

Estimating the net effect of functional traits on fitness across species and environments

Andrew Siefert and Daniel C. Laughlin

Department of Botany, University of Wyoming, Laramie, WY 82071, USA

Running title: The net effect of traits on fitness

Correspondence:

Andrew Siefert

Department of Botany, University of Wyoming, Laramie, WY 82071, USA

Phone: 814-490-8935

Email: andrew.siefert@uwyo.edu

1 **ABSTRACT**

2 1. Functional traits affect the demographic performance of individuals in their environment,
3 leading to fitness differences that scale up to drive population dynamics and community
4 assembly. Understanding the links between traits and fitness is therefore critical for predicting
5 how populations and communities respond to environmental change. However, the net effects
6 of traits on species fitness are largely unknown because we have lacked a framework for
7 estimating fitness across multiple species and environments.

8 2. We present a modeling framework that integrates trait effects on demographic performance
9 over the life cycles of individuals to estimate the net effect of traits on species fitness. This
10 approach involves 1) modeling trait effects on individual demographic rates (growth, survival,
11 and recruitment) as multidimensional performance surfaces that vary with individual size and
12 environment and 2) integrating these effects into a population model to project population
13 growth rates (i.e., fitness) as a function of traits and environment. We illustrate our approach
14 by estimating performance surfaces and fitness landscapes for trees across a temperature
15 gradient in the eastern United States.

16 3. Functional traits (wood density, specific leaf area, and maximum height) interacted with
17 individual size and temperature to influence tree growth, survival, and recruitment rates,
18 generating demographic trade-offs and shaping the contours of fitness landscapes. Tall tree
19 species had high survival, growth, and fitness across the temperature gradient. Wood density
20 and specific leaf area had interactive effects on demographic performance, resulting in fitness
21 landscapes with multiple peaks.

22 4. With this approach it is now possible to empirically estimate the net effect of traits on fitness,
23 leading to improved understanding of the selective forces that drive community assembly and

24 permitting generalizable predictions of population and community dynamics in changing
25 environments.

26 **Keywords:** community assembly, fitness landscape, functional traits, population demography

27

28 **INTRODUCTION**

29 Functional traits influence how individuals interact with their abiotic and biotic environment, so
30 that individuals with traits better adapted to their environment will survive and reproduce at
31 greater rates. These trait-based fitness differences scale up to drive population and community
32 dynamics. Quantifying the links between traits and fitness and how they vary across
33 environments is therefore the key to gaining a mechanistic understanding of community
34 assembly and making generalized predictions of population and community dynamics in
35 changing environments (McGill et al., 2006; Shipley et al., 2015). Estimating these trait-fitness
36 relationships has remained largely out of reach, however, due to the empirical challenges of
37 estimating fitness across phenotypes of multiple species, especially for long-lived organisms
38 (Laughlin et al., 2020).

39 Here, we focus on estimating how trait variation among species affects fitness, defined as
40 the population growth rate of a species in a particular environmental context (McGraw &
41 Caswell, 1996). Population growth is the outcome of the demographic processes of growth,
42 survival, and reproduction over the life cycles of individuals. Establishing links between traits
43 and individual demographic rates is therefore an important first step toward estimating the effect
44 of traits on fitness. Many studies have examined interspecific trait-demographic rate
45 relationships, particularly in trees, but these relationships have often been found to be weak
46 (Yang et al., 2018). A proposed explanation for this is that trait-demographic rate relationships

47 are highly context-dependent (Swenson et al., 2020). The effect of a trait on demographic
48 performance likely depends on an individual's other traits, size or life stage, and the
49 environment. Recent studies have examined the influence of trait-by-trait, trait-by-size, and trait-
50 by-environment interactions on plant demographic rates across species (Lai et al., 2021;
51 Laughlin et al., 2018; Li et al., 2021), but few if any studies have accounted for all these contexts
52 simultaneously. To do so, we advocate extending the concept of the performance surface—
53 traditionally used by evolutionary biologists to describe the relationship between traits and
54 fitness components across individuals within a population (Arnold, 2003)—to quantify the
55 effects of multidimensional phenotypes on demographic rates across multiple species. Estimating
56 the shape of demographic performance surfaces and how they vary across life stages and
57 environments would bring us a step closer to linking traits with fitness.

58 Previous studies have quantified the relationship between traits and individual
59 demographic rates, but linking traits to fitness requires integrating trait effects on multiple
60 demographic rates across the life cycle (Laughlin et al., 2020). Single demographic rates are
61 often poor proxies for fitness due to the presence of demographic trade-offs. Traits can generate
62 these trade-offs if they have opposing effects on different aspects of demographic performance,
63 e.g., growth vs. survival (Stearns, 1989). Recent studies have examined demographic trade-offs
64 across many species and examined how species' positions along these trade-off axes correlate
65 with their functional traits (Adler et al., 2014; Rüger et al., 2018). Directly estimating the effects
66 of traits on multiple demographic rates across multiple life stages would provide stronger direct
67 insights into the role of traits in generating demographic trade-offs that define life-history
68 strategies and determine fitness.

69 Here we develop a data-driven modeling framework that integrates trait effects on
70 demographic performance over the life cycle to estimate the net effect of traits on fitness across
71 species and environments (Figure 1). To achieve this, we first model the effects of traits on
72 individual demographic rates (growth, survival, and recruitment) as multidimensional
73 performance surfaces whose shape can vary with individual size and local environment, thus
74 accounting for trait-by-size and trait-by-environment interactions. Next, we combine these
75 demographic rate models into a population model (Ellner et al., 2016) that integrates
76 demographic performance across the life cycle to project population growth rates—our measure
77 of fitness—as a function of traits and environment. Using this population model, we estimate the
78 fitness of multidimensional phenotypes in different environments to construct dynamic fitness
79 landscapes that quantify the net effects of traits on fitness across environments. We illustrate our
80 approach by estimating performance surfaces and fitness landscapes for trees across a
81 temperature gradient in the eastern United States and show that trait-mediated demographic
82 trade-offs naturally emerge from the model.

83

84 **METHODS**

85 **The framework**

86 Previous studies have linked traits with the individual demographic components of fitness—
87 survival, growth, and reproduction—but have not integrated all demographic rates to determine
88 the net effects of traits on fitness (Laughlin et al., 2020). Structured population models integrate
89 demographic performance across the life cycle to project population growth rates, a widely-used

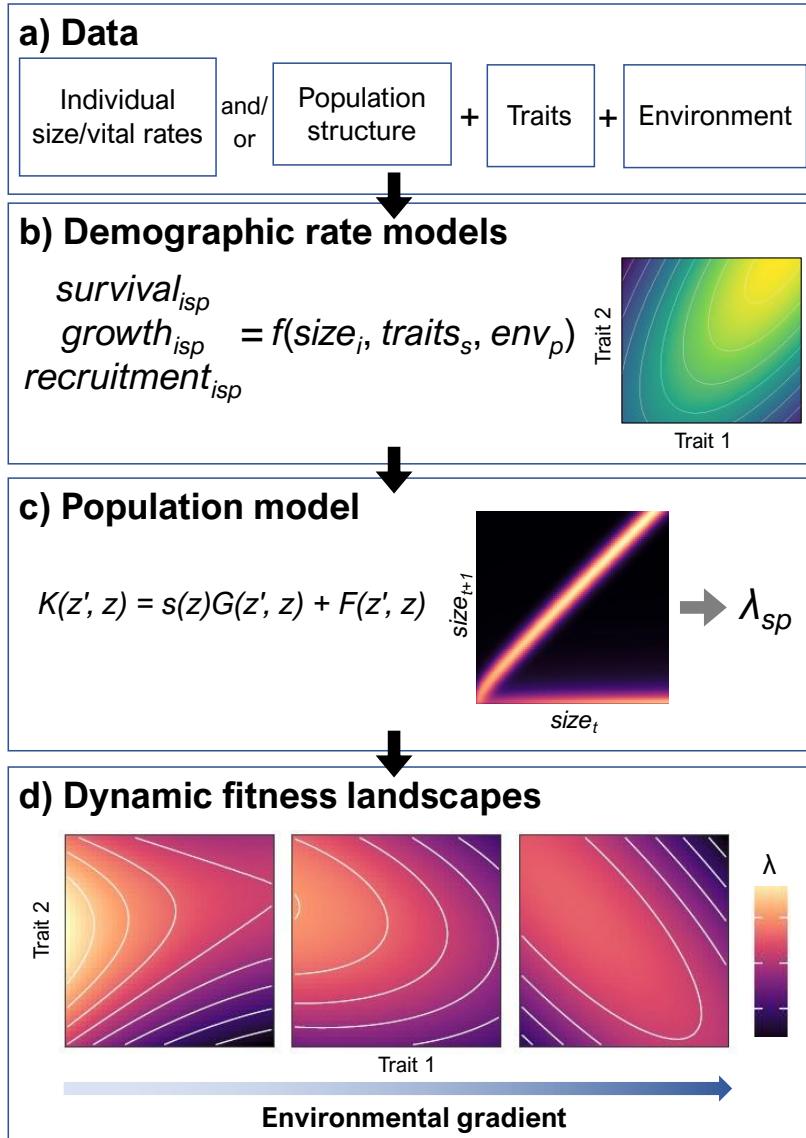


Figure 1. Conceptual illustration of the modeling framework. a) Data on individual sizes and vital rates, species' traits, and environmental variables are used to b) model individual demographic rates (survival, growth, and recruitment). Population size and structure data (e.g., counts of individuals by size class, number of recruits) can be used in place of or in addition to individual-level data to estimate demographic parameters through inverse modeling approaches. c) The demographic rate models are combined to make a single population model (integral projection model, IPM) that is used to project population growth rates (λ). d) Using the population model, we calculate population growth rates for phenotypes throughout the trait space in different environments to construct dynamic fitness landscapes. Subscripts index individual i , species s , plot p .

90 measure of population fitness (Caswell, 2001; Ellner et al., 2016). Our approach integrates trait-
91 based demographic models into a single population model that can estimate fitness across
92 species and environments.

93 The first step in our framework is to model individual growth, survival, and recruitment
94 across species as functions of individual size, species' traits, and the environment (Figure 1b).
95 Any type of demographic model can be used, but we prefer a Bayesian approach because it
96 allows integration of multiple types of data (Clark et al., 2004), including individual-level and
97 population-level data, as illustrated by our recruitment model in the case study below. Bayesian
98 models also make it easy to quantify uncertainty in demographic parameters and propagate this
99 uncertainty to the population model. Our framework is flexible with respect to the functional
100 forms used to quantify the effects of traits, size, and environment. Drawing inspiration from
101 evolutionary theory (Lande & Arnold, 1983), we model trait effects as multidimensional surfaces
102 that can capture linear and nonlinear effects and trait-by-trait interactions. By allowing the
103 shapes of these surfaces to vary depending on individual size and the environment, this approach
104 also can account for trait-by-size and trait-by-environment interactions.

105 The second step in our framework is to integrate the demographic rate models into a
106 single trait-based population model (Figure 1c) and use it to estimate the fitness of different
107 phenotypes in different environments. We use integral projection models (IPMs) due to their
108 flexibility. IPMs combine information about individuals' size-specific survival, growth, and
109 recruitment rates to project population dynamics (Merow, Dahlgren, et al., 2014). An IPM
110 describes how the size distribution of individuals in a population changes through time:

$$111 \quad n_{t+1}(z') = \int_{\Omega} K(z', z) n_t(z) \quad (1)$$

112 where $n_t(z)$ is the size distribution at time t , $n_{t+1}(z')$ is the size distribution at time $t + 1$, Ω
113 denotes the possible range of individual sizes, and the kernel $K(z', z)$ describes size transitions
114 through survival, growth, and reproduction:

115
$$K(z', z) = s(z)G(z', z) + F(z', z) \quad (2)$$

116 where $s(z)$ is the survival probability dependent on initial size z , $G(z', z)$ describes the probability
117 of growing from size z to z' , conditional on having survived, and $F(z', z)$ describes the size
118 distribution of new recruits produced by an individual of size z . These demographic transitions
119 can be estimated using the trait-based demographic rate models described in step 1, allowing
120 construction of IPM kernels for hypothetical populations with any combination of trait values
121 (i.e., phenotype) in any environment. The long-term population growth rate (λ) can be extracted
122 by eigenanalysis of the discretized kernel. λ is the growth rate to which a population will
123 converge if its demographic rates remain constant and it is allowed to reach its stable size
124 distribution. It provides an integrative relative measure of population performance, summarizing
125 how all demographic processes over the life cycle combine to determine how fast a population
126 grows (Ellner et al., 2016), and is commonly used in evolutionary biology as a measure of
127 fitness. Transient growth rates—the expected short-term growth rate of a population given its
128 current size distribution and demographic rates—can also be calculated by using the kernel to
129 project the population forward in time (Merow, Dahlgren, et al., 2014). We quantify fitness
130 landscapes by constructing IPM kernels and extracting long-term population growth rates for
131 phenotypes throughout the trait space in different environments (Figure 1d).

132 It is important to note that these fitness landscapes describe the mapping from phenotype
133 to fitness irrespective of species identity. If there are interspecific differences in demographic
134 rates not explained by traits (e.g., as captured by species random effects in the demographic rate

135 models), this information could be included when constructing the IPM kernels to provide
136 species-specific fitness estimates.

137

138 **Case study: fitness landscapes for temperate trees**

139 We illustrate our approach by estimating fitness landscapes for trees across a temperature
140 gradient in the eastern United States. We fit demographic models using data from the US Forest
141 Service Forest Inventory and Analysis (FIA; <http://www.fia.fs.fed.us>). The FIA dataset consists
142 of forest plots that are censused at varying intervals. At each census, individual survival and
143 diameter growth are measured for all trees ≥ 12.7 cm diameter at breast height (dbh; “canopy
144 trees” hereafter) within a plot and all saplings (2.54-12.7 cm dbh) within smaller microplots. We
145 extracted data from 12,752 plots in the eastern United States censused between 2003 and 2019
146 (see the Supplement for details about FIA plot design and data selection). We extracted mean
147 annual temperature data for the years spanning the census interval for each plot from gridMET
148 (Abatzoglou, 2013).

149 We focused on three traits representing key axes of plant functional strategies: wood
150 density, specific leaf area (SLA), and maximum height. Wood density reflects trade-offs between
151 stem hydraulic efficiency, hydraulic safety, and mechanical strength (Chave et al., 2009).
152 Specific leaf area reflects the trade-off between the cost of leaf construction and rate of return on
153 investment in carbon and nutrients (Wright et al., 2004). Maximum height reflects a trade-off
154 where taller species are better competitors for light but have higher stem construction and
155 maintenance costs and deferred reproduction (Falster & Westoby, 2003). We extracted trait
156 values for tree species in FIA plots from the TRY plant trait database (Kattge et al., 2020).

157 Survival and growth were modeled at the individual level. We created separate survival
158 models for saplings and canopy trees because size effects on survival across all sizes were not
159 well described by several functional forms we tried. We modeled growth of saplings and canopy
160 trees together, using average annual diameter growth rate as the response variable. Recruitment
161 was measured at the plot level as the number of trees crossing the 2.54-cm threshold during the
162 census interval (i.e., ingrowth). For each data set (sapling survival, canopy tree survival, growth,
163 and recruitment), we split the data into a training set (80% of plots) for model fitting and test set
164 (20% of plots) for model evaluation. We excluded plots containing fewer than 10 individuals (5
165 individuals for sapling survival) and species occurring in fewer than 10 plots (5 plots for sapling
166 survival). The final training data sets contained: 224,153 trees, 8,837 plots, 94 species (canopy
167 tree survival); 45,249 trees, 4,518 plots, 78 species (sapling survival); 250,768 trees, 9,152 plots,
168 95 species (growth); 32,891 plot-species observations, 4,099 plots, 83 species (recruitment).

169 To improve estimates of the relationship between tree size and recruitment, we obtained
170 data on individual size and reproductive status (presence of reproductive structures) from the
171 MASTIF network (Clark et al., 2019). We selected data from sites in eastern North America that
172 had at least one species in common with our demography modeling data set. Data were collected
173 between 2002 and 2020, with some trees being measured in multiple years. We excluded
174 observations for which reproductive status was unknown, resulting in a data set of 48,082
175 observations of 27,641 trees from 60 species in 34 sites.

176 One concern about estimating demographic performance using observational data is that
177 if we only observe species in favorable environments where they can persist ($\lambda \geq 1$), we will lack
178 information about how performance varies across environments. We think it is likely, however,
179 that large observational data sets such as FIA include observations of species in both favorable

180 and unfavorable environments and so include demographic failures ($\lambda < 1$). To test this, we fit
181 population models for four representative species with ample FIA and MASTIF data and
182 estimated their population growth rates across the ranges of mean annual temperatures in which
183 they occurred. We found that λ varied considerably with mean annual temperature for each
184 species, including values above and below 1 (see Supporting Information Figure S10),
185 confirming that our data set captured variation in demographic performance across the
186 temperature gradient.

187

188 ***Demographic rate models***

189 We modeled survival, growth, and recruitment using hierarchical Bayesian models that included
190 terms representing the effects of size, crowding, climate, and traits, as well as species and plot
191 random effects. Here we present an overview of salient features of the models. Additional
192 modeling details are included in the Supporting Information, and descriptions of all terms and
193 parameters in the demographic rate models are provided in Tables S1-S4.

194 Trait effects on demographic rates were modeled as multivariate Gaussian surfaces (i.e.,
195 performance surfaces; Lande 1980) whose shape varied with temperature:

196
$$trait_{sp} = \exp \left(\boldsymbol{\beta}_{\text{dir}_p}^T \mathbf{trait}_s + \mathbf{trait}_s^T \boldsymbol{\beta}_{\text{nonlin}_p} \mathbf{trait}_s \right) \quad (3)$$

197 where $trait_{sp}$ is the effect of traits on the demographic performance (survival, growth, or
198 reproduction) of species s in plot p , $\boldsymbol{\beta}_{\text{dir}_p}$ is a vector of directional (linear) performance gradients
199 in plot p , and $\boldsymbol{\beta}_{\text{nonlin}_p}$ is a matrix of nonlinear performance gradients in plot p (Arnold, 2003).
200 The diagonal elements of $\boldsymbol{\beta}_{\text{nonlin}}$ measure the strength of stabilizing (if β is negative) or
201 disruptive (if β is positive) selection for each trait, and the off-diagonal elements measure the

202 strength of correlational selection between trait pairs (Arnold, 2003). Positive correlational
203 selection means that performance is maximized by having either high or low values of both
204 traits. Negative correlational selection means that performance is maximized by having a high
205 value of one trait and low value of the other trait. This function can produce performance
206 surfaces of various shapes, including (when viewed in 2 dimensions) a peak, a saddle, a ridge, or
207 a slope.

208 To allow performances surfaces to vary across the temperature gradient, the performance
209 surface parameters (elements of β_{dir} and β_{nonlin}) were modeled as linear functions of mean
210 annual temperature:

$$\beta_{\text{dir}_{t,p}} = \beta_{\text{dir}_t} + \delta_{\text{dir}_t} \text{MAT}_p \quad (4)$$

$$\beta_{\text{nonlin}_{tu,p}} = \beta_{\text{nonlin}_{tu}} + \delta_{\text{nonlin}_{tu}} \text{MAT}_p \quad (5)$$

213 where $\beta_{\text{dir}_{t,p}}$ is the directional selection coefficient for trait t in plot p , $\beta_{\text{nonlin}_{tu,p}}$ is the
214 stabilizing/disruptive selection coefficient for trait t (if $t = u$) or correlational selection coefficient
215 for traits t and u (if $t \neq u$) in plot p . β_{dir_t} and $\beta_{\text{nonlin}_{tu}}$ are the performance gradients in a plot
216 with average temperature, and δ_{dir_t} and $\delta_{\text{nonlin}_{tu}}$ describe how the trait effects change along the
217 temperature gradient (i.e., trait-by-environment interactions).

218 The effect of tree size on demographic performance was modeled as an increasing
219 (sapling survival and recruitment) or hump-shaped (canopy tree survival and growth) function of
220 individual diameter. The parameters of the size functions were themselves functions of traits,
221 allowing for trait-by-size interactions. The effect of crowding was modeled as a decreasing
222 (power law) function of the total basal area of neighboring trees (see the Supplementary Methods
223 for additional details).

224 Whereas individual survival and growth could be modeled directly using individual-level
225 data, reproduction was modeled using an inverse approach that combined information on plot-
226 level recruitment and individual-level reproductive status (Clark et al., 2019). Briefly, for each
227 tree in a plot, the model estimated the annual production of recruits as a function of size,
228 crowding, climate, and traits. The size effect was a product of the probability of being
229 reproductive and the per-capita production of recruits, conditional on being reproductive
230 (Ribbens et al., 1994). These annual per-capita recruitment rates were summed across trees in a
231 plot and multiplied by the census interval (in years) to give the predicted number of recruits. By
232 modeling plot-level recruitment (using FIA data) and individual-level reproductive status (using
233 MASTIF data) jointly within a Bayesian framework, both types of data informed estimates of
234 individual recruitment rates.

235 We assessed model performance by calculating their predictive accuracy (AUC for
236 survival, R^2 for growth and recruitment) on the training and test sets. To assess the ability of
237 traits to predict species' demographic rates, we calculated the proportion of variation in species'
238 expected demographic rates (i.e., predictions including species random effects) explained by
239 traits (i.e., predictions based on species' traits only, excluding species random effects) within
240 different size and temperature bins.

241

242 ***Trait-mediated demographic tradeoffs***

243 Life history theory holds that organisms face trade-offs in allocation to different demographic
244 processes across the life cycle, resulting in demographic trade-offs that constrain life history
245 strategies (Stearns, 1989). Key demographic trade-offs posited for trees include the growth-
246 survival trade-off, which is thought to be strongest at the sapling stage (Wright et al., 2010), and

247 the stature-recruitment trade-off, which distinguishes between phenotypes that recruit early in
248 life versus those that exhibit high growth and survival later in life (Rüger et al., 2018). We
249 explored whether these trade-offs emerged from the effects of functional traits on demographic
250 rates in our model. To test the role of traits in mediating a sapling growth-survival trade-off, we
251 calculated and plotted the predicted growth vs. survival of trees at 5 cm dbh across a range of
252 trait values, with other model predictors held constant at their average values. To test whether
253 traits generated a stature-recruitment trade-off, we similarly plotted the predicted growth or
254 survival at 60 cm dbh vs. recruitment at 8 cm dbh (the average size at onset of reproduction
255 across all species) across a range of trait values.

256

257 ***Fitness landscapes***

258 To construct fitness landscapes, we integrated the demographic rate models described above into
259 a population model (IPM) that we used to project population growth rates of multidimensional
260 phenotypes across the temperature gradient. We constructed IPM kernels and extracted long-
261 term population growth rates (λ) for a grid of trait values covering the observed trait space at
262 each of three mean annual temperatures (5, 10, and 15°C). Further details about IPM
263 implementation are provided in the Supporting Information.

264

265 **RESULTS**

266 **Trait-demographic rate relationships**

267 Functional traits influenced tree survival, growth, and recruitment rates, and these effects varied
268 with tree size and mean annual temperature (see Tables S6-S9 for parameter estimates and
269 credible intervals). The sapling and canopy tree survival models had AUC of 0.79 and 0.77,

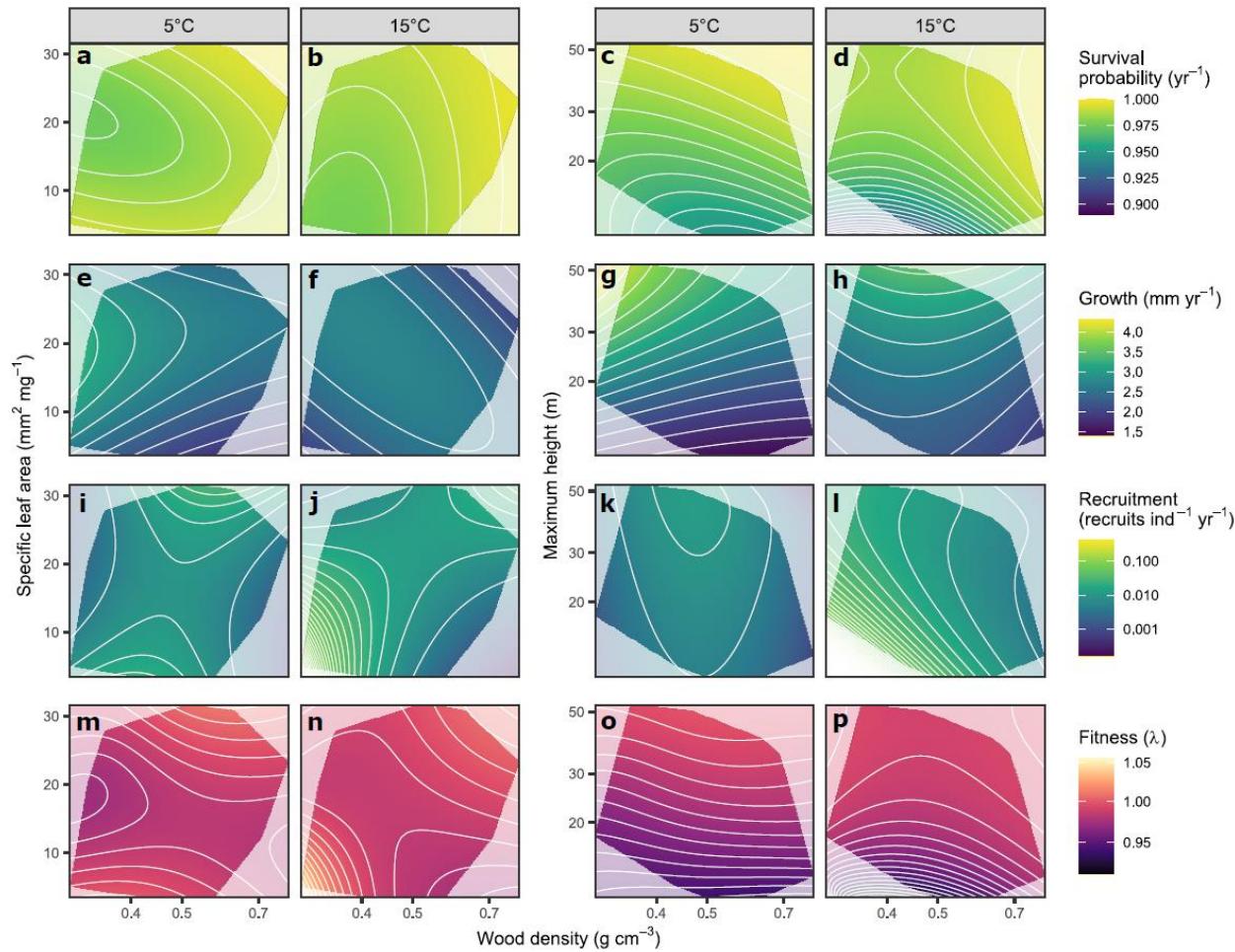


Figure 2. Tree performance and fitness landscapes at low and high mean annual temperatures.

Landscapes show expected demographic rates (survival, a-d; diameter growth, e-h; recruitment, i-l) and fitness (population growth rate, m-p) for trees species with different trait combinations.

Demographic rate and fitness models included three traits—wood density, specific leaf area (SLA), and maximum height—but for ease of visualization, landscapes are shown for two traits at a time (wood density and SLA, columns 1-2; wood density and maximum height, columns 3-4) with the third trait held constant at its average value. Demographic rates also vary with tree size, mean annual temperature, and neighbor density in our model. Performance landscapes shown here are for trees with 20 cm diameter at low (5°C, columns 1 and 3) or high (15°C, columns 2 and 4) mean annual temperature and average neighbor density. Fitness landscapes integrate demographic performance across sizes. Grayed areas show regions of trait space not occupied by tree species in our data set.

270 respectively, on the training set and 0.69 on the test set (Fig. S11b,c,e,f). Traits explained 8-75%
271 of variation in species' survival rates, depending on the size class and mean annual temperature,
272 with more variation explained for larger-diameter trees (Fig. S12a). Tree species with the tallest
273 maximum heights and densest wood had the highest survival rates (Figure 2a-d, Figure S2a,c).
274 Wood density and SLA had an interactive effect on survival, especially of small-diameter trees,
275 such that survival peaked for species with either high wood density and high SLA or low wood
276 density and low SLA (Figure 2a, Figure S4a).

277 The growth model explained 35% and 23% of variation in individual tree growth rates in
278 the training and test sets, respectively (Fig. S11h,i). Traits explained 12-36% of variation in
279 species' growth rates depending on size and mean annual temperature, with more variation
280 explained for large-diameter trees (Fig. S12b). Species with the tallest maximum heights and
281 lowest wood densities grew the fastest, especially in cold sites (Figure 2g,h, Figure S2d,f). There
282 was a complex interaction between wood density, SLA, and temperature. In cold sites, growth
283 peaked at low values of wood density and medium to high values of SLA (Figure 2e), whereas in
284 warm sites there was a ridge of high growth rates in the performance surface running from an
285 acquisitive strategy of low wood density and high SLA to a conservative strategy of high wood
286 density and low SLA (Figure 2f, Figure S5a). The positive effect of SLA on growth was
287 strongest in small-diameter trees (Figure S2e). In contrast, the effect of maximum height was
288 strongest for large-diameter trees (Figure S2f).

289 The full recruitment model explained 36% and 13% of variation in population-level
290 recruitment in the training and test sets, respectively (Fig. S11k-l). Traits explained 5-67% of
291 variation in species' recruitment rates depending on size and temperature, with more variation
292 explained for larger-diameter trees and warmer sites (Fig. S12c). Species with low wood density

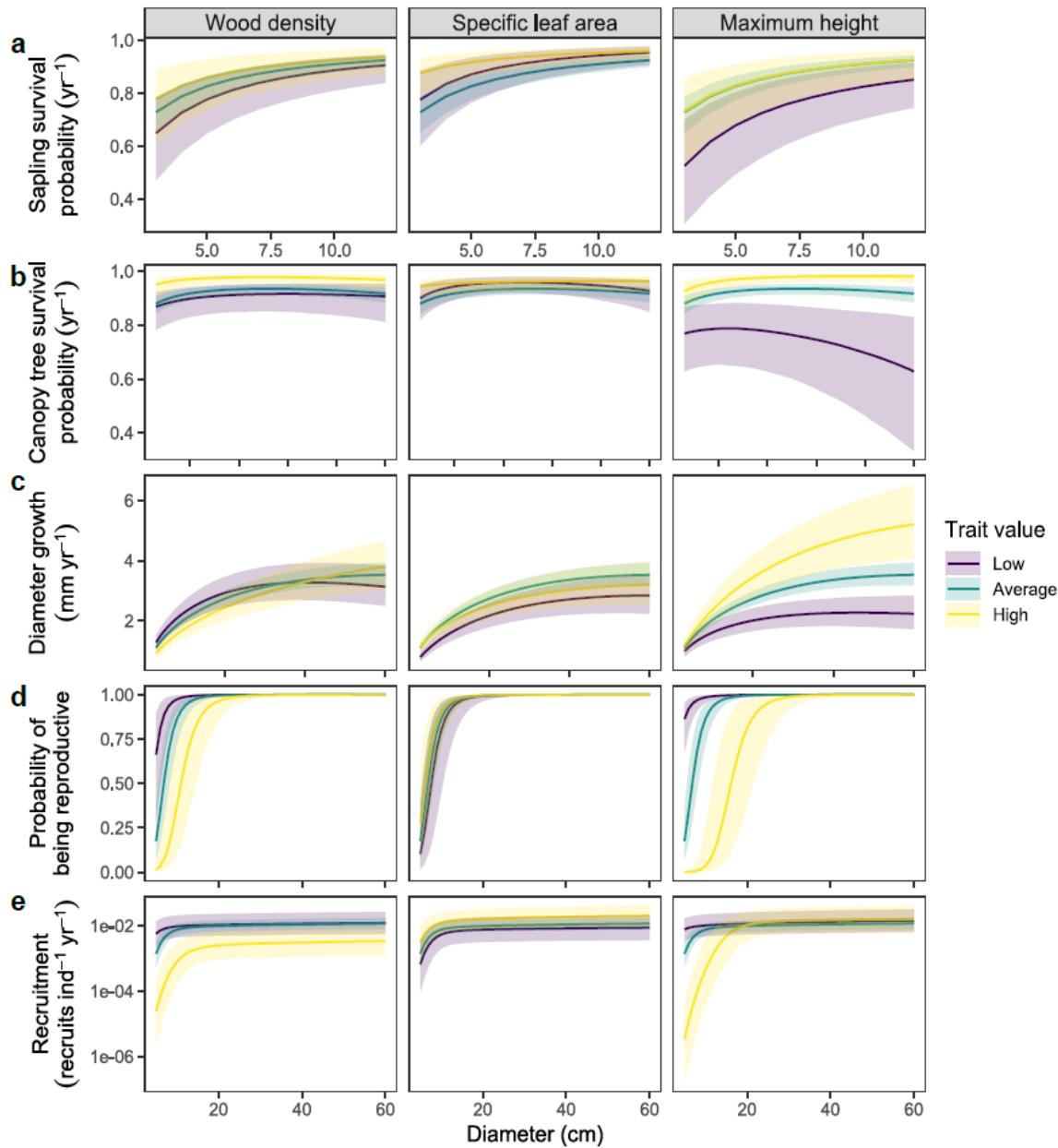


Figure 3. Relationship between tree diameter and demographic performance with respect to functional traits. Plots show the relationship between tree diameter and expected sapling survival (a), canopy tree survival (b), diameter growth (c), probability of being reproductive (d), and annual per-capita recruitment (e). Trend lines show conditional expectations for trees with different values of wood density (column 1), specific leaf area (column 2), or maximum height (column 3) with other traits, temperature, and neighbor density held constant at their average values. Size-demographic rate relationships are shown for average, low (average $- 2\text{SD}$), and high (average $+ 2\text{SD}$) values of each trait to illustrate trait-by-size interactions. Shaded areas show 90% credible intervals.

294 had the highest per-capita recruitment rates, particularly in warm sites (Figure 2j,l, Figure S3a).
295 There was strong positive correlational selection between wood density and SLA, such that
296 recruitment peaked at a combination of low wood density and low SLA and a combination of
297 high wood density and high SLA, especially in warm sites (Figure 2j, Figure S6a). The effects of
298 maximum height and wood density on per-capita recruitment depended on tree diameter. For
299 small-diameter trees, per-capita recruitment was strongly negatively related to wood density and
300 maximum height, whereas for large-diameter trees these effects were weaker (Figure S3a,c).
301 These interactions occurred because species with dense wood and tall maximum height had a
302 larger size at onset of reproduction (Figure 3d).

303

304 **Trait-mediated demographic trade-offs**

305 We found evidence for a growth-survival trade-off among saplings driven by wood density.
306 Saplings of species with low wood density grew quickly but had low survival rates, whereas
307 saplings of species with high wood density had high survival rates but grew slowly (Figure 4a).
308 This growth-survival trade-off naturally emerged from the opposing effects of wood density on
309 growth and survival in our models. We also found evidence of a stature-recruitment trade-off
310 mediated by maximum height and wood density. Species with low maximum height and low
311 wood density had high recruitment at small sizes but low growth and survival at larger sizes,
312 whereas species with tall maximum height and dense wood had high growth and survival as
313 large trees but produced few recruits when they were small (Figure 4b,c,h,i). We did not find
314 evidence of a growth-survival trade-off or stature-recruitment trade-off driven by specific leaf
315 area (Figure 4d-f).

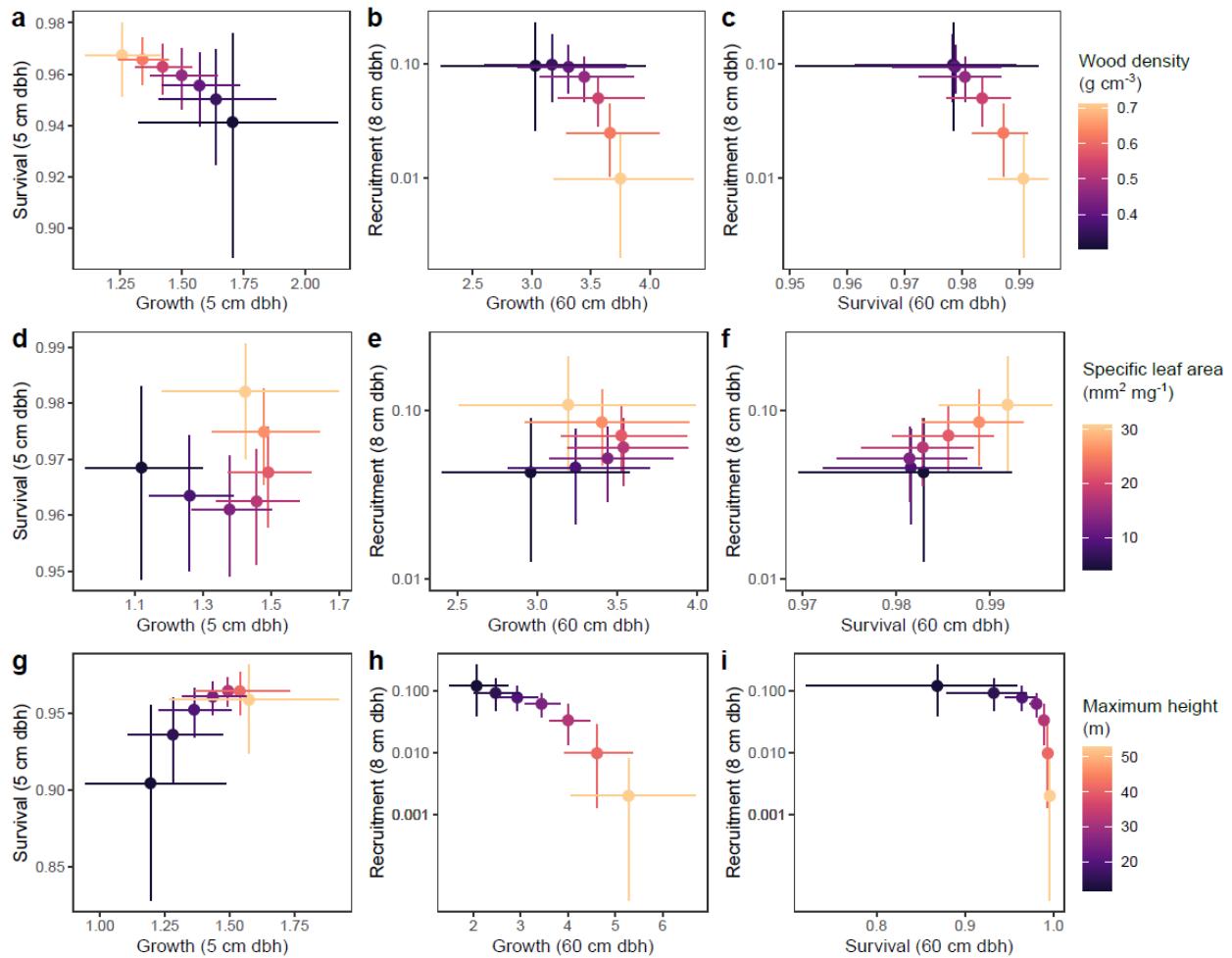


Figure 4. Trait-mediated demographic trade-offs. Points represent predicted demographic rates (error bars show 90% credible intervals) for trees with varying wood density (a-c), specific leaf area (d-f), or maximum height (g-i), with other model predictors held at their average values. A negative relationship between demographic rates across values of a trait indicates a trait-mediated demographic trade-off. The first column (a,d,b) shows the relationship between predicted growth and survival at 5 cm diameter, diagnostic of a growth-survival tradeoff in saplings. The second (b,e,h) and third (c,f,i) columns show relationships between growth and survival, respectively, at 60 cm diameter and recruitment at 8 cm diameter, diagnostic of a trade-off between recruitment early in life and growth and survival later in life (i.e., stature-recruitment tradeoff).

317 **Fitness landscapes**

318 Tree species with taller maximum heights had higher fitness at all temperatures, especially in
319 colder sites (Figure 2o-p, Figures S7b,c, S8). The positive overall effect of maximum height on
320 fitness likely resulted from its positive effects on both growth and survival across the life cycle
321 (Figure S2c,f). The net effects of wood density and specific leaf area on fitness were weaker,
322 nonlinear, interactive, and variable across the temperature gradient. The strongest effects of
323 wood density and SLA were in warm sites, where fitness was highest for species with low wood
324 density and low SLA (Figure 2n, Figure S7a), likely due to these species having high sapling
325 survival coupled with high recruitment rates (Figures S4a, S6a). Fitness landscapes for wood
326 density and SLA were bimodal, with fitness peaks at both low wood density coupled with low
327 SLA and high wood density coupled with high SLA (Figure 2m-n, Figure S7a). This appears to
328 be driven by a similar bimodal shape of the performance landscape for sapling survival (Figure
329 S4a). These bimodal and relatively flat fitness landscapes indicate the presence of alternative
330 functional strategies that yield similar fitness.

331

332 **DISCUSSION**

333 The idea that traits drive variation in species fitness is a core assumption of trait-based ecology
334 (Violle et al., 2007) and foundational to the promise that trait-based approaches can make
335 community ecology more general, mechanistic, and predictive (Lavorel & Garnier, 2002; McGill
336 et al., 2006; Shipley et al., 2015). Despite progress in estimating the relationship between traits
337 and the demographic components of fitness, we still lack information about the net effects of
338 traits on fitness itself, due in large part to the empirical challenges of estimating fitness across
339 phenotypes of multiple species in multiple environments. Our approach overcomes these

340 challenges by integrating trait-based demographic models into a single population model to
341 project population fitness as a function of multidimensional phenotypes and the environment.
342 With this approach it is now possible to empirically estimate the net effect of traits on fitness,
343 leading to improved understanding of the selective forces that drive community assembly and
344 permitting mechanistic predictions of community dynamics in changing environments.

345

346 **Insights into the adaptive value of traits**

347 Community ecologists have long been interested in understanding how traits drive the
348 performance and distributions of species across environmental gradients. The metaphor of an
349 environmental filter is often used to describe natural selection acting across populations within a
350 community, whereby species with certain trait values succeed and persist in an environment and
351 others fail (Keddy, 1992). Previous work has sought to infer environmental filters by examining
352 trait-environment relationships and trait distribution patterns (e.g., Cornwell & Ackerly, 2009;
353 Laughlin et al., 2012). However, these patterns reflect the aggregated effects of multiple
354 processes, including selection, dispersal, and ecological drift, acting across multiple generations
355 (Lasky et al., 2013). Our approach translates the metaphor of environmental filtering into an
356 operational framework to directly estimate the effects of traits on performance and the likelihood
357 of population persistence. Quantifying these effects is critical for understanding the adaptive
358 value of traits in different environments and predicting how populations and communities
359 respond to environmental change.

360 Our case study shows how our modeling framework can provide insights into the
361 adaptive value of functional traits within communities. We found that functional traits influenced
362 the demographic performance and fitness of trees across the eastern United States. Tall species

363 had relatively high survival and grew quickly throughout their life cycle but produced few
364 recruits at small sizes, reflecting a strategy of “long-lived pioneers” previously described in
365 tropical forests (Rüger et al., 2018). Short species reached reproductive maturity quickly and had
366 high recruitment rates at small diameters, but this had relatively little overall fitness benefit
367 because fitness of long-lived plants is more sensitive to survival and growth than to reproduction
368 (Franco & Silvertown, 2004). The low fitness of short-statured species ($\lambda < 1$, indicating
369 population decline) might seem surprising, but it likely reflects the fact that we evaluated fitness
370 at the average crowding level (i.e., total stand basal area) in our data set, which only included
371 forests at least 20 years old. Many short-statured species are shade intolerant, early-successional
372 species that are likely outcompeted by taller, late-successional species by this time (Falster &
373 Westoby, 2005). Some short tree species are able to persist in the understories of mature forests,
374 so their low predicted fitness suggests that our model did not adequately account for processes,
375 such as gap formation and spatio-temporal niche partitioning, that enable their persistence
376 (Falster et al., 2017). However, these temporal dynamics could be integrated and estimated
377 provided that enough empirical observations in young, regenerating forests stands are available.

378 Wood density and specific leaf area had interactive effects on demographic rates, and
379 these effects varied over the life cycle and across the temperature gradient, exemplifying the
380 context-dependence of trait-demographic rate relationships (Yang et al., 2018). For example, for
381 large-diameter trees in cold sites, species with low wood density and high SLA grew the fastest,
382 consistent with the expectation that these trait values are part of a fast, resource-acquisitive
383 strategy (Reich, 2014). In contrast, for large-diameter trees in warm sites, species with the
384 opposite trait values (high wood density and low SLA) also grew fast, indicating that a
385 conservative strategy might be beneficial for growth given the hydraulic challenges faced by

386 large trees at warm temperatures (Fajardo et al., 2019). Indeed, species with these trait values,
387 including southern oaks (e.g., *Quercus nigra*, *Q. falcata*) and hard-wooded pines (e.g., *Pinus*
388 *taeda*, *P. elliotti*) are known to be fast-growing in the southern US (Burns & Honkala, 1990).
389 Wood density and specific leaf area also had interactive effects on sapling survival and
390 recruitment (which integrates seed production and seedling performance, because we counted
391 recruits as trees reaching the 1-cm diameter threshold), producing bimodal performance surfaces
392 in which performance peaked for species with either high wood density and high SLA or low
393 wood density and low SLA. These effects produced similarly bimodal fitness landscapes,
394 providing evidence of alternative functional strategies that have similar fitness, potentially
395 contributing to the maintenance of functional diversity (Marks & Lechowicz, 2006).

396

397 **Predicting population and community dynamics**

398 Predicting the responses of a large number of species to climate change and other global change
399 drivers is an ongoing challenge for ecologists. Demographic population models have been used
400 to project population dynamics for single species across different environments (Merow,
401 Latimer, et al., 2014), but measuring demographic rates for every species in every environment is
402 not feasible. Our approach of modeling population growth rates as a function of traits and
403 environment allows for generalization to species with known traits but limited demographic data
404 and to populations in environments outside their species' current realized niche (Butt &
405 Gallagher, 2018; Evans et al., 2016).

406 Although our case study focused on estimating long-term population growth rates, the
407 trait-based population models (IPMs) we describe can also estimate transient population growth
408 rates and incorporate environmental and demographic stochasticity (Ellner et al., 2016). These

409 models can therefore be used to simulate population dynamics in a changing environment by 1)
410 calculating demographic rates as a function of the environment at a specific time point, 2)
411 constructing an IPM kernel using those environment-specific demographic rates, 3) using the
412 kernel to project the population forward to the next time point, and 4) repeating through time.

413 This approach can be extended to simulate community dynamics by simultaneously
414 projecting the dynamics of multiple interacting species. This is essentially the approach used by
415 forest simulation models (Botkin et al., 1972; Strigul et al., 2008), which simulate forest
416 dynamics based on the demography of interacting individuals or cohorts. A key limitation of
417 these models is that they are difficult to parameterize for many species. As a result, species are
418 often grouped into broad functional types, and some demographic parameters, particularly
419 recruitment, are typically assumed to be fixed across all species (Moorcroft et al., 2001; Purves
420 et al., 2008). Our approach using species' traits to inform estimates of demographic parameters
421 can help overcome this limitation and make these models more generalizable.

422

423 **Other extensions and limitations**

424 Given the flexibility of our framework, it can be adapted and extended in many ways. Here we
425 present a few examples. First, although we modeled the effect of the biotic neighborhood as a
426 simple function of total neighbor abundance, more complex forms of density and frequency
427 dependence could be included. For example, size-structured competition for light is a common
428 feature of forest models (Pacala et al., 1996; Strigul et al., 2008) and could be incorporated into
429 the demographic rate models in our framework. Responses to competition could also be modeled
430 as a function of the traits of both the target population and its neighbors (Kunstler et al., 2012),
431 allowing exploration of how frequency-dependent interactions warp the fitness landscape.

432 Crucially, stable coexistence requires that species limit themselves more strongly than they limit
433 their competitors, allowing species to increase when rare, i.e., invade a resident community
434 (Chesson, 2000). Our framework could be used to calculate invasion growth rates and partition
435 the contribution of trait differences according to modern coexistence theory (Ellner et al., 2019),
436 providing insights into the role of functional traits in maintaining species diversity.

437 Second, whereas we used a fixed mean trait value for each species, the models could
438 incorporate intraspecific trait variation. Functional traits can vary strongly within and among
439 populations within species, and this variation can affect demographic performance (Bolnick et
440 al., 2011). The simplest way to incorporate intraspecific trait variation in our framework would
441 be to replace overall species mean trait values with site-specific species mean trait values. This
442 introduces greater data requirements, but modeling traits themselves as a function of the
443 environment would allow estimation of site-specific trait values without the need to measure
444 traits in every site. Intraspecific trait variation within sites could also be incorporated by treating
445 different phenotypes as distinct “populations” and modeling their dynamics separately, or by
446 including traits as additional state variables (i.e., in addition to size) in the IPMs (Ellner et al.,
447 2016).

448 Finally, all the analytical tools developed for matrix population models, including life
449 table and perturbation analysis, can be applied to the trait-based population models in our
450 framework (Caswell, 2001). For example, the models can be used to calculate life history traits,
451 such as life expectancy and age at reproductive maturity, and examine how they vary with
452 functional traits and the environment. Exploring the links between functional traits, life history
453 traits, and fitness across species and environments would contribute to an integrated
454 understanding of functional and life history strategies (Adler et al., 2014; Kelly et al., 2021).

455 A limitation of our approach is that the fitness estimates are difficult to externally
456 validate. In one sense, λ is an integrated measure of demographic performance that is
457 mathematically derived from size-specific demographic rates, so the λ estimates are as valid as
458 the demographic rate estimates themselves (Caswell, 2001). In another sense, λ is the growth rate
459 of a population at its equilibrium size structure in a stable environment, which are fairly strong
460 assumptions. Our framework could be used to project short-term population growth rates and
461 changes in population size structure, which could be validated using population time series data.
462 The general ability of a model to reproduce realistic community dynamics could also be
463 validated by comparing the composition and structure of simulated vs. observed communities.
464 However, because real communities are structured by historical processes not captured in our
465 modeling framework (e.g., dispersal, drift, selection in past environments), a mismatch would
466 not necessarily invalidate a model's ability to estimate population fitness in current or projected
467 future environments.

468

469 **Conclusions**

470 Here we have proposed a framework for estimating the effects of multidimensional phenotypes
471 on fitness across species. By integrating the effects of traits on demographic performance across
472 species and over the life cycle into a single population model, this approach allows estimation of
473 the net effects of traits on population fitness, revealing the contours of fitness landscapes and
474 how they vary across environmental gradients. Our approach is flexible and can be applied in
475 any system given the availability of trait and demographic data, which are becoming more
476 widely available due to the proliferation of global databases (e.g., Kattge et al., 2020; Salguero-

477 Gómez et al., 2015), providing a promising pathway to achieve the long-held goal of making
478 community ecology more general, mechanistic, and predictive.

479

480 **Acknowledgements**

481 We thank Stephen Ellner for modelling feedback and advice. This study was funded by the
482 National Science Foundation EPSCOR Grant #2019528.

483

484 **Conflict of interest statement**

485 The authors have no conflicts of interest.

486

487 **Data availability**

488 All data and code necessary to recreate the analyses presented in this manuscript are available on
489 GitHub (<http://github.com/andrewsiefert/treescapes>).

490

491 **Author contributions**

492 AS and DCL conceived the ideas and designed methodology; AS assembled and analyzed the
493 data; AS and DCL wrote the manuscript.

494

495 **References**

496 Abatzoglou, J. T. (2013). Development of gridded surface meteorological data for ecological
497 applications and modelling. *International Journal of Climatology*, 131, 121–131.
498 <https://doi.org/10.1002/joc.3413>
499 Adler, P. B., Salguero-Gómez, R., Compagnoni, A., Hsu, J. S., Ray-Mukherjee, J., Mbeau-Ache,

500 C., & Franco, M. (2014). Functional traits explain variation in plant life history strategies.

501 *Proceedings of the National Academy of Sciences USA*, 111(27), 10019.

502 <https://doi.org/10.1073/pnas.1410430111>

503 Arnold, S. J. (2003). Performance surfaces and adaptive landscapes. *Integrative and*

504 *Comparative Biology*, 43, 367–375.

505 Bolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., Rudolf, V.

506 H. W., Schreiber, S. J., Urban, M. C., & Vasseur, D. A. (2011). Why intraspecific trait

507 variation matters in community ecology. *Trends in Ecology and Evolution*, 26(4), 183–192.

508 <https://doi.org/10.1016/j.tree.2011.01.009>

509 Botkin, D. B., Janak, J. F., & Wallis, J. R. (1972). Some ecological consequences of a computer

510 model of forest growth. *Journal of Ecology*, 60(3), 849–872.

511 Burns, R. M., & Honkala, B. H. (1990). *Silvics of North America*. Agricultural Handbook 654.

512 U.S. Department of Agriculture Forest Service.

513 Butt, N., & Gallagher, R. (2018). Using species traits to guide conservation actions under climate

514 change. *Climatic Change*, 151(2), 317–332. <https://doi.org/10.1007/s10584-018-2294-z>

515 Caswell, H. (2001). *Matrix population models: construction, analysis and interpretation*. Sinauer

516 Associates.

517 Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009).

518 Towards a worldwide wood economics spectrum. *Ecology Letters*, 12(4), 351–366.

519 <https://doi.org/10.1111/j.1461-0248.2009.01285.x>

520 Chesson, P. (2000). Mechanisms of maintenance of species diversity. *Annual Review of Ecology*

521 *and Systematics*, 31, 343–366.

522 Clark, J. S., LaDeau, S., & Ibanez, I. (2004). Fecundity of trees and the colonization-competition

523 hypothesis. *Ecological Monographs*, 74(3), 415–442. <https://doi.org/10.1890/02-4093>

524 Clark, J. S., Nuñez, C. L., & Tomasek, B. (2019). Foodwebs based on unreliable foundations:

525 spatiotemporal masting merged with consumer movement, storage, and diet. *Ecological*

526 *Monographs*, 89(4), e01381. <https://doi.org/10.1002/ecm.1381>

527 Cornwell, W. K., & Ackerly, D. D. (2009). Community assembly and shifts in plant trait

528 distributions across an environmental gradient in coastal California. *Ecological*

529 *Monographs*, 79(1), 109–126. <https://doi.org/10.1890/07-1134.1>

530 Ellner, S. P., Childs, D. Z., & Rees, M. (2016). *Data-driven modelling of structured populations: a practical guide to the integral projection model*. Springer.

531 Ellner, S. P., Snyder, R. E., Adler, P. B., & Hooker, G. (2019). An expanded modern coexistence

532 theory for empirical applications. *Ecology Letters*, 22(1), 3–18.

533 <https://doi.org/10.1111/ele.13159>

535 Evans, M. E. K., Merow, C., Record, S., McMahon, S. M., & Enquist, B. J. (2016). Towards

536 process-based range modeling of many species. *Trends in Ecology and Evolution*, 31(11),

537 860–871. <https://doi.org/10.1016/j.tree.2016.08.005>

538 Fajardo, A., McIntire, E. J. B., & Olson, M. E. (2019). When short stature is an asset in trees.

539 *Trends in Ecology and Evolution*, 34(3), 193–199.

540 <https://doi.org/10.1016/j.tree.2018.10.011>

541 Falster, D. S., Bränström, Å., Westoby, M., & Dieckmann, U. (2017). Multitrait successional

542 forest dynamics enable diverse competitive coexistence. *Proceedings of the National*

543 *Academy of Sciences USA*, 114(13), E2719–E2728.

544 <https://doi.org/10.1073/pnas.1610206114>

545 Falster, D. S., & Westoby, M. (2005). Tradeoffs between height growth rate, stem persistence

546 and maximum height among plant species in a post-fire succession. *Oikos*, 111(1), 57–66.

547 <https://doi.org/10.1111/j.0030-1299.2005.13383.x>

548 Falster, D., & Westoby, M. (2003). Plant height and evolutionary games. *Trends in Ecology and*
549 *Evolution*, 18(7), 337–343. [https://doi.org/10.1016/S0169-5347\(03\)00061-2](https://doi.org/10.1016/S0169-5347(03)00061-2)

550 Franco, M., & Silvertown, J. (2004). A comparative demography of plants based upon
551 elasticities of vital rates. *Ecology*, 85(2), 531–538. <https://doi.org/10.1890/02-0651>

552 Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn, S., Werner,
553 G. D. A., Aakala, T., Abedi, M., Acosta, A. T. R., Adamidis, G. C., Adamson, K., Aiba, M.,
554 Albert, C. H., Alcántara, J. M., Alcázar C, C., Aleixo, I., Ali, H., ... Wirth, C. (2020). TRY
555 plant trait database – enhanced coverage and open access. *Global Change Biology*, 26(1),
556 119–188. <https://doi.org/10.1111/gcb.14904>

557 Keddy, P. (1992). Assembly and response rules: two goals for predictive community ecology.
558 *Journal of Vegetation Science*, 3(2), 157–164.
559 <http://onlinelibrary.wiley.com/doi/10.2307/3235676/abstract>

560 Kelly, R., Healy, K., Anand, M., Baudraz, M., Bahn, M., Cerabolini, B. E. L., Cornelissen, J. H.
561 C., Dwyer, J. M., Jackson, A. L., Kattge, J., Niinemets, Ü., Penuelas, J., Pierce, S.,
562 Salguero-Gómez, R., & Buckley, Y. (2021). Climatic and evolutionary contexts are
563 required to infer plant life history strategies from functional traits at a global scale. *Ecology*
564 *Letters*.

565 Kunstler, G., Lavergne, S., Courbaud, B., Thuiller, W., Vieilledent, G., Zimmermann, N. E.,
566 Kattge, J., Coomes, D. a, & Grover, J. (2012). Competitive interactions between forest trees
567 are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications
568 for forest community assembly. *Ecology Letters*, 15(8), 831–840.

569 <https://doi.org/10.1111/j.1461-0248.2012.01803.x>

570 Lai, H. R., Craven, D., Hall, J. S., Hui, F. K. C. C., van Breugel, M., & Breugel, M. Van. (2021).

571 Successional syndromes of saplings in tropical secondary forests emerge from environment-

572 dependent trait-demography relationships. *Ecology Letters*, 24, 1776–1787.

573 <https://doi.org/10.1111/ele.13784>

574 Lande, R, & Arnold, S. J. (1983). The measurement of selection on correlated characters.

575 *Evolution*, 37(6), 1210–1226.

576 Lande, Russell. (1980). The genetic covariance between characters maintained by pleiotropic

577 mutations. *Genetics*, 94(1), 203–215.

578 Lasky, J., Sun, I., Su, S., Chen, Z., & Keitt, T. (2013). Trait-mediated effects of environmental

579 filtering on tree community dynamics. *Journal of Ecology*, 101, 722–733.

580 <https://doi.org/10.1111/1365-2745.12065>

581 Laughlin, D. C., Gremer, J. R., Adler, P. B., Mitchell, R. M., & Moore, M. M. (2020). The net

582 effect of functional traits on fitness. *Trends in Ecology and Evolution*, 35(11), 1037–1047.

583 <https://doi.org/10.1016/j.tree.2020.07.010>

584 Laughlin, D. C., Joshi, C., Bodegom, P. M., Bastow, Z. A., & Fulé, P. Z. (2012). A predictive

585 model of community assembly that incorporates intraspecific trait variation. *Ecology*

586 *Letters*, 15, 1291–1299. <https://doi.org/10.1111/j.1461-0248.2012.01852.x>

587 Laughlin, D. C., Strahan, R. T., Adler, P. B., & Moore, M. M. (2018). Survival rates indicate that

588 correlations between community-weighted mean traits and environments can be unreliable

589 estimates of the adaptive value of traits. *Ecology Letters*, 21(3), 411–421.

590 <https://doi.org/10.1111/ele.12914>

591 Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem

592 functioning from plant traits: revisiting the Holy Grail. *Functional Ecology*, 16, 545–556.

593 Li, Y., Jiang, Y., Shipley, B., Li, B., Luo, W., & Chen, Y. (2021). The complexity of trait –

594 environment performance landscapes in a local subtropical forest. *New Phytologist*, 229,

595 1388–1397. <https://doi.org/10.1111/nph.16955>

596 Marks, C. O., & Lechowicz, M. J. (2006). Alternative designs and the evolution of functional

597 diversity. *American Naturalist*, 167(1), 55–66.

598 McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology

599 from functional traits. *Trends in Ecology and Evolution*, 21(4), 178–185.

600 <https://doi.org/10.1016/j.tree.2006.02.002>

601 McGraw, J. B., & Caswell, H. (1996). Estimation of individual fitness from life-history data.

602 *American Naturalist*, 147(1), 47–64.

603 Merow, C., Dahlgren, J. P., Metcalf, C. J. E., Childs, D. Z., Evans, M. E. K. K., Jongejans, E.,

604 Record, S., Rees, M., Salguero-Gómez, R., & McMahon, S. M. (2014). Advancing

605 population ecology with integral projection models: a practical guide. *Methods in Ecology*

606 and Evolution

607 and Evolution

608 and Evolution

609 and Evolution

610 and Evolution

611 and Evolution

612 and Evolution

613 and Evolution

614 and Evolution

615 and Evolution

616 and Evolution

617 and Evolution

618 and Evolution

619 and Evolution

620 and Evolution

621 and Evolution

622 and Evolution

623 and Evolution

624 and Evolution

625 and Evolution

626 and Evolution

627 and Evolution

628 and Evolution

629 and Evolution

630 and Evolution

631 and Evolution

632 and Evolution

633 and Evolution

634 and Evolution

635 and Evolution

636 and Evolution

637 and Evolution

638 and Evolution

639 and Evolution

640 and Evolution

641 and Evolution

642 and Evolution

643 and Evolution

644 and Evolution

645 and Evolution

646 and Evolution

647 and Evolution

648 and Evolution

649 and Evolution

650 and Evolution

651 and Evolution

652 and Evolution

653 and Evolution

654 and Evolution

655 and Evolution

656 and Evolution

657 and Evolution

658 and Evolution

659 and Evolution

660 and Evolution

661 and Evolution

662 and Evolution

663 and Evolution

664 and Evolution

665 and Evolution

666 and Evolution

667 and Evolution

668 and Evolution

669 and Evolution

670 and Evolution

671 and Evolution

672 and Evolution

673 and Evolution

674 and Evolution

675 and Evolution

676 and Evolution

677 and Evolution

678 and Evolution

679 and Evolution

680 and Evolution

681 and Evolution

682 and Evolution

683 and Evolution

684 and Evolution

685 and Evolution

686 and Evolution

687 and Evolution

688 and Evolution

689 and Evolution

690 and Evolution

691 and Evolution

692 and Evolution

693 and Evolution

694 and Evolution

695 and Evolution

696 and Evolution

697 and Evolution

698 and Evolution

699 and Evolution

700 and Evolution

701 and Evolution

702 and Evolution

703 and Evolution

704 and Evolution

705 and Evolution

706 and Evolution

707 and Evolution

708 and Evolution

709 and Evolution

710 and Evolution

711 and Evolution

712 and Evolution

713 and Evolution

714 and Evolution

715 and Evolution

716 and Evolution

717 and Evolution

718 and Evolution

719 and Evolution

720 and Evolution

721 and Evolution

722 and Evolution

723 and Evolution

724 and Evolution

725 and Evolution

726 and Evolution

727 and Evolution

728 and Evolution

729 and Evolution

730 and Evolution

731 and Evolution

732 and Evolution

733 and Evolution

734 and Evolution

735 and Evolution

736 and Evolution

737 and Evolution

738 and Evolution

739 and Evolution

740 and Evolution

741 and Evolution

742 and Evolution

743 and Evolution

744 and Evolution

745 and Evolution

746 and Evolution

747 and Evolution

748 and Evolution

749 and Evolution

750 and Evolution

751 and Evolution

752 and Evolution

753 and Evolution

754 and Evolution

755 and Evolution

756 and Evolution

757 and Evolution

758 and Evolution

759 and Evolution

760 and Evolution

761 and Evolution

762 and Evolution

763 and Evolution

764 and Evolution

765 and Evolution

766 and Evolution

767 and Evolution

768 and Evolution

769 and Evolution

770 and Evolution

771 and Evolution

772 and Evolution

773 and Evolution

774 and Evolution

775 and Evolution

776 and Evolution

777 and Evolution

778 and Evolution

779 and Evolution

780 and Evolution

781 and Evolution

782 and Evolution

783 and Evolution

784 and Evolution

785 and Evolution

786 and Evolution

787 and Evolution

788 and Evolution

789 and Evolution

790 and Evolution

791 and Evolution

792 and Evolution

793 and Evolution

794 and Evolution

795 and Evolution

796 and Evolution

797 and Evolution

798 and Evolution

799 and Evolution

800 and Evolution

801 and Evolution

802 and Evolution

803 and Evolution

804 and Evolution

805 and Evolution

806 and Evolution

807 and Evolution

808 and Evolution

809 and Evolution

810 and Evolution

811 and Evolution

812 and Evolution

813 and Evolution

814 and Evolution

815 and Evolution

816 and Evolution

817 and Evolution

818 and Evolution

819 and Evolution

820 and Evolution

821 and Evolution

822 and Evolution

823 and Evolution

824 and Evolution

825 and Evolution

826 and Evolution

827 and Evolution

828 and Evolution

829 and Evolution

830 and Evolution

831 and Evolution

832 and Evolution

833 and Evolution

834 and Evolution

835 and Evolution

836 and Evolution

837 and Evolution

838 and Evolution

839 and Evolution

840 and Evolution

841 and Evolution

842 and Evolution

843 and Evolution

844 and Evolution

845 and Evolution

846 and Evolution

847 and Evolution

848 and Evolution

849 and Evolution

850 and Evolution

851 and Evolution

852 and Evolution

853 and Evolution

854 and Evolution

855 and Evolution

856 and Evolution

857 and Evolution

858 and Evolution

859 and Evolution

860 and Evolution

861 and Evolution

862 and Evolution

863 and Evolution

864 and Evolution

865 and Evolution

866 and Evolution

867 and Evolution

868 and Evolution

869 and Evolution

870 and Evolution

871 and Evolution

872 and Evolution

873 and Evolution

874 and Evolution

875 and Evolution

876 and Evolution

877 and Evolution

878 and Evolution

879 and Evolution

880 and Evolution

881 and Evolution

882 and Evolution

883 and Evolution

884 and Evolution

885 and Evolution

886 and Evolution

887 and Evolution

888 and Evolution

889 and Evolution

890 and Evolution

891 and Evolution

892 and Evolution

893 and Evolution

894 and Evolution

895 and Evolution

896 and Evolution

897 and Evolution

898 and Evolution

899 and Evolution

900 and Evolution

901 and Evolution

902 and Evolution

903 and Evolution

904 and Evolution

905 and Evolution

906 and Evolution

907 and Evolution

908 and Evolution

909 and Evolution

910 and Evolution

911 and Evolution

912 and Evolution

913 and Evolution

914 and Evolution

915 and Evolution

916 and Evolution

917 and Evolution

918 and Evolution

919 and Evolution

920 and Evolution

921 and Evolution

922 and Evolution

923 and Evolution

924 and Evolution

925 and Evolution

926 and Evolution

927 and Evolution

928 and Evolution

929 and Evolution

930 and Evolution

931 and Evolution

932 and Evolution

933 and Evolution

934 and Evolution

935 and Evolution

936 and Evolution

937 and Evolution

938 and Evolution

939 and Evolution

940 and Evolution

941 and Evolution

942 and Evolution

943 and Evolution

944 and Evolution

945 and Evolution

946 and Evolution

947 and Evolution

948 and Evolution

949 and Evolution

950 and Evolution

951 and Evolution

952 and Evolution

953 and Evolution

954 and Evolution

955 and Evolution

956 and Evolution

957 and Evolution

958 and Evolution

959 and Evolution

960 and Evolution

961 and Evolution

962 and Evolution

963 and Evolution

964 and Evolution

965 and Evolution

966 and Evolution

967 and Evolution

968 and Evolution

969 and Evolution

970 and Evolution

971 and Evolution

972 and Evolution

973 and Evolution

974 and Evolution

975 and Evolution

976 and Evolution

977 and Evolution

978 and Evolution

979 and Evolution

980 and Evolution

981 and Evolution

982 and Evolution

983 and Evolution

984 and Evolution

985 and Evolution

986 and Evolution

987 and Evolution

988 and Evolution

989 and Evolution

990 and Evolution

991 and Evolution

992 and Evolution

993 and Evolution

994 and Evolution

995 and Evolution

996 and Evolution

997 and Evolution

998 and Evolution

999 and Evolution

1000 and Evolution

615 Forest models defined by field measurements: estimation, error analysis and dynamics.

616 *Ecological Monographs*, 66(1), 1–43.

617 Purves, D. W., Lichstein, J. W., Strigul, N., & Pacala, S. W. (2008). Predicting and
618 understanding forest dynamics using a simple tractable model. *Proceedings of the National
619 Academy of Sciences USA*, 105(44), 17018–17022.

620 <https://doi.org/10.1073/pnas.0807754105>

621 Reich, P. B. (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto.

622 *Journal of Ecology*, 102(2), 275–301. <https://doi.org/10.1111/1365-2745.12211>

623 Ribbens, E., Silander, J. A., & Pacala, S. W. (1994). Seedling recruitment in forests: calibrating
624 models to predict patterns of tree seedling dispersion. *Ecology*, 75(6), 1794–1806.

625 Rüger, N., Comita, L. S., Condit, R., Purves, D., Rosenbaum, B., Visser, M. D., Wright, S. J., &
626 Wirth, C. (2018). Beyond the fast–slow continuum: demographic dimensions structuring a
627 tropical tree community. *Ecology Letters*, 21(7), 1075–1084.

628 <https://doi.org/10.1111/ele.12974>

629 Salguero-Gómez, R., Jones, O. R., Archer, C. R., Buckley, Y. M., Che-Castaldo, J., Caswell, H.,
630 Hodgson, D., Scheuerlein, A., Conde, D. A., Brinks, E., de Buhr, H., Farack, C., Gottschalk,
631 F., Hartmann, A., Henning, A., Hoppe, G., Römer, G., Runge, J., Ruoff, T., ... Vaupel, J.
632 W. (2015). The comadre Plant Matrix Database: An open online repository for plant
633 demography. *Journal of Ecology*, 103(1), 202–218. [2745.12334](https://doi.org/10.1111/1365-
634 2745.12334)

635 Shipley, B., de Bello, F., Cornelissen, J. H. C., Laliberté, É., Laughlin, D. C., & Reich, P. B.
636 (2015). Reinforcing loose foundation stones in trait-based plant ecology. *Oecologia*, 180(4),
637 in press. <https://doi.org/10.1007/s00442-016-3549-x>

638 Stearns, S. C. (1989). Trade-offs in life-history evolution. *Function Ecology*, 3(3), 259–268.

639 Strigul, N., Pristinski, D., Purves, D., Dushoff, J., & Pacala, S. (2008). Scaling from trees to
640 forests: Tractable macroscopic equations for forest dynamics. *Ecological Monographs*,
641 78(4), 523–545. <https://doi.org/10.1890/08-0082.1>

642 Swenson, N. G., Worthy, S. J., Eubanks, D., Iida, Y., Monks, L., Petprakob, K., Rubio, V. E.,
643 Staiger, K., & Zambrano, J. (2020). A reframing of trait–demographic rate analyses for
644 ecology and evolutionary biology. *International Journal of Plant Sciences*, 181(1), 33–43.
645 <https://doi.org/10.1086/706189>

646 Violette, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007).
647 Let the concept of trait be functional! *Oikos*, 116, 882–892.

648 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-
649 Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P.
650 K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., ... Villar, R. (2004).
651 The worldwide leaf economics spectrum. *Nature*, 428(6985), 821–827.
652 <https://doi.org/10.1038/nature02403>

653 Wright, S., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R.,
654 Dalling, J. W., Davies, S. J., Díaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P.,
655 Marks, C. O., Ruiz-Jean, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits
656 and the growth-mortality trade-off in tropical trees. *Ecology*, 91(12), 3664–3674.

657 Yang, J., Cao, M., & Swenson, N. G. (2018). Why functional traits do not predict tree
658 demographic rates. *Trends in Ecology and Evolution*, 33(5), 326–336.
659 <https://doi.org/10.1016/j.tree.2018.03.003>

660