportion of phenotypic 
variation explained by the 2DSpl spatial effect ranged from +/-25 bu/acre of GY, +/-2% 
of GM, and +/-15 cm of EH. These results illustrated the importance of spatial 
heterogeneity on the agronomic traits.

Figure 1: Two-dimensional spline (2DSpl) spatial random effects detected in the 
agronomic traits of grain yield (GY), grain moisture (GM), and ear height (EH) in the 
2017, 2019, and 2020 field experiments. The 2015 experiment is shown in Figure S7.

Similar patterns of spatial random effects were found using the 2DSpl and AR1 
models defined in Equations 11b and 11c, respectively. Table 3 lists the correlations 
between the 2DSpl and AR1 spatial effects for GY, GM, and EH in the 2017_NYH2, 
2019_NYH2, and 2020_NYH2 experiments. The strongest average correlation was 0.88
for EH, followed by 0.87 for GY, and 0.49 for GM. The 2015_NYH2 experiment was not 
included in Table 3 because the AR1 model did not converge.
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Table 3: Correlations between 2DSpl and AR1 spatial effects for GY, GM, and EH in the
2017, 2019, and 2020 field experiments.

Experiment Grain Yield (GY) Grain Moisture (GM) Ear Height (EH)

2017_NYH2 0.90 0.49 0.74

2019_NYH2 0.91 0.59 0.93

2020_NYH2 0.79 0.40 0.97

To understand correspondence between LEE affecting NDVI and the end-of-
season agronomic traits, first-stage NLEE were compared to GY, GM, and EH spatial 
effects. Figure 2 shows correlations between the 2DSpl GY spatial effects and the 
2DSplU NLEE across 12 time points in the 2020_NYH2 field experiment. Illustrated in 
Figure 2, correlations at 38 and 48 days after planting (DAP) were 0.6 and 0.7, 
respectively, and correlations fluctuated between 0.5 and 0.7 throughout the season. 
Corresponding heatmaps in Figure 2 illustrate spatial distributions over the rows and 
columns of the experimental plots, and consistently reveal a large region near the 
center of the field negatively impacting both GY and NDVI. For reference, phenotypic 
correlations between NDVI and GY in 2020_NYH2 ranged from a low of 0.04 at 133 
DAP to a high of 0.39 at 54 DAP, which were weaker than the correlations observed in 
Figure 2. Similarly, the random regression (RR) model PE effects correlated with the GY
spatial effects more strongly than the NDVI and GY themselves. Figure S8 illustrates 
RRID PE effects correlated against GY and the GY 2DSpl and AR1 spatial effects. The 
RRID PE tended to be strongly correlated through time and identified similar spatial 
patterns as the spatial effect models.
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Figure 2: 2020_NYH2 2DSplU NLEE observed over 12 time points correlated with GY 
and GY 2DSpl spatial effects. Corresponding heatmaps showed values over the rows 
and columns of all experimental plots in the field and revealed similar spatial patterns. 
As indicated by (1), correlations of 0.5 to 0.7 between GY 2DSpl and the 2DSplU NLEE 
were found throughout the growing season, even early on at 38 DAP.

In 2019_NYH2, 2015_NYH2, and 2017_NYH2 similar correlations between 
2DSplU and GY spatial effects were observed, as illustrated in Figure 3, Figure S9, and 
Figure S10, respectively. For reference, phenotypic correlations between NDVI and GY 
in 2015_NYH2, 2017_NYH2 and 2019_NYH2 ranged from a low of 0.13 at 126 DAP, 
0.17 at 25 DAP, and 0.33 at 110 DAP, respectively, to a high of 0.42 at 92 DAP, 0.49 at 
91 DAP, and 0.67 at 84 DAP, respectively. Therefore, in all experiments the NLEE were
more correlated to the GY 2DSpl effects across the growing season than the NDVI were
correlated to GY. Furthermore, in all years, the spatial patterns affecting GY and EH 
were detectable by NLEE to a large degree (> 0.5 correlation), evidenced early on in the
growing season at 76 DAP or less.

As a potential alternative to aerial imaging and to better understand the observed
spatial effects, soil EC, Alt, and the first and second two-dimensional numerical 
derivatives (dEC, d2EC, dAlt, d2Alt) were compared with the NLEE in the 2019_NYH2 
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field experiment. Figure 3 includes correlations and heatmaps of the soil measurements
with the spatial effects and demonstrated: (1) the 2DSpl spatial effects of GY in 
2019_NYH2 correlated up to 0.7 with 2DSplU NLEE, (2) soil EC correlated up to 0.5 
with 2DSplU NLEE, and (3) soil d2Alt correlated up to 0.3 with 2DSplU NLEE. In Figure 
3, the soil elevation gradients, represented by heatmaps of Alt, EC, and their 
derivatives, highlighted the contours of the observed 2DSpl spatial effects. Figure S11 
presents an analog to Figure 3 showing AR1U NLEE, GY, and GY AR1 spatial effects in
2019_NYH2, and showed (1) overall weaker correlations between the GY AR1 spatial 
effects and the AR1U NLEE, with a high of 0.5, (2) similar correlations to soil EC with a 
high of 0.5, and (3) overall weaker correlations to soil d2Alt with a high of 0.2. 
Therefore, the AR1U NLEE were less correlated with the soil parameters than the 
2DSplU NLEE, and the AR1U NLEE were less correlated with GY AR1 effects than the 
2DSplU NLEE were correlated with the GY 2DSpl effects. 

Figure 3: 2019_NYH2 2DSplU NLEE observed over 6 time points correlated with GY 
and GY 2DSpl spatial effects. Corresponding heatmaps showed values over the rows 
and columns of all experimental plots in the field and revealed similar spatial patterns. 
As indicated by (1), correlations of 0.1 to 0.7 between GY 2DSpl and the 2DSplU NLEE 
were found throughout the growing season. The strongest correlation of 0.7 was 
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observed at 110 DAP, however, at 54 DAP a correlation of 0.6 was observed. Soil EC 
and Alt, as well as the first and second numerical two-dimensional derivatives, were 
included against the NLEE and the following were observed: (2) correlations up to 0.5 
for EC and (3) correlations up to 0.3 for d2Alt. The AR1 analog in Figure S11 showed 
that the AR1U NLEE were less correlated with the soil parameters than the 2DSplU 
NLEE, and the AR1U NLEE were less correlated with GY AR1 effects than the 2DSplU 
NLEE were correlated with the GY 2DSpl effects.

Table 4 summarizes correlations between the soil information in 2019_NYH2 and
the model NLEE, illustrating how the average first-stage NLEE across all time points 
correlated to soil EC, dEC, d2EC, Alt, dAlt, and d2Alt. Table 4 indicates 2DSplU had the
strongest correlation to EC of 0.46 and also correlated relatively strongly with d2Alt. The
d2Alt tended to correlate more strongly than Alt or dAlt with the NLEE, indicating the 
importance of elevation gradients in the field. The correlations between 2DSpl NLEE 
and soil parameters indicated that soil information was capturing similar spatial 
information as the NDVI aerial imaging.

Table 4: Correlations between average NLEE in 2019_NYH2 computed using different 
first-stage models and the soil EC, dEC, d2EC, Alt, dAlt, and d2Alt measurements.

Model Soil EC Soil dEC Soil d2EC Soil Alt Soil dAlt Soil d2Alt

2DSplU 0.46 0.21 0.04 -0.06 0.11 0.21

2DSplM 0.21 0.12 0.06 0.08 0.34 0.29

AR1U 0.39 0.18 0.04 -0.06 0.06 0.16

AR1M 0.01 0.04 0.06 0.10 0.25 0.21

RRID 0.10 0.06 0.04 0.04 0.14 0.17

RREuc -0.06 0.03 0.09 0.07 0.14 0.15

RRAR1 -0.18 -0.06 0.03 0.11 0.23 0.21

RR2DSpl -0.19 -0.07 0.02 0.13 0.24 0.23

RRSoilEC -0.22 -0.08 0.03 0.12 0.25 0.22

RRSoilAlt -0.21 -0.09 0.04 0.12 0.25 0.23

Summarizing correlations between the agronomic trait 2DSpl effects and the 
tested first-stage model LEE, Figure 4 presents results for all agronomic traits and 
years. Figure 4 indicates the 2DSplU, 2DSplM, and AR1U models produced NLEE most
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correlated to the 2DSpl effects of GY and EH in all years and in nearly all time points, 
while the RR2DSpl, RRAR1, and RRSoilEC models were most correlated to the 2DSpl 
effects of GM in 2015, 2017, and 2019. The 2DSplU and AR1U NLEE correlated with 
GY and EH 2DSpl spatial effects greater than 0.5 in all years at 80 to 90 DAP. 
Significant similarities were seen between models run on traits within a given year, for 
instance both GY and EH in 2017 showed a large peak at 110 DAP and in 2020 both 
showed a continuous gradual decline. There was an inverted behavior between the GY 
and GM spatial effects in all years, describable as: in 2015 a high for GY and a low for 
GM at 105 DAP, in 2017 a high for GY and a low for GM at 110 DAP, in 2019 a high for 
GY and a low for GM around 90 to 100 DAP, and in 2020 a gradual decline for GY and 
a gradual incline for GM. In contrast, there was a similar behavior between the GY and 
EH spatial effects in all years. Figure S12 illustrates the AR1 analog of Figure 4 with 
agronomic trait AR1 spatial effects instead of 2DSpl effects and demonstrated weaker 
correlations to the NLEE in all traits and all years. Highly similar patterns in the 
correlation curves were observed, however, there was a tendency for the GM AR1 
spatial effects to correlate with RRID, RR2DSpl, and RRAR1 NLEE more strongly than 
the 2DSpl or AR1 NLEE.
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Figure 4: Correlations between 2DSpl spatial effects of agronomic traits and LEE from 
the tested first-stage models. Spatial effects for GY, GM, and EH in the 2015_NYH2, 
2017_NYH2, 2019_NYH2, and 2020_NYH2 field experiments were compared with 
model LEE across the growing season. Models including soil information rather than 
NDVI in the first-stage, named RRSoilAlt and RRSoilEC, were also included for 
2019_NYH2. The AR1 analog in Figure S12 illustrated similar patterns, but with weaker 
correlations.

Simulation tested the efficacy of the first stage in detecting known environmental 
field effects. In each of the six simulation processes (linear, 1D-N, 2D-N, AR1xAR1, 
random, and RD) ten iterations were performed, each time generating a new simulation.
The simulated environmental variance was tested at 0.1, 0.2, and 0.3 times the 
proportion of phenotypic variation, and the correlation between time points was tested at
0.75, 0.90, and 1. Figure S22, Figure S23, and Figure S24 illustrate the results for all 
simulation scenarios using 2017_NYH2, 2019_NYH2, and 2020_NYH2 NDVI 
phenotypes, respectively, demonstrating the impacts of varying the simulation 
environmental variance as well as the correlation of simulated environmental effects 
across the growing season. Increasing the variance tended to slightly increase the 
prediction accuracy, while decreasing the correlation between time points tended to 
decrease prediction accuracy. Figure 5 aggregates the prediction accuracies for the 
linear, 1D-N, 2D-N, AR1xAR1, and RD simulation scenarios and illustrated model 
groupings determined by a Tukey Honest Significant Difference (HSD) test.
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Figure 5: Aggregated prediction accuracy of the tested first-stage models (RRID, 
RREuc, RRAR1, RR2DSpl, AR1U, AR1M, 2DSplU, and 2DSplM) for the linear, 1D-N, 
2D-N, AR1xAR1, and RD simulation scenarios using the 2017_NYH2, 2019_NYH2, and
2020_NYH2 NDVI data. Prediction accuracy is the correlation of the simulated 
environmental effect and the model’s recovered environmental effect. Models are 
grouped together after performing a Tukey HSD test.

The RREuc model showed relatively poor performance, possibly due to a 
mismatch in the geometry of the experiment because in reality the plots in the field were
rectangular (e.g. 10ft by 3ft) and not perfectly square. The RREuc model was also most 
sensitive to the tested years and to changes in simulated variance and correlation. The 
AR1U model performed best in the AR1xAR1 scenario, while the 2DSplU model 
performed well in the Linear scenario. Specifying the PE covariance matrix allowed the 
RRAR1 and RR2DSpl models to perform consistently well in the 1D-N and 2D-N 
scenarios; however, by making no assumptions to the spatial structure the RRID model 
performs on average less than 10% worse and with comparable consistently.

Agronomic Genomic Prediction
First-stage NLEE were incorporated into the second stage of the proposed GP 

approach using two distinct implementations, either modeling L or FE. Figure S13 
illustrates genomic heritability, model fit, and genotypic effect estimation across 
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replicates ( ) in the four years for GY, GM, and EH for all two-stage 
models when modeling L random effects. Baseline and spatially corrected GBLUP 
models, named G, G+2DSpl, and G+AR1 representing Equations 11a, 11b, and 11c, 
respectively, are shown. Statistical significance of the spatial corrections and two-stage 
models was compared to the baseline G model using a paired t-test. The best models 
were determined by ranking the t-test p-value of GY . The best five two-
stage L models, representing Equation 13, were named G+L_AR1U, G+L_AR1M, 
G+L_2DSplU, G+L_2DSplM, and G+L_RRID.

Alternatively, modeling NLEE as FE followed four distinct definitions in Equations
14a, 14b, 14c, and 14d. Figure S17 illustrates genomic heritability, model fit, and

 in the four years for GY, GM, and EH for all two-stage models when 
modeling FE. The baseline and spatially corrected GBLUP models, named G, G+2DSpl,
and G+AR1, respectively, are shown. As before, the best two-stage FE models were 
determined by ranking the t-test p-value of GY . The top eight models 
were named G+Havg_AR1U, G+Havg_2DSplU, G+Havg_2DSplM, G+Favg_2DSplU, 
G+H3_2DSplM, G+H3_RRID, G+F3_AR1U, and G+F3_2DSplU.

To observe performance of the proposed two-stage approach over the baseline 
G model, a difference (G Diff) was computed within each of the four years for 
heritability, model fit, and . Figure 6 illustrates G Diff for the baseline 
G+2DSpl and G+AR1 spatial correction models and for the best six models defining L 
(G+L) and FE (G+H). Figure S14 and Figure S18 illustrate all two-stage models when 
defining L and FE, respectively. The spatially corrected baseline models, G+2DSpl and 
G+AR1, demonstrate improvements over G. The G+2DSpl model provided significant 
improvements in heritability and model fit for all traits, and a significant improvement in 
GY , while, G+AR1 provided significant improvements in model fit for all 
traits, and a significant improvement in GY heritability and . Increased 
GY heritability and  demonstrated the value of performing spatial 
corrections; however, increased model fit may indicate overfitting.
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Figure 6: Differences compared to G (G Diff) for genomic heritability ( ), model fit (
), and genotypic effect estimation across replicates ( ) for GY, 

GM, and EH in the four years. The models G, G+2DSpl, and G+AR1 were baseline 
GBLUP and spatially corrected models, respectively, and M was a baseline multi-trait 
model. Illustrated are the best three two-stage models using L (G+L) and the best three 
two-stage models using FE (G+H), determined by ranking  t-test p-value 
compared to G. The G+L and G+H models have L and FE, respectively, defined using 
NLEE of corresponding names.

Figure 6 demonstrates further improvements for the two-stage models over the 
baseline G, G+2DSpl, and G+AR1 models. Two-stage models incorporating NLEE 
improved heritability and  for GY, GM, and EH more than the baseline 
spatially corrected models, and in addition, G+2DSpl and G+AR1 tended to increase 
model fit equally or greater than the two-stage models. The best two-stage models 
translated increased heritability to an increase in , and avoided an 
inflation in heritability due to decreased residual error and increased model fit. 
Improvements to GY  over baseline G, G+2DSpl, and G+AR1 
models were summarized in Table 5 for the best six two-stage models when 
incorporating NLEE. The Table 5 columns of “∆ G”, “∆ G+2DSpl”, and “∆ 
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G+AR1'' indicate the mean and standard deviations of model differences in 
GY  for the four years compared to G (G Diff), G+2DSpl (G+2DSpl Diff), 
and G+AR1 (G+AR1 Diff), respectively. Figure S15 and Figure S19 illustrate the 
G+2DSpl Diff for all models when defining L and FE, respectively. Figure S16 and 
Figure S20 illustrate the G+AR1 Diff for all models when defining L and FE, 
respectively. While GY and EH  was improved, none of the FE models 
significantly improved GM , a result potentially attributable to the lower 
correlations between NLEE and GM spatial effects seen in Figure 4 and Figure S12, the
difficulty in detecting GM spatial effects seen in Table 3, and the small GM spatial 
variation seen in Figure 1.

Table 5: The best two-stage models versus the baseline GBLUP models (G, G+2DSpl, 
G+AR1) when comparing the correlation of genotypic effects across replicates (

) for grain yield (GY). The best six two-stage models were 
listed, three defining L (G+L) and three defining FE (G+H). The columns “∆ 
G”, “∆ G+2DSpl”, and “∆ G+AR1” showed the mean and standard deviation 
for the model’s  difference compared to the baseline G, 
G+2DSpl, and G+AR1 models, respectively. The “∆ G” and “∆ G+2DSpl” 
included the 2015, 2017, 2019, and 2020 field experiments; however, the 
2015 field experiment could not be included for “∆ G+AR1” because of 
convergence issues. The (*) and (+) symbols denoted t-test p-values less 
than 0.05 and 0.1, respectively.
Model ∆ G ∆ G+2DSpl ∆ G+AR1
G+H3_RRID 0.188 ± 0.094 (*) 0.095 ± 0.045 (*) 0.082 ± 0.053 (+)

G+H3_2DSplM 0.123 ± 0.055 (*) 0.029 ± 0.074 0.025 ± 0.09

G+Havg_2DSplU 0.12 ± 0.056 (*) 0.026 ± 0.048 0.012 ± 0.057

G+L_2DSplM 0.065 ± 0.049 (*) -0.028 ± 0.105 -0.056 ± 0.123

G+L_AR1U 0.132 ± 0.077 (*) 0.038 ± 0.035 (+) 0.041 ± 0.031 (+)

G+L_RRID 0.133 ± 0.041 (*) 0.039 ± 0.043 (+) 0.036 ± 0.049

Drawing from the simulation results in Figure 5, the 2DSplM and AR1M models 
may have had less overall accuracy due to the assumptions in Equation 6 and Equation
8, respectively, which restricted estimation of spatial covariance components between 
time points, and thereby negatively impacted the simulation when weaker correlations 
(< 0.9) across time points were used. In real data, as seen in Figure 2, Figure 3, Figure 
S8, Figure S9, and Figure S10, NLEE tended to be strongly correlated (>0.8) between 
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time points; this may have explained the improvements seen in Table 5 when the 
2DSplM NLEE were incorporated into second-stage genomic prediction. The RRAR1 
and RR2DSpl models performed well in first-stage simulation; however, the second-
stage genomic prediction was not particularly improved by these models potentially due 
to overfitting and a pronounced mismatch between the detected LEE and the causal 
effects. The RRID, AR1U, and 2DSplU models performed well in first-stage simulation 
and significantly improved the second-stage genomic prediction, indicating these 
models provided robust detection of spatial heterogeneity.

The second stage in the proposed approach could use soil data as an alternative
to NLEE from the first-stage. Figure 7 illustrates differences in 2019_NYH2 against the 
baseline G (G Diff) for genomic heritability, model fit, and  for GY, GM, 
and EH. The best eight models when modeling L (G+L) or FE (G+H) using soil data are 
illustrated in Figure 6; however, Figure S21 illustrates all of the models using soil data. 
Again, the baseline spatially corrected models, G+2DSpl and G+AR1, are shown. 
Included were the L models named G+L_RRSoilEC and G+L_RRSoilAlt, and the FE 
models named G+Favg_Soil_Alt, G+Favg_Soil_dAlt, G+Favg_Soil_d2Alt, 
G+Havg_Soil_EC, G+Havg_Soil_dEC, and G+Havg_Soil_d2EC. The soil information 
increased GM and EH heritability, and model fit for all traits, more than the baseline 
G+2DSpl and G+AR1 models; however, for all traits  performed lower 
than the baseline G+2DSpl and G+AR1 models, particularly for GM and EH.

Figure 7: Differences compared to G (G Diff) for genomic heritability ( ), model fit (
), and genotypic effect estimation across replicates ( ) in 
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2019_NYH2 for GY, GM, and EH, with soil data implemented as L (G+L) or as FE 
(G+H). The best eight models using soil altitude (Alt), soil electrical conductance (EC), 
and the first and second derivatives (dAlt, d2Alt, dEC, d2EC) were illustrated.

This approach to incorporate soil data did not improve GY ; 
however, this result was from a single field experiment in a single year. Similar to how 
the NDVI HTP itself did not correlate highly with GY while the spatial effects of NDVI 
correlated strongly with the spatial effects of GY, the spatial effects of the soil data may 
prove more beneficial for improving GY  than the soil data itself. The soil
data had much weaker correlations than the NDVI to agronomic traits, with a high of 
0.07, 0.03, and 0.20 for GY, GM, and EH, respectively, compared to NDVI with a high of
0.67, 0.60, and 0.46 for GY, GM, and EH, respectively. Further indicating persistent 
spatial effects may be limiting the effectiveness of soil EC data in this study, Table 4 
illustrates that including the soil data into RR models resulted in NLEE relatively well 
correlated with the soil elevation gradients, but negatively correlated with the soil EC 
data itself. The soil data were able to increase heritability; however, it may be a result of
overfitting. Furthermore, soil data may need to be incorporated with weather information
in order to effectively estimate the benefit or detriment of the local environmental effect. 
For instance, low elevation can be either beneficial or detrimental depending on rainfall.

Conclusion
The proposed approach studied spatial heterogeneity in the field across time by 

answering the following two questions. Question 1: are NDVI LEE (NLEE), estimated by
spatial effects and PE effects, consistently able to detect across the growing season the
spatial heterogeneity affecting end-of-season agronomic traits? Question 2: can NLEE 
be used in the proposed two-stage models to improve spatial corrections for GP of 
agronomic traits? 

Focusing on Question 1, in all years and for all agronomic traits, separating the 
random additive genetic effects resulted in stronger correlations between the agronomic
trait spatial effects and NLEE than correlations between the agronomic traits and NDVI 
themselves. Furthermore, the NLEE from 2DSpl, AR1, and RR models consistently 
identified the same poorly performing regions in the field over the growing season, and 
identified substantially the same regions as the baseline GY and EH spatial effects. 
Baseline GM spatial effects showed an inverted behavior with NLEE and were less 
localized than for GY and EH. The soil EC correlated most with NLEE from the 2DSplU 
and AR1U models across time. Therefore, spatial heterogeneity quantified by NLEE 
corresponded strongly with agronomic trait spatial effects and soil EC.

Focusing on Question 2, incorporating first-stage NLEE into the second-stage 
GP for GY, EH, and GM either as a covariance of random effects (L) or as fixed effects 
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(FE), significantly improved heritability, model fit, and genotypic effect estimation across
replicates. In simulation, the RRAR1 and RR2DSpl models performed strongly; 
however, only the RRID, AR1U, and 2DSplU models performed well in simulation and 
also improved the two-stage GP for agronomic traits. The RRID model made no spatial 
assumptions and performed consistently above average in simulation. The equilibrium 
between model generalizability and model over-specification when detecting NLEE was 
balanced most by the RRID, AR1U, and 2DSplU models.

Aerial image HTP provided greater understanding of spatial heterogeneity in the 
field, and when coupled into the proposed two-stage GP approach, enabled a more 
effective spatial correction than any of the baseline models (G+2DSpl, G+AR1, and M). 
Furthermore, the observed spatial heterogeneity could be partially explained using soil 
EC and elevation. Continued research into image features more informative than VI is 
needed. Additionally, further research is needed for the development of novel statistical 
approaches for integrating HTP across the growing season with end-of-season 
agronomic trait prediction. To these ends, larger datasets are required to evaluate the 
proposed approaches, and the continued aggregation of FAIR data is crucial.

Data Availability
This study used phenotypic data of hybrid maize (Zea mays L.) field experiments 

part of the Genomes to Fields (G2F) program planted in 2015 
(https://doi.org/10.25739/erxg-yn49), 2017 (https://doi.org/10.25739/w560-2114), 2019 
(https://doi.org/10.25739/t651-yy97), and 2020 (https://doi.org/10.25739/hzzs-a865), 
named 2015_NYH2, 2017_NYH2, 2019_NYH2, and 2020_NYH2, respectively. The 
genotypic SNP marker data was also from the G2F program 
(https://doi.org/10.25739/frmv-wj25). The collected image data from 2015, 2017, 2019, 
and 2020 are available in the Supplemental section of this manuscript.
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Supplemental Material

File S1: Simulations
The first simulation process, the linear process, followed an evaluation of 

 (Simulation 1)

where  and  were randomly assigned numbers between 0 and 1,  and  were the 
current plot’s row and column position in the field, and  and  were the maximum
row and column numbers in the field, respectively. The variable  was the simulated 
environmental effect for a specific experimental plot. Simulation 1 resulted in a constant 
gradient traversing the field, which increased as the row and column position increased.
The second simulation process, the one-dimensional normal (1D-N) process, followed 
an evaluation of the univariate normal distribution equation below. 

(Simulation 2)

Simulation 2 resulted in a normal gradient which was constant across columns, but 
increased across the rows. The third simulation process, the two-dimensional normal 
(2D-N) process, followed an evaluation of the bivariate normal distribution equation 

(Simulation 3)

where  was a randomly assigned correlation between row number  and column 
number ,  and  denoted the mean row and column numbers, respectively, and  and

 denoted the standard deviations among the rows and columns, respectively. 
Simulation 3 resulted in a peak in the center of the field with normally distributed 
gradients decreasing across the rows and columns; the skew in the row and column 
gradients was controlled by . The fourth simulation process, the separable 
autoregressive process (AR1xAR1), followed a multivariate normal distribution 
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(Simulation 4)

where  was a vector of simulated values, and  and  were randomly assigned 
correlations among the rows and columns, respectively. Simulation 4 explicitly defined a
decay in the correlation between experimental plots based on their proximity on a unit-
by-unit basis (e.g. ). The multivariate normal distribution was 
implemented using the MASS package (Venables and Ripley 2002). The fifth simulation
process, the random process, followed 

 (Simulation 5)

and produced random values between 0 and 1. Simulation 5 was used as a control to 
determine the effect of random noise. The sixth simulation process, the real data (RD) 
process, was intended to use the collected soil EC data directly

 (Simulation 6)

where the vector of simulated values  was the soil EC data from 2019. In 2017 and 
2020 soil data was not available, so NDRE at 111 and 96 days after planting, 
respectively, was used instead. It was important to use a measurement with no missing 
data, therefore, the HTP measurement of NDRE was suitable.

For each of the six simulations described, three approaches were explored for 
generating the simulated field effect across time. The first approach defined the 
simulated field effect as constant through time. This can be written as

, where  was a matrix representing all simulated values 

across the season,  was a transposed vector of ones with length equal to the number 
of time points , and  contained the simulated values from one of the six 
aforementioned simulation processes. Figure S5 illustrated heatmaps for all six 
simulation processes, constant over 12 timepoints. The second and third approaches 
generated simulated values which were 90% and 75%, respectively, correlated through 
time. This was accomplished by specifying a correlation structure  between time points
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as , where  was the correlation between time points, set 
to either 0.75 or 0.90, and the dimensions of  were  to denote the number of time 
points. Simulated correlated values  were generated across the growing 
season by first taking the Cholesky decomposition, , of  as . Then,

 was defined, where  and  are the standard deviation and 
mean of the target simulated values , respectively. The matrix  contained the 
normalized simulated values  in the first column, followed by columns initialized by a 
unit normal distribution resulting in  columns. Figure S6 illustrated heatmaps for all six 
simulation processes over 12 time points which were 90% correlated to each other.

Supplemental Figures

Figure S1: Aerial imaging events with HTP extracted for the hybrid maize experiments 
in 2015, 2017, 2019, and 2020. Growing degree days (GDD) and cumulative 
precipitation (CP) were plotted against the days after planting (DAP) of the imaging 
events. All field experiments were located in Musgrave Research Station, though 
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planted in distinct fields, and weather data was sourced for the GHCND:USC00300331 
ground station via the NOAA NCEI NCDC database.

Figure S2: Illustrated is a representative reflectance orthophotomosaic raster image. 
This image was of 2019_NYH2 on Aug 15, 2019 and was in the near-infrared (NIR) 
spectra. The original image had dimensions of 6488 by 4987 pixels allowing about 1cm 
per pixel resolution and was available from 
https://imagebreed.org/data/images/image_files/26/05/f9/3e/ab9b340016a1db73f9c743
cf/imagegoCo.png. The overlaid blue polygons represented plot-polygons drawn in 
ImageBreed to segment plot-images for high-throughput phenotype (HTP) extraction.
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Figure S3: Illustrated are the 2019_NYH2 soil survey interpolation maps. (A) illustrated 
the raw EM38 soil survey GPS data collected using a dual-serpentine path. (B) 
illustrated the region to interpolate into with a 0.00001 WGS84 resolution across 200 by 
120 cells. Finally, (C) and (D) showed the soil EC and altitude, respectively, interpolated
across the field using ordinary Kriging.

Figure S4: Soil EC and altitude was extracted for the experimental plots in 2019_NYH2. 
First and second two-dimensional numerical derivatives were computed. The heatmaps 
illustrated are of these soil measurements for the 800 experimental plots across 16 
columns and 50 rows.
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Figure S5: Illustrated are example heatmaps of the six simulation processes, constant 
through time. At the top, the actual 2020_NYH2 NDVI phenotype across the 12 imaging 
events was shown, followed by: the linear simulation (Simulation 1), the 1D-N 
(Simulation 2), the 2D-N (Simulation 3), the separable autoregressive (Simulation 4), 
the random (Simulation 5), and the real data (Simulation 6) processes, sequentially. 

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.18.512728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512728
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S6: Illustrated are example heatmaps of the six simulation processes, 90% 
correlated across time. At the top, the 2020_NYH2 NDVI phenotype across the 12 
imaging events was shown, followed by: the linear simulation (Simulation 1), the 1D-N 
(Simulation 2), the 2D-N (Simulation 3), the separable autoregressive (Simulation 4), 
the random (Simulation 5), and the real data (Simulation 6) processes, sequentially.
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Figure S7: Illustrated are the two-dimensional spline (2DSpl) spatial effects for grain 
yield (GY), grain moisture (GM), and ear height (EH) in the 2015_NYH2 field 
experiment. Spatial effects are drawn over the 500 experimental plots across 10 rows 
and 50 columns.
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Figure S8: The NDVI RRID PE effects for 12 time points across the 2020_NYH2 
growing season correlated with grain yield (GY) and the 2DSpl and AR1 spatial effects 
of GY. The NDVI PE and the GY spatial effects correlate at a value of 0.5 at 38 days 
after planting (DAP), and correlate above 0.4 across the growing season.
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Figure S9: Shown are the two-dimensional spline (2DSpl) spatial effects for grain yield 
(GY) correlated with NDVI univariate 2DSpl (2DSplU) local environmental effects (LEE) 
for 4 time points in the 2015_NYH2 experiment. As demonstrated in (1), correlations of 
0.5 were observed at 75, 92, and 105 days after planting (DAP). The corresponding 
heatmaps drew the values over the rows and columns of the experimental plots, and 
consistently identified one poorly performing region in the field.
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Figure S10: Shown are the two-dimensional spline (2DSpl) spatial effects for grain yield 
(GY) correlated with NDVI univariate 2DSpl (2DSplU) local environmental effects (LEE) 
for 7 time points in the 2017_NYH2 experiment. As demonstrated in (1), correlations of 
0.2 to 0.8 were observed with the highest correlation at 91 days after planting (DAP). 
The corresponding heatmaps drew the values over the rows and columns of the 
experimental plots, and consistently identified three distinct poorly performing regions in
the field.
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Figure S11: Drawn are the 2019_NYH2 AR1U NLEE observed over 6 time points 
correlated with GY and AR1 spatial effects of GY. Corresponding heatmaps showed 
values over the rows and columns of all experimental plots in the field, revealing similar 
spatial patterns. As indicated by (1), correlations of 0.1 to 0.5 between GY AR1 and the 
AR1U NLEE were found throughout the growing season. The highest correlation of 0.5 
was observed at 110 DAP and 54 DAP. Soil EC and Alt, as well as the first and second 
numerical two-dimensional derivatives, were included with (2) showing correlations up 
to 0.5 for EC and (3) showing correlations up to 0.2 for d2Alt. The analog in Figure 3 
showed that the 2DSplU NLEE were more highly correlated with the soil parameters 
than the AR1U NLEE, and the 2DSplU NLEE were more highly correlated with GY 
2DSpl effects than the AR1U NLEE were correlated with the GY AR1 effects.
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Figure S12: Illustrated are correlations between AR1 spatial effects of agronomic traits 
and NLEE from various models. Spatial effects for GY, GM, and EH in the 2017_NYH2, 
2019_NYH2, and 2020_NYH2 field experiments were compared against NLEE across 
the growing season. Models run on traits in a given year showed similarities, with GY 
and EH following tandem trends, and GY and GM showing inverted patterns. 
2015_NYH2 not included because convergence was not possible. The 2DSpl analog in 
Figure 4 illustrated similar patterns.
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Figure S13: Genomic heritability ( ), model fit ( ), and genotypic effect 
estimation across replicates ( ) in the four years for GY, GM, and EH, 
with NLEE implemented as L. The models G, G+2DSpl, and G+AR1 were baseline 
GBLUP and spatially corrected models, respectively, and M was a baseline multi-trait 
model. Models have L defined using NLEE of corresponding name.
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Figure S14: The difference in model genomic heritability ( ), model fit ( ), and 
genotypic effect estimation across replicates ( ) with G (G Diff) in the four
years for GY, GM, and EH, with NLEE implemented as L. The models G+2DSpl and 
G+AR1 were baseline spatially corrected GBLUP models, respectively, and M was a 
baseline multi-trait model. Models have L defined using NLEE of corresponding name.
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Figure S15: The difference in model genomic heritability ( ), model fit ( ), and 
genotypic effect estimation across replicates ( ) with 2DSpl spatially 
corrected G (G+2DSpl Diff) in the four years for GY, GM, and EH, with NLEE 
implemented as L. The models G and G+AR1 were baseline GBLUP and spatially 
corrected models, respectively, and M was a baseline multi-trait model. Models have L 
defined using NLEE of corresponding name.
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Figure S16: The difference in model genomic heritability ( ), model fit ( ), and 
genotypic effect estimation across replicates ( ) with AR1 spatially 
corrected G (G+AR1 Diff) in the four years for GY, GM, and EH, with NLEE 
implemented as L. The models G and G+2DSpl were baseline GBLUP and spatially 
corrected models, respectively, and M was a multi-trait model. Models have L defined 
using NLEE of corresponding name.
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Figure S17: Genomic heritability ( ), model fit ( ), and genotypic effect 
estimation across replicates ( ) in the four years for GY, GM, and EH, 
with NLEE implemented as FE. The models G, G+2DSpl, and G+AR1 were baseline 
GBLUP and spatially corrected models, respectively, and M was a baseline multi-trait 
model. Models have FE defined using NLEE of corresponding name.
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Figure S18: The difference in model genomic heritability ( ), model fit ( ), and 
genotypic effect estimation across replicates ( ) with G (G Diff) in the four
years for GY, GM, and EH, with NLEE implemented as FE. The models G+2DSpl and 
G+AR1 were baseline spatially corrected GBLUP models, respectively, and M was a 
baseline multi-trait model. Models have FE defined using NLEE of corresponding name.
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Figure S19: The difference in model genomic heritability ( ), model fit ( ), and 
genotypic effect estimation across replicates ( ) with 2DSpl spatially 
corrected G (G+2DSpl Diff) in the four years for GY, GM, and EH, with NLEE 
implemented as FE. The models G and G+AR1 were baseline GBLUP and spatially 
corrected models, respectively, and M was a baseline multi-trait model. Models have FE
defined using NLEE of corresponding name.

54

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.18.512728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512728
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S20: The difference in model genomic heritability ( ), model fit ( ), and 
genotypic effect estimation across replicates ( ) with AR1 spatially 
corrected G (G+AR1 Diff) in the four years for GY, GM, and EH, with NLEE 
implemented as FE. The models G and G+2DSpl were baseline GBLUP and spatially 
corrected models, respectively, and M was a baseline multi-trait model. Models have FE
defined using NLEE of corresponding name.
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Figure S21: Genomic heritability ( ), model fit ( ), and genotypic effect 
estimation across replicates ( ) in 2019_NYH2 for GY, GM, and EH, with 
NLEE implemented as L or as FE using soil data.
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Figure S22: Prediction accuracy for six simulation processes (linear, 1D-N, 2D-N, 
AR1xAR1, random, and RD) were run ten times using the 2017_NYH2 NDVI values 
under a simulated environmental variance of 10%, 20%, and 30% and a simulated 
environmental effect that was 75%, 90%, and 100% correlated throughout the growing 
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season. The RD scenario is illustrated as EC in this case. Prediction accuracy is the 
correlation of the simulated environmental effect and the model’s recovered effect.

Figure S23: Prediction accuracy for six simulation processes (linear, 1D-N, 2D-N, 
AR1xAR1, random, and RD) were run ten times using the 2019_NYH2 NDVI values 
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under a simulated environmental variance of 10%, 20%, and 30% and a simulated 
environmental effect that was 75%, 90%, and 100% correlated throughout the growing 
season. The RD scenario is illustrated as EC in this case. Prediction accuracy is the 
correlation of the simulated environmental effect and the model’s recovered effect.
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Figure S24: Prediction accuracy for six simulation processes (linear, 1D-N, 2D-N, 
AR1xAR1, random, and RD) were run ten times using the 2020_NYH2 NDVI values 
under a simulated environmental variance of 10%, 20%, and 30% and a simulated 
environmental effect that was 75%, 90%, and 100% correlated throughout the growing 
season. The RD scenario is illustrated as EC in this case. Prediction accuracy is the 
correlation of the simulated environmental effect and the model’s recovered effect.
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