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Abstract

Design randomizations and spatial corrections have increased understanding of
genotypic, spatial, and residual effects in field experiments, but precisely measuring
spatial heterogeneity in the field remains a challenge. To this end, our study evaluated
approaches to improve spatial modeling using high-throughput phenotypes (HTP) via
unoccupied aerial vehicle (UAV) imagery. The normalized difference vegetation index
(NDVI) was measured by a multi-spectral MicaSense camera and ImageBreed.
Contrasting to baseline agronomic trait spatial correction and a baseline multi-trait
model, a two-stage approach that quantified NDVI local environmental effects (NLEE)
was proposed. Firstly, NLEE were separated from additive genetic effects over the
growing season using two-dimensional spline (2DSpl), separable autoregressive (AR1)
models, or random regression models (RR). Secondly, the NLEE were leveraged within
agronomic trait genomic best linear unbiased prediction (GBLUP) either modeling an
empirical covariance for random effects, or by modeling fixed effects as an average of
NLEE across time or split among three growth phases. Modeling approaches were
tested using simulation data and Genomes-to-Fields (G2F) hybrid maize (Zea mays L.)
field experiments in 2015, 2017, 2019, and 2020 for grain yield, grain moisture, and ear
height. The two-stage approach improved heritability, model fit, and genotypic effect
estimation compared to all baseline models. Electrical conductance and elevation from
a 2019 soil survey significantly improved model fit, while 2DSpl NLEE were most
correlated to the soil parameters and grain yield 2DSpl effects. Simulation of field
effects demonstrated improved specificity for RR models. In summary, NLEE increased
experimental accuracy and understanding of field spatio-temporal heterogeneity.

Introduction

The importance of controlling for environmental heterogeneity in agricultural field
experiments is critical to obtain accurate estimates of varietal performance and
treatment effects (Smith, Cullis, and Thompson 2005; Van Es and Van Es 1993;
Brownie, Bowman, and Burton 1993; Xu 2016). In plant breeding where soil
composition, elevation, slope, curvature, water content, nutrient availability, and
management can vary within field experiments, the genotypic effects driving important
agronomic traits become confounded with local environment effects (LEE).
Randomization in experimental designs can help control errors from spatial variation to
a large degree (Piepho, Mohring, and Williams 2013; Hoefler et al. 2020), but in early
stage trials where replication is limited, it is important to account for spatial variation.
Statistical approaches, such as the separable autoregressive process and the two-
dimensional spline model, have advanced to capture local dependence effects between
experimental plots (Arthur R. Gilmour et al. 1997; Covarrubias-Pazaran 2016). Such
spatial effects derive local dependencies from distance-based random covariance
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structures (e.g. plots that are close to each other are more interdependent than those
farther away), but these models often make simplifying assumptions of a consistent rate
of decay in interdependency across the entire field. Nonetheless, statistically modeling
spatial effects using linear mixed models has improved experimental accuracy in plant
breeding (Rodriguez-Alvarez et al. 2018; Robbins, Backlund, and Schnelle 2012; Copati
et al. 2021; Bernardeli et al. 2021; Smith, Cullis, and Thompson 2005).

Spatial heterogeneity can change over the growing season, due to weather and
management conditions as well as plant development characteristics. The relationship
of time on spatial effects can be explored through univariate and multivariate spatial
models. Also, repeated measurements in time allow estimation of permanent
environment (PE) effects from random regression (RR) models, providing a purely
temporal representation of spatial heterogeneity. To effectively apply these statistical
approaches, measurements should largely span the field; however, it can be difficult
and expensive to objectively measure phenotypic traits repeatedly across a field
experiment, as seen with quantitative disease resistance traits (Poland and Nelson
2011; Reynolds et al. 2019). Therefore, cost-effective remote sensing approaches are
necessary for studying LEE in the field across time.

Through the use of unoccupied aerial vehicles (UAVs) and other systems, aerial
imaging can reliably and cost-effectively measure high-throughput phenotypes (HTPS)
for all experimental plots in the field across the growing season (White et al. 2012;
Andrade-Sanchez et al. 2014; Sagan et al. 2019; Sun et al. 2021). A widely studied
class of aerial image HTPs are vegetation indices (VI) that include the normalized
difference vegetation index (NDVI) (Gitelson et al. 2002; Hunt et al. 2013). VI provide
physiologically relevant image features that can track variance such as photosynthetic
activity, and have successfully measured chlorophyll content, canopy extent, biomass,
and water use efficiency among other plant attributes (Thorp et al. 2018; Delegido et al.
2011; Bannari et al. 2007; Babar et al. 2006). Promising model-derived HTPs from
Images exist, such as latent-space and convolutional neural network (CNN) features;
however, our study focused on NDVI LEE (NLEE) from linear mixed models to offer a
standardized approach for quantifying latent spatial heterogeneity and field
environmental effects (Gage, Richards, and Lepak 2019; Taghavi Namin et al. 2018;
Wiesner-Hanks et al. 2019; Feldmann et al. 2021).

While phenotypic data are critical in plant breeding, genomic data are arguably of
equal importance. Applying whole-genome marker data for genomic prediction (GP) is
now feasible with the proliferation of genotyping technologies (Meuwissen, Hayes, and
Goddard 2001). Genomic best linear unbiased prediction (GBLUP) has been
extensively applied to predict traits in animals and plants from genome-wide single
nucleotide polymorphism (SNP) markers, including in maize and wheat (Rutkoski et al.
2012; Daetwyler et al. 2013). GBLUP can predict traits from genome-wide SNP marker
data by modeling the covariance of additive genetic effects as a genomic relationship
matrix (GRM) (VanRaden 2008).
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VI can improve GP through multivariate approaches by leveraging genetic
correlations between the VI and agronomic traits of interest, as demonstrated for grain
yield in wheat and biomass in soybean (Rutkoski et al. 2016; Sakurai et al. 2021). While
multi-trait models leverage genetic correlations across traits to improve predictions,
residual correlations exist between NDVI and grain yield in maize (Anche et al. 2020).
Recent studies have successfully proposed two-stage approaches for incorporating
HTP, such as detecting spatial effects using the SpATS package in the first stage and
then creating P-spline hierarchical growth models in the second stage (Pérez-Valencia
et al. 2022). Furthermore, modeling approaches for integrating HTP, genomic
information, and environmental information can be generalized into the genotype-to-
phenotype (G2P) model framework (van Eeuwijk et al. 2019); however, modeling NLEE
into GP has not previously been widely explored and field tested.

Building on previous work, our study proposed a two-stage approach for
improving spatial corrections in GP. The first stage separated NLEE from additive
genetic effects in the HTP temporally, using either spatial corrections or RR models, to
qguantify the LEE in the field. The second stage summarized the NLEE within GBLUP for
the agronomic traits using two distinct implementations, either modeling a plot-to-plot
covariance of random effects (L) or modeling fixed effects (FE). The proposed approach
studied the following two questions utilizing simulated data and several years of hybrid
maize field experiments. Firstly, are NLEE, estimated by spatial effects and PE effects,
consistently able to detect across the growing season the spatial heterogeneity affecting
end-of-season agronomic traits? Secondly, can NLEE be used in the proposed two-
stage models to improve spatial corrections for GP of agronomic traits?

Materials and Methods

Field Experiments

As part of the Genomes to Fields (G2F) program, inbred and hybrid maize (Zea
mays L.) field evaluations were planted at the Musgrave Research Farm (MRF) in
Aurora, NY (McFarland et al. 2020). Of importance to this study were the hybrid maize
experiments planted in 2015 (https://doi.org/10.25739/erxg-yn49), 2017
(https://doi.org/10.25739/w560-2114), 2019 (https://doi.org/10.25739/t651-yy97), and
2020 (https://doi.org/10.25739/hzzs-a865), named 2015 _NYH2, 2017_NYH2,

2019 NYH2, and 2020_NYH2, respectively. Each experimental plot was seeded in two-
row plantings. In all field experiments, the following agronomic traits were measured:
grain yield (GY) (bu/acre), grain moisture (GM) (%), and ear height (EH) (cm).

Experimental variation across the years arose from the maize hybrids planted,
the field sites utilized, the weather conditions experienced during the growing seasons,
and the time points at which imaging events occurred. Figure S1 illustrated the time
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points at which high-throughput phenotypes (HTP) were extracted, as well as the
growing degree days (GDD) and cumulative precipitation (CP) on those days. GDD
were calculated for each imaging event time point from the planting date of the
experiment and were found using daily weather data for the ground station at MRF
(GHCND:USCO00300331) accessed via the NOAA NCEI NCDC database. The
evidenced variation in GDD and CP across years highlighted the necessity to collect as
many imaging events as possible over the growing season.

Aerial Image Collection and Processing

A MicaSense RedEdge 5-channel multi-spectral camera mounted onto an
unoccupied aerial vehicle (UAV) captured images in the blue, green, red, near infrared,
and red-edge spectra. The UAV flew at an altitude of 25m to 30m and at a speed of 6
km/hr. To complete a flight, the pre-programmed, serpentine flight plans required
approximately 35 min to traverse the 3km path. At least 80% overlap along both image
axes was ensured in the collected images.

Each flight produced approximately 5,000 images from the MicaSense camera.
The images were then processed into orthophotomosaics using Pix4dMapper
photogrammetry software. To produce reflectance calibrated raster images, this
software used the MicaSense radiometric calibration panel images captured
immediately prior to each UAYV flight, as well as illumination metadata embedded in
each capture by the MicaSense camera. Orthophotomosaic images were produced with
approximately 1cm per pixel resolution ground sample distance (GSD). The resulting
reflectance orthophoto images were then uploaded into ImageBreed, which enabled
plot-polygon templates to be created and assigned to the field experimental design
(Morales, Kaczmar, et al. 2020). Figure S2 illustrates a representative near-infrared
(NIR) reflectance orthophoto image from 2019 _NYH2 taken on August 15, 2019, with
the plot-polygons overlaid. Normalized difference vegetation index (NDVI) HTP were
extracted from ImageBreed, derived from the plot image mean pixel value (Gitelson et
al. 2002; Hunt et al. 2013; Patrignani and Ochsner 2015; Bhandari et al. 2021). The
image, field experiment, phenotypic, and genotypic data within ImageBreed are FAIR
and queryable through openly described APIs (Selby et al. 2019; Wilkinson et al. 2016).

Flights in 2015, 2017, and 2019 were scheduled approximately once per week,
while 2020 targeted a frequency of twice per week. Technical problems and poor
weather conditions, such as clouds, rain, and high winds, resulted in fewer imaging
events being suitable for HTP extraction. To separate the HTP imaging event dates into
biological growth stages, GDD ranges were defined to account for the early vegetative
phase (P0) at 0 to 1225 GDD, the active reproductive phase (P1) at 1226 to 1800 GDD,
and the late reproductive phase (P2) at 1801 to 2500 GDD. The three GDD ranges
captured periods where NDVI was first steadily increasing, then plateauing, and finally
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steadily decreasing. Table 1 summarized the growth stage distribution of imaging event
dates for which HTP were successfully extracted.

Table 1: Summary of UAV imaging dates for which HTP were successfully extracted in

the 2015, 2017, 2019, and 2020 field experiments. Growth stages of PO, P1, and P2
map to early, active, and late reproductive phases broadly defined as 0 to 1225 GDD,
1226 to 1800 GDD, and 1801 to 2500 GDD, respectively.

Field Planting | Field Growth Stage: | Growth Stage: | Growth Stage:
Experiment | Date Location PO P1 P2
2015 NYH2 | May 7, | MRF, July 21 Aug 7, Aug 20 | Sept 10
2015 Field P
2017 _NYH2 | May 18, | MRF, June 12 Aug 2, Aug Sept 6, Sept
2017 Field Y 17, Sept 1 12, Sept 24
2019 NYH2 | May 23, | MRF, July 16, July Aug 5, Aug 15 | Sept 10
2019 Field N 24, July 29
2020 _NYH2 | May 22, | MRF, June 29, July [ July 22, July | Aug 20, Aug
2020 Field D 9, July 15, 28, Aug 1 26, Sept 9,
July 18 Sept 18, Oct 2

Soil Information

In 2019 at the MRF, a ground conductivity meter (EM38-MK2, Geonics, Canada)
surveyed Field N where the G2F hybrid maize field experiment was planted. The EM-38
probe used electrical inductance to characterize variation originating from a combination
of factors including soil salinity, soil texture, water content, water retention, soil type,
and soil nutrients (Heil and Schmidhalter 2017). The goals for the soil information in this
study were to (1) better understand driving factors for the detected NLEE from the aerial
imagery, and (2) determine whether a soil survey was a practical alternative to aerial
imagery for improving agronomic GP in the second stage. Due to planting rotations and
other logistical concerns, the G2F experiments conducted in 2015, 2017, 2019, and
2020 were all in distinct field locations as shown in Table 1; therefore, the soil
information in this study could only be applied to the 2019 experiment.

The soil survey was conducted prior to the hybrids being planted by passing the
probe over the field in a dual-serpentine pattern, with 9 passes in the east-west
orientation and 24 passes in the north-south orientation. The georeferenced elevation
(Alt) and apparent electrical conductance (EC) data were then interpolated over the
entire field using ordinary Kriging in R (Pebesma 2004). The interpolated raster was
produced using a spherical variogram model at a resolution of 1075 WGS84 units
covering 120 by 200 cells. Figure S3 illustrates (A) a map of the collected EM38 soil
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survey, (B) the region to interpolate into, and in (C) and (D) the interpolated soil EC and
Alt across the field, respectively. Finally, a mean value for the soil EC and Alt was
extracted using ImageBreed for each plot in the 2019 _NYH2 field experiment.

In order to approximate soil curvature as elevation gradients, first and second
two-dimensional numerical derivatives were computed on the plot-level soil EC and
altitude measurements, denoted as dEC (dEC), d*EC (d2EC), dAlt (dAlt), and d>Alt
(d2Alt), respectively. Two-dimensional numerical derivatives were computed by
averaging the differences between a given plot and the three immediately adjacent rings
encircling it. Figure S4 illustrated heatmaps of the extracted plot-level soil EC and Alt,
along with the first and second derivatives.

Genotyping Data

Through the G2F program, genotype-by-sequencing (GBS) resulted in 945,574
SNP markers across the genome for 1577 samples representing a total of 1325 unique
maize inbred lines (https://doi.org/10.25739/frmv-wj25) (McFarland et al. 2020; Elshire
et al. 2011). The resulting genome-wide variant call format (VCF) data were queried for
the hybrids in the 2015, 2017, 2019, and 2020 field experiments (Morales, Bauchet, et
al. 2020; Morales et al. 2022; Danecek et al. 2011). Due to minor typographical errors
(e.g. Mol17 vs MO17), data cleaning was required prior to mapping the sample
identifiers in the VCF to the field experiment genotype identifiers and to the pedigree
information for the maize hybrids. Genotypes were filtered for SNPs with minor allele
frequency < 5% or with > 40% missing data, and for samples containing > 20% missing
data. Genomic relationship matrices (GRMs) were computed using the A.mat function in
rrBLUP, with missing data imputed as the mean genotype (Endelman 2011; VanRaden
2008); therefore, only an additive genetic relationships were modeled (Griffing 1956).

Given that many of the evaluated maize hybrids in the G2F program originated
as bi-parental crosses of the genotyped inbred lines and that the inbred lines are
unrelated to each other, hybrid maize genotypes were computed by averaging over the
parental GRMs. Specifically, the GRMs among the pollen parents and seed parents
were computed independently, and then the hybrid’s relationship was computed as an
average among one half of the inbred parental relationships. If a hybrid’'s parental
inbred lines were not genotyped, then the hybrid was included in the GRM with a
diagonal value of one and off-diagonal values of zero.

HTP Spatial Heterogeneity

The first question of this study was whether NDVI LEE (NLEE), which was
estimated by spatial and PE effects, consistently detected across the growing season
the spatial heterogeneity affecting end-of-season agronomic traits. Therefore, the first


https://doi.org/10.1101/2022.10.18.512728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.18.512728; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

stage of the proposed two-stage approach focused on measuring spatial heterogeneity
in NDVI across the growing season.

Variance in the collected HTP observations, Vr, was modeled as arising from
genetic variance among the maize hybrids, V&, and from environmental sources of
variance, V& (Falconer and Mackay 2009). In mixed model matrix notation this was
formulated as

y = X + Zaua + Zpuy + € (Equation 1)

where ¥ was a vector of phenotypic observations and X was an incidence matrix
mapping phenotypic values to the fixed effects, 5. The random effects %a and Up
represented the additive genetic and local environment, respectively, and the incidence
matrices Za and Zp linked the random effects %a and U, respectively, to the
observations.

The spatial model fitted either a single HTP time point or multiple HTP time
points, a distinction referred to as the univariate or multivariate cases. In the univariate
case, spatial models were run independently for each of the collected HTP time points.
In contrast, the multivariate case fitted several collected HTP time points in a single
model, such that, the vector ¥ represented HTP observations taken at different time

Yt
y=| Y2

points across the growing season,
In the univariate spatial case, the variance of the random additive genetic effect
was defined as

var(uq) = oy, G (Equation 2)

where the matrix G represented the GRM between evaluated hybrids and was of order
LA denoting the total number of hybrids £ (VanRaden 2008). The multivariate case
defined this as

2

O'a1 0a,0a4
2

Var(ua) = Eua & G = Oa10as Uag tot & G[k,k]
' ‘ [t,t] (Equation 3)
where the unstructured matrix Zu. was of order [+ t] denoting the number of time points

involved and ® was the Kronecker product. The advantage of the multivariate approach
was to explicitly model genetic covariances between time points.


https://doi.org/10.1101/2022.10.18.512728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.18.512728; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Two methods for modeling environmental spatial variation were investigated,
namely 2DSpl and AR1 models. The 2DSpl method created Zpuyp as a function of the
row (r) and column (c) position of the plot in the field and can be written as

f(rie) = 1,80 +7B1 + cBa+ 1 O B3 + fre(r, ¢) (Equation 4)

where © was the vector product and fre(r,¢) was a smoothing function (Rodriguez-
Alvarez et al. 2018). The 2DSpl models were fitted using Sommer in R (R 3.6.3,
Sommer 4.1.3) (Covarrubias-Pazaran 2016). In the univariate case, named 2DSplU, the
variance of the spatial effect followed

2
var(u,) = UupI[b,b] (Equation 5)

where Ib.bl was an identity matrix with order equal to the total number of plots b in the
experiment. In the multivariate case, named 2DSplM, the spatial variance was defined
as

var(uy) = B, @ I=| 0 Opy - ® I by
. ' ' [t.t] (Equation 6)
where the diagonal matrix >u, was of order [t ¢] denoting the number of time points.
Contrastingly, the AR1 method explicitly defined a separable autoregressive

covariance structure. In the univariate case, named AR1U, the spatial variance was
defined as

| 1 pe p?
pr 1 oprooe. pe 1 pe
2 2
var(up) = o, P =0, 2 op 1. ® 02 pe 1
| . . . . i [T”’r‘] B . . . . | [Cyc}

(Equation 7)

where P was a shorthand for the illustrated separable autoregressive structure, Pr and

Pc were correlations among rows and columns, respectively, and ;7] and [¢ ¢ indicated
the dimensions for the matrices as the total number of rows and columns, respectively.
With the AR1 model, experimental plots which were farther away had correlations which

decreased exponentially on a unit-by-unit basis (e.g. 2 =~ p?>p’ > ). In the
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multivariate case, named AR1M, the variance of the random spatial effect was written
as

var(u,) = Xy, @ P = 0 012)2 e @ Py p)

[t:t] (Equation 8)

where the diagonal matrix >u, was of order [t ¢] denoting the number of time points and
the matrix P was the same as in the univariate case. The AR1 methods were fitted
using ASReml-R (R 3.6.3, ASReml|-R 4.1.0.126) (A. R. Gilmour et al. 2002). In the
tested univariate and multivariate spatial models, the random residual error, e, followed

var(e) = USI and var(e) = UZEe, respectively, where 03 was the error variance and e
was unstructured.

As an alternative to spatial mixed models, random regression (RR) models were
explored for separating permanent environmental (PE) NLEE from additive genetic
effects (Schaeffer 2004; Kirkpatrick, Lofsvold, and Bulmer 1990; Van der Werf,
Goddard, and Meyer 1998; Arnold, Kruuk, and Nicotra 2019). PE offered a purely
longitudinal representation of the spatial heterogeneity in the field. The RR model for a
repeated measurement was written as

ml m2
Yiknt = i + Z AR 2kl T Zpbzzb:z + €ikn:t
1=0 1=0 (Equation 9)

where Yikn:t was the nth observation on the kth genotype at time t belonging to the ith
fixed factor. This study defined a single fixed effect, i, for the replicate nested with the
imaging event date. The variable @k represented the additive genetic effect for the kth
genotype, while the variable P denoted the PE effect for an experimental plot b planted
in the field. The incidence covariables 2k and 2b:: mapped the random genetic and PE
effects, respectively, to the observations. The variables m1 and m2 represented the
total order of the random regression functions, and €ikn:t was the heterogeneous
random residual error.

The RR model was written in mixed model matrix notation as in Equation 1,
however, the incidence matrices Za and Zp are structured to account for the random
regression covariance function coefficients, and %« and “» denoted the random additive
genetic and PE regression coefficients, respectively. The overall variance was written
as VAI(Y) = Za(Bu, ® G)Za' + Zp(Bu, ® E)Zy' + X @ L iy this equation, G
represented the GRM and E represented a plot-to-plot covariance matrix capturing
environmental effects, ideally computed from envirotyping information. Envirotyping

10
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aimed to uniquely define the complete environment of an organism by including soil,
climate, and developmental parameters; however, this study focused on applying NLEE
(Xu 2016).

Notably different from the spatial mixed models described previously, the
incidence matrices Za and Zp can be structured to contain continuous variables
representing time in the form of GDD for models using Legendre polynomials or linear
spline functions. Also, the additive genetic variance for any hybrid at a specific time

2
point (Pa.t}) and the additive genetic covariance for any hybrid between two time points (

2 _ T _ T )
Ta.tit;) can be calculated using Ta.t; = #t; 2ua?t and Catit; = %1, Sua?t; respectively,
where %t; and ~t; are vectors of the continuous random regression function evaluated at

2
time points %; and tj, respectively. Similar expressions for the PE variance (“».t:) and

covariance (“»:titj) can be written as Tpt, = %, Supt, and 9p.tit; = 2, By, t;,
respectively. In this study, solutions to the RR model were found using the BLUPF90
family of programs (Misztal et al. 2002).

The RR model had computational benefits over the spatial mixed models
described previously. Firstly, the number of variance components to estimate was equal
—nn—1)+n : : :
to 2 , following the order m1 and m?2 of the random regression functions,
regardless of the number of time points ¢ represented in the observations Y. Secondly,
continuous curves for the random additive genetic and PE effects could be evaluated for
any time point because the random regression coefficients fit a covariance function.
Thirdly, there was flexibility in the type of regression function that can be fitted, for
instance, splines versus Legendre polynomials; in this study, third order Legendre
polynomials were considered (Szeg 1939). Fourthly, flexible specification of E allowed
envirotyping information to be accounted for in the model.

This study explored six different structures for the PE covariance matrix E. The
first approach, named RRID, defined E = I, where I was the identity matrix. This
approach treated all experimental plots as independent. The second approach, named
RREuc, computed E using the inverse Euclidean distances between experimental plots
and standardized between 0 and 1. This was written as

Eij = 1/\/(7%' e C i Cj)2, where Eij was an element of E denoting the
relationship between plot i and J, and the variables i, ¢i, 7’j, and ¢ were the row and
column positions of the plot, respectively. The inverse was used to give plots which
were farther away from each other a smaller value than plots which were nearby. The
third approach, named RRSoIlEC, computed an empirical correlation matrix E from plot-
level values of soil EC, dEC, and d2EC. The fourth approach, named RRSoilAlt,
computed an empirical correlation matrix E from plot-level values of soil Alt, dAlt, and
d2Alt. The fifth approach, named RR2DSpl, created an empirical correlation matrix E
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from the NLEE random spatial effects resulting from the 2DSpIM model. The sixth
approach, named RRAR1, created an empirical correlation matrix E from the NLEE
random spatial effects resulting from the AR1M model.

The presented models allowed estimation of additive genetic and local
environmental random effects; however, the true genetic and environmental effects
were unknown to us. Therefore, to evaluate the robustness of the tested models and
their ability to detect field environment features, six different simulation scenarios were
conducted. The simulation methods are described in File S1. The simulations were
designed to represent purely environmental effects in the field, such as due to soil
heterogeneity, altitude, and soil elevation gradients. Six simulations named the Linear,
1D-N, 2D-N, AR1xAR1, and RD simulation, were each tested by varying the correlation
across time to be 0.75, 0.90, and 1.00 and by setting the simulated variance to be 10%,
20%, and 30% of the total phenotypic variance.

Evaluating the accuracy of the simulation process was a five-step procedure.
Firstly, for a target model, meaning one of the first-stage univariate/multivariate spatial
mixed models or RR models, NLEE were separated from additive genetic effects
present in the real NDVI HTP for a given field experiment. Secondly, the computed
NLEE were subtracted from the NDVI HTP in order to minimize latent spatio-temporal
effects in the NDVI. Thirdly, the target simulation values, meaning one of the six
simulation processes, were scaled between 0 and 1, then subsequently scaled to
account for either 10%, 20%, or 30% of the observed NDVI phenotypic variation, and
finally were added onto the minimized NDVI HTP. Fourthly, the target model computed
LEE for the simulation-adjusted NDVI HTP. Fifthly, the recovered LEE were correlated
against the true target simulation values, returning prediction accuracy.

Agronomic Genomic Prediction

The second question in this study was whether the longitudinal NDVI or NLEE
data could be used to improve spatial corrections, specifically for genomic prediction
(GP) of agronomic traits. Firstly, the following baseline models were defined under the
GBLUP framework. The baseline GBLUP model was written as

y = XB + Zau, + € (Equation 10)

where ¥ was the agronomic trait of interest, B was for fixed effects like replication, Ua
was the random additive genetic effect of the hybrid, X and Za were incidence matrices
linking effects to ¥, and e was the residual error. The variance of the random additive

_ 2 2

genetic effect was defined as var(ua) = o, G where G was the GRM and %u. was the
2 2

additive genetic variance. The error variance was defined as var(e) = .1 where 0;
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was the residual variance. Control GBLUP models named G, G+2DSpl, and G+AR1,
written respectively as

y = XRrBr + Zau, + € (Equation 11a)
y = XRrBr + Zaug + ZoDSpl¥2DSpl + € (Equation 11b)
Y = XrOr + Zatta + ZAR1UAR] T € (Equation 11c)

were used as baseline models for agronomic genomic prediction and Br was a fixed
effect for replication linked to corresponding incidence matrix Xr. Equation 11a was the
simplest GBLUP case. Incorporating spatial corrections, Equations 11b and 11c added
2DSpl and AR1 random effects, respectively, to account for the row and column
positions of the plots in the field on which the agronomic trait was measured. Equation
11b followed the 2DSpl definition from Equation 4, while Equation 11c followed the AR1
definition from Equation 7. Importantly, these three baseline models did not leverage
information from the first stage or from the aerial image HTP measurements.

A final baseline defined the multi-trait model (M) in Equation 12,

Yy = XRrrOrr + Zata + € (Equation 12)

where ¥ was a vector of both the HTP NDVI time points and the agronomic trait (e.g. GY
or EH or GM), Brr was a fixed effect for replicate nested with trait, %« was a vector of
the random additive genetic effects for all traits, and e was the random residual
variance. The random additive genetic (%) and residual (¢) covariances were
unstructured across the traits, as in Equation 3. Given the difficulty of fitting large
numbers of traits in M, only the two HTP NDVI timepoints with the highest correlation to
GY were included in Y.

Secondly, to improve on the baseline GBLUP models first-stage NLEE were
integrated into the second stage following two implementations. The first
implementation modeled the NLEE as a plot-to-plot covariance structure for random
effects (L), following:

Y = XRrBr + Zata + Zpu, + € (Equation 13)

The variance of the random plot effects U» followed var(up) = UEL, where L was an
empirical matrix derived from correlating the NLEE for all plots across time points.. This
model was similar to Equation 11c in which the AR1 process explicitly defined a plot-to-
plot covariance structure; however, rather than define distance-based assumptions,
Equation 13 utilized observed spatial heterogeneity. The second column of Table 2
summarized the tested L two-stage model names in relation to the first-stage.
Alternatively, fixed factor effects (FE) were defined and followed four variations:

13


https://doi.org/10.1101/2022.10.18.512728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.18.512728; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Yy = XrBOr + HavgﬁH(wy + Zauq + € (Equation 14a)
y = XrPr+ H1fu, + H2Pn, + Hsfu, + Zaua + € (Equation 14b)
Y = XRPr + FavgBra.,, + ZLatia + € (Equation 14c)
Yy = XrBr+ F1fr + F2Bp + F36p, + Zata + € (Equation 14d)

In Equation 14a the fixed factor Hayg performed a continuous regression on the average

first-stage NLEE across all time points, accounting for fixed effects BHaw,, Alternatively,
Equation 14b performed a continuous regression on the fixed factors H1, H2, and 3 by
splitting time points into the previously defined PO, P1, and P2 growth phases,
respectively, and then averaging the first-stage NLEE within each. This model
accounted for fixed effects B, S, and PHs for the PO, P1, and P2 growth phases,
respectively. Equation 14c and 15d used binned fixed effects derived by reassigning the
first-stage NLEE to quatrtile factors (1=0-25%, 2=26-50%, 3=51-75%, 4=76-100%),
representing poor, marginal, good, and high performing levels. The Favg fixed factor in
Equation 14c was computed by averaging over all time points, while the F1, F2, and F3
factors in Equation 14d were computed by splitting the time points into the PO, P1, and
P2 growth phases, respectively, and then averaging within each. Columns 3 to 6 of
Table 2 summarize the tested FE two-stage model names in relation to the first-stage.

Table 2: Listed are all non-soil two-stage models tested in this study. The first column
listed the first-stage models used to separate additive genetic effects from NDVI local
environment effects (NLEE). Subsequent columns listed models where the second-
stage was implemented as a plot-to-plot covariance (L), as a continuous average fixed
effect (Havg), as three distinct continuous fixed effects (H3), as a binned average fixed
effect, and as three distinct binned fixed effects (F3).

Stage-1 Stage-2 L Stage-2 Hayg Stage-2 H3 Stage-2 Fayg Stage-2 F3
Model Model Model Model Model Model
2DSpIU G+L_2DSplU G+Havg_2DSplU G+H3_2DSplU G+Favg_2DSplU G+F3_2DSplU
2DSpIM G+L_2DSpIM G+Havg_2DSpIM G+H3_2DSpIM G+Favg_2DSpIM G+F3_2DSplM
AR1U G+L_AR1U G+Havg_AR1U G+H3_AR1U G+Favg_AR1U G+F3_AR1U
AR1M G+L_AR1M G+Havg_AR1M G+H3_AR1M G+Favg_ARI1M G+F3_AR1M
RRID G+L_RRID G+Havg_RRID G+H3_RRID G+Favg_RRID G+F3_RRID
RREuc G+L_RREuc G+Havg_RREuc G+H3_RREuc G+Favg_RREuc G+F3_RREuc
RR2DSpl G+L_RR2DSpl | G+Havg RR2DSpl | G+H3 _RR2DSpl | G+Favg RR2DSpl | G+F3 _RR2DSpl
RRAR1 G+L_RRAR1 G+Havg_RRAR1 G+H3_RRAR1 G+Favg_RRAR1 G+F3_RRAR1
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Soil altitude and EC were measured in 2019, enabling Equations 13, 14a, and
14c to account for soil information rather than first-stage NLEE. It was not possible to
test Equation 14b or 14d with soil information because only a single soil measurement
was collected. Representing Equation 13, a model named G+L_RRSoiIlEC constructed
L by correlating soil EC, dEC, and d2EC, while a model named G+L_RRSoilAlt
constructed L by correlating soil Alt, dAlt, and d2Alt. Using soil measurements in
Equation 14a, models named G+Havg_Soil_Alt, G+Havg_Soil_dAlt,
G+Havg_Soil_d2Alt, G+Havg_Soil_EC, G+Havg_Soil_dEC, and G+Havg_Soil_d2EC
represented Havg derived from the plot-level soil Alt, dAlt, d2Alt, EC, dEC, and d2EC,
respectively. Whereas for Equation 14c, models named G+Favg_Soil_Alt,
G+Favg_Soil_dAlt, G+Favg_Soil_d2Alt, G+Favg_Soil EC, G+Favg_Soil dEC, and
G+Favg_Soil_d2EC represented Favg derived from the plot-level soil Alt, dAlt, d2Alt, EC,
dEC, and d2EC, respectively.

Model performance was tested by measuring heritability, model fit, and genotypic
effect estimation across replicates. Narrow-sense genomic heritability 2> was defined as

0.2

2 Uq

W= 52 5 . 52 |
Uq e where “u. was the additive genetic variance and 9. was the residual

error variance. Heritability gives insight into the degree to which additive genetic effects
are driving phenotypic variation over residual error. Model fit was defined as the
correlation between fitted model predictions Y and the true phenotypic values Y, written
as €or(7,y), Finally, genotypic effect estimation across replicates, written as
COr (Jreps 9Rop2), involved first partitioning the agronomic trait datasets by replicate, then
running the target model on each replicate, and finally correlating the random genetic
effect estimates, Uq, across the replicates. The field experiments in this study lent
themselves to testing €O (Grep1; Jrep2) because two contiguous replicates were
designated in all fields. Genotypic effect estimation across replicates was the primary
model metric in this study because it is an important indicator for whether a spatial
correction has effectively accounted for field heterogeneity.

Results and Discussion

Local Environmental Effects

Before turning attention to the NDVI HTP, spatial corrections for the agronomic
traits of grain yield (GY), grain moisture (GM), and ear height (EH) were computed. As
defined in Equation 11b, Figure 1 illustrates heatmaps of the 2DSpl spatial effects over
the rows and columns of the experimental plots in the 2017_NYH2, 2019 NYH2, and
2020 _NYH2 field experiments. Each year the trial was planted in a distinct field location.
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The heatmaps resolved major, poorly performing regions for GY and EH centered
around the row-column positions of (35,2), (19,8), and (25,6) in 2017_NYH2,

2019 NYH2, and 2020_NYH2, respectively. For all three experiments, an inverse
spatial pattern was visible for GY and GM, while a similar spatial pattern was visible for
GY and EH. The same pattern between traits was evidenced in 2015_NYH2, illustrated
in Figure S7. In 2015_NYH2 a poor performing region for GY and EH was centered
near the row-column position of (88,9). In all four years, the proportion of phenotypic
variation explained by the 2DSpl spatial effect ranged from +/-25 bu/acre of GY, +/-2%
of GM, and +/-15 cm of EH. These results illustrated the importance of spatial
heterogeneity on the agronomic traits.

Agronomic Trait Spatial Effects (2DSpl)
2017 GY 2017 EH 2017 GM 2019 GY 2019EH 2019GM 2020 GY 2020 EH 2020 GM

HHHHHHHHHH o & o o o
g h s .-,.;,,,c ‘m‘cwm

Flgure 1: Two-dlmensmnal spline (2DSpI) spatlal random effects detected in the
agronomic traits of grain yield (GY), grain moisture (GM), and ear height (EH) in the
2017, 2019, and 2020 field experiments. The 2015 experiment is shown in Figure S7.

Similar patterns of spatial random effects were found using the 2DSpl and AR1
models defined in Equations 11b and 11c, respectively. Table 3 lists the correlations
between the 2DSpl and AR1 spatial effects for GY, GM, and EH in the 2017 _NYHZ2,
2019 NYH2, and 2020_NYH2 experiments. The strongest average correlation was 0.88
for EH, followed by 0.87 for GY, and 0.49 for GM. The 2015 _NYH2 experiment was not
included in Table 3 because the AR1 model did not converge.
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Table 3: Correlations between 2DSpl and AR1 spatial effects for GY, GM, and EH in the
2017, 2019, and 2020 field experiments.

Experiment Grain Yield (GY) Grain Moisture (GM) | Ear Height (EH)
2017_NYH2 0.90 0.49 0.74
2019 NYH2 0.91 0.59 0.93
2020_NYH2 0.79 0.40 0.97

To understand correspondence between LEE affecting NDVI and the end-of-
season agronomic traits, first-stage NLEE were compared to GY, GM, and EH spatial
effects. Figure 2 shows correlations between the 2DSpl GY spatial effects and the
2DSplU NLEE across 12 time points in the 2020_NYH2 field experiment. lllustrated in
Figure 2, correlations at 38 and 48 days after planting (DAP) were 0.6 and 0.7,
respectively, and correlations fluctuated between 0.5 and 0.7 throughout the season.
Corresponding heatmaps in Figure 2 illustrate spatial distributions over the rows and
columns of the experimental plots, and consistently reveal a large region near the
center of the field negatively impacting both GY and NDVI. For reference, phenotypic
correlations between NDVI and GY in 2020_NYH2 ranged from a low of 0.04 at 133
DAP to a high of 0.39 at 54 DAP, which were weaker than the correlations observed in
Figure 2. Similarly, the random regression (RR) model PE effects correlated with the GY
spatial effects more strongly than the NDVI and GY themselves. Figure S8 illustrates
RRID PE effects correlated against GY and the GY 2DSpl and AR1 spatial effects. The
RRID PE tended to be strongly correlated through time and identified similar spatial
patterns as the spatial effect models.
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Correlation of NDVI and GY 2DSpl Spatial Effects in 2020
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Figure 2: 2020 _NYH2 2DSplU NLEE observed over 12 time points correlated with GY
and GY 2DSpl spatial effects. Corresponding heatmaps showed values over the rows
and columns of all experimental plots in the field and revealed similar spatial patterns.
As indicated by (1), correlations of 0.5 to 0.7 between GY 2DSpl and the 2DSplU NLEE
were found throughout the growing season, even early on at 38 DAP.
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Average NDVI 2DSplU Effect .

In 2019_NYH2, 2015 _NYH2, and 2017_NYH2 similar correlations between
2DSplU and GY spatial effects were observed, as illustrated in Figure 3, Figure S9, and
Figure S10, respectively. For reference, phenotypic correlations between NDVI and GY
in 2015 _NYH2, 2017_NYH2 and 2019 _NYH2 ranged from a low of 0.13 at 126 DAP,
0.17 at 25 DAP, and 0.33 at 110 DAP, respectively, to a high of 0.42 at 92 DAP, 0.49 at
91 DAP, and 0.67 at 84 DAP, respectively. Therefore, in all experiments the NLEE were
more correlated to the GY 2DSpl effects across the growing season than the NDVI were
correlated to GY. Furthermore, in all years, the spatial patterns affecting GY and EH
were detectable by NLEE to a large degree (> 0.5 correlation), evidenced early on in the
growing season at 76 DAP or less.

As a potential alternative to aerial imaging and to better understand the observed
spatial effects, soil EC, Alt, and the first and second two-dimensional numerical
derivatives (dEC, d2EC, dAlt, d2Alt) were compared with the NLEE in the 2019 _NYH2
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field experiment. Figure 3 includes correlations and heatmaps of the soil measurements
with the spatial effects and demonstrated: (1) the 2DSpl spatial effects of GY in

2019 NYH2 correlated up to 0.7 with 2DSplU NLEE, (2) soil EC correlated up to 0.5
with 2DSplU NLEE, and (3) soil d2Alt correlated up to 0.3 with 2DSplU NLEE. In Figure
3, the soil elevation gradients, represented by heatmaps of Alt, EC, and their
derivatives, highlighted the contours of the observed 2DSpl spatial effects. Figure S11
presents an analog to Figure 3 showing AR1U NLEE, GY, and GY ARL1 spatial effects in
2019_NYH2, and showed (1) overall weaker correlations between the GY AR1 spatial
effects and the AR1U NLEE, with a high of 0.5, (2) similar correlations to soil EC with a
high of 0.5, and (3) overall weaker correlations to soil d2Alt with a high of 0.2.
Therefore, the AR1U NLEE were less correlated with the soil parameters than the
2DSplU NLEE, and the AR1U NLEE were less correlated with GY AR1 effects than the
2DSplU NLEE were correlated with the GY 2DSpl effects.

Correlation of NDVI and GY 2DSpl Spatial Effects and Soil in 2019
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Figure 3: 2019 _NYH2 2DSplU NLEE observed over 6 time points correlated with GY
and GY 2DSpl spatial effects. Corresponding heatmaps showed values over the rows
and columns of all experimental plots in the field and revealed similar spatial patterns.
As indicated by (1), correlations of 0.1 to 0.7 between GY 2DSpl and the 2DSplU NLEE
were found throughout the growing season. The strongest correlation of 0.7 was
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observed at 110 DAP, however, at 54 DAP a correlation of 0.6 was observed. Soil EC
and Alt, as well as the first and second numerical two-dimensional derivatives, were
included against the NLEE and the following were observed: (2) correlations up to 0.5
for EC and (3) correlations up to 0.3 for d2Alt. The AR1 analog in Figure S11 showed
that the AR1U NLEE were less correlated with the soil parameters than the 2DSplU
NLEE, and the AR1U NLEE were less correlated with GY ARL1 effects than the 2DSplU
NLEE were correlated with the GY 2DSpl effects.

Table 4 summarizes correlations between the soil information in 2019 _NYH2 and
the model NLEE, illustrating how the average first-stage NLEE across all time points
correlated to soil EC, dEC, d2EC, Alt, dAlt, and d2Alt. Table 4 indicates 2DSplU had the
strongest correlation to EC of 0.46 and also correlated relatively strongly with d2Alt. The
d2Alt tended to correlate more strongly than Alt or dAlt with the NLEE, indicating the
importance of elevation gradients in the field. The correlations between 2DSpl NLEE
and soil parameters indicated that soil information was capturing similar spatial
information as the NDVI aerial imaging.

Table 4: Correlations between average NLEE in 2019 NYH2 computed using different
first-stage models and the soil EC, dEC, d2EC, Alt, dAlt, and d2Alt measurements.

Model Soil EC | Soil dEC | Soil d2EC | Soil Alt | Soil dAlt Soil d2Alt
2DSplU 0.46 0.21 0.04 -0.06 0.11 0.21
2DSpIM 0.21 0.12 0.06 0.08 0.34 0.29
AR1U 0.39 0.18 0.04 -0.06 0.06 0.16
ARIM 0.01 0.04 0.06 0.10 0.25 0.21
RRID 0.10 0.06 0.04 0.04 0.14 0.17
RREuc -0.06 0.03 0.09 0.07 0.14 0.15
RRAR1 -0.18 -0.06 0.03 0.11 0.23 0.21
RR2DSpl -0.19 -0.07 0.02 0.13 0.24 0.23
RRSoIlEC -0.22 -0.08 0.03 0.12 0.25 0.22
RRSoilAlt -0.21 -0.09 0.04 0.12 0.25 0.23

Summarizing correlations between the agronomic trait 2DSpl effects and the
tested first-stage model LEE, Figure 4 presents results for all agronomic traits and
years. Figure 4 indicates the 2DSplU, 2DSpIM, and AR1U models produced NLEE most
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correlated to the 2DSpl effects of GY and EH in all years and in nearly all time points,
while the RR2DSpl, RRAR1, and RRSoIlEC models were most correlated to the 2DSpl
effects of GM in 2015, 2017, and 2019. The 2DSplU and AR1U NLEE correlated with
GY and EH 2DSpl spatial effects greater than 0.5 in all years at 80 to 90 DAP.
Significant similarities were seen between models run on traits within a given year, for
instance both GY and EH in 2017 showed a large peak at 110 DAP and in 2020 both
showed a continuous gradual decline. There was an inverted behavior between the GY
and GM spatial effects in all years, describable as: in 2015 a high for GY and a low for
GM at 105 DAP, in 2017 a high for GY and a low for GM at 110 DAP, in 2019 a high for
GY and a low for GM around 90 to 100 DAP, and in 2020 a gradual decline for GY and
a gradual incline for GM. In contrast, there was a similar behavior between the GY and
EH spatial effects in all years. Figure S12 illustrates the AR1 analog of Figure 4 with
agronomic trait AR1 spatial effects instead of 2DSpl effects and demonstrated weaker
correlations to the NLEE in all traits and all years. Highly similar patterns in the
correlation curves were observed, however, there was a tendency for the GM AR1
spatial effects to correlate with RRID, RR2DSpl, and RRAR1 NLEE more strongly than
the 2DSpl or AR1 NLEE.

Correlation of Agronomic Trait 2DSpl Spatial Effects and Model LEE
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Figure 4: Correlations between 2DSpl spatial effects of agronomic traits and LEE from
the tested first-stage models. Spatial effects for GY, GM, and EH in the 2015 NYH2,
2017_NYH2, 2019 _NYH2, and 2020_NYH2 field experiments were compared with
model LEE across the growing season. Models including soil information rather than
NDVI in the first-stage, named RRSoilAlt and RRSoIIEC, were also included for
2019_NYH2. The AR1 analog in Figure S12 illustrated similar patterns, but with weaker
correlations.

Simulation tested the efficacy of the first stage in detecting known environmental
field effects. In each of the six simulation processes (linear, 1D-N, 2D-N, AR1xAR1,
random, and RD) ten iterations were performed, each time generating a new simulation.
The simulated environmental variance was tested at 0.1, 0.2, and 0.3 times the
proportion of phenotypic variation, and the correlation between time points was tested at
0.75, 0.90, and 1. Figure S22, Figure S23, and Figure S24 illustrate the results for all
simulation scenarios using 2017 _NYH2, 2019 NYH2, and 2020_NYH2 NDVI
phenotypes, respectively, demonstrating the impacts of varying the simulation
environmental variance as well as the correlation of simulated environmental effects
across the growing season. Increasing the variance tended to slightly increase the
prediction accuracy, while decreasing the correlation between time points tended to
decrease prediction accuracy. Figure 5 aggregates the prediction accuracies for the
linear, 1D-N, 2D-N, AR1xAR1, and RD simulation scenarios and illustrated model
groupings determined by a Tukey Honest Significant Difference (HSD) test.

22


https://doi.org/10.1101/2022.10.18.512728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.18.512728; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Prediction Accuracy for Simulation Scenarios in All Years
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Figure 5: Aggregated prediction accuracy of the tested first-stage models (RRID,
RREuc, RRAR1, RR2DSpl, AR1U, AR1M, 2DSplU, and 2DSplIM) for the linear, 1D-N,
2D-N, AR1xAR1, and RD simulation scenarios using the 2017 _NYH2, 2019 NYH2, and
2020_NYH2 NDVI data. Prediction accuracy is the correlation of the simulated
environmental effect and the model’'s recovered environmental effect. Models are
grouped together after performing a Tukey HSD test.

The RREuc model showed relatively poor performance, possibly due to a
mismatch in the geometry of the experiment because in reality the plots in the field were
rectangular (e.g. 10ft by 3ft) and not perfectly square. The RREuc model was also most
sensitive to the tested years and to changes in simulated variance and correlation. The
AR1U model performed best in the AR1XAR1 scenario, while the 2DSplU model
performed well in the Linear scenario. Specifying the PE covariance matrix allowed the
RRAR1 and RR2DSpl models to perform consistently well in the 1D-N and 2D-N
scenarios; however, by making no assumptions to the spatial structure the RRID model
performs on average less than 10% worse and with comparable consistently.

Agronomic Genomic Prediction

First-stage NLEE were incorporated into the second stage of the proposed GP
approach using two distinct implementations, either modeling L or FE. Figure S13
illustrates genomic heritability, model fit, and genotypic effect estimation across
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replicates (Cor(gReph gRepQ)) in the four years for GY, GM, and EH for all two-stage
models when modeling L random effects. Baseline and spatially corrected GBLUP
models, named G, G+2DSpl, and G+ARL1 representing Equations 11a, 11b, and 11c,
respectively, are shown. Statistical significance of the spatial corrections and two-stage
models was compared to the baseline G model using a paired t-test. The best models
were determined by ranking the t-test p-value of GY €OT (Grep1s Irep2). The best five two-
stage L models, representing Equation 13, were named G+L_AR1U, G+L_AR1M,
G+L_2DSplU, G+L_2DSpIM, and G+L_RRID.

Alternatively, modeling NLEE as FE followed four distinct definitions in Equations
14a, 14b, 14c, and 14d. Figure S17 illustrates genomic heritability, model fit, and
COT (Grep1> Irep2) in the four years for GY, GM, and EH for all two-stage models when
modeling FE. The baseline and spatially corrected GBLUP models, named G, G+2DSpl,
and G+AR1, respectively, are shown. As before, the best two-stage FE models were
determined by ranking the t-test p-value of GY €O (Grepts Irep2). The top eight models
were named G+Havg_AR1U, G+Havg_2DSplU, G+Havg_2DSplIM, G+Favg_2DSplU,
G+H3_2DSpIM, G+H3_RRID, G+F3_AR1U, and G+F3_2DSplU.

To observe performance of the proposed two-stage approach over the baseline
G model, a difference (G Diff) was computed within each of the four years for
heritability, model fit, and COT (Grepts Jrep2), Figure 6 illustrates G Diff for the baseline
G+2DSpl and G+ARL1 spatial correction models and for the best six models defining L
(G+L) and FE (G+H). Figure S14 and Figure S18 illustrate all two-stage models when
defining L and FE, respectively. The spatially corrected baseline models, G+2DSpl and
G+AR1, demonstrate improvements over G. The G+2DSpl model provided significant
improvements in heritability and model fit for all traits, and a significant improvement in
GY COI(Grep 91@2), while, G+AR1 provided significant improvements in model fit for all
traits, and a significant improvement in GY heritability and COT(Grep1 Irep2). Increased

GY heritability and €Or (Grep1s Irep2) demonstrated the value of performing spatial
corrections; however, increased model fit may indicate overfitting.
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Genomic Prediction (G Diff) Modelling Random Effects L or FE with HTP
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Figure 6: Differences compared to G (G Diff) for genomic heritability (A%), model fit (
cor(g, y)), and genotypic effect estimation across replicates (cor(gRepl, 9Rep2)) for GY,
GM, and EH in the four years. The models G, G+2DSpl, and G+AR1 were baseline
GBLUP and spatially corrected models, respectively, and M was a baseline multi-trait
model. lllustrated are the best three two-stage models using L (G+L) and the best three
two-stage models using FE (G+H), determined by ranking COT(Grep1> Jrep2) t-test p-value
compared to G. The G+L and G+H models have L and FE, respectively, defined using
NLEE of corresponding names.

Figure 6 demonstrates further improvements for the two-stage models over the
baseline G, G+2DSpl, and G+AR1 models. Two-stage models incorporating NLEE
improved heritability and COT (Grep1s Jrep2) for GY, GM, and EH more than the baseline
spatially corrected models, and in addition, G+2DSpl and G+AR1 tended to increase
model fit equally or greater than the two-stage models. The best two-stage models
translated increased heritability to an increase in COT (Grept gaepz), and avoided an
inflation in heritability due to decreased residual error and increased model fit.
Improvements to GY €O (Grep1s Irer2) over baseline G, G+2DSpl, and G+AR1
models were summarized in Table 5 for the best six two-stage models when
incorporating NLEE. The Table 5 columns of “A G”, “A G+2DSpl”, and “A
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G+AR1" indicate the mean and standard deviations of model differences in
GY €OT (Grep1, Grep2) for the four years compared to G (G Diff), G+2DSpl (G+2DSpl Diff),
and G+AR1 (G+ARL Diff), respectively. Figure S15 and Figure S19 illustrate the
G+2DSpl Diff for all models when defining L and FE, respectively. Figure S16 and
Figure S20 illustrate the G+AR1 Diff for all models when defining L and FE,
respectively. While GY and EH COT(Grep1s Jrepz) Was improved, none of the FE models
significantly improved GM COT (Grept gReDQ), a result potentially attributable to the lower
correlations between NLEE and GM spatial effects seen in Figure 4 and Figure S12, the
difficulty in detecting GM spatial effects seen in Table 3, and the small GM spatial
variation seen in Figure 1.

Table 5: The best two-stage models versus the baseline GBLUP models (G, G+2DSpl,
G+AR1) when comparing the correlation of genotypic effects across replicates (
Cor(gRepthep?)) for grain yield (GY). The best six two-stage models were
listed, three defining L (G+L) and three defining FE (G+H). The columns “A
G”, “A G+2DSpl”, and “A G+AR1” showed the mean and standard deviation
for the model’s COT(Grepts Jrep2) difference compared to the baseline G,
G+2DSpl, and G+AR1 models, respectively. The “A G” and “A G+2DSpl”
included the 2015, 2017, 2019, and 2020 field experiments; however, the
2015 field experiment could not be included for “A G+AR1"” because of
convergence issues. The (*) and (+) symbols denoted t-test p-values less
than 0.05 and 0.1, respectively.

Model AG A G+2DSpl A G+AR1
G+H3_RRID 0.188 +0.094 (*) |0.095+0.045 () | 0.082 +0.053 (+)
G+H3_2DSpIM 0.123+0.055 (*) | 0.029 + 0.074 0.025 + 0.09
G+Havg_2DSplU | 0.12 + 0.056 (¥) 0.026 + 0.048 0.012 + 0.057
G+L_2DSpIM 0.065+0.049 (*) | -0.028 +0.105 -0.056 + 0.123
G+L_AR1U 0.132+0.077 (*) |0.038+0.035(+) |0.041 +0.031 (+)
G+L_RRID 0.133+0.041 (*) |0.039+0.043(+) |0.036 +0.049

Drawing from the simulation results in Figure 5, the 2DSpIM and AR1M models
may have had less overall accuracy due to the assumptions in Equation 6 and Equation
8, respectively, which restricted estimation of spatial covariance components between
time points, and thereby negatively impacted the simulation when weaker correlations
(< 0.9) across time points were used. In real data, as seen in Figure 2, Figure 3, Figure
S8, Figure S9, and Figure S10, NLEE tended to be strongly correlated (>0.8) between
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time points; this may have explained the improvements seen in Table 5 when the
2DSpIM NLEE were incorporated into second-stage genomic prediction. The RRAR1
and RR2DSpl models performed well in first-stage simulation; however, the second-
stage genomic prediction was not particularly improved by these models potentially due
to overfitting and a pronounced mismatch between the detected LEE and the causal
effects. The RRID, AR1U, and 2DSplU models performed well in first-stage simulation
and significantly improved the second-stage genomic prediction, indicating these
models provided robust detection of spatial heterogeneity.

The second stage in the proposed approach could use soil data as an alternative
to NLEE from the first-stage. Figure 7 illustrates differences in 2019 _NYH2 against the
baseline G (G Diff) for genomic heritability, model fit, and COT (Grep1s Jrep2) for GY, GM,
and EH. The best eight models when modeling L (G+L) or FE (G+H) using soil data are
illustrated in Figure 6; however, Figure S21 illustrates all of the models using soil data.
Again, the baseline spatially corrected models, G+2DSpl and G+AR1, are shown.
Included were the L models named G+L_RRSoIlEC and G+L_RRSoilAlt, and the FE
models named G+Favg_Soil_Alt, G+Favg_Soil_dAlt, G+Favg_Soil_d2Alt,
G+Havg_Soil_EC, G+Havg_Soil_dEC, and G+Havg_Soil_d2EC. The soil information
increased GM and EH heritability, and model fit for all traits, more than the baseline
G+2DSpl and G+AR1 models; however, for all traits COT (Grep1 s Jrep2) performed lower
than the baseline G+2DSpl and G+AR1 models, particularly for GM and EH.

Genomic Prediction (G Diff) Modelling L and Fixed Effects with Soil Data
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Figure 7: Differences compared to G (G Diff) for genomic heritability (h?), model fit (
cor(g, y)), and genotypic effect estimation across replicates (Cor(gRepU gRePQ)) in
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2019 NYH2 for GY, GM, and EH, with soil data implemented as L (G+L) or as FE
(G+H). The best eight models using soil altitude (Alt), soil electrical conductance (EC),
and the first and second derivatives (dAlt, d2Alt, dEC, d2EC) were illustrated.

This approach to incorporate soil data did not improve GY COT(Grept 5 gnepa);
however, this result was from a single field experiment in a single year. Similar to how
the NDVI HTP itself did not correlate highly with GY while the spatial effects of NDVI
correlated strongly with the spatial effects of GY, the spatial effects of the soil data may
prove more beneficial for improving GY €Or(Grept» rep2) than the soil data itself. The soil
data had much weaker correlations than the NDVI to agronomic traits, with a high of
0.07, 0.03, and 0.20 for GY, GM, and EH, respectively, compared to NDVI with a high of
0.67, 0.60, and 0.46 for GY, GM, and EH, respectively. Further indicating persistent
spatial effects may be limiting the effectiveness of soil EC data in this study, Table 4
illustrates that including the soil data into RR models resulted in NLEE relatively well
correlated with the soil elevation gradients, but negatively correlated with the soil EC
data itself. The soil data were able to increase heritability; however, it may be a result of
overfitting. Furthermore, soil data may need to be incorporated with weather information
in order to effectively estimate the benefit or detriment of the local environmental effect.
For instance, low elevation can be either beneficial or detrimental depending on rainfall.

Conclusion

The proposed approach studied spatial heterogeneity in the field across time by
answering the following two questions. Question 1: are NDVI LEE (NLEE), estimated by
spatial effects and PE effects, consistently able to detect across the growing season the
spatial heterogeneity affecting end-of-season agronomic traits? Question 2: can NLEE
be used in the proposed two-stage models to improve spatial corrections for GP of
agronomic traits?

Focusing on Question 1, in all years and for all agronomic traits, separating the
random additive genetic effects resulted in stronger correlations between the agronomic
trait spatial effects and NLEE than correlations between the agronomic traits and NDVI
themselves. Furthermore, the NLEE from 2DSpl, AR1, and RR models consistently
identified the same poorly performing regions in the field over the growing season, and
identified substantially the same regions as the baseline GY and EH spatial effects.
Baseline GM spatial effects showed an inverted behavior with NLEE and were less
localized than for GY and EH. The soil EC correlated most with NLEE from the 2DSplU
and AR1U models across time. Therefore, spatial heterogeneity quantified by NLEE
corresponded strongly with agronomic trait spatial effects and soil EC.

Focusing on Question 2, incorporating first-stage NLEE into the second-stage
GP for GY, EH, and GM either as a covariance of random effects (L) or as fixed effects
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(FE), significantly improved heritability, model fit, and genotypic effect estimation across
replicates. In simulation, the RRAR1 and RR2DSpl models performed strongly;
however, only the RRID, AR1U, and 2DSplU models performed well in simulation and
also improved the two-stage GP for agronomic traits. The RRID model made no spatial
assumptions and performed consistently above average in simulation. The equilibrium
between model generalizability and model over-specification when detecting NLEE was
balanced most by the RRID, AR1U, and 2DSplU models.

Aerial image HTP provided greater understanding of spatial heterogeneity in the
field, and when coupled into the proposed two-stage GP approach, enabled a more
effective spatial correction than any of the baseline models (G+2DSpl, G+AR1, and M).
Furthermore, the observed spatial heterogeneity could be partially explained using soll
EC and elevation. Continued research into image features more informative than VI is
needed. Additionally, further research is needed for the development of novel statistical
approaches for integrating HTP across the growing season with end-of-season
agronomic trait prediction. To these ends, larger datasets are required to evaluate the
proposed approaches, and the continued aggregation of FAIR data is crucial.

Data Availability

This study used phenotypic data of hybrid maize (Zea mays L.) field experiments
part of the Genomes to Fields (G2F) program planted in 2015
(https://doi.org/10.25739/erxg-yn49), 2017 (https://doi.org/10.25739/w560-2114), 2019
(https://doi.org/10.25739/t651-yy97), and 2020 (https://doi.org/10.25739/hzzs-a865),
named 2015 NYH2, 2017_NYH2, 2019 _NYH2, and 2020_NYH2, respectively. The
genotypic SNP marker data was also from the G2F program
(https://doi.org/10.25739/frmv-wj25). The collected image data from 2015, 2017, 2019,
and 2020 are available in the Supplemental section of this manuscript.
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Supplemental Material

File S1: Simulations
The first simulation process, the linear process, followed an evaluation of

T C
Si=a +0b _ _
Tmax Cmax (SImU|at|0n 1)

where a and b were randomly assigned numbers between 0 and 1, r and ¢ were the
current plot’s row and column position in the field, and "maz and Cmaz were the maximum
row and column numbers in the field, respectively. The variable Si: was the simulated
environmental effect for a specific experimental plot. Simulation 1 resulted in a constant
gradient traversing the field, which increased as the row and column position increased.
The second simulation process, the one-dimensional normal (1D-N) process, followed
an evaluation of the univariate normal distribution equation below.

1 =1 T 2
S; = —e 2 (Tmaw)

21 (Simulation 2)
Simulation 2 resulted in a normal gradient which was constant across columns, but
increased across the rows. The third simulation process, the two-dimensional normal
(2D-N) process, followed an evaluation of the bivariate normal distribution equation

- r—7 c—¢ 2 r—7 c—¢
Si [ 1 62(1—1;72)[%%(Tma:v)2+%E(Cmax)2_01"gc(7"ma:c)(Cmaw)}

2m0,004/1 — p? (Simulation 3)

where P was a randomly assigned correlation between row number r and column
number ¢, 7 and ¢ denoted the mean row and column numbers, respectively, and o» and
o denoted the standard deviations among the rows and columns, respectively.
Simulation 3 resulted in a peak in the center of the field with normally distributed
gradients decreasing across the rows and columns; the skew in the row and column
gradients was controlled by £. The fourth simulation process, the separable
autoregressive process (AR1xAR1), followed a multivariate normal distribution
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L ope P2 . 1 pe p?
or 1 pr ... pe 1 pe
L ] © 0 Jed (simulation 4)

where s was a vector of simulated values, and Pc and Pr were randomly assigned
correlations among the rows and columns, respectively. Simulation 4 explicitly defined a
decay in the correlation between experimental plots based on their proximity on a unit-

by-unit basis (e.g. P =~ pP>p > ). The multivariate normal distribution was
implemented using the MASS package (Venables and Ripley 2002). The fifth simulation
process, the random process, followed

si = Rand(0, 1) (simulation 5)

and produced random values between 0 and 1. Simulation 5 was used as a control to
determine the effect of random noise. The sixth simulation process, the real data (RD)
process, was intended to use the collected soil EC data directly

SOﬂEC72019 , 2019
S = NDRE111’2017 5 2017

NDREgg 2020 , 2020 (Simulation 6)

where the vector of simulated values s was the soil EC data from 2019. In 2017 and
2020 soil data was not available, so NDRE at 111 and 96 days after planting,
respectively, was used instead. It was important to use a measurement with no missing
data, therefore, the HTP measurement of NDRE was suitable.

For each of the six simulations described, three approaches were explored for
generating the simulated field effect across time. The first approach defined the
simulated field effect as constant through time. This can be written as

_ 1T : . :
Yseason = 1; ® s where Yseason was a matrix representing all simulated values

across the season, 1;[ was a transposed vector of ones with length equal to the number
of time points ¢, and s contained the simulated values from one of the six
aforementioned simulation processes. Figure S5 illustrated heatmaps for all six
simulation processes, constant over 12 timepoints. The second and third approaches
generated simulated values which were 90% and 75%, respectively, correlated through
time. This was accomplished by specifying a correlation structure C between time points
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L pt pe

pe 1 pi
C= pe pe 1
as . - 1 [t.4], where Pt was the correlation between time points, set
to either 0.75 or 0.90, and the dimensions of C were [t.t] to denote the number of time
points. Simulated correlated values Y season were generated across the growing
season by first taking the Cholesky decomposition, D, of C as C = D™ D. Then,
Yseason = 0sSm D + 5 a5 defined, where 0s and s are the standard deviation and
mean of the target simulated values s, respectively. The matrix Sin.t] contained the
normalized simulated values s in the first column, followed by columns initialized by a
unit normal distribution resulting in ¢t columns. Figure S6 illustrated heatmaps for all six
simulation processes over 12 time points which were 90% correlated to each other.

Supplemental Figures
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Figure S1: Aerial imaging events with HTP extracted for the hybrid maize experiments
in 2015, 2017, 2019, and 2020. Growing degree days (GDD) and cumulative
precipitation (CP) were plotted against the days after planting (DAP) of the imaging
events. All field experiments were located in Musgrave Research Station, though
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planted in distinct fields, and weather data was sourced for the GHCND:USC00300331
ground station via the NOAA NCEI NCDC database.

Figure S2: lllustrated is a representative reflectance orthophotomosaic raster image.
This image was of 2019 _NYH2 on Aug 15, 2019 and was in the near-infrared (NIR)
spectra. The original image had dimensions of 6488 by 4987 pixels allowing about 1cm
per pixel resolution and was available from

https://imagebreed.org/data/images/image_files/26/05/f9/3e/ab9b340016al1db73f9c743
cf/imagegoCo.png. The overlaid blue polygons represented plot-polygons drawn in

ImageBreed to segment plot-images for high-throughput phenotype (HTP) extraction.
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Figure S3: lllustrated are the 2019 _NYH2 soil survey interpolation maps. (A) illustrated
the raw EM38 soil survey GPS data collected using a dual-serpentine path. (B)
illustrated the region to interpolate into with a 0.00001 WGS84 resolution across 200 by
120 cells. Finally, (C) and (D) showed the soil EC and altitude, respectively, interpolated
across the field using ordinary Kriging.

Soil EC Soil dEC Soil d2EC Soil Alt Soil dAlt Soil d2Alt

First and second two-dimensional numerical derivatives were computed. The heatmaps
illustrated are of these soil measurements for the 800 experimental plots across 16
columns and 50 rows.
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Figure S5: lllustrated are example heatmaps of the six simulation processes, constant
through time. At the top, the actual 2020 _NYH2 NDVI phenotype across the 12 imaging
events was shown, followed by: the linear simulation (Simulation 1), the 1D-N
(Simulation 2), the 2D-N (Simulation 3), the separable autoregressive (Simulation 4),
the random (Simulation 5), and the real data (Simulation 6) processes, sequentially.
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Figure S6: IIIustrated are example heatmaps of the six simulation processes, 90%
correlated across time. At the top, the 2020_NYH2 NDVI phenotype across the 12
imaging events was shown, followed by: the linear simulation (Simulation 1), the 1D-N
(Simulation 2), the 2D-N (Simulation 3), the separable autoregressive (Simulation 4),
the random (Simulation 5), and the real data (Simulation 6) processes, sequentially.
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Figure S7: lllustrated are the two-dimensional spline (2DSpl) spatial effects for grain
yield (GY), grain moisture (GM), and ear height (EH) in the 2015 _NYH2 field
experiment. Spatial effects are drawn over the 500 experimental plots across 10 rows

and 50 columns.
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Correlation of NDVI RRID PE Effects and GY Spatial Effects in 2020
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Figure S8: The NDVI RRID PE effects for 12 time points across the 2020_NYH2
growing season correlated with grain yield (GY) and the 2DSpl and AR1 spatial effects
of GY. The NDVI PE and the GY spatial effects correlate at a value of 0.5 at 38 days
after planting (DAP), and correlate above 0.4 across the growing season.
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Correlation of NDVI and GY 2DSpl Spatial Effects in 2015
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Figure S9: Shown are the two-dimensional spline (2DSpl) spatial effects for grain yield
(GY) correlated with NDVI univariate 2DSpl (2DSplU) local environmental effects (LEE)
for 4 time points in the 2015_NYH2 experiment. As demonstrated in (1), correlations of
0.5 were observed at 75, 92, and 105 days after planting (DAP). The corresponding
heatmaps drew the values over the rows and columns of the experimental plots, and
consistently identified one poorly performing region in the field.

-0.2

44


https://doi.org/10.1101/2022.10.18.512728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.18.512728; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Correlation of NDVI and GY 2DSpl Spatial Effects in 2017
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Figure S10: Shown are the two-dimensional spline (2DSpl) spatial effects for grain yield
(GY) correlated with NDVI univariate 2DSpl (2DSplU) local environmental effects (LEE)
for 7 time points in the 2017_NYH2 experiment. As demonstrated in (1), correlations of
0.2 to 0.8 were observed with the highest correlation at 91 days after planting (DAP).
The corresponding heatmaps drew the values over the rows and columns of the
experimental plots, and consistently identified three distinct poorly performing regions in
the field.
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Correlation of NDVI and GY AR1 Spatial Effects and Soil in 2019
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Figure S11: Drawn are the 2019 _NYH2 AR1U NLEE observed over 6 time points
correlated with GY and AR1 spatial effects of GY. Corresponding heatmaps showed
values over the rows and columns of all experimental plots in the field, revealing similar
spatial patterns. As indicated by (1), correlations of 0.1 to 0.5 between GY AR1 and the
AR1U NLEE were found throughout the growing season. The highest correlation of 0.5
was observed at 110 DAP and 54 DAP. Soil EC and Alt, as well as the first and second
numerical two-dimensional derivatives, were included with (2) showing correlations up
to 0.5 for EC and (3) showing correlations up to 0.2 for d2Alt. The analog in Figure 3
showed that the 2DSplU NLEE were more highly correlated with the soil parameters
than the AR1U NLEE, and the 2DSplU NLEE were more highly correlated with GY
2DSpl effects than the AR1U NLEE were correlated with the GY AR1 effects.
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Correlation of Agronomic Trait AR1 Spatial Effects and Model LEE
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Figure S12: lllustrated are correlations between ARL1 spatial effects of agronomic traits
and NLEE from various models. Spatial effects for GY, GM, and EH in the 2017_NYH2,
2019 NYH2, and 2020_NYH2 field experiments were compared against NLEE across
the growing season. Models run on traits in a given year showed similarities, with GY
and EH following tandem trends, and GY and GM showing inverted patterns.

2015 NYH2 not included because convergence was not possible. The 2DSpl analog in
Figure 4 illustrated similar patterns.
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Genomic Prediction Modelling Random Effects L with HTP
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Figure S13: Genomic heritability (%), model fit (COI"(?% y)), and genotypic effect
estimation across replicates (Cor(gRepla gRepQ)) in the four years for GY, GM, and EH,
with NLEE implemented as L. The models G, G+2DSpl, and G+AR1 were baseline
GBLUP and spatially corrected models, respectively, and M was a baseline multi-trait
model. Models have L defined using NLEE of corresponding name.
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Figure S14: The difference in model genomic heritability (2?), model fit (COI'(?), ?J)), and
genotypic effect estimation across replicates (Cor(gRepla gRepQ)) with G (G Diff) in the four
years for GY, GM, and EH, with NLEE implemented as L. The models G+2DSpl and
G+AR1 were baseline spatially corrected GBLUP models, respectively, and M was a
baseline multi-trait model. Models have L defined using NLEE of corresponding name.
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Figure S15: The difference in model genomic heritability (k?), model fit (COI"(?)» ?J)), and

genotypic effect estimation across replicates (Cor(gRepla gRepQ)) with 2DSpl spatially
corrected G (G+2DSpl Diff) in the four years for GY, GM, and EH, with NLEE
implemented as L. The models G and G+AR1 were baseline GBLUP and spatially
corrected models, respectively, and M was a baseline multi-trait model. Models have L

defined using NLEE of corresponding name.
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Genomic Prediction (G+AR1 Diff) Modelling Random Effects L with HTP
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Figure S16: The difference in model genomic heritability (22), model fit (COI"(?)» ?J)), and
genotypic effect estimation across replicates (Cor(gRepla gRepQ)) with AR1 spatially
corrected G (G+ARL1 Diff) in the four years for GY, GM, and EH, with NLEE
implemented as L. The models G and G+2DSpl were baseline GBLUP and spatially
corrected models, respectively, and M was a multi-trait model. Models have L defined

using NLEE of corresponding name.
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Genomic Prediction Modelling Fixed Effects with HTP
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Figure S17: Genomic heritability (%), model fit (Cor(9, ¥)), and genotypic effect

estimation across replicates (COI"(QRepla gRepz)) in the four years for GY, GM, and EH,
with NLEE implemented as FE. The models G, G+2DSpl, and G+AR1 were baseline
GBLUP and spatially corrected models, respectively, and M was a baseline multi-trait
model. Models have FE defined using NLEE of corresponding name.
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Genomic Prediction (G Diff) Modelling Fixed Effects with HTP
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Figure S18: The difference in model genomic heritability (h%), model fit (COT@, y)), and
genotypic effect estimation across replicates (Cor(gRepla gRep2)) with G (G Diff) in the four
years for GY, GM, and EH, with NLEE implemented as FE. The models G+2DSpl and
G+AR1 were baseline spatially corrected GBLUP models, respectively, and M was a
baseline multi-trait model. Models have FE defined using NLEE of corresponding name.
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Figure S19: The difference in model genomic heritability (h%), model fit (COT@, y)), and
genotypic effect estimation across replicates (Cor(gRepla gRep2)) with 2DSpl spatially
corrected G (G+2DSpl Diff) in the four years for GY, GM, and EH, with NLEE
implemented as FE. The models G and G+AR1 were baseline GBLUP and spatially
corrected models, respectively, and M was a baseline multi-trait model. Models have FE
defined using NLEE of corresponding name.
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Figure S20: The difference in model genomic heritability (h%), model fit (COI'(@a y)), and
genotypic effect estimation across replicates (COY(QRepl; gRepz)) with AR1 spatially
corrected G (G+ARL Diff) in the four years for GY, GM, and EH, with NLEE
implemented as FE. The models G and G+2DSpl were baseline GBLUP and spatially
corrected models, respectively, and M was a baseline multi-trait model. Models have FE
defined using NLEE of corresponding name.
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Genomic Prediction Modelling L and Fixed Effects with Soil Data
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Figure S21: Genomic heritability (%), model fit (‘301"(?3, 3/)), and genotypic effect

estimation across replicates (Cor(gRepla gRep2)) in 2019 _NYH2 for GY, GM, and EH, with
NLEE implemented as L or as FE using soil data.
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2017_NYH2 Environment Simulation Prediction Accuracy
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Figure S22: Prediction accuracy for six simulation processes (linear, 1D-N, 2D-N,
AR1xAR1, random, and RD) were run ten times using the 2017_NYH2 NDVI values
under a simulated environmental variance of 10%, 20%, and 30% and a simulated
environmental effect that was 75%, 90%, and 100% correlated throughout the growing

57


https://doi.org/10.1101/2022.10.18.512728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.18.512728; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

season. The RD scenario is illustrated as EC in this case. Prediction accuracy is the
correlation of the simulated environmental effect and the model’s recovered effect.
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Figure S23: Prediction accuracy for six simulation processes (linear, 1D-N, 2D-N,
AR1xAR1, random, and RD) were run ten times using the 2019 _NYH2 NDVI values
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under a simulated environmental variance of 10%, 20%, and 30% and a simulated
environmental effect that was 75%, 90%, and 100% correlated throughout the growing
season. The RD scenario is illustrated as EC in this case. Prediction accuracy is the
correlation of the simulated environmental effect and the model’s recovered effect.
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Figure S24: Prediction accuracy for six simulation processes (linear, 1D-N, 2D-N,
AR1xAR1, random, and RD) were run ten times using the 2020_NYH2 NDVI values
under a simulated environmental variance of 10%, 20%, and 30% and a simulated
environmental effect that was 75%, 90%, and 100% correlated throughout the growing
season. The RD scenario is illustrated as EC in this case. Prediction accuracy is the
correlation of the simulated environmental effect and the model’s recovered effect.
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