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ABSTRACT 

Adaptive human learning utilizes reward prediction errors (RPEs) that scale the differences 

between expected and actual outcomes to optimize future choices. Depression has been 

linked with biased RPE signaling and an exaggerated impact of negative outcomes on 

learning which may promote amotivation and anhedonia. The present proof-of-concept 

study combined computational modelling and multivariate decoding with neuroimaging to 

determine the influence of the angiotensin II type 1 receptor antagonist losartan on learning 

from positive or negative outcomes and the underlying neural mechanisms in healthy 

humans. In a double-blind, between-subjects, placebo-controlled pharmaco-fMRI 

experiment, 61 healthy male participants (losartan, n=30; placebo, n=31) underwent a 

probabilistic selection reinforcement learning task incorporating a learning and transfer 

phase. Losartan improved choice accuracy for the hardest stimulus pair relative to the 

placebo group during learning. Computational modelling revealed that losartan reduced the 

learning rate for negative outcomes and increased exploitatory choice behaviors while 

preserving learning for positive outcomes. These behavioral patterns were paralleled on the 

neural level by increased RPE signaling in orbitofrontal-striatal regions and enhanced 

positive outcome representations in the ventral striatum (VS) following losartan. In the 

transfer phase, losartan accelerated response times and enhanced VS functional 

connectivity with left dorsolateral prefrontal cortex when approaching maximum rewards. 

These findings elucidate the potential of losartan to reduce the impact of negative outcomes 

during learning and subsequently facilitate motivational approach towards maximum 

rewards in the transfer of learning. The mechanism could help to normalize biased reward 

learning characteristic of depression. 

 

Key words: Angiotensin, Losartan, Depression, Reinforcement learning, Reward Prediction 
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Introduction 

Human learning is driven by reward prediction errors (RPE) that signal the discrepancy 

between expected and actual outcomes. Computational approaches have closely linked 

RPEs to dopaminergic signaling in the midbrain-striatum circuitry and to motivation and 

reward seeking (1, 2). Deficits in these domains, in particular amotivation and anhedonia, 

represent key symptoms of unipolar depression and dysregulated RPE signaling has been 

proposed as a potential underlying neurocomputational candidate mechanism (3). 

Specifically, within a computational reinforcement learning (RL) framework, depressed 

individuals showed enhanced sensitivity to negative information while they concomitantly 

discounted positive feedback leading to reduced learning from positive events (4, 5). On the 

neural level this learning bias was often accompanied by blunted RPE signaling in the ventral 

striatum and reduced fronto-striatal connectivity during reward feedback (6, 7). These 

neural dysregulations have been associated with depressive symptom load, specifically 

anhedonia and persistent negative mood (8), and could predict anti-depressive treatment 

response (9). As such, distorted learning from negative and positive outcomes may play a 

key role in the pathophysiology of depression and may represent a promising target for 

novel antidepressive treatments. 

Accumulating evidence suggests that the renin-angiotensin system plays a key role in 

learning. Preclinical work in rodents and humans has utilized the selective competitive 

angiotensin II type 1 receptor (AT1R) antagonist losartan (LT) - an approved treatment for 

hypertension with an excellent safety record (10, 11) - to modulate learning from negative or 

positive events (12, 13). Recent human studies have demonstrated that a single dose of LT 

selectively suppressed memory encoding of threatening materials (14) and accelerated 

threat extinction learning (15, 16). Moreover, LT specifically affected probabilistic learning 

from negative outcomes by reducing the degree to which participants learned from loss 

feedback, while leaving learning from positive outcomes unaffected (12). An initial 

neuroimaging study moreover reported modulatory effects of LT on mesocorticolimbic 

functional connectivity during social reward and punishment processing (17). 

Given the pivotal role of dopamine (DA) in RPE signaling and modulation of 

mesocorticolimbic circuits (18), these results may indicate a downstream effect of LT on DA 
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signaling and in turn on learning from positive and negative outcomes. Support for a 

potential DA-mediated mechanism of action is provided by studies suggesting an important 

role of the AT1R in regulating central dopaminergic neurotransmission (19), high co-

expression of AT1R and DA receptors (20) and evidence for functionally interactions between 

AT1R and DA receptors in the striatum (21). 

Against this background, the present proof-of-concept study combined computational 

modelling and functional MRI, with a preregistered between-subjects randomized double-

blind placebo-controlled pharmaco-fMRI design in n=61 healthy participants to determine 

modulatory effects of LT-induced AT1R blockade on RL model parameters and the underlying 

neural mechanisms. We utilized a validated probabilistic selection RL paradigm with two 

stages: a learning phase in which participants learned to make better choices for fixed pairs 

of stimuli according to reward or loss feedback, and a subsequent transfer phase in which 

participants applied the learned optimal choices to novel combinations of stimuli without 

feedback. Behavioral responses during learning were fit using a computational RL model to 

describe the dynamic learning process. Effects of LT on learning were examined by means of 

comparing RL model parameters and neural activity related to model-derived estimates of 

RPE. Effects of LT on learning transfer were examined by comparing choices and functional 

connectivity in cortico-striatal pathways when participants approached the best or avoided 

the worst stimulus. Based on previous literature (12, 16, 17), we predicted that LT would: 1) 

reduce learning from negative outcomes, increase the RPE-associated signaling in the ventral 

striatum (VS) and its neural expression for positive outcomes during the learning phase and 

2) increase selection of the best stimulus in the context of increased fronto-striatal coupling 

during learning transfer. 

 

Methods and Materials  

Participants and study protocols 

Seventy right-handed healthy male Chinese participants were screened according to 

evaluated enrollment criteria (see Supplemental Methods). The study focused on male 

individuals to control for sex differences in response to RA blockade (22) and menstrual 

cycle-dependent variations in reward processing (23). Nine participants were excluded due 
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to poor learning (LT, n=4; Placebo, n=4; see choice accuracy criteria Fig. 1) or excessive head 

movement (LT, n=1) leading to a final sample of n = 61 (mean±SD, age=20.89±2.32 years). 

All participants provided written informed consent, protocols were pre-registered on 

Clinical Trials.gov (https://clinicaltrials.gov/ct2/show/NCT04604938) and approved by the 

local ethics committee (Approval 355). 

Using a double-blind randomized, placebo-controlled, between-subjects pharmacological 

fMRI design, participants were administered either a single oral dose of LT (50mg) or 

placebo (PLC) packed in identical capsules. Capsules were dispensed by an independent 

researcher based on a computer-generated randomization sequence to implement double 

blinding. Consistent with the pharmacodynamics profile of LT (LT crosses the blood brain 

barrier and reaches peak plasma levels after 90 minutes and eliminates between 1.5-2.5h 

(24-27)), treatment was administered 90min before fMRI acquisition. Participants first 

performed a reinforcement learning task (duration 30min) followed by an emotional 

memory task (reported in Xu et al., 2021). To control for nonspecific effects of LT, 

assessments of mood, attention and memory were incorporated at baseline and after the 

experiment, while cardiovascular activity (i.e., blood pressure, heart rate) was measured at 

baseline, after drug administration and after the experiment (see Fig. 1a and Supplemental 

Methods). To ensure double blinding participants were asked to guess treatment after the 

experiment (treatment guess c2=0.40, p=0.53; confirming successful double-blinding).  
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Fig. 1 Experimental timeline and paradigm. (a) Experimental timeline. (b). The reinforcement 
learning paradigm consisted of two subsequent phases. During the learning phase participants were 
presented with one of three different pairs of six stimuli (denoted as AB, CD and EF) on each trial in a 
randomized order. Participants were instructed to learn to choose the best option within each 
stimulus pair based on the feedback presented (i.e., ‘correct’ or ‘wrong’ presented as text, which 
indicated that 0.5 RMB or nothing were added to the total payment). To avoid choice preference or 
reward associations with one stimulus, stimulus pairs were presented in a counterbalanced order 
across subjects. During the transfer phase, participants were presented with all permutations of 
combinations with A and B - corresponding to the stimuli with the highest or lowest reward 
probability, respectively - and were instructed to choose the better option according to their 
previous learning experience. (c) The probabilities of acquiring reward for pairs AB, CD and EF were 
80:20, 70:30 and 60:40, respectively, during the learning phase. The easiest condition was therefore 
the AB pair while the EF pair was the hardest one to learn because of the relatively equivalent 
reward probabilities between the two stimuli. A performance criterion (i.e., choosing 65% A in AB, 
55% C in CD, 50% E in EF, a similar approach to that used by Frank et al., 2007) was initially used to 
ensure successful learning in the subjects who entered the final analysis, n = 4 subjects in each 
treatment group did not fulfill this criterion and were excluded from further analysis. The analysis in 
the transfer phase was conducted on trials in which A was correctly chosen or B was avoided when 
being paired with another stimulus.  
Abbreviations: BP, blood pressure; HR, heart rate; LT, losartan; PLC, placebo; FMRI, functional 
magnetic resonance imaging; RL, reinforcement learning. License: Image in 1a were designed by 
DinosoftLabs and obtained from Flaticon.com under the free use license. 

 

Reinforcement learning paradigm  

A validated probabilistic selection reinforcement learning paradigm was employed (28-31). 

This paradigm consisted of two stages: an initial reinforcement learning phase and a 

subsequent transfer phase. During the learning phase, participants were presented with one 

of three different pairs of six shape stimuli (denoted as AB, CD and EF, Fig. 1c) on each trial in 
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a randomized order. Participants were instructed to learn to choose the better option of 

each stimulus pair based on feedback (Fig .1b). Learning difficulty varied for the stimulus 

pairs in terms of reward contingency (80:20, 70:30 or 60:40, for AB, CD or EF, respectively). A 

total of 240 trials – dispersed across two fMRI runs with 120 trials each (40 trials per 

stimulus pair, trial mean duration 4s) – were presented during the learning phase. Each trial 

began with a fixation cross presented for a jittered interval of 0, 500, 1000, or 1500ms (Fig. 

1b) followed by the presentation of two shapes displayed to the left and right of the fixation 

cross (side was counterbalanced). Stimuli were presented until participants made a response 

or 1700ms elapsed. The choice was visually confirmed by highlighting the chosen shape in 

yellow for 300ms, followed by 400ms feedback presentation (‘correct’ or ‘wrong’). Then, the 

fixation cross was displayed again until the whole trial duration was reached. In addition, 12 

null trials without stimulus presentation of the same duration were randomly interspersed in 

each fMRI run to improve the model fitting of the rapid event-related fMRI design. 

For the transfer phase, the six shape stimuli were recombined to constitute fifteen 

stimulus pairs. Each stimulus pair permutation was presented 8 times (side was 

counterbalanced) leading to 120 trials in the transfer phase, also with 12 null trials 

interspersed in a random order. Duration of each trial was 1700ms and no feedback was 

provided (Fig. 1b). Participants were told to choose the better option in each stimulus pair 

according to what they had learned in the learning phase.         

 

Computational modeling of learning behavior 

We explored the learning rate in terms of choice behavior by using a Q-learning algorithm 

(32). The Q-learning algorithm has been widely employed to model learning behavior and 

serves to model the change in choice behavior based on trial-by-trial updates of the 

expected value of choice options (30, 33, 34). The corresponding model contains three free 

parameters: learning rate for positive (αGain) and negative (αLoss) RPEs and estimation of 

explore-exploit tendency (β). For details of modeling procedures, model estimation and 

comparison see Supplemental Methods. 

 

Statistical analyses on the behavioral level  
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All analyses were performed in R (R development core and team, 2017). For the learning 

phase, we employed a multilevel Bayesian linear model to analyze trial-by-trial choice 

behavior using the Bayesian regression model in Stan (brms) R package (35). Main effects of 

treatment, stimulus pair and fMRI run, as well as the interaction of stimulus pair and 

treatment on parameters were considered as credibly different when more than 95% of the 

posterior distribution was above/below zero. In the transfer phase, we performed similar 

analyses for trials including stimuli with the highest and lowest reward probability (A, 80% or 

B, 20%) (Fig. 1c) to examine LT effects on choosing the best and avoiding the worst option. 

An exploratory model additionally examined effects of LT on choice times with choice 

(choose A, avoid choosing B) and treatment (LT, PLC) as fixed factors and subject as random 

factor. Main effects of treatment, choice behavior and their interaction were considered 

significant using the same 95% posterior distribution criterion (details Supplemental 

Methods). Treatment effects on computational modeling indices of choice behavior 

(learning rate, explore-exploit tendency) were examined by using two sample t tests.  

 

MRI acquisition, preprocessing and first level analysis 

MRI data were acquired on a 3.0-T GE Discovery MR system (General Electric Medical 

System, Milwaukee, WI, USA) and preprocessed using standard procedures in SPM 12 

(Statistical Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm/; Wellcome Trust Centre 

for Neuroimaging) (see Supplemental Methods). 

Separate general linear models (GLM) were designed for the learning and transfer phase. 

For the learning phase, outcome onsets for positive and negative feedback were separately 

modeled, each modulated by the corresponding RPE estimated from the computational 

model. The highlight-period and six head motion parameters were included as covariates of 

no interest. Given that the choice accuracy in both treatment groups rapidly approached a 

ceiling effect in the second run (Fig. S2) the first and second fMRI run were modeled 

separately, and analyses focused on the first run to increase the sensitivity for learning-

associated treatment effects. During the transfer phase, approach A and avoid B were 

modeled as separate conditions, and the six head motion parameters were included as 

nuisance regressors. 
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Examining neural effects of LT on RPE signaling and learning transfer  

Effects of LT on RPE signaling during early learning were examined by subjecting the 

corresponding first level contrasts to voxel-wise two sample t tests. Effects on the transfer of 

optimal choice behavior were examined by means of separate two sample t-tests for 

choosing A or avoiding B, respectively.  Whole brain analyses thresholded at cluster level 

family-wise error (FWE) corrected p<0.05 were employed (initial cluster threshold, p<0.001 

uncorrected; see recommendations in Slotnick, 2017 (36)).  

 

Effects of LT on feedback-sensitive neural expressions in the VS  

Given the higher sensitivity of multivariate neurofunctional representations for a given 

mental process including reward and RPEs in the VS (37, 38), multi-voxel pattern analysis 

(MVPA) was employed. We initially developed a decoder on the whole brain neural pattern 

that differentiated positive versus negative outcomes during early learning and tested it in 

an independent sample to validate brain systems strongly involved in differentiating reward 

versus loss. Next, treatment effects on the corresponding expression in the VS were 

examined (details Supplemental Methods). The VS region of interest included the ventral 

caudate and nucleus accumbens, defined from the brainnetome atlas (39), which was 

functionally validated in our previous work (40, 41). 

 

Functional connectivity analysis 

Given that animal and human studies indicate that reinforcement learning is critically 

mediated by the functional communication between the VS and frontal regions (42, 43), 

treatment effects on frontal-VS functional connectivity during transfer phase were examined. 

Treatment effects on frontal-VS functional networks were determined by performing two 

sample t tests on choosing A or avoid choosing B events. Within the brainnetome atlas-

defined prefrontal cortex (39), results were thresholded at p<0.05 FWE corrected at peak 

level with small volume correction (SVC).  
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Results  

Demographics and potential confounders  

The LT (n = 30) and PLC (n = 31) groups were comparable with respect to sociodemographics 

and mood and cardiovascular indices arguing against nonspecific treatment effects (Table 1; 

all ps>0.10). 

 
Table 1. Sociodemographic and Bio-psychometric assessments in the two groups 

 Time LT(M±SD) PLC(M±SD) t p 

Age  20.63±2.17 21.13±2.47 0.83 0.41 

BMI  21.64±2.21 21.15±2.12 -0.87 0.39 

HBP 

Before 119.87±7.28 118.29±6.64 -0.88 0.38 

Drug peak 115.07±9.36 116.16±7.11 0.52 0.61 

After experiment 119.20±6.73 119.45±5.89 0.16 0.88 

LBP 

Before 70.43±6.83 70.77±7.17 0.19 0.85 

Drug peak 69.77±6.92 69.23±7.61 -0.29 0.77 

After experiment 69.63±6.05 72.26±6.54 1.63 0.11 

HR 

Before 75.00±11.09 76.10±10.51 0.40 0.69 

Drug peak 68.03±9.69 70.10±8.62 0.88 0.38 

After experiment 68.27±9.54 69.52±10.28 0.49 0.63 

PANAS-P 
Before 27.37±4.10 27.77±6.88 0.28 0.78 

After experiment 17.20±6.85 15.19±5.10 -1.30 0.20 

PANAS-N 
Before 24.5±4.98 26.84±7.23 1.47 0.15 

After experiment 14.33±5.93 13.13±5.04 -0.86 0.40 

SAI 
Before 41.77±9.62 38.58±9.80 -1.28 0.21 

After experiment 39.9±8.56 37.39±8.12 -1.18 0.24 

TAI 
Before 41.73±9.47 40.13±8.02 -0.72 0.48 

After experiment 41.33±8.46 39.26±8.40 -0.96 0.34 

BDI II 
Before 9.13±7.16 8.61±8.82 -0.25 0.80 

After experiment 6.83±6.06 6.39±7.21 -0.26 0.80 

D-CAT1 
Before 39.83±8.81 38.06±5.77 -0.93 0.36 

After experiment 45.47±6.67 47.16±6.20 1.03 0.31 

D-CAT2 
Before 55.1±8.19 56.16±8.96 0.48 0.63 

After experiment 58.03±8.29 61.45±9.65 1.48 0.14 

D-CAT3 Before 63.93±12.03 65.35±12.48 0.45 0.65 
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After experiment 68.10±9.30 70.71±12.34 0.93 0.36 

WM 
Before 0.91±0.11 0.92±0.04 0.55 0.58 

After experiment 0.94±0.04 0.96±0.03 1.31 0.20 

Values are presented as mean ± SD.  
Abbreviations: PLC, placebo; LT, Losartan; PANAS, Positive and Negative Affect Schedule; STAI, 
Spielberger State-Trait Anxiety Inventory; BDI, Beck Depression Inventory II; D-CAT 1-3, Digit 
cancellation test 1-3; WM, working memory. LT, Losartan, PLC, placebo. 
 
LT increases choice accuracy for the hardest stimulus pair during early learning 

The choice accuracy indicates the proportion of trials on which subjects chose the option 

with higher probability for reward in a stimulus pair (e.g., choose A in AB). Here we observed 

a significant main effect of stimulus pair (β=0.19, 95% confidence interval [CI], [0.16, 0.22], 

Fig. S1) such that participants exhibited the highest choice accuracy for the easy stimulus 

pair. The main effect of treatment did not reach significance (β=0.02, 95% CI, [-0.02, 0.06], 

Fig. S1), but the main effect of fMRI run (β=0.12, 95% CI, [0.11, 0.13], Fig. S1) was significant. 

Further inspection revealed that participants in both groups rapidly reached a ceiling effect 

during the second fMRI run (Fig. S2) which may critically reduce the sensitivity of detecting 

learning-related treatment effects. This pattern was confirmed by a robust treatment × 

stimulus pair interaction effect in the first (β=-0.05, 95% CI, [-0.07,-0.03], Fig. 2a) but not the 

second fMRI run (β=0.01, 95% CI, [-0.01, 0.03], Fig. 2b), with further analyses indicating that 

compared to PLC – LT increased choice accuracy for the most difficult (EF, β=0.09, 95% CI, 

[0.01, 0.18], Fig. 2c), but not the easier pairs (AB, β=-0.01, 95% CI, [-0.07,0.05]; CD, β=0.03, 

95% CI, [-0.05, 0.10], Fig. 2c) during the first run. To increase the sensitivity to determine 

learning-related treatment effects, all subsequent behavioral and neural analysis 

consequently focused on the early learning phase (run 1).  
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Fig. 2 Behavioral effects of Losartan on choice accuracy and choice time. (a, b) A significant 
interaction between treatment and stimulus pair was observed in the first but not the second fMRI 
run of the learning phase. (c) During the first fMRI run of the learning phase, losartan-treated 
participants increased the choice accuracy for the hardest stimulus pair (EF) relative to the placebo 
group. (d) In the transfer phase, all participants responded quickly when choosing stimulus A or 
avoiding stimulus B, and relative to the placebo group, the losartan group exhibited faster responses 
for approaching stimulus A in a novel environment. The error bars denote standard error of the 
mean. Statistical significance was estimated from t tests or analysis of variance models and 
presented for visualization purpose. PLC, placebo; LT, losartan, *p<0.05.***p<0.001 

 

In the transfer phase, both choosing A and avoiding B were significantly higher than 

chance level (50%) regardless of treatment (choose A: t=15.07, p<0.001, avoid B: t=15.16, 

p<0.001). The main effect of treatment on choice accuracy was not significant (β=-0.03, 95% 

CI, [-0.13, 0.06]). However, analyzing choice reaction times revealed a significant main effect 

of choice behavior (β=-12.70, 95% CI, [-23.18, -1.94]) and an interaction effect of treatment 

with choice behaviors (β=-27.36, 95% CI, [-42.41, -12.41]). Relative to PLC, LT accelerated 

choice times for choosing A (β=-83.52, 95% CI, [-147.03, -18.08], Fig. 2d), reflecting 

facilitated approach of the previously learned best option following LT.  

 

LT reduces the learning rate for negative outcomes during early learning 

In line with our hypothesis, LT significantly reduced learning rate from negative outcomes 

(t(59)=-2.40, p=0.02, d=-0.61, Fig. 3b) but did not affect learning from positive outcomes 

(t(59)=-1.84,p=0.07,d=-0.47, Fig. 3a). Moreover, LT enhanced the explore-exploit parameter 

(t(59)=3.83, p<0.01, d=0.98, Fig. 3c), reflecting increased exploitatory choice behavior in 

terms of more consistent selection of options with higher expected reward values.  
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Fig. 3 Losartan effects on computational model parameters. (a) Losartan and placebo groups 
showed equivalent learning rate for positive outcome. (b) Compared to the placebo group, losartan-
treated individuals exhibited a reduced learning rate for negative outcomes. (c) Moreover, losartan 
enhanced exploitatory decisions relative to placebo group. The error bars denote standard error of 
the mean. PLC, placebo; LT, losartan; **p<0.01, *p<0.05. 

 

LT increases RPE signaling during early learning 

We initially examined brain regions that scaled positive and negative RPEs independent of 

treatment. A corresponding one sample t-test confirmed previous studies suggesting that 

activity in striatal and frontal regions linearly increased with the strength of the RPEs (Fig. S4, 

Table S1-S2). Examining treatment effects by means of a two sample t-test revealed that LT 

enhanced RPE associated neural responses in the left VS (peak Montreal Neurological 

Institute (MNI): x,y,z=-8,0,8, t(59)=4.24,k=243, PFWE-cluster<0.05, Fig. 4a) and bilateral 

orbitofrontal cortex (left OFC, peak MNI: x,y,z =-40,54,-16, t(59)=4.35, k=655, PFWE-cluster<0.05; 

right OFC, peak MNI, x,y,z=44,40,-14, t(59)=4.24,k=326, PFWE-cluster<0.05, Fig. 4a). Examination 

of extracted parameter estimates (spherical masks, radius: 6mm) revealed that these regions 

signaled positive but not negative RPEs under PLC whereas the LT-induced increase further 

enhanced positive RPE and instated negative RPE signaling in these regions (Fig. 4b).  
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Fig. 4 Losartan modulation on RPE-related neural response. (a) Comparison of losartan and placebo 
groups in RPE-related response suggested a losartan-triggered increased activation of bilateral 
orbitofrontal cortex and left ventral striatum. (b) For illustration purpose, parameter estimates 
extraction from spherical masks (radius: 6 mm) of identified left or right orbitofrontal cortex as well 
as left ventral striatum showed that losartan enhanced activation in these regions to RPE for both 
positive and negative outcomes. The error bars denoted standard error of the mean. LT, losartan; PLC, 
placebo. FWE-family-wise error, OFC-orbitofrontal cortex, VS-ventral striatum, PRPE-positive reward 
prediction error, NRPE-negative reward prediction error. 

 

LT sharpens differential neural representations for positive vs negative outcomes in the VS 

We initially established an accurate whole brain multivariate predictive pattern for 

classifying positive and negative outcomes (accuracy, 89.34%, sensitivity and specificity, 

88.52% and 90.16%, respectively Fig. 5b). Applying thresholding (bootstrapped 10,000 

samples) and multiple comparisons correction (false discovery rate [FDR] corrected, p<0.001) 

revealed that a network including the VS, ventromedial prefrontal cortex, dorsomedial 

prefrontal cortex and middle frontal gyrus strongly contributed to the prediction of positive 

or negative outcomes during early learning (Fig. 5a, for a validation in an independent 

dataset see Fig. S5). 
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Fig. 5 Multivariate neural predictive pattern results. (a) Neural predictive pattern consists of voxels 
in which activity reliably predicted positive versus negative outcomes during early phase of learning. 
This map shows weights that exceed a threshold (p<0.001, FDR corrected based on bootstrapped 
10,000 samples) for display only. Hot color indicates positive weights and cold color indicates 
negative weights. (b) ROC plot. This neural predictive pattern yields a classification accuracy of 
89.34% in a leave-one-subject-out cross validation procedure. (c) The histogram of classification 
accuracy of ventral striatum neural expression for positive and negative outcome from permutation 
test. The red line shows the classification accuracy in losartan group. (d) Losartan treatment 
increases the neural pattern of ventral striatum for positive outcome. The error bars denoted 
standard error of the mean and the black line shows the mean value. VS-ventral striatum, vmPFC-
ventromedial prefrontal cortex, dmPFC-dorsomedial prefrontal cortex, MFG-middle frontal gyrus, 
AUC-area under curve, FDR-False discovery rate, LT-losartan, PLC-placebo. ***p<0.001.  

 

Based on our a priori regional hypothesis about the crucial role of VS in reward learning 

we examined effects of LT on VS neural representations for positive outcomes. Our results 

suggested that only following LT - but not PLC - the VS expression accurately differentiated 

positive from negative outcomes (accuracy=78.33%, p<0.001, sensitivity=0.83, 

specificity=0.73, AUC=0.88; PLC, accuracy=56.45%, p=0.37, sensitivity=0.55, specificity=0.58, 

AUC=0.68), with a direct comparison between the treatment groups suggesting that LT 

specifically enhanced the VS representation for positive outcomes (t(59)=9.92,p<0.001,d=1.29, 

Fig. 5c-5d). A group comparison on classification accuracy using permutation-inference 

further confirmed a significant treatment effect (t=-15.53, p<0.001, 95% CI, [-0.013, -0.010]). 
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LT increased VS-dlPFC coupling when approaching maximum rewards during transfer  

On the neural activation level, no treatment effects of LT during learning transfer were 

observed. However, on the level of VS functional connectivity LT increased functional 

connectivity between the VS and left dorsolateral prefrontal cortex (left dlPFC, peak MNI: 

x,y,z=-48,22,28, t(59)=5.15, k=197, Psvc-FWEpeak=0.01, Fig. 6), reflecting an LT-induced 

enhancement of VS-dlPFC communication when approaching maximum rewards during 

learning transfer.  

 

 
Fig. 6 Functional connectivity results. For illustration purpose parameter estimates were extracted 
from a spherical (radius: 6 mm) ROI in the identified left dorsolateral prefrontal cortex (dlPFC) region. 
Losartan increased functional coupling between the ventral striatum and left dlPFC when 
participants choose A stimuli in the transfer phase. The statistical map of the left dlPFC was 
thresholded at p<0.001 uncorrected (whole-brain level) for display purpose. The error bars denoted 
standard error of the mean. VS-ventral striatum; dlPFC-dorsolateral prefrontal cortex; LT, losartan; 
PLC, placebo.  

 

Discussion 

The present pharmacological study utilized computational modeling in combination with 

fMRI to examine the effects of transient LT-induced AT1R blockade on reinforcement 

learning and the underlying neural mechanism in healthy individuals. On the behavioral level 

LT facilitated choice accuracy in the most difficult reward condition while it specifically 

reduced learning from negative outcomes and enhanced exploitatory choice behaviors. On 

the neural level, the behavioral effects were paralleled by regional-specific effects on ventral 

striatal-orbitofrontal reward systems, such that LT increased RPE signaling in these regions 

and sharpened the fine-grained neurofunctional distinction between positive and negative 

outcomes in the VS. During learning transfer, LT facilitated approach of the maximum 
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rewarding option and enhanced VS-dlPFC functional connectivity. Overall, these findings 

indicate that LT-attenuated learning from negative feedback in the context of general 

positive outcome learning and a subsequent increased motivation to obtain maximum 

rewards during learning transfer, which on the neural level was accompanied by enhanced 

RPE and functional communication in fronto-striatal circuits. 

We found that LT specifically enhanced choice accuracy for the most difficult condition 

suggesting that LT specifically improved learning under a low reinforcement probability. 

Computational modeling additionally allowed a more fine-grained examination of the 

behavioral effects by fitting trial-by-trial learning behavior and revealed that LT specifically 

reduced the learning rate for negative outcomes and enhanced exploitatory choices. The 

optimal learning ability could be understood when learning rate and other free parameters 

are considered simultaneously (e.g., explore-exploit tendency) in the RL model and the 

reward schedule (44). Effects of LT on learning rate were outcome dependent, such that LT 

specifically decreased learning from negative outcomes, indicating an attenuated influence 

of negative information on reinforcement learning. Within the context of a stable 

reinforcement schedule, it is adaptive for an agent to ignore relatively rare and potentially 

misleading negative feedback given that an oversensitivity to negative outcomes would 

cause suboptimal choice behaviors. Therefore, decreased negative learning rate may signal 

the relatively high approach for positive outcomes in a stable reward contingency, which in 

turn may facilitate an exploitatory choice tendency in terms of consistent decisions for 

options with a higher expected reward (31). Previous studies demonstrated that enhancing 

central dopaminergic activity increases choices towards monetary gains (1, 45). The current 

pattern of results may reflect modulatory effects of RAS blockade on dopaminergic 

neurotransmission given that LT has been shown to induce stronger D1 receptor expression 

(46) which has been associated with better reward-associative learning (47). These findings 

resonate with recent studies reporting an LT-induced enhancement of learning from positive 

relative to negative events (12) as well as an LT-induced shift from preferential social 

punishment towards social reward processing (17). Together, this pattern of effects suggests 

that LT can attenuate the impact of negative information thus promoting motivation to 

select rewarding options. 
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On the neural level LT increased orbitofronto-striatal RPE-signaling and induced a more 

distinct neural expression for positive outcomes in the VS. VS dopamine neurons are 

critically involved in RPE signaling and reward seeking (48), while the OFC is strongly 

implicated in computation of expected reward values and RPEs (49). An LT-induced 

enhancement of the neural RPE signal and the representation of rewarding outcomes may 

reflect the potential for the RAS to modulate central dopaminergic neurotransmission during 

reinforcement learning. The AT1R is expressed densely in dopamine-rich brain areas (20), 

particularly in the striatum (50) and plays a key role in dopaminergic function (51). 

Administering an antagonist of AT1R could increase D1 receptor activation (46) and block the 

functional response of the D2 receptor (21) - both of these receptors exhibit dense 

expression in ventral striatal and prefrontal regions crucially involved in reward learning (52-

54). This may indicate a potential downstream effect of LT-induced AT1R blockade on DA 

signaling, in turn modulating reward learning within orbitofronto- striatal circuits, thus 

enhancing RPE encoding and reward representation in these regions. 

During subsequent learning transfer, LT facilitated approach of the maximum reward in 

terms of accelerated decisions in the context of enhanced functional coupling of the VS with 

left dlPFC. Faster decisions for choosing the best options following LT may reflect an 

increased motivation to focus on maximizing rewards after reinforcement learning. The 

findings partly align with early research on dopaminergic modulation of reinforcement 

learning, which reported improved motivation for the highest-rewarding option during 

transfer, an effect that was explained as dopamine-dependent enhancement of learning 

signals (55). The important role of fronto-striatal connectivity in reinforcement learning has 

been extensively documented (42), indicating that reward associations initially formed in the 

striatum are subsequently used to guide learning and decisions engaging the dlPFC (56). To 

be specific, the dlPFC plays an important role in integrating and transmitting reward 

representations to the mesolimbic and mesocortical dopamine systems to initiate reward-

motivated behaviors (57). Reduced striato-dlPFC connectivity has been observed in in 

disorders characterized by a dysfunctional DA system (58), and linked with impaired 

reinforcement learning (59). As such, the present findings of an LT-induced increase in VS-

dlPFC connectivity when approaching rewards might reflect a modulatory role of angiotensin 
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signaling on fronto-striatal communication via effects on dopaminergic circuits. 

Given the repeatedly observed hypersensitivity for negative information and an increased 

impact of negative information on learning in depression (60), the current pattern of 

behavioral effects may reflect potential for LT to normalize biased processing in depression 

and in turn improve motivational deficits. The therapeutic potential in depression is further 

supported by early animal models suggesting a crucial role of the RAS in depression (61, 62) 

and documenting potential antidepressant behavioral effects of LT (63, 64). Initial studies 

aimed at targeting reward processing and reinforcement learning impairments in depression 

via directly targeting the dopaminergic system (65, 66). These studies revealed initially 

promising evidence for a therapeutic potential of DA agonist in depression including 

normalized neural functioning in fronto-striatal reward systems (65, 66) and anhedonia 

improvement (5). However effects on impaired reward learning were not observed and the 

clinical utility of DA agonist is limited by adverse effects such as triggering impulsive 

behaviors (67) and abuse (68). The current pattern of results may point to a possibility that 

LT  may represent a safe and potentially behavioral relevant strategy to modulate deficient 

reward learning and fronto-striatal functioning in depression.  

While the current study found some evidence for a novel pathway to modulate reward 

learning, future studies are required to: (1) determine the potential of LT to influence reward 

learning and associated fronto-striatal deficits in depression, and (2) uncover the detailed 

interaction mechanism between the RAS with DA systems during reward learning such as 

incorporating receptor maps in combination with molecular imaging. In addition, future 

studies are required to demonstrate whether the observed effects generalize to women.  

Taken together, we demonstrated that AT1R blockade via LT decreased negative learning 

rate but did not affect learning from positive outcomes, while increasing RPE signaling in 

orbitofronto-striatal regions and improving neural expression of positive outcomes in the VS. 

During the subsequent transfer, LT accelerated choices for maximizing rewards and increased 

VS-dlPFC functional coupling. Together, this pattern may reflect a promising mechanism of LT 

as a potential treatment to normalize impaired reward learning and fronto-striatal 

functioning in depression.  
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