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ABSTRACT 1 

1. Functional traits affect the demographic performance of individuals in their environment, 2 

leading to fitness differences that scale up to drive population dynamics and community 3 

assembly. Understanding the links between traits and fitness is therefore critical for predicting 4 

how populations and communities respond to environmental change. However, the net effects 5 

of traits on species fitness are largely unknown because we have lacked a framework for 6 

estimating fitness across multiple species and environments.  7 

2. We present a modeling framework that integrates trait effects on demographic performance 8 

over the life cycles of individuals to estimate the net effect of traits on species fitness. This 9 

approach involves 1) modeling trait effects on individual demographic rates (growth, survival, 10 

and recruitment) as multidimensional performance surfaces that vary with individual size and 11 

environment and 2) integrating these effects into a population model to project population 12 

growth rates (i.e., fitness) as a function of traits and environment. We illustrate our approach 13 

by estimating performance surfaces and fitness landscapes for trees across a temperature 14 

gradient in the eastern United States. 15 

3. Functional traits (wood density, specific leaf area, and maximum height) interacted with 16 

individual size and temperature to influence tree growth, survival, and recruitment rates, 17 

generating demographic trade-offs and shaping the contours of fitness landscapes. Tall tree 18 

species had high survival, growth, and fitness across the temperature gradient. Wood density 19 

and specific leaf area had interactive effects on demographic performance, resulting in fitness 20 

landscapes with multiple peaks.  21 

4. With this approach it is now possible to empirically estimate the net effect of traits on fitness, 22 

leading to improved understanding of the selective forces that drive community assembly and 23 
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permitting generalizable predictions of population and community dynamics in changing 24 

environments. 25 

Keywords: community assembly, fitness landscape, functional traits, population demography   26 

 27 

INTRODUCTION 28 

Functional traits influence how individuals interact with their abiotic and biotic environment, so 29 

that individuals with traits better adapted to their environment will survive and reproduce at 30 

greater rates. These trait-based fitness differences scale up to drive population and community 31 

dynamics. Quantifying the links between traits and fitness and how they vary across 32 

environments is therefore the key to gaining a mechanistic understanding of community 33 

assembly and making generalized predictions of population and community dynamics in 34 

changing environments (McGill et al., 2006; Shipley et al., 2015). Estimating these trait-fitness 35 

relationships has remained largely out of reach, however, due to the empirical challenges of 36 

estimating fitness across phenotypes of multiple species, especially for long-lived organisms 37 

(Laughlin et al., 2020). 38 

Here, we focus on estimating how trait variation among species affects fitness, defined as 39 

the population growth rate of a species in a particular environmental context (McGraw & 40 

Caswell, 1996). Population growth is the outcome of the demographic processes of growth, 41 

survival, and reproduction over the life cycles of individuals. Establishing links between traits 42 

and individual demographic rates is therefore an important first step toward estimating the effect 43 

of traits on fitness. Many studies have examined interspecific trait-demographic rate 44 

relationships, particularly in trees, but these relationships have often been found to be weak 45 

(Yang et al., 2018). A proposed explanation for this is that trait-demographic rate relationships 46 
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are highly context-dependent (Swenson et al., 2020). The effect of a trait on demographic 47 

performance likely depends on an individual’s other traits, size or life stage, and the 48 

environment. Recent studies have examined the influence of trait-by-trait, trait-by-size, and trait-49 

by-environment interactions on plant demographic rates across species (Lai et al., 2021; 50 

Laughlin et al., 2018; Li et al., 2021), but few if any studies have accounted for all these contexts 51 

simultaneously. To do so, we advocate extending the concept of the performance surface—52 

traditionally used by evolutionary biologists to describe the relationship between traits and 53 

fitness components across individuals within a population (Arnold, 2003)—to quantify the 54 

effects of multidimensional phenotypes on demographic rates across multiple species. Estimating 55 

the shape of demographic performance surfaces and how they vary across life stages and 56 

environments would bring us a step closer to linking traits with fitness.      57 

Previous studies have quantified the relationship between traits and individual 58 

demographic rates, but linking traits to fitness requires integrating trait effects on multiple 59 

demographic rates across the life cycle (Laughlin et al., 2020). Single demographic rates are 60 

often poor proxies for fitness due to the presence of demographic trade-offs. Traits can generate 61 

these trade-offs if they have opposing effects on different aspects of demographic performance, 62 

e.g., growth vs. survival (Stearns, 1989). Recent studies have examined demographic trade-offs 63 

across many species and examined how species’ positions along these trade-off axes correlate 64 

with their functional traits (Adler et al., 2014; Rüger et al., 2018). Directly estimating the effects 65 

of traits on multiple demographic rates across multiple life stages would provide stronger direct 66 

insights into the role of traits in generating demographic trade-offs that define life-history 67 

strategies and determine fitness. 68 
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Here we develop a data-driven modeling framework that integrates trait effects on 69 

demographic performance over the life cycle to estimate the net effect of traits on fitness across 70 

species and environments (Figure 1). To achieve this, we first model the effects of traits on 71 

individual demographic rates (growth, survival, and recruitment) as multidimensional 72 

performance surfaces whose shape can vary with individual size and local environment, thus 73 

accounting for trait-by-size and trait-by-environment interactions. Next, we combine these 74 

demographic rate models into a population model (Ellner et al., 2016) that integrates 75 

demographic performance across the life cycle to project population growth rates—our measure 76 

of fitness—as a function of traits and environment. Using this population model, we estimate the 77 

fitness of multidimensional phenotypes in different environments to construct dynamic fitness 78 

landscapes that quantify the net effects of traits on fitness across environments. We illustrate our 79 

approach by estimating performance surfaces and fitness landscapes for trees across a 80 

temperature gradient in the eastern United States and show that trait-mediated demographic 81 

trade-offs naturally emerge from the model.    82 

 83 

METHODS 84 

The framework 85 

Previous studies have linked traits with the individual demographic components of fitness—86 

survival, growth, and reproduction—but have not integrated all demographic rates to determine 87 

the net effects of traits on fitness (Laughlin et al., 2020). Structured population models integrate 88 

demographic performance across the life cycle to project population growth rates, a widely-used 89 
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Figure 1. Conceptual illustration of the modeling framework. a) Data on individual sizes and 

vital rates, species’ traits, and environmental variables are used to b) model individual 

demographic rates (survival, growth, and recruitment). Population size and structure data (e.g., 

counts of individuals by size class, number of recruits) can be used in place of or in addition to 

individual-level data to estimate demographic parameters through inverse modeling approaches. 

c) The demographic rate models are combined to make a single population model (integral 

projection model, IPM) that is used to project population growth rates (λ). d) Using the 

population model, we calculate population growth rates for phenotypes throughout the trait space 

in different environments to construct dynamic fitness landscapes. Subscripts index individual i, 

species s, plot p. 
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measure of population fitness (Caswell, 2001; Ellner et al., 2016). Our approach integrates trait-90 

based demographic models into a single population model that can estimate fitness across 91 

species and environments.  92 

 The first step in our framework is to model individual growth, survival, and recruitment 93 

across species as functions of individual size, species’ traits, and the environment (Figure 1b). 94 

Any type of demographic model can be used, but we prefer a Bayesian approach because it 95 

allows integration of multiple types of data (Clark et al., 2004), including individual-level and 96 

population-level data, as illustrated by our recruitment model in the case study below. Bayesian 97 

models also make it easy to quantify uncertainty in demographic parameters and propagate this 98 

uncertainty to the population model. Our framework is flexible with respect to the functional 99 

forms used to quantify the effects of traits, size, and environment. Drawing inspiration from 100 

evolutionary theory (Lande & Arnold, 1983), we model trait effects as multidimensional surfaces 101 

that can capture linear and nonlinear effects and trait-by-trait interactions. By allowing the 102 

shapes of these surfaces to vary depending on individual size and the environment, this approach 103 

also can account for trait-by-size and trait-by-environment interactions.  104 

 The second step in our framework is to integrate the demographic rate models into a 105 

single trait-based population model (Figure 1c) and use it to estimate the fitness of different 106 

phenotypes in different environments. We use integral projection models (IPMs) due to their 107 

flexibility. IPMs combine information about individuals’ size-specific survival, growth, and 108 

recruitment rates to project population dynamics (Merow, Dahlgren, et al., 2014). An IPM 109 

describes how the size distribution of individuals in a population changes through time:  110 

𝑛𝑡+1(𝑧′) = ∫ 𝐾(𝑧′, 𝑧)𝑛𝑡(𝑧)
Ω

        (1) 111 
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where nt(z) is the size distribution at time t, nt+1(z’) is the size distribution at time t + 1, Ω 112 

denotes the possible range of individual sizes, and the kernel K(z’,z) describes size transitions 113 

through survival, growth, and reproduction: 114 

𝐾(𝑧′, 𝑧) = 𝑠(𝑧)𝐺(𝑧′, 𝑧) + 𝐹(𝑧′, 𝑧)         (2) 115 

where s(z) is the survival probability dependent on initial size z, G(z’,z) describes the probability 116 

of growing from size z to z’, conditional on having survived, and F(z’,z) describes the size 117 

distribution of new recruits produced by an individual of size z. These demographic transitions 118 

can be estimated using the trait-based demographic rate models described in step 1, allowing 119 

construction of IPM kernels for hypothetical populations with any combination of trait values 120 

(i.e., phenotype) in any environment. The long-term population growth rate (λ) can be extracted 121 

by eigenanalysis of the discretized kernel. λ is the growth rate to which a population will 122 

converge if its demographic rates remain constant and it is allowed to reach its stable size 123 

distribution. It provides an integrative relative measure of population performance, summarizing 124 

how all demographic processes over the life cycle combine to determine how fast a population 125 

grows (Ellner et al., 2016), and is commonly used in evolutionary biology as a measure of 126 

fitness. Transient growth rates—the expected short-term growth rate of a population given its 127 

current size distribution and demographic rates—can also be calculated by using the kernel to 128 

project the population forward in time (Merow, Dahlgren, et al., 2014). We quantify fitness 129 

landscapes by constructing IPM kernels and extracting long-term population growth rates for 130 

phenotypes throughout the trait space in different environments (Figure 1d).  131 

It is important to note that these fitness landscapes describe the mapping from phenotype 132 

to fitness irrespective of species identity. If there are interspecific differences in demographic 133 

rates not explained by traits (e.g., as captured by species random effects in the demographic rate 134 
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models), this information could be included when constructing the IPM kernels to provide 135 

species-specific fitness estimates.  136 

 137 

Case study: fitness landscapes for temperate trees 138 

We illustrate our approach by estimating fitness landscapes for trees across a temperature 139 

gradient in the eastern United States. We fit demographic models using data from the US Forest 140 

Service Forest Inventory and Analysis (FIA; http://www.fia.fs.fed.us). The FIA dataset consists 141 

of forest plots that are censused at varying intervals. At each census, individual survival and 142 

diameter growth are measured for all trees ≥12.7 cm diameter at breast height (dbh; “canopy 143 

trees” hereafter) within a plot and all saplings (2.54-12.7 cm dbh) within smaller microplots. We 144 

extracted data from 12,752 plots in the eastern United States censused between 2003 and 2019 145 

(see the Supplement for details about FIA plot design and data selection). We extracted mean 146 

annual temperature data for the years spanning the census interval for each plot from gridMET 147 

(Abatzoglou, 2013). 148 

We focused on three traits representing key axes of plant functional strategies: wood 149 

density, specific leaf area (SLA), and maximum height. Wood density reflects trade-offs between 150 

stem hydraulic efficiency, hydraulic safety, and mechanical strength (Chave et al., 2009). 151 

Specific leaf area reflects the trade-off between the cost of leaf construction and rate of return on 152 

investment in carbon and nutrients (Wright et al., 2004). Maximum height reflects a trade-off 153 

where taller species are better competitors for light but have higher stem construction and 154 

maintenance costs and deferred reproduction (Falster & Westoby, 2003). We extracted trait 155 

values for tree species in FIA plots from the TRY plant trait database (Kattge et al., 2020).  156 
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Survival and growth were modeled at the individual level. We created separate survival 157 

models for saplings and canopy trees because size effects on survival across all sizes were not 158 

well described by several functional forms we tried. We modeled growth of saplings and canopy 159 

trees together, using average annual diameter growth rate as the response variable. Recruitment 160 

was measured at the plot level as the number of trees crossing the 2.54-cm threshold during the 161 

census interval (i.e., ingrowth). For each data set (sapling survival, canopy tree survival, growth, 162 

and recruitment), we split the data into a training set (80% of plots) for model fitting and test set 163 

(20% of plots) for model evaluation. We excluded plots containing fewer than 10 individuals (5 164 

individuals for sapling survival) and species occurring in fewer than 10 plots (5 plots for sapling 165 

survival). The final training data sets contained: 224,153 trees, 8,837 plots, 94 species (canopy 166 

tree survival); 45,249 trees, 4,518 plots, 78 species (sapling survival); 250,768 trees, 9,152 plots, 167 

95 species (growth); 32,891 plot-species observations, 4,099 plots, 83 species (recruitment).  168 

 To improve estimates of the relationship between tree size and recruitment, we obtained 169 

data on individual size and reproductive status (presence of reproductive structures) from the 170 

MASTIF network (Clark et al., 2019). We selected data from sites in eastern North America that 171 

had at least one species in common with our demography modeling data set. Data were collected 172 

between 2002 and 2020, with some trees being measured in multiple years. We excluded 173 

observations for which reproductive status was unknown, resulting in a data set of 48,082 174 

observations of 27,641 trees from 60 species in 34 sites.  175 

 One concern about estimating demographic performance using observational data is that 176 

if we only observe species in favorable environments where they can persist (λ ≥ 1), we will lack 177 

information about how performance varies across environments. We think it is likely, however, 178 

that large observational data sets such as FIA include observations of species in both favorable 179 
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and unfavorable environments and so include demographic failures (λ < 1). To test this, we fit 180 

population models for four representative species with ample FIA and MASTIF data and 181 

estimated their population growth rates across the ranges of mean annual temperatures in which 182 

they occurred. We found that λ varied considerably with mean annual temperature for each 183 

species, including values above and below 1 (see Supporting Information Figure S10), 184 

confirming that our data set captured variation in demographic performance across the 185 

temperature gradient. 186 

 187 

Demographic rate models 188 

We modeled survival, growth, and recruitment using hierarchical Bayesian models that included 189 

terms representing the effects of size, crowding, climate, and traits, as well as species and plot 190 

random effects. Here we present an overview of salient features of the models. Additional 191 

modeling details are included in the Supporting Information, and descriptions of all terms and 192 

parameters in the demographic rate models are provided in Tables S1-S4.  193 

Trait effects on demographic rates were modeled as multivariate Gaussian surfaces (i.e., 194 

performance surfaces; Lande 1980) whose shape varied with temperature: 195 

𝑡𝑟𝑎𝑖𝑡𝑠𝑝 = exp (𝜷dir𝑝

⊤ 𝐭𝐫𝐚𝐢𝐭𝑠 + 𝐭𝐫𝐚𝐢𝐭𝑠
⊤𝛽nonlin𝑝

𝐭𝐫𝐚𝐢𝐭𝑠)    (3) 196 

where traitsp is the effect of traits on the demographic performance (survival, growth, or 197 

reproduction) of species s in plot p, 𝜷dir𝑝
 is a vector of directional (linear) performance gradients 198 

in plot p, and 𝜷nonlin𝑝
 is a matrix of nonlinear performance gradients in plot p (Arnold, 2003). 199 

The diagonal elements of 𝜷nonlin measure the strength of stabilizing (if β is negative) or 200 

disruptive (if β is positive) selection for each trait, and the off-diagonal elements measure the 201 
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strength of correlational selection between trait pairs (Arnold, 2003). Positive correlational 202 

selection means that performance is maximized by having either high or low values of both 203 

traits. Negative correlational selection means that performance is maximized by having a high 204 

value of one trait and low value of the other trait. This function can produce performance 205 

surfaces of various shapes, including (when viewed in 2 dimensions) a peak, a saddle, a ridge, or 206 

a slope.  207 

To allow performances surfaces to vary across the temperature gradient, the performance 208 

surface parameters (elements of 𝜷dir and 𝜷nonlin) were modeled as linear functions of mean 209 

annual temperature: 210 

𝛽dir𝑡,𝑝
= 𝛽dir𝑡

+ 𝛿dir𝑡
MAT𝑝           (4) 211 

𝛽nonlin𝑡𝑢,𝑝
= 𝛽nonlin𝑡𝑢

+ 𝛿nonlin𝑡𝑢
MAT𝑝         (5) 212 

where 𝛽dir𝑡,𝑝
 is the directional selection coefficient for trait t in plot p, 𝛽nonlin𝑡𝑢𝑝

 is the 213 

stabilizing/disruptive selection coefficient for trait t (if t = u) or correlational selection coefficient 214 

for traits t and u (if t ≠ u) in plot p. 𝛽dir𝑡
 and 𝛽nonlin𝑡𝑢

 are the performance gradients in a plot 215 

with average temperature, and 𝛿dir𝑡  and 𝛿nonlin𝑡𝑢  describe how the trait effects change along the 216 

temperature gradient (i.e., trait-by-environment interactions).  217 

 The effect of tree size on demographic performance was modeled as an increasing 218 

(sapling survival and recruitment) or hump-shaped (canopy tree survival and growth) function of 219 

individual diameter. The parameters of the size functions were themselves functions of traits, 220 

allowing for trait-by-size interactions. The effect of crowding was modeled as a decreasing 221 

(power law) function of the total basal area of neighboring trees (see the Supplementary Methods 222 

for additional details).  223 
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 Whereas individual survival and growth could be modeled directly using individual-level 224 

data, reproduction was modeled using an inverse approach that combined information on plot-225 

level recruitment and individual-level reproductive status (Clark et al., 2019). Briefly, for each 226 

tree in a plot, the model estimated the annual production of recruits as a function of size, 227 

crowding, climate, and traits. The size effect was a product of the probability of being 228 

reproductive and the per-capita production of recruits, conditional on being reproductive 229 

(Ribbens et al., 1994). These annual per-capita recruitment rates were summed across trees in a 230 

plot and multiplied by the census interval (in years) to give the predicted number of recruits. By 231 

modeling plot-level recruitment (using FIA data) and individual-level reproductive status (using 232 

MASTIF data) jointly within a Bayesian framework, both types of data informed estimates of 233 

individual recruitment rates. 234 

 We assessed model performance by calculating their predictive accuracy (AUC for 235 

survival, R2 for growth and recruitment) on the training and test sets. To assess the ability of 236 

traits to predict species’ demographic rates, we calculated the proportion of variation in species’ 237 

expected demographic rates (i.e., predictions including species random effects) explained by 238 

traits (i.e., predictions based on species’ traits only, excluding species random effects) within 239 

different size and temperature bins.  240 

 241 

Trait-mediated demographic tradeoffs 242 

Life history theory holds that organisms face trade-offs in allocation to different demographic 243 

processes across the life cycle, resulting in demographic trade-offs that constrain life history 244 

strategies (Stearns, 1989). Key demographic trade-offs posited for trees include the growth-245 

survival trade-off, which is thought to be strongest at the sapling stage (Wright et al., 2010), and 246 
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the stature-recruitment trade-off, which distinguishes between phenotypes that recruit early in 247 

life versus those that exhibit high growth and survival later in life (Rüger et al., 2018). We 248 

explored whether these trade-offs emerged from the effects of functional traits on demographic 249 

rates in our model. To test the role of traits in mediating a sapling growth-survival trade-off, we 250 

calculated and plotted the predicted growth vs. survival of trees at 5 cm dbh across a range of 251 

trait values, with other model predictors held constant at their average values. To test whether 252 

traits generated a stature-recruitment trade-off, we similarly plotted the predicted growth or 253 

survival at 60 cm dbh vs. recruitment at 8 cm dbh (the average size at onset of reproduction 254 

across all species) across a range of trait values.  255 

 256 

Fitness landscapes 257 

To construct fitness landscapes, we integrated the demographic rate models described above into 258 

a population model (IPM) that we used to project population growth rates of multidimensional 259 

phenotypes across the temperature gradient. We constructed IPM kernels and extracted long-260 

term population growth rates (λ) for a grid of trait values covering the observed trait space at 261 

each of three mean annual temperatures (5, 10, and 15°C). Further details about IPM 262 

implementation are provided in the Supporting Information. 263 

 264 

RESULTS 265 

Trait-demographic rate relationships 266 

Functional traits influenced tree survival, growth, and recruitment rates, and these effects varied 267 

with tree size and mean annual temperature (see Tables S6-S9 for parameter estimates and 268 

credible intervals). The sapling and canopy tree survival models had AUC of 0.79 and 0.77,  269 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2022. ; https://doi.org/10.1101/2022.02.10.479905doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479905
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

 

Figure 2. Tree performance and fitness landscapes at low and high mean annual temperatures. 

Landscapes show expected demographic rates (survival, a-d; diameter growth, e-h; recruitment, i-l) 

and fitness (population growth rate, m-p) for trees species with different trait combinations. 

Demographic rate and fitness models included three traits—wood density, specific leaf area (SLA), 

and maximum height—but for ease of visualization, landscapes are shown for two traits at a time 

(wood density and SLA, columns 1-2; wood density and maximum height, columns 3-4) with the third 

trait held constant at its average value. Demographic rates also vary with tree size, mean annual 

temperature, and neighbor density in our model. Performance landscapes shown here are for trees with 

20 cm diameter at low (5°C, columns 1 and 3) or high (15°C, columns 2 and 4) mean annual 

temperature and average neighbor density. Fitness landscapes integrate demographic performance 

across sizes. Grayed areas show regions of trait space not occupied by tree species in our data set. 
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respectively, on the training set and 0.69 on the test set (Fig. S11b,c,e,f). Traits explained 8-75% 270 

of variation in species’ survival rates, depending on the size class and mean annual temperature, 271 

with more variation explained for larger-diameter trees (Fig. S12a). Tree species with the tallest 272 

maximum heights and densest wood had the highest survival rates (Figure 2a-d, Figure S2a,c). 273 

Wood density and SLA had an interactive effect on survival, especially of small-diameter trees, 274 

such that survival peaked for species with either high wood density and high SLA or low wood 275 

density and low SLA (Figure 2a, Figure S4a).  276 

 The growth model explained 35% and 23% of variation in individual tree growth rates in 277 

the training and test sets, respectively (Fig. S11h,i). Traits explained 12-36% of variation in 278 

species’ growth rates depending on size and mean annual temperature, with more variation 279 

explained for large-diameter trees (Fig. S12b). Species with the tallest maximum heights and 280 

lowest wood densities grew the fastest, especially in cold sites (Figure 2g,h, Figure S2d,f). There 281 

was a complex interaction between wood density, SLA, and temperature. In cold sites, growth 282 

peaked at low values of wood density and medium to high values of SLA (Figure 2e), whereas in 283 

warm sites there was a ridge of high growth rates in the performance surface running from an 284 

acquisitive strategy of low wood density and high SLA to a conservative strategy of high wood 285 

density and low SLA (Figure 2f, Figure S5a). The positive effect of SLA on growth was 286 

strongest in small-diameter trees (Figure S2e). In contrast, the effect of maximum height was 287 

strongest for large-diameter trees (Figure S2f).  288 

 The full recruitment model explained 36% and 13% of variation in population-level 289 

recruitment in the training and test sets, respectively (Fig. S11k-l). Traits explained 5-67% of 290 

variation in species’ recruitment rates depending on size and temperature, with more variation 291 

explained for larger-diameter trees and warmer sites (Fig. S12c). Species with low wood density 292 
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293 

Figure 3. Relationship between tree diameter and demographic performance with respect to functional 

traits. Plots show the relationship between tree diameter and expected sapling survival (a), canopy tree 

survival (b), diameter growth (c), probability of being reproductive (d), and annual per-capita 

recruitment (e). Trend lines show conditional expectations for trees with different values of wood 

density (column 1), specific leaf area (column 2), or maximum height (column 3) with other traits, 

temperature, and neighbor density held constant at their average values. Size-demographic rate 

relationships are show for average, low (average – 2SD), and high (average + 2SD) values of each 

trait to illustrate trait-by-size interactions. Shaded areas show 90% credible intervals. 
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had the highest per-capita recruitment rates, particularly in warm sites (Figure 2j,l, Figure S3a). 294 

There was strong positive correlational selection between wood density and SLA, such that 295 

recruitment peaked at a combination of low wood density and low SLA and a combination of  296 

high wood density and high SLA, especially in warm sites (Figure 2j, Figure S6a). The effects of 297 

maximum height and wood density on per-capita recruitment depended on tree diameter. For 298 

small-diameter trees, per-capita recruitment was strongly negatively related to wood density and 299 

maximum height, whereas for large-diameter trees these effects were weaker (Figure S3a,c). 300 

These interactions occurred because species with dense wood and tall maximum height had a 301 

larger size at onset of reproduction (Figure 3d). 302 

 303 

Trait-mediated demographic trade-offs 304 

We found evidence for a growth-survival trade-off among saplings driven by wood density. 305 

Saplings of species with low wood density grew quickly but had low survival rates, whereas 306 

saplings of species with high wood density had high survival rates but grew slowly (Figure 4a). 307 

This growth-survival trade-off naturally emerged from the opposing effects of wood density on 308 

growth and survival in our models. We also found evidence of a stature-recruitment trade-off 309 

mediated by maximum height and wood density. Species with low maximum height and low 310 

wood density had high recruitment at small sizes but low growth and survival at larger sizes, 311 

whereas species with tall maximum height and dense wood had high growth and survival as 312 

large trees but produced few recruits when they were small (Figure 4b,c,h,i). We did not find 313 

evidence of a growth-survival trade-off or stature-recruitment trade-off driven by specific leaf 314 

area (Figure 4d-f).  315 
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 316 

Figure 4. Trait-mediated demographic trade-offs. Points represent predicted demographic rates (error 

bars show 90% credible intervals) for trees with varying wood density (a-c), specific leaf area (d-f), or 

maximum height (g-i), with other model predictors held at their average values. A negative 

relationship between demographic rates across values of a trait indicates a trait-mediated demographic 

trade-off. The first column (a,d,b) shows the relationship between predicted growth and survival at 5 

cm diameter, diagnostic of a growth-survival tradeoff in saplings. The second (b,e,h) and third (c,f,i) 

columns show relationships between growth and survival, respectively, at 60 cm diameter and 

recruitment at 8 cm diameter, diagnostic of a trade-off between recruitment early in life and growth 

and survival later in life (i.e., stature-recruitment tradeoff). 
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Fitness landscapes  317 

Tree species with taller maximum heights had higher fitness at all temperatures, especially in 318 

colder sites (Figure 2o-p, Figures S7b,c, S8). The positive overall effect of maximum height on 319 

fitness likely resulted from its positive effects on both growth and survival across the life cycle 320 

(Figure S2c,f). The net effects of wood density and specific leaf area on fitness were weaker, 321 

nonlinear, interactive, and variable across the temperature gradient. The strongest effects of 322 

wood density and SLA were in warm sites, where fitness was highest for species with low wood 323 

density and low SLA (Figure 2n, Figure S7a), likely due to these species having high sapling 324 

survival coupled with high recruitment rates (Figures S4a, S6a). Fitness landscapes for wood 325 

density and SLA were bimodal, with fitness peaks at both low wood density coupled with low 326 

SLA and high wood density coupled with high SLA (Figure 2m-n, Figure S7a). This appears to 327 

be driven by a similar bimodal shape of the performance landscape for sapling survival (Figure 328 

S4a). These bimodal and relatively flat fitness landscapes indicate the presence of alternative 329 

functional strategies that yield similar fitness. 330 

 331 

DISCUSSION 332 

The idea that traits drive variation in species fitness is a core assumption of trait-based ecology 333 

(Violle et al., 2007) and foundational to the promise that trait-based approaches can make 334 

community ecology more general, mechanistic, and predictive (Lavorel & Garnier, 2002; McGill 335 

et al., 2006; Shipley et al., 2015). Despite progress in estimating the relationship between traits 336 

and the demographic components of fitness, we still lack information about the net effects of 337 

traits on fitness itself, due in large part to the empirical challenges of estimating fitness across 338 

phenotypes of multiple species in multiple environments. Our approach overcomes these 339 
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challenges by integrating trait-based demographic models into a single population model to 340 

project population fitness as a function of multidimensional phenotypes and the environment. 341 

With this approach it is now possible to empirically estimate the net effect of traits on fitness, 342 

leading to improved understanding of the selective forces that drive community assembly and 343 

permitting mechanistic predictions of community dynamics in changing environments. 344 

 345 

Insights into the adaptive value of traits 346 

Community ecologists have long been interested in understanding how traits drive the 347 

performance and distributions of species across environmental gradients. The metaphor of an 348 

environmental filter is often used to describe natural selection acting across populations within a 349 

community, whereby species with certain trait values succeed and persist in an environment and 350 

others fail (Keddy, 1992). Previous work has sought to infer environmental filters by examining 351 

trait-environment relationships and trait distribution patterns (e.g., Cornwell & Ackerly, 2009; 352 

Laughlin et al., 2012). However, these patterns reflect the aggregated effects of multiple 353 

processes, including selection, dispersal, and ecological drift, acting across multiple generations 354 

(Lasky et al., 2013). Our approach translates the metaphor of environmental filtering into an 355 

operational framework to directly estimate the effects of traits on performance and the likelihood 356 

of population persistence. Quantifying these effects is critical for understanding the adaptive 357 

value of traits in different environments and predicting how populations and communities 358 

respond to environmental change. 359 

Our case study shows how our modeling framework can provide insights into the 360 

adaptive value of functional traits within communities. We found that functional traits influenced 361 

the demographic performance and fitness of trees across the eastern United States. Tall species 362 
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had relatively high survival and grew quickly throughout their life cycle but produced few 363 

recruits at small sizes, reflecting a strategy of “long-lived pioneers” previously described in 364 

tropical forests (Rüger et al., 2018). Short species reached reproductive maturity quickly and had 365 

high recruitment rates at small diameters, but this had relatively little overall fitness benefit 366 

because fitness of long-lived plants is more sensitive to survival and growth than to reproduction 367 

(Franco & Silvertown, 2004). The low fitness of short-statured species (λ < 1, indicating 368 

population decline) might seem surprising, but it likely reflects the fact that we evaluated fitness 369 

at the average crowding level (i.e., total stand basal area) in our data set, which only included 370 

forests at least 20 years old. Many short-statured species are shade intolerant, early-successional 371 

species that are likely outcompeted by taller, late-successional species by this time (Falster & 372 

Westoby, 2005). Some short tree species are able to persist in the understories of mature forests, 373 

so their low predicted fitness suggests that our model did not adequately account for processes, 374 

such as gap formation and spatio-temporal niche partitioning, that enable their persistence 375 

(Falster et al., 2017). However, these temporal dynamics could be integrated and estimated 376 

provided that enough empirical observations in young, regenerating forests stands are available. 377 

Wood density and specific leaf area had interactive effects on demographic rates, and 378 

these effects varied over the life cycle and across the temperature gradient, exemplifying the 379 

context-dependence of trait-demographic rate relationships (Yang et al., 2018). For example, for 380 

large-diameter trees in cold sites, species with low wood density and high SLA grew the fastest, 381 

consistent with the expectation that these trait values are part of a fast, resource-acquisitive 382 

strategy (Reich, 2014). In contrast, for large-diameter trees in warm sites, species with the 383 

opposite trait values (high wood density and low SLA) also grew fast, indicating that a 384 

conservative strategy might be beneficial for growth given the hydraulic challenges faced by 385 
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large trees at warm temperatures (Fajardo et al., 2019). Indeed, species with these trait values, 386 

including southern oaks (e.g., Quercus nigra, Q. falcata) and hard-wooded pines (e.g., Pinus 387 

taeda, P. elliotti) are known to be fast-growing in the southern US (Burns & Honkala, 1990). 388 

Wood density and specific leaf area also had interactive effects on sapling survival and 389 

recruitment (which integrates seed production and seedling performance, because we counted 390 

recruits as trees reaching the 1-cm diameter threshold), producing bimodal performance surfaces 391 

in which performance peaked for species with either high wood density and high SLA or low 392 

wood density and low SLA. These effects produced similarly bimodal fitness landscapes, 393 

providing evidence of alternative functional strategies that have similar fitness, potentially 394 

contributing to the maintenance of functional diversity (Marks & Lechowicz, 2006). 395 

 396 

Predicting population and community dynamics 397 

Predicting the responses of a large number of species to climate change and other global change 398 

drivers is an ongoing challenge for ecologists. Demographic population models have been used 399 

to project population dynamics for single species across different environments (Merow, 400 

Latimer, et al., 2014), but measuring demographic rates for every species in every environment is 401 

not feasible. Our approach of modeling population growth rates as a function of traits and 402 

environment allows for generalization to species with known traits but limited demographic data 403 

and to populations in environments outside their species’ current realized niche (Butt & 404 

Gallagher, 2018; Evans et al., 2016).  405 

Although our case study focused on estimating long-term population growth rates, the 406 

trait-based population models (IPMs) we describe can also estimate transient population growth 407 

rates and incorporate environmental and demographic stochasticity (Ellner et al., 2016). These 408 
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models can therefore be used to simulate population dynamics in a changing environment by 1) 409 

calculating demographic rates as a function of the environment at a specific time point, 2) 410 

constructing an IPM kernel using those environment-specific demographic rates, 3) using the 411 

kernel to project the population forward to the next time point, and 4) repeating through time.  412 

This approach can be extended to simulate community dynamics by simultaneously 413 

projecting the dynamics of multiple interacting species. This is essentially the approach used by 414 

forest simulation models (Botkin et al., 1972; Strigul et al., 2008), which simulate forest 415 

dynamics based on the demography of interacting individuals or cohorts. A key limitation of 416 

these models is that they are difficult to parameterize for many species. As a result, species are 417 

often grouped into broad functional types, and some demographic parameters, particularly 418 

recruitment, are typically assumed to be fixed across all species (Moorcroft et al., 2001; Purves 419 

et al., 2008). Our approach using species’ traits to inform estimates of demographic parameters 420 

can help overcome this limitation and make these models more generalizable.  421 

 422 

Other extensions and limitations 423 

Given the flexibility of our framework, it can be adapted and extended in many ways. Here we 424 

present a few examples. First, although we modeled the effect of the biotic neighborhood as a 425 

simple function of total neighbor abundance, more complex forms of density and frequency 426 

dependence could be included. For example, size-structured competition for light is a common 427 

feature of forest models (Pacala et al., 1996; Strigul et al., 2008) and could be incorporated into 428 

the demographic rate models in our framework. Responses to competition could also be modeled 429 

as a function of the traits of both the target population and its neighbors (Kunstler et al., 2012), 430 

allowing exploration of how frequency-dependent interactions warp the fitness landscape. 431 
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Crucially, stable coexistence requires that species limit themselves more strongly than they limit 432 

their competitors, allowing species to increase when rare, i.e., invade a resident community 433 

(Chesson, 2000). Our framework could be used to calculate invasion growth rates and partition 434 

the contribution of trait differences according to modern coexistence theory (Ellner et al., 2019), 435 

providing insights into the role of functional traits in maintaining species diversity.  436 

 Second, whereas we used a fixed mean trait value for each species, the models could 437 

incorporate intraspecific trait variation. Functional traits can vary strongly within and among 438 

populations within species, and this variation can affect demographic performance (Bolnick et 439 

al., 2011). The simplest way to incorporate intraspecific trait variation in our framework would 440 

be to replace overall species mean trait values with site-specific species mean trait values. This 441 

introduces greater data requirements, but modeling traits themselves as a function of the 442 

environment would allow estimation of site-specific trait values without the need to measure 443 

traits in every site. Intraspecific trait variation within sites could also be incorporated by treating 444 

different phenotypes as distinct “populations” and modeling their dynamics separately, or by 445 

including traits as additional state variables (i.e., in addition to size) in the IPMs (Ellner et al., 446 

2016).  447 

Finally, all the analytical tools developed for matrix population models, including life 448 

table and perturbation analysis, can be applied to the trait-based population models in our 449 

framework (Caswell, 2001). For example, the models can be used to calculate life history traits, 450 

such as life expectancy and age at reproductive maturity, and examine how they vary with 451 

functional traits and the environment. Exploring the links between functional traits, life history 452 

traits, and fitness across species and environments would contribute to an integrated 453 

understanding of functional and life history strategies (Adler et al., 2014; Kelly et al., 2021). 454 
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A limitation of our approach is that the fitness estimates are difficult to externally 455 

validate. In one sense, λ is an integrated measure of demographic performance that is 456 

mathematically derived from size-specific demographic rates, so the λ estimates are as valid as 457 

the demographic rate estimates themselves (Caswell, 2001). In another sense, λ is the growth rate 458 

of a population at its equilibrium size structure in a stable environment, which are fairly strong 459 

assumptions. Our framework could be used to project short-term population growth rates and 460 

changes in population size structure, which could be validated using population time series data. 461 

The general ability of a model to reproduce realistic community dynamics could also be 462 

validated by comparing the composition and structure of simulated vs. observed communities. 463 

However, because real communities are structured by historical processes not captured in our 464 

modeling framework (e.g., dispersal, drift, selection in past environments), a mismatch would 465 

not necessarily invalidate a model’s ability to estimate population fitness in current or projected 466 

future environments. 467 

 468 

Conclusions 469 

Here we have proposed a framework for estimating the effects of multidimensional phenotypes 470 

on fitness across species. By integrating the effects of traits on demographic performance across 471 

species and over the life cycle into a single population model, this approach allows estimation of 472 

the net effects of traits on population fitness, revealing the contours of fitness landscapes and 473 

how they vary across environmental gradients. Our approach is flexible and can be applied in 474 

any system given the availability of trait and demographic data, which are becoming more 475 

widely available due to the proliferation of global databases (e.g., Kattge et al., 2020; Salguero-476 
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Gómez et al., 2015), providing a promising pathway to achieve the long-held goal of making 477 

community ecology more general, mechanistic, and predictive. 478 
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