bioRxiv preprint doi: https://doi.org/10.1101/2022.12.14.520391; this version posted December 15, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Emergence of atime-independent population code in auditory cortex
enables sound categorization and discrimination learning

S. BagurS*, J. Bourg®*, A. Kempf!, T. Tarpin?, K. Bergaoui?, Y. Guo?, S. Ceballo?, J.
Schwenkgrub?, J.L. Puel?, J. Bourien?, B. Bathellier®$

1 |nstitut Pasteur, Université Paris-Cité, INSERM, Institut de I’Audition, 63 rue de Charenton,
F-75012 Paris, France.

2 Institut des Neurosciences de Montpellier, Univ Montpellier, INSERM, Montpellier, France.
* equal contribution

8 Corresponding authors : brice.bathellier@pasteur.fr, sophie.bagur@pasteur.fr

Summary

Perception generates time-invariant objects and categories from time-varying streams of
information. However, individual neuron responses, even in cortex, are not time-invariant as
they usually track the temporal variations of the input. Here we show that representations of
time-varying sounds remain decodable even after time-averaging at the level of neuronal
populations in the mouse auditory cortex. This population-scale, time-invariant property is
absent in subcortical auditory regions. By implanting light-sculpted artificial representations in
the cortex with optogenetics, we show that robustness to time-averaging is a necessary
property for rapid association of neural representations with behavioral output. Moreover, deep
neural networks which perform sound recognition and categorization tasks generate
population representations that become robust to time-averaging in their deeper layers.
Hence, the auditory cortex implements a generic transformation that replicates temporal
information into time-independent neural population dimensions and makes it available for
learning and classification.
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Introduction

A long standing idea in sensory processing is that object identification requires multiple
features to be bound together. In hearing, the features defining a particular object include not
only the sound frequencies extracted in the cochlea but also a variety of temporal modulations
of sound intensity and frequency? that have a high prevalence in natural sounds 22. Temporal
modulations and in particular the direction of change (i.e. rising vs falling frequency or
intensity) contribute to sound recognition and to global perceptual properties such as timbre #
or loudness °®. This can be directly experienced when listening to time-reversed versions of
common sounds from which it can be difficult to recognize the original ", Beyond hearing,
temporal variations are also key features in touch, in which object recognition is based on
contact sequences °, in olfaction, in which smells sequentially activate olfactory receptors °
or in the visual identification of actions.

At the neurophysiological level, time-varying sounds produce temporal activity sequences
throughout the auditory system including the auditory cortex. In an individual auditory neuron,
these temporally structured firing patterns provide specific information about sound identity
which is not conveyed by the neuron’s mean firing rate 2, Therefore, individual auditory
system neurons do not represent sounds in a time-independent manner, raising the question
of whether a neuronal correlate of time-invariant auditory object perception exists in the
auditory system. Some studies have demonstrated the existence of specific neuronal
activations to particular temporal features 314 or to the direction of temporal modulations 116
in the auditory cortex, but also as early as the auditory midbrain or even in the brainstem 417=
19 This led to the common view that the tuning of subcortical neurons provides all the basic
building-blocks to construct auditory objects 2°. However, cortical inactivation experiments
during sound discrimination behaviors strikingly contrast with this view. Indeed, they show that
whereas auditory cortex is dispensable for simple tone frequency discriminations?:22 it is
necessary for discriminating even basic temporal features including sound duration 232* or
frequency modulations 212225 These results point towards a specific and unidentified
transformation of temporal feature representations in the auditory cortex that enables
discrimination.

To isolate this transformation, we reasoned that population-scale measurements are less
sensitive to experimental variability and sampling biases than quantifications on single cells.
We therefore combined, in a large-scale effort, temporally deconvolved calcium imaging and
single-unit electrophysiology in the awake mouse with detailed biophysical modeling of the
cochlea to extensively and consistently sample responses to a wide range of spectral and
temporal sound features in the auditory nerve, inferior colliculus, auditory thalamus and
auditory cortex. Using a noise-corrected metric to measure representation distances, we
established that the distinctive property of the auditory cortex is that population
representations of sounds remain similar whether or not the temporal details of neuronal
responses are removed by time-averaging. Remarkably, this form of time-invariance provided
by cortical representations does not reflect a rate coding scheme in individual neurons whose
responses are temporally structured. Rather, time-invariant representations are an emergent
property of the neuronal population.
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Combining a reinforcement learning model and behavioral discrimination of optogenetically
engineered activity patterns in the cortex, we established that the speed at which the
discrimination of two sounds can be learnt in a task is principally determined by the time-
averaged representations of these two sounds and not by their temporal sequence
representations. Hence, the robustness of cortical representations to time-averaging has a
direct functional impact on the association of different time-varying sounds to various
behaviors. In addition, this accounts for the results of cortical inactivation experiments 12225,
Finally, deep networks performing sound categorization implement representations that are
robust to time-averaging in their deeper layers. Moreover, representations were more similar
between the auditory system and artificial networks for networks performing sound
categorization than for networks performing other tasks. Together these results show that the
emergence of time-independent representations is a key cortical computation that enables
efficient association of temporally structured sounds to behavior and their categorization as
auditory objects.
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Results

Emergence of time-independent representations in the auditory cortex

In order to precisely measure how the representations of core auditory features evolve across
the auditory hierarchy, we performed large-scale recordings in three successive regions: the
inferior colliculus (IC), the auditory thalamus (TH) and the auditory cortex (AC) (Fig. 1A-G,
Supplemental Table 1). In each region, we measured the responses to a set of 140 sounds,
mainly of 500 ms duration, which were chosen to cover simple, widely studied spectral and
temporal features, including amplitude and frequency modulations (Fig 1B, Supplemental
Table 2).

To rapidly obtain large datasets from these structures, we used GCAMP6s-based two-photon
calcium imaging of either cell bodies (AC and IC, Fig. 1C & F) or axonal projections (TH,
imaged in AC) (Fig. 1D). Collecting data simultaneously from around 1000 AC neurons or TH
axonal boutons and from 100 to 200 neurons in IC, we could extensively sample
representations in each region (Fig. 1A-F). In AC, all 60.822 ROls were mapped to functional
subfields based on tonotopic gradients 22 and to the cortical layer from imaging depth (Fig.
S1A-F). 70% of ROIs were in primary auditory cortex (A1), the largest subfield of AC, but the
anterior, suprarhinal and dorsal posterior auditory fields were also covered (Fig. 1C & Fig.
S1E). Moreover, with recording depth reaching up to 600 um, we sampled neurons from layers
1 to 5 with an emphasis on layers 2 and 3 (Fig. S1F). Therefore, with the exception of layer 6
and of the small ventro-posterior subfield, the whole of primary and secondary AC was
extensively covered with a total number of neurons of about one fifth the estimated number
per hemisphere . Inputs from TH were sampled with 39.191 putative TH axonal boutons
spread across AC (75% of ROIs in Al) (Fig. 1D) and validated post-hoc with the thalamic
marker VGLUt2 (Fig. S1G,H)%. In addition, we recorded 15.132 ROls in the dorsal IC down
to 250um depth (Fig. 1F).

Calcium signals were temporally deconvolved using a linear algorithm to retrieve estimates of
neuronal firing rate variations that are robust to parametrization errors 3! and previously
verified in cortical neurons *. This allowed us to reach a ~150 ms temporal precision as
estimated from responses to amplitude modulated sounds (Fig. 1C,D,F). The temporal
modulations of our sounds were chosen to evolve at timescales compatible with this resolution
of calcium imaging.

Since deconvolution has not been verified for TH axons, we performed electrophysiological
recording in primary and secondary auditory thalamus (498 single units, Fig. 1E).
Electrophysiology was also used to cover the central inferior colliculus (563 single units), the
main primary subregion of this structure 3 (Fig. 1G). Electrode locations were identified with
post-hoc histology and short-latency responses (Fig. 1E,G). Finally, we used a detailed
biophysical model of the cochlea calibrated against auditory nerve recordings® (AN), to
provide insight into the information entering the auditory system (Fig 1H, Fig S11,J).

Based on this rich dataset, we first measured classical, single cell, feature-tuning indexes,
including preference to frequency or intensity modulation direction (e.g. Fig. 2A), speed and
frequency. Consistent with previous reports 141820 these measures indicated that tuning to all
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these features is weak in the AN but then appears as early as IC (Fig. S2). They did not
evidence any further evolution of tuning strength along the auditory hierarchy.

We reasoned that neuronal variability and measurement noise may impact single cell
measurements and obscure changes in encoding, given that visual inspection of sample
neurons suggested a higher specificity of population patterns in the cortex than subcortical
stages (e.g. Fig. 2B). Inspired by recent reports that population scale measures efficiently
circumvent noise-related biases®, we used a noise-corrected population measure to
systematically compare sound representations between areas. This metric quantifies the
similarity between population vectors evoked by a pair of sounds by calculating the Pearson
correlation between the two (Fig. 2A). Correlation typically decreases when data is corrupted
by variability (Fig. 2C). By exploiting population vectors sampled from multiple single-trials
and in the limit of a large neuron number, a simple formula allows us to provide an unbiased
estimate of the correlation in absence of variability, as we verified analytically and by
simulations (Supplemental Mathematical Derivations, Fig. 2C)%. This noise correction
enabled us to compare datasets with widely different variability levels (Fig. 2D). Applying the
noise-corrected correlation metric to the population representations of all pairs of sounds, we
constructed Representational Similarity Analysis (RSA)®” matrices that capture the relations
between all sounds in the space of neural activity (Fig. 2E).

Sounds are encoded in neural activity along the temporal dimension (when neurons are active)
and neural population dimensions (which neurons are active). To identify their relative
contributions, we calculated noise-corrected RSA matrices based on these two encoding
strategies (Fig. 2E). The first one takes into account the full sequence of activity observed in
the neuronal population during and immediately after sound presentation (sequence code,
Fig. 2A). The second one evaluates the information that can be retrieved solely from the time-
independent activity level of neurons by time-averaging neuronal responses (time-averaged
code, Fig. 2A). Low correlations between two sounds for the sequence code indicate that they
are coded by fairly different patterns of temporal activity. Low correlations for the time-
averaged code indicate that the two sounds activate different neural populations, irrespective
of the sequence of activity, making information available in a time-independent manner (see
examples Fig. 2A,B).

These noise-corrected RSA matrices shown in Fig. 2E capture multiple aspects of how sound
representation evolves throughout the auditory system. Contrary to sound feature tuning
indexes (Fig. S2), these measures clearly delineated robust changes of representations
across stages. First, overall pattern similarity levels decreased from AN to IC for both
sequence and time-averaged codes, indicating a sharpening of population tuning in the
brainstem (Fig. 2F). Second, population response similarity increased in the TH before
decreasing again in AC (Fig. 2F). This surprising non-monotonic evolution of tuning sharpness
has never been reported and corresponds to a densification of the representation in TH that
can be quantified with sparseness measures (Fig. S3A,B).

Strikingly, the AC displayed strong decorrelation of the time-averaged code relative to all prior
areas, leading to a value very close to that of the sequence code (Fig. 2F). This unique
convergence of sequence and time-averaged codes is observed both in the mean RSA
correlation values (Fig. 2G) and in the structure of the RSA matrices (Fig. 2H). It is also
confirmed by the similar accuracy of population decoders trained and tested with the sequence
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or time-averaged code in AC (Fig. 2I, S3C). All these metrics indicate that the information
present in the full temporal sequence of activity is still largely accessible after time-averaging
in the AC but not in IC and TH. These results hold in all subfields of AC (Fig. 2F) and are
robust to neuron number (Fig. S3D,E). Interestingly, the dorsal IC which receives cortical
feedback shows an intermediary profile, more similar to AC than central IC (Fig. 2F).

A possible explanation of these results could be a loss of temporal resolution along the
auditory hierarchy, resulting in a less-informative, because less-resolved, sequence code .
Two observations demonstrate that our results strongly differ from this scenario. First,
decoding accuracy does not decrease for the sequence code, while it increases for the time-
averaged code from IC to AC (Fig. S3C). Second, we decomposed neuronal responses into
Fourier components which capture the information content at specific timescales. We
observed that, in AC, accuracy is already very close to plateau value at OHz (time-averaged
activity level), whereas in subcortical areas it increases when adding faster timescales (Fig.
S3F-H). Therefore, AC, contrary to earlier stages, implements a time-independent
representation of sounds at neural population scale, which emerges without loss of the
temporal information contained in the time-sequences of neuronal responses. This could be
seen as a hybrid coding scheme in which temporal information is made available along
neuronal dimensions.

Auditory cortex specifically separates the time-averaged representations of time-
varying sounds

To better understand the convergence of sequence and time-averaged codes in AC, we
guantified representation similarity for particular groups of sounds as a measure of population
tuning to particular features. For example, averaging correlations across pairs of pure tones
for specific frequency intervals allowed building population tuning curves for frequency (Fig.
3A,B). This showed that frequency tuning is sharper in IC and AC than in AN and TH (Fig.
3C). This is in line with the overall densification of the auditory code observed in TH since
sharp tuning corresponds to a sparse code and broad tuning to a dense code (Fig. 2F &
S3A,B). We also quantified population intensity tuning and observed the same level of
correlation in AC and IC between representations of pure tones differing in intensity (Fig. 3D).
This is in agreement with previous descriptions of single neuron intensity tuning both in IC and
AC 163940 Hence, for simple tones, neither intensity nor frequency tuning are sharpened
between IC and AC. Moreover, for these stationary sounds, sequence and time-averaged
codes provide the same levels of correlation (Fig. 3C,D). This indicates that activity sequence
does not play a role in coding frequency or intensity of stationary pure tones which therefore
do not contribute to the convergence of time-averaged and sequence representations in AC.

In contrast, population representations of time-varying sounds are changed in the cortex. Most
strikingly, the correlation of time-averaged representations of time-symmetric sounds drops
specifically in the cortex compared to subcortical structures, although the imprecision of
activity measurements in thalamic axons weakens the conclusion for intensity ramps (Fig
3E,F). Therefore, while AC does not improve frequency and intensity tuning, it clearly
sharpens population tuning to the direction of modulations. This appears as an important driver
of the convergence of time-averaged and sequence codes, but other temporal aspects also
contribute. Similar but smaller effects are observed for non-directional features such as
sinusoidal amplitude modulations or frequency sweeps differing in speed (Fig. S3J,K). Time-
averaged representations of frequency-modulated sweeps differing only in intensity are also
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more decorrelated in AC (Fig. S3l) in contrast to pure tones of different intensity. This suggests
an interaction in the coding of frequency modulations and intensity, which may relate to
perceptual observations made in humans®.

Overall, these measurements demonstrate that the key transformation of sound
representations from the subcortical to the cortical stage is the decorrelation of time-averaged
representations of sounds which differ by their temporal variations.

Time-averaged representations determine associative learning speed

We therefore interrogated the possible functional advantages provided by decorrelated time-
averaged representations. To associate a sound to a rewarding or defensive action, it is
necessary to associate its neuronal representation to motor circuits by specific synapses. If
two sounds have representations that differ only by activity sequences and not by the pattern
of neurons they recruit, one intuitively expects that simple synaptic plasticity mechanisms that
are local in time will not allow discriminative associations with these two sounds. Hence, we
reasoned that high correlations for time-averaged representations should impair discriminative
learning.

To quantify this idea, we upgraded a previously published feedforward neural network model
of auditory discrimination learning 442 with synaptic learning rules including both Hebbian
plasticity and an eligibility trace mechanism previously described in the mouse striatum (Fig.
4A). Striatum was chosen as it is the key site of auditory reinforcement learning 4344, but our
conclusions depend little on the specific learning rule. We trained the model to discriminate
between the population responses to pairs of sounds taken from the AC, TH or IC datasets.
This allowed us to measure learning duration for a broad range of time-averaged and
sequence correlation values (Fig. 4A). In line with our intuition, time-averaged correlation and
not sequence correlation predicted the duration of discrimination learning (Fig. 4B). Moreover,
we observed that learning duration steeply rises with increasing correlation of the time-
averaged representations, following a monotonic, but strongly non-linear relationship (Fig.
4C).

To directly test the importance of time-averaged representations for discriminative learning
and evaluate the predictions of the model, we trained mice expressing ChR2 in cortical
pyramidal cells to discriminate between different spatio-temporal optogenetic stimulations,
patterned at the mesoscopic level in the AC (Fig. 4D-G, FigS4A-C). This strategy allowed us
to control neural activity patterns, reliably positioned in identified tonotopic fields of AC (Fig.
4E, S4A), and to evaluate how encoding strategy influences learning in a Go-Nogo
discrimination task. We compared, in the same mice, the learning duration for representations
that differ by the identity of the active neurons (low correlations for time-averaged and
sequence codes) with that for representations that differ only by the sequence of active
neurons (low correlation for the sequence code but high correlation for the time-averaged
code). Optogenetic stimuli were of the same 500 ms duration as the previously studied
sounds. Concretely, during the time-independent task, mice had to discriminate the
optogenetic activation of two spatially separate spots, A vs B. During the sequence task they
had to discriminate the successive activation of spot A then spot B against the time-symmetric
sequence (A-B vs B-A, Fig. 4F). Task order was counterbalanced across mice. Incorrect licks
to the Nogo stimulus were punished by a time-out and correct licks to the Go stimulus were
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rewarded. Rewards were provided by an intracranial stimulation of the medial forebrain bundle
(Fig. 4G), a protocol that yields similar learning curves to water rewards in deprived animals®.

In line with our model, mice learnt the time-independent discrimination much faster than the
sequence discrimination for which only a few mice succeeded to perform above chance level
after several thousands of trials (Fig. 4H,l, Fig. S4D,E). This therefore corroborates the
proposition that decorrelation of time-averaged representations in cortex is crucial to
accelerate discriminative learning, in particular of time-symmetric sounds.

Interestingly, this proposition also provides an explanation of why AC’s involvement in sound
discrimination depends on the pair of sounds that is discriminated, in particular for time-
symmetric sounds?'?225, Indeed, time-averaged representations of time-symmetric sounds
are highly correlated subcortically (>0.9), and clearly less in the cortex (0.74, Fig. 3E,F). The
non-linear relationship between correlation and learning speed in our model predicts a ~3 fold
decrease in learning duration with cortical compared to subcortical representations (Fig. 4C).
By contrast, both in cortex and subcortically, the correlation between representations of pure
tones of different frequencies is below 0.75 (Fig. 3C). For this range of correlation values,
learning occurs quickly and the impact of representation similarity on learning speed is
marginal (Fig. 4C). Our model therefore predicts that cortical lesions performed before
discrimination training will dramatically increase learning duration for time-symmetric sounds
but not for pure tones, as observed experimentally 22, In the intact brain, cortical and
subcortical representations may compete for associations with decisions. In this case, their
roles will depend on how fast discriminative associations are learnt, and therefore will crucially
depend on the correlation of time-averaged representations. Based on this assumption, the
model predicts that post-training lesions of the AC have a much stronger impact on
discrimination of time-symmetric sounds than of distant pure tones, as also observed
experimentally 214647,

Convergence of time-averaged and sequence representations in deep neural networks
for sound categorization

Our results so far indicate that time-independent population representations as observed in
cortex are important for associating specific sounds to a binary behavioral output. However in
natural situations, sound-driven behaviors rely on multiple associations with broad stimulus
categories or auditory objects. We therefore hypothesized that models which produce complex
stimulus categories also implement a convergence between both types of representation.

To test this, we first analyzed the responses from a previously published convolutional neural
network (CNN), whose time-averaged representations were shown to be similar to human AC
representations measured by functional magnetic resonance imaging 6. This network robustly
identifies a wide range of words and music styles using a two-branch architecture with one
word and one music branch (Fig. 5A). In line with our hypothesis, we observed that this
network generated decorrelated time-averaged representations and convergent sequence
and time-averaged representations when reaching deeper layers. However, convergence was
only observed for the range of stimuli categorized by a specific branch. For example, only
music sounds and not words had convergent time-averaged and sequence representation in
the branch dedicated to music, and vice versa (Fig. S5A). Moreover, this CNN did not
implement convergent time-averaged and sequence representations for the 140 simple
sounds that we played to mice, transposed to match the frequency range of words and music
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(Fig. 5A). This indicates that the emergence of time-independent representations in deep
networks relates tightly to the sound training set and the target stimulus categorization.

We therefore investigated CNNSs categorizing key features of the stimuli presented to our mice:
the frequency and intensity range, and the type of frequency and amplitude modulations
present in the sounds (Fig. 5B, S5B,C). Networks were trained on this multicategorization
task with an augmented set of sounds that homogeneously covered all these features and
combinations thereof. Sounds were embedded in natural noise from various backgrounds to
complexify categorization. We observed that time-averaged and sequence-based
representations also converged in deep layers of this network after training (Fig. 5B), but not
in untrained networks (Fig. S5D). This corroborates the observations for the word and music
categorization task, now for the same stimuli as those used to probe the mouse auditory
system.

Typical CNNs are designed to reduce the precision of sensory receptive fields in deeper
layers, thereby reducing the number of parameters to fit in the model. In our case, this leads
to a shrinkage of the temporal dimension which forces the sequence and time-averaged code
to converge. However, if we implemented the same sound feature categorization task in CNNs
which did not shrink the temporal dimension across layers, we still observed a clear
convergence of the two coding strategies (Fig. 5C). The main effect of temporal shrinking in
our simulations was to accelerate learning (Fig. 5C, Fig. S5B,C). This demonstrates that
convergence of sequence and time-averaged codes is not the consequence of structural
constraints but rather the consequence of the computations performed by the network, in
particular the fact that sounds are assigned to specific labels. This idea is corroborated by the
observation that networks performing single sound identification (assigning one label per
sound) also implemented a convergence of time-averaged and sequence codes (Fig. 5D,
S5E). To compare with networks that do not perform labeling, we trained autoencoders which
must reconstruct the denoised input stimulus through a small central bottleneck (Fig. S5F).
This network did not show convergence between the two coding strategies (Fig. 5E).

In addition, representations of the categorization network qualitatively reproduced all aspects
of the convergence of time-averaged and sequence codes observed in the auditory system
(compare Fig. 5F-H and Fig. 2G-I). In particular, like in cortex, we observed an absence of
time resolution loss in the deeper layers of the artificial networks, especially when the
architecture preserves time resolution (compare Figs. S5G,H and Figs S3G,H). This
underlines the computational homology between the transformations observed in categorizing
deep convolutional networks and in the mouse auditory system.

Signatures of task-driven categorization in the geometry of auditory representations

We next investigated whether the geometry of sound representations could be further used to
probe the underlying perceptual tasks that the mouse auditory system performs. This is difficult
to determine in the absence of subjective experience and limited ethological surveys of mouse
sound perception. We therefore systematically compared RSA matrices of CNNs trained on
all previously described tasks with RSA matrices measured in the auditory system (Fig. 6A-
E), reasoning that the structure of the RSA matrices may reflect the categorization task. We
first observed that early layers of the auditory system have representations that largely differ
from any of the CNNs (Fig. 6E, Fig. S5I). This indicates that these CNNs poorly emulate
computations that occur in the early stages of the auditory system. Similarity of RSA matrices
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between CNNs and the mouse auditory system increased when considering deeper structures
and layers (Fig. 6E, Fig. S5I). The task leading to highest similarity with IC, TH and AC was
the multi-categorization task (Fig. 6B,E). By contrast, the simple identification of the same
sounds without any categorization led to weaker similarity between RSA matrices of the
auditory system and of the CNN (Fig. 6C,E). The mismatch was even larger for the
autoencoder network performing sound compression and denoising (Fig. 6D,E). This result
suggests that parallel categorization of multiple features is an important function of the
computations that shape representations in the mouse auditory system. Representations in
the CNN performing word and music categorization also tended to outperform identification
and compression networks (Fig. 6E), further supporting the idea that categorization is a key
computation for the mouse auditory system.

For the multi-categorization task, we further determined which categories were important to
account for the neural data. For example, if we removed frequency modulation categories and
trained a network on the reduced version of the task, we did not observe decorrelation of time-
averaged representations for frequency sweeps of opposite direction, unlike in the full task or
in the auditory system (Fig. 6F,G see Fig. S5J for the same analysis with each of the four
categories). This confirms that the detailed structure of the task is directly reflected in RSA
matrices. We found that, except in the AN, removing frequency modulation, amplitude
modulation and intensity categories strongly reduced the match between CNN and auditory
system RSA matrices (Fig. 6H). Removing frequency categories had little effect, likely
because this information was explicitly available in the structure of the input, but the removal
of the intensity categories had a major effect, underscoring the importance of this feature in
the mouse brain (Fig. 6H).

Despite the strong analogies, none of the networks fully reproduced RSA matrices observed
experimentally and further discrepancies were observed. First, CNNs tended to implement a
stronger decorrelation of representations in their deeper layers than those observed in AC
(Figs. 5A-D vs 2F). Second, no re-correlation of representations was found in CNNs unlike
what we observed in TH (Figs. 5A-D vs 2F). Hence, the monotonous transformations
implemented in CNNs differ from those in the subcortical part of the auditory system. In line
with this, the CNN layer that resembled most IC, TH and AC representations was generally
the same intermediate layer (Fig. S5I).

Overall, comparison of CNN and auditory system representations indicate a crucial role of

sound categorization both in the decorrelation of time-averaged representations and in the
fine structure of representations.
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Discussion

Our findings show that a key distinguishing property of auditory cortical representations with
respect to subcortical levels is that time-averaged representations recapitulate time-
dependent representations at the population level. So far, single cell level analyses have
opposed a temporal code in neurons that follow temporal fluctuations of sounds and a rate
code in neurons that lack temporal accuracy but whose time-averaged activity changes with
the stimulus *!. Several studies have noted an increase of rate coding neurons between
subcortical and cortical structures although mostly for rapid acoustic fluctuations 3,
However, neurons with temporal coding properties still exist in the AC even for fine time
scales®®, making it difficult to establish what specific coding scheme emerges at this level. Our
results solve this conundrum by establishing that the code specifically reorganizes in the
cortex to resist time-averaging at the population level, while temporal properties are largely
preserved (Fig. 2E-I, Fig. S3G,H). This hybrid coding scheme also naturally emerges in deep
neuronal networks that perform different types of sound categorizations (Fig. 5), indicating
that this is likely a generic mechanism to extract meaning from multidimensional time-varying
signals.

At the single neuron level, a first necessary condition for the representation to be robust to
time-averaging at population level is the existence of neurons which respond specifically to
particular directions and/or speeds of temporal modulations (e.g. Fig. 2A-B). A second
necessary condition is that these specific responses are sufficiently diverse and
complementary across neurons to cover all the information that is known to be contained in
the temporal dimension (ex: first spike timing, temporal multiplexing)?4°. While the first
condition was extensively studied 1417-1923.244050 the second was never investigated. By using
new noise corrected population analysis tools, our study addresses this question to
demonstrate that temporal information efficiently transfers to the neural population
dimensions, however only in the cortex. It is important to note that low temporal resolution
neuronal recording methods, such as functional magnetic resonance or ultrasound imaging
22651 - assume that temporal information transfers to the population level. Our results validate
this assumption for cortical representations but disprove it for subcortical levels. Further
experiments are necessary to precisely demonstrate this point in other species and for more
complex sounds than the ones used in our study.

Using modeling and causal optogenetic manipulation (Figs. 4-6), we also show that
constructing auditory representations that resist time-averaging is functionally important for
transforming time-varying inputs into decisions, perceptual categories or meaningful auditory
objects. Biologically realistic reinforcement learning linking temporally structured
representations of stimuli to decisions is strongly accelerated when the time-averaged
representations are decorrelated (Fig. 4). Previous studies °2°% have shown that rats can
detect whether 100ms intra-cortical electrical stimulations of two loci are synchronous or
presented with a relative delay between 3 to 100ms. The stimulation patterns themselves are
highly correlated after time-averaging. However, the overlap of the two stimuli at short
timescales can easily introduce various spike count modifications in the generated activity
patterns through synaptic interactions in the cortical circuit. These could contribute to the
perceptual discrimination®* beyond the available temporal cues. Our time-symmetric
stimulations with temporal gaps of 25 ms across sequence elements (see Methods) avoid this
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issue by limiting local processing at synaptic time scales. Hence, these results do not
contradict ours.

It has long been proposed that appetitive or aversive discriminative learning can occur without
cortex through direct thalamic projections to the amygdala and the striatum 5%°¢ when stimuli
are sufficiently simple®’. Our findings indicate that the degree of stimulus simplicity tightly
relates to the dissimilarity of time-averaged representations in thalamus and cortex which will
determine which pathway drives faster learning. This is in line with the fact that discriminations
involving overlapping frequency modulations, more decorrelated in AC than in TH (Fig. 3), are
cortex-dependent 1528, This kinetic competition between cortex and thalamus is supported by
evidence of learning in cortico-striatal projections even for simple discriminations®®.

An important observation of our study is that artificial networks which efficiently perform
perceptual decisions to identify sounds categories rely on representations that become
resistant to time-averaging (Fig. 5). Our results also illustrate how the task which artificial
networks are trained to perform tightly dictates representation structure (Fig. 6). This is in line
with recent findings that natural constraints on perceptual tasks generate representations
similar to human brain representations 26°°, Our study already suggests that the mouse
auditory system structures sound information in a manner compatible with broad
categorization purposes (Fig. 6), but this approach could be extended towards more precise
inferences of ecologically relevant stimulus categories in particular species. Beyond
analogies, our systematic comparison of artificial neural networks also allowed identifying
major differences between the auditory system and deep networks, as a few studies have
started to indicate®®. Most strikingly, CNNs produce a gradual, step-by-step decorrelation
whereas in the auditory system the transformation is non-monotonic with a denser, more
correlated representation in the TH. This may reflect additional functional or anatomical
constraints that are not taken into account by models and that will also need to be
disentangled.
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Figure 1. Extensive sampling of the auditory hierarchy. A. Sketch of the auditory system
and sample sizes at each level. B. Spectrograms of the sound set. C. (i) Schematic of imaging
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strategy, (ii) sample field of view, and (iii) raw (black) or deconvolved (blue) calcium traces
(gray bar: sound presentation) for a sample neuron in AC. (iv) Location of all recorded neurons,
color-coded according to their preferred frequency at 60dB, overlayed with the tonotopic
gradients obtained from intrinsic imaging. (v) Response of 3 neurons to 3Hz amplitude
modulated white noise. D. Same as in C for thalamic axon imaging. E. (i) Schematic of
recording strategy, (i) sample histology with di-1 strained electrode track, (iii) average
waveforms and auto-correlograms of three single units, (iv) response latencies of all single
units, (v) raster plot of 5 trials from 3 sample units in response to 3Hz modulated white noise
for auditory thalamus. F. Same as C for dorsal IC except for (iv): view of the cranial window
and intrinsic imaging response to white noise. Inset histogram shows distribution recording
depths. G. Same as E for central IC, except for (iv): reconstructed of IC tonotopy from single
units. H. (i) Schematic of the cochlea and (ii) of the biophysical model taking a spectrogram
as input and providing the responses of auditory nerve fibers. (iii) Response to 3Hz amplitude-
modulated white noise.(Al : primary auditory cortex, DP: dorsal posterior field, AAF: anterior
auditory field, VPAF : ventral posterior auditory field, SRAF : suprarhinal auditory field)
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Figure 2 : Emergence of a time-independent cell identity code in the auditory cortex. A.
Responses of 4 AC neurons to different up and down frequency sweeps illustrating how
sequence and time-averaged correlation is calculated to compose the RSA matrices. B.
Sample responses to up and down frequency sweeps from IC and AC neurons ordered by
response amplitude. C. Measured correlation of simulated data with low to high response
reproducibility before (orange) or after (blue) noise-correction. D. Reproducibility of single
neuron (left) or population (right) responses measured as the mean inter-trial correlation
between responses across sounds (left : n=number of neurons per area, right : n=140 sounds,
error bars are quantiles). E. Noise-corrected RSA matrices for all sound pairs for sequence
(left) or time-averaged (right) codes. F. Mean noise-corrected correlation by area. (p-value for
100 bootstraps comparing time-averaged correlation of each region to AC, error bars are
bootstrapped S.D). G. Normalized difference between mean noise-corrected correlation for
time-averaged and sequence codes. (p-value for 100 bootstraps, errors bars are S.D). H.
Noise-corrected dissimilarity between RSA matrix structure of time-averaged and sequence
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codes. (p-value for 100 bootstraps, error bars are S.D). I. Normalized difference between
mean sound decoding accuracy for time-averaged and sequence codes. (p-value for 100
bootstraps, error bars are S.D).
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Figure 3: Time-averaged representations of time-symmetric sounds decorrelate in AC.
A. lllustration of method to calculate population tuning curves shown in B from RSA matrix. B.
Mean noise-corrected correlation between pure tones as a function of their frequency
separation. C-F. Mean noise-corrected correlation between sound pairs differing by only one
acoustic property : C. pure tones at 70dB differing by 0.33 octaves, D. pure tones at the same
frequency differing by intensity, E. frequency sweeps with same start and end frequency at
same intensity differing by direction, F. amplitude ramps at same frequency differing by
direction. For sounds without temporal structure, correlation of representations are similar in
AC and IC, whereas for time-symmetric sounds, all brain areas show larger time-averaged
correlations than in the cortex, except for TH2P in F likely due to teh high variability of thalamic
responses. p-value for 100 bootstraps comparing time-averaged correlation of each region to
AC, error bars are S.D. Statistical test details are given in the Supplemental Table 3.
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Figure 4 : Time-independent sound representations in AC supports faster learning.
A. Sketch of the reinforcement learning model (bottom left), eligibility trace dynamics (top left)
and example learning curves for two recorded representations that have similar sequence
code correlations but different time-averaged code correlations. B. Heatmap of the number of
trials needed to reach 80% accuracy at discriminating between a pair of sounds as a function
of the time-averaged and sequence code correlations between the representations of these
sounds (averaged over all pairs of representations for all brain regions). C. Number of trials to
80% accuracy as a function of the correlations of time-averaged representations. Large square
dots show the mean correlation and learning time for time-symmetric frequency sweeps in IC,
TH and AC and the black line shows the fit to data. D. Sketch of patterned optogenetic
experiment in AC (MFB: medial forebrain bundle). E. Cortical window from an example mouse
showing the location of the stimulation spots and the corresponding tonotopic map. F. Sketch
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of the optogenetic stimulation time courses for each discrimination task. G. Sample lick traces
(top) and mean lick signal (bottom) for Go and NoGo trials in the time-independent (left) and
sequence (right) discrimination tasks. Green dots: reward times. Red dots: timeouts. H.
Learning curves for all mice performing each task (n=7, error bars are sem). |. Accuracy at
1500 trials for all mice. (paired Wilcoxon test, p = 0.032, signed rank value = 27, n=7).
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Figure 5 : Categorization deep networks implement a time-independent code in the
deep layers.
A-E. (left) Schematic of CNN architectures and target categories. B-E (right) Mean response
correlations for the sequence and time-averaged codes from RSA matrices constructed with
the set of 140 sounds presented to mice (line) and difference between the two (bars). A. Model
adapted from ¢ using RSA matrices constructed using musical snippets (left), words (center)
or the set of 140 sounds presented to mice transposed to human hearing range (right). B.
Multi-category CNN (n=8 networks). C. Multi-category CNN without shrinking of the temporal
dimension (n=8 networks). Inset shows learning curves from training epochs for networks in
B and C. D. CNN performing sound identification E. Autoencoder CNN performing sound
compression and denoising through a 20-unit bottleneck. F-H. All graphs refer to the time-
preserving categorization CNN and reproduce analysis shown in Fig 2G-I : F. Normalized
difference between mean noise-corrected correlation for time-averaged and sequence codes.
G. Noise-corrected dissimilarity between RSA matrix structure of time-averaged and
sequence codes. H. Normalized difference between mean sound decoding accuracy for time-
averaged and sequence codes. (error bars are sem over trained networks). (cv : convolution
block, d-cv : deconvolution block - see methods for architecture details)
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Figure 6: Signatures of sound categorization in the mouse auditory system
A-D. Time-averaged code RSA matrix from AC (A) and the closest resembling layer of CNNs
performing multi-category (B), identification (C), denoising and compression (D) tasks. E.
Correlation between the RSA matrices from each region of the mouse auditory system and
the closest resembling layer of CNNs performing different tasks. Each point represents one
network trained on the task either with different architecture or different random initialization.
(Statistics are sign rank tests, n=8,8,4,1,1, p-values in Supplemental Table 3) F.G RSA
matrices from a CNN trained perform the full multi-category task with four different category
types (F) or with only three category types excluding the frequency modulation (FM) type (G).
The magnified part of the matrix shows the presence or absence of FM sweeps decorrelation
depending on whether FM stimuli are classified or not. H. Correlation between the RSA
matrices in each brain area and the most similar layer of CNNs trained on the full multi-
category task and partial multi-category tasks that exclude one out of the four category types
(Statistics are sign rank tests, n=8, p-values in Supplemental Table 3).
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MATERIALS AND METHODS

RESOURCE AVAILABILITY

Data availability

All datasets are freely available at 10.12751/g-node.sz67di, hosted by G-Node Infrastructure.
Code availability

Custom codes used in this study are freely available at 10.12751/g-node.sz67di, hosted by G-
Node Infrastructure.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All mice used for imaging and electrophysiology were 6 to 14 weeks old male and female
C57BI6J mice that had not undergone any other procedures. For optogenetic stimulation, we
used Emx1-IRES-Cre (Jax #005628) crossed with Ai27 (Jax #012567) mice. Mice were group-
housed (2—6 per cage) before and after surgery, had ad libitum access to food and water and
enrichment (running wheel, cotton bedding and wooden logs) and were maintained on a 12-
hour light-dark cycle in controlled humidity and temperature conditions (21-23°C, 45-55%
humidity). All experiments were performed during the light phase. All experimental and
surgical procedures were carried out in accordance with the French Ethical Committee the
French Ethical Committees #59 and #89 (authorizations APAFIS#9714-2018011108392486
v2 and APAFIS#27040-2020090316536717 v1).

METHOD DETAILS
Surgery

Mice were injected with buprenorphine (Vétergesic, 0,05-0,1 mg/kg) 30 min prior to surgery.
Surgical procedures were carried out using either intraperitoneal ketamine (Ketasol) and
medetomidine (Domitor) which was antagonized with atipamezole (Antisedan, Orion pharma)
at the end of the surgery) or 3% isoflurane delivered via a mask. After induction, mice were
kept on a thermal blanket during the whole procedure and their eyes were protected with
Ocrygel (TVM Lab). Lidocaine was injected under the skin of the skull 5 minutes prior to
incision.

For calcium imaging, craniotomies of either 3 (IC) or 5 (AC) mm were performed above the IC
or the AC. Injections of 150nL of AAV1.Syn.GCaMP6s.WPRE (Vector Core, Philadelphia, PA;
10713 viral particles per ml; used pure for TH and diluted 30x for AC and IC) were made at 30
nL/min with pulled glass pipettes at a depth of 500um and spaced every 500 um to cover the
whole surface of the IC or AC. The craniotomy was sealed with a circular glass coverslip. The
coverslip and head post were fixed to the skull using cyanolite glue and dental cement (Ortho-
Jet, Lang).

For electrophysiology recordings, the skull above the IC or above the cortex dorsal to the TH
was exposed for ulterior craniotomy. A well was formed around it using dental cement in order
to retain saline solution during recordings and the head post was fixed to the skull using
cyanolite glue and dental cement. To protect the skull, the well was filled with a waterproof
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silicone elastomer (Kwikcast, WPI) that could be removed prior to recording. The head post
was fixed to the skull using cyanolite glue and dental cement (Ortho-Jet, Lang).

For patterned optogenetic stimulation of the cortex, a cranial window was placed above the
AC as for calcium imaging but without viral injection. For MFB stimulation, a bipolar stimulation
electrode (60-pm-diameter twisted stainless steel, PlasticsOne) was implanted using
stereotaxic coordinates (AP -1.4, ML +1.2, DV +4.8). It was then fixed along with the headplate
to the skull using dental cement (Ortho-Jet, Lang).

After surgery, mice received a subcutaneous injection of 30% glucose and metacam (1
mg/kg). Mice were subsequently housed for one week with metacam delivered via drinking
water or dietgel (ClearH20). Mice were given one week to recover from surgery without any
manipulation. Then, for four days before recording, mice were habituated to head restraint for
increasing periods of time (30 min - 2 hours). For electrophysiological experiments, the day
before recording animals were briefly anesthetized using isoflurane anesthesia (2%) in order
to perform craniotomy and durectomy for electrode descent.

Two photon calcium imaging in the awake mouse

Imaging was performed using a two-photon microscope (Femtonics, Budapest, Hungary)
equipped with an 8kHz resonant scanner combined with a pulsed laser (MaiTai-DS,
SpectraPhysics, Santa Clara, CA) set at 900 nm. We used a 10x Olympus objective
(XLPLN10XSVMP), which provided a field of view of up to 1x1 mm. For AC, a 1x1mm field of
view was used. For IC, the field of view was adjusted to the size of the structure (~0.5x0.5
mm). For thalamic axons, the field of view was reduced to 0.22x0.22 mm. Images were
acquired at 31.5 Hz.

Electrophysiology in the awake mouse

Electrophysiology was performed using Neuronexus probes : (1x32 linear probe for IC and
4*8 comb for TH). For track reconstruction, the electrodes were dipped in dil, diO or diD
(Vybrant™ Multicolor Cell-Labeling Kit, Thermofisher) prior to recording and allowed to dry at
least 15 min before insertion. Recordings were performed using warmed saline filling the
cyanolite glue well and in contact with the reference electrode. After each recording the well
was amply flushed and then refilled with Kwickast. A maximum of three recordings were
performed per site. Data was sampled at 20kHz using an Intan RHD2000 amplifier board.

Sound delivery

Sounds were generated with Matlab (The Mathworks, Natick, MA) and were delivered at 192
kHz with a NI-PCI-6221 card (National Instruments) driven by the software Elphy (G. Sadoc,
UNIC, France) and feeding an amplified free-field loudspeaker (SA1 and MF1-S, Tucker-Davis
Technologies, Alachua, FL) positioned 15 to 20 cm from the mouse ear. Sound intensity was
cosine-ramped over 10 ms at the onset and offset to avoid spectral splatter. The head fixed
mouse was isolated from external noise sources by sound-proof boxes (custom-made by
Femtonics, Budapest, Hungary or Decibel France, Miribel, France) providing 30 dB
attenuation above 1 kHz. Sounds were calibrated in intensity at the location of the mouse ear
using a probe microphone (Bruel & Kjaer, type 4939-L-002). For two-photon calcium imaging,
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the resonant scanner generated a harmonic background noise at 8kHz (intensity at the mouse
ear, 45 dB SPL).

During a recording session, each of the 140 sounds (sketched in Fig. 1B) was presented 15
times in random order. In order to be compatible with 2 photon image acquisition, sounds were
presented in 120 blocks of 32s each, interleaved by a 15s pause in a 94 min protocol. The list
of all sound parameters can be found in the Supplemental Table 2.

Intrinsic optical imaging recordings in anesthetized mouse

Intrinsic imaging was performed to localize AC in mice under light isoflurane anesthesia (1%
delivered with SomnoSuite, Kent Scientific) on a thermal blanket. Images were acquired at
20Hz using a 50mm objective (1.2 NA, NIKKOR, Nikon) with a CCDcamera (GC651MP,
Smartek Vision) equipped with a 50 mm objective (Fujinon, HF50HA-1B, Fujifilm) through the
cranial window implanted 1-2 weeks before the experiment (4-pixel binning, field of view
between 3.7 x 2.8 mm or 164 x 124 pixels at 5.58 mm/pixel). Signals were obtained under 780
nm LED illumination (M780D2, Thorlabs). Images of the vasculature over the same field of
view were taken under 530 nm LED illumination (NSPG310B, Conrad). Sequences of short
pure tones at 80 dB SPL were repeated for 2 s every 30 s with 10 trials per sound. Acquisition
was triggered and synchronized using a custom made GUI in MATLAB. For each sound, we
computed baseline and response images, 3 s before and 3 s after sound onset, respectively.
The change in light reflectance AR/R was calculated for each repetition of each sound
frequency (4, 8, 16, 32 kHz, white noise) as the difference between the baseline and response
image and was then averaged across all repetitions of a given tone frequency. Response
images were smoothed applying a 2D Gaussian filter (sd = 3 pixels). Auditory cortex activity
appeared as regions with reduced light reflectance changing with frequency, revealing the
tonotopic maps of its different subfields. To align intrinsic imaging responses across different
animals, the 4 kHz response was used as a functional landmark. The spatial locations of
maximal amplitude responses in the 4 kHz response map for the Al, A2 and AAF (three points)
was extracted for each mouse and a Euclidean transformation matrix was calculated by
minimizing the sum of squared deviations (RMSD) for the distance between the three
landmarks across mice. This procedure yielded a matrix of rotation and translation for each
mouse that was applied to compute intrinsic imaging responses averaged across a population
of mice.

Histology and immunostainings

In order to extract the brain for histology, mice were deeply anesthetized using a ketamine-
medetomidine mixture and perfused intracardially with 4% buffered paraformaldehyde fixative.
The brains were carefully dissected and left in paraformaldehyde overnight and then sliced
into fifty micrometer sections using a vibratome. Slices were either stained with cytochrome
oxidase or directly mounted using a mounting medium with DAPI. Analysis of the fluorescence
band dil, diO or diD allowed isolating up to 3 tracks per mouse for electrophysiological
experiments.

For Vglut2 immunostainings, after fixation, tissues were rinsed in PBS and blocked in Tris-
Buffered Saline (TBS) supplemented with 5 % (vol/vol) Normal Donkey Serum (Jackson
Immunoresearch) and 0.3 % (wg/vol) Triton X-100. Then, sections were incubated for 48h at
4°C while rocking with a primary antibody: guinea pig anti-Vglut2 (1:500, Synaptic Systems
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#135404), followed by a 4 h incubation with a secondary donkey anti-guinea pig 1gG
[F(ab’)2fragments] (1:500, Jackson ImmunoResearch #706606148). Tissues were rinsed and
mounted using Prolong diamond antifade (Life Technologies). Pictures of the brain sections
were taken with LSM 900 confocal microscope (Zeiss Microsystems) using 20x objective,
whereas the magnified view of the thalamocortical boutons was obtained with Airyscan
acquisition and 63x objective.

The labeled boutons (GCaMP alone in green; GCaMP with Vglut2 in yellow) were counted
manually using ZEISS ZEN 2 microscope software in 12 sample regions selected within layer
1 AC in 3 different Airyscan images. The number of boutons was then calculated per volume
tissue.

Behavioral discrimination of patterned optogenetic stimuli

For patterned optogenetic activation in the mouse AC, we used a video projector (DLP
LightCrafter, Texas Instruments) powered by a blue LED (center wavelength 460 nm). To
project a two-dimensional image onto the AC surface. The image of the micromirror chip was
collimated through a 150 mm cylindrical lens (Thorlabs, diameter: 2 inches) and focused
through a 50 mm objective (NIKKOR, Nikon). Light collected by the objective passes through
a dichroic beam splitter (long pass, > 640nm, FF640-FDi01, Semrock) and is collected by a
CCD camera (GC651MP, Smartek Vision) equipped with a 50 mm objective (Fujinon,
HF50HA-1B, Fuijifilm).

The behavioral task aimed to teach mice to discriminate between two optogenetically induced
patterns of activity in AC. The reinforcement used for the task used medial forebrain bundle
(MFB) stimulation in non-deprived mice. This protocol leads to similar learning speed, motor
response timing and psychometric measurements as water rewards in deprived animals #°. In
the “time-independent task”, the two stimuli were composed of 500 ms illumination of 300 ym
diameter spots placed at different locations of AC. In the “sequence discrimination task”, the
two stimuli were composed of a succession of two 250 ms illuminations of 300 um diameter
spots at different locations in the cortex in one order (AB) or in the reversed order (BA). All
light stimuli were temporally modulated at 20 Hz (25 ms ON, 25 ms OFF). To prevent visual
perception of the optogenetic stimuli a constant and strong background illumination provided
by a white LED lamp was used and a cache was placed in front and close to the eyes to limit
visual inputs. Mice were trained on both tasks in random order. The spots used in the first task
they learnt were positioned at the two extremes of the tonotopic axis of A1 and the spots in
the second task were positioned at equal distance, orthogonal to this axis. Alignment of
optogenetic stimulus locations across days was done using blood vessel patterns at the
surface of the brain manually aligned to a reference blood vessel image taken at the beginning
of the experiment.

Behavioral experiments were monitored and controlled using a custom Matlab software
controlling an input-output board (PCle-6351, National Instruments) and the images delivered
by the video projector. Mice performed behavior for one hour per day. During the entire
behavioral training period, food and water were available ad libitum as rewards were provided
through the stimulation of the medial forebrain bundle (MFB).
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MFB stimulation was delivered via a pulse train generator (PulsePal V2, Sanworks) that
produced 2ms biphasic pulses at 50Hz for 100ms at a voltage calibrated for each individual
mouse to the minimal level that evoked sustained responding, using the protocol in %°. The
stimulation was controlled with a solenoid valve (LVM10R1-6B-1-Q, SMC). A voltage of 5V
was applied through an electric circuit joining the lick tube and an aluminum foil on which the
mouse was sitting. Lick events could be monitored by measuring the voltage across a series
resistor in this circuit.

Training was broken down into three phases. (i) Lick training: On the first day, mice were
presented with the lick tube and any licking was rewarded with immediate MFB stimulation.
Mice generally began licking at high rates after 1-2minutes and the session was continued
until mice reliably collected around 300 rewards. (ii) Go training: On the following day, Go trials
were presented with 80% probability, while the remaining trials were blank trials (no stimulus).
A trial consisted of a random inter-trial interval (ITl : 0.5 to 1 s), a random ‘no lick’ period
(duration adjusted, see below) and a fixed response window of 1.5 s. The first lick occuring
during the response window on a Go trial was scored as a ‘hit’ and triggered immediate MFB
stimulation. During initial go training the ‘no lick’ period was between 2 and 5 s in order to
discourage non-specific licking. When mice achieved >80% accuracy for the Go stimulus, a
final Go session was performed during which a cache was placed over the window to verify
that animals were not licking to remnant visual cues from the video projector (Fig. S4). On this
day and for subsequent Go/NoGo sessions, the no lick period was shortened to 1.5to 3 s in
order to obtain more trials per session. (ii) Go/NoGo training: After Go training, the second
stimulus (NoGo) was introduced. During presentation of the NoGo sound, the absence of
licking for the full response window was scored as a ‘correct rejection’ (CR) and the next trial
immediately followed. Any licking during NoGo trials was scored as a ‘false alarm’ (FA), no
stimulation was given, and the animal was punished with a random time-out period between
5 and 7 s. Each session contained 45% Go stimuli, 45% NoGo stimuli and 10% blank stimuli.
Note that the Go training was used to ensure high motivation of the animal during the Go/Nogo
training by establishing an association between the optogenetic stimulus and the reward. For
the time-independent task, this association was generalized to the NoGo stimulus, as seen
through very high false alarm rates at the beginning of the Go/NoGo training (e.g. Fig. S4).
This indicates that faster learning for the time-independent task is not due to an absence of
generalization between the Go and NoGo stimulus when transitioning from the Go to the
Go/NoGo training phases.

Learning curves were obtained by calculating the fraction of correct responses over blocks of
150 trials. Discrimination performance over one session was calculated as (hits + correct
rejections)/total trials.

Data pre-processing

For calcium imaging, regions of interest corresponding to putative neurons (AC and IC) or
axons and boutons (TH) were identified by using Autocell 16
(https://github.com/thomasdeneux/Autocell). Briefly, each frame of the recording was
corrected for horizontal motion using rigid body registration.This step was visually controlled
and all sessions with visible z motion were eliminated. A hierarchical clustering algorithm,
based on pixel covariance over time, agglomerated pixels up to a user-selected number of
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clusters corresponding to regions of the size of neurons of axons. Clusters were automatically
filtered according to size and shape criteria. This step was controlled by a detailed visual
inspection of selected regions of interest (ROIs) during which ROIs without visually identifiable
cell body shape were discarded.

For each region of interest, the mean fluorescence signal F(t) was extracted together with the
local neuropil signal Fnp(t). Then 70% of the neuropil signal was subtracted from the neuron
signal to limit neuropil contamination. Baseline fluorescence Fo was calculated with a sliding
window computing the 3rd percentile of a Gaussian-filtered trace over the imaging blocks.
Fluorescence variations were then computed as f(t) = AF/F = (F(t) - Fo )/Fo. An estimate of
firing rate variations r(t) was then obtained by linear temporal deconvolution of f(t): r(t) = f'(t) +
f(t)/1, f'(t) being the first derivative of f(t) and 1 = 2s, the estimated decay of the GCAMP6s
fluorescent transients. This simple method efficiently corrects the strong discrepancy between
fluorescence and firing rate time courses due to the slow decay of spike-triggered calcium
transients. It does not correct for the rise time of GCAMPG6s, leading to remnant low pass
filtering of the firing rate estimate and a delay of ~100ms between the firing rate peaks and
the peaks of the deconvolved signal. Finally, response traces were smoothed with a Gaussian
filter (o = 31ms).

Electrophysiological signals were high-pass filtered and spike sorting was performed using the
CortexLab suite (https://github.com/cortex-lab, UCL, London, England). Single unit clusters
were identified using kilosort 2.5 followed by manual corrections based on the interspike-
interval histogram and the inspection of the spike waveform using Phy
(https://github.com/cortex-lab/phy).

Both for imaging and electrophysiology data, single trial sound responses were extracted (0.5s
before and 1s after sound onset) and the average activity over the prestimulus period (0.5s -
0Os before sound onset) was subtracted for each trial.

Reproducibility index and cell selection

To quantify the noise levels in the data, we calculated the mean inter-trial correlation across
all pairs of trials. The single neuron reproducibility is then defined for each neuron as the
average of the inter-trial correlation for that neuron’s response to all 140 sounds. The
population response reproducibility for each sound is defined as the average of the inter-trial
correlations of the full sequence of response of the whole neural population to that sound.
Region of interests (ROISs) or single units with reproducibility below 0.12 were classified as
non-responsive and were excluded from all analyses except population sparseness. As
detailed in the Supplemental Table 1, the number of responsive units and the corresponding
fraction of the total number of units/ROIs recorded are: AC, 19414 (32%), TH, 3969 (12%),
THE, 484 (97%), 5936 (39%), 442 (78%).

Noise-corrected correlation

For each dataset, population representations were estimated after pooling all recording
sessions in a virtual population. We used the correlation between population vectors as a
metric of similarity between representations. The areas and techniques used to estimate
neuronal ensemble representations yielded different levels of trial-to-trial variability due to
intrinsic neuronal response variability and measurement noise. Most representation metrics
are biased by variability, even after trial averaging, due to variability residues. For example,
the correlation between two population representations (population vectors) will tend to
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decrease with respect to a variability-free estimate *¢. When multiple observations of the same
representations are available, it is possible to account for the impact of variability, by using
specific estimators 3. Here we showed analytically (see Supplemental Mathematical
Derivations) that the value of the Pearson correlation coefficient £#:7,, between population
vectors for two sounds ¥; and ¥ in absence of variability can be exactly estimated from noise-
corrupted single-trial observations Ver and Vs of s and 7» when their dimension N
approaches infinity, based on the formula:

1 2 :
R2 ! p"j-"'»"“'js".r’

1
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in which r and r’ are single trial indices and R is the total number of trials. This analytical result
is confirmed by simulations for finite N, indicating that our estimator converges to the
correlation value of the noise-free vectors (Fig. 2C). Code for calculating this estimator is
provided with the online data set.

Simulations for finite N show as expected that the estimator displays substantial deviations
around the true correlation which however average to zero. This leads to values of the
estimator that can be outside [-1,1] in some cases. Our estimator displays extremely large

1
pgsmfj‘ J
- R(R—1) Z . .
deviations when r#r! approaches 0, i.e. for representations that are
dominated by noise. This occurred more often in datasets obtained by imaging, in particular

in the thalamic axonal boutons dataset (TH). To limit imprecisions from these extreme values
1

m Z Pi 7, ,<0.01

we excluded from all datasets sounds for which r#r! . In typical neural

data, there are significant noise correlations across simultaneously recorded neurons within a

trial. Therefore, the effective N can be much lower than the number of neurons. We minimized

this contribution by shuffling trial identity for each neuron independently.

To evaluate the significance of mean correlation differences across all sound pairs for time-
averaged or sequence representations, we used a bootstrap procedure over the
independently recorded sessions. This procedure had the advantage of providing a statistical
assessment for biological replicability based on strictly independent measurements (neurons
of the same recording are not fully independent statistically). The noise-corrected correlation
measure was estimated 100 times after a random resampling of sessions with replacement.
Based on this distribution, we measured the standard deviation and calculated p-values down
to 0.01.

Sequence correlation was measured on vectors formed by concatenating the responses of all
neurons throughout time (vector dimension = Nneuons X Ntimegins). Time-averaged correlation
was measured first by time-averaging the responses of each neuron and then concatenating
these values for all neurons (vector dimension = Nneurons). In both cases, we used data from
the sound onset to 250ms after the sound offset. To normalize the difference between
sequence and time-averaged correlation when comparing between areas we use the formula
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Pt—av ~ Pseq
1 - 0.5 X(Pt—qv + Pseq)

Paiff =
Noise-corrected sparseness measure

There exist several sparseness measures which are all biased by variability in neuronal activity
measurements %3, The most classical measure as defined in ®152 is not appropriate for
baseline-corrected, linearly deconvolved calcium data because it requires positive response
values. We show in the Supplemental Mathematical Derivations that kurtosis, the 4th order
moment of a distribution, is a sparseness measure % which can be corrected for variability-
related biases and is appropriate for all our datasets. This metric quantifies the “long-
tailedness” of the distribution. Sparse response properties correspond to rare and strong
responses which generate long-tailed response distributions as opposed to dense response
properties which correspond to more compact response distributions. For lifetime sparseness,
measured for each neuron separately, Kurtosis is defined as:

< (Vn,s_ < Vns >-5')4 s
< (I/n.s_ < Vns >S)2 >§

K, = -3

in which <> indicates averaging over sounds and v,, s is the noise-free response of neuron n
to sound s. In the case of population sparseness, which is measured for each sound
separately, <>s should be replaced by <>, which indicates averaging over neurons. The
Kurtosis formula can be developed into the moments of order 1 to 4 of v, ;.

<Upy > =A< > < > 46 <y SISV > — < Uy >

K, = : i 53
(<12, > = < vy 52

Starting from the second order, estimates of these moments based on trial-averaged response
include noise-related bias terms, which skew the kurtosis estimates for limited trial counts. We
analytically demonstrated and numerically verified that these biases can be suppressed using
noise corrected formulae of all moments that are detailed in the Supplemental Mathematical
Derivations. Code for these calculations is provided with the online data set.

When calculating population sparseness, we analyzed all neurons including non-responsive
neurons. Non-responsive neurons with aberrant response levels (>5 times the maximal value
of responsive neurons) were excluded. Based on this, the percentages of units used were :
ICE : 92%, IC: 80%, TH: 61%, THE: 97%, AC:92%).

Population activity classifiers

To evaluate the accuracy of sound identification based on single-trial population responses,
we trained a nearest-neighbor classifier on a subset of trials and cross-validated it on a distinct
subset of trials. Training and testing sets were constructed by randomly selecting half of the
trials for each unit. For each sound, we correlated the population response averaged over the
training trials for this sound with the population response averaged over the testing trials for
all the other sounds. The sound with the highest correlation was assigned as the prediction.
Decoding accuracy is defined as the proportion of correctly assigned sounds.

Sequence and time-averaged codes were defined as for the correlation measures. Statistical
significance was evaluated using the same bootstrap procedure as for the correlation
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measures. Importantly, decoding depends inherently on trial-to-trial noise which limits the
possibility of comparing between areas. This analysis serves to contrast sequence and time-
averaged codes within an area.

To measure the information contained at different timescales, the temporal sequence of
population activity was decomposed into its Fourier coefficients corresponding to a discrete
set of timescales ranging from T, the 750 ms sound response duration, down to 2At, where At
is the discretization time of the dataset (1/2At = f the Nyquist frequency ; At = T/24 = 31.25 ms
for 2P-imaging data and At = T/96 = 7.81 ms for electrophysiology data).

The Fourier coefficient C, for frequency n/T and neuron r is defined as

i2mkn
— V2K
Coyr = 2k=1 vr(k)e ™7

where v(k) is the activity of neuron r at timestep k, i = v—1 and K = Tf. Each coefficient is a
complex number or, equivalently, a two-dimensional vector. Hence the activity sequence for
a given neuron is either represented by a vector of 2K data points or of 2K Fourier coefficients.

To measure the information present at a given time scale, we applied the population activity
classifier on the population vector containing the 2N Fourier coefficients for this time scale for
the N neurons of the dataset (Fig. S3G). To measure information present above a particular
time scale Tmax, We used the Fourier coefficients from 1 to Tmax for each neuron and
concatenated them into a 2NTmax population vector (Fig. S3H). Of note, when evaluating
information at particular time scales, we did not apply any temporal filtering steps to avoid
artifacts due to the finite size of the filter and preserve the full bandwidth of the data.

Tuning analysis

To quantify the number of neurons significantly tuned to a specific property, we first performed
a parametric ANOVA test to identify the neurons which respond significantly more to one of
the sounds of interest (e.g. 60, 70 or 80 dB levels across all pure tones for intensity tuning, up
vs down modulations in a given frequency range for frequency modulation). We used a
threshold of p=0.05. We do not compare the absolute number of neurons tuned to a given
property between areas since this will largely reflect the different levels of noise in the data
sets and we focus on the properties of significantly tuned neurons.

To measure the tuning of individual units to classes of stimuli (for example up chirps vs down
chirps) we used the following modulation index:

Vg —Vp
Ml = —

0.5+ (Jval + |vo])

Reinforcement learning model

We adjusted a previously published reinforcement learning model %%, to learn discriminations
between pairs of temporal inputs. The model receives as inputs the temporal responses for
two sounds: (XGo(t)) for the rewarded sound and (XNoGo(t)) for the non-rewarded sound. The
model learns the synaptic weights between these input representations and a downstream
decision circuit (Fig. 4A). This circuit is composed of a Go-unit which outputs the decision
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(synaptic weights : wg) and an inhibitory neuron that provides immediate linear inhibition to the
reward neuron (synaptic weights : w;). The temporal output, y(t), of the model can therefore
be described as :

y(t) = wg. X(t) — w.X(t) — & where 6 is the Heaviside step function, ¢ is a time -
independent Gaussian random noise process that models stochasticity of behavioral choices.
The decision to go is made if the mean activity of the Go-unit within the response window <
y(t) >; is larger than 0.2 (<.>,. denotes time averaging over 0.5s).

The synaptic weights are updated according to a learning rule which compares the reward
prediction to the actual reward, assuming that reward prediction corresponds to the mean
input received by the Go-unit. The learning rule has three particularities that have been
previously shown to be important to account for mouse behavior*! and compatible with our
knowledge of synaptic plasticity rules. First, it is asymmetric : the learning rate is larger when
an unexpected reward occurs than when an expected reward does not. Second, it is
multiplicative : the learning rate at a given synapse depends on the current weight of that
synapse. Finally, it takes into account the known dynamics of the eligibility trace in the striatum
4364 which is a key target of both AC and TH in discrimination learning**. The eligibility trace is
a key mechanism in the “neohebbian framework” that aims to explain how synaptic plasticity
can accommodate delays between action initiation and environmental feedback. This theory
proposes that synapses that undergo pre-post coincidence prior to feedback are tagged via a
long-lasting (~ few seconds) eligibility trace. Weight changes will only occur at these tagged
synapses if they are subsequently exposed to neuromodulatory feedback before this eligibility
trace decays 54 In line with this, in the striatum, potentiation of synapses is conditioned on
dopamine release within a ~3s time window following coincidence of pre- and post-synaptic
activity *3. To implement this in our model, the temporal signal for the model input is convolved
with a kernel corresponding to the temporal profile of dopaminergic plasticity gating taken from
Yagishita et al *® before calculation of the weight update.

The learning rule is implemented as :
dwgp = A (R —o(wg —w;). X)EITr
dwy = =Af(R—o(wg —wy). X)EITr

where A the learning rate, I is the action outcome (£ = 1 for reward, It = -1 for no

reward, ¢ is the behavioral noise level parameter that sets the models peak performance, f0
is the function that implements asymmetric learning such that

flu)y=u, ifu<0
flu) =rvu, ifu>0

v > lis the learning rate asymmetry ratio,

TriTr
ElTr = f X(uw)y(u)D(t — u)du
0
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where D(u) is the temporal function shown in Fig. 4A and taken from Yagishita et al ** and
ITEIT‘." =0.5s.

In order to estimate the speed at which the model learns to discriminate between different
neural representations, we used as input the population vector time series for two different
sounds from a given area. For calcium imaging, we first performed clustering of the response
to reduce dimensionality. The model was then run for three independent simulations to
average out the stochastic contribution and we evaluated the number of trials to reach 80%
based on the average learning curve over these three repeats.

For dimensionality reduction of the population vector, we performed agglomerative
hierarchical clustering based on the euclidean distance between each neuron’s full temporal
response to all stimuli. The number of clusters was established by increasing the number of
clusters until the sound-pair RSA matrix constructed from the clusters explained 95% of the
variance of the matrix constructed from the full neural population. Clustering was performed
independently for each data set and yielded approximately 150 clusters in all areas. AC data
displayed in Fig. 2B represent clusters rather than single neurons.

Convolutional neural networks

Augmented sound set. In order to train deep neural networks, we created an augmented
sound set that covered all the basic parameters explored by the original 140 sound set used
in experiments. We first augmented the basic sounds composing the sound set from 140 to
2169. This first step generated the sounds by independently varying all features defining the
sounds (frequency, intensity, amplitude modulation direction or period, frequency modulation
direction, chord composition). Thereby, a given feature cannot be predicted based on other
features as in the experimental sound set. We further augmented the sound set using the
approach from 26, Each 500ms sound is embedded at a random time in a randomly chosen
1.5 s snippet taken from an auditory scene (bus station, park, street...) with a random intensity
(average : 53db, std : 7dB). We thus generated a total of 150.000 sounds for the test (6.000),
train (110.000) and validation (34.000) sets respectively.

Task definitions. The multi-category task required the network to output a 14-element binary
category vector in which 1 indicates that the sound presented belongs to one of 14 categories,
divided into 4 groups within which categories are mutually exclusive: frequency range,
intensity range, frequency modulation type, and amplitude modulation type. However, all
sounds had to receive one label from each group. The group structure was not provided to the
network which therefore had to learn that a sound could not be simultaneously high and mid
frequency for example. The categories were defined as follows:
Frequency range group: high frequency (4-8 kHz) / mid frequency (9-17 kHz) / low frequency
18-38 kHz) / broadband (white noise only). For chords and frequency modulated chirps, the
frequency value used for categorization was the average of all frequencies (i.e. middle of the
chirp). Intensity range group: high time-averaged intensity (80dB) / mid time-averaged
intensity (70dB) / and low time averaged intensity (60 dB). Amplitude modulated sounds were
assigned to their closest time-averaged range group. We obtained different overall intensities
by ramping sounds sublinearly, linearly or supralinearly. Amplitude-modulation group: Up-
ramping/ down-ramping / sinusoidal modulation / no modulation. Frequency-modulation
group: Up chirp / Down chirp / no modulation.
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We also implemented reduced versions of the multi-category task in which some category
groups were excluded. In order to probe the effect of changing the category structure on
representations of specific sounds, we selected a subset of sound pairs for each auditory
feature that differed only according to one of the 14 categories (Fig. 6 and S5).

The sound identification task required the network to output the identity of each of the 2169
different sounds without any category.

The convolutional autoencoder is a network trained to reproduce with minimal loss its input
with the constraint of passing all information through a small, central bottleneck layer. It is
composed of an encoder sub-network that processes the input to allow for compression in the
bottleneck layer and a decoder sub-network that reconstructs the output from the low-
dimensional bottleneck representation.

Architecture definition and training All networks take as input a 2D (time x frequency) matrix
of the log-scaled spectrogram of the sound and must produce as output the labels described
above. In order to achieve this, a series of convolutional blocks is applied to transform the
input. All classification networks were built from a series of 6 blocks composed of the same
layers :

- convolution : the input is convolved by a filter whose weights the network must learn,
each layer applies multiple filters, generating a 3D matrix (time x frequency channel)
from the initial 2D input (free parameters : kernel size, kernel stride, channel number)

- activation : the output of the convolution is passed through a Relu non-linear activation
function

- maxpooling : the output of activation is downsampled by taking the maximal value of
neighboring values (free parameters : pool size, pool stride)

- dropout : in order to improve the robustness of training, during each training batch a
random 50% selection of connections are eliminated. During testing and validation, all
connections are active.

After these convolutional blocks, a final 64-node fully connected layer with a Relu non-linearity
allows to aggregate information across time, frequency and channel dimensions. The output
layer is obtained for the multilabel task by applying a sigmoid function to the fully connected
output and for the identification task by applying a softmax function.

The output of the last layer allowed us to calculate the value of the loss function that comprises
the error the network makes (categorical cross entropy loss function) and a L1 regularization
term in order to improve network robustness. This loss was then back-propagated during
training in order to optimize the weights of the connections using the Adam optimizer.

Any given architecture requires arbitration across a wide range of free parameters, most
notably the kernel and max pooling size and stride as well as the number of channels in each
block. One approach to this problem is to perform a search across architectures to obtain
optimal performance on the task. This has allowed optimization on ecologically-relevant tasks
to be proposed as a criteria for building deep networks that function like the brain. However
we focused on general properties of CNNs and were using a simple task without natural
sounds. We therefore chose to assess the generality of our results on various architectures
instead of performing an exhaustive search. We also verified the reliability of our results for a

35


https://doi.org/10.1101/2022.12.14.520391
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.14.520391; this version posted December 15, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

given architecture by using 2 different initialization weights per architecture. The four
architectures we evaluated are defined as follows (CV : convolution layer, MP : max pooling
layer, FC : fully connected layer, Ker : kernel size) :

(1) Input : 109 x 150; Cv1 : 109 x 150 x 18, Ker(3,3); MP; CV2 : 55 x 75 x 20, Ker(5,5); CV3:
55 x 75 x 24, Ker(6,6) ; MP; CV4 : 28 x 38x 28, Ker(7,7) ; CV5 : 28 x 38 x 32, Ker(8,8); MP;
CV6:14x19x 32, Ker(9,9); FC: 64

(2) Input : 109 x 150; Cv1 : 55 x 75 x 18, Ker(3,3); CV2: 55 x 75 x 20, Ker(5,5); CV3: 28 x 38
x 24, Ker(6,6); CV4 : 28 x 38x 28, Ker(7,7); CV5: 14 x 19 x 32, Ker(8,8); CV6 : 14 x 19 x 32,
Ker(9,9); FC : 64

(3) Input : 109 x 150; Cv1 : 55 x 75 x 1, Ker(7,7)8; CV2 : 55 x 75 x 20, Ker(7,7); CV3 : 28 x 38
X 24, Ker(7,7); CV4 : 28 x 38x 28, Ker(7,7); CV5: 14 x 19 x 32, Ker(7,7); CV6 : 14 x 19 x 32,
Ker(7,7); FC : 64

(4) Input : 109 x 150; Cv1 : 55 x 75 x 24, Ker(3,3); CV2: 55 x 75 x 24, Ker(5,5); CV3: 28 x 38
X 24, Ker(6,6); CV4 : 28 x 38x 24, Ker(7,7); CV5: 14 x 19 x 24, Ker(8,8); CV6 : 14 x 19 x 24,
Ker(9,9); FC : 64

One prominent consequence of the choice of CNN architecture is the way in which the input
volume evolves throughout the network. Choosing a large stride in the convolutional or a large
window size in the max pooling layer will lead to a shrinkage of the input dimensions (time and
frequency). Given that the temporal dimension is preserved in the brain, we examined an
architecture in which there is no shrinkage at all of the temporal dimension. To do this, we
used the 4 same architectures described above, with the temporal dimension kept constant
by setting all strides to 1 and eliminating max pooling. This results in a large expansion of the
parameters in the network and impacts training speed although asymptotic performance
remains the same (Fig. 5).

The convolutional autoencoder receives as input the 2D spectrogram and must output a
denoised spectrogram (spectrogram of the central sound without the background noise). The
autoencoder was composed of 4 convolutional blocks as previously described in the encoding
part and decoding networks, the bottleneck is a fully-connected, 20 node layer. Training was
performed with an Adam optimizer, L1 and L2 regularization and MSE as a loss function.

The convolutional neural network trained on word and musical genre recognition was
previously  published® and parameters have been made available at
(https://github.com/mcdermottLab/kelletal2018). This network is composed of a central branch
that splits into two branches, with one branch trained to identify musical genres and the other
branch trained to identify words. In the original paper, the network was shown to achieve
human-like performance and to qualitatively reproduce psychophysical measures during these
tasks.

Analysis of CNN activations Once the networks had been trained, we analyzed the
responses of all nodes in each activation layer to the 140 sounds that were presented during
experimental sessions. Each sound generates at a given layer a 3D matrix (time x frequency
x channels). By considering the temporal response of each frequency x channel combination
we obtained analogs to the temporal response of individual neurons. We then applied the
same analysis techniques to these artificial responses as described above for neural
recordings. In order to perform decoding which requires multiple presentations of the same
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sound, we presented to the network multiple copies of each sound embedded in different noise
backgrounds.

Cochlear model

A computational model of the mouse cochlea was implemented based on the seminal model
of Meddis®®5. The model consists of a cascade of six stages recapitulating stapes velocity,
basilar membrane velocity, inner hair cell (IHC) receptor potential, IHC presynaptic calcium
currents, transmitter release events at the ribbon synapse, and firing response in auditory
nerve fibers (ANFs) including refractory effects. The input model is a sound stimulus (in
Pascals). The output is a train of spiking events (in spikes/s) in 590 ANFs innervating 40 IHCs
with a characteristic frequency (CF) distributed at regular intervals along the cochlear
tonotopic from 5 to 50 kHz, 12 IHCs per octave. This distribution covered 82.8% of the basilar
membrane length from 1.2% (apex) to 83.9% (base) in 2.07% increments. According to
experimental data, the number of ANFs per IHC (N) was controlled by the relationship N=-
0.0038x"2+0.375x+7.9 where x is the IHC location along the basilar membrane such that x=-

constant of the calcium clearance 1_Ca within each IHC synapse®, ANFs with different
spontaneous discharge rate (SR=91.1 7ca®®, with 7ca in ms and SR in spikes/s) were
simulated from 0.5 to 95 spikes/s (21 = 19.8 spikes/s, mean = SD) to match the SR distribution
reported in mouse auditory nerve.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical results (degrees of freedom, p-values and statistical values) are reported in figure
legends or in Supplemental Table 3. For statistical analysis of neural data, we performed a
bootstrap analysis as detailed above. For statistical analysis of behavioral data provided in the
manuscript, the Kolmogorov—-Smirnov normality test was first performed on the data. If the
data failed to meet the normality criterion, statistics relied on non-parametric tests. We
therefore represent the median and quartiles of data in boxplots in all figures, in accordance
with the use of non-parametric tests. Ranksum and signed rank: we report the signed rank
statistic if the number of replicates is too weak to provide the normal Z statistic.
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Figure S1. Details of auditory system sampling. A. Mean intrinsic imaging responses (n=32
mice) for 4, 16 and 32 kHz sounds (black) and the subtraction of 32kHz and 4kHz maps (color).
This extended data set allowed us to construct a consensus map to align mice included in the
study. B. lllustration of method used to identify AC subregions based on the tonotopic
gradients established in?8. C. Localization of all recorded ROIls on the consensus tonotopic
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map with AC subregions. D. Localization of responsive neurons to increasing frequency and
intensity. Note the larger recruitment with stronger intensity and the spatial shift with
frequency. E. Proportion of units per subarea. F. Depth distribution of units per subarea. G.
Example thalamocortical axon expressing GCaMP6s merged with Vglut2. Thalamic axonal
boutons expressing Vglut2 appear yellow as shown in the magnified region (right). H. Density
of labeled boutons (Vglut2*;GCaMP6s-expressing in yellow; GCaMP6s alone in green) in layer
1 of the AC (12 sample regions; 4 regions per confocal image; means and STD:
0.0122+0.0052, 0.0005+0.0008, density of co-labelled and green only boutons, respectively).
I. Peristimulus time histogram of an auditory nerve fiber (ANF) with a characteristic frequency
equal to that of the presented 12-kHz tone burst (10-ms rise/fall, 500-ms duration) with
increasing level from 60, 70 and 80 dB SPL. Note the rapid adaptation of the firing. J. Basilar
membrane velocity and sound-activated auditory nerve fibers per inner hair cell (IHC) along
the tonotopic axis. Note the reduced frequency selectivity with the increasing intensity. Gray
dashed line shows the mouse synaptic cochleogram. The criterion for sound-activated
auditory nerve fibers was 10 spikes/s above the spontaneous rate.
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Figure S2. Single cell tuning to diverse acoustic features from cochlea to auditory
cortex

A-E. Right: For each tuning property we show the responses of example neurons from the
IC, TH and AC to sounds that differ according to that property and provide the tuning strength
(TS) and best frequency (BF) for that neuron. Asterisks indicate significant tuning of the neuron
to a specific value, for example the leftmost neuron in A is an IC neuron that is significantly
tuned to frequency modulation speed with a maximum response for decreasing frequency at
3oct/s. Left : Boxplot giving the distribution of tuning strengths across the whole population
and piecharts showing the proportion of neurons maximally tuned to each parameter value for
significantly tuned neurons.
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Figure S3. Robustness of correlation and accuracy measures

A-B. Noise-corrected sparseness measured using kurtosis (n=140 sounds for population
kurtosis (A) and n=all neurons for lifetime kurtosis (B)). C. Mean sound decoding accuracy for
time-averaged and sequence codes. D. Noise-corrected correlation for time-averaged and
sequence code in each area with varying numbers of sub-selected neurons. E. Decoding
accuracy for time-averaged and sequence code in each area with varying numbers of sub-
selected neurons. F. Sketch illustrating the decomposition of population responses by
timescale as in G and H. G. Mean decoding accuracy based on successive Fourier coefficients
of neural responses. OHz = time-averaged code. H. Same as G but for the concatenation of
successive Fourier coefficients. The robustness of AC representations to time averaging can
be seen in this figure as the fact that accuracy is already very close to plateau value at OHz
(time-averaged activity level), contrary to other areas which show an increase when adding
faster timescales. As expected, 2 photon data only contained information up to 3Hz whereas
electrophysiology data was informative even above 12Hz. Importantly, in all brain areas the
cumulative information saturated around 3Hz, which is much lower than the known 30 Hz
frequency cutoff for AC 1%, |-K. Mean noise-corrected correlation between sound pairs
differing by only one acoustic property : I. frequency sweeps with identical frequency content
and duration at 60dB vs 80dB, J. frequency sweeps with identical frequency content of
different duration, K. amplitude modulated sounds with same carrier frequencies modulated
at 1Hz vs 3Hz (p-value for 100 bootstraps comparing time-averaged correlation of each region
to AC, error bars are S.D). P-values and details of statistical tests are given in the
Supplemental Table 3.
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Figure S4. Details of optogenetic cortical stimulation protocol

B Window open C

([\ 1

| &

lick probability

M793619

time-indep.

total
nogo

sequence

accuracy
A

- O

Py
A\

m\_/\’/\ﬂ

0 # trials 5000

L. ~ .
NV ‘«M,\‘Y),! e

accuracy

o

time-indep.

accuracy

sequence

oo sequence first
® e time-indep. first

—
R &
N
INg
)

A. Population average intrinsic imaging map of tonotopic areas in AC showing the localization
of all spots used for optogenetic stimulation. B-C. Control experiment showing that response
to optogenetic stimulation is specific to cortical activation : mice ceased responding to light
stimulation when the cranial was blocked by a small cache that left all other light cues intact.
Note also that the lick probability for time-averaged or sequence patterns is identical during
this initial phase. (paired Wilcoxon test, p = 0.0156, signed rank value = 28, n=7) D. Learning
curves from two example mice in both tasks. E. Accuracy over the last 300 trials for all mice.
(paired Wilcoxon test, p = 0.015, signed rank value = 28, n=7).
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Figure S5. Details of CNN training and task specificity

A. Mean correlations from the network trained on natural sounds from Kell et al for musical
snippets (left) or words (center). Note that the branch trained to perform musical genre
recognition (music branch - red) decorrelates music but not words and vice versa. B-C.
Category by category performance of CNNs trained without shrinking of the temporal
dimension (B) or with (C) (n=8, error bars are sem). D. Mean response correlations from RSA
matrices from untrained networks with the same architecture as those trained on the multi-
category task (n=8, error bars are sem) E. Accuracy of trained network at identifying each
individual sound out of 2169. F. RSA matrix of original sounds and reconstructed sounds
showing that the autoencoder fully preserved the relations between all the sounds. G. Mean
decoding accuracy based on successive Fourier coefficients of CNN responses. OHz = time-
averaged code (n=8, shaded areas are sem). H. Same as G but for the concatenation of
successive Fourier coefficients. I. Average correlation between the RSA matrices from each
region of the mouse auditory system and the different layers of networks performing different
tasks. J. Mean time-averaged correlation between representations of sounds differing by a
specific property throughout networks trained on variations of the multi-class task. Blue curves
correspond to networks not trained on the class relevant for the sounds (ex not trained on
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frequency for sounds differing only by frequency (top left)) whereas black curves correspond
to networks trained on all variations of the task that include the relevant class.
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Supplemental Table 1. Details of dataset

Brain region Recording Units Responsive| Number |Number of| Recorded units | Recorded units
method recorded units of sessions | per animal (min, |per session (min,
animals mean, max) mean, max)
Auditory Cell body 2 photon |60822 19414 (32%) | 7 60 2164 /8688 / 57/1013/1782
cortex calcium imaging 20631
Auditory Axonal bouton 2 39191 3969 (12%) |4 24 1280/9287/ 47711632/ 3120
thalamus photon calcium 19870
imaging
Single unit 498 484 (97%) 10 33 4/49/113 2/15/32
electrophysiology
Inferior Cell body 2 photon [15312 5936 (39%) |30 101 25/510/ 2975 25/151/495
colliculus calcium imaging
Single unit 563 442 (78%) |11 30 10/56/119 4/18/54
electrophysiology
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Supplemental table 2. Sound parameters

Start freq. (kHz) | Stop freq. (kHz) | Start int. (dB) | Stop int. (dB) | Dur. (ms)

1 blank NaN NaN NaN NaN 500

tono60dB_4kHz 4 4 60 60 500

3 tono60dB_5kHz 5 5 60 60 500

4 tono60dB_6kHz 6 6 60 60 500

5 tono60dB_7kHz 7 7 60 60 500

6 tono60dB_9kHz 9 9 60 60 500

7 tono60dB_12kHz 12 12 60 60 500

8 tono60dB_15kHz 15 15 60 60 500

9 tono60dB_19kHz 19 19 60 60 500

10 tono60dB_24kHz 24 24 60 60 500
11 tono60dB_29kHz 29 29 60 60 500
12 tono60dB_37kHz 37 37 60 60 500
13 tono70dB_4kHz 4 4 70 70 500
14 tono70dB_5kHz 5 5 70 70 500
15 tono70dB_6kHz 6 6 70 70 500
16 tono70dB_7kHz 7 7 70 70 500
17 Pure tones tono70dB_9kHz 9 9 70 70 500
18 tono70dB_12kHz 12 12 70 70 500
19 tono70dB_15kHz 15 15 70 70 500
20 tono70dB_19kHz 19 19 70 70 500
21 tono70dB_24kHz 24 24 70 70 500
22 tono70dB_29kHz 29 29 70 70 500
23 tono70dB_37kHz 37 37 70 70 500
24 tono80dB_4kHz 4 4 80 80 500
25 tono80dB_5kHz 5 5 80 80 500
26 tono80dB_6kHz 6 6 80 80 500
27 tono80dB_7kHz 7 7 80 80 500
28 tono80dB_9kHz 9 9 80 80 500
29 tono80dB_12kHz 12 12 80 80 500
30 tono80dB_15kHz 15 15 80 80 500
31 tono80dB_19kHz 19 19 80 80 500
32 tono80dB_24kHz 24 24 80 80 500
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33 tono80dB_29kHz 29 29 80 80 500
34 tono80dB_37kHz 37 37 80 80 500
35 Up4kHz 4 4 60 80 500
36 Up6kHz 6 6 60 80 500
37 Pure up Up9kHz 9 9 60 80 500
ramps
38 Up15kHz 15 15 60 80 500
39 Up24kHz 24 24 60 80 500
40 Up4+6kHz 4,6 4,6 60 80 500
41 Up4+9kHz 4,9 4,9 60 80 500
2 Up4+15kHz 4,15 4,15 60 80 500
43 Upd+24kHz 4,24 4,24 60 80 500
44 Up6+9kHz 69 69 60 80 500
45 Up6+15kHz 6,15 6,15 60 80 500
46 Up6+24kHz 6,24 6,24 60 80 500
47 Up9+15kHz 9,15 9,15 60 80 500
Chord up
48 ramps Up9+24kHz 9,24 9,24 60 80 500
49 Up15+24kHz 15, 24 15, 24 60 80 500
50 Up4+6+9+15kHz 4,6,9 15 4,69 15 60 80 500
51 Up4+6+9+24kHz 4,6,9,1524 | 4,69 15 24 60 80 500
52 Up4+6+15+24kHz 4,6,15,24 4,6, 15,24 60 80 500
53 Up4+9+15+24kHz 4,9,15,24 4,9, 15,24 60 80 500
54 Up6+9+15+24kHz 6,9, 15,24 6,9, 15, 24 60 80 500
55 UpmultiHz 4,6,9,1524 | 4,69 15 24 60 80 500
56 DowndkHz 4 4 80 60 500
57 Down6kHz 6 6 80 60 500
58 | Puredown Down9kHz 9 9 80 60 500
ramps
59 Down15kHz 15 15 80 60 500
60 Down24kHz 24 24 80 60 500
61 Down4+6kHz 4,6 4,6 80 60 500
62 Down4+9kHz 4,9 4,9 80 60 500
63 Down4+15kHz 4,15 4,15 80 60 500
64 | Chorddown Down4+24kHz 4,24 4,24 80 60 500
ramps
65 Down6+9kHz 6,9 6,9 80 60 500
66 Down6+15kHz 6,15 6,15 80 60 500
67 Down6+24kHz 6,24 6,24 80 60 500
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68 Down9+15kHz 9,15 9,15 80 60 500
69 Down9+24kHz 9,24 9,24 80 60 500
70 Down15+24kHz 15, 24 15, 24 80 60 500
71 Down4+6+9+15kHz 4,6,9 15 4,6,9 15 80 60 500
72 Down4+6+9+24kHz 4,6,9,15, 24 4,6,9 15,24 80 60 500
73 Downd+6+15+24kHz 4,6,15,24 4,6,15,24 80 60 500
74 Down4+9+15+24kHz 4,9, 15,24 4,9, 15,24 80 60 500
75 Down6+9+15+24kHz 6,9, 15,24 6,9, 15,24 80 60 500
76 DownmultiHz 4,6,9,15, 24 4,6,9 15, 24 80 60 500
77 Sin1Hz9kHz 9 9 60 - 80 60 - 80 500
78 Sin3Hz9kHz 9 9 60 - 80 60-80 500
79 Sin7Hz9kHz 9 9 60 - 80 60 - 80 500
80 Sin20Hz9kHz 9 9 60 - 80 60-80 500
81 Sin1Hz24kHz 24 24 60 - 80 60 - 80 500
82 Sin3Hz24kHz 24 24 60 - 80 60-80 500
Sinusoid AM
83 | modulation Sin7Hz24kHz 24 24 60 - 80 60 - 80 500
84 Sin20Hz24kHz 24 24 60 - 80 60-80 500
85 Sin1HzWhitenoise WN WN 60 - 80 60 - 80 500
86 Sin3HzWhitenoise WN WN 60 - 80 60 - 80 500
87 Sin7HzWhitenoise WN WN 60 - 80 60 - 80 500
88 Sin20HzWhitenoise WN WN 60- 80 60 - 80 500
89 ChirpUp4kHz60dB100ms 4 9 60 60 100
90 ChirpUp4kHz60dB250ms 4 9 60 60 250
91 ChirpUp4kHz60dB500ms 4 9 60 60 500
Up chirp
92 | varying speed ChirpUp24kHz60dB100ms 9 24 60 60 100
93 ChirpUp24kHz60dB250ms 9 24 60 60 250
94 ChirpUp24kHz60dB500ms 9 24 60 60 500
95 ChirpDown4kHz60dB100ms 9 4 60 60 100
96 ChirpDown4kHz60dB250ms 9 4 60 60 250
97 ChirpDown4kHz60dB500ms 9 4 60 60 500
Down chirp
98 |varving speed | chirppown24kHz60dB100ms 24 9 60 60 100
99 ChirpDown24kHz60dB250ms 24 9 60 60 250
100 ChirpDown24kHz60dB500ms 24 9 60 60 500
101 Up chirp - 60 ChirpUpclose4kHz60dB 4 6 60 60 500
102 dB ChirpUpclose4to9kHz60dB 4 9 60 60 500
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103 ChirpUpclose4to15kHz60dB 4 15 60 60 500
104 ChirpUpclose4to24kHz60dB 4 24 60 60 500
105 ChirpUpclose6kHz60dB 6 9 60 60 500
106 ChirpUpclose6to15kHz60dB 6 15 60 60 500
107 ChirpUpclose6to24kHz60dB 6 24 60 60 500
108 ChirpUpclose9kHz60dB 9 15 60 60 500
109 ChirpUpclose9to24kHz60dB 9 24 60 60 500
110 ChirpUpclose15kHz60dB 15 24 60 60 500
111 ChirpDownclose6kHz60dB 6 4 60 60 500
112 ChirpDownclose9to4kHz60dB 9 4 60 60 500
113 ChirpDownclose15to4kHz60dB 15 4 60 60 500
114 ChirpDownclose24to4kHz60dB 24 4 60 60 500
115 ChirpDownclose9kHz60dB 9 6 60 60 500
Down chirp -
116 60dB ChirpDownclose15to6kHz60dB 15 6 60 60 500
117 ChirpDownclose24to6kHz60dB 24 6 60 60 500
118 ChirpDownclose15kHz60dB 15 9 60 60 500
119 ChirpDownclose24to9kHz60dB 24 9 60 60 500
120 ChirpDownclose24kHz60dB 24 15 60 60 500
121 ChirpUpclose4kHz80dB 4 6 80 80 500
122 ChirpUpclose4to9kHz80dB 4 9 80 80 500
123 ChirpUpclose4to15kHz80dB 4 15 80 80 500
124 ChirpUpclose4to24kHz80dB 4 24 80 80 500
125 ChirpUpclose6kHz80dB 6 9 80 80 500
Up chirp - 80
126 dB ChirpUpclose6to15kHz80dB 6 15 80 80 500
127 ChirpUpclose6to24kHz80dB 6 24 80 80 500
128 ChirpUpclose9kHz80dB 9 15 80 80 500
129 ChirpUpclose9to24kHz80dB 9 24 80 80 500
130 ChirpUpclose15kHz80dB 15 24 80 80 500
131 ChirpDownclose6kHz80dB 6 4 80 80 500
132 ChirpDownclose9to4kHz80dB 9 4 80 80 500
133 ChirpDownclose15to4kHz80dB 15 4 80 80 500
134 | Down chirp - | chirpDownclose24to4kHz80dB 24 4 80 80 500
80dB
135 ChirpDownclose9kHz80dB 9 6 80 80 500
136 ChirpDownclose15to6kHz80dB 15 6 80 80 500
137 ChirpDownclose24to6kHz80dB 24 6 80 80 500

51


https://doi.org/10.1101/2022.12.14.520391
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.14.520391; this version posted December 15, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC 4.0 International license.

138

139

140

ChirpDownclose15kHz80dB 15 9 80 80 500
ChirpDownclose24to9kHz80dB 24 9 80 80 500
ChirpDownclose24kHz80dB 24 15 80 80 500
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Supplemental Table 3. Detail of statistical comparisons

Fig 2F & G. Bootstrap comparison of sequence and time-averaged mean correlations in structure X vs in AC

AN ICE IC THE TH
Sequence <0.01 0.43 0.12 0.01 <0.01
Time averaged |<0.01 <0.01 <0.01 <0.01 <0.01
(Seq - T.A) norm [<0.01 <0.01 0.032 0.01 0.086
Fig 2H. Bootstrap comparison of RSA matrix similarity in structure X vs in AC

AN ICE IC THE TH
Seqvs T.A <0.01 <0.01 0.01 <0.01 0.01

Fig 2. Bootstrap comparison of d

ifference betwee

n sequence and t

ime-averaged accuracy in structure X vs in AC

AN ICE IC THE TH
(Seq - T.A) norm |<0.01 <0.01 0.01 0.04 0.15
Fig 3. Bootstrap comparison of time-averaged mean correlations in structure X vs in AC

AN ICE IC THE TH
3C - freq <0.01 0.25 0.61 <0.01 0.27
3D -intPT <0.01 0.27 0.71 0.03 0.52
3E - FM direction| <0.01 <0.01 <0.01 <0.01 0.04
3F - AM direction| <0.01 <0.01 <0.01 <0.01 0.1

Fig 6E. Wilcoxon sign rank test of difference RSA matrix correlation between area X

and network Y (p

-value / signed

rank value)

AN ICE IC THE TH AC
Catvs ID 0.28/64 0.28 /64 0.003/75 0.0016/ 76 0.12 /67 0.0016/ 76
Cat vs Rec 0.08 /39 0.01/60 0.01/60 0.0121/60 0.012 /60 0.012/ 60

Fig 6H. Wilcoxon sign rank test of difference RSA

matrix correlation between area X

and network Y (p

-value / signed

rank value)

AN ICE IC THE TH AC
Full vs NoFreq [0.79/65 0.87 /66 0.19/81 0.87/70 0.23/56 0.87 /66
Full vs noFM 0.16 /82 0.10/84 0.0047 /94 0.02/90 0.10/84 0.01/92
Full vs nolnt 0.015/ 45 0.0002 / 100 0.0003 /99 0.0003 /99 0.0002 / 100 0.0002 / 100
Full vs noAM 0.28/79 0.007 /93 0.0006 / 98 0.0002 / 100 0.007 /93 0.0047 /94

Fig S3 I-K Boots

trap comparison

of time-averaged

mean correlations in structure X vs AC

S3l-int FM <0.01 <0.01 <0.01 <0.01 <0.01
S3J - FM speed |<0.01 0.04 <0.01 0.12 0.22
S3K-AMfreq [<0.01 <0.01 0.66 0.27 0.81
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