

1 Facultative parthenogenesis in an asexual stick insect: 2 re-evolution of sex or vestigial sexual capacity?

3

4 Chloé Larose*, Guillaume Lavanchy*, Susana Freitas, Darren J. Parker, Tanja Schwander

5

6 *Joint first authors. Co-first authors can prioritise their names when adding this paper to their résumés.

7

8

9 Abstract

10

11 Transitions from obligate sex to obligate parthenogenesis have occurred repeatedly across the tree of
12 life. Whether these transitions occur abruptly or via a transient phase of facultative parthenogenesis is
13 rarely known. Here, we discovered and characterised facultatively parthenogenetic populations of the
14 North American stick insect *Timema douglasi*, a species in which only obligately parthenogenetic
15 populations were known so far. These populations comprised three genetic lineages. Females from all
16 lineages were capable of parthenogenesis (with variable efficiency) but their propensity to reproduce
17 sexually after mating varied extensively. In all three lineages, parthenogenesis resulted in the complete
18 loss of heterozygosity in a single generation. Obligately parthenogenetic *Timema* have also lost all
19 heterozygosity, suggesting that parthenogenesis evolved via a gradual capacity increase while
20 conserving the proximate mechanism. It is unclear whether the populations we discovered have re-
21 evolved sex (via re-expression of existing pathways), or whether they are vestigial sexual populations
22 in a species where all other lineages have evolved obligate parthenogenesis already. We speculate that
23 facultative parthenogenesis may often be transient and be replaced by obligate strategies (either sex or
24 parthenogenesis) because of a trade-off between the efficiency of the two reproductive modes.

25 Introduction

26
27 The way organisms reproduce varies extensively across the tree of life. While most animals engage in
28 some form of sex to produce offspring (Bell, 1982; The Tree of Sex Consortium, 2014), many species
29 take alternative routes to reproduction. The most widespread alternative is obligate parthenogenesis,
30 whereby females always produce daughters without genetic contribution from males (Normark, 2003;
31 Suomalainen et al., 1987). Obligate parthenogenesis and sex are two extremes of what is in fact a
32 continuum: in some cases, a female can reproduce via parthenogenesis when virgin, but can switch to
33 sex upon mating. This reproductive mode is called facultative parthenogenesis and is thought to combine
34 the long-term advantages of recombination and segregation that come along with sex, together with the
35 short-term advantages of asexuality (D’Souza & Michiels, 2010; Otto, 2009). However, such facultative
36 strategies are rather scarce in most animal groups (Bell, 1982), and most extant parthenogenetic species
37 are largely unable to reproduce sexually (but see Boyer et al., 2021 for an exception). Yet taxa which
38 reproduce via facultative strategies could offer ideal opportunities to study the transitions between
39 reproductive modes and the generation of the diversity we observe (Liegeois et al., 2021).

40
41 The stick insect genus *Timema*, native to the western USA and Mexico, has been studied extensively for
42 its repeated transitions from sex to obligate parthenogenesis. Five of the 21 described species reproduce
43 via female-producing parthenogenesis, while the others are sexual (Law & Crespi, 2002). In
44 parthenogenetic species, fertilization of oocytes does not occur even when females are mated with males
45 of related sexual species in the laboratory (Schwander et al., 2013). Conversely, females of the sexual
46 species are largely incapable of parthenogenesis, although spontaneous parthenogenesis
47 (“tychoparthenogenesis”, the hatching of up to 1-2% unfertilized eggs laid by virgin sexual females) via
48 automixis is well documented (Schwander et al., 2010; Schwander & Crespi, 2009). When mated, sexual
49 females fertilize all their eggs, and population sex ratios are close to 50:50.

50
51 Closely related parthenogenetic and sexual *Timema* species have distinct geographic distributions, and
52 the northernmost populations (*T. douglasi* and *T. shepardi*) are exclusively parthenogenetic (Law &
53 Crespi, 2002). Yet during standard sampling of well-known, female-only *T. douglasi* populations, we
54 unexpectedly discovered populations with large numbers of males. *T. douglasi* cannot be
55 morphologically distinguished from females of its sexual sister species *T. poppensis* (Vickery &
56 Sandoval, 1999), so it was not possible to assess phenotypically whether the collected individuals were
57 *T. douglasi* or belonged to a geographically isolated *T. poppensis* population. The male-containing
58 populations were geographically close to female-only populations, with an apparently abrupt transition
59 from female-only populations to populations with relatively even sex ratios. Such variable population
60 sex ratios could, for example, result from a mix between sexual and parthenogenetic females, or from

61 facultative parthenogenesis. Alternatively, if the newly discovered populations were sexual, variable sex
62 ratios could also stem from genetic drive. For example, a driving X chromosome, which would be
63 present in more than 50% of transmitted sperm cells, could also generate female-biased sex ratios
64 (Helleu et al., 2015; Jaenike, 2001).

65
66 In order to investigate these different hypotheses, we sampled populations along two separate transects
67 and quantified the local sex ratios. We then characterized the reproductive modes of females from
68 populations with different sex ratios by measuring the capacity for parthenogenesis of virgin females
69 and by testing for sexually produced offspring in controlled crosses. Sexually produced offspring were
70 identified via genotyping based on Restriction-Associated DNA Sequencing (RADseq) and screened for
71 deviations from the expected 50:50 sex ratios. Finally, we also used the RADseq genotypes to assess
72 whether females with different reproductive modes belonged to different genetic lineages, and to study
73 the phylogenetic relatedness between these lineages and previously described lineages of *T. douglasi*
74 and the sexual species *T. poppensis*.

75 Methods

76 Population sampling and reproductive mode characterisation

77
78 We characterized the population sex ratios at 29 sampling locations along two transects located in
79 northern California, respectively referred to as “Manchester” and “Orr” transect (Fig. 1). For both
80 transects, we chose the sampling locations according to the host plant distribution along the main road,
81 with isolated patches of redwood (*Sequoia sempervirens*) or douglas fir (*Pseudotsuga menziesii*)
82 considered as distinct locations. We sampled each location during 2 hours with approximately constant
83 sampling intensity and collected up to 270 individuals (all juvenile) per location. We sexed the
84 individuals based on external morphology. In total, we collected 1195 individuals for the Manchester
85 transect (864 females and 331 males in 12 different populations, hereafter called Manchester 1
86 [westernmost] to Manchester 12 [easternmost]; see Figure 1) and 1074 individuals for the Orr transect
87 (1029 females and 45 males in 12 populations, hereafter called Orr 1 [easternmost] to Orr 17
88 [westernmost]; no *Timema* were found at 5 locations).

89
90 We aimed to characterise the reproductive mode of approximately 10 females from female-only
91 populations and of approximately 20 females from populations with both sexes (when available).
92 However, the final numbers varied considerably because of mortality, and because females sometimes
93 laid too few eggs prior to mating to determine hatching success (see below). Individuals of each
94 population were separated by sex and maintained in cubic mesh cages (30 x 30 x 30 cm) on douglas fir,

95 in a climatic chamber at 23°C, 55% humidity and 12:12h day:night cycle. Since all individuals were
96 collected as juveniles and only adults mate, this allowed us to obtain virgin females for all populations.
97 We isolated 352 females in Petri dishes to obtain unfertilized eggs, with fresh food (a small branch of
98 douglas fir), soil, and a moistened piece of cotton wool added every two days. Once a female had laid
99 approximately 20 unfertilized eggs, we allowed her to mate with one to three males from sampling
100 locations with high male frequencies (Manchester 1 - 4, 6 - 7, Orr 5). For each female, the eggs laid
101 before and after mating were kept separately until hatching, which occurs after approximately 5-6
102 months of diapause. The eggs began to hatch on October, 27th of the same year. The eggs were then
103 checked every other day and the number of hatchings recorded. Hatchlings were stored in 100% EtOH
104 until further use. No eggs hatched after December 27th.

105

106 Genotyping

107
108 To test whether the individuals collected in the field belonged to different genetic lineages and whether
109 eggs produced after mating were fertilized or not, we genotyped 32 females and their mates (1 - 3 per
110 female, 42 males in total), as well as hatchlings from eggs laid before and after mating, when available.
111 When available, we genotyped 3 hatchlings from eggs laid before mating for each of the 32 genotyped
112 females (77 hatchlings from 27 females in total; for the 5 remaining females, none of the eggs laid prior
113 to mating hatched). We further genotyped seven hatchlings from eggs laid after mating (when available)
114 for 24 of the 32 females. For the eight remaining families, we genotyped all available hatchlings from
115 eggs laid after mating (17 - 51), initially for a different project. In total, we genotyped 365 post-mating
116 hatchlings. Details on the number of hatchlings and males per family are provided in Table S1.

117

118 We extracted the DNA of a leg (adults) or the whole body (hatchlings). We flash-froze the tissue in
119 liquid nitrogen and ground it via sonication with ceramic beads. We then performed the extraction using
120 the Qiagen DNA Blood and Tissue kit on a BioSprint 96 workstation, following manufacturer protocols.

121 We built double-digested RADseq libraries following the protocol by Brelsford et al. (2016). In short,
122 we digested genomic DNA with EcoRI and MseI and ligated Illumina TruSeq adapters to the cut site.
123 The EcoRI adapter included an individual 8-base barcode. We amplified the ligated fragments in 20
124 PCR cycles. We then multiplexed the libraries and size-selected fragments of 300 - 500 bp on an Agarose
125 gel. The resulting libraries were then sequenced on 10 Illumina HiSeq 2500 lanes (100 - 125 bp, single
126 end) at the Lausanne Genomics Technology Facility.

127 We built loci using Stacks version 2.3e (Catchen et al., 2013). We first demultiplexed the raw reads with
128 the process_radtags module with parameters -c -q -r and --filter-illumina and trimmed all the reads to
129 92 bases. We then mapped the reads to the reference genome of *T. douglasi* (Bioproject accession

130 number: PRJEB31411; Jaron, Parker et al., 2022) using the mem algorithm of BWA version 0.7.17 (Li
131 & Durbin, 2010) . We built loci using the gstacks module, enabling the --phasing-dont-prune-hets
132 option. Finally, we output a vcf file with a single SNP per locus using the --write-single-snp option in
133 populations. We then filtered genotypes in Vcftools version 0.1.15 (Danecek et al., 2011) as follows:
134 we retained genotype calls if they had a minimum coverage depth of 11, and discarded loci that had a
135 minor allele count lower than 3 or a genotype call in fewer than 75% of all individuals. We further
136 discarded five individuals which had more than 60% missing genotypes. Following this filtering
137 approach, we obtained 8764 SNPs in 517 individuals for further analyses. Because the adults had on
138 average more missing data than the hatchlings, we generated a second dataset comprising only the 82
139 wild-collected adults, filtering with the same criteria as above. This second dataset contained 4943 SNPs
140 and was used to infer the number of genetic lineages present. All downstream analyses were conducted
141 in R 4.0.3 (R Core Team, 2021). We read the vcf file using the R package vcfR v1.8.0 (Knaus &
142 Grünwald, 2017).

143 We amplified and sequenced an 814 bp fragment of the COI mitochondrial gene for all adults in our
144 dataset, plus reference *T. douglasi* and *T. poppensis* from other populations (Table S2) using a nested
145 PCR. We first amplified DNA with primers 3'-TCCAATGCCTAACTGCCATATTA-5' and 3'-
146 GGAACNGGATGAACAGTTACCCNCC-5'. We then amplified a subset of this fragment using the
147 former and 3'-CAACATTTATTTGATTTTG-5'. All primer sequences were obtained from Simon
148 et al. (1994) . All reactions were conducted in 20 µL of Promega Buffer 1X containing 0.3 µM of each
149 primer, 0.2 mM of each dNTP and 0.02 U/µL G2 Taq polymerase (Promega). All cycles consisted of
150 5mn at 94°C followed by 20 (first PCR) and 35 (nested PCR) cycles of 30 s at 95°C, 1 mn at 50°C, 1
151 mn at 72°C, and a final extension at 72°C for 10 mn. The PCR products were sequenced both ways at
152 Microsynth (Switzerland), and we generated the consensus from the forward and reverse sequences
153 using BioEdit.

154 Population structure and phylogeny

155
156 To identify the number of genetic lineages present across the two transects, we conducted a clustering
157 analysis on the adults using faststructure v1.0 (Raj et al., 2014), with K ranging from 1 to 10. We then
158 used the chooseK.py script to select the value of K that maximises marginal likelihood.

159 We also wanted to assess whether individuals collected along the two transects belonged to known
160 lineages of the parthenogenetic species *T. douglasi* or the sexual species *T. poppensis*. Because these
161 two species cannot be distinguished morphologically (Vickery & Sandoval, 1999), we used DNA from
162 previously identified reference individuals of both species from different populations, five of *T. douglasi*
163 and 26 of *T. poppensis* (Table S2). We used these 31 reference individuals to study their phylogenetic
164 relationship with the genetic lineages identified in our newly sampled populations for mitochondrial and

165 nuclear (RADseq) markers. We generated RADseq and COI data for these individuals with the same
166 protocols as described above. For the RADseq data, we retained genotype calls with a minimum depth
167 of 8 instead of 11, as allelic dropout would cause less bias for phylogenetic reconstruction than for
168 inference of reproductive modes (largely based on heterozygosity estimations, see below). We discarded
169 loci that had a minor allele count lower than three and were genotyped in less than 80% of all individuals.
170 This dataset contained 16391 sites. The COI dataset contained 159 polymorphic sites. Note that some
171 individuals had multiple COI copies (as indicated by double peaks in the sequencing trace), as expected
172 for the presence of nuclear copies of mitochondrial genes or heteroplasmy. In these cases, we called the
173 allele corresponding to the largest peak, and used an ambiguous genotype following the IUPAC code
174 when both peaks were equally large. We added the COI sequence from one individual of *T. cristinae* as
175 an outgroup (EU251511.1; Schwander et al., 2011). We then aligned the sequences using the MUSCLE
176 algorithm (Edgar, 2004). We reconstructed separate maximum likelihood phylogenies for the nuclear
177 and mitochondrial data, with iqtree2 (Minh et al., 2020), using ModelFinder Plus to select the best
178 substitution model in each case. We used the cophylo function of the R package phytools (Revell, 2012)
179 to plot them as a cophylogeny.

180 Reproductive mode analyses

181 For individuals of the Manchester and Orr transects, we calculated heterozygosity as the proportion of
182 the SNPs that were heterozygous. Note that because we only retained polymorphic positions in our
183 dataset, this measure overestimates genomic heterozygosity and is hereafter referred to as “relative
184 heterozygosity”. We observed that relative heterozygosity increased linearly with the proportion of
185 missing data (Figure S1), likely because heterozygosity stemming from merged paralogs is enriched in
186 individuals with a large fraction of missing data (Supplementary Material). We therefore corrected
187 relative heterozygosity to remove the effect of missing data by using the residuals of the linear regression
188 and adding the intercept value (Figure S1).

189 To assess whether hatchlings from eggs laid after mating were produced via sex or parthenogenesis, we
190 used two complementary measures. For the first measure, we looked for genotypes in hatchlings that
191 cannot be produced via parthenogenesis. At loci where the mother is homozygous, offspring can only
192 be heterozygous if they were produced from a fertilized egg (in the absence of genotyping errors; see
193 also Brown et al., 2021). For each offspring, we therefore computed the proportion of heterozygous loci
194 that had a homozygous genotype in the mother. Loci at which either the mother or the offspring were
195 not genotyped were excluded.

196 For the second measure to assess whether hatchlings were produced via sex or parthenogenesis, we
197 compared relative heterozygosity between mothers and their offspring. We expected heterozygosity
198 levels of hatchlings produced via sex to be similar to that of the mother, or higher in hatchlings sired by

199 a male originating from a different lineage than the mother. On the other hand, we expected
200 heterozygosity levels of parthenogenetically produced hatchlings to be lower than that of their mother.
201 A decrease is expected because facultative parthenogenesis generally occurs via automixis
202 (Suomalainen et al., 1987). Under automixis, meiotic divisions occur and diploidy is restored
203 secondarily via fusion or duplication of meiotic products. Similar to selfing, automixis can result in a
204 loss of heterozygosity between mothers and offspring (Pearcy et al., 2006; Suomalainen et al., 1987).
205 However, heterozygosity losses can only be observed at sites where the mother was heterozygous, and
206 where heterozygosity losses are not mechanistically constrained or removed by selection (Jaron, Parker
207 et al. 2022). The extent of the heterozygosity loss then depends on the type of automixis and the amount
208 of recombination (Pearcy et al 2006, Suomalainen et al 1987). In the most extreme case (gamete
209 duplication) a haploid gamete duplicates to produce a fully homozygous zygote. Other forms of
210 automixis (e.g., terminal or central fusion) result in a partial loss of heterozygosity. In these cases,
211 offspring heterozygosity depends on the heterozygosity of the mother, and on the position and frequency
212 of recombination events. By combining the two heterozygosity-based measures, we were able to
213 unambiguously assign each of the 365 genotyped hatchlings from eggs produced after mating to either
214 sexual or parthenogenetic offspring (see Results).

215 We then asked whether females from different genetic lineages used different reproductive strategies.
216 To answer this question, we tested whether there were significant differences between lineages in (i)
217 hatching success of eggs laid before mating, (ii) hatching success of eggs laid after mating, and (iii) the
218 proportion of post-mating eggs that were fertilized (which measures the propensity to reproduce via sex)
219 using binomial Generalized Linear Models (GLMs), and performed multiple comparisons using the glht
220 function implemented in the R package multcomp v1.4-16 (Hothorn et al., 2008). We also looked for
221 differences in hatching success of eggs before vs after mating within each lineage using binomial
222 GLMMs implemented in the R package lme4 (Bates et al., 2015), using the mother identity as random
223 factor.

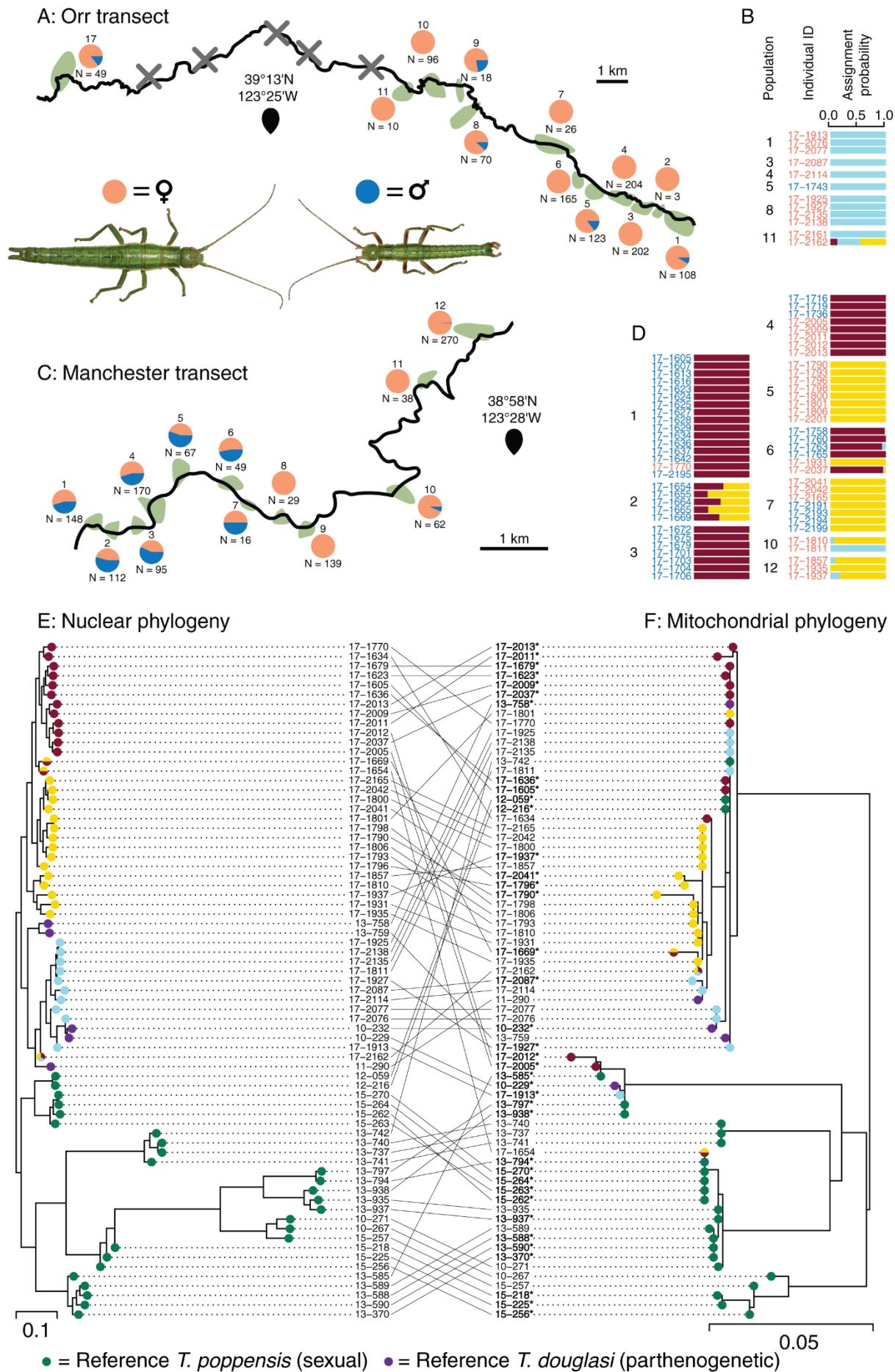
224
225 In order to test whether variable population sex ratios along the Orr and Manchester transects were
226 generated by X chromosome drive, we quantified the sex ratio in sexually produced offspring. Because
227 female and male hatchlings cannot be distinguished morphologically, we sexed offspring genetically by
228 combining heterozygosity at X-linked loci and the read depth ratio between the X-linked and autosomal
229 loci. Because *Timema* males have only one copy of the X chromosome and no Y (XX:XO sex
230 determination; Schwander & Crespi, 2009), they should be fully homozygous at all X-linked loci.
231 Furthermore, X-linked loci should have half the coverage compared to autosomal loci in males, but
232 similar coverage in females. To sex sexually produced offspring via these approaches, we first had to
233 identify X-linked scaffolds in the *T. douglasi* reference genome (Jaron, Parker et al., 2022).

234

235 To identify X-linked scaffolds we used a combination of available genomic data from *T. douglasi*
236 females (Bioproject accession number: PRJNA670663) in addition to whole-genome sequencing of two
237 male *T. douglasi*. DNA extractions were done on adult male carcasses using the Qiagen Mag Attract
238 HMW DNA kit following the manufacturer instructions. Sequencing libraries were generated for each
239 male using a TruSeq DNA nano prep kit (550bp insert size). Libraries were then sequenced using an
240 Illumina HiSeq 4000 at the Lausanne Genomic Technologies Facility. Reads were trimmed before
241 mapping using Trimmomatic v0.36 (Bolger et al., 2014) to remove adapter and low-quality sequences
242 (options: ILLUMINA_CLIP:3:25:6 LEADING:9 TRAILING:9 SLIDINGWINDOW:4:15
243 MINLEN:90). Reads from each individual were then mapped to the reference genome using BWA-
244 MEM v0.7.15 (Li & Durbin, 2010). Multi-mapping and poor quality alignments were filtered (removing
245 reads with XA:Z or SA:Z tags or a mapq < 30). PCR duplicates were removed with Picard (v. 2.9.0)
246 (<http://broadinstitute.github.io/picard/>). Coverage was then estimated for all scaffolds at least 1000 bp
247 in length using BEDTools v2.26.0 (Quinlan & Hall, 2010). To compare coverage between males and
248 females, coverage was first summed up for all male and all female libraries per scaffold. Male and
249 female coverage was then normalised by modal coverage to adjust for differences in overall coverage.
250 X-linked scaffolds were then identified using the log₂ ratio of male to female coverage. Scaffolds were
251 classified as X-linked if the log₂ ratio of male to female coverage was within 0.1 of the value of the X-
252 linked peak (Figure S3), and as autosomal otherwise.

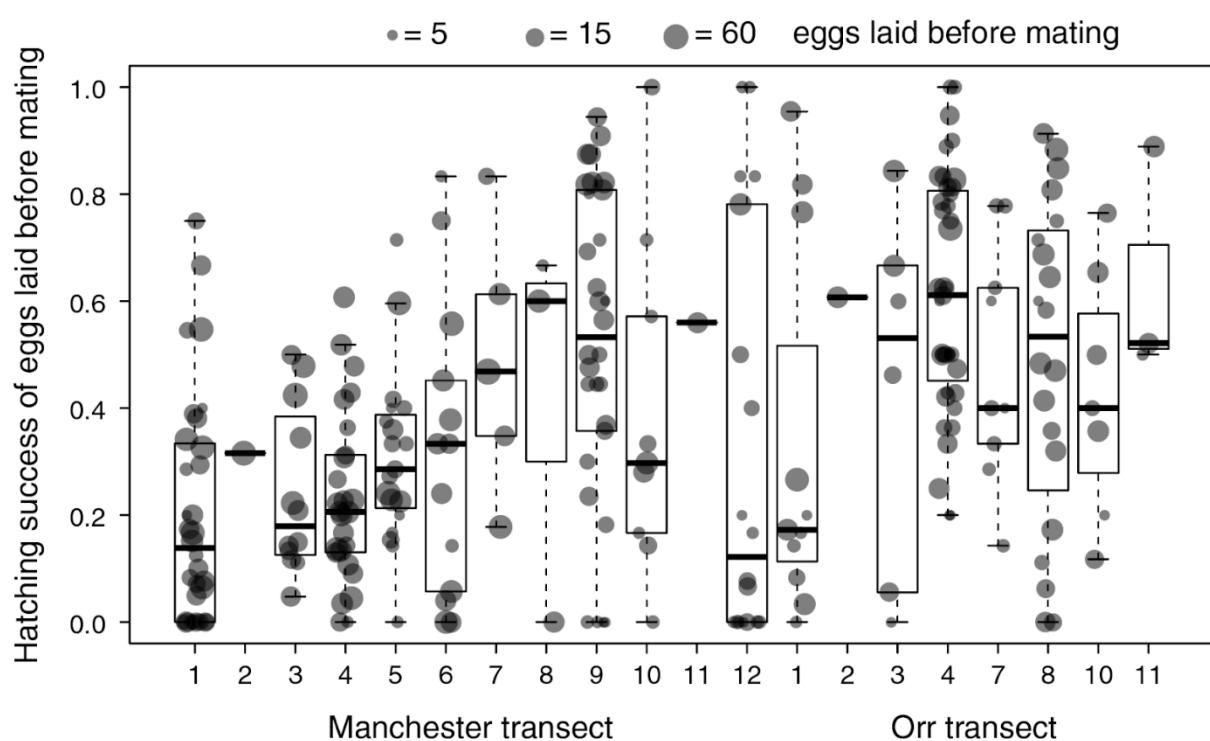
253
254 By distinguishing between autosomal and X-linked loci, we then sexed sexually produced offspring
255 from our controlled crosses using the RADseq data. We first standardised read depth per individual,
256 dividing the depth value at each locus by the average depth for that individual. We then computed the
257 X to autosomes depth ratio by dividing average standardised depth of loci on the X chromosome by that
258 of autosomal loci (See supplementary material). Using this depth ratio in combination with
259 heterozygosity on the the X chromosome, we were able to sex 176 out of the 211 sexually produced
260 offspring (see Figure S5; the remaining 35 offspring had insufficient sequencing coverage for these
261 analyses). We tested for deviations from a 50:50 sex ratio among sexually produced offspring overall
262 using a chi-squared test. We further investigated whether there were deviations within each family. For
263 this, we looked whether the 95% binomial proportion confidence interval of the observed sex ratio
264 overlapped with the expected 50:50 sex ratio.

265 Results


266 We found that geographically close populations differed strongly in their sex ratio, with significant sex
267 ratio variation among populations overall (Figures 1A, 1C; Manchester: Likelihood ratio $\chi^2 = 456.49$, df
268 = 11, $p < 2 \times 10^{-16}$; Orr: Likelihood ratio $\chi^2 = 106.46$, df = 11, $p < 2 \times 10^{-16}$). The Orr transect consisted

269 of a mosaic of female-biased and female-only populations. Five populations (Orr 1, 5, 8, 9 and 17) had
270 between 77.8% and 91.7% of females, while the others had only females (Figure 1A). By contrast, we
271 found an abrupt transition from roughly even to strongly female-biased or female-only sex ratios along
272 the Manchester transect. Sex ratios in populations 1 to 7 ranged from 43.2% to 54.7% of females, while
273 populations 8 to 12 consisted of at least 93.5% females (Figure 1C).

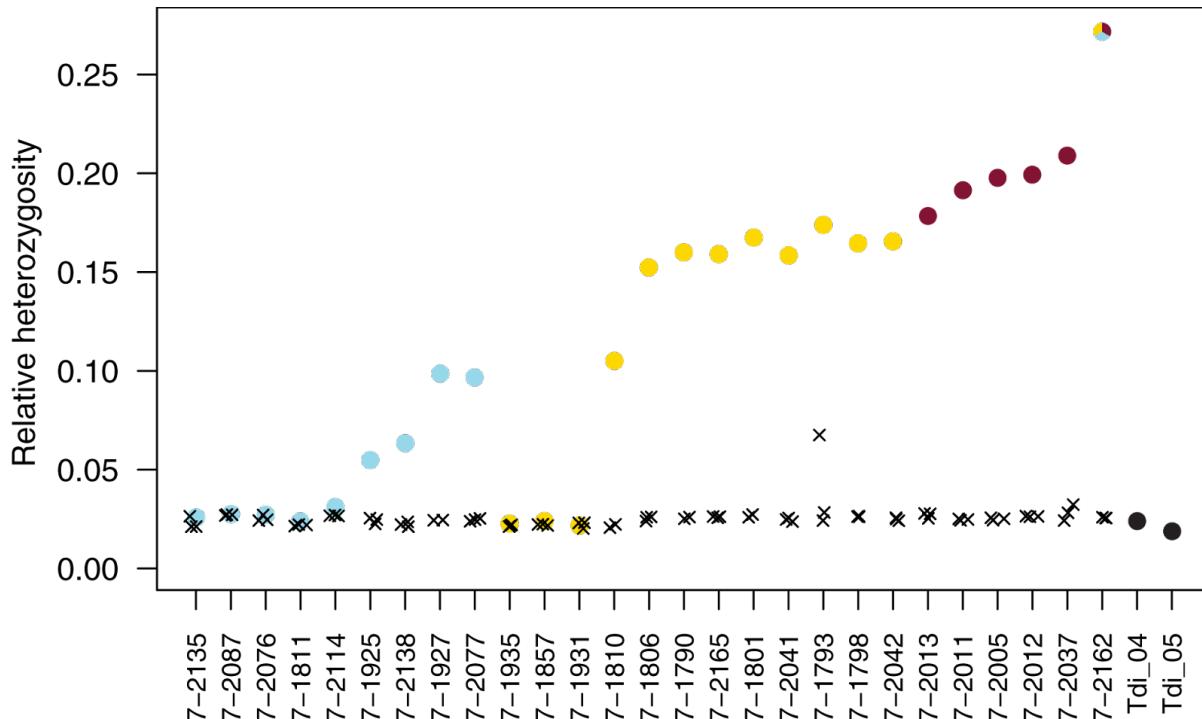
274 We then investigated whether the field-collected individuals belonged to different genetic lineages using
275 a clustering analysis. The best supported number of lineages among all genotyped field-collected
276 individuals was three. The first lineage (blue in Figure 1B) was mostly found along the Orr transect,
277 with only one individual in Manchester 10, and is hereafter referred to as the “Orr lineage”. The second
278 lineage (yellow in Figure 1B) was found mostly in the eastern section of Manchester and is hereafter
279 referred to as the “eastern Manchester lineage”. Finally, the third lineage (red in Figure 1B) was mainly
280 found in the western section of Manchester and is hereafter referred to as the “western Manchester
281 lineage”. We found little evidence for admixture between lineages in 14 out of the 15 populations tested,
282 with only one female from Orr 11 (17-2162) appearing to be a hybrid, perhaps triploid, between the
283 three lineages (Figure S2). In one population however, Manchester 2, all 5 genotyped individuals
284 appeared to be admixed, with approximately equal contributions of the eastern and western Manchester
285 lineages. These results were robust with varying numbers of clusters (k in faststructure), indicating that
286 these were most likely hybrids and not a fourth lineage (Figure S2).


287 In our nuclear phylogeny, all individuals collected along the two transects formed a monophyletic clade
288 with the parthenogenetic *T. douglasi* reference individuals, indicating that all three lineages belong to
289 *T. douglasi*. All *T. poppensis* reference individuals formed a second, monophyletic clade (Figure 1E).
290 The mitochondrial phylogeny also showed two monophyletic groups. One contained mostly *T.*
291 *poppensis*, with five *T. douglasi* individuals (including four from our transects). The second contained
292 mostly *T. douglasi*, with three *T. poppensis* individuals (Figure 1F).

293

295 **Figure 1** Sex ratios in the sampled populations, genetic structure and species identification of the collected
296 individuals. A and C: Schematic maps of the Orr and Manchester transects, with host plant patches represented
297 in green along the main road. Pie charts represent the sex ratio of individuals collected in the field. Crosses
298 indicate surveyed host plant patches with no *Timema* present (locations 12-16 along the Orr transect). B and D:
299 Assignment probabilities to each of the 3 genetic lineages for each genotyped individual, split by transect. E: ML
300 nuclear phylogeny (16391 SNPs) of the genotyped field-collected individuals plus 26 *T. poppensis* (sexual) and
301 five *T. douglasi* (parthenogenetic) reference individuals to infer species assignments for individuals from the
302 transects. F: ML mitochondrial phylogeny of the same individuals based on 159 polymorphic sites of the COI
303 mitochondrial gene. One individual of *T. cristinae* was used to root the tree (not displayed). Tip colour refers to
304 genetic lineage (individuals from Orr and Manchester transects) or reference individuals used for species
305 assignment. Individuals denoted in bold with a star had double peaks in their COI sequence and the allele
306 corresponding to the highest peak was retained. Timema photos taken by © Bart Zijlstra - www.bartzijlstra.com

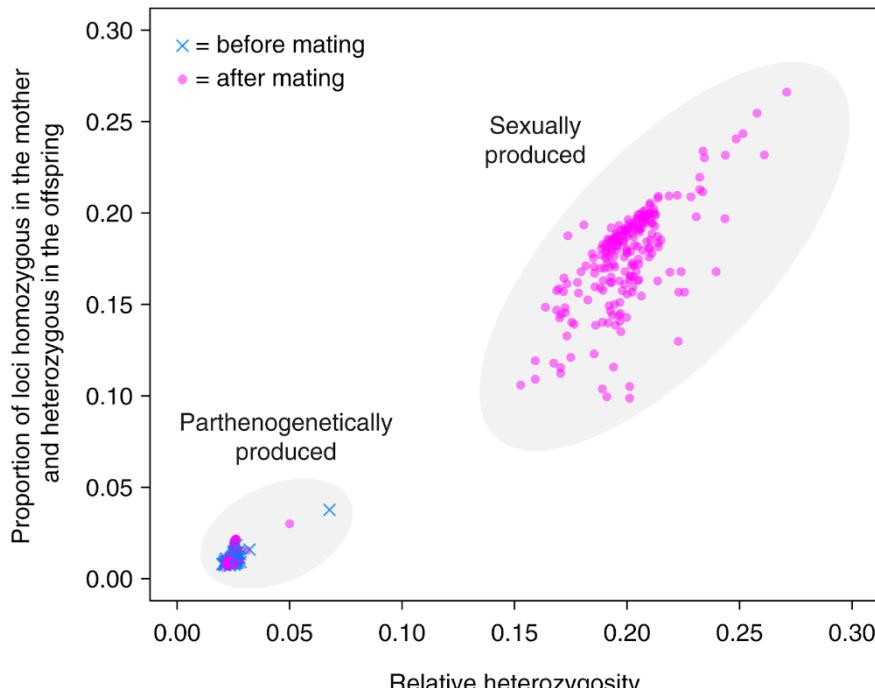
307
308 We isolated 352 females to characterise their reproductive mode and assess the hatching success of the
309 eggs they laid as virgins. 265 of these females laid at least five eggs as virgins. At least one unfertilized
310 egg hatched from the clutches produced by 234 (88.3%) of them, indicating that they were able to
311 reproduce via parthenogenesis. In addition, females capable of parthenogenesis were found in all
312 populations tested. The hatching success of unfertilized eggs varied between 3.3 and 100% (Figure 2).
313



314
315 **Figure 2** Parthenogenesis capacity in field-collected females from different populations along the Manchester and
316 Orr transects, measured by the hatching success of unfertilized eggs. Dot size is proportional to the number of
317 unfertilized eggs laid by each female.

318
319 In order to gain insights into the mechanisms of automictic parthenogenesis in females from the Orr and
320 Manchester transects, we compared relative heterozygosity in mothers and their offspring produced
321 from eggs laid prior to mating. Heterozygosity losses can only be observed at sites where the mother
322 was heterozygous, and where heterozygosity losses are not mechanistically constrained or removed by
323 selection (Jaron, Parker et al. 2022). However, if heterozygosity loss does occur, the extent of it can

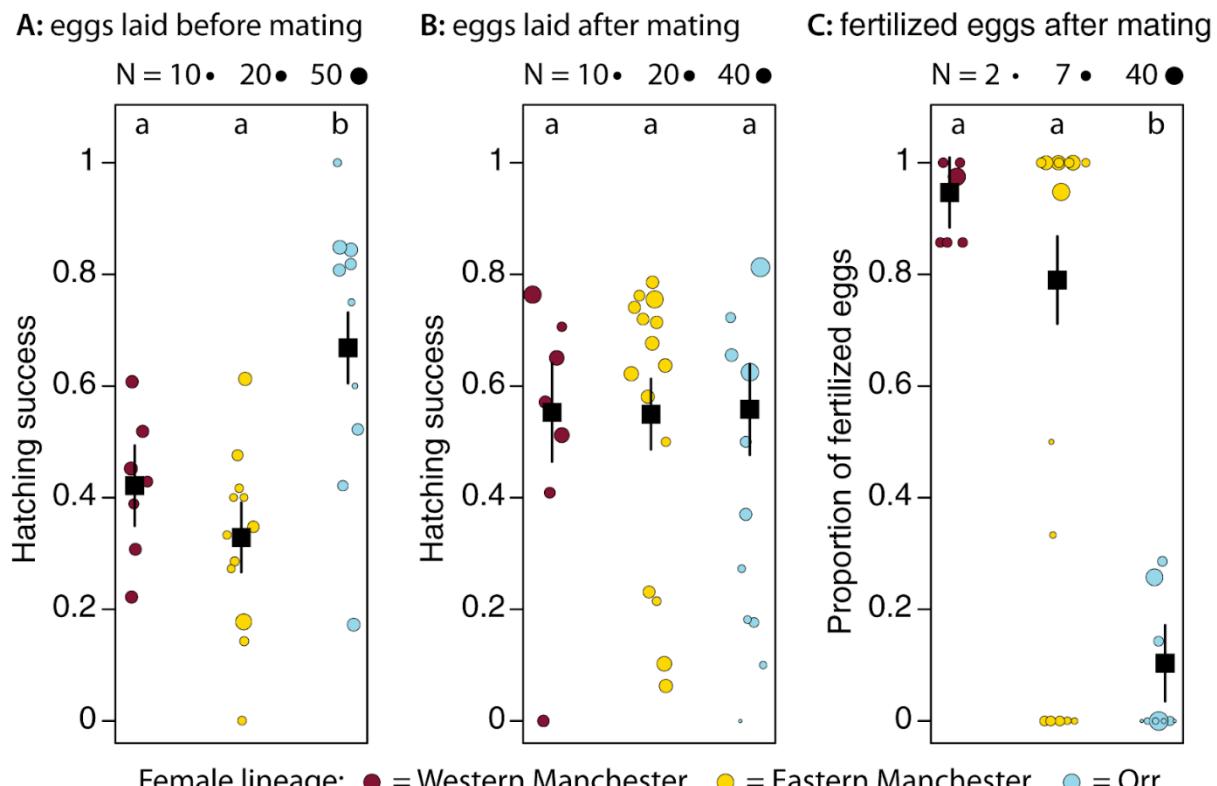
324 inform on the type of automixis (Pearcy et al 2006). We found extensive loss of heterozygosity or
325 extremely low relative heterozygosity in all offspring from eggs laid prior to mating (Figure 3), as would
326 be expected from gamete duplication or terminal fusion without recombination. With one exception,
327 relative heterozygosity in these offspring amounted to 2 - 3% and was not correlated with their mothers'
328 heterozygosity (as would be expected i.e., under central or terminal fusion automixis with
329 recombination). In addition, most, if not all of the heterozygosity observed in hatchlings is caused by
330 false positives (see Supplementary Material), meaning that these hatchlings are most likely completely
331 homozygous. Only one parthenogenetic hatchling from female 17-1793 retained some heterozygosity
332 (Figure 3), which could suggest that it was produced by a different parthenogenesis mechanism than the
333 other individuals.


334

335
336 **Figure 3** Relative heterozygosity of mothers (circles coloured as in Figure 1) and their offspring produced from
337 unfertilized eggs laid before mating (black crosses, two to three per mother), and of two reference
338 parthenogenetic individuals (Tdi_04 and Tdi_05) from Jaron, Parker et al. (2022). Note the much higher
339 heterozygosity in one hatchling from family 17-1793, indicating that it could have been produced via a different
340 mechanism of parthenogenesis.

341
342 We were able to unambiguously infer whether each offspring from eggs laid after mating was produced
343 via sex or parthenogenesis by using a combination of relative heterozygosity and proportion of genotype
344 transitions from homozygous in the mother to heterozygous in the offspring (Figure 4; see also
345 Supplementary Material). These inferences revealed that 211 (58.3%) of offspring were produced by
346 sex, and 151 (41.7%) were produced via parthenogenesis.

347



348
349 **Figure 4** Relative heterozygosity and proportion of transitions from homozygous genotype in the
350 mother to heterozygous in the offspring, in offspring from eggs laid before (blue crosses) and after
351 mating (pink dots). These data were used to infer whether offspring from eggs laid after mating were
352 produced via sex or parthenogenesis.
353

354 We then looked at differences in the parthenogenetic capacity or the propensity to use sex following
355 mating between females from the Orr, western and eastern Manchester lineages. All 32 females for
356 which we were able to infer the lineage via genotyping were capable of parthenogenesis, but with
357 varying efficiency (Figure 5A). Note that one of these females (17-1937 from the eastern Manchester
358 lineage) did not produce any offspring from the 13 eggs she laid before mating, but she was capable of
359 parthenogenesis since all three offspring produced from the 14 eggs laid after mating were produced via
360 parthenogenesis. Hatching success of eggs laid before mating was on average higher for females of the
361 Orr lineage (67%) than of the two other lineages (western Manchester: 42%, $p = 0.035$; eastern
362 Manchester: 33%, $p = 0.001$; Figure 5A). There was no significant difference between the lineages in
363 hatching success of eggs laid after mating (Figure 5B). Mating influenced the egg hatching success in
364 all three lineages. In the eastern and western Manchester lineages, eggs laid after mating had a
365 significantly higher hatching success than those laid by virgin females (western Manchester: 55% vs
366 42%, $p = 0.04$; eastern Manchester: 55% vs 33%, $p = 2.7*10^{-6}$). On the other hand, in the Orr lineage,
367 eggs laid after mating hatched at a lower rate than those laid before mating (56% vs 69%, $p = 2.7*10^{-6}$).
368 We also found that the proportion of eggs laid after mating that were actually fertilized was highly
369 variable among females. Twelve females fertilized between 80% and 100% of their eggs laid after
370 mating, while eleven fertilized none of them. Only five fertilized an intermediate proportion (14% to
371 50%). There were significant differences in the proportion of fertilized eggs between lineages. Females
372 from the Orr lineage fertilized on average fewer eggs (10%) than those from the eastern and western

373 Manchester lineages (79%, $p = 0.0002$ and 95%, $p = 0.001$ respectively). All females from the western
 374 Manchester lineage fertilized more than 80% of their post-mating eggs, while seven out of 10 females
 375 from the Orr lineage fertilized none of them. Finally, the eastern Manchester lineage consisted mostly
 376 of females with either a very high or very low fertilisation frequency (Figure 5C). The putatively triploid
 377 hybrid female (17-2162) was also capable of facultative parthenogenesis: a large portion of eggs laid
 378 prior to mating hatched (24 out of 27), and out of the 17 genotyped hatchlings from the eggs she laid
 379 after mating, seven were produced via sex and 10 via parthenogenesis.

380

391
 392
 393 Finally, we tested whether X chromosome drive could be contributing to female-biased sex ratios by
 394 looking at the sex ratio of sexually produced offspring. A driving X chromosome should lead to an
 395 excess of female offspring. Across all families, there were 81 female and 95 male offspring, providing
 396 no evidence for biased sex ratios ($\chi^2 = 1.1$, $p = 0.29$). The same was observed within families (Figure
 397 S6).

398 Discussion

399 How transitions between fundamentally different reproductive modes – such as sex and obligate
400 parthenogenesis – can occur, is unclear. Transitions might be abrupt, with a direct switch from sex to
401 obligate parthenogenesis within one generation. Alternatively, transitions might be gradual and involve
402 a period where individuals are capable of facultative parthenogenesis. In this study, we discovered high
403 frequencies of males in populations of *Timema douglasi*, a species previously believed to reproduce
404 solely via obligate parthenogenesis. These populations were characterized by variable sex ratios, which
405 were caused by different frequencies of sexual versus parthenogenetic reproduction, and not by X
406 chromosome drive. These findings raise the possibility that obligate parthenogenesis, which evolved
407 repeatedly in the genus *Timema*, may generally derive from facultative parthenogenesis, with facultative
408 parthenogenesis being a transient state. Facultatively parthenogenetic *T. douglasi* belonged to two
409 differentiated lineages, and were found geographically close to a third, largely but not strictly obligately
410 parthenogenetic lineage of the same species. Females of the latter lineage (Orr) had a high capacity for
411 parthenogenesis and they mostly did not fertilize their eggs when mated. Furthermore, eggs produced
412 after mating suffered from a lower hatching success, suggesting that fertilisation of eggs that would
413 normally develop into parthenogenetic offspring can sometimes result in developmental failure. These
414 results may point to a tradeoff between sexual and parthenogenetic pathways as was previously
415 suggested to be the case in sexual *Timema* populations: the ability for spontaneous parthenogenesis
416 likely reduces hatching success of fertilized eggs (Schwander et al., 2010). However, lower hatching
417 success of post-mating eggs could also be due to females being older.

418

419 Females of the two facultatively parthenogenetic lineages had a lower capacity for parthenogenesis than
420 those of the largely obligate one and featured different propensities to reproduce sexually following
421 mating. Females of the first lineage (western Manchester) generally fertilised all their eggs when mated,
422 which resulted in higher hatching success than under parthenogenesis. Females of the second lineage
423 (eastern Manchester) were more variable. Approximately half (8 out of 15) of them reproduced the same
424 way as the western Manchester lineage: using mainly sex when mated but being able to reproduce via
425 parthenogenesis. Five females reproduced via obligate parthenogenesis, with a phenotype similar to the
426 one described for “obligately” parthenogenetic females of the Orr lineage. The two remaining females
427 seemed to use both sex and parthenogenesis at approximately equal rates (facultative parthenogenesis),
428 but genotyping larger clutches would be needed to assess whether this was indeed the case.

429

430 The mechanisms that maintain reproductive polymorphism (facultative and largely obligate
431 parthenogenesis) within populations, and those that cause the sharp transition from equal to strongly
432 female-biased sex ratios over a few hundred meters along the Manchester transect remain as an open

433 question. Since more than half of the females from the eastern Manchester lineage were able to
434 reproduce via sex and fertilized most or all of their eggs following mating, a male immigrating from a
435 nearby sexual population would be expected to have extremely high reproductive success. This should
436 then lead to an increase in male frequency in the next generation. One possible explanation for the
437 maintenance of different sex ratios between neighbouring populations is that dispersal is very limited in
438 these wingless insects (Sandoval, 2000), and that it is just a matter of time until the female-biased
439 Manchester populations shift towards more equal sex ratios. However, variable selection pressures along
440 the transect could also play a role, favouring respectively sexual or parthenogenetic reproduction. This
441 could help explain why males, even though present in small numbers in the strongly female-biased
442 populations (such as Manchester 12 with <1% males), have not triggered sex ratio shifts. Identifying
443 such selection pressures would constitute a major leap towards understanding the costs and benefits of
444 different reproductive modes in natural populations.

445
446 Our comparison of heterozygous genotypes in mothers and their parthenogenetically produced offspring
447 also provides insights into the mechanisms of parthenogenesis and the evolution of obligate
448 parthenogenesis in *Timema*. Relative heterozygosity in all but two parthenogenetic offspring (out of 228
449 produced before or after mating) was around 2.5%, regardless of their mothers' heterozygosity. Given
450 the 2.5% heterozygosity is most likely generated by structural variation between individuals and
451 divergence between paralogs (Supplementary Material), the main mechanism of parthenogenesis in
452 *Timema* thus appears to generate genome-wide homozygosity in a single generation. This would be
453 expected under specific forms of automixis, notably under gamete duplication or fusion of non-
454 recombined sister chromatids (i.e., terminal fusion without recombination). The two remaining out of
455 228 parthenogenetic offspring (one originating from an unfertilized egg laid prior to mating, the other
456 from an unfertilized egg laid after mating; see Figure 4), produced by different females, had somewhat
457 higher heterozygosity. This suggests that some females are able to reproduce via two different
458 parthenogenesis mechanisms in addition to sex, as was described for spontaneous parthenogenesis in
459 sexual *Daphnia* (Svendsen et al., 2015). Automixis with “complete” heterozygosity loss in a single
460 generation is also the proposed mechanism of parthenogenesis in obligate asexual *Timema* species
461 (Jaron, Parker et al., 2022) and of spontaneous parthenogenesis in sexual *Timema* species (Schwander
462 & Crespi, 2009). In *Timema*, obligate parthenogenesis thus likely evolves via a gradual increase of the
463 capacity for parthenogenesis from a typhoparthenogenetic ancestor, with a conserved proximate
464 mechanism.

465
466 Our finding of sexually reproducing *T. douglasi* lineages also raises the question whether these lineages
467 represent vestigial sexual reproduction in a species which is otherwise largely obligately
468 parthenogenetic, or whether they represent a re-evolution of sex. Sex could in theory reappear in all-
469 female lineages via accidental male production. Rare male production in species with XX/X0 sex

470 determination such as *Timema* can occur via aneuploidy at the X chromosome, because the resulting X0
471 individuals would develop into males (Pijnacker & Ferwerda, 1980). However, such a re-expression of
472 the sexual pathway would require the sexual functions of both sexes to be maintained. Reversal to sexual
473 reproduction is therefore possible at least shortly after the transition to parthenogenesis, which may also
474 have been the case in the stick insect *Clitarchus hookeri* (Morgan-Richards et al., 2019). Such re-
475 expressions of sexual reproduction do not break “Dollo’s law of irreversibility”, i.e., the assumption that
476 complex traits cannot re-evolve once lost (Gould, 1970). As long as the molecular bases underlying
477 sexual reproduction still exist, even when not expressed in a parthenogenetic lineage, re-evolution does
478 not equate with independent emergence via convergent pathways.

479
480 Alternatively, the facultatively parthenogenetic *T. douglasi* lineages we describe in this paper could
481 constitute vestigial lineages in a species where all other lineages would have transitioned to obligate
482 parthenogenesis already. This would require that obligate parthenogenesis has evolved several times in
483 the *T. poppensis/douglasi* species complex. Phylogenetic analyses of the *Timema* genus revealed that *T.*
484 *douglasi* consisted of multiple lineages that independently derived from the sexual species *T. poppensis*
485 (Schwander et al., 2011). Repeated transitions towards parthenogenesis are not surprising if the ancestor
486 of these species was already capable of reproducing via facultative or spontaneous parthenogenesis.
487 Schwander & Crespi (2009) found that around 30% of females from sexual *Timema* species can produce
488 viable eggs when virgin. The hatching success of such unfertilized eggs is usually low (typically around
489 2%) but can reach up to 20% in populations with low male availability (Schwander et al., 2010). This
490 roughly corresponds to the lowest pre-mating hatching success observed in the present study.
491 Widespread tychoparthenogenesis capacity could thus serve as a stepping stone for the repeated
492 evolution of more successful obligate parthenogenesis, which could help explain why obligate
493 parthenogenesis evolves so frequently in the *Timema* genus.

494
495 Finally, gene flow between sexual and parthenogenetic lineages could contribute to frequent transitions
496 between reproductive modes. One such example is contagious parthenogenesis, whereby rare males
497 from otherwise parthenogenetic lineages transmit the capacity for parthenogenesis to a related sexual
498 lineage via hybridization. This has been documented in aphids (Delmotte et al., 2001), wasps (Sandrock
499 & Vorburger, 2011) and *Daphnia* (Innes & Hebert, 1988). Conversely, gene flow from a sexual to
500 mostly but not completely parthenogenetic species could in theory result in an increase of the frequency
501 of sex in the latter. Occasional gene flow between *T. poppensis* and *T. douglasi* is suggested by the
502 mismatches we observed between nuclear and mitochondrial genomes in about 10% of our individuals.
503 This could be caused by rare hybridization events between the two species in both directions and
504 contribute to the maintenance of different reproductive modes within populations.

505

506 More generally, the faculty for occasional and facultative sex in *T. douglasi*, a species previously
507 believed to be obligately parthenogenetic, adds to recent re-evaluation of the obligate status of some
508 parthenogenetic species (Boyer et al., 2021b; Kuhn et al., 2021; Laine et al., 2022). Many such “ancient
509 asexuals” could in fact have retained the capacity for occasional, cryptic sex (Schurko et al., 2009). They
510 would thus represent extremes of a continuum from mostly sexual to mostly parthenogenetic
511 reproduction. Still, the factors that would favour obligate over more facultative strategies remain elusive.
512 Facultative parthenogenesis is believed to be an efficient reproductive mode, combining the “best of
513 both worlds” – the long-term advantages of recombination and segregation along with the short-term
514 advantages of asexuality. However, the loss of sex in facultative parthenogens could in theory be driven
515 by sexual conflict (if mating always reduces female fitness; Burke & Bonduriansky, 2017), but this has
516 never been demonstrated in nature. Alternatively, the results of the present study as well as interspecific
517 comparisons in facultatively parthenogenetic mayflies (Liegeois et al., 2021) suggest that the efficiency
518 of sex and parthenogenesis are traded-off against each other, consistent with the “jack of all trades,
519 master of none” hypothesis. In this case, whether obligate strategies are likely to replace facultative ones
520 will depend on local ecological conditions favouring sex or parthenogenesis, and on the fluctuations of
521 such conditions.

522
523 In conclusion, we discovered the first case of facultative parthenogenesis in *Timema* stick insects, a
524 genus where obligate parthenogenesis has evolved repeatedly from a sexual ancestor, with an apparently
525 conserved proximate mechanism of parthenogenesis. We found three genetic lineages that differed both
526 in their capacity to reproduce via parthenogenesis and in their propensity to reproduce sexually. It is
527 thus far unclear whether these populations reverted to sex starting from a largely asexual ancestor, or
528 whether they are sexual relicts in the largely asexual *T. douglasi*, where all other populations would
529 have transitioned to obligate parthenogenesis already. The latter would suggest that transitions to
530 asexuality were numerous during the evolution of this species, and that asexual populations almost
531 always prevailed on sexuals. In that case, we could be witnessing an ongoing transition to asexuality via
532 facultative parthenogenesis. Why facultative parthenogenesis would be a transient stage in *Timema* and
533 which factors would favour a transition to obligate parthenogenesis would thus be exciting foci for future
534 research.

535 Acknowledgements

536 We thank Ian S. Ford and Armand Yazdani for their great help in the field, Karine Légeret for her
537 assistance in the daily monitoring of egg laying and hatching in the lab, and Zoé Dumas and Marjorie
538 Labédan for wet lab help. Most analyses were run using the computing infrastructure at the University
539 of Lausanne maintained by the former Vital-IT platform of the SIB Swiss Institute of Bioinformatics

540 (SIB) and the DCSR. We would like to acknowledge funding from the European Research Council
541 (Consolidator Grant No Sex No Conflict), Swiss FNS grant 31003A_182495, and the University of
542 Lausanne. We declare no conflicts of interest.

543 Data and code availability

544 All demultiplexed RAD-seq reads have been deposited in NCBI's sequence read archive under
545 BioProject ID PRJNA804475 and whole genome sequence reads of *T. douglasi* males under
546 BioProject ID PRJNA808673. The code used to run the analyses presented in this article is available
547 on GitHub under https://github.com/glavanc1/Timema_facultative_partheno.

548 References

549 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using
550 **lme4**. *Journal of Statistical Software*, 67(1). <https://doi.org/10.18637/jss.v067.i01>

551 Bell, G. (1982). *The Masterpiece of Nature: The Evolution and Genetics of Sexuality*. University of
552 California Press.

553 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
554 sequence data. *Bioinformatics*, 30(15), 2114–2120. <https://doi.org/10.1093/bioinformatics/btu170>

555 Boyer, L., Jabbour-Zahab, R., Mosna, M., Haag, C. R., & Lenormand, T. (2021a). Not so clonal
556 asexuals: Unraveling the secret sex life of *Artemia parthenogenetica*. *Evolution Letters*, 5(2),
557 164–174. <https://doi.org/10.1002/evl3.216>

558 Boyer, L., Jabbour-Zahab, R., Mosna, M., Haag, C. R., & Lenormand, T. (2021b). Not so clonal
559 asexuals: Unraveling the secret sex life of *Artemia parthenogenetica*. *Evolution Letters*, 5(2),
560 164–174. <https://doi.org/10.1002/evl3.216>

561 Brelsford, A., Dufresnes, C., & Perrin, N. (2016). High-density sex-specific linkage maps of a
562 European tree frog (*Hyla arborea*) identify the sex chromosome without information on offspring
563 sex. *Heredity*, 116(2), 177–181. <https://doi.org/10.1038/hdy.2015.83>

564 Brown, T. A., Tsurusaki, N., & Burns, M. (2021). Genomic Determination of Reproductive Mode in
565 Facultatively Parthenogenetic Opiliones. *Journal of Heredity*, 112(1), 34–44.
566 <https://doi.org/10.1093/jhered/esaa045>

567 Burke, N. W., & Bonduriansky, R. (2017). Sexual Conflict, Facultative Asexuality, and the True
568 Paradox of Sex. *Trends in Ecology & Evolution*, 32(9), 646–652.
569 <https://doi.org/10.1016/j.tree.2017.06.002>

570 Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: an analysis
571 tool set for population genomics. *Molecular Ecology*, 22(11), 3124–3140.
572 <https://doi.org/10.1111/mec.12354>

573 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E.,
574 Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R. (2011). The variant call format
575 and VCFtools. *Bioinformatics*, 27(15), 2156–2158. <https://doi.org/10.1093/bioinformatics/btr330>

576 Delmotte, F., Leterme, N., Bonhomme, J., Rispe, C., & Simon, J.-C. (2001). Multiple routes to
577 asexuality in an aphid species. *Proceedings of the Royal Society of London. Series B: Biological*
578 *Sciences*, 268(1483), 2291–2299. <https://doi.org/10.1098/rspb.2001.1778>

579 D’Souza, T. G., & Michiels, N. K. (2010). The Costs and Benefits of Occasional Sex: Theoretical
580 Predictions and a Case Study. *Journal of Heredity*, 101(Supplement 1), S34–S41.
581 <https://doi.org/10.1093/jhered/esq005>

582 Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput.
583 *Nucleic Acids Research*, 32(5), 1792–1797. <https://doi.org/10.1093/nar/gkh340>

584 Gould, S. J. (1970). Dollo on Dollo’s law: Irreversibility and the status of evolutionary laws. *Journal*
585 *of the History of Biology*, 3(2), 189–212. <https://doi.org/10.1007/BF00137351>

586 Helleu, Q., Gérard, P. R., & Montchamp-Moreau, C. (2015). Sex Chromosome Drive. *Cold Spring*
587 *Harbor Perspectives in Biology*, 7(2), a017616. <https://doi.org/10.1101/cshperspect.a017616>

588 Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous Inference in General Parametric Models.
589 *Biometrical Journal*, 50(3), 346–363. <https://doi.org/10.1002/bimj.200810425>

590 Innes, D. J., & Hebert, P. D. N. (1988). The origin and genetic basis of parthenogenesis in Daphnia
591 pulex. *Evolution*, 42(5), 1024–1035. <https://doi.org/10.1111/j.1558-5646.1988.tb02521.x>

592 Jaegle, B., Soto-Jiménez, L. M., Burns, R., Rabanal, F. A., & Nordbog, M. (2021). Extensive gene
593 duplication in *Arabidopsis* revealed by pseudo-heterozygosity. *BioRxiv*.

594 Jaenike, J. (2001). Sex Chromosome Meiotic Drive. *Annual Review of Ecology and Systematics*,
595 32(1), 25–49. <https://doi.org/10.1146/annurev.ecolsys.32.081501.113958>

596 Jaron, K. S., Parker, D. J., Anselmetti, Y., Tran Van, P., Bast, J., Dumas, Z., Figue, E., François, C.
597 M., Hayward, K., Rossier, V., Simion, P., Robinson-Rechavi, M., Galtier, N., & Schwander, T.
598 (2022). Convergent consequences of parthenogenesis on stick insect genomes. *Science Advances*,
599 8(8). <https://doi.org/10.1126/sciadv.abg3842>

600 Knaus, B. J., & Grünwald, N. J. (2017). vcfr: a package to manipulate and visualize variant call format
601 data in R. *Molecular Ecology Resources*, 17(1), 44–53. <https://doi.org/10.1111/1755-0998.12549>

602 Kuhn, A., Aron, S., & Hardy, O. J. (2021). Detection of Cryptic Sex in Automictic Populations:
603 Theoretical Expectations and a Case Study in *Cataglyphis* Desert Ants. *Frontiers in Ecology and*
604 *Evolution*, 9. <https://doi.org/10.3389/fevo.2021.741959>

605 Laine, V. N., Sackton, T. B., & Meselson, M. (2022). Genomic signature of sexual reproduction in the
606 bdelloid rotifer *Macrotrachella quadricornifera*. *Genetics*, 220(2).
607 <https://doi.org/10.1093/genetics/iyab221>

608 Law, J. H., & Crespi, B. J. (2002). Recent and ancient asexuality in *Timema* walkingsticks. *Evolution*,
609 56(8), 1711–1717.

610 Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform.
611 *Bioinformatics*, 26(5), 589–595. <https://doi.org/10.1093/bioinformatics/btp698>

612 Liegeois, M., Sartori, M., & Schwander, T. (2021). Extremely Widespread Parthenogenesis and a
613 Trade-Off Between Alternative Forms of Reproduction in Mayflies (Ephemeroptera). *Journal of*
614 *Heredity*, 112(1), 45–57. <https://doi.org/10.1093/jhered/esaa027>

615 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., &
616 Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference

617 in the Genomic Era. *Molecular Biology and Evolution*, 37(5), 1530–1534.
618 <https://doi.org/10.1093/molbev/msaa015>

619 Morgan-Richards, M., Langton-Myers, S. S., & Trewick, S. A. (2019). Loss and gain of sexual
620 reproduction in the same stick insect. *Molecular Ecology*, 28(17), 3929–3941.
621 <https://doi.org/10.1111/mec.15203>

622 Normark, B. B. (2003). The evolution of alternative genetic systems in insects. *Annual Review of
623 Entomology*, 48(1), 397–423. <https://doi.org/10.1146/annurev.ento.48.091801.112703>

624 Otto, S. P. (2009). The Evolutionary Enigma of Sex. *The American Naturalist*, 174(S1), S1–S14.
625 <https://doi.org/10.1086/599084>

626 Pearcy, M., Hardy, O., & Aron, S. (2006). Thelytokous parthenogenesis and its consequences on
627 inbreeding in an ant. *Heredity*, 96(5), 377–382. <https://doi.org/10.1038/sj.hdy.6800813>

628 Pijnacker, L. P., & Ferwerda, M. A. (1980). Sex Chromosomes and Origin of Males and Sex Mosaics
629 of the Parthenogenetic Stick Insect *Carausius Morosus* Br. *Chromosoma*, 79(1), 105–114.

630 Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic
631 features. *Bioinformatics*, 26(6), 841–842. <https://doi.org/10.1093/bioinformatics/btq033>

632 R Core Team. (2021). *R: A language and environment for statistical computing*. R Foundation for
633 Statistical Computing.

634 Raj, A., Stephens, M., & Pritchard, J. K. (2014). fastSTRUCTURE: Variational Inference of
635 Population Structure in Large SNP Data Sets. *Genetics*, 197(2), 573–589.
636 <https://doi.org/10.1534/genetics.114.164350>

637 Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things).
638 *Methods in Ecology and Evolution*, 3(2), 217–223. [https://doi.org/10.1111/j.2041-210X.2011.00169.x](https://doi.org/10.1111/j.2041-
639 210X.2011.00169.x)

640 Sandoval, C. (2000). Persistence of a Walking-Stick Population (Phasmatoptera: Timematodea) after a
641 Wildfire. *The Southwestern Naturalist*, 45(2), 123. <https://doi.org/10.2307/3672452>

642 Sandrock, C., & Vorburger, C. (2011). Single-Locus Recessive Inheritance of Asexual Reproduction
643 in a Parasitoid Wasp. *Current Biology*, 21(5), 433–437.
644 <https://doi.org/10.1016/j.cub.2011.01.070>

645 Schurko, A. M., Neiman, M., & Logsdon, J. M. (2009). Signs of sex: what we know and how we
646 know it. *Trends in Ecology & Evolution*, 24(4), 208–217.
647 <https://doi.org/10.1016/j.tree.2008.11.010>

648 Schwander, T., & Crespi, B. J. (2009). Multiple direct transitions from sexual reproduction to
649 apomictic parthenogenesis in *Timema* stick insects. *Evolution*, 63(1), 84–103.
650 <https://doi.org/10.1111/j.1558-5646.2008.00524.x>

651 Schwander, T., Crespi, B. J., Gries, R., & Gries, G. (2013). Neutral and selection-driven decay of
652 sexual traits in asexual stick insects. *Proceedings of the Royal Society B: Biological Sciences*,
653 280(1764), 20130823. <https://doi.org/10.1098/rspb.2013.0823>

654 Schwander, T., Henry, L., & Crespi, B. J. (2011). Molecular Evidence for Ancient Asexuality in
655 *Timema* Stick Insects. *Current Biology*, 21(13), 1129–1134.
656 <https://doi.org/10.1016/j.cub.2011.05.026>

657 Schwander, T., Vuilleumier, S., Dubman, J., & Crespi, B. J. (2010). Positive feedback in the transition
658 from sexual reproduction to parthenogenesis. *Proceedings of the Royal Society B: Biological
659 Sciences*, 277(1686), 1435–1442. <https://doi.org/10.1098/rspb.2009.2113>

660 Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, Weighting,
661 and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved
662 Polymerase Chain Reaction Primers. *Annals of the Entomological Society of America*, 87(6),
663 651–701. <https://doi.org/10.1093/aesa/87.6.651>

664 Suomalainen, E., Saura, A., & Lokki, J. (1987). *Cytology and Evolution in Parthenogenesis*. CRC
665 Press. <https://doi.org/10.2307/2409571>

666 Svendsen, N., Reisser, C. M. O., Dukić, M., Thuillier, V., Ségard, A., Liautard-Haag, C., Fasel, D.,
667 Hürlimann, E., Lenormand, T., Galimov, Y., & Haag, C. R. (2015). Uncovering Cryptic
668 Asexuality in *Daphnia magna* by RAD Sequencing. *Genetics*, 201(3), 1143–1155.
669 <https://doi.org/10.1534/genetics.115.179879>

670 The Tree of Sex Consortium. (2014). Tree of Sex: A database of sexual systems. *Scientific Data*, 1(1),
671 140015. <https://doi.org/10.1038/sdata.2014.15>

672 Vickery, V. R., & Sandoval, C. O. (1999). Two new species of *Timema* (Phasmatoptera:
673 Timematodea: Timematidae), one parthenogenetic, in California. *Journal of Orthoptera
674 Research*, 8(Nov), 45–47.

675

676