

1 **Longitudinal map of transcriptome changes in the Lyme pathogen *Borrelia burgdorferi***
2 **during tick-borne transmission**

3
4 Anne L. Sapiro^{1*}, Beth M. Hayes¹, Regan F. Volk², Jenny Y. Zhang¹, Diane M. Brooks³, Calla
5 Martyn¹, Atanas Radkov¹, Ziyi Zhao¹, Margie Kinnersley³, Patrick R. Secor³, Balyn W. Zaro²,
6 Seemay Chou^{1*}

7
8 1 Department of Biochemistry & Biophysics, University of California, San Francisco, California,
9 USA

10 2 Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of
11 California, San Francisco, California, USA

12 3 Division of Biological Sciences, University of Montana, Missoula, Montana, USA

13

14 *Corresponding authors:

15 Anne L. Sapiro: annesapiro@gmail.com & Seemay Chou: seemaychou@gmail.com

16

17 **ABSTRACT**

18 *Borrelia burgdorferi* (*Bb*), the causative agent of Lyme disease, must adapt to vastly different
19 environments as the bacterium cycles between the tick vector and a vertebrate host. During a
20 bloodmeal, *Bb* migrates from the tick midgut to the salivary glands and changes its gene
21 expression, priming *Bb* for vertebrate infection. These tick-specific transmission events are
22 dependent on key transcriptional regulators; however, the full range of transcriptional changes
23 that occur over several days inside of the tick are technically challenging to capture. We
24 developed an experimental approach to enrich *Bb* cells from *Ixodes* ticks during a transmitting
25 bloodmeal to longitudinally define their global transcriptomic landscape. We identified 192 genes
26 that substantially change expression over the course of the tick bloodmeal, most of which were
27 located on plasmids of the *Bb* genome. The majority of upregulated genes encode proteins found
28 at the cell envelope or proteins of unknown function, including 45 outer surface lipoproteins
29 embedded in the unusual protein-rich coat of *Bb*. As these proteins may facilitate *Bb* interactions
30 with host tissues or immune systems, we also utilized mass spectrometry to identify candidate
31 tick proteins that physically associate with *Bb*. The *ex vivo* *Bb* transcriptomes and candidate tick
32 interacting proteins presented here provide an important roadmap for investigating key
33 determinants of *Bb* priming and transmission during the tick stage of its unique transmission cycle.

34

35 **INTRODUCTION**

36 Vector-borne microbial pathogens are transmitted by the bite of arthropods and have evolved
37 sophisticated ways to adapt to vastly different environments as they move between vector and
38 host. Uncovering their adaptive mechanisms can not only open avenues for disrupting pathogen
39 transmission but also provide fundamental insights into vector physiology and microbial
40 symbioses (Shaw and Catteruccia, 2018). Lyme disease, the most reported vector-borne disease
41 in North America, is caused by the bacterial pathogen *Borrelia burgdorferi* (*Bb*) (Rosenberg et al.,
42 2018; Steere et al., 2016). Its primary vector, the blacklegged tick *Ixodes scapularis*, acquires and
43 transmits *Bb* through two separate multi-day bloodmeals, one in which *Bb* is acquired from an
44 infected vertebrate host and a second, during the subsequent life stage, in which *Bb* is transmitted
45 to a new host (Tilly et al., 2008). During the transmission bloodmeal, *Bb* proliferate in the tick
46 midgut before a subset of these cells disseminate to the salivary glands (Dunham-Ems et al.,
47 2009). *Bb* is deposited into the new host via the tick saliva extruded into the bite site (Spielman
48 et al., 1987). Given the prolonged nature of *I. scapularis* feeding, the high specificity of vector-
49 pathogen relationships, and the complicated array of events needed for successful *Bb*
50 transmission, the tick bloodmeal provides an opportune intervention point for preventing pathogen
51 spread. However, we do not currently have a clear understanding of the molecular mechanisms
52 involved in this process.

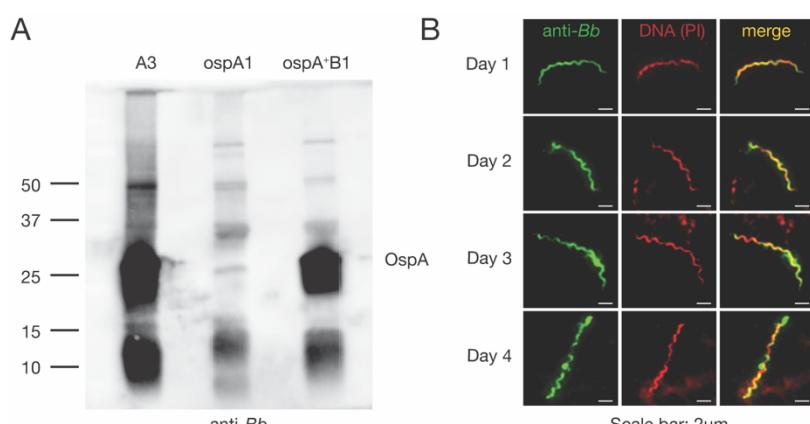
53

54 *Bb* must adapt to dramatically different environments as it cycles from tick to vertebrate host, and
55 understanding the genes involved in this process will enable the identification of key interactions
56 to target to prevent transmission. When an infected tick feeds, *Bb* responds to bloodmeal-induced
57 environmental changes and undergoes cellular modifications driven by key transcriptional circuits,
58 including the RpoN-RpoS sigma factor cascade and the Hk1/Rrp1 two-component system (Radolf
59 et al., 2012). *In vitro* analyses of *Bb* cells cultured in tick- or mammalian-like growth conditions
60 have pointed to additional genetic determinants of tick-borne transmission by revealing
61 widespread transcriptome remodeling during host switching (reviewed in Samuels et al., 2021).
62 However, it is not fully clear how these *in vitro* expression changes correspond to complex *in vivo*
63 changes over the course of a transmission bloodmeal, which comprises several physiologically
64 distinct stages for the tick vector. Capturing comprehensive, longitudinal data on *Bb* expression
65 from inside its vector has been hampered by technical challenges given the dynamic nature of
66 the bloodmeal and the general low abundance of bacterial cells relative to the tick (Samuels et
67 al., 2021). Although microarray approaches have been used to identify large scale changes in *Bb*
68 gene expression between the first and second tick bloodmeals (Iyer et al., 2015), we have limited

69 temporal resolution into the molecular transitions that happen across key steps of tick feeding.
70 This problem necessitates novel approaches to capture the transcriptomic changes of *Bb* within
71 the natural tick environment.

72
73 While the full landscape of *Bb* transmission determinants is not yet known, we do have a growing
74 knowledge of functional processes that are critical during the tick stage, such as motility,
75 metabolism, and immune evasion (Kurokawa et al., 2020; Phelan et al., 2019). These functions
76 often rely on the unique protein-rich *Bb* outer surface. Notably, several specific tick–*Bb* protein–
77 protein interactions are important for *Bb* survival, migration, or transmission to the next host. *Bb*
78 encodes an extensive outer surface protein (Osp) family with members that are differentially
79 expressed during host switching. One of these proteins, OspA, binds a tick cell surface protein,
80 tick receptor for OspA (TROSPA), which is required for successful *Bb* colonization of the tick
81 midgut during the first acquisition bloodmeal (Pal et al., 2004). Several other proteins have also
82 been linked to *Bb* migration within the tick (Pal et al., 2022). For example, BBE31 binds a tick
83 protein TRE31, and disruption of this interaction decreases the number of *Bb* cells that
84 successfully migrate from the tick gut to salivary glands (Zhang et al., 2011). However, these
85 interactions alone are not sufficient to block *Bb* growth or migration in ticks, suggesting there are
86 likely additional molecular factors from *Bb* and ticks at play during tick-borne transmission.

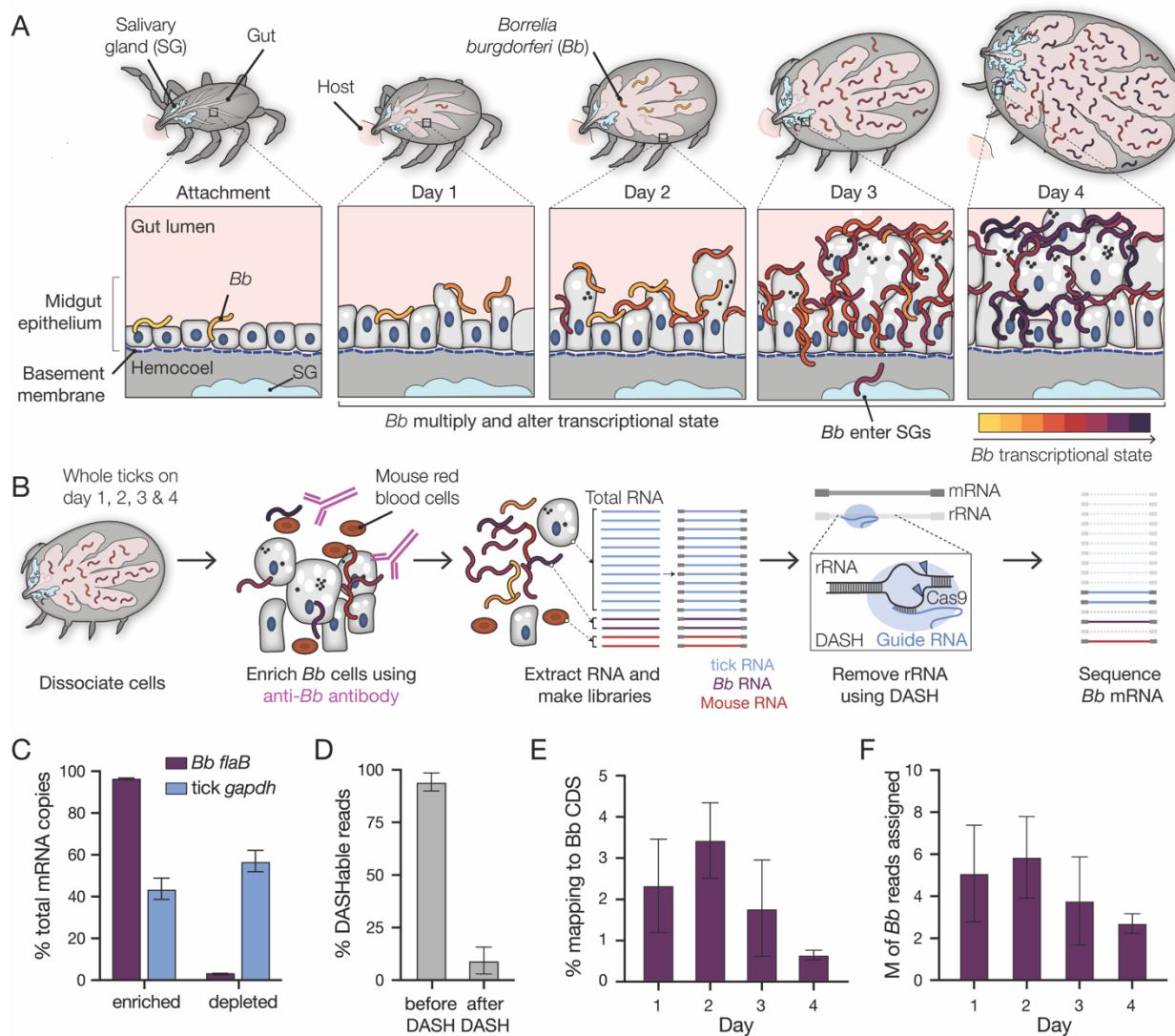
87
88 To provide a more comprehensive set of *Bb* determinants driving tick-borne transmission of this
89 important human pathogen, we longitudinally mapped *Bb* genome-wide expression changes for
90 bacterial cells isolated from inside ticks during the transmission bloodmeal. We developed a novel
91 sequencing-based strategy for *ex vivo* transcriptomic profiling of *Bb* populations within feeding
92 ticks. We identified 192 highly differentially expressed genes, including both genes previously
93 implicated in *Bb* transmission as well as many others. Genes upregulated during tick transmission
94 were enriched for outer surface lipoproteins, suggesting *Bb* dramatically remodels its cell
95 envelope as it migrates through the tick. Mass spectrometry analyses revealed dramatic changes
96 in the tick environment over feeding, identifying new potential determinants of a more extensive
97 and diverse set of tick–microbe molecular interactions than previously appreciated.


98
99 **RESULTS**
100 **A two-step enrichment process facilitates robust transcriptional profiling of *Bb* during the**
101 **tick bloodmeal**

102

103 To gain a more comprehensive understanding of *Bb* gene expression throughout the tick phase
104 of the transmission cycle, we developed an experimental approach to characterize the *Bb*
105 transcriptome of spirochetes isolated from ticks during a bloodmeal. We aimed to establish a
106 longitudinal transcriptional profile encompassing key pathogen transmission events each day of
107 feeding after ticks attached to their mouse bloodmeal hosts (**Figure 1A**). The major bottleneck for
108 such an RNA sequencing (RNA-seq) approach is capturing sufficient quantities of *Bb* transcripts
109 from complex multi-organism samples in which pathogen transcripts represent a very small
110 minority. Our initial attempts to uncover *Bb* mRNA by simply removing tick mRNA with polyA-
111 depletion and removing tick rRNA sequences using Depletion of Abundant Sequences by
112 Hybridization (DASH) (Dynerman et al., 2020; Gu et al., 2016) were unsuccessful. This approach
113 resulted in an average of only 0.09% of RNA-seq reads mapping to *Bb* mRNA – approximately
114 10-fold less than we estimated would be needed to feasibly obtain robust transcriptome-wide
115 gene expression analysis (Haas et al., 2012).

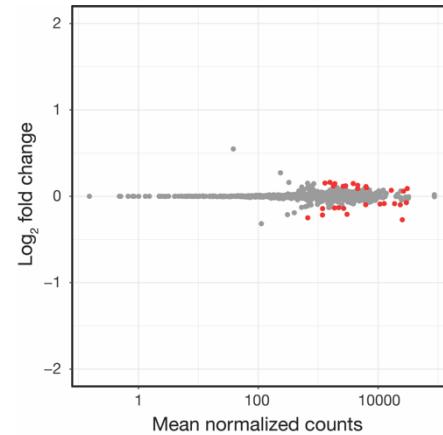
116
117 To dramatically increase *Bb* transcript representation in our libraries, we physically enriched *Bb*
118 cells in tick lysates prior to library preparation by adding an initial step of immunomagnetic
119 separation (**Figure 1B**). We took advantage of a commercial antibody previously generated
120 against whole *Bb* cells (α *Bb*, RRID: AB_1016668). By western blot analysis, we confirmed that
121 α *Bb* specifically recognized several *Bb* proteins, including surface protein OspA, which is highly
122 prevalent on the *Bb* surface in ticks (**Figure S1A**). In addition, immunofluorescence microscopy
123 with α *Bb* showed clear recognition of *Bb* cells from within the tick at each day of feeding (**Figure**


124 **S1B**). After collecting infected A

125 ticks from mice one, two, three,
126 and four days post-attachment,
127 we used α *Bb* and magnetic
128 beads to enrich *Bb* cells away
129 from the majority of the tick
130 material in the lysates. We
131 tracked relative *Bb* enrichment
132 through RT-qPCR of *Bb* *flaB*
133 RNA and tick *gapdh* RNA in the
134 separated samples. Measuring
135 *Bb* *flaB* RNA from both *Bb*-
136 enriched samples and their

Figure S1. Anti-*Bb* antibody recognizes ospA and binds *Bb* in the tick throughout the bloodmeal. (A) Western blot with anti-*Bb* on lysate from cultured *Bb*: wildtype (A3, left), a mutant lacking ospA (ospA1), and the mutant with ospA restored (ospA+B1). Anti-*Bb* recognizes ospA among other proteins. (B) Immunofluorescence microscopy with anti-*Bb* (green) and propidium iodide (PI) (DNA, red) on each day of feeding (yellow is merge). Anti-*Bb* antibody recognizes *Bb* in the tick across the bloodmeal.

137 matched *Bb*-depleted fractions, we found over 95% of total *Bb flaB* RNA was present in enriched
 138 fractions (**Figure 1C**), suggesting our approach captured the vast majority of *Bb* transcripts from
 139 the tick.


Figure 1. A two-step enrichment process facilitates robust transcriptional profiling of *Bb* during the tick bloodmeal. (A) Schematic of *Bb* during tick feeding. *Bb* in the nymphal tick midgut respond to the bloodmeal by multiplying and changing their transcriptional state. At the same time, the tick gut undergoes numerous changes to digest the bloodmeal. After two to three days of feeding, a small number of *Bb* leave the midgut and enter the salivary glands (blue), while the majority are left behind in the gut after engorgement. (B) Schematic of *Bb* enrichment process from feeding ticks. Whole ticks are dissociated, anti-*Bb* antibodies are added to lysates, and antibodies and *Bb* are captured magnetically. RNA is extracted and RNA-seq libraries are prepared. DASH is then used to remove rRNA before sequencing. This process increases *Bb* reads in the resulting sequencing. (C) RT-qPCR results showing the percentage of *Bb flaB* and tick *gapdh* RNA in the enriched versus depleted fractions after the enrichment process. Data come from 4 replicates each from day 2, day 3, and day 4, mean +/- SE. Nearly all *Bb flaB* RNA was found in the enriched fraction, while the majority of tick *gapdh* was found in the depleted fraction. (D) The percentage of reads mapping to rRNA before and after DASH. Data are shown as mean +/- SD. rRNA reads are drastically reduced after DASH. (E) The percentage of reads in RNA-seq libraries mapping to *Bb*. *Bb* mRNA reads make up a small but sufficient proportion of libraries for transcriptomics. Data are shown as mean +/- SD. (F) The number of reads in millions (M) mapped to *Bb* for each day. Data are shown as mean +/- SD. An average of 4.3 million reads per sample mapped to *Bb* genes, covering 92% of genes with at least 10 reads.

140
141 Total RNA recovered from the enrichment process was used to create RNA-seq libraries that
142 subsequently underwent depletion of rRNA sequences from ticks, mouse, and *Bb* using DASH,
143 which targets unwanted sequences for degradation by Cas9 (Gu et al., 2016; Ring et al., 2022).
144 DASH reduced unwanted sequences from 94% to 9% of our total libraries, greatly increasing the
145 relative abundance of *Bb* transcripts (**Figure 1D**). For resulting libraries generated across feeding
146 (**Table S1**), between 0.6% and 3.4% of reads mapped to *Bb*
147 coding regions (**Figure 1E**), which translated to an average
148 of 4.3 million *Bb* reads per sample (**Figure 1F**). Read
149 coverage was sufficient for downstream differential
150 expression analyses for the vast majority of *Bb* genes, with
151 at least 10 reads mapping to 92% of *Bb* genes. To evaluate
152 whether our approach introduced any major artifacts, we
153 sequenced and compared RNA-seq libraries from *in vitro*
154 cultured *Bb* cells before and after immunomagnetic
155 enrichment. We found minimal expression differences (29
156 genes with $p < 0.05$, fold changes between 0.83-1.12)
157 (**Figure S2, Table S2**), suggesting experimental enrichment
158 did not significantly alter global transcriptome profiles for *Bb*.
159 Thus, we developed an approach to enable genome-wide
160 analysis of *Bb* population-level expression changes that
161 occur within the feeding tick during transmission.
162

163 **Global ex vivo profiling of *Bb* reveals extent and kinetics of transcriptional changes**

164

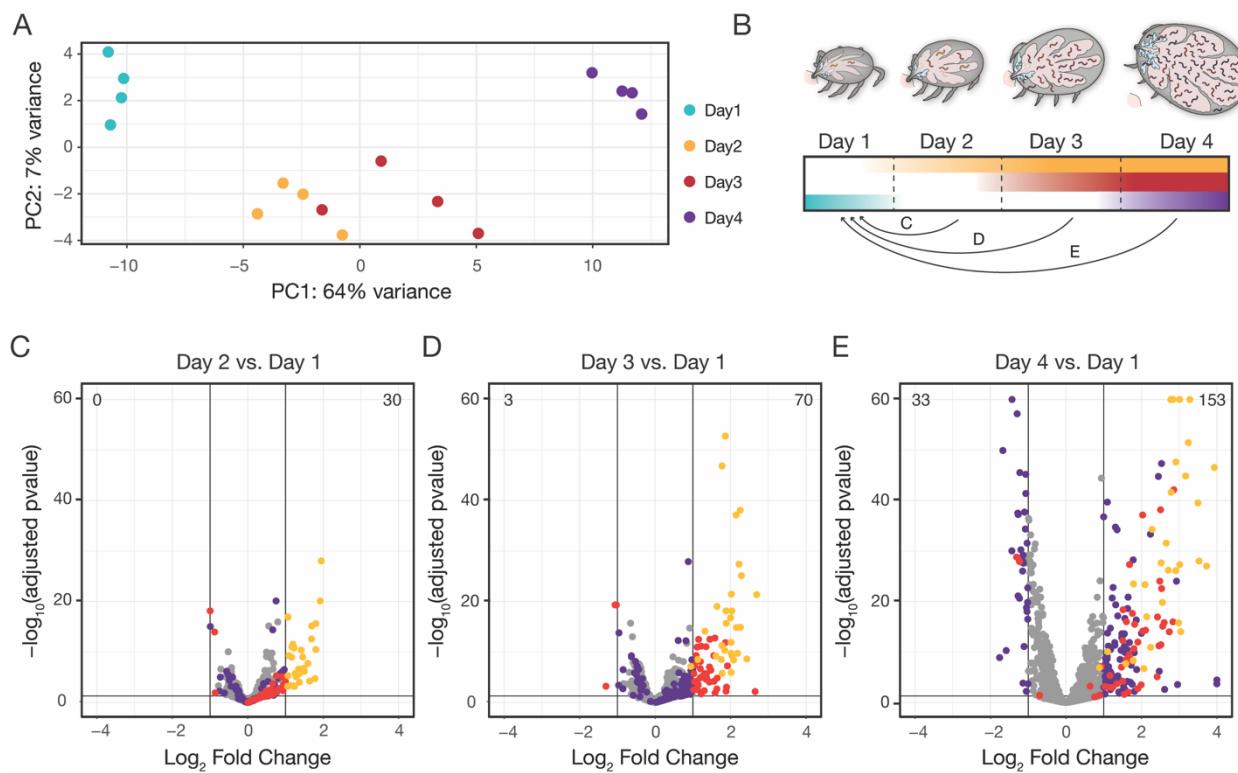

165 To provide a broad overview of *Bb* expression changes during feeding, we performed principal
166 component analysis (PCA) on the *Bb* transcriptome data from one, two, three, and four days post-
167 attachment ($n=4$). We reasoned that if many longitudinal expression changes were occurring
168 across *Bb* populations, we would observe greater data variability between time points than
169 between biological replicates. Indeed, we found replicates from each day grouped together,
170 whereas distinct time points were largely non-overlapping. The first principal component, which
171 explained 64% of the variance in our data, correlated well with day of feeding (**Figure 2A**). The
172 global pattern suggested that *Bb* gene expression changes generally trended in the same

Figure S2. Enrichment process does not induce large scale gene expression changes in *in vitro* cultured *Bb*. Log₂ fold changes vs. mean normalized number of counts comparing cultured *Bb* input and samples after enrichment with anti-*Bb*. $n=3$. Red dots, p -value < 0.05 , Wald tests. The gene expression changes induced during processing are much smaller than those observed between days of feeding.

173 direction over the course of feeding with the most dramatic differences between flanking
 174 timepoints on day 1 and day 4.

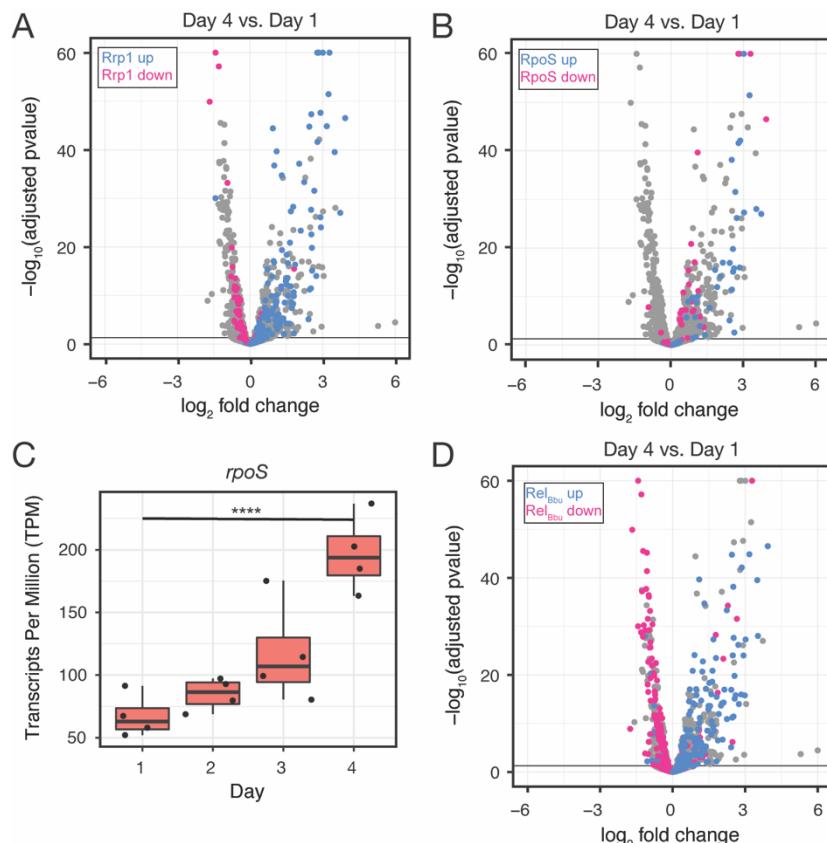

175
 176 Using day 1 (early attachment) as a baseline, we performed differential expression analysis for
 177 all *Bb* genes at subsequent time points and examined changes above a twofold threshold (**Figure**
 178 **2B, Table S3**). These analyses mirrored the global longitudinal expression pattern predicted by
 179 our PCA. The total number of differentially expressed (DE) genes increased steadily over time
 180 and peaked at day 4, which when compared to day 1 had 186 DE genes, including 153
 181 upregulated and 33 downregulated (**Figure 2C-E**). Across time points, DE genes were highly
 182 overlapping and largely changed in the same directions. In all three comparisons, we found 192
 183 DE genes in total (**Table S4**). However, there were some notable differences between genes,
 184 such as the overall timing and kinetics of expression changes. Transcript levels for some DE

Figure 2. Global ex vivo profiling of *Bb* reveals extent and kinetics of transcriptional changes. (A) Principal component analysis of samples from across feeding. PC1 correlates strongly with day of feeding. (B) Schematic depicting how data was analyzed, as pairwise comparisons between the first day after attachment and all other days. (C-E) Volcano plots of differentially expressed genes of day 2 versus day 1 after attachment (C), day 3 versus day 1 (D), and day 4 versus day 1 (E). The total number of upregulated genes is shown in the top right and downregulated genes is shown in the top left. Yellow dots are genes that change expression between day 1 and day 2, red dots are genes that change expression between day 1 and day 3, and purple dots are genes that change expression between day 1 and day 4. Two genes with \log_2 fold changes >4 are shown at 4, and five genes with $-\log_{10}(\text{padj}) >60$ are shown at 60. Only genes with at least a 2-fold change are highlighted. $p\text{-value} < 0.05$, Wald tests. By day 4 of feeding, 153 genes are upregulated and 33 genes are downregulated from day 1 baseline levels.

185 genes changed suddenly over the course of feeding, while others were more gradual. To our
186 knowledge, this is the first comprehensive report of global *Bb* expression changes within feeding
187 ticks.

188
189 To help assess the integrity of our dataset, we examined expression profiles for previously
190 characterized targets of major transcriptional programs activated at the onset of the bloodmeal,
191 the Hk1/Rrp1 two-component system and the RpoN/RpoS sigma factor cascade (Caimano et al.,
192 2019, 2015). Between day 1 and day 4, the majority of genes previously reported to be activated
193 or repressed by Rrp1 *in vitro* (Caimano et al., 2015) trended significantly in the expected direction
194 *ex vivo* (111/148 upregulated, 37/57 downregulated, $p < 0.05$, Wald tests, **Figure S3A**). The
195 majority of the genes previously reported to be activated by RpoS in a mammalian context,
196 including canonical targets *ospC* and *dbpA*, were also significantly upregulated during tick feeding
197 (33/55, $p < 0.05$, Wald tests) (**Figure S3B**), along with *rpoS* itself (**Figure S3C**), as expected
198 (Hübner et al., 2001). However, very few genes repressed by RpoS in mammals were similarly
199 repressed in ticks (2/33, $p < 0.05$, Wald tests). These data support the hypothesis that while RpoS-
200 dependent gene activation occurs across both vertebrate and vector stages of *Bb* transmission,
201 RpoS-dependent repression is specific to spirochetes infecting a mammalian host (Caimano et

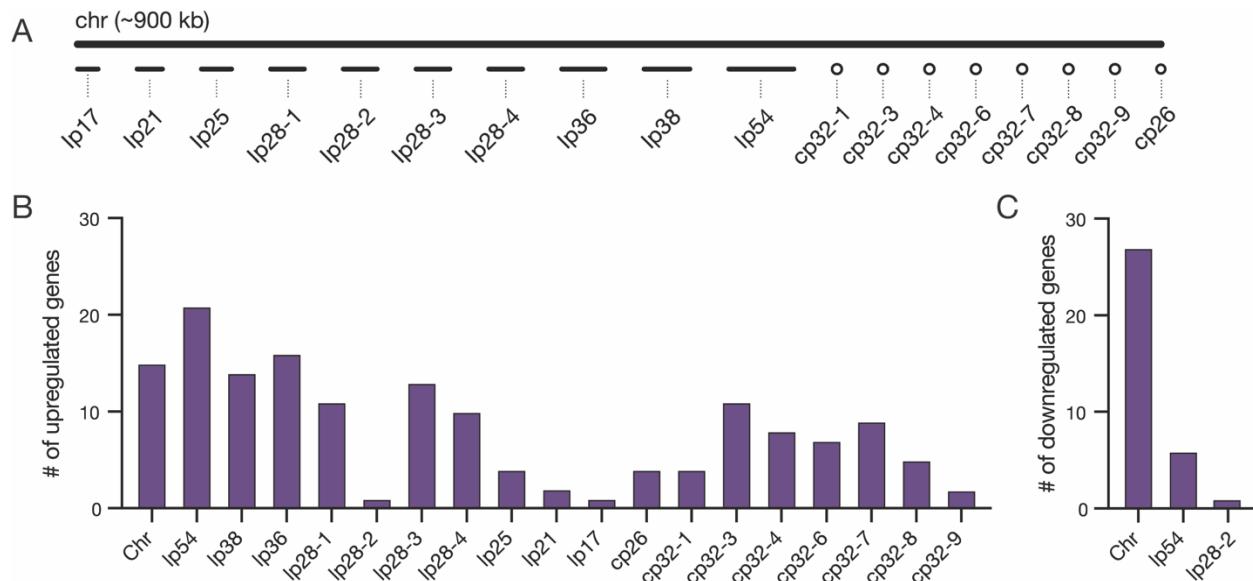
Figure S3. Ex vivo RNA-seq corroborates key transcriptional programs in the tick. (A) Volcano plot of DE genes comparing day 4 to day 1, with Rrp1-upregulated (blue) and downregulated (pink) genes. Rrp1-regulated genes correlate well with up and downregulated genes during feeding. (B) Volcano plot of DE genes comparing day 4 to day 1, with RpoS-upregulated (blue) and downregulated (pink) genes. Genes upregulated by RpoS in mammals increase during feeding, but genes repressed by RpoS in mammals are not repressed in the tick. (C) Tukey style boxplot of Transcripts Per Million (TPM) on each day for *rpoS*. Black dots represent replicates. ****p-value < 0.00001 , Wald test. *rpoS* expression increases over the course of feeding. (D) Volcano plot of DE genes comparing day 4 to day 1, with *RelBbu*-upregulated (blue) and downregulated (pink) genes. About half of *RelBbu* genes change in the expected direction over feeding.

202 al., 2019, 2007). We also compared our DE genes to those regulated by Rel_{Bbu} as part of the
203 stringent response, another major transcriptional program active in *Bb* in the tick during nutrient
204 starvation (Drecktrah et al., 2015). About half of Rel_{Bbu}-regulated genes changed in the direction
205 expected if the stringent response was active during this time (**Figure S3D**); however, more of
206 the genes that were downregulated over feeding have been reported to be regulated by Rel_{Bbu}
207 than either RpoS or Rrp1, suggesting it may play some role during feeding.

208

209 By looking at these previously reported transcriptional regulons in our data, we were able to verify
210 that our data captured expected transcriptional programs active during tick feeding. Nevertheless,
211 25% of the twofold DE genes were not previously identified through these RNA-seq studies as
212 dependent upon RpoS, Rrp1, or Rel_{Bbu} (Caimano et al., 2019, 2015; Drecktrah et al., 2015), which
213 are the three main *Bb* regulatory programs active in the tick (Samuels et al., 2021). These
214 additional genes highlight the necessity of measuring transcription in the tick environment and
215 suggest we uncovered gene expression changes specific to the tick-stage of the *Bb* enzootic
216 cycle. The nature and dynamics of these changes provide insights into potential genetic
217 determinants of *Bb* survival, proliferation, and dissemination in the tick during transmission.

218


219 ***Bb* genes upregulated during feeding are found predominantly on plasmids**

220

221 *Bb* has a complex, highly fragmented genome (Barbour, 1988) (**Figure 3A**), including numerous
222 plasmids that are necessary during specific stages of the enzootic cycle (reviewed in Schwartz et
223 al., 2021) suggesting they contain genes that are crucial for pathogen transmission and survival.
224 In fact, many genes found on the plasmids have been previously shown to alter expression upon
225 environmental changes or in different host environments (Iyer et al., 2015; Ojaimi et al., 2005;
226 Revel et al., 2002; Tokarz et al., 2004). Thus, we reasoned that many of the 192 *Bb* genes that
227 change expression over the course of the tick bloodmeal would reside on the plasmids, and we
228 examined their distribution throughout the genome. Consistent with these previous reports, we
229 found that most of the upregulated genes were located on the plasmids (143/158; 90%), while
230 fewer were found on the chromosome (15/158; 10%) (**Figure 3B**), which is home to the majority
231 of metabolic and other housekeeping genes. In contrast, the majority of the downregulated genes
232 were found on the chromosome (27/34, 79%) (**Fig 3C**).

233

234 Several plasmid-encoded genes that were longitudinally upregulated in our datasets have known
235 roles during the tick bloodmeal or in mammalian infection. For example, linear plasmid 54 (lp54),

Figure 3. *Bb* genes upregulated during feeding are found predominantly on plasmids. (A) Schematic of the chromosome and plasmids in the *Bb* B31-S9 genome. (B-C) The number of genes from each chromosome or plasmid that increased (B) or decreased expression (C) twofold during feeding. Upregulated genes are distributed across plasmids, while downregulated genes are found on the chromosome and Ip54.

236 which is an essential plasmid present in all *Bb* isolates (Casjens et al., 2012), contained the largest
 237 number of upregulated genes. Many of the genes on Ip54 are known to be regulated by RpoS
 238 during feeding, including those encoding adhesins DbpA and DbpB, which are important for
 239 infectivity in the host (Blevins et al., 2008). This set also included five members of a paralogous
 240 family of outer surface lipoproteins BBA64, BBA65, BBA66, BBA71, and BBA73. BBA64 and
 241 BBA66 are necessary for optimal transmission via the tick bite (Gilmore et al., 2010; Patton et al.,
 242 2013). These findings indicate our dataset captures key *Bb* transcriptional responses known to
 243 be important for survival inside the tick during a bloodmeal.

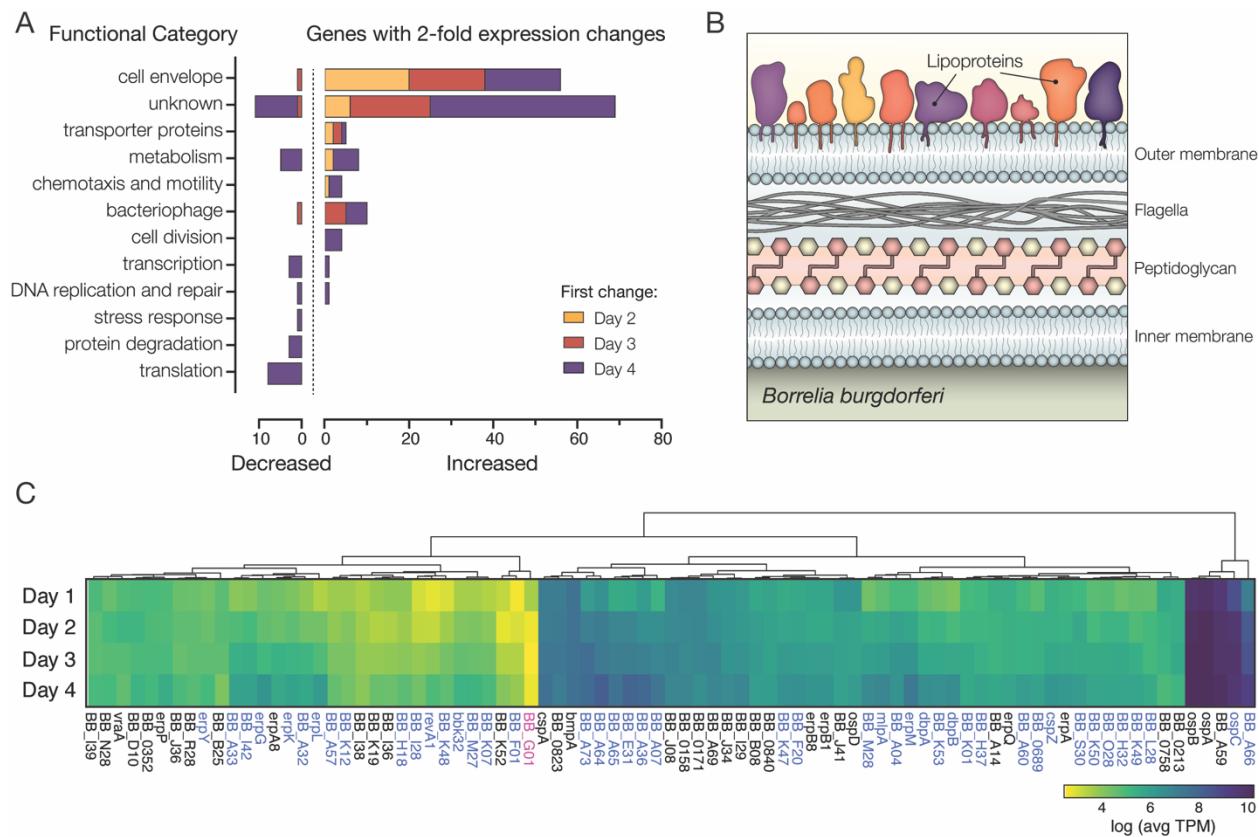
244
 245 Many upregulated genes were encoded by cp32 plasmid prophages. *Bb* strain B31-S9 harbors
 246 seven cp32 isoforms that are highly similar to each other (Casjens et al., 2012). When cp32
 247 prophages are induced, phage virions called ϕ BB1 are produced (Eggers and Samuels, 1999). In
 248 addition to phage structural genes, cp32 contain loci that encode various families of paralogous
 249 outer surface proteins (Stevenson et al., 2000). Amongst the cp32 genes that increased over
 250 feeding were members of the RevA, Erp, and Mlp families, which are known to increase
 251 expression during the bloodmeal (Gilmore et al., 2001). We also found several phage genes that
 252 were upregulated, including those encoding proteins annotated as phage terminases on cp32-3,
 253 cp32-4, and cp32-7 (BBS45, BBR45, and BBO44). Some cp32 genes have been shown to
 254 change expression in response to temperature changes (Tokarz et al., 2004) and as a part of the
 255 stringent response regulated by Rel_{Bb} (Drecktrah et al., 2015). Our data suggest that some

256 prophage genes are upregulated over the course of tick feeding, raising the possibility that cp32
257 prophage are induced towards the end of feeding. Overall, our data support the long-held idea
258 that the *Bb* plasmids, which house many genes encoding cell envelope proteins, proteins of
259 unknown function, and prophage genes, play a critical role in the enzootic cycle during the key
260 transition period of tick feeding.

261

262 ***Bb* genes encoding outer surface proteins are enriched among upregulated genes**

263


264 To gain a better overall sense of the types of genes that changed over feeding and the timing of
265 those changes, we grouped DE genes into functional categories. Since a high proportion of
266 plasmid genes encode lipoproteins within the unique protein-rich outer surface of *Bb*, genes of
267 unknown function, and predicted prophage genes (Casjens et al., 2000; Fraser et al., 1997), we
268 expected that many of the DE genes would fall into these categories. We classified the genes as
269 related to either: cell envelope, bacteriophage, cell division, DNA replication and repair,
270 chemotaxis and motility, metabolism, transporter proteins, transcription, translation, stress
271 response, protein degradation, or unknown (as in Drecktrah et al., 2015)(see **Table S4**).
272

273

274 Of the genes that increased at least twofold over feeding, the clear majority each day of feeding
275 fell into two broad categories, cell envelope (55 of 158 total genes) and proteins of unknown
276 function (69 of 158 total genes), with fewer genes related to metabolism, chemotaxis and motility,
277 transporters, bacteriophage, cell division, and transcription (**Figure 4A**). In contrast to the
278 upregulated genes, genes downregulated during feeding were more evenly distributed among the
279 functional categories – including translation, protein degradation, transcription, and metabolism –
280 consistent with many of them being located on the chromosome.

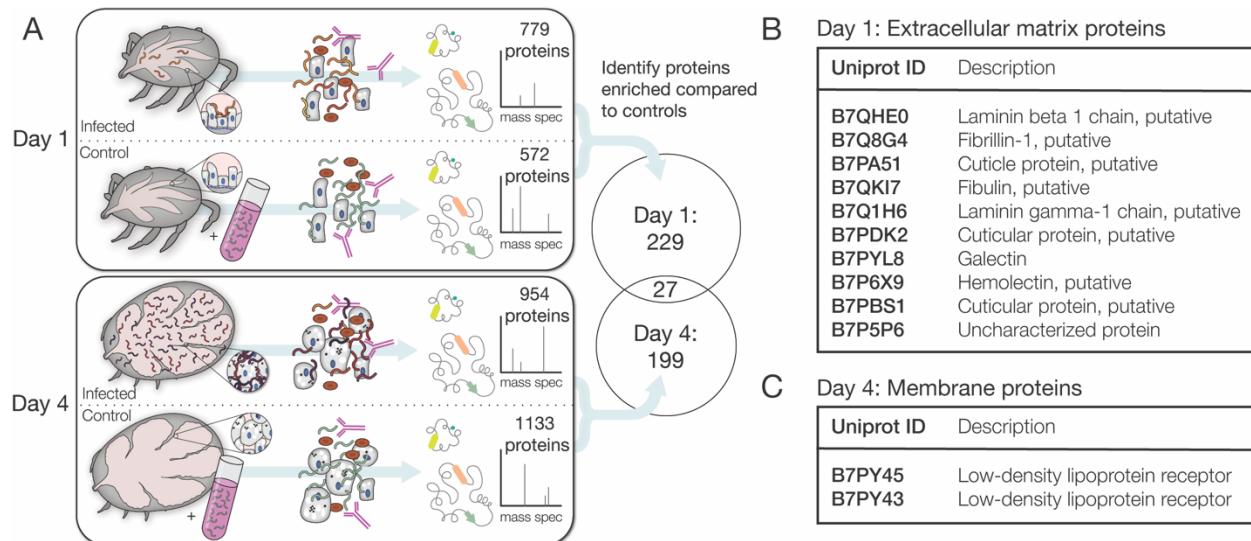
281

282 When looking at changes across these functional categories, the overrepresentation of cell
283 envelope proteins was striking, while not unexpected. The *Bb* outer surface is covered with
284 lipoproteins (**Figure 4B**), and these proteins are critical determinants in *Bb* interactions with the
285 various environments encountered during the enzootic cycle (Kurokawa et al., 2020). We found
286 that more than half of these outer surface lipoproteins changed expression during this time, with
287 46 of 83 total outer surface lipoproteins (Dowdell et al., 2017) differentially expressed twofold over
288 feeding (**Figure 4C**). These data suggested widespread changes may be occurring on the *Bb*
289 outer surface during feeding.

Figure 4. *Bb* genes encoding outer surface proteins are enriched among upregulated genes. (A) The number of *Bb* genes that change over the course of tick feeding sorted into functional categories. Genes that first change 2 days after attachment are shown in yellow, 3 days after attachment in red, and 4 days after attachment in purple. A majority of upregulated genes fall into cell envelope and unknown categories. (B) Schematic of the outer membrane of *Bb* showing the location of outer surface lipoproteins. (C) Heat map of the average Transcripts Per Million (TPM) of all genes encoding outer surface lipoproteins across the 4 days of tick feeding. Genes in blue were twofold upregulated and genes in pink twofold downregulated over feeding. A majority of genes encoding outer surface proteins increased in expression throughout feeding, while having different magnitudes of expression.

290 To understand the functional implications of expression changes in a majority of outer surface
291 lipoproteins, we also compared their relative expression. The magnitude of expression varied
292 greatly, with *ospA*, *ospB*, *ospC*, and *bba59* being the most highly expressed outer surface protein
293 transcripts. Many of the outer surface protein genes that we found increased expression over
294 feeding were much less abundantly expressed (**Table S5**). However, even the genes that
295 appeared to have low expression in these population level measurements could play important
296 roles in transmission if they are highly expressed in a small number of crucial cells, such as those
297 that ultimately escape the midgut. While bulk RNA-seq cannot distinguish what is happening at
298 the single cell level, our data suggest that during the bloodmeal, *Bb* are undergoing a complex
299 outer surface transformation driven by increases in a majority of the genes encoding these crucial
300 lipoproteins.

301


302 Identification of candidate tick interaction partners of *Bb* cells *ex vivo*

303

304 Our RNA-seq data suggested that the outer surface of *Bb* transforms over the course of feeding
305 as *Bb* are primed for transmission to a vertebrate host. At the same time, the tick midgut
306 environment is changing as the tick begins to digest its bloodmeal. Tick-*Bb* interactions are likely
307 crucial at the beginning of the tick bloodmeal, as *Bb* adhere to the tick gut epithelium before
308 becoming motile and migrating out of the midgut and into the salivary glands (Dunham-Ems et
309 al., 2009). Some *Bb* outer surface proteins, such as BBE31 and BBA52 play key roles in pathogen
310 migration through interactions with the tick environment (Kurokawa et al., 2020). We wanted to
311 explore the changing tick environment to identify tick proteins with which *Bb* could interact
312 throughout the tick bloodmeal. Since our *Bb* enrichment process retained some tick material, we
313 reasoned that tick proteins that interact with *Bb* would be present in these samples.

314

315 To outline the changes occurring in the tick during feeding and to identify candidate *Bb*-interacting
316 tick proteins, we used mass spectrometry to survey the content of the tick material that was
317 enriched along with the *Bb* cells we sequenced at early and late stages during feeding. We purified
318 proteins from the *aBb*-enriched fraction of crushed infected ticks on day 1 after attachment and
319 day 4 after attachment in triplicate. As controls for each day, we also performed the *Bb* enrichment
320 process on lysate from uninfected ticks mixed with *in vitro* cultured *Bb* to help rule out proteins

Figure 5. Identification of candidate tick interaction partners of *Bb* cells ex vivo. (A) Schematic of experiment to determine candidate tick proteins interacting with *Bb* over the course of feeding. Ticks were collected 1 day after attachment and 4 days after attachment. Uninfected ticks at the same time points were mixed with cultured *Bb* as controls. *Bb* was enriched with anti-*Bb* antibody as in RNA-seq experiments and then subjected to mass spectrometry to identify tick proteins present in the samples. Venn diagram depicts the proteins enriched in day 1 and day 4 samples over controls. Tick proteins that are enriched with *Bb* vary greatly over the course of feeding. (B) Tick proteins uniquely identified one day after attachment that are annotated as extracellular matrix (ECM) proteins. (C) Tick proteins uniquely identified four days after attachment that are annotated as low-density lipoprotein receptors. ECM and membrane proteins may be good candidates for *Bb*-interacting proteins.

321 that were not pulled down through *in vivo* tick-*Bb* interactions (**Figure 5A**). We identified between
322 414 and 2240 protein groups per sample replicate. To identify proteins of interest, we looked for
323 those that were detected in at least two of three replicates with infected ticks and had a mean
324 average coverage twice that of uninfected ticks mixed with cultured *Bb*. We found 256 proteins
325 that were enriched with *Bb* from infected ticks one day after attachment and 226 proteins that
326 were enriched with *Bb* from infected ticks four days after attachment (**Table S6**). Of these proteins,
327 only 27 were detectable on both days, suggesting the tick proteins present upon *Bb* enrichment
328 change dramatically over the course of feeding. The vast majority of all detected proteins were
329 from ticks (98%). Amongst the small number of *Bb* proteins, we identified OspC in the samples
330 from day 4 after attachment but not day 1 after attachment, confirming the expression change we
331 saw in our RNA-seq. The distinct sets of tick proteins we identified at each timepoint suggest
332 dramatic changes occur in the *Bb*-infected tick midgut environment during feeding that may alter
333 the landscape of tick-*Bb* interactions.

334

335 Some of the proteins enriched with *Bb* from the tick may be good candidates for key *Bb*-interacting
336 partners during feeding, especially if they are localized to the surface of tick cells where they may
337 encounter *Bb*. The scarcity of both predicted and experimentally validated functions and
338 localizations for tick proteins makes it difficult to fully assess the potential for tick protein
339 interactions with extracellular *Bb*. Nevertheless, of the proteins found exclusively one day after
340 attachment, 10 were categorized as extracellular matrix proteins using the PANTHER gene
341 database (Thomas et al., 2022), and this category was statistically enriched (Fisher's exact test,
342 FDR=0.000093) (**Figure 5B, Table S7**). 30 additional proteins were annotated with a cellular
343 component as plasma membrane. Four days after attachment, we did not detect any annotated
344 extracellular matrix proteins; however, we identified 31 proteins that are likely to be found at the
345 membrane, including two proteins annotated as putative low-density lipoprotein receptors (**Figure**
346 **5C, Table S8**). These extracellular matrix and membrane proteins may be the most likely to
347 directly interact with *Bb* during this timeframe and are candidates for tick proteins important in the
348 *Bb* dissemination process. The proteins present in the changing tick environment may be key
349 determinants of pathogen transmission as *Bb* remodels its outer surface while preparing to
350 migrate through the tick to a new host.

351

352 **DISCUSSION**

353 Vector-borne pathogens must adapt to distinct environments as they are transmitted by
354 arthropods to colonize new bloodmeal hosts. The tick-borne Lyme disease pathogen *Bb*

355 undergoes transcriptional changes inside its vector over the course of a single bloodmeal that are
356 important for a number of key transmission events. For example, expression changes enable
357 survival in the feeding tick (He et al., 2011), facilitate transmission across several internal
358 compartments into the bloodmeal host (Kurokawa et al., 2020), and prime bacteria for successful
359 infection of the next host (Kasumba et al., 2016). Capturing these changes as they occur *in vivo*
360 has been challenging due to the low relative abundance of *Bb* material inside of the rapidly
361 growing, blood-filled tick. To date, many advances in our understanding of *Bb* expression during
362 transmission have come from tracking changes in small subsets of genes during tick feeding
363 (Gilmore et al., 2001), leveraging *Bb* culture conditions that approximate environmental changes
364 across its lifecycle (Ojaimi et al., 2005; Revel et al., 2002; Tokarz et al., 2004), and defining
365 transcriptional regulons outside of the tick (Caimano et al., 2019, 2015; Drecktrah et al., 2015).
366 Here, we developed an experimental RNA-seq-based strategy to more directly and longitudinally
367 profile gene expression for *Bb* populations isolated from ticks over the course of a transmitting
368 bloodmeal.

369

370 Our longitudinal collection of transcriptomes for *Bb* cells isolated from ticks serves as a resource
371 and starting point for delineating the functional determinants of *Bb* adaptation and transmission.
372 Our transcriptome profiles reveal more extensive expression changes for *Bb* outer surface
373 proteins than previously appreciated. These results raise the possibility that *Bb* is actively
374 remodeling its outer coat to navigate the dynamic tick environment during feeding, akin to
375 wardrobe changes across seasons. These outer surface changes may play roles in the
376 persistence of *Bb* in the tick, cell adhesion, or in immune evasion, either inside of the tick or later
377 in the vertebrate host (Kenedy et al., 2012). It has long been observed that molecular interactions
378 between pathogens and the midgut of their vectors are key determinants of transmission (Barillas-
379 Mury et al., 2022). Modifications to the *Bb* surface could facilitate different tick-pathogen
380 interactions that are critical for its physical movement through tick compartments. Notably, we
381 also identified numerous genes of unknown function that change expression during feeding.
382 Although challenging to address, efforts focused on uncovering the contribution of these genes
383 to the *Bb* life cycle could be groundbreaking for understanding the unique aspects of tick-borne
384 transmission.

385

386 More comprehensive knowledge about *Bb* outer surface proteins and their functional
387 consequences could lead to new avenues for curtailing the spread of Lyme disease. Protective
388 vaccines against vector-borne pathogens have often targeted surface proteins encoded by

389 pathogens (Kovacs-Simon et al., 2010). While previous Lyme disease vaccine efforts effectively
390 targeted the highly expressed *Bb* outer surface protein OspA (Steere et al., 1998), more targets
391 could increase the likelihood of a successful vaccine. Our study provides a catalog of new *Bb*
392 candidates that could be explored. In addition, our biochemical pull-downs using tick-isolated *Bb*
393 cells as bait unearthed a preliminary list of potential tick proteins that could be involved in tick–*Bb*
394 molecular interactions. Blocking molecular interactions that are functionally critical for
395 transmission could also be explored as a therapeutic strategy (Barillas-Mury et al., 2022; Manning
396 and Cantaert, 2019).

397
398 Our transcriptomic resource provides critical insights into *Bb* population-level changes during the
399 vector stage of its lifecycle, an important starting point for understanding the primary drivers of
400 tick-borne transmission. Strikingly few *Bb* cells out of the total pathogen population in ticks are
401 ultimately transmitted to the next host during feeding. There are several major bottlenecks to
402 infection, including dissemination to the tick salivary glands and survival upon inoculation of the
403 host (Dunham-Ems et al., 2009; Rego et al., 2014). There may be important physiological or
404 molecular variations across *Bb* cells within the population residing in the tick that contribute to
405 these differential outcomes. An important clue is the fact that *Bb* proteins are indeed
406 heterogeneously expressed across cells within the feeding tick midgut (Ohnishi et al., 2001).
407 Conducting transcriptomic analyses at the single-cell level will be key. Given that only a small
408 number of *Bb* escape the tick midgut, genes that appear unaltered or show low expression levels
409 across the bulk population could still play an outsized role in infection for a minority of the cells.
410 Our work provides a foundational methodology that can be leveraged to greatly improve the
411 resolution of tick–microbe studies. Technological advances stemming from this work will provide
412 molecular details that potentiate new questions and may unearth surprising mechanistic insights
413 into the unique lifestyles of tick-borne pathogens.

414
415 **METHODS**

416 ***B. burgdorferi* culture**

417 *Bb* strain B31-S9 (Rego et al., 2011) was provided by Dr. Patricia Rosa (NIAID, NIH, RML) and
418 cultured in BSK II media at 35°C, 2.5% CO₂.

419
420 **Tick feeding experiments**
421 *I. scapularis* larvae were purchased from the Tick Lab at Oklahoma State University (OSU) (for
422 RNA-seq experiments) or provided by BEI Resources, a division of the Center for Disease Control

423 (for mass spectrometry experiments). Before and after feeding, ticks were maintained in glass
424 jars with a relative humidity of 95% (saturated solution of potassium nitrate) in a sealed incubator
425 at 22°C with a light cycle of 16h/8h (light/dark). Animal experiments were conducted in
426 accordance with the approval of the Institutional Animal Care and Use Committee (IACUC) at
427 UCSF. Ticks were fed on young (4–6-week-old) female C3H/HeJ mice acquired from Jackson
428 Laboratories. Mice were anesthetized with ketamine/xylazine before placement of \leq 100 larval or
429 \leq 30 nymphal ticks. Ticks were either pulled off isoflurane anesthetized mice at various times
430 during feeding (1-3 days after placement) or allowed to feed to repletion and collected from mouse
431 cages. Replete larval ticks were placed in the incubator to molt before being used as nymphs in
432 experiments.

433

434 **Western blot with anti-*Bb* antibody**

435 To determine whether the anti-*Bb* antibody targeted ospA, we cultured wildtype *Bb* (B31-A3),
436 ospA1-mutants (ospA1) and ospA-restored *Bb* (ospA⁺B1) (Battisti et al., 2008) to approximately
437 5×10^7 *Bb*/mL and centrifuged 3 mLs of culture for 7 minutes at 8000 x g, washing twice with PBS.
438 Pelleted cells were lysed in 50 μ L of water, and 25 ng per sample was mixed with 5X loading dye
439 (0.25% Bromophenol Blue, 50% Glycerol, 10% Sodium Dodecyl Sulfate, 0.25M Tris-Cl pH 6.8,
440 10% B-Mercaptoethanol), run on a Mini-PROTEAN TGX 4-15% gel (Biorad), and transferred
441 using the Trans-Blot Turbo Transfer System (Biorad). After transfer, the blot was blocked for 30
442 minutes at 4°C in TBST (Tris buffered saline with .1% tween) with 5% milk, then treated with anti-
443 *Bb* antibody (Invitrogen: PA1-73004; RRID: AB_1016668) diluted 1:10,000 for 1 hour at room
444 temperature, followed by anti-rabbit HRP secondary antibody (Advansta) diluted 1:5,000 for 45
445 minutes at room temperature with short PBST washes between each step. Blots were exposed
446 using Clarity Western ECL Substrate (Biorad) and imaged using the Azure C400 imaging system
447 (Azure Biosystems). This experiment was repeated three times.

448

449 **Enrichment of *Bb* from feeding ticks**

450 To sequence RNA from *Bb* from feeding ticks, we enriched *Bb* to increase the ratio of *Bb* to tick
451 material. Larval ticks were fed to repletion on three mice that were infected with *Bb* through
452 intraperitoneal and subcutaneous injection with 10^4 total *Bb*. Approximately five months later, the
453 molted nymphal ticks were fed on eight mice. We estimated that 83% of the ticks were infected
454 with *Bb* by crushing 12 unfed nymphs in BSK II media and checking for viable *Bb* days later. Ticks
455 were pulled from all mice and pooled into four replicates 1 day after placement (14 ticks per
456 replicate), 2 days after placement (12 ticks per replicate), and 3 days after placement (6 ticks per

457 replicate) and collected from cages 4 days after placement (7 ticks per replicate). Shortly after
458 collection, ticks were washed with water and placed in a 2 mL glass dounce grinder (Kimble) in
459 500 μ L of phosphate-buffered saline (PBS). Ticks were homogenized first with the large clearance
460 pestle and then the small clearance pestle. The homogenate was transferred to a 1.5 mL
461 Eppendorf tube and 500 μ L of PBS was added to total 1 mL. At this stage, 50 μ L of homogenate
462 was removed as an input sample and mixed with 500 μ L of TRIzol (Invitrogen) for RNA extraction.
463 2 μ L of anti-*Bb* antibody (Invitrogen: PA1-73004; RRID: AB_1016668) was added to the
464 homogenate, which was then placed on a nutator at 4°C for 30 minutes. During incubation, 50 μ L
465 of Dynabeads Protein G (Invitrogen) per sample were washed twice in PBS. After incubation with
466 the antibody, the homogenate and antibody mixture were added to the beads. This mixture was
467 placed on a nutator at 4°C for 30 minutes. Tubes were then placed on a magnet to secure beads,
468 and the homogenate was removed and saved to create depleted samples. The depleted
469 homogenate was centrifuged at 8,000 x g for 7 minutes, 900 μ L of supernatant was removed, and
470 500 μ L of TRIzol was added to the pellet to create depleted samples. The beads were washed
471 twice with 1 mL of PBS, resuspending the beads each time. The second wash was removed and
472 500 μ L of TRIzol was added to the beads to create enriched samples. RNA was extracted from
473 all input, enriched, and depleted samples using the Zymo Direct-zol RNA Microprep Kit with on-
474 column DNase treatment (Zymo Research). The step-by-step *Bb* enrichment protocol is available
475 at: <https://www.protocols.io/view/b-burgdorferi-enrichment-from-feeding-ticks-36wgqjrbvk5/v1>
476

477 **Enrichment of *Bb* from culture**

478 To test whether the *Bb* enrichment process altered gene expression levels, we performed the
479 enrichment protocol on cultured *Bb*. We grew three tubes of *Bb* in BSK II media to 9×10^4 *Bb*/mL
480 at 35°C. 1 mL of culture was spun down at 8,000 x g for 7 minutes, media was removed, *Bb* were
481 washed in 1 mL of PBS and spun again. Pelleted *Bb* were resuspended in 1 mL of fresh PBS.
482 These samples were used as starting homogenate for the *Bb* enrichment protocol and input,
483 enriched, and depleted fractions were collected as above. RNA-seq libraries from these samples
484 were prepared and sequenced as below.
485

486 **RNA-seq library preparation and sequencing**

487 To make RNA-seq libraries from enriched *Bb* RNA, we used 50 ng of total RNA as input into the
488 NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (New England BioLabs). We
489 prepared libraries following the manufacturer's protocol for use of the kit with purified mRNA or

490 rRNA-depleted RNA, despite starting with total RNA. Libraries were barcoded using NEBNext
491 Multiplex Oligos for Illumina Dual Index (New England BioLabs).

492
493 To deplete reads from the libraries that were from tick, *Bb*, or mouse rRNA, we used Depletion of
494 Abundant Sequences by Hybridization (DASH) (Gu et al., 2016), which targets Cas9 to unwanted
495 reads in RNA-seq libraries using custom dual-guide RNAs (dgRNAs). Our dgRNAs targeted short
496 sequences within tick rRNA, mouse rRNA, and *Bb* rRNA that were designed using DASHit
497 software (Dynerman et al., 2020). We ordered crRNAs that targeted our sequences of interest
498 (Ring et al., 2022). To transcribe the dgRNAs, we followed our protocol for In Vitro Transcription
499 for dgRNA V2 (Lyden et al., 2019b). Both tracrRNA and pooled crRNA DNA templates were
500 annealed to equimolar amounts of T7 primer by heating to 95°C for 2 minutes and slowly cooling
501 to room temperature. Annealed templates were used in 1 mL in vitro transcription reactions with:
502 120 µL 10X T7 buffer (400 mM Tris pH 7.9, 200 mM MgCl₂, 50 mM DTT, 20 mM spermidine
503 (Sigma)), 100 µL of T7 enzyme (custom prepped enzyme from E. Crawford, diluted 1:100 in T7
504 buffer, final concentration: 100 µg/mL), 300 µL NTPs (25 mM each, Thermo Fisher Scientific), 4
505 µg of annealed crRNA template or 8 µg of annealed tracrRNA template, and water to 1 mL. In
506 vitro transcription was performed for 2 hours at 37°C. Reactions were purified twice with the Zymo
507 RNA Clean & Concentrator-5 Kit (Zymo Research). To form the dgRNA complex for DASH, crRNA
508 and tracrRNAs were diluted to 80 µM, mixed in equimolar amounts and annealed by heating to
509 95°C for 30 seconds and cooling slowly to room temperature.

510 After transcription of dgRNAs, we performed DASH Protocol Version 4 (Lyden et al., 2019a) on
511 each library individually. Cas9 and transcribed dgRNAs were prepped by mixing: 2.5 µL 10X Cas9
512 buffer, 5 µL Cas9 (New England BioLabs), and 5 µL of 40 µM transcribed dgRNAs. The mixture
513 was incubated at 37°C for 5 minutes before 7.5 µL of RNA-seq library (2.8 nM) was added. The
514 mixture was incubated at 37°C for 1 hour and then purified with Zymo DNA Clean & Concentrator-
515 5 (Zymo Research) following the PCR product protocol and eluting DNA into 10.5 µL of water.
516 During cleanup, Cas9 was again mixed with buffer and dgRNAs and incubated at 37°C for 5
517 minutes. Following cleanup, eluted DNA was added to the second Cas9-dgRNA mixture and
518 incubated at 37°C for 1 hour for a second time. Then, 1 µL of proteinase K (New England Biolabs)
519 was added, and the mixture was incubated at 50°C for 15 min. The libraries were then purified
520 with 0.9x volume of sparQ PureMag Beads (QuantaBio) following the standard protocol, eluting
521 in 24 µL of water. rRNA-depleted RNA-seq libraries were then amplified in a BioRad CFX96 using
522 the Kapa HiFi Real-Time Amplification Kit in a 50 µL reaction with 25 µL master mix, 23 µL of the

523 DASHed library pool, and 2 μ L of 25 μ M mix of Illumina P5 (5'-
524 AATGATACGGCGACCACCGAGATCT) and P7 (5'- CAAGCAGAAGACGGCATACGAGAT)
525 primers. The qPCR program for amplification was as follows: 98°C for 45 sec (1 cycle), (98°C for
526 15 sec, 63°C for 30 sec, 72°C for 45 sec, plate read, 72°C for 20 sec) for 10 cycles (day 3 and
527 day 4 samples) or 11 cycles (day 1 and day 2 samples). The libraries were removed from cycling
528 conditions before leaving the exponential phase of amplification and then purified with 0.9X
529 volume of sparQ PureMag Beads according to the standard protocol.

530 Following DASH, RNA-seq libraries were sequenced on an Illumina NovaSeq S2 (2 lanes) with
531 paired-end 100 base pair reads. Libraries from *in vitro* cultured control experiment were
532 sequenced on an Illumina NextSeq with paired-end 75 base pair reads. FASTQ files and raw *Bb*
533 read counts for *in vitro* control experiment (GSE217146) and *ex vivo* experiment (GSE216261)
534 have been deposited in NCBI's Gene Expression Omnibus (Edgar et al., 2002) under SuperSeries
535 accession number GSE217236.

536 **RNA-seq data analysis**

537 To measure the success of our rRNA depletion through DASH, we used DASHit software
538 (Dynerman et al., 2020) to determine the percentage of reads that would be DASHable by our
539 guide RNAs (Ring et al., 2022). For pre-DASH data, we sequenced the input of each of our RNA-
540 seq libraries before performing DASH on a MiSeq V2 Micro (Illumina). We tested DASHability on
541 a random subset of 200,000 paired-end reads chosen by seqtk (<https://github.com/lh3/seqtk>) from
542 each pre- and post-DASH library.

543

544 To map our RNA-seq data to *Bb*, we wanted to optimize for mapping reads that came from the
545 many paralogous gene families found across the plasmids of the genome. We used the
546 pseudoalignment tool Salmon v1.2.1 (Patro et al., 2017), which is used to accurately map reads
547 coming from different isoforms of the same gene, for this reason. While using Salmon to map to
548 CDS sequences may improve mapping to paralogous genes, it may also have a tradeoff of
549 reduced mapping of reads that fall on the ends of genes that reside in operons. Nevertheless, all
550 samples should be similarly affected, and any undercounting should not change differential
551 expression results. Reads were first trimmed of bases with quality scores less than 20 using Trim
552 Galore v0.6.5 (<https://github.com/FelixKrueger/TrimGalore>). We mapped our reads to *Bb* CDS
553 sequences as a reference transcriptome: NCBI Genbank GCA_000008685.2 ASM868v2 (with
554 plasmids lp5, cp9, and lp56 removed as they are not present in B31-S9) using Salmon with the
555 following parameters: --validateMappings --seqBias --gcBias. Before mapping, the transcriptome

556 was first indexed using the Salmon index command with the whole genome as decoys and the
557 parameter --keepDuplicates to keep all duplicate genes.

558

559 Read counts from Salmon were used as input into DESeq2 v1.24.0 (Love et al., 2014) for
560 differential expression analysis in R version 3.6.1. DESeq2 function PlotPCA() was used to create
561 a PCA plot from read counts after running the varianceStabilizingTransformation() function. For
562 differential expression analysis between days, a DESeq object was created from count data using
563 the DESeq() function. The IfcShrink() function with the apeglm method (Zhu et al., 2018) was
564 used to calculate fold changes between days. Code used for differential expression analysis is
565 available at <https://github.com/annesapiro/Bb-tick-feeding>.

566

567 **Gene classification**

568 To classify genes into functional groups, functional categories were sourced from Drecktrah et
569 al., 2015 where available. Other gene functions were sourced from Fraser et al., 1997. Genes
570 found within the co-transcribed “late” bacteriophage operon (Zhang and Marconi, 2005) were
571 considered “bacteriophage” even if their function is unknown. Outer surface lipoproteins were
572 those found in Dowdell et al., 2017 plus additional lipoproteins listed in Iyer et al., 2015 that were
573 found in Dowdell et al. 2017 categories SpII and SpI and evidence of outer surface localization.
574 Outer surface and periplasmic lipoproteins were classified as “cell envelope” in the absence of
575 other classifications. Gene family information from Casjens et al., 2000 was considered to aid in
576 classification.

577

578 **RT-qPCR measuring *Bb* enrichment**

579 To test the efficacy of our enrichment protocol, we used RT-qPCR to quantify *Bb flaB* and *I.*
580 *scapularis* *gapdh* transcript levels in enriched and depleted fractions. We synthesized cDNA from
581 8 µL of RNA extracted from *Bb* enrichment samples and their matched depleted samples from
582 feeding day 2, day 3, and day 4 using the qScript cDNA Synthesis Kit (Quantabio). cDNA was
583 diluted 2X before use in qPCR. To measure *flaB* copies, we created standards of known
584 concentration from purified PCR products. These standards were made from PCR with primers
585 with the following sequences: 5'-CACATATTCAAGATGCAGACAGAGGTTCTA and 5'-
586 GAAGGTGCTGTAGCAGGTGCTGGCTGT. We ran a dilution series with ten-fold dilutions
587 between 10⁶ copies and 10¹ copies of this PCR template alongside our enriched and depleted
588 samples. We performed qPCR using Taqman Universal PCR Master Mix (Applied Biosystems).
589 The primers used to amplify *flaB* were: 5'- TCTTTCTCTGGTGAGGGAGCT and 5'-

590 TCCTTCCTGTTAACACCCCTCT (used at 900 nM) and the probe was /56-
591 FAM/AAACTGCTCAGGCTGCACCGGTT/36-TAMSp (used at 250 nM). For tick *gapdh* RT-
592 qPCR, the cDNA samples were diluted an additional 2X. Standards of known concentration were
593 created using the qPCR primer sequences. Primer sequences were: 5'-
594 TTCATTGGAGACACCCACAG and 5'-CGTTGTCGTACCACGAGATAA (used at 900 nM). qPCR
595 was performed using PowerUp SYBR Green Master Mix (Applied Biosystems). For both *flaB* and
596 *gapdh*, the number of copies in each sample was calculated based on the standards of known
597 concentration. Three technical replicates were averaged from each of four biological replicates at
598 each time point tested. We totaled the number of copies in each matched enriched and depleted
599 fraction to calculate the fraction of *flaB* or *gapdh* that was found in either sample. All qPCR was
600 performed on the QuantStudio3 Real-Time PCR System (Applied Biosystems).

601

602 **Immunofluorescence microscopy**

603 To test whether the anti-*Bb* antibody recognized *Bb* inside of the tick, ticks at each day of feeding
604 were crushed in 50 μ L of PBS. 10 μ L of lysate was spotted onto slides and allowed to air dry
605 before slides were heated briefly three times over a flame. Heat fixed slides were then treated
606 with acetone for one hour. Slides were incubated with anti-*Bb* primary antibody (1:100 diluted in
607 PBS + 0.75% BSA) for 30 minutes at 37°C in a humid chamber. A control without primary antibody
608 was also used for each day. Slides were washed once in PBS for 15 minutes at room temperature,
609 then rinsed in distilled water and air dried. Anti-rabbit IgG Alexa 488 (Invitrogen) diluted 1:100 in
610 PBS + 0.75% BSA was added for 30 minutes at 37°C in a humid chamber. Slides were washed
611 in PBS for 15 minutes at room temperature three times, adding 1:100 Propidium Iodide
612 (Invitrogen) during the second wash. Slides were then rinsed with distilled water and air dried
613 before the addition of mounting media (Fluoromount-G, SouthernBiotech) and cover slips.
614 Fluorescence imaging was performed on a Nikon Ti2 inverted microscope for widefield
615 epifluorescence using a 100x/1.40 objective. Images were captured with NIS-Elements AR View
616 5.20 and then processed with ImageJ software (Schneider et al., 2012). No strong fluorescence
617 signal was observed on the control slides without primary antibody.

618

619 **Mass spectrometry of *Bb*-enriched samples**

620 To identify which tick proteins were found in samples after *Bb* enrichment across feeding, we fed
621 both uninfected and infected ticks on mice. We collected three replicates of uninfected ticks one
622 day after attachment (11 ticks per replicate), infected ticks one day after attachment (27 ticks per
623 replicate), uninfected ticks four days after attachment (8 ticks per replicate), and infected ticks

624 four days after attachment (16 ticks per replicate). Before anti-*Bb* enrichment, the uninfected tick
625 samples were mixed with *Bb* grown in culture that was washed with PBS (3×10^4 *Bb* one day after
626 attachment and 3×10^6 *Bb* four days after attachment) and mixed lysates were rotated at room
627 temperature for 30 minutes. Infected tick samples underwent the *Bb* enrichment process
628 immediately. The enrichment process followed the same protocol used for RNA-seq. Sample
629 volumes were increased to 1 mL as needed, and then 2 μ L of anti-*Bb* antibody (Invitrogen: PA1-
630 73004; RRID: AB_1016668) was added, and samples were rotated at 4°C for 30 minutes. 50 μ L
631 of Dynabeads Protein G per sample were washed in PBS during this incubation and added to the
632 lysates, which were rotated at 4°C for 30 minutes. The beads were washed twice with 1 mL of
633 PBS, and then placed into 50 μ L of lysis buffer (iST LYSE, PreOmics). Samples were boiled at
634 95°C for 5 minutes, and lysates were removed from beads and frozen for mass spectrometry
635 preparation.

636

637 For mass spectrometry, a nanoElute was attached in line to a timsTOF Pro equipped with a
638 CaptiveSpray Source (Bruker). Chromatography was conducted at 40°C through a 25 cm
639 reversed-phase C18 column (PepSep) at a constant flowrate of 0.5 μ L min⁻¹. Mobile phase A
640 was 98/2/0.1% water/MeCN/formic acid (v/v/v) and phase B was MeCN with 0.1% formic acid
641 (v/v). During a 108 min method, peptides were separated by a 3-step linear gradient (5% to 30%
642 B over 90 min, 30% to 35% B over 10 min, 35% to 95% B over 4 min) followed by a 4 min isocratic
643 flush at 95% for 4 min before washing and a return to low organic conditions. Experiments were
644 run as data-dependent acquisitions with ion mobility activated in PASEF mode. MS and MS/MS
645 spectra were collected with m/z 100 to 1700 and ions with z = +1 were excluded.

646

647 Raw data files were searched using PEAKS Online Xpro 1.6 (Bioinformatics Solutions Inc.). The
648 precursor mass error tolerance and fragment mass error tolerance were set to 20 ppm and 0.03
649 respectively. The trypsin digest mode was set to semi-specific and missed cleavages was set to
650 2. The *I. scapularis* reference proteome (Proteome ID UP000001555, taxon 6945) and *Bb*
651 reference proteome (Proteome ID UP000001807, strain ATCC 35210/B31) was downloaded from
652 Uniprot, totaling 21,774 entries. The *I. scapularis* proteome was the primary search reference and
653 the *Bb* was used as a secondary to identify any bacterial proteins present. Carbamidomethylation
654 was selected as a fixed modification. Oxidation (M) and Deamidation (NQ) was selected as a
655 variable modification.

656

657 Experiments were performed in biological triplicate, with samples being a single run on the
658 instrument. Proteins present in a database search ($-10 \log(p\text{-value}) \geq 20$, 1% peptide and protein
659 FDR) were subjected to the following filtration process. We first filtered to include proteins found
660 in 2 out of 3 biological replicates, within each respective day (one or four days after attachment).
661 We calculated the mean area of proteins found in uninfected and infected samples. Proteins with
662 missing values (i.e. not identified in a sample) were set to 1. We calculated the ratio of mean area
663 for each protein as infected/uninfected, and enriched proteins were identified by having a
664 infected:uninfected ratio greater than 2 within their respective feeding day (one or four days after
665 attachment).

666

667 To classify the proteins we identified into functional groups, we used a PANTHER
668 Overrepresentation Test (released 07/12/2022) (Mi et al., 2019) with PANTHER version 17.0
669 (released 02/22/2022) (Thomas et al., 2022). We used all *Ixodes scapularis* genes in the database
670 as our reference list and analyzed the lists of proteins enriched on each day for their PANTHER
671 Protein Class. The test type used was Fisher's Exact, calculating a false discovery rate as the
672 correction.

673

674 Raw data files and searched datasets are available on the Mass Spectrometry Interactive Virtual
675 Environment (MassIVE), a full member of the Proteome Xchange consortium under the identifier:
676 MSV000090560.

677

678 **SUPPLEMENTAL TABLES**

679 **Table S1.** Overview of mapping statistics from 16 *Bb* sequencing samples.

680 **Table S2.** Differential expression analysis results between *in vitro* cultured *Bb* before and after
681 *Bb* enrichment.

682 **Table S3.** Transcriptome-wide differential expression analysis results from *Bb* across tick
683 feeding timepoints.

684 **Table S4.** Twofold differentially expressed *Bb* genes from across tick feeding timepoints.

685 **Table S5.** Transcripts per million (TPM) for all *Bb* genes across feeding timepoints.

686 **Table S6.** Mass spectrometry analysis for *Bb*-enriched samples.

687 **Table S7.** Annotation and GO term enrichment for tick proteins enriched on feeding day 1.

688 **Table S8.** Annotation and GO term enrichment for tick proteins enriched on feeding day 4.

689

690 **ACKNOWLEDGMENTS**

691 We are grateful to all members of the Chou lab for their feedback throughout the project and
692 specifically to Fauna Yarza and Patrick Rockefeller Grimes for assistance with tick feeding and
693 Ethel Enoex-Godonoo for administrative assistance. We thank Amy Lyden and Emily Crawford
694 for assistance with and reagents for DASH along with Olga Botvinnik and The Chan Zuckerberg
695 Biohub sequencing team for their input and sequencing assistance. We thank Patricia Rosa,
696 Jenny Wachter, Scott Samuels, and Meghan Lybecker for their feedback on the project. We also
697 thank William Hatleberg for assistance with figure schematics. This work was funded by: a Life
698 Sciences Research Foundation fellowship from the SVCF-Wave Fund to Anne Sapiro, a Beckman
699 Young Investigator award from the Arnold and Mabel Beckman Foundation to Balyn Zaro, grants
700 from CZ Biohub, the Pew Biomedical Research Foundation, and NIH funding 1R01AI132851 to
701 Seemay Chou, and NIH INBRE funding P20GM103474 to Patrick Secor and Margie Kinnersley.
702

703 COMPETING INTERESTS

704 Seemay Chou is president and CEO of Arcadia Biosciences.

705

706 REFERENCES

707 Barbour AG. 1988. Plasmid analysis of *Borrelia burgdorferi*, the Lyme disease agent. *J Clin
708 Microbiol* 26:475–478. doi:10.1128/jcm.26.3.475-478.1988

709 Barillas-Mury C, Ribeiro JMC, Valenzuela JG. 2022. Understanding pathogen survival and
710 transmission by arthropod vectors to prevent human disease. *Science* 377:eabc2757.
711 doi:10.1126/science.abc2757

712 Battisti JM, Bono JL, Rosa PA, Schrumpf ME, Schwan TG, Policastro PF. 2008. Outer Surface
713 Protein A Protects Lyme Disease Spirochetes from Acquired Host Immunity in the Tick
714 Vector. *Infect Immun* 76:5228–5237. doi:10.1128/iai.00410-08

715 Blevins JS, Hagman KE, Norgard MV. 2008. Assessment of decorin-binding protein A to the
716 infectivity of *Borrelia burgdorferi* in the murine models of needle and tick infection. *Bmc
717 Microbiol* 8:82. doi:10.1186/1471-2180-8-82

718 Caimano MJ, Dunham-Ems S, Allard AM, Cassera MB, Kenedy M, Radolf JD. 2015. Cyclic di-
719 GMP Modulates Gene Expression in Lyme Disease Spirochetes at the Tick-Mammal
720 Interface To Promote Spirochete Survival during the Blood Meal and Tick-to-Mammal
721 Transmission. *Infect Immun* 83:3043–3060. doi:10.1128/iai.00315-15

722 Caimano MJ, Groshong AM, Belperron A, Mao J, Hawley KL, Luthra A, Graham DE, Earnhart
723 CG, Marconi RT, Bockenstedt LK, Blevins JS, Radolf JD. 2019. The RpoS Gatekeeper in
724 *Borrelia burgdorferi*: An Invariant Regulatory Scheme That Promotes Spirochete Persistence
725 in Reservoir Hosts and Niche Diversity. *Front Microbiol* 10:1923.
726 doi:10.3389/fmichb.2019.01923

727 Caimano MJ, Iyer R, Eggers CH, Gonzalez C, Morton EA, Gilbert MA, Schwartz I, Radolf JD.
728 2007. Analysis of the RpoS regulon in *Borrelia burgdorferi* in response to mammalian host
729 signals provides insight into RpoS function during the enzootic cycle. *Mol Microbiol* 65:1193–
730 1217. doi:10.1111/j.1365-2958.2007.05860.x

731 Casjens S, Palmer N, Vugt RV, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G,
732 Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser CM. 2000. A bacterial
733 genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious
734 isolate of the Lyme disease spirochete *Borrelia burgdorferi*. *Mol Microbiol* 35:490–516.
735 doi:10.1046/j.1365-2958.2000.01698.x

736 Casjens SR, Mongodin EF, Qiu W-G, Luft BJ, Schutzer SE, Gilcrease EB, Huang WM,
737 Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF, Dimitrov GI,
738 Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM. 2012. Genome Stability of Lyme
739 Disease Spirochetes: Comparative Genomics of *Borrelia burgdorferi* Plasmids. *Plos One*
740 7:e33280. doi:10.1371/journal.pone.0033280

741 Dowdell AS, Murphy MD, Azodi C, Swanson SK, Florens L, Chen S, Zückert WR. 2017.
742 Comprehensive Spatial Analysis of the *Borrelia burgdorferi* Lipoproteome Reveals a
743 Compartmentalization Bias toward the Bacterial Surface. *J Bacteriol* 199:e00658-16.
744 doi:10.1128/jb.00658-16

745 Drecktrah D, Lybecker M, Popitsch N, Rescheneder P, Hall LS, Samuels DS. 2015. The
746 *Borrelia burgdorferi* RelA/SpoT Homolog and Stringent Response Regulate Survival in the
747 Tick Vector and Global Gene Expression during Starvation. *Plos Pathog* 11:e1005160.
748 doi:10.1371/journal.ppat.1005160

749 Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH, Balic A, Radolf JD. 2009.
750 Live imaging reveals a biphasic mode of dissemination of *Borrelia burgdorferi* within ticks. *J
751 Clin Invest* 119:3652–3665. doi:10.1172/jci39401

752 Dynerman D, Lyden A, Quan J, Caldera S, McGeever A, Dimitrov B, King R, Cirolia G, Tan M,
753 Sit R, Berge M van den, Kerstjens HAM, Faiz A, Christenson S, Langelier C, DeRisi J,
754 Crawford E. 2020. Designing and implementing programmable depletion in sequencing
755 libraries with DASHit. *Biorxiv* 2020.01.12.891176. doi:10.1101/2020.01.12.891176

756 Edgar R, Domrachev M, Lash AE. 2002. Gene Expression Omnibus: NCBI gene expression
757 and hybridization array data repository. *Nucleic Acids Res* 30:207–210.
758 doi:10.1093/nar/30.1.207

759 Eggers CH, Samuels DS. 1999. Molecular evidence for a new bacteriophage of *Borrelia*
760 *burgdorferi*. *J Bacteriol* 181:7308–13.

761 Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA,
762 Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb J-F, Fleischmann RD, Richardson D,
763 Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, Vugt R van, Palmer N,
764 Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P,
765 Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter
766 JC. 1997. Genomic sequence of a Lyme disease spirochaete, *Borrelia burgdorferi*. *Nature*
767 390:580–586. doi:10.1038/37551

768 Gilmore RD, Howison RR, Dietrich G, Patton TG, Clifton DR, Carroll JA. 2010. The bba64 gene
769 of *Borrelia burgdorferi*, the Lyme disease agent, is critical for mammalian infection via tick
770 bite transmission. *P Natl Acad Sci Usa* 107:7515–20. doi:10.1073/pnas.1000268107

771 Gilmore RD, Mbow ML, Stevenson B. 2001. Analysis of *Borrelia burgdorferi* gene expression
772 during life cycle phases of the tick vector *Ixodes scapularis*. *Microbes Infect* 3:799–808.
773 doi:10.1016/s1286-4579(01)01435-6

774 Gu W, Crawford ED, O'Donovan BD, Wilson MR, Chow ED, Retallack H, DeRisi JL. 2016.
775 Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove
776 unwanted high-abundance species in sequencing libraries and molecular counting
777 applications. *Genome Biol* 17:41. doi:10.1186/s13059-016-0904-5

778 Haas BJ, Chin M, Nusbaum C, Birren BW, Livny J. 2012. How deep is deep enough for RNA-
779 Seq profiling of bacterial transcriptomes? *Bmc Genomics* 13:734. doi:10.1186/1471-2164-13-
780 734

781 He M, Ouyang Z, Troxell B, Xu H, Moh A, Piesman J, Norgard MV, Gomelsky M, Yang XF.
782 2011. Cyclic di-GMP is Essential for the Survival of the Lyme Disease Spirochete in Ticks.
783 *Plos Pathog* 7:e1002133. doi:10.1371/journal.ppat.1002133

784 Hübner A, Yang X, Nolen DM, Popova TG, Cabello FC, Norgard MV. 2001. Expression of
785 *Borrelia burgdorferi* OspC and DbpA is controlled by a RpoN–RpoS regulatory pathway. *Proc
786 National Acad Sci* 98:12724–12729. doi:10.1073/pnas.231442498

787 Iyer R, Caimano MJ, Luthra A, Axline D, Corona A, Iacobas DA, Radolf JD, Schwartz I. 2015.
788 Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during
789 tick feeding and following mammalian host adaptation. *Mol Microbiol* 95:509–538.
790 doi:10.1111/mmi.12882

791 Kasumba IN, Bestor A, Tilly K, Rosa PA. 2016. Virulence of the Lyme disease spirochete before
792 and after the tick bloodmeal: a quantitative assessment. *Parasite Vector* 9:129.
793 doi:10.1186/s13071-016-1380-1

794 Kenedy MR, Lenhart TR, Akins DR. 2012. The role of *Borrelia burgdorferi* outer surface
795 proteins. *Fems Immunol Medical Microbiol* 66:1–19. doi:10.1111/j.1574-695x.2012.00980.x

796 Kovacs-Simon A, Titball RW, Michell SL. 2010. Lipoproteins of Bacterial Pathogens. *Infect
797 Immun* 79:548–561. doi:10.1128/iai.00682-10

798 Kurokawa C, Lynn GE, Pedra JHF, Pal U, Narasimhan S, Fikrig E. 2020. Interactions between
799 *Borrelia burgdorferi* and ticks. *Nat Rev Microbiol* 1–14. doi:10.1038/s41579-020-0400-5

800 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
801 RNA-seq data with DESeq2. *Genome Biol* 15:550. doi:10.1186/s13059-014-0550-8

802 Lyden A, Crawford E, Quan J, Caldera S, Dynerman D. 2019a. DASH Protocol v4.
803 doi:10.17504/protocols.io.6rjhd4n

804 Lyden A, Crawford E, Quan J, Caldera S, Pesce-Ares L. 2019b. In Vitro Transcription for
805 dgRNA v2. doi:10.17504/protocols.io.3bpgimn

806 Manning JE, Cantaert T. 2019. Time to Micromanage the Pathogen-Host-Vector Interface:
807 Considerations for Vaccine Development. *Nato Adv Sci Inst Se* 7:10.
808 doi:10.3390/vaccines7010010

809 Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, Thomas PD. 2019. Protocol Update for
810 large-scale genome and gene function analysis with the PANTHER classification system
811 (v.14.0). *Nat Protoc* 14:703–721. doi:10.1038/s41596-019-0128-8

812 Ohnishi J, Piesman J, Silva AM de. 2001. Antigenic and genetic heterogeneity of *Borrelia*
813 *burgdorferi* populations transmitted by ticks. *Proceedings of the National Academy of*
814 *Sciences* 98:670–5. doi:10.1073/pnas.98.2.670

815 Ojaimi C, Mulay V, Liveris D, Iyer R, Schwartz I. 2005. Comparative Transcriptional Profiling of
816 *Borrelia burgdorferi* Clinical Isolates Differing in Capacities for Hematogenous Dissemination.
817 *Infect Immun* 73:6791–6802. doi:10.1128/iai.73.10.6791-6802.2005

818 Pal U, Kitsou C, Drecktrah D, Yaş OB, Fikrig E. 2022. Interactions Between Ticks and Lyme
819 Disease Spirochetes. *Curr Issues Mol Biol* 42:113–144. doi:10.21775/cimb.042.113

820 Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, deSilva AM, Bao F, Yang X, Pypaert M,
821 Pradhan D, Kantor FS, Telford S, Anderson JF, Fikrig E. 2004. TROSPA, an *Ixodes*
822 *scapularis* Receptor for *Borrelia burgdorferi*. *Cell* 119:457–468.
823 doi:10.1016/j.cell.2004.10.027

824 Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias-
825 aware quantification of transcript expression. *Nat Methods* 14:417–419.
826 doi:10.1038/nmeth.4197

827 Patton TG, Brandt KS, Nolder C, Clifton DR, Carroll JA, Gilmore RD. 2013. *Borrelia burgdorferi*
828 *bba66* Gene Inactivation Results in Attenuated Mouse Infection by Tick Transmission. *Infect*
829 *Immun* 81:2488–2498. doi:10.1128/iai.00140-13

830 Phelan JP, Kern A, Ramsey ME, Lundt ME, Sharma B, Lin T, Gao L, Norris SJ, Hyde JA, Skare
831 JT, Hu LT. 2019. Genome-wide screen identifies novel genes required for *Borrelia*
832 *burgdorferi* survival in its *Ixodes* tick vector. *Plos Pathog* 15:e1007644.
833 doi:10.1371/journal.ppat.1007644

834 Radolf JD, Caimano MJ, Stevenson B, Hu LT. 2012. Of ticks, mice and men: understanding the
835 dual-host lifestyle of Lyme disease spirochaetes. *Nat Rev Microbiol* 10:87–99.
836 doi:10.1038/nrmicro2714

837 Rego ROM, Bestor A, Rosa PA. 2011. Defining the Plasmid-Borne Restriction-Modification
838 Systems of the Lyme Disease Spirochete *Borrelia burgdorferi*. *J Bacteriol* 193:1161–1171.
839 doi:10.1128/jb.01176-10

840 Rego ROM, Bestor A, Štefka J, Rosa PA. 2014. Population Bottlenecks during the Infectious
841 Cycle of the Lyme Disease Spirochete *Borrelia burgdorferi*. *Plos One* 9:e101009.
842 doi:10.1371/journal.pone.0101009

843 Revel AT, Talaat AM, Norgard MV. 2002. DNA microarray analysis of differential gene
844 expression in *Borrelia burgdorferi*, the Lyme disease spirochete. *Proc National Acad Sci*
845 99:1562–1567. doi:10.1073/pnas.032667699

846 Ring K, Couper LI, Sapiro AL, Yarza F, Yang XF, Clay K, Mateusiak C, Chou S, Swei A. 2022.
847 Host blood meal identity modifies vector gene expression and competency. *Mol Ecol*
848 31:2698–2711. doi:10.1111/mec.16413

849 Rosenberg R, Lindsey NP, Fischer M, Gregory CJ, Hinckley AF, Mead PS, Paz-Bailey G,
850 Waterman SH, Drexler NA, Kersh GJ, Hooks H, Partridge SK, Visser SN, Beard CB,
851 Petersen LR. 2018. Vital Signs: Trends in Reported Vectorborne Disease Cases — United
852 States and Territories, 2004–2016. *Morbidity Mortal Wkly Rep* 67:496–501.
853 doi:10.15585/mmwr.mm6717e1

854 Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B,
855 Drecktrah D, Caimano MJ. 2021. Gene Regulation and Transcriptomics. *Curr Issues Mol Biol*
856 42:223–266. doi:10.21775/cimb.042.223

857 Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image
858 analysis. *Nat Methods* 9:671–675. doi:10.1038/nmeth.2089

859 Schwartz I, Margos G, Casjens SR, Qiu W-G, Eggers CH. 2021. Multipartite Genome of Lyme
860 Disease *Borrelia* : Structure, Variation and Prophages. *Curr Issues Mol Biol* 42:409–454.
861 doi:10.21775/cimb.042.409

862 Shaw WR, Catteruccia F. 2018. Vector biology meets disease control: using basic research to
863 fight vector-borne diseases. *Nat Microbiol* 4:20–34. doi:10.1038/s41564-018-0214-7

864 Spielman A, Ribeiro JMC, Mather TN, Piesman J. 1987. Dissemination and Salivary Delivery of
865 Lyme Disease Spirochetes in Vector Ticks (Acari: Ixodidae). *J Med Entomol* 24:201–205.
866 doi:10.1093/jmedent/24.2.201

867 Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, Nowakowski J, Schmid CH,
868 Laukamp S, Buscarino C, Krause DS. 1998. Vaccination against Lyme Disease with
869 Recombinant *Borrelia burgdorferi* Outer-Surface Lipoprotein A with Adjuvant. *New Engl J
870 Medicine* 339:209–215. doi:10.1056/nejm199807233390401

871 Steere AC, Strle F, Wormser GP, Hu LT, Branda JA, Hovius JWR, Li X, Mead PS. 2016. Lyme
872 borreliosis. *Nat Rev Dis Primers* 2:nrdp201690. doi:10.1038/nrdp.2016.90

873 Stevenson B, Zückert WR, Akins DR. 2000. Repetition, conservation, and variation: the multiple
874 cp32 plasmids of *Borrelia* species. *J Mol Microb Biotech* 2:411–22.

875 Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou L, Mi H. 2022. PANTHER:
876 Making genome-scale phylogenetics accessible to all. *Protein Sci* 31:8–22.
877 doi:10.1002/pro.4218

878 Tilly K, Rosa PA, Stewart PE. 2008. Biology of Infection with *Borrelia burgdorferi*. *Infect Dis Clin*
879 *N Am* 22:217 234. doi:10.1016/j.idc.2007.12.013

880 Tokarz R, Anderton JM, Katona LI, Benach JL. 2004. Combined Effects of Blood and
881 Temperature Shift on *Borrelia burgdorferi* Gene Expression as Determined by Whole
882 Genome DNA Array. *Infect Immun* 72:5419–5432. doi:10.1128/iai.72.9.5419-5432.2004

883 Zhang H, Marconi RT. 2005. Demonstration of Cotranscription and 1-Methyl-3-Nitroso-
884 Nitroguanidine Induction of a 30-Gene Operon of *Borrelia burgdorferi*: Evidence that the 32-
885 Kilobase Circular Plasmids Are Prophages. *J Bacteriol* 187:7985–7995.
886 doi:10.1128/jb.187.23.7985-7995.2005

887 Zhang L, Zhang Y, Adusumilli S, Liu L, Narasimhan S, Dai J, Zhao YO, Fikrig E. 2011.
888 Molecular Interactions that Enable Movement of the Lyme Disease Agent from the Tick Gut
889 into the Hemolymph. *Plos Pathog* 7:e1002079. doi:10.1371/journal.ppat.1002079

890 Zhu A, Ibrahim JG, Love MI. 2018. Heavy-tailed prior distributions for sequence count data:
891 removing the noise and preserving large differences. *Bioinformatics* 35:2084–2092.
892 doi:10.1093/bioinformatics/bty895

893