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ABSTRACT

Adaptive human learning utilizes reward prediction errors (RPEs) that scale the differences
between expected and actual outcomes to optimize future choices. Depression has been
linked with biased RPE signaling and an exaggerated impact of negative outcomes on
learning which may promote amotivation and anhedonia. The present proof-of-concept
study combined computational modelling and multivariate decoding with neuroimaging to
determine the influence of the angiotensin Il type 1 receptor antagonist losartan on learning
from positive or negative outcomes and the underlying neural mechanisms in healthy
humans. In a double-blind, between-subjects, placebo-controlled pharmaco-fMRI
experiment, 61 healthy male participants (losartan, n=30; placebo, n=31) underwent a
probabilistic selection reinforcement learning task incorporating a learning and transfer
phase. Losartan improved choice accuracy for the hardest stimulus pair relative to the
placebo group during learning. Computational modelling revealed that losartan reduced the
learning rate for negative outcomes and increased exploitatory choice behaviors while
preserving learning for positive outcomes. These behavioral patterns were paralleled on the
neural level by increased RPE signaling in orbitofrontal-striatal regions and enhanced
positive outcome representations in the ventral striatum (VS) following losartan. In the
transfer phase, losartan accelerated response times and enhanced VS functional
connectivity with left dorsolateral prefrontal cortex when approaching maximum rewards.
These findings elucidate the potential of losartan to reduce the impact of negative outcomes
during learning and subsequently facilitate motivational approach towards maximum
rewards in the transfer of learning. The mechanism could help to normalize biased reward

learning characteristic of depression.
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Introduction

Human learning is driven by reward prediction errors (RPE) that signal the discrepancy
between expected and actual outcomes. Computational approaches have closely linked
RPEs to dopaminergic signaling in the midbrain-striatum circuitry and to motivation and
reward seeking (1, 2). Deficits in these domains, in particular amotivation and anhedonia,
represent key symptoms of unipolar depression and dysregulated RPE signaling has been
proposed as a potential underlying neurocomputational candidate mechanism (3).
Specifically, within a computational reinforcement learning (RL) framework, depressed
individuals showed enhanced sensitivity to negative information while they concomitantly
discounted positive feedback leading to reduced learning from positive events (4, 5). On the
neural level this learning bias was often accompanied by blunted RPE signaling in the ventral
striatum and reduced fronto-striatal connectivity during reward feedback (6, 7). These
neural dysregulations have been associated with depressive symptom load, specifically
anhedonia and persistent negative mood (8), and could predict anti-depressive treatment
response (9). As such, distorted learning from negative and positive outcomes may play a
key role in the pathophysiology of depression and may represent a promising target for
novel antidepressive treatments.

Accumulating evidence suggests that the renin-angiotensin system plays a key role in
learning. Preclinical work in rodents and humans has utilized the selective competitive
angiotensin Il type 1 receptor (AT1R) antagonist losartan (LT) - an approved treatment for
hypertension with an excellent safety record (10, 11) - to modulate learning from negative or
positive events (12, 13). Recent human studies have demonstrated that a single dose of LT
selectively suppressed memory encoding of threatening materials (14) and accelerated
threat extinction learning (15, 16). Moreover, LT specifically affected probabilistic learning
from negative outcomes by reducing the degree to which participants learned from loss
feedback, while leaving learning from positive outcomes unaffected (12). An initial
neuroimaging study moreover reported modulatory effects of LT on mesocorticolimbic
functional connectivity during social reward and punishment processing (17).

Given the pivotal role of dopamine (DA) in RPE signaling and modulation of

mesocorticolimbic circuits (18), these results may indicate a downstream effect of LT on DA
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signaling and in turn on learning from positive and negative outcomes. Support for a
potential DA-mediated mechanism of action is provided by studies suggesting an important
role of the AT1R in regulating central dopaminergic neurotransmission (19), high co-
expression of AT1R and DA receptors (20) and evidence for functionally interactions between
AT1R and DA receptors in the striatum (21).

Against this background, the present proof-of-concept study combined computational
modelling and functional MRI, with a preregistered between-subjects randomized double-
blind placebo-controlled pharmaco-fMRI design in n=61 healthy participants to determine
modulatory effects of LT-induced AT1R blockade on RL model parameters and the underlying
neural mechanisms. We utilized a validated probabilistic selection RL paradigm with two
stages: a learning phase in which participants learned to make better choices for fixed pairs
of stimuli according to reward or loss feedback, and a subsequent transfer phase in which
participants applied the learned optimal choices to novel combinations of stimuli without
feedback. Behavioral responses during learning were fit using a computational RL model to
describe the dynamic learning process. Effects of LT on learning were examined by means of
comparing RL model parameters and neural activity related to model-derived estimates of
RPE. Effects of LT on learning transfer were examined by comparing choices and functional
connectivity in cortico-striatal pathways when participants approached the best or avoided
the worst stimulus. Based on previous literature (12, 16, 17), we predicted that LT would: 1)
reduce learning from negative outcomes, increase the RPE-associated signaling in the ventral
striatum (VS) and its neural expression for positive outcomes during the learning phase and
2) increase selection of the best stimulus in the context of increased fronto-striatal coupling

during learning transfer.

Methods and Materials

Participants and study protocols

Seventy right-handed healthy male Chinese participants were screened according to
evaluated enrollment criteria (see Supplemental Methods). The study focused on male
individuals to control for sex differences in response to RA blockade (22) and menstrual

cycle-dependent variations in reward processing (23). Nine participants were excluded due


https://doi.org/10.1101/2022.03.14.484364
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.14.484364; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

to poor learning (LT, n=4; Placebo, n=4; see choice accuracy criteria Fig. 1) or excessive head
movement (LT, n=1) leading to a final sample of n = 61 (meantSD, age=20.89+2.32 years).

All participants provided written informed consent, protocols were pre-registered on
Clinical Trials.gov (https://clinicaltrials.gov/ct2/show/NCT04604938) and approved by the
local ethics committee (Approval 355).

Using a double-blind randomized, placebo-controlled, between-subjects pharmacological
fMRI design, participants were administered either a single oral dose of LT (50mg) or
placebo (PLC) packed in identical capsules. Capsules were dispensed by an independent
researcher based on a computer-generated randomization sequence to implement double
blinding. Consistent with the pharmacodynamics profile of LT (LT crosses the blood brain
barrier and reaches peak plasma levels after 90 minutes and eliminates between 1.5-2.5h
(24-27)), treatment was administered 90min before fMRI acquisition. Participants first
performed a reinforcement learning task (duration 30min) followed by an emotional
memory task (reported in Xu et al., 2021). To control for nonspecific effects of LT,
assessments of mood, attention and memory were incorporated at baseline and after the
experiment, while cardiovascular activity (i.e., blood pressure, heart rate) was measured at
baseline, after drug administration and after the experiment (see Fig. 1a and Supplemental
Methods). To ensure double blinding participants were asked to guess treatment after the

experiment (treatment guess y2=0.40, p=0.53; confirming successful double-blinding).
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Fig. 1 Experimental timeline and paradigm. (a) Experimental timeline. (b). The reinforcement
learning paradigm consisted of two subsequent phases. During the learning phase participants were
presented with one of three different pairs of six stimuli (denoted as AB, CD and EF) on each trial in a
randomized order. Participants were instructed to learn to choose the best option within each
stimulus pair based on the feedback presented (i.e., ‘correct’ or ‘wrong’ presented as text, which
indicated that 0.5 RMB or nothing were added to the total payment). To avoid choice preference or
reward associations with one stimulus, stimulus pairs were presented in a counterbalanced order
across subjects. During the transfer phase, participants were presented with all permutations of
combinations with A and B - corresponding to the stimuli with the highest or lowest reward
probability, respectively - and were instructed to choose the better option according to their
previous learning experience. (c) The probabilities of acquiring reward for pairs AB, CD and EF were
80:20, 70:30 and 60:40, respectively, during the learning phase. The easiest condition was therefore
the AB pair while the EF pair was the hardest one to learn because of the relatively equivalent
reward probabilities between the two stimuli. A performance criterion (i.e., choosing 65% A in AB,
55% C in CD, 50% E in EF, a similar approach to that used by Frank et al., 2007) was initially used to
ensure successful learning in the subjects who entered the final analysis, n = 4 subjects in each
treatment group did not fulfill this criterion and were excluded from further analysis. The analysis in
the transfer phase was conducted on trials in which A was correctly chosen or B was avoided when
being paired with another stimulus.

Abbreviations: BP, blood pressure; HR, heart rate; LT, losartan; PLC, placebo; FMRI, functional
magnetic resonance imaging; RL, reinforcement learning. License: Image in 1a were designed by
DinosoftLabs and obtained from Flaticon.com under the free use license.

Reinforcement learning paradigm

A validated probabilistic selection reinforcement learning paradigm was employed (28-31).
This paradigm consisted of two stages: an initial reinforcement learning phase and a
subsequent transfer phase. During the learning phase, participants were presented with one

of three different pairs of six shape stimuli (denoted as AB, CD and EF, Fig. 1c) on each trial in


https://doi.org/10.1101/2022.03.14.484364
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.14.484364; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

a randomized order. Participants were instructed to learn to choose the better option of
each stimulus pair based on feedback (Fig .1b). Learning difficulty varied for the stimulus
pairs in terms of reward contingency (80:20, 70:30 or 60:40, for AB, CD or EF, respectively). A
total of 240 trials — dispersed across two fMRI runs with 120 trials each (40 trials per
stimulus pair, trial mean duration 4s) — were presented during the learning phase. Each trial
began with a fixation cross presented for a jittered interval of 0, 500, 1000, or 1500ms (Fig.
1b) followed by the presentation of two shapes displayed to the left and right of the fixation
cross (side was counterbalanced). Stimuli were presented until participants made a response
or 1700ms elapsed. The choice was visually confirmed by highlighting the chosen shape in
yellow for 300ms, followed by 400ms feedback presentation (‘correct’ or ‘wrong’). Then, the
fixation cross was displayed again until the whole trial duration was reached. In addition, 12
null trials without stimulus presentation of the same duration were randomly interspersed in
each fMRI run to improve the model fitting of the rapid event-related fMRI design.

For the transfer phase, the six shape stimuli were recombined to constitute fifteen
stimulus pairs. Each stimulus pair permutation was presented 8 times (side was
counterbalanced) leading to 120 trials in the transfer phase, also with 12 null trials
interspersed in a random order. Duration of each trial was 1700ms and no feedback was
provided (Fig. 1b). Participants were told to choose the better option in each stimulus pair

according to what they had learned in the learning phase.

Computational modeling of learning behavior

We explored the learning rate in terms of choice behavior by using a Q-learning algorithm
(32). The Q-learning algorithm has been widely employed to model learning behavior and
serves to model the change in choice behavior based on trial-by-trial updates of the
expected value of choice options (30, 33, 34). The corresponding model contains three free
parameters: learning rate for positive (0cain) and negative (awoss) RPES and estimation of
explore-exploit tendency (B). For details of modeling procedures, model estimation and

comparison see Supplemental Methods.

Statistical analyses on the behavioral level
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All analyses were performed in R (R development core and team, 2017). For the learning
phase, we employed a multilevel Bayesian linear model to analyze trial-by-trial choice
behavior using the Bayesian regression model in Stan (brms) R package (35). Main effects of
treatment, stimulus pair and fMRI run, as well as the interaction of stimulus pair and
treatment on parameters were considered as credibly different when more than 95% of the
posterior distribution was above/below zero. In the transfer phase, we performed similar
analyses for trials including stimuli with the highest and lowest reward probability (A, 80% or
B, 20%) (Fig. 1c) to examine LT effects on choosing the best and avoiding the worst option.
An exploratory model additionally examined effects of LT on choice times with choice
(choose A, avoid choosing B) and treatment (LT, PLC) as fixed factors and subject as random
factor. Main effects of treatment, choice behavior and their interaction were considered
significant using the same 95% posterior distribution criterion (details Supplemental
Methods). Treatment effects on computational modeling indices of choice behavior

(learning rate, explore-exploit tendency) were examined by using two sample t tests.

MRI acquisition, preprocessing and first level analysis

MRI data were acquired on a 3.0-T GE Discovery MR system (General Electric Medical
System, Milwaukee, WI, USA) and preprocessed using standard procedures in SPM 12
(Statistical Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm/; Wellcome Trust Centre
for Neuroimaging) (see Supplemental Methods).

Separate general linear models (GLM) were designed for the learning and transfer phase.
For the learning phase, outcome onsets for positive and negative feedback were separately
modeled, each modulated by the corresponding RPE estimated from the computational
model. The highlight-period and six head motion parameters were included as covariates of
no interest. Given that the choice accuracy in both treatment groups rapidly approached a
ceiling effect in the second run (Fig. S2) the first and second fMRI run were modeled
separately, and analyses focused on the first run to increase the sensitivity for learning-
associated treatment effects. During the transfer phase, approach A and avoid B were
modeled as separate conditions, and the six head motion parameters were included as

nuisance regressors.
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Examining neural effects of LT on RPE signaling and learning transfer

Effects of LT on RPE signaling during early learning were examined by subjecting the
corresponding first level contrasts to voxel-wise two sample t tests. Effects on the transfer of
optimal choice behavior were examined by means of separate two sample t-tests for
choosing A or avoiding B, respectively. Whole brain analyses thresholded at cluster level
family-wise error (FWE) corrected p<0.05 were employed (initial cluster threshold, p<0.001

uncorrected; see recommendations in Slotnick, 2017 (36)).

Effects of LT on feedback-sensitive neural expressions in the VS

Given the higher sensitivity of multivariate neurofunctional representations for a given
mental process including reward and RPEs in the VS (37, 38), multi-voxel pattern analysis
(MVPA) was employed. We initially developed a decoder on the whole brain neural pattern
that differentiated positive versus negative outcomes during early learning and tested it in
an independent sample to validate brain systems strongly involved in differentiating reward
versus loss. Next, treatment effects on the corresponding expression in the VS were
examined (details Supplemental Methods). The VS region of interest included the ventral
caudate and nucleus accumbens, defined from the brainnetome atlas (39), which was

functionally validated in our previous work (40, 41).

Functional connectivity analysis

Given that animal and human studies indicate that reinforcement learning is critically
mediated by the functional communication between the VS and frontal regions (42, 43),
treatment effects on frontal-VS functional connectivity during transfer phase were examined.
Treatment effects on frontal-VS functional networks were determined by performing two
sample t tests on choosing A or avoid choosing B events. Within the brainnetome atlas-
defined prefrontal cortex (39), results were thresholded at p<0.05 FWE corrected at peak

level with small volume correction (SVC).
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Demographics and potential confounders

The LT (n = 30) and PLC (n = 31) groups were comparable with respect to sociodemographics

and mood and cardiovascular indices arguing against nonspecific treatment effects (Table 1;

all ps>0.10).

Table 1. Sociodemographic and Bio-psychometric assessments in the two groups

Time LT(M1SD) PLC(M+SD) t P
Age 20.63+2.17 21.13+2.47 0.83 0.41
BMI 21.64+2.21 21.15+2.12 -0.87 0.39
Before 119.87+7.28 118.29+6.64 -0.88 0.38
HBP Drug peak 115.07+9.36 116.16+7.11 0.52 0.61
After experiment 119.2016.73 119.4515.89 0.16 0.88
Before 70.4316.83 70.77+£7.17 0.19 0.85
LBP Drug peak 69.7716.92 69.2317.61 -0.29 0.77
After experiment 69.6316.05 72.2616.54 1.63 0.11
Before 75.00£11.09 76.10£10.51 0.40 0.69
HR Drug peak 68.0319.69 70.1048.62 0.88 0.38
After experiment 68.2719.54 69.521+10.28 0.49 0.63
Before 27.37£4.10 27.77+6.88 0.28 0.78
PANAS-P
After experiment 17.2046.85 15.1945.10 -1.30 0.20
Before 24.5+4.98 26.84+7.23 1.47 0.15
PANAS-N
After experiment 14.33+5.93 13.13+5.04 -0.86 0.40
Before 41.7719.62 38.5819.80 -1.28 0.21
SAl
After experiment 39.948.56 37.3918.12 -1.18 0.24
Before 41.73+9.47 40.13+8.02 -0.72 0.48
TAI
After experiment 41.33+8.46 39.2618.40 -0.96 0.34
Before 9.13+7.16 8.611+8.82 -0.25 0.80
BDI Il
After experiment 6.8316.06 6.3917.21 -0.26 0.80
Before 39.8318.81 38.0615.77 -0.93 0.36
D-CAT1
After experiment 45.4716.67 47.1616.20 1.03 0.31
Before 55.1+8.19 56.16+8.96 0.48 0.63
D-CAT2
After experiment 58.03+8.29 61.45+9.65 1.48 0.14
D-CAT3 Before 63.931£12.03 65.351£12.48 0.45 0.65
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After experiment 68.10+9.30 70.71£12.34 0.93 0.36
Before 0.91+0.11 0.92+0.04 0.55 0.58

WM
After experiment 0.94+0.04 0.96+0.03 131 0.20

Values are presented as mean £ SD.

Abbreviations: PLC, placebo; LT, Losartan; PANAS, Positive and Negative Affect Schedule; STAI,
Spielberger State-Trait Anxiety Inventory; BDI, Beck Depression Inventory Il; D-CAT 1-3, Digit
cancellation test 1-3; WM, working memory. LT, Losartan, PLC, placebo.

LT increases choice accuracy for the hardest stimulus pair during early learning

The choice accuracy indicates the proportion of trials on which subjects chose the option
with higher probability for reward in a stimulus pair (e.g., choose A in AB). Here we observed
a significant main effect of stimulus pair (3=0.19, 95% confidence interval [CI], [0.16, 0.22],
Fig. S1) such that participants exhibited the highest choice accuracy for the easy stimulus
pair. The main effect of treatment did not reach significance (=0.02, 95% Cl, [-0.02, 0.06],
Fig. S1), but the main effect of fMRI run (=0.12, 95% Cl, [0.11, 0.13], Fig. S1) was significant.
Further inspection revealed that participants in both groups rapidly reached a ceiling effect
during the second fMRI run (Fig. S2) which may critically reduce the sensitivity of detecting
learning-related treatment effects. This pattern was confirmed by a robust treatment x
stimulus pair interaction effect in the first (3=-0.05, 95% Cl, [-0.07,-0.03], Fig. 2a) but not the
second fMRI run (f=0.01, 95% Cl, [-0.01, 0.03], Fig. 2b), with further analyses indicating that
compared to PLC — LT increased choice accuracy for the most difficult (EF, =0.09, 95% Cl,
[0.01, 0.18], Fig. 2c), but not the easier pairs (AB, f=-0.01, 95% Cl, [-0.07,0.05]; CD, B=0.03,
95% Cl, [-0.05, 0.10], Fig. 2c) during the first run. To increase the sensitivity to determine
learning-related treatment effects, all subsequent behavioral and neural analysis

consequently focused on the early learning phase (run 1).
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Fig. 2 Behavioral effects of Losartan on choice accuracy and choice time. (a, b) A significant
interaction between treatment and stimulus pair was observed in the first but not the second fMRI
run of the learning phase. (c) During the first fMRI run of the learning phase, losartan-treated
participants increased the choice accuracy for the hardest stimulus pair (EF) relative to the placebo
group. (d) In the transfer phase, all participants responded quickly when choosing stimulus A or
avoiding stimulus B, and relative to the placebo group, the losartan group exhibited faster responses
for approaching stimulus A in a novel environment. The error bars denote standard error of the
mean. Statistical significance was estimated from t tests or analysis of variance models and
presented for visualization purpose. PLC, placebo; LT, losartan, *p<0.05.***p<0.001

In the transfer phase, both choosing A and avoiding B were significantly higher than
chance level (50%) regardless of treatment (choose A: t=15.07, p<0.001, avoid B: t=15.16,
p<0.001). The main effect of treatment on choice accuracy was not significant (f=-0.03, 95%
Cl, [-0.13, 0.06]). However, analyzing choice reaction times revealed a significant main effect
of choice behavior (B=-12.70, 95% Cl, [-23.18, -1.94]) and an interaction effect of treatment
with choice behaviors (=-27.36, 95% Cl, [-42.41, -12.41]). Relative to PLC, LT accelerated
choice times for choosing A (B=-83.52, 95% Cl, [-147.03, -18.08], Fig. 2d), reflecting

facilitated approach of the previously learned best option following LT.

LT reduces the learning rate for negative outcomes during early learning

In line with our hypothesis, LT significantly reduced learning rate from negative outcomes
(t(s9)=-2.40, p=0.02, d=-0.61, Fig. 3b) but did not affect learning from positive outcomes
(t(s9)=-1.84,p=0.07,d=-0.47, Fig. 3a). Moreover, LT enhanced the explore-exploit parameter
(t(59)=3.83, p<0.01, d=0.98, Fig. 3c), reflecting increased exploitatory choice behavior in

terms of more consistent selection of options with higher expected reward values.
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Fig. 3 Losartan effects on computational model parameters. (a) Losartan and placebo groups
showed equivalent learning rate for positive outcome. (b) Compared to the placebo group, losartan-
treated individuals exhibited a reduced learning rate for negative outcomes. (c) Moreover, losartan
enhanced exploitatory decisions relative to placebo group. The error bars denote standard error of
the mean. PLC, placebo; LT, losartan; **p<0.01, *p<0.05.

LT increases RPE signaling during early learning

We initially examined brain regions that scaled positive and negative RPEs independent of
treatment. A corresponding one sample t-test confirmed previous studies suggesting that
activity in striatal and frontal regions linearly increased with the strength of the RPEs (Fig. S4,
Table S1-S2). Examining treatment effects by means of a two sample t-test revealed that LT
enhanced RPE associated neural responses in the left VS (peak Montreal Neurological
Institute (MNI): x,y,2=-8,0,8, t(s9)=4.24,k=243, Prwe-cluster<0.05, Fig. 4a) and bilateral
orbitofrontal cortex (left OFC, peak MNI: x,y,z =-40,54,-16, t(59)=4.35, k=655, Prwe-cluster<0.05;
right OFC, peak MNI, x,y,z=44,40,-14, t(59=4.24,k=326, Prwe-cluster<0.05, Fig. 4a). Examination
of extracted parameter estimates (spherical masks, radius: 6mm) revealed that these regions
signaled positive but not negative RPEs under PLC whereas the LT-induced increase further

enhanced positive RPE and instated negative RPE signaling in these regions (Fig. 4b).
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Fig. 4 Losartan modulation on RPE-related neural response. (a) Comparison of losartan and placebo
groups in RPE-related response suggested a losartan-triggered increased activation of bilateral
orbitofrontal cortex and left ventral striatum. (b) For illustration purpose, parameter estimates
extraction from spherical masks (radius: 6 mm) of identified left or right orbitofrontal cortex as well
as left ventral striatum showed that losartan enhanced activation in these regions to RPE for both
positive and negative outcomes. The error bars denoted standard error of the mean. LT, losartan; PLC,
placebo. FWE-family-wise error, OFC-orbitofrontal cortex, VS-ventral striatum, PRPE-positive reward
prediction error, NRPE-negative reward prediction error.

LT sharpens differential neural representations for positive vs negative outcomes in the VS
We initially established an accurate whole brain multivariate predictive pattern for

classifying positive and negative outcomes (accuracy, 89.34%, sensitivity and specificity,
88.52% and 90.16%, respectively Fig. 5b). Applying thresholding (bootstrapped 10,000
samples) and multiple comparisons correction (false discovery rate [FDR] corrected, p<0.001)
revealed that a network including the VS, ventromedial prefrontal cortex, dorsomedial
prefrontal cortex and middle frontal gyrus strongly contributed to the prediction of positive
or negative outcomes during early learning (Fig. 5a, for a validation in an independent

dataset see Fig. S5).
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Fig. 5 Multivariate neural predictive pattern results. (a) Neural predictive pattern consists of voxels
in which activity reliably predicted positive versus negative outcomes during early phase of learning.
This map shows weights that exceed a threshold (p<0.001, FDR corrected based on bootstrapped
10,000 samples) for display only. Hot color indicates positive weights and cold color indicates
negative weights. (b) ROC plot. This neural predictive pattern yields a classification accuracy of
89.34% in a leave-one-subject-out cross validation procedure. (c) The histogram of classification
accuracy of ventral striatum neural expression for positive and negative outcome from permutation
test. The red line shows the classification accuracy in losartan group. (d) Losartan treatment
increases the neural pattern of ventral striatum for positive outcome. The error bars denoted
standard error of the mean and the black line shows the mean value. VS-ventral striatum, vmPFC-
ventromedial prefrontal cortex, dmPFC-dorsomedial prefrontal cortex, MFG-middle frontal gyrus,
AUC-area under curve, FDR-False discovery rate, LT-losartan, PLC-placebo. ***p<0.001.

Based on our a priori regional hypothesis about the crucial role of VS in reward learning
we examined effects of LT on VS neural representations for positive outcomes. Our results
suggested that only following LT - but not PLC - the VS expression accurately differentiated
positive from negative outcomes (accuracy=78.33%, p<0.001, sensitivity=0.83,
specificity=0.73, AUC=0.88; PLC, accuracy=56.45%, p=0.37, sensitivity=0.55, specificity=0.58,
AUC=0.68), with a direct comparison between the treatment groups suggesting that LT
specifically enhanced the VS representation for positive outcomes (t(s9=9.92,p<0.001,d=1.29,
Fig. 5¢-5d). A group comparison on classification accuracy using permutation-inference

further confirmed a significant treatment effect (t=-15.53, p<0.001, 95% Cl, [-0.013, -0.010]).
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LT increased VS-dIPFC coupling when approaching maximum rewards during transfer
On the neural activation level, no treatment effects of LT during learning transfer were
observed. However, on the level of VS functional connectivity LT increased functional
connectivity between the VS and left dorsolateral prefrontal cortex (left dIPFC, peak MNI:
X,Y,2=-48,22,28, t(59)=5.15, k=197, Psvc.rwepeak=0.01, Fig. 6), reflecting an LT-induced
enhancement of VS-dIPFC communication when approaching maximum rewards during

learning transfer.
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Fig. 6 Functional connectivity results. For illustration purpose parameter estimates were extracted
from a spherical (radius: 6 mm) ROl in the identified left dorsolateral prefrontal cortex (dIPFC) region.
Losartan increased functional coupling between the ventral striatum and left dIPFC when
participants choose A stimuli in the transfer phase. The statistical map of the left dIPFC was
thresholded at p<0.001 uncorrected (whole-brain level) for display purpose. The error bars denoted
standard error of the mean. VS-ventral striatum; dIPFC-dorsolateral prefrontal cortex; LT, losartan;
PLC, placebo.

Discussion

The present pharmacological study utilized computational modeling in combination with
fMRI to examine the effects of transient LT-induced AT1R blockade on reinforcement
learning and the underlying neural mechanism in healthy individuals. On the behavioral level
LT facilitated choice accuracy in the most difficult reward condition while it specifically
reduced learning from negative outcomes and enhanced exploitatory choice behaviors. On
the neural level, the behavioral effects were paralleled by regional-specific effects on ventral
striatal-orbitofrontal reward systems, such that LT increased RPE signaling in these regions
and sharpened the fine-grained neurofunctional distinction between positive and negative

outcomes in the VS. During learning transfer, LT facilitated approach of the maximum
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rewarding option and enhanced VS-dIPFC functional connectivity. Overall, these findings
indicate that LT-attenuated learning from negative feedback in the context of general
positive outcome learning and a subsequent increased motivation to obtain maximum
rewards during learning transfer, which on the neural level was accompanied by enhanced
RPE and functional communication in fronto-striatal circuits.

We found that LT specifically enhanced choice accuracy for the most difficult condition
suggesting that LT specifically improved learning under a low reinforcement probability.
Computational modeling additionally allowed a more fine-grained examination of the
behavioral effects by fitting trial-by-trial learning behavior and revealed that LT specifically
reduced the learning rate for negative outcomes and enhanced exploitatory choices. The
optimal learning ability could be understood when learning rate and other free parameters
are considered simultaneously (e.g., explore-exploit tendency) in the RL model and the
reward schedule (44). Effects of LT on learning rate were outcome dependent, such that LT
specifically decreased learning from negative outcomes, indicating an attenuated influence
of negative information on reinforcement learning. Within the context of a stable
reinforcement schedule, it is adaptive for an agent to ignore relatively rare and potentially
misleading negative feedback given that an oversensitivity to negative outcomes would
cause suboptimal choice behaviors. Therefore, decreased negative learning rate may signal
the relatively high approach for positive outcomes in a stable reward contingency, which in
turn may facilitate an exploitatory choice tendency in terms of consistent decisions for
options with a higher expected reward (31). Previous studies demonstrated that enhancing
central dopaminergic activity increases choices towards monetary gains (1, 45). The current
pattern of results may reflect modulatory effects of RAS blockade on dopaminergic
neurotransmission given that LT has been shown to induce stronger D1 receptor expression
(46) which has been associated with better reward-associative learning (47). These findings
resonate with recent studies reporting an LT-induced enhancement of learning from positive
relative to negative events (12) as well as an LT-induced shift from preferential social
punishment towards social reward processing (17). Together, this pattern of effects suggests
that LT can attenuate the impact of negative information thus promoting motivation to

select rewarding options.
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On the neural level LT increased orbitofronto-striatal RPE-signaling and induced a more
distinct neural expression for positive outcomes in the VS. VS dopamine neurons are
critically involved in RPE signaling and reward seeking (48), while the OFC is strongly
implicated in computation of expected reward values and RPEs (49). An LT-induced
enhancement of the neural RPE signal and the representation of rewarding outcomes may
reflect the potential for the RAS to modulate central dopaminergic neurotransmission during
reinforcement learning. The AT1R is expressed densely in dopamine-rich brain areas (20),
particularly in the striatum (50) and plays a key role in dopaminergic function (51).
Administering an antagonist of AT1R could increase D1 receptor activation (46) and block the
functional response of the D2 receptor (21) - both of these receptors exhibit dense
expression in ventral striatal and prefrontal regions crucially involved in reward learning (52-
54). This may indicate a potential downstream effect of LT-induced AT1R blockade on DA
signaling, in turn modulating reward learning within orbitofronto- striatal circuits, thus
enhancing RPE encoding and reward representation in these regions.

During subsequent learning transfer, LT facilitated approach of the maximum reward in
terms of accelerated decisions in the context of enhanced functional coupling of the VS with
left dIPFC. Faster decisions for choosing the best options following LT may reflect an
increased motivation to focus on maximizing rewards after reinforcement learning. The
findings partly align with early research on dopaminergic modulation of reinforcement
learning, which reported improved motivation for the highest-rewarding option during
transfer, an effect that was explained as dopamine-dependent enhancement of learning
signals (55). The important role of fronto-striatal connectivity in reinforcement learning has
been extensively documented (42), indicating that reward associations initially formed in the
striatum are subsequently used to guide learning and decisions engaging the dIPFC (56). To
be specific, the dIPFC plays an important role in integrating and transmitting reward
representations to the mesolimbic and mesocortical dopamine systems to initiate reward-
motivated behaviors (57). Reduced striato-dIPFC connectivity has been observed in in
disorders characterized by a dysfunctional DA system (58), and linked with impaired
reinforcement learning (59). As such, the present findings of an LT-induced increase in VS-

dIPFC connectivity when approaching rewards might reflect a modulatory role of angiotensin
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signaling on fronto-striatal communication via effects on dopaminergic circuits.

Given the repeatedly observed hypersensitivity for negative information and an increased
impact of negative information on learning in depression (60), the current pattern of
behavioral effects may reflect potential for LT to normalize biased processing in depression
and in turn improve motivational deficits. The therapeutic potential in depression is further
supported by early animal models suggesting a crucial role of the RAS in depression (61, 62)
and documenting potential antidepressant behavioral effects of LT (63, 64). Initial studies
aimed at targeting reward processing and reinforcement learning impairments in depression
via directly targeting the dopaminergic system (65, 66). These studies revealed initially
promising evidence for a therapeutic potential of DA agonist in depression including
normalized neural functioning in fronto-striatal reward systems (65, 66) and anhedonia
improvement (5). However effects on impaired reward learning were not observed and the
clinical utility of DA agonist is limited by adverse effects such as triggering impulsive
behaviors (67) and abuse (68). The current pattern of results may point to a possibility that
LT may represent a safe and potentially behavioral relevant strategy to modulate deficient
reward learning and fronto-striatal functioning in depression.

While the current study found some evidence for a novel pathway to modulate reward
learning, future studies are required to: (1) determine the potential of LT to influence reward
learning and associated fronto-striatal deficits in depression, and (2) uncover the detailed
interaction mechanism between the RAS with DA systems during reward learning such as
incorporating receptor maps in combination with molecular imaging. In addition, future
studies are required to demonstrate whether the observed effects generalize to women.

Taken together, we demonstrated that AT1R blockade via LT decreased negative learning
rate but did not affect learning from positive outcomes, while increasing RPE signaling in
orbitofronto-striatal regions and improving neural expression of positive outcomes in the VS.
During the subsequent transfer, LT accelerated choices for maximizing rewards and increased
VS-dIPFC functional coupling. Together, this pattern may reflect a promising mechanism of LT
as a potential treatment to normalize impaired reward learning and fronto-striatal

functioning in depression.
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