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ABSTRACT

1. Functional traits affect the demographic performance of individuals in their environment,
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leading to fitness differences that scale up to drive population dynamics and community
assembly. Understanding the links between traits and fitness is therefore critical for predicting
how populations and communities respond to environmental change. However, the net effects
of traits on species fitness are largely unknown because we have lacked a framework for

estimating fitness across multiple species and environments.

2. We present a modeling framework that integrates trait effects on demographic performance

over the life cycles of individuals to estimate the net effect of traits on species fitness. This
approach involves 1) modeling trait effects on individual demographic rates (growth, survival,
and recruitment) as multidimensional performance surfaces that vary with individual size and
environment and 2) integrating these effects into a population model to project population
growth rates (i.e., fitness) as a function of traits and environment. We illustrate our approach
by estimating performance surfaces and fitness landscapes for trees across a temperature

gradient in the eastern United States.

. Functional traits (wood density, specific leaf area, and maximum height) interacted with

individual size and temperature to influence tree growth, survival, and recruitment rates,
generating demographic trade-offs and shaping the contours of fitness landscapes. Tall tree
species had high survival, growth, and fitness across the temperature gradient. Wood density
and specific leaf area had interactive effects on demographic performance, resulting in fitness

landscapes with multiple peaks.

. With this approach it is now possible to empirically estimate the net effect of traits on fitness,

leading to improved understanding of the selective forces that drive community assembly and
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permitting generalizable predictions of population and community dynamics in changing
environments.

Keywords: community assembly, fitness landscape, functional traits, population demography

INTRODUCTION

Functional traits influence how individuals interact with their abiotic and biotic environment, so
that individuals with traits better adapted to their environment will survive and reproduce at
greater rates. These trait-based fitness differences scale up to drive population and community
dynamics. Quantifying the links between traits and fitness and how they vary across
environments is therefore the key to gaining a mechanistic understanding of community
assembly and making generalized predictions of population and community dynamics in
changing environments (McGill et al., 2006; Shipley et al., 2015). Estimating these trait-fitness
relationships has remained largely out of reach, however, due to the empirical challenges of
estimating fitness across phenotypes of multiple species, especially for long-lived organisms
(Laughlin et al., 2020).

Here, we focus on estimating how trait variation among species affects fitness, defined as
the population growth rate of a species in a particular environmental context (McGraw &
Caswell, 1996). Population growth is the outcome of the demographic processes of growth,
survival, and reproduction over the life cycles of individuals. Establishing links between traits
and individual demographic rates is therefore an important first step toward estimating the effect
of traits on fitness. Many studies have examined interspecific trait-demographic rate
relationships, particularly in trees, but these relationships have often been found to be weak

(Yang et al., 2018). A proposed explanation for this is that trait-demographic rate relationships
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are highly context-dependent (Swenson et al., 2020). The effect of a trait on demographic
performance likely depends on an individual’s other traits, size or life stage, and the
environment. Recent studies have examined the influence of trait-by-trait, trait-by-size, and trait-
by-environment interactions on plant demographic rates across species (Lai et al., 2021;
Laughlin et al., 2018; Li et al., 2021), but few if any studies have accounted for all these contexts
simultaneously. To do so, we advocate extending the concept of the performance surface—
traditionally used by evolutionary biologists to describe the relationship between traits and
fitness components across individuals within a population (Arnold, 2003)—to quantify the
effects of multidimensional phenotypes on demographic rates across multiple species. Estimating
the shape of demographic performance surfaces and how they vary across life stages and
environments would bring us a step closer to linking traits with fitness.

Previous studies have quantified the relationship between traits and individual
demographic rates, but linking traits to fitness requires integrating trait effects on multiple
demographic rates across the life cycle (Laughlin et al., 2020). Single demographic rates are
often poor proxies for fitness due to the presence of demographic trade-offs. Traits can generate
these trade-offs if they have opposing effects on different aspects of demographic performance,
e.g., growth vs. survival (Stearns, 1989). Recent studies have examined demographic trade-offs
across many species and examined how species’ positions along these trade-off axes correlate
with their functional traits (Adler et al., 2014; Ruger et al., 2018). Directly estimating the effects
of traits on multiple demographic rates across multiple life stages would provide stronger direct
insights into the role of traits in generating demographic trade-offs that define life-history

strategies and determine fitness.
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Here we develop a data-driven modeling framework that integrates trait effects on
demographic performance over the life cycle to estimate the net effect of traits on fitness across
species and environments (Figure 1). To achieve this, we first model the effects of traits on
individual demographic rates (growth, survival, and recruitment) as multidimensional
performance surfaces whose shape can vary with individual size and local environment, thus
accounting for trait-by-size and trait-by-environment interactions. Next, we combine these
demographic rate models into a population model (Ellner et al., 2016) that integrates
demographic performance across the life cycle to project population growth rates—our measure
of fitness—as a function of traits and environment. Using this population model, we estimate the
fitness of multidimensional phenotypes in different environments to construct dynamic fitness
landscapes that quantify the net effects of traits on fitness across environments. We illustrate our
approach by estimating performance surfaces and fitness landscapes for trees across a
temperature gradient in the eastern United States and show that trait-mediated demographic

trade-offs naturally emerge from the model.

METHODS

The framework

Previous studies have linked traits with the individual demographic components of fitness—
survival, growth, and reproduction—but have not integrated all demographic rates to determine
the net effects of traits on fitness (Laughlin et al., 2020). Structured population models integrate

demographic performance across the life cycle to project population growth rates, a widely-used
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Figure 1. Conceptual illustration of the modeling framework. a) Data on individual sizes and
vital rates, species’ traits, and environmental variables are used to b) model individual
demographic rates (survival, growth, and recruitment). Population size and structure data (e.g.,
counts of individuals by size class, number of recruits) can be used in place of or in addition to
individual-level data to estimate demographic parameters through inverse modeling approaches.
¢) The demographic rate models are combined to make a single population model (integral
projection model, IPM) that is used to project population growth rates (). d) Using the
population model, we calculate population growth rates for phenotypes throughout the trait space
in different environments to construct dynamic fitness landscapes. Subscripts index individual i,
species s, plot p.
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90  measure of population fitness (Caswell, 2001; Ellner et al., 2016). Our approach integrates trait-
91  based demographic models into a single population model that can estimate fitness across
92  species and environments.
93 The first step in our framework is to model individual growth, survival, and recruitment
94  across species as functions of individual size, species’ traits, and the environment (Figure 1b).
95  Any type of demographic model can be used, but we prefer a Bayesian approach because it
96 allows integration of multiple types of data (Clark et al., 2004), including individual-level and
97  population-level data, as illustrated by our recruitment model in the case study below. Bayesian
98  models also make it easy to quantify uncertainty in demographic parameters and propagate this
99 uncertainty to the population model. Our framework is flexible with respect to the functional
100 forms used to quantify the effects of traits, size, and environment. Drawing inspiration from
101  evolutionary theory (Lande & Arnold, 1983), we model trait effects as multidimensional surfaces
102  that can capture linear and nonlinear effects and trait-by-trait interactions. By allowing the
103  shapes of these surfaces to vary depending on individual size and the environment, this approach
104  also can account for trait-by-size and trait-by-environment interactions.
105 The second step in our framework is to integrate the demographic rate models into a
106  single trait-based population model (Figure 1c) and use it to estimate the fitness of different
107  phenotypes in different environments. We use integral projection models (IPMs) due to their
108  flexibility. IPMs combine information about individuals’ size-specific survival, growth, and
109  recruitment rates to project population dynamics (Merow, Dahlgren, et al., 2014). An IPM

110  describes how the size distribution of individuals in a population changes through time:

UL (@) = [, K(Z, 2)ny(2) (2)
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112 where ny(z) is the size distribution at time t, ni+1(z’) is the size distribution at time t + 1, Q
113 denotes the possible range of individual sizes, and the kernel K(z’,z) describes size transitions

114  through survival, growth, and reproduction:
115 K(z',z) =s(2)G(z',z) + F(Z',z) (2)

116  where s(z) is the survival probability dependent on initial size z, G(z’,z) describes the probability
117  of growing from size z to z’, conditional on having survived, and F(z’,z) describes the size

118  distribution of new recruits produced by an individual of size z. These demographic transitions
119  can be estimated using the trait-based demographic rate models described in step 1, allowing
120  construction of IPM kernels for hypothetical populations with any combination of trait values
121 (i.e., phenotype) in any environment. The long-term population growth rate () can be extracted
122 by eigenanalysis of the discretized kernel. A is the growth rate to which a population will

123 converge if its demographic rates remain constant and it is allowed to reach its stable size

124  distribution. It provides an integrative relative measure of population performance, summarizing
125  how all demographic processes over the life cycle combine to determine how fast a population
126 grows (Ellner et al., 2016), and is commonly used in evolutionary biology as a measure of

127  fitness. Transient growth rates—the expected short-term growth rate of a population given its
128  current size distribution and demographic rates—can also be calculated by using the kernel to
129  project the population forward in time (Merow, Dahlgren, et al., 2014). We quantify fitness

130  landscapes by constructing IPM kernels and extracting long-term population growth rates for
131 phenotypes throughout the trait space in different environments (Figure 1d).

132 It is important to note that these fitness landscapes describe the mapping from phenotype
133 to fitness irrespective of species identity. If there are interspecific differences in demographic

134  rates not explained by traits (e.g., as captured by species random effects in the demographic rate
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135  models), this information could be included when constructing the IPM kernels to provide

136  species-specific fitness estimates.

137

138  Case study: fitness landscapes for temperate trees

139  We illustrate our approach by estimating fitness landscapes for trees across a temperature

140  gradient in the eastern United States. We fit demographic models using data from the US Forest
141  Service Forest Inventory and Analysis (FIA; http://www.fia.fs.fed.us). The FIA dataset consists
142 of forest plots that are censused at varying intervals. At each census, individual survival and

143 diameter growth are measured for all trees >12.7 cm diameter at breast height (dbh; “canopy

144  trees” hereafter) within a plot and all saplings (2.54-12.7 cm dbh) within smaller microplots. We
145  extracted data from 12,752 plots in the eastern United States censused between 2003 and 2019
146  (see the Supplement for details about FIA plot design and data selection). We extracted mean
147  annual temperature data for the years spanning the census interval for each plot from gridMET
148  (Abatzoglou, 2013).

149 We focused on three traits representing key axes of plant functional strategies: wood

150  density, specific leaf area (SLA), and maximum height. Wood density reflects trade-offs between
151  stem hydraulic efficiency, hydraulic safety, and mechanical strength (Chave et al., 2009).

152  Specific leaf area reflects the trade-off between the cost of leaf construction and rate of return on
153 investment in carbon and nutrients (Wright et al., 2004). Maximum height reflects a trade-off
154  where taller species are better competitors for light but have higher stem construction and

155  maintenance costs and deferred reproduction (Falster & Westoby, 2003). We extracted trait

156  values for tree species in FIA plots from the TRY plant trait database (Kattge et al., 2020).


https://doi.org/10.1101/2022.02.10.479905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.10.479905; this version posted October 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

157 Survival and growth were modeled at the individual level. We created separate survival
158  models for saplings and canopy trees because size effects on survival across all sizes were not
159  well described by several functional forms we tried. We modeled growth of saplings and canopy
160 trees together, using average annual diameter growth rate as the response variable. Recruitment
161  was measured at the plot level as the number of trees crossing the 2.54-cm threshold during the
162  census interval (i.e., ingrowth). For each data set (sapling survival, canopy tree survival, growth,
163  and recruitment), we split the data into a training set (80% of plots) for model fitting and test set
164  (20% of plots) for model evaluation. We excluded plots containing fewer than 10 individuals (5
165 individuals for sapling survival) and species occurring in fewer than 10 plots (5 plots for sapling
166  survival). The final training data sets contained: 224,153 trees, 8,837 plots, 94 species (canopy
167  tree survival); 45,249 trees, 4,518 plots, 78 species (sapling survival); 250,768 trees, 9,152 plots,
168 95 species (growth); 32,891 plot-species observations, 4,099 plots, 83 species (recruitment).

169 To improve estimates of the relationship between tree size and recruitment, we obtained
170  data on individual size and reproductive status (presence of reproductive structures) from the
171 MASTIF network (Clark et al., 2019). We selected data from sites in eastern North America that
172 had at least one species in common with our demography modeling data set. Data were collected
173 between 2002 and 2020, with some trees being measured in multiple years. We excluded

174  observations for which reproductive status was unknown, resulting in a data set of 48,082

175  observations of 27,641 trees from 60 species in 34 sites.

176 One concern about estimating demographic performance using observational data is that
177  if we only observe species in favorable environments where they can persist (A > 1), we will lack
178  information about how performance varies across environments. We think it is likely, however,

179  that large observational data sets such as FIA include observations of species in both favorable

10
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180  and unfavorable environments and so include demographic failures (A < 1). To test this, we fit
181  population models for four representative species with ample FIA and MASTIF data and

182  estimated their population growth rates across the ranges of mean annual temperatures in which
183  they occurred. We found that A varied considerably with mean annual temperature for each

184  species, including values above and below 1 (see Supporting Information Figure S10),

185  confirming that our data set captured variation in demographic performance across the

186  temperature gradient.

187

188  Demographic rate models

189  We modeled survival, growth, and recruitment using hierarchical Bayesian models that included
190  terms representing the effects of size, crowding, climate, and traits, as well as species and plot
191  random effects. Here we present an overview of salient features of the models. Additional

192  modeling details are included in the Supporting Information, and descriptions of all terms and
193  parameters in the demographic rate models are provided in Tables S1-S4.

194 Trait effects on demographic rates were modeled as multivariate Gaussian surfaces (i.e.,

195  performance surfaces; Lande 1980) whose shape varied with temperature:
196  traitg, = exp (Bgirptraits + trait] Bruonin, trait;) (3)

197  where traits is the effect of traits on the demographic performance (survival, growth, or
198  reproduction) of species s in plot p, Buir, is a vector of directional (linear) performance gradients

199  inplotp, and Bnonlin, is a matrix of nonlinear performance gradients in plot p (Arnold, 2003).

200 The diagonal elements of B,,,n1in Measure the strength of stabilizing (if 4 is negative) or

201  disruptive (if 8 is positive) selection for each trait, and the off-diagonal elements measure the

11
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202  strength of correlational selection between trait pairs (Arnold, 2003). Positive correlational

203  selection means that performance is maximized by having either high or low values of both

204  traits. Negative correlational selection means that performance is maximized by having a high
205  value of one trait and low value of the other trait. This function can produce performance

206  surfaces of various shapes, including (when viewed in 2 dimensions) a peak, a saddle, a ridge, or
207  aslope.

208 To allow performances surfaces to vary across the temperature gradient, the performance
209  surface parameters (elements of B4 and Bhoniin) Were modeled as linear functions of mean

210  annual temperature:

211 PBair,, = Bdir, + air, MAT, (4)

212 .Bnonlintu_p = .Bnonlintu + ‘SnonlintuMATp (5)

213 where Bair,, is the directional selection coefficient for trait t in plot p, Bnonling, is the

214  stabilizing/disruptive selection coefficient for trait t (if t = u) or correlational selection coefficient

215 for traits t and u (if t # u) in plot p. B4ir, and Broniin,, are the performance gradients in a plot
216  with average temperature, and &4jr, and Syoniin,, describe how the trait effects change along the

217  temperature gradient (i.e., trait-by-environment interactions).

218 The effect of tree size on demographic performance was modeled as an increasing

219  (sapling survival and recruitment) or hump-shaped (canopy tree survival and growth) function of
220 individual diameter. The parameters of the size functions were themselves functions of traits,

221 allowing for trait-by-size interactions. The effect of crowding was modeled as a decreasing

222 (power law) function of the total basal area of neighboring trees (see the Supplementary Methods

223  for additional details).

12
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224 Whereas individual survival and growth could be modeled directly using individual-level
225  data, reproduction was modeled using an inverse approach that combined information on plot-
226  level recruitment and individual-level reproductive status (Clark et al., 2019). Briefly, for each
227  treein a plot, the model estimated the annual production of recruits as a function of size,

228  crowding, climate, and traits. The size effect was a product of the probability of being

229  reproductive and the per-capita production of recruits, conditional on being reproductive

230  (Ribbens et al., 1994). These annual per-capita recruitment rates were summed across trees in a
231 plot and multiplied by the census interval (in years) to give the predicted number of recruits. By
232 modeling plot-level recruitment (using FIA data) and individual-level reproductive status (using
233  MASTIF data) jointly within a Bayesian framework, both types of data informed estimates of
234 individual recruitment rates.

235 We assessed model performance by calculating their predictive accuracy (AUC for

236  survival, R? for growth and recruitment) on the training and test sets. To assess the ability of
237  traits to predict species’ demographic rates, we calculated the proportion of variation in species’
238  expected demographic rates (i.e., predictions including species random effects) explained by
239  traits (i.e., predictions based on species’ traits only, excluding species random effects) within
240  different size and temperature bins.

241

242  Trait-mediated demographic tradeoffs

243  Life history theory holds that organisms face trade-offs in allocation to different demographic
244 processes across the life cycle, resulting in demographic trade-offs that constrain life history
245  strategies (Stearns, 1989). Key demographic trade-offs posited for trees include the growth-

246  survival trade-off, which is thought to be strongest at the sapling stage (Wright et al., 2010), and

13
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247  the stature-recruitment trade-off, which distinguishes between phenotypes that recruit early in
248  life versus those that exhibit high growth and survival later in life (Ruger et al., 2018). We

249  explored whether these trade-offs emerged from the effects of functional traits on demographic
250 rates in our model. To test the role of traits in mediating a sapling growth-survival trade-off, we
251  calculated and plotted the predicted growth vs. survival of trees at 5 cm dbh across a range of
252 trait values, with other model predictors held constant at their average values. To test whether
253  traits generated a stature-recruitment trade-off, we similarly plotted the predicted growth or

254 survival at 60 cm dbh vs. recruitment at 8 cm dbh (the average size at onset of reproduction

255  across all species) across a range of trait values.

256

257  Fitness landscapes

258  To construct fitness landscapes, we integrated the demographic rate models described above into
259  apopulation model (IPM) that we used to project population growth rates of multidimensional
260  phenotypes across the temperature gradient. We constructed IPM kernels and extracted long-
261 term population growth rates (L) for a grid of trait values covering the observed trait space at
262  each of three mean annual temperatures (5, 10, and 15°C). Further details about IPM

263  implementation are provided in the Supporting Information.

264

265 RESULTS

266  Trait-demographic rate relationships

267  Functional traits influenced tree survival, growth, and recruitment rates, and these effects varied
268  with tree size and mean annual temperature (see Tables S6-S9 for parameter estimates and

269  credible intervals). The sapling and canopy tree survival models had AUC of 0.79 and 0.77,

14
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Figure 2. Tree performance and fitness landscapes at low and high mean annual temperatures.
Landscapes show expected demographic rates (survival, a-d; diameter growth, e-h; recruitment, i-1)
and fitness (population growth rate, m-p) for trees species with different trait combinations.
Demographic rate and fithess models included three traits—wood density, specific leaf area (SLA),
and maximum height—but for ease of visualization, landscapes are shown for two traits at a time
(wood density and SLA, columns 1-2; wood density and maximum height, columns 3-4) with the third
trait held constant at its average value. Demographic rates also vary with tree size, mean annual
temperature, and neighbor density in our model. Performance landscapes shown here are for trees with
20 cm diameter at low (5°C, columns 1 and 3) or high (15°C, columns 2 and 4) mean annual
temperature and average neighbor density. Fitness landscapes integrate demographic performance

across sizes. Grayed areas show regions of trait space not occupied by tree species in our data set.
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270  respectively, on the training set and 0.69 on the test set (Fig. S11b,c,e,f). Traits explained 8-75%
271 of variation in species’ survival rates, depending on the size class and mean annual temperature,
272 with more variation explained for larger-diameter trees (Fig. S12a). Tree species with the tallest
273 maximum heights and densest wood had the highest survival rates (Figure 2a-d, Figure S2a,c).
274  Wood density and SLA had an interactive effect on survival, especially of small-diameter trees,
275  such that survival peaked for species with either high wood density and high SLA or low wood
276 density and low SLA (Figure 2a, Figure S4a).

277 The growth model explained 35% and 23% of variation in individual tree growth rates in
278  the training and test sets, respectively (Fig. S11h,i). Traits explained 12-36% of variation in

279  species’ growth rates depending on size and mean annual temperature, with more variation

280  explained for large-diameter trees (Fig. S12b). Species with the tallest maximum heights and
281  lowest wood densities grew the fastest, especially in cold sites (Figure 2g,h, Figure S2d,f). There
282  was a complex interaction between wood density, SLA, and temperature. In cold sites, growth
283  peaked at low values of wood density and medium to high values of SLA (Figure 2e), whereas in
284  warm sites there was a ridge of high growth rates in the performance surface running from an
285  acquisitive strategy of low wood density and high SLA to a conservative strategy of high wood
286  density and low SLA (Figure 2f, Figure S5a). The positive effect of SLA on growth was

287  strongest in small-diameter trees (Figure S2e). In contrast, the effect of maximum height was
288  strongest for large-diameter trees (Figure S2f).

289 The full recruitment model explained 36% and 13% of variation in population-level

290  recruitment in the training and test sets, respectively (Fig. S11k-1). Traits explained 5-67% of
291  variation in species’ recruitment rates depending on size and temperature, with more variation

292  explained for larger-diameter trees and warmer sites (Fig. S12c). Species with low wood density
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Figure 3. Relationship between tree diameter and demographic performance with respect to functional
traits. Plots show the relationship between tree diameter and expected sapling survival (a), canopy tree
survival (b), diameter growth (c), probability of being reproductive (d), and annual per-capita
recruitment (e). Trend lines show conditional expectations for trees with different values of wood
density (column 1), specific leaf area (column 2), or maximum height (column 3) with other traits,
temperature, and neighbor density held constant at their average values. Size-demographic rate
relationships are show for average, low (average — 2SD), and high (average + 2SD) values of each

trait to illustrate trait-by-size interactions. Shaded areas show 90% credible intervals.
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294  had the highest per-capita recruitment rates, particularly in warm sites (Figure 2j,I, Figure S3a).
295  There was strong positive correlational selection between wood density and SLA, such that

296  recruitment peaked at a combination of low wood density and low SLA and a combination of
297  high wood density and high SLA, especially in warm sites (Figure 2j, Figure S6a). The effects of
298  maximum height and wood density on per-capita recruitment depended on tree diameter. For
299  small-diameter trees, per-capita recruitment was strongly negatively related to wood density and
300 maximum height, whereas for large-diameter trees these effects were weaker (Figure S3a,c).

301  These interactions occurred because species with dense wood and tall maximum height had a

302  larger size at onset of reproduction (Figure 3d).
303

304 Trait-mediated demographic trade-offs

305  We found evidence for a growth-survival trade-off among saplings driven by wood density.
306  Saplings of species with low wood density grew quickly but had low survival rates, whereas
307  saplings of species with high wood density had high survival rates but grew slowly (Figure 4a).
308  This growth-survival trade-off naturally emerged from the opposing effects of wood density on
309 growth and survival in our models. We also found evidence of a stature-recruitment trade-off
310 mediated by maximum height and wood density. Species with low maximum height and low
311 wood density had high recruitment at small sizes but low growth and survival at larger sizes,
312 whereas species with tall maximum height and dense wood had high growth and survival as
313 large trees but produced few recruits when they were small (Figure 4b,c,h,i). We did not find
314  evidence of a growth-survival trade-off or stature-recruitment trade-off driven by specific leaf

315  area (Figure 4d-f).
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Figure 4. Trait-mediated demographic trade-offs. Points represent predicted demographic rates (error
bars show 90% credible intervals) for trees with varying wood density (a-c), specific leaf area (d-f), or
maximum height (g-i), with other model predictors held at their average values. A negative
relationship between demographic rates across values of a trait indicates a trait-mediated demographic
trade-off. The first column (a,d,b) shows the relationship between predicted growth and survival at 5
cm diameter, diagnostic of a growth-survival tradeoff in saplings. The second (b,e,h) and third (c,f,i)
columns show relationships between growth and survival, respectively, at 60 cm diameter and
recruitment at 8 cm diameter, diagnostic of a trade-off between recruitment early in life and growth

and survival later in life (i.e., stature-recruitment tradeoff).
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317  Fitness landscapes

318  Tree species with taller maximum heights had higher fitness at all temperatures, especially in
319  colder sites (Figure 20-p, Figures S7b,c, S8). The positive overall effect of maximum height on
320  fitness likely resulted from its positive effects on both growth and survival across the life cycle
321 (Figure S2c,f). The net effects of wood density and specific leaf area on fitness were weaker,
322 nonlinear, interactive, and variable across the temperature gradient. The strongest effects of
323  wood density and SLA were in warm sites, where fitness was highest for species with low wood
324  density and low SLA (Figure 2n, Figure S7a), likely due to these species having high sapling
325  survival coupled with high recruitment rates (Figures S4a, S6a). Fitness landscapes for wood
326  density and SLA were bimodal, with fitness peaks at both low wood density coupled with low
327  SLA and high wood density coupled with high SLA (Figure 2m-n, Figure S7a). This appears to
328  be driven by a similar bimodal shape of the performance landscape for sapling survival (Figure
329  S4a). These bimodal and relatively flat fitness landscapes indicate the presence of alternative
330 functional strategies that yield similar fitness.

331

332 DISCUSSION

333  The idea that traits drive variation in species fitness is a core assumption of trait-based ecology
334 (Violle et al., 2007) and foundational to the promise that trait-based approaches can make

335  community ecology more general, mechanistic, and predictive (Lavorel & Garnier, 2002; McGill
336 etal., 2006; Shipley et al., 2015). Despite progress in estimating the relationship between traits
337 and the demographic components of fitness, we still lack information about the net effects of
338 traits on fitness itself, due in large part to the empirical challenges of estimating fitness across

339  phenotypes of multiple species in multiple environments. Our approach overcomes these
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340 challenges by integrating trait-based demographic models into a single population model to

341  project population fitness as a function of multidimensional phenotypes and the environment.
342  With this approach it is now possible to empirically estimate the net effect of traits on fitness,
343  leading to improved understanding of the selective forces that drive community assembly and
344  permitting mechanistic predictions of community dynamics in changing environments.

345

346  Insights into the adaptive value of traits

347  Community ecologists have long been interested in understanding how traits drive the

348  performance and distributions of species across environmental gradients. The metaphor of an
349  environmental filter is often used to describe natural selection acting across populations within a
350 community, whereby species with certain trait values succeed and persist in an environment and
351 others fail (Keddy, 1992). Previous work has sought to infer environmental filters by examining
352 trait-environment relationships and trait distribution patterns (e.g., Cornwell & Ackerly, 2009;
353  Laughlin et al., 2012). However, these patterns reflect the aggregated effects of multiple

354  processes, including selection, dispersal, and ecological drift, acting across multiple generations
355  (Lasky et al., 2013). Our approach translates the metaphor of environmental filtering into an

356  operational framework to directly estimate the effects of traits on performance and the likelihood
357  of population persistence. Quantifying these effects is critical for understanding the adaptive
358  value of traits in different environments and predicting how populations and communities

359  respond to environmental change.

360 Our case study shows how our modeling framework can provide insights into the

361  adaptive value of functional traits within communities. We found that functional traits influenced

362 the demographic performance and fitness of trees across the eastern United States. Tall species
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363  had relatively high survival and grew quickly throughout their life cycle but produced few

364  recruits at small sizes, reflecting a strategy of “long-lived pioneers” previously described in

365 tropical forests (Ruger et al., 2018). Short species reached reproductive maturity quickly and had
366  high recruitment rates at small diameters, but this had relatively little overall fitness benefit

367  because fitness of long-lived plants is more sensitive to survival and growth than to reproduction
368  (Franco & Silvertown, 2004). The low fitness of short-statured species (A < 1, indicating

369  population decline) might seem surprising, but it likely reflects the fact that we evaluated fitness
370  at the average crowding level (i.e., total stand basal area) in our data set, which only included
371 forests at least 20 years old. Many short-statured species are shade intolerant, early-successional
372 species that are likely outcompeted by taller, late-successional species by this time (Falster &
373  Westoby, 2005). Some short tree species are able to persist in the understories of mature forests,
374  so their low predicted fitness suggests that our model did not adequately account for processes,
375  such as gap formation and spatio-temporal niche partitioning, that enable their persistence

376  (Falster et al., 2017). However, these temporal dynamics could be integrated and estimated

377  provided that enough empirical observations in young, regenerating forests stands are available.
378 Wood density and specific leaf area had interactive effects on demographic rates, and
379 these effects varied over the life cycle and across the temperature gradient, exemplifying the
380 context-dependence of trait-demographic rate relationships (Yang et al., 2018). For example, for
381 large-diameter trees in cold sites, species with low wood density and high SLA grew the fastest,
382  consistent with the expectation that these trait values are part of a fast, resource-acquisitive

383  strategy (Reich, 2014). In contrast, for large-diameter trees in warm sites, species with the

384  opposite trait values (high wood density and low SLA) also grew fast, indicating that a

385  conservative strategy might be beneficial for growth given the hydraulic challenges faced by
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large trees at warm temperatures (Fajardo et al., 2019). Indeed, species with these trait values,
including southern oaks (e.g., Quercus nigra, Q. falcata) and hard-wooded pines (e.g., Pinus
taeda, P. elliotti) are known to be fast-growing in the southern US (Burns & Honkala, 1990).
Wood density and specific leaf area also had interactive effects on sapling survival and
recruitment (which integrates seed production and seedling performance, because we counted
recruits as trees reaching the 1-cm diameter threshold), producing bimodal performance surfaces
in which performance peaked for species with either high wood density and high SLA or low
wood density and low SLA. These effects produced similarly bimodal fitness landscapes,
providing evidence of alternative functional strategies that have similar fitness, potentially

contributing to the maintenance of functional diversity (Marks & Lechowicz, 2006).

Predicting population and community dynamics
Predicting the responses of a large number of species to climate change and other global change
drivers is an ongoing challenge for ecologists. Demographic population models have been used
to project population dynamics for single species across different environments (Merow,
Latimer, et al., 2014), but measuring demographic rates for every species in every environment is
not feasible. Our approach of modeling population growth rates as a function of traits and
environment allows for generalization to species with known traits but limited demographic data
and to populations in environments outside their species’ current realized niche (Butt &
Gallagher, 2018; Evans et al., 2016).

Although our case study focused on estimating long-term population growth rates, the
trait-based population models (IPMs) we describe can also estimate transient population growth

rates and incorporate environmental and demographic stochasticity (Ellner et al., 2016). These
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409  models can therefore be used to simulate population dynamics in a changing environment by 1)
410 calculating demographic rates as a function of the environment at a specific time point, 2)

411  constructing an IPM kernel using those environment-specific demographic rates, 3) using the
412 kernel to project the population forward to the next time point, and 4) repeating through time.
413 This approach can be extended to simulate community dynamics by simultaneously
414  projecting the dynamics of multiple interacting species. This is essentially the approach used by
415  forest simulation models (Botkin et al., 1972; Strigul et al., 2008), which simulate forest

416  dynamics based on the demography of interacting individuals or cohorts. A key limitation of
417  these models is that they are difficult to parameterize for many species. As a result, species are
418  often grouped into broad functional types, and some demographic parameters, particularly

419  recruitment, are typically assumed to be fixed across all species (Moorcroft et al., 2001; Purves
420 etal., 2008). Our approach using species’ traits to inform estimates of demographic parameters
421  can help overcome this limitation and make these models more generalizable.

422

423 Other extensions and limitations

424  Given the flexibility of our framework, it can be adapted and extended in many ways. Here we
425  present a few examples. First, although we modeled the effect of the biotic neighborhood as a
426  simple function of total neighbor abundance, more complex forms of density and frequency
427  dependence could be included. For example, size-structured competition for light is a common
428  feature of forest models (Pacala et al., 1996; Strigul et al., 2008) and could be incorporated into
429  the demographic rate models in our framework. Responses to competition could also be modeled
430 as a function of the traits of both the target population and its neighbors (Kunstler et al., 2012),

431  allowing exploration of how frequency-dependent interactions warp the fitness landscape.
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432 Crucially, stable coexistence requires that species limit themselves more strongly than they limit
433 their competitors, allowing species to increase when rare, i.e., invade a resident community

434  (Chesson, 2000). Our framework could be used to calculate invasion growth rates and partition
435  the contribution of trait differences according to modern coexistence theory (Ellner et al., 2019),
436  providing insights into the role of functional traits in maintaining species diversity.

437 Second, whereas we used a fixed mean trait value for each species, the models could
438  incorporate intraspecific trait variation. Functional traits can vary strongly within and among
439  populations within species, and this variation can affect demographic performance (Bolnick et
440  al., 2011). The simplest way to incorporate intraspecific trait variation in our framework would
441  be to replace overall species mean trait values with site-specific species mean trait values. This
442  introduces greater data requirements, but modeling traits themselves as a function of the

443 environment would allow estimation of site-specific trait values without the need to measure
444  traits in every site. Intraspecific trait variation within sites could also be incorporated by treating
445  different phenotypes as distinct “populations” and modeling their dynamics separately, or by
446  including traits as additional state variables (i.e., in addition to size) in the IPMs (Ellner et al.,
447  2016).

448 Finally, all the analytical tools developed for matrix population models, including life
449  table and perturbation analysis, can be applied to the trait-based population models in our

450  framework (Caswell, 2001). For example, the models can be used to calculate life history traits,
451  such as life expectancy and age at reproductive maturity, and examine how they vary with

452  functional traits and the environment. Exploring the links between functional traits, life history
453  traits, and fitness across species and environments would contribute to an integrated

454  understanding of functional and life history strategies (Adler et al., 2014; Kelly et al., 2021).
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455 A limitation of our approach is that the fitness estimates are difficult to externally

456  validate. In one sense, A is an integrated measure of demographic performance that is

457  mathematically derived from size-specific demographic rates, so the A estimates are as valid as
458  the demographic rate estimates themselves (Caswell, 2001). In another sense, A is the growth rate
459  of a population at its equilibrium size structure in a stable environment, which are fairly strong
460  assumptions. Our framework could be used to project short-term population growth rates and
461  changes in population size structure, which could be validated using population time series data.
462  The general ability of a model to reproduce realistic community dynamics could also be

463  validated by comparing the composition and structure of simulated vs. observed communities.
464  However, because real communities are structured by historical processes not captured in our
465  modeling framework (e.g., dispersal, drift, selection in past environments), a mismatch would
466  not necessarily invalidate a model’s ability to estimate population fitness in current or projected
467  future environments.

468

469  Conclusions

470  Here we have proposed a framework for estimating the effects of multidimensional phenotypes
471 on fitness across species. By integrating the effects of traits on demographic performance across
472 species and over the life cycle into a single population model, this approach allows estimation of
473 the net effects of traits on population fitness, revealing the contours of fitness landscapes and
474  how they vary across environmental gradients. Our approach is flexible and can be applied in
475  any system given the availability of trait and demographic data, which are becoming more

476  widely available due to the proliferation of global databases (e.g., Kattge et al., 2020; Salguero-
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477  GoOmez et al., 2015), providing a promising pathway to achieve the long-held goal of making
478  community ecology more general, mechanistic, and predictive.
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