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Summary 

Perception generates time-invariant objects and categories from time-varying streams of 

information. However, individual neuron responses, even in cortex, are not time-invariant as 

they usually track the temporal variations of the input. Here we show that representations of 

time-varying sounds remain decodable even after time-averaging at the level of neuronal 

populations in the mouse auditory cortex. This population-scale, time-invariant property is 

absent in subcortical auditory regions. By implanting light-sculpted artificial representations in 

the cortex with optogenetics, we show that robustness to time-averaging is a necessary 

property for rapid association of neural representations with behavioral output. Moreover, deep 

neural networks which perform sound recognition and categorization tasks generate 

population representations that become robust to time-averaging in their deeper layers. 

Hence, the auditory cortex implements a generic transformation that replicates temporal 

information into time-independent neural population dimensions and makes it available for 

learning and classification.  
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Introduction 

 

A long standing idea in sensory processing is that object identification requires multiple 

features to be bound together. In hearing, the features defining a particular object include not 

only the sound frequencies extracted in the cochlea but also a variety of temporal modulations 

of sound intensity and frequency1 that have a high prevalence in natural sounds 2,3. Temporal 

modulations and in particular the direction of change (i.e. rising vs falling frequency or 

intensity) contribute to sound recognition and to global perceptual properties such as timbre 4 

or loudness 5,6. This can be directly experienced when listening to time-reversed versions of 

common sounds from which it can be difficult to recognize the original 4,7,8. Beyond hearing, 

temporal variations are also key features in touch, in which object recognition is based on 

contact sequences 9, in olfaction, in which smells sequentially activate olfactory receptors 10 

or in the visual identification of actions.  

  

At the neurophysiological level, time-varying sounds produce temporal activity sequences 

throughout the auditory system including the auditory cortex. In an individual auditory neuron, 

these temporally structured firing patterns provide specific information about sound identity 

which is not conveyed by the neuron’s mean firing rate 11,12. Therefore, individual auditory 

system neurons do not represent sounds in a time-independent manner, raising the question 

of whether a neuronal correlate of time-invariant auditory object perception exists in the 

auditory system. Some studies have demonstrated the existence of specific neuronal 

activations to particular temporal features 13,14 or to the direction of temporal modulations 15,16 

in the auditory cortex, but also as early as the auditory midbrain or even in the brainstem 14,17–

19. This led to the common view that the tuning of subcortical neurons provides all the basic 

building-blocks to construct auditory objects 20. However, cortical inactivation experiments 

during sound discrimination behaviors strikingly contrast with this view. Indeed, they show that 

whereas auditory cortex is dispensable for simple tone frequency discriminations21,22 it is 

necessary for discriminating even basic temporal features including sound duration 23,24 or 

frequency modulations 21,22,25. These results point towards a specific and unidentified 

transformation of temporal feature representations in the auditory cortex that enables 

discrimination.  

 

To isolate this transformation, we reasoned that population-scale measurements are less 

sensitive to experimental variability and sampling biases than quantifications on single cells. 

We therefore combined, in a large-scale effort, temporally deconvolved calcium imaging and 

single-unit electrophysiology in the awake mouse with detailed biophysical modeling of the 

cochlea to extensively and consistently sample responses to a wide range of spectral and 

temporal sound features in the auditory nerve, inferior colliculus, auditory thalamus and 

auditory cortex. Using a noise-corrected metric to measure representation distances, we 

established that the distinctive property of the auditory cortex is that population 

representations of sounds remain similar whether or not the temporal details of neuronal 

responses are removed by time-averaging. Remarkably, this form of time-invariance provided 

by cortical representations does not reflect a rate coding scheme in individual neurons whose 

responses are temporally structured. Rather, time-invariant representations are an emergent 

property of the neuronal population.  
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Combining a reinforcement learning model and behavioral discrimination of optogenetically 

engineered activity patterns in the cortex, we established that the speed at which the 

discrimination of two sounds can be learnt in a task is principally determined by the time-

averaged representations of these two sounds and not by their temporal sequence 

representations. Hence, the robustness of cortical representations to time-averaging has a 

direct functional impact on the association of different time-varying sounds to various 

behaviors. In addition, this accounts for the results of cortical inactivation experiments 21,22,25. 

Finally, deep networks performing sound categorization implement representations that are 

robust to time-averaging in their deeper layers. Moreover, representations were more similar 

between the auditory system and artificial networks for networks performing sound 

categorization than for networks performing other tasks. Together these results show that the 

emergence of time-independent representations is a key cortical computation that enables 

efficient association of temporally structured sounds to behavior and their categorization as 

auditory objects.  
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Results 
 

Emergence of time-independent representations in the auditory cortex 

In order to precisely measure how the representations of core auditory features evolve across 

the auditory hierarchy, we performed large-scale recordings in three successive regions: the 

inferior colliculus (IC), the auditory thalamus (TH) and the auditory cortex (AC) (Fig. 1A-G, 

Supplemental Table 1). In each region, we measured the responses to a set of 140 sounds, 

mainly of 500 ms duration, which were chosen to cover simple, widely studied spectral and 

temporal features, including amplitude and frequency modulations (Fig 1B, Supplemental 

Table 2). 

 

To rapidly obtain large datasets from these structures, we used GCAMP6s-based two-photon 

calcium imaging of either cell bodies (AC and IC, Fig. 1C & F) or axonal projections (TH, 

imaged in AC) (Fig. 1D). Collecting data simultaneously from around 1000 AC neurons or TH 

axonal boutons and from 100 to 200 neurons in IC, we could extensively sample 

representations in each region (Fig. 1A-F). In AC, all 60.822 ROIs were mapped to functional 

subfields based on tonotopic gradients 28 and to the cortical layer from imaging depth (Fig. 

S1A-F). 70% of ROIs were in primary auditory cortex (A1), the largest subfield of AC, but the 

anterior, suprarhinal and dorsal posterior auditory fields were also covered (Fig. 1C & Fig. 

S1E). Moreover, with recording depth reaching up to 600 µm, we sampled neurons from layers 

1 to 5 with an emphasis on layers 2 and 3 (Fig. S1F). Therefore, with the exception of layer 6 

and of the small ventro-posterior subfield, the whole of primary and secondary AC was 

extensively covered with a total number of neurons of about one fifth the estimated number 

per hemisphere 29. Inputs from TH were sampled with 39.191 putative TH axonal boutons 

spread across AC (75% of ROIs in A1) (Fig. 1D) and validated post-hoc with the thalamic 

marker VGLUt2 (Fig. S1G,H)30. In addition, we recorded 15.132 ROIs in the dorsal IC down 

to 250µm depth (Fig. 1F).  

 

Calcium signals were temporally deconvolved using a linear algorithm to retrieve estimates of 

neuronal firing rate variations that are robust to parametrization errors 31 and previously 

verified in cortical neurons 32. This allowed us to reach a ~150 ms temporal precision as 

estimated from responses to amplitude modulated sounds (Fig. 1C,D,F). The temporal 

modulations of our sounds were chosen to evolve at timescales compatible with this resolution 

of calcium imaging. 

 

Since deconvolution has not been verified for TH axons, we performed electrophysiological 

recording in primary and secondary auditory thalamus (498 single units, Fig. 1E). 

Electrophysiology was also used to cover the central inferior colliculus (563 single units), the 

main primary subregion of this structure 33 (Fig. 1G). Electrode locations were identified with 

post-hoc histology and short-latency responses (Fig. 1E,G). Finally, we used a detailed 

biophysical model of the cochlea calibrated against auditory nerve recordings34 (AN), to 

provide insight into the information entering the auditory system (Fig 1H, Fig S1I,J).  

 

Based on this rich dataset, we first measured classical, single cell, feature-tuning indexes, 

including preference to frequency or intensity modulation direction (e.g. Fig. 2A), speed and 

frequency. Consistent with previous reports 14,18,20 these measures indicated that tuning to all 
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these features is weak in the AN but then appears as early as IC (Fig. S2). They did not 

evidence any further evolution of tuning strength along the auditory hierarchy.  

 

We reasoned that neuronal variability and measurement noise may impact single cell 

measurements and obscure changes in encoding, given that visual inspection of sample 

neurons suggested a higher specificity of population patterns in the cortex than subcortical 

stages (e.g. Fig. 2B). Inspired by recent reports that population scale measures efficiently 

circumvent noise-related biases35, we used a noise-corrected population measure to 

systematically compare sound representations between areas. This metric quantifies the 

similarity between population vectors evoked by a pair of sounds by calculating the Pearson 

correlation between the two (Fig. 2A). Correlation typically decreases when data is corrupted 

by variability (Fig. 2C). By exploiting population vectors sampled from multiple single-trials 

and in the limit of a large neuron number, a simple formula allows us to provide an unbiased 

estimate of the correlation in absence of variability, as we verified analytically and by 

simulations (Supplemental Mathematical Derivations, Fig. 2C)36. This noise correction 

enabled us to compare datasets with widely different variability levels (Fig. 2D). Applying the 

noise-corrected correlation metric to the population representations of all pairs of sounds, we 

constructed Representational Similarity Analysis (RSA)37 matrices that capture the relations 

between all sounds in the space of neural activity (Fig. 2E).  

 

Sounds are encoded in neural activity along the temporal dimension (when neurons are active) 

and neural population dimensions (which neurons are active). To identify their relative 

contributions, we calculated noise-corrected RSA matrices based on these two encoding 

strategies (Fig. 2E). The first one takes into account the full sequence of activity observed in 

the neuronal population during and immediately after sound presentation (sequence code, 

Fig. 2A). The second one evaluates the information that can be retrieved solely from the time-

independent activity level of neurons by time-averaging neuronal responses (time-averaged 

code, Fig. 2A). Low correlations between two sounds for the sequence code indicate that they 

are coded by fairly different patterns of temporal activity. Low correlations for the time-

averaged code indicate that the two sounds activate different neural populations, irrespective 

of the sequence of activity, making information available in a time-independent manner (see 

examples Fig. 2A,B). 

 

These noise-corrected RSA matrices shown in Fig. 2E capture multiple aspects of how sound 

representation evolves throughout the auditory system. Contrary to sound feature tuning 

indexes (Fig. S2), these measures clearly delineated robust changes of representations 

across stages. First, overall pattern similarity levels decreased from AN to IC for both 

sequence and time-averaged codes, indicating a sharpening of population tuning in the 

brainstem (Fig. 2F). Second, population response similarity increased in the TH before 

decreasing again in AC (Fig. 2F). This surprising non-monotonic evolution of tuning sharpness 

has never been reported and corresponds to a densification of the representation in TH that 

can be quantified with sparseness measures (Fig. S3A,B).  

 

Strikingly, the AC displayed strong decorrelation of the time-averaged code relative to all prior 

areas, leading to a value very close to that of the sequence code (Fig. 2F). This unique 

convergence of sequence and time-averaged codes is observed both in the mean RSA 

correlation values (Fig. 2G) and in the structure of the RSA matrices (Fig. 2H). It is also 

confirmed by the similar accuracy of population decoders trained and tested with the sequence 
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or time-averaged code in AC (Fig. 2I, S3C). All these metrics indicate that the information 

present in the full temporal sequence of activity is still largely accessible after time-averaging 

in the AC but not in IC and TH. These results hold in all subfields of AC (Fig. 2F) and are 

robust to neuron number (Fig. S3D,E). Interestingly, the dorsal IC which receives cortical 

feedback shows an intermediary profile, more similar to AC than central IC (Fig. 2F).  

 

A possible explanation of these results could be a loss of temporal resolution along the 

auditory hierarchy, resulting in a less-informative, because less-resolved, sequence code 38. 

Two observations demonstrate that our results strongly differ from this scenario. First, 

decoding accuracy does not decrease for the sequence code, while it increases for the time-

averaged code from IC to AC (Fig. S3C). Second, we decomposed neuronal responses into 

Fourier components which capture the information content at specific timescales. We 

observed that, in AC, accuracy is already very close to plateau value at 0Hz (time-averaged 

activity level), whereas in subcortical areas it increases when adding faster timescales (Fig. 

S3F-H). Therefore, AC, contrary to earlier stages, implements a time-independent 

representation of sounds at neural population scale, which emerges without loss of the 

temporal information contained in the time-sequences of neuronal responses. This could be 

seen as a hybrid coding scheme in which temporal information is made available along 

neuronal dimensions.  

 

Auditory cortex specifically separates the time-averaged representations of time-

varying sounds 

To better understand the convergence of sequence and time-averaged codes in AC, we 

quantified representation similarity for particular groups of sounds as a measure of population 

tuning to particular features. For example, averaging correlations across pairs of pure tones 

for specific frequency intervals allowed building population tuning curves for frequency (Fig. 

3A,B). This showed that frequency tuning is sharper in IC and AC than in AN and TH (Fig. 

3C). This is in line with the overall densification of the auditory code observed in TH since 

sharp tuning corresponds to a sparse code and broad tuning to a dense code (Fig. 2F & 

S3A,B). We also quantified population intensity tuning and observed the same level of 

correlation in AC and IC between representations of pure tones differing in intensity (Fig. 3D). 

This is in agreement with previous descriptions of single neuron intensity tuning both in IC and 

AC 16,39,40. Hence, for simple tones, neither intensity nor frequency tuning are sharpened 

between IC and AC. Moreover, for these stationary sounds, sequence and time-averaged 

codes provide the same levels of correlation (Fig. 3C,D). This indicates that activity sequence 

does not play a role in coding frequency or intensity of stationary pure tones which therefore 

do not contribute to the convergence of time-averaged and sequence representations in AC.  

 

In contrast, population representations of time-varying sounds are changed in the cortex. Most 

strikingly, the correlation of time-averaged representations of time-symmetric sounds drops 

specifically in the cortex compared to subcortical structures, although the imprecision of 

activity measurements in thalamic axons weakens the conclusion for intensity ramps (Fig 

3E,F). Therefore, while AC does not improve frequency and intensity tuning, it clearly 

sharpens population tuning to the direction of modulations. This appears as an important driver 

of the convergence of time-averaged and sequence codes, but other temporal aspects also 

contribute. Similar but smaller effects are observed for non-directional features such as 

sinusoidal amplitude modulations or frequency sweeps differing in speed (Fig. S3J,K). Time-

averaged representations of frequency-modulated sweeps differing only in intensity are also 
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more decorrelated in AC (Fig. S3I) in contrast to pure tones of different intensity. This suggests 

an interaction in the coding of frequency modulations and intensity, which may relate to 

perceptual observations made in humans6.  

 

Overall, these measurements demonstrate that the key transformation of sound 

representations from the subcortical to the cortical stage is the decorrelation of time-averaged 

representations of sounds which differ by their temporal variations. 

 

Time-averaged representations determine associative learning speed 

We therefore interrogated the possible functional advantages provided by decorrelated time-

averaged representations. To associate a sound to a rewarding or defensive action, it is 

necessary to associate its neuronal representation to motor circuits by specific synapses. If 

two sounds have representations that differ only by activity sequences and not by the pattern 

of neurons they recruit, one intuitively expects that simple synaptic plasticity mechanisms that 

are local in time will not allow discriminative associations with these two sounds. Hence, we 

reasoned that high correlations for time-averaged representations should impair discriminative 

learning.  

 

To quantify this idea, we upgraded a previously published feedforward neural network model 

of auditory discrimination learning 41,42 with synaptic learning rules including both Hebbian 

plasticity and an eligibility trace mechanism previously described in the mouse striatum (Fig. 

4A). Striatum was chosen as it is the key site of auditory reinforcement learning 43,44, but our 

conclusions depend little on the specific learning rule. We trained the model to discriminate 

between the population responses to pairs of sounds taken from the AC, TH or IC datasets. 

This allowed us to measure learning duration for a broad range of time-averaged and 

sequence correlation values (Fig. 4A). In line with our intuition, time-averaged correlation and 

not sequence correlation predicted the duration of discrimination learning (Fig. 4B). Moreover, 

we observed that learning duration steeply rises with increasing correlation of the time-

averaged representations, following a monotonic, but strongly non-linear relationship (Fig. 

4C).  

 

To directly test the importance of time-averaged representations for discriminative learning 

and evaluate the predictions of the model, we trained mice expressing ChR2 in cortical 

pyramidal cells to discriminate between different spatio-temporal optogenetic stimulations, 

patterned at the mesoscopic level in the AC (Fig. 4D-G, FigS4A-C). This strategy allowed us 

to control neural activity patterns, reliably positioned in identified tonotopic fields of AC (Fig. 

4E, S4A), and to evaluate how encoding strategy influences learning in a Go-Nogo 

discrimination task. We compared, in the same mice, the learning duration for representations 

that differ by the identity of the active neurons (low correlations for time-averaged and 

sequence codes) with that for representations that differ only by the sequence of active 

neurons (low correlation for the sequence code but high correlation for the time-averaged 

code). Optogenetic stimuli were of the same 500 ms duration as the previously studied 

sounds. Concretely, during the time-independent task, mice had to discriminate the 

optogenetic activation of two spatially separate spots, A vs B. During the sequence task they 

had to discriminate the successive activation of spot A then spot B against the time-symmetric 

sequence (A-B vs B-A, Fig. 4F). Task order was counterbalanced across mice. Incorrect licks 

to the Nogo stimulus were punished by a time-out and correct licks to the Go stimulus were 
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rewarded. Rewards were provided by an intracranial stimulation of the medial forebrain bundle 

(Fig. 4G), a protocol that yields similar learning curves to water rewards in deprived animals45.  

 

In line with our model, mice learnt the time-independent discrimination much faster than the 

sequence discrimination for which only a few mice succeeded to perform above chance level 

after several thousands of trials (Fig. 4H,I, Fig. S4D,E). This therefore corroborates the 

proposition that decorrelation of time-averaged representations in cortex is crucial to 

accelerate discriminative learning, in particular of time-symmetric sounds.  

 

Interestingly, this proposition also provides an explanation of why AC’s involvement in sound 

discrimination depends on the pair of sounds that is discriminated, in particular for time-

symmetric sounds21,22,25. Indeed, time-averaged representations of time-symmetric sounds 

are highly correlated subcortically (>0.9), and clearly less in the cortex (0.74, Fig. 3E,F). The 

non-linear relationship between correlation and learning speed in our model predicts a ~3 fold 

decrease in learning duration with cortical compared to subcortical representations (Fig. 4C). 

By contrast, both in cortex and subcortically, the correlation between representations of pure 

tones of different frequencies is below 0.75 (Fig. 3C). For this range of correlation values, 

learning occurs quickly and the impact of representation similarity on learning speed is 

marginal (Fig. 4C). Our model therefore predicts that cortical lesions performed before 

discrimination training will dramatically increase learning duration for time-symmetric sounds 

but not for pure tones, as observed experimentally 22. In the intact brain, cortical and 

subcortical representations may compete for associations with decisions. In this case, their 

roles will depend on how fast discriminative associations are learnt, and therefore will crucially 

depend on the correlation of time-averaged representations. Based on this assumption, the 

model predicts that post-training lesions of the AC have a much stronger impact on 

discrimination of time-symmetric sounds than of distant pure tones, as also observed 

experimentally 21,46,47. 

 

Convergence of time-averaged and sequence representations in deep neural networks 

for sound categorization 

Our results so far indicate that time-independent population representations as observed in 

cortex are important for associating specific sounds to a binary behavioral output. However in 

natural situations, sound-driven behaviors rely on multiple associations with broad stimulus 

categories or auditory objects. We therefore hypothesized that models which produce complex 

stimulus categories also implement a convergence between both types of representation.  

 

To test this, we first analyzed the responses from a previously published convolutional neural 

network (CNN), whose time-averaged representations were shown to be similar to human AC 

representations measured by functional magnetic resonance imaging 26. This network robustly 

identifies a wide range of words and music styles using a two-branch architecture with one 

word and one music branch (Fig. 5A). In line with our hypothesis, we observed that this 

network generated decorrelated time-averaged representations and convergent sequence 

and time-averaged representations when reaching deeper layers. However, convergence was 

only observed for the range of stimuli categorized by a specific branch. For example, only 

music sounds and not words had convergent time-averaged and sequence representation in 

the branch dedicated to music, and vice versa (Fig. S5A). Moreover, this CNN did not 

implement convergent time-averaged and sequence representations for the 140 simple 

sounds that we played to mice, transposed to match the frequency range of words and music 
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(Fig. 5A). This indicates that the emergence of time-independent representations in deep 

networks relates tightly to the sound training set and the target stimulus categorization. 

 

We therefore investigated CNNs categorizing key features of the stimuli presented to our mice: 

the frequency and intensity range, and the type of frequency and amplitude modulations 

present in the sounds (Fig. 5B, S5B,C). Networks were trained on this multicategorization 

task with an augmented set of sounds that homogeneously covered all these features and 

combinations thereof. Sounds were embedded in natural noise from various backgrounds to 

complexify categorization. We observed that time-averaged and sequence-based 

representations also converged in deep layers of this network after training (Fig. 5B), but not 

in untrained networks (Fig. S5D). This corroborates the observations for the word and music 

categorization task, now for the same stimuli as those used to probe the mouse auditory 

system.  

 

Typical CNNs are designed to reduce the precision of sensory receptive fields in deeper 

layers, thereby reducing the number of parameters to fit in the model. In our case, this leads 

to a shrinkage of the temporal dimension which forces the sequence and time-averaged code 

to converge. However, if we implemented the same sound feature categorization task in CNNs 

which did not shrink the temporal dimension across layers, we still observed a clear 

convergence of the two coding strategies (Fig. 5C). The main effect of temporal shrinking in 

our simulations was to accelerate learning (Fig. 5C, Fig. S5B,C). This demonstrates that 

convergence of sequence and time-averaged codes is not the consequence of structural 

constraints but rather the consequence of the computations performed by the network, in 

particular the fact that sounds are assigned to specific labels. This idea is corroborated by the 

observation that networks performing single sound identification (assigning one label per 

sound) also implemented a convergence of time-averaged and sequence codes (Fig. 5D, 

S5E). To compare with networks that do not perform labeling, we trained autoencoders which 

must reconstruct the denoised input stimulus through a small central bottleneck (Fig. S5F). 

This network did not show convergence between the two coding strategies (Fig. 5E).  

 

In addition, representations of the categorization network qualitatively reproduced all aspects 

of the convergence of time-averaged and sequence codes observed in the auditory system 

(compare Fig. 5F-H and Fig. 2G-I). In particular, like in cortex, we observed an absence of 

time resolution loss in the deeper layers of the artificial networks, especially when the 

architecture preserves time resolution (compare Figs. S5G,H and Figs S3G,H). This 

underlines the computational homology between the transformations observed in categorizing 

deep convolutional networks and in the mouse auditory system.  

 

Signatures of task-driven categorization in the geometry of auditory representations 

We next investigated whether the geometry of sound representations could be further used to 

probe the underlying perceptual tasks that the mouse auditory system performs. This is difficult 

to determine in the absence of subjective experience and limited ethological surveys of mouse 

sound perception. We therefore systematically compared RSA matrices of CNNs trained on 

all previously described tasks with RSA matrices measured in the auditory system (Fig. 6A-

E), reasoning that the structure of the RSA matrices may reflect the categorization task. We 

first observed that early layers of the auditory system have representations that largely differ 

from any of the CNNs (Fig. 6E, Fig. S5I). This indicates that these CNNs poorly emulate 

computations that occur in the early stages of the auditory system. Similarity of RSA matrices 
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between CNNs and the mouse auditory system increased when considering deeper structures 

and layers (Fig. 6E, Fig. S5I). The task leading to highest similarity with IC, TH and AC was 

the multi-categorization task (Fig. 6B,E). By contrast, the simple identification of the same 

sounds without any categorization led to weaker similarity between RSA matrices of the 

auditory system and of the CNN (Fig. 6C,E). The mismatch was even larger for the 

autoencoder network performing sound compression and denoising (Fig. 6D,E). This result 

suggests that parallel categorization of multiple features is an important function of the 

computations that shape representations in the mouse auditory system. Representations in 

the CNN performing word and music categorization also tended to outperform identification 

and compression networks (Fig. 6E), further supporting the idea that categorization is a key 

computation for the mouse auditory system.  

 

For the multi-categorization task, we further determined which categories were important to 

account for the neural data. For example, if we removed frequency modulation categories and 

trained a network on the reduced version of the task, we did not observe decorrelation of time-

averaged representations for frequency sweeps of opposite direction, unlike in the full task or 

in the auditory system (Fig. 6F,G see Fig. S5J for the same analysis with each of the four 

categories). This confirms that the detailed structure of the task is directly reflected in RSA 

matrices. We found that, except in the AN, removing frequency modulation, amplitude 

modulation and intensity categories strongly reduced the match between CNN and auditory 

system RSA matrices (Fig. 6H). Removing frequency categories had little effect, likely 

because this information was explicitly available in the structure of the input, but the removal 

of the intensity categories had a major effect, underscoring the importance of this feature in 

the mouse brain (Fig. 6H). 

 

Despite the strong analogies, none of the networks fully reproduced RSA matrices observed 

experimentally and further discrepancies were observed. First, CNNs tended to implement a 

stronger decorrelation of representations in their deeper layers than those observed in AC 

(Figs. 5A-D vs 2F). Second, no re-correlation of representations was found in CNNs unlike 

what we observed in TH (Figs. 5A-D vs 2F). Hence, the monotonous transformations 

implemented in CNNs differ from those in the subcortical part of the auditory system. In line 

with this, the CNN layer that resembled most IC, TH and AC representations was generally 

the same intermediate layer (Fig. S5I).  

 

Overall, comparison of CNN and auditory system representations indicate a crucial role of 

sound categorization both in the decorrelation of time-averaged representations and in the 

fine structure of representations. 
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Discussion 

 

Our findings show that a key distinguishing property of auditory cortical representations with 

respect to subcortical levels is that time-averaged representations recapitulate time-

dependent representations at the population level. So far, single cell level analyses have 

opposed a temporal code in neurons that follow temporal fluctuations of sounds and a rate 

code in neurons that lack temporal accuracy but whose time-averaged activity changes with 

the stimulus 11. Several studies have noted an increase of rate coding neurons between 

subcortical and cortical structures although mostly for rapid acoustic fluctuations 13,38. 

However, neurons with temporal coding properties still exist in the AC even for fine time 

scales48, making it difficult to establish what specific coding scheme emerges at this level. Our 

results solve this conundrum by establishing that the code specifically reorganizes in the 

cortex to resist time-averaging at the population level, while temporal properties are largely 

preserved (Fig. 2E-I, Fig. S3G,H). This hybrid coding scheme also naturally emerges in deep 

neuronal networks that perform different types of sound categorizations (Fig. 5), indicating 

that this is likely a generic mechanism to extract meaning from multidimensional time-varying 

signals.  

 

At the single neuron level, a first necessary condition for the representation to be robust to 

time-averaging at population level is the existence of neurons which respond specifically to 

particular directions and/or speeds of temporal modulations (e.g. Fig. 2A-B). A second 

necessary condition is that these specific responses are sufficiently diverse and 

complementary across neurons to cover all the information that is known to be contained in 

the temporal dimension (ex: first spike timing, temporal multiplexing)12,49. While the first 

condition was extensively studied 14,17–19,23,24,40,50, the second was never investigated. By using 

new noise corrected population analysis tools, our study addresses this question to 

demonstrate that temporal information efficiently transfers to the neural population 

dimensions, however only in the cortex. It is important to note that low temporal resolution 

neuronal recording methods, such as functional magnetic resonance or ultrasound imaging 
2,26,51,  assume that temporal information transfers to the population level. Our results validate 

this assumption for cortical representations but disprove it for subcortical levels. Further 

experiments are necessary to precisely demonstrate this point in other species and for more 

complex sounds than the ones used in our study.  

 

Using modeling and causal optogenetic manipulation (Figs. 4-6), we also show that 

constructing auditory representations that resist time-averaging is functionally important for 

transforming time-varying inputs into decisions, perceptual categories or meaningful auditory 

objects. Biologically realistic reinforcement learning linking temporally structured 

representations of stimuli to decisions is strongly accelerated when the time-averaged 

representations are decorrelated (Fig. 4). Previous studies 52,53 have shown that rats can 

detect whether 100ms intra-cortical electrical stimulations of two loci are synchronous or 

presented with a relative delay between 3 to 100ms. The stimulation patterns themselves are 

highly correlated after time-averaging. However, the overlap of the two stimuli at short 

timescales can easily introduce various spike count modifications in the generated activity 

patterns through synaptic interactions in the cortical circuit. These could contribute to the 

perceptual discrimination54 beyond the available temporal cues. Our time-symmetric 

stimulations with temporal gaps of 25 ms across sequence elements (see Methods) avoid this 
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issue by limiting local processing at synaptic time scales. Hence, these results do not 

contradict ours. 

 

It has long been proposed that appetitive or aversive discriminative learning can occur without 

cortex through direct thalamic projections to the amygdala and the striatum 55,56 when stimuli 

are sufficiently simple57. Our findings indicate that the degree of stimulus simplicity tightly 

relates to the dissimilarity of time-averaged representations in thalamus and cortex which will 

determine which pathway drives faster learning. This is in line with the fact that discriminations 

involving overlapping frequency modulations, more decorrelated in AC than in TH (Fig. 3), are 

cortex-dependent 16–18. This kinetic competition between cortex and thalamus is supported by 

evidence of learning in cortico-striatal projections even for simple discriminations58.  

 

An important observation of our study is that artificial networks which efficiently perform 

perceptual decisions to identify sounds categories rely on representations that become 

resistant to time-averaging (Fig. 5). Our results also illustrate how the task which artificial 

networks are trained to perform tightly dictates representation structure (Fig. 6). This is in line 

with recent findings that natural constraints on perceptual tasks generate representations 

similar to human brain representations 26,59. Our study already suggests that the mouse 

auditory system structures sound information in a manner compatible with broad 

categorization purposes (Fig. 6), but this approach could be extended towards more precise 

inferences of ecologically relevant stimulus categories in particular species. Beyond 

analogies, our systematic comparison of artificial neural networks also allowed identifying 

major differences between the auditory system and deep networks, as a few studies have 

started to indicate60. Most strikingly, CNNs produce a gradual, step-by-step decorrelation 

whereas in the auditory system the transformation is non-monotonic with a denser, more 

correlated representation in the TH. This may reflect additional functional or anatomical 

constraints that are not taken into account by models and that will also need to be 

disentangled.  
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Figures and legends 

 

Figure 1: Extensive sampling of the auditory hierarchy. A. Sketch of the auditory system 

and sample sizes at each level. B. Spectrograms of the sound set. C. (i) Schematic of imaging 
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strategy, (ii) sample field of view, and (iii) raw (black) or deconvolved (blue) calcium traces 

(gray bar: sound presentation) for a sample neuron in AC. (iv) Location of all recorded neurons, 

color-coded according to their preferred frequency at 60dB, overlayed with the tonotopic 

gradients obtained from intrinsic imaging. (v) Response of 3 neurons to 3Hz amplitude 

modulated white noise. D. Same as in C for thalamic axon imaging. E. (i) Schematic of 

recording strategy, (ii) sample histology with di-I strained electrode track, (iii) average 

waveforms and auto-correlograms of three single units, (iv) response latencies of all single 

units, (v) raster plot of 5 trials from 3 sample units in response to 3Hz modulated white noise 

for auditory thalamus. F. Same as C for dorsal IC except for (iv): view of the cranial window 

and intrinsic imaging response to white noise. Inset histogram shows distribution recording 

depths. G. Same as E for central IC, except for (iv): reconstructed of IC tonotopy from single 

units. H. (i) Schematic of the cochlea and (ii) of the biophysical model taking a spectrogram 

as input and providing the responses of auditory nerve fibers. (iii) Response to 3Hz amplitude-

modulated white noise.(A1 : primary auditory cortex, DP: dorsal posterior field, AAF: anterior 

auditory field, VPAF : ventral posterior auditory field, SRAF : suprarhinal auditory field) 
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Figure 2 : Emergence of a time-independent cell identity code in the auditory cortex. A. 

Responses of 4 AC neurons to different up and down frequency sweeps illustrating how 

sequence and time-averaged correlation is calculated to compose the RSA matrices. B. 

Sample responses to up and down frequency sweeps from IC and AC neurons ordered by 

response amplitude. C. Measured correlation of simulated data with low to high response 

reproducibility before (orange) or after (blue) noise-correction. D. Reproducibility of single 

neuron (left) or population (right) responses measured as the mean inter-trial correlation 

between responses across sounds (left : n=number of neurons per area, right : n=140 sounds, 

error bars are quantiles). E. Noise-corrected RSA matrices for all sound pairs for sequence 

(left) or time-averaged (right) codes. F. Mean noise-corrected correlation by area. (p-value for 

100 bootstraps comparing time-averaged correlation of each region to AC, error bars are 

bootstrapped S.D). G. Normalized difference between mean noise-corrected correlation for 

time-averaged and sequence codes. (p-value for 100 bootstraps, errors bars are S.D). H. 

Noise-corrected dissimilarity between RSA matrix structure of time-averaged and sequence 
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codes. (p-value for 100 bootstraps, error bars are S.D). I. Normalized difference between 

mean sound decoding accuracy for time-averaged and sequence codes. (p-value for 100 

bootstraps, error bars are S.D).  
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Figure 3: Time-averaged representations of time-symmetric sounds decorrelate in AC.  

A. Illustration of method to calculate population tuning curves shown in B from RSA matrix. B. 

Mean noise-corrected correlation between pure tones as a function of their frequency 

separation. C–F. Mean noise-corrected correlation between sound pairs differing by only one 

acoustic property : C. pure tones at 70dB differing by 0.33 octaves, D. pure tones at the same 

frequency differing by intensity, E. frequency sweeps with same start and end frequency at 

same intensity differing by direction, F. amplitude ramps at same frequency differing by 

direction. For sounds without temporal structure, correlation of representations are similar in 

AC and IC, whereas for time-symmetric sounds, all brain areas show larger time-averaged 

correlations than in the cortex, except for TH2P in F likely due to teh high variability of thalamic 

responses. p-value for 100 bootstraps comparing time-averaged correlation of each region to 

AC, error bars are S.D. Statistical test details are given in the Supplemental Table 3.  
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Figure 4 : Time-independent sound representations in AC supports faster learning.  

A. Sketch of the reinforcement learning model (bottom left), eligibility trace dynamics (top left) 

and example learning curves for two recorded representations that have similar sequence 

code correlations but different time-averaged code correlations. B. Heatmap of the number of 

trials needed to reach 80% accuracy at discriminating between a pair of sounds as a function 

of the time-averaged and sequence code correlations between the representations of these 

sounds (averaged over all pairs of representations for all brain regions). C. Number of trials to 

80% accuracy as a function of the correlations of time-averaged representations. Large square 

dots show the mean correlation and learning time for time-symmetric frequency sweeps in IC, 

TH and AC and the black line shows the fit to data. D. Sketch of patterned optogenetic 

experiment in AC (MFB: medial forebrain bundle). E. Cortical window from an example mouse 

showing the location of the stimulation spots and the corresponding tonotopic map. F. Sketch 
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of the optogenetic stimulation time courses for each discrimination task. G. Sample lick traces 

(top) and mean lick signal (bottom) for Go and NoGo trials in the time-independent (left) and 

sequence (right) discrimination tasks. Green dots: reward times. Red dots: timeouts. H. 

Learning curves for all mice performing each task (n=7, error bars are sem). I. Accuracy at 

1500 trials for all mice. (paired Wilcoxon test, p = 0.032, signed rank value = 27, n=7). 
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Figure 5 : Categorization deep networks implement a time-independent code in the 

deep layers. 

A-E. (left) Schematic of CNN architectures and target categories. B-E (right) Mean response 

correlations for the sequence and time-averaged codes from RSA matrices constructed with 

the set of 140 sounds presented to mice (line) and difference between the two (bars). A. Model 

adapted from 26 using RSA matrices constructed using musical snippets (left), words (center) 

or the set of 140 sounds presented to mice transposed to human hearing range (right). B. 

Multi-category CNN (n=8 networks). C. Multi-category CNN without shrinking of the temporal 

dimension (n=8 networks). Inset shows learning curves from training epochs for networks in 

B and C. D. CNN performing sound identification E. Autoencoder CNN performing sound 

compression and denoising through a 20-unit bottleneck. F-H. All graphs refer to the time-

preserving categorization CNN and reproduce analysis shown in Fig 2G-I : F. Normalized 

difference between mean noise-corrected correlation for time-averaged and sequence codes. 

G. Noise-corrected dissimilarity between RSA matrix structure of time-averaged and 

sequence codes. H. Normalized difference between mean sound decoding accuracy for time-

averaged and sequence codes. (error bars are sem over trained networks). (cv : convolution 

block, d-cv : deconvolution block - see methods for architecture details) 
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Figure 6: Signatures of sound categorization in the mouse auditory system 

A-D. Time-averaged code RSA matrix from AC (A) and the closest resembling layer of CNNs 

performing multi-category (B), identification (C), denoising and compression (D) tasks. E. 

Correlation between the RSA matrices from each region of the mouse auditory system and 

the closest resembling layer of CNNs performing different tasks. Each point represents one 

network trained on the task either with different architecture or different random initialization. 

(Statistics are sign rank tests, n=8,8,4,1,1, p-values in Supplemental Table 3) F.G RSA 

matrices from a CNN trained perform the full multi-category task with four different category 

types  (F) or with only three category types excluding the frequency modulation (FM) type (G). 

The magnified part of the matrix shows the presence or absence of FM sweeps decorrelation 

depending on whether FM stimuli are classified or not. H. Correlation between the RSA 

matrices in each brain area and the most similar layer of CNNs trained on the full multi-

category task and partial multi-category tasks that exclude one out of the four category types 

(Statistics are sign rank tests, n=8, p-values in Supplemental Table 3).  
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MATERIALS AND METHODS 

RESOURCE AVAILABILITY 

Data availability 

All datasets are freely available at 10.12751/g-node.sz67di, hosted by G-Node Infrastructure. 

Code availability 

Custom codes used in this study are freely available at 10.12751/g-node.sz67di, hosted by G-

Node Infrastructure. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

All mice used for imaging and electrophysiology were 6 to 14 weeks old male and female 

C57Bl6J mice that had not undergone any other procedures. For optogenetic stimulation, we 

used Emx1-IRES-Cre (Jax #005628) crossed with Ai27 (Jax #012567) mice. Mice were group-

housed (2–6 per cage) before and after surgery, had ad libitum access to food and water and 

enrichment (running wheel, cotton bedding and wooden logs) and were maintained on a 12-

hour light-dark cycle in controlled humidity and temperature conditions (21-23°C, 45-55% 

humidity). All experiments were performed during the light phase. All experimental and 

surgical procedures were carried out in accordance with the French Ethical Committee the 

French Ethical Committees #59 and #89 (authorizations APAFIS#9714-2018011108392486 

v2 and APAFIS#27040-2020090316536717 v1). 

METHOD DETAILS  

Surgery  

Mice were injected with buprenorphine (Vétergesic, 0,05-0,1 mg/kg) 30 min prior to surgery. 

Surgical procedures were carried out using either intraperitoneal ketamine (Ketasol) and 

medetomidine (Domitor) which was antagonized with atipamezole (Antisedan, Orion pharma) 

at the end of the surgery) or 3% isoflurane delivered via a mask. After induction, mice were 

kept on a thermal blanket during the whole procedure and their eyes were protected with 

Ocrygel (TVM Lab). Lidocaine was injected under the skin of the skull 5 minutes prior to 

incision.  

For calcium imaging, craniotomies of either 3 (IC) or 5 (AC) mm were performed above the IC 

or the AC. Injections of 150nL of AAV1.Syn.GCaMP6s.WPRE (Vector Core, Philadelphia, PA; 

10^13 viral particles per ml; used pure for TH and diluted 30x for AC and IC) were made at 30 

nL/min with pulled glass pipettes at a depth of 500µm and spaced every 500 µm to cover the 

whole surface of the IC or AC. The craniotomy was sealed with a circular glass coverslip. The 

coverslip and head post were fixed to the skull using cyanolite glue and dental cement (Ortho-

Jet, Lang).  

For electrophysiology recordings, the skull above the IC or above the cortex dorsal to the TH 

was exposed for ulterior craniotomy. A well was formed around it using dental cement in order 

to retain saline solution during recordings and the head post was fixed to the skull using 

cyanolite glue and dental cement. To protect the skull, the well was filled with a waterproof 
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silicone elastomer (Kwikcast, WPI) that could be removed prior to recording. The head post 

was fixed to the skull using cyanolite glue and dental cement (Ortho-Jet, Lang).  

For patterned optogenetic stimulation of the cortex, a cranial window was placed above the 

AC as for calcium imaging but without viral injection. For MFB stimulation, a bipolar stimulation 

electrode (60-µm-diameter twisted stainless steel, PlasticsOne) was implanted using 

stereotaxic coordinates (AP -1.4, ML +1.2, DV +4.8). It was then fixed along with the headplate 

to the skull using dental cement (Ortho-Jet, Lang). 

After surgery, mice received a subcutaneous injection of 30% glucose and metacam (1 

mg/kg). Mice were subsequently housed for one week with metacam delivered via drinking 

water or dietgel (ClearH20). Mice were given one week to recover from surgery without any 

manipulation. Then, for four days before recording, mice were habituated to head restraint for 

increasing periods of time (30 min - 2 hours). For electrophysiological experiments, the day 

before recording animals were briefly anesthetized using isoflurane anesthesia (2%) in order 

to perform craniotomy and durectomy for electrode descent. 

Two photon calcium imaging in the awake mouse 

Imaging was performed using a two-photon microscope (Femtonics, Budapest, Hungary) 

equipped with an 8kHz resonant scanner combined with a pulsed laser (MaiTai-DS, 

SpectraPhysics, Santa Clara, CA) set at 900 nm. We used a 10x Olympus objective 

(XLPLN10XSVMP), which provided a field of view of up to 1x1 mm. For AC, a 1x1mm field of 

view was used. For IC, the field of view was adjusted to the size of the structure (~0.5x0.5 

mm). For thalamic axons, the field of view was reduced to 0.22x0.22 mm. Images were 

acquired at 31.5 Hz. 

Electrophysiology in the awake mouse 

Electrophysiology was performed using Neuronexus probes : (1x32 linear probe for IC and 

4*8 comb for TH). For track reconstruction, the electrodes were dipped in diI, diO or diD 

(Vybrant™ Multicolor Cell-Labeling Kit, Thermofisher) prior to recording and allowed to dry at 

least 15 min before insertion. Recordings were performed using warmed saline filling the 

cyanolite glue well and in contact with the reference electrode. After each recording the well 

was amply flushed and then refilled with Kwickast. A maximum of three recordings were 

performed per site. Data was sampled at 20kHz using an Intan RHD2000 amplifier board. 

Sound delivery 

Sounds were generated with Matlab (The Mathworks, Natick, MA) and were delivered at 192 

kHz with a NI-PCI-6221 card (National Instruments) driven by the software Elphy (G. Sadoc, 

UNIC, France) and feeding an amplified free-field loudspeaker (SA1 and MF1-S, Tucker-Davis 

Technologies, Alachua, FL) positioned 15 to 20 cm from the mouse ear. Sound intensity was 

cosine-ramped over 10 ms at the onset and offset to avoid spectral splatter. The head fixed 

mouse was isolated from external noise sources by sound-proof boxes (custom-made by 

Femtonics, Budapest, Hungary or Decibel France, Miribel, France) providing 30 dB 

attenuation above 1 kHz. Sounds were calibrated in intensity at the location of the mouse ear 

using a probe microphone (Bruel & Kjaer, type 4939-L-002). For two-photon calcium imaging, 
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the resonant scanner generated a harmonic background noise at 8kHz (intensity at the mouse 

ear, 45 dB SPL). 

During a recording session, each of the 140 sounds (sketched in Fig. 1B) was presented 15 

times in random order. In order to be compatible with 2 photon image acquisition, sounds were 

presented in 120 blocks of 32s each, interleaved by a 15s pause in a 94 min protocol. The list 

of all sound parameters can be found in the Supplemental Table 2.  

Intrinsic optical imaging recordings in anesthetized mouse 

Intrinsic imaging was performed to localize AC in mice under light isoflurane anesthesia (1% 

delivered with SomnoSuite, Kent Scientific) on a thermal blanket. Images were acquired at 

20Hz using a 50mm objective (1.2 NA, NIKKOR, Nikon) with a CCDcamera (GC651MP, 

Smartek Vision) equipped with a 50 mm objective (Fujinon, HF50HA-1B, Fujifilm) through the 

cranial window implanted 1-2 weeks before the experiment (4-pixel binning, field of view 

between 3.7 x 2.8 mm or 164 x 124 pixels at 5.58 mm/pixel). Signals were obtained under 780 

nm LED illumination (M780D2, Thorlabs). Images of the vasculature over the same field of 

view were taken under 530 nm LED illumination (NSPG310B, Conrad). Sequences of short 

pure tones at 80 dB SPL were repeated for 2 s every 30 s with 10 trials per sound. Acquisition 

was triggered and synchronized using a custom made GUI in MATLAB. For each sound, we 

computed baseline and response images, 3 s before and 3 s after sound onset, respectively. 

The change in light reflectance ∆R/R was calculated for each repetition of each sound 

frequency (4, 8, 16, 32 kHz, white noise) as the difference between the baseline and response 

image and was then averaged across all repetitions of a given tone frequency. Response 

images were smoothed applying a 2D Gaussian filter (sd = 3 pixels). Auditory cortex activity 

appeared as regions with reduced light reflectance changing with frequency, revealing the 

tonotopic maps of its different subfields. To align intrinsic imaging responses across different 

animals, the 4 kHz response was used as a functional landmark. The spatial locations of 

maximal amplitude responses in the 4 kHz response map for the A1, A2 and AAF (three points) 

was extracted for each mouse and a Euclidean transformation matrix was calculated by 

minimizing the sum of squared deviations (RMSD) for the distance between the three 

landmarks across mice. This procedure yielded a matrix of rotation and translation for each 

mouse that was applied to compute intrinsic imaging responses averaged across a population 

of mice. 

Histology and immunostainings 

In order to extract the brain for histology, mice were deeply anesthetized using a ketamine- 

medetomidine mixture and perfused intracardially with 4% buffered paraformaldehyde fixative. 

The brains were carefully dissected and left in paraformaldehyde overnight and then sliced 

into fifty micrometer sections using a vibratome. Slices were either stained with cytochrome 

oxidase or directly mounted using a mounting medium with DAPI. Analysis of the fluorescence 

band diI, diO or diD allowed isolating up to 3 tracks per mouse for electrophysiological 

experiments.  

For Vglut2 immunostainings, after fixation, tissues were rinsed in PBS and blocked in Tris-

Buffered Saline (TBS) supplemented with 5 % (vol/vol) Normal Donkey Serum (Jackson 

Immunoresearch) and 0.3 % (wg/vol) Triton X-100. Then, sections were incubated for 48h at 

4°C while rocking with a primary antibody: guinea pig anti-Vglut2 (1:500, Synaptic Systems 
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#135404), followed by a 4 h incubation with a secondary donkey anti-guinea pig IgG 

[F(ab’)2fragments] (1:500, Jackson ImmunoResearch #706606148). Tissues were rinsed and 

mounted using Prolong diamond antifade (Life Technologies). Pictures of the brain sections 

were taken with LSM 900 confocal microscope (Zeiss Microsystems) using 20x objective, 

whereas the magnified view of the thalamocortical boutons was obtained with Airyscan 

acquisition and 63x objective. 

The labeled boutons (GCaMP alone in green; GCaMP with Vglut2 in yellow) were counted 

manually using ZEISS ZEN 2 microscope software in 12 sample regions selected within layer 

1 AC in 3 different Airyscan images. The number of boutons was then calculated per volume 

tissue. 

Behavioral discrimination of patterned optogenetic stimuli 

For patterned optogenetic activation in the mouse AC, we used a video projector (DLP 

LightCrafter, Texas Instruments) powered by a blue LED (center wavelength 460 nm). To 

project a two-dimensional image onto the AC surface. The image of the micromirror chip was 

collimated through a 150 mm cylindrical lens (Thorlabs, diameter: 2 inches) and focused 

through a 50 mm objective (NIKKOR, Nikon). Light collected by the objective passes through 

a dichroic beam splitter (long pass, > 640nm, FF640-FDi01, Semrock) and is collected by a 

CCD camera (GC651MP, Smartek Vision) equipped with a 50 mm objective (Fujinon, 

HF50HA-1B, Fujifilm).  

The behavioral task aimed to teach mice to discriminate between two optogenetically induced 

patterns of activity in AC. The reinforcement used for the task used medial forebrain bundle 

(MFB) stimulation in non-deprived mice. This protocol leads to similar learning speed, motor 

response timing and psychometric measurements as water rewards in deprived animals 45. In 

the “time-independent task”, the two stimuli were composed of 500 ms illumination of 300 µm 

diameter spots placed at different locations of AC. In the “sequence discrimination task”, the 

two stimuli were composed of a succession of two 250 ms illuminations of 300 µm diameter 

spots at different locations in the cortex in one order (AB) or in the reversed order (BA). All 

light stimuli were temporally modulated at 20 Hz (25 ms ON, 25 ms OFF). To prevent visual 

perception of the optogenetic stimuli a constant and strong background illumination provided 

by a white LED lamp was used and a cache was placed in front and close to the eyes to limit 

visual inputs. Mice were trained on both tasks in random order. The spots used in the first task 

they learnt were positioned at the two extremes of the tonotopic axis of A1 and the spots in 

the second task were positioned at equal distance, orthogonal to this axis. Alignment of 

optogenetic stimulus locations across days was done using blood vessel patterns at the 

surface of the brain manually aligned to a reference blood vessel image taken at the beginning 

of the experiment.  

Behavioral experiments were monitored and controlled using a custom Matlab software 

controlling an input-output board (PCIe-6351, National Instruments) and the images delivered 

by the video projector. Mice performed behavior for one hour per day. During the entire 

behavioral training period, food and water were available ad libitum as rewards were provided 

through the stimulation of the medial forebrain bundle (MFB). 
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MFB stimulation was delivered via a pulse train generator (PulsePal V2, Sanworks) that 

produced 2ms biphasic pulses at 50Hz for 100ms at a voltage calibrated for each individual 

mouse to the minimal level that evoked sustained responding, using the protocol in 45. The 

stimulation was controlled with a solenoid valve (LVM10R1-6B-1-Q, SMC). A voltage of 5V 

was applied through an electric circuit joining the lick tube and an aluminum foil on which the 

mouse was sitting. Lick events could be monitored by measuring the voltage across a series 

resistor in this circuit. 

 

Training was broken down into three phases. (i) Lick training: On the first day, mice were 

presented with the lick tube and any licking was rewarded with immediate MFB stimulation. 

Mice generally began licking at high rates after 1-2minutes and the session was continued 

until mice reliably collected around 300 rewards. (ii) Go training: On the following day, Go trials 

were presented with 80% probability, while the remaining trials were blank trials (no stimulus). 

A trial consisted of a random inter-trial interval (ITI : 0.5 to 1 s), a random ‘no lick’ period 

(duration adjusted, see below) and a fixed response window of 1.5 s. The first lick occuring 

during the response window on a Go trial was scored as a ‘hit’ and triggered immediate MFB 

stimulation. During initial go training the ‘no lick’ period was between 2 and 5 s in order to 

discourage non-specific licking. When mice achieved >80% accuracy for the Go stimulus, a 

final Go session was performed during which a cache was placed over the window to verify 

that animals were not licking to remnant visual cues from the video projector (Fig. S4). On this 

day and for subsequent Go/NoGo sessions, the no lick period was shortened to 1.5 to 3 s in 

order to obtain more trials per session. (iii) Go/NoGo training: After Go training, the second 

stimulus (NoGo) was introduced. During presentation of the NoGo sound, the absence of 

licking for the full response window was scored as a ‘correct rejection’ (CR) and the next trial 

immediately followed. Any licking during NoGo trials was scored as a ‘false alarm’ (FA), no 

stimulation was given, and the animal was punished with a random time-out period between 

5 and 7 s. Each session contained 45% Go stimuli, 45% NoGo stimuli and 10% blank stimuli. 

Note that the Go training was used to ensure high motivation of the animal during the Go/Nogo 

training by establishing an association between the optogenetic stimulus and the reward. For 

the time-independent task, this association was generalized to the NoGo stimulus, as seen 

through very high false alarm rates at the beginning of the Go/NoGo training (e.g. Fig. S4). 

This indicates that faster learning for the time-independent task is not due to an absence of 

generalization between the Go and NoGo stimulus when transitioning from the Go to the 

Go/NoGo training phases. 

 

Learning curves were obtained by calculating the fraction of correct responses over blocks of 

150 trials. Discrimination performance over one session was calculated as (hits + correct 

rejections)/total trials.  

 

Data pre-processing 

For calcium imaging, regions of interest corresponding to putative neurons (AC and IC) or 

axons and boutons (TH) were identified by using Autocell 16 

(https://github.com/thomasdeneux/Autocell). Briefly, each frame of the recording was 

corrected for horizontal motion using rigid body registration.This step was visually controlled 

and all sessions with visible z motion were eliminated. A hierarchical clustering algorithm, 

based on pixel covariance over time, agglomerated pixels up to a user-selected number of 
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clusters corresponding to regions of the size of neurons of axons. Clusters were automatically 

filtered according to size and shape criteria. This step was controlled by a detailed visual 

inspection of selected regions of interest (ROIs) during which ROIs without visually identifiable 

cell body shape were discarded. 

For each region of interest, the mean fluorescence signal F(t) was extracted together with the 

local neuropil signal Fnp(t). Then 70% of the neuropil signal was subtracted from the neuron 

signal to limit neuropil contamination. Baseline fluorescence F0 was calculated with a sliding 

window computing the 3rd percentile of a Gaussian-filtered trace over the imaging blocks. 

Fluorescence variations were then computed as f(t) = ΔF/F = (F(t) - F0 )/F0 . An estimate of 

firing rate variations r(t) was then obtained by linear temporal deconvolution of f(t): r(t) = f'(t) + 

f(t)/τ, f'(t) being the first derivative of f(t) and τ = 2s, the estimated decay of the GCAMP6s 

fluorescent transients. This simple method efficiently corrects the strong discrepancy between 

fluorescence and firing rate time courses due to the slow decay of spike-triggered calcium 

transients. It does not correct for the rise time of GCAMP6s, leading to remnant low pass 

filtering of the firing rate estimate and a delay of ~100ms between the firing rate peaks and 

the peaks of the deconvolved signal. Finally, response traces were smoothed with a Gaussian 

filter (σ = 31ms). 

Electrophysiological signals were high-pass filtered and spike sorting was performed using the 

CortexLab suite (https://github.com/cortex-lab, UCL, London, England). Single unit clusters 

were identified using kilosort 2.5 followed by manual corrections based on the interspike-

interval histogram and the inspection of the spike waveform using Phy 

(https://github.com/cortex-lab/phy).  

Both for imaging and electrophysiology data, single trial sound responses were extracted (0.5s 

before and 1s after sound onset) and the average activity over the prestimulus period (0.5s - 

0s before sound onset) was subtracted for each trial. 

Reproducibility index and cell selection  

To quantify the noise levels in the data, we calculated the mean inter-trial correlation across 

all pairs of trials. The single neuron reproducibility is then defined for each neuron as the 

average of the inter-trial correlation for that neuron’s response to all 140 sounds. The 

population response reproducibility for each sound is defined as the average of the inter-trial 

correlations of the full sequence of response of the whole neural population to that sound. 

Region of interests (ROIs) or single units with reproducibility below 0.12 were classified as 

non-responsive and were excluded from all analyses except population sparseness. As 

detailed in the Supplemental Table 1, the number of responsive units and the corresponding 

fraction of the total number of units/ROIs recorded are: AC, 19414 (32%), TH, 3969 (12%), 

THE, 484 (97%), 5936 (39%), 442 (78%).  

Noise-corrected correlation 

For each dataset, population representations were estimated after pooling all recording 

sessions in a virtual population. We used the correlation between population vectors as a 

metric of similarity between representations. The areas and techniques used to estimate 

neuronal ensemble representations yielded different levels of trial-to-trial variability due to 

intrinsic neuronal response variability and measurement noise. Most representation metrics 

are biased by variability, even after trial averaging, due to variability residues. For example, 

the correlation between two population representations (population vectors) will tend to 
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decrease with respect to a variability-free estimate 36. When multiple observations of the same 

representations are available, it is possible to account for the impact of variability, by using 

specific estimators 36. Here we showed analytically (see Supplemental Mathematical 

Derivations) that the value of the Pearson correlation coefficient  between population 

vectors for two sounds  and  in absence of variability can be exactly estimated from noise-

corrupted single-trial observations  and  of  and  when their dimension N 

approaches infinity, based on the formula: 

 

 
 

in which r and r’ are single trial indices and R is the total number of trials. This analytical result 

is confirmed by simulations for finite N, indicating that our estimator converges to the 

correlation value of the noise-free vectors (Fig. 2C). Code for calculating this estimator is 

provided with the online data set. 

 

Simulations for finite N show as expected that the estimator displays substantial deviations 

around the true correlation which however average to zero. This leads to values of the 

estimator that can be outside [-1,1] in some cases. Our estimator displays extremely large 

deviations when  approaches 0, i.e. for representations that are 

dominated by noise. This occurred more often in datasets obtained by imaging, in particular 

in the thalamic axonal boutons dataset (TH). To limit imprecisions from these extreme values 

we excluded from all datasets sounds for which  . In typical neural 

data, there are significant noise correlations across simultaneously recorded neurons within a 

trial. Therefore, the effective N can be much lower than the number of neurons. We minimized 

this contribution by shuffling trial identity for each neuron independently. 

 

To evaluate the significance of mean correlation differences across all sound pairs for time-

averaged or sequence representations, we used a bootstrap procedure over the 

independently recorded sessions. This procedure had the advantage of providing a statistical 

assessment for biological replicability based on strictly independent measurements (neurons 

of the same recording are not fully independent statistically). The noise-corrected correlation 

measure was estimated 100 times after a random resampling of sessions with replacement. 

Based on this distribution, we measured the standard deviation and calculated p-values down 

to 0.01. 

Sequence correlation was measured on vectors formed by concatenating the responses of all 

neurons throughout time (vector dimension = NNeurons x NTimeBins). Time-averaged correlation 

was measured first by time-averaging the responses of each neuron and then concatenating 

these values for all neurons (vector dimension = NNeurons). In both cases, we used data from 

the sound onset to 250ms after the sound offset. To normalize the difference between 

sequence and time-averaged correlation when comparing between areas we use the formula 

:  
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𝜌𝑑𝑖𝑓𝑓 =  
𝜌𝑡−𝑎𝑣 − 𝜌𝑠𝑒𝑞

1 − 0.5 ×(𝜌𝑡−𝑎𝑣 + 𝜌𝑠𝑒𝑞)
  

Noise-corrected sparseness measure 

There exist several sparseness measures which are all biased by variability in neuronal activity 

measurements 61–63. The most classical measure as defined in 61,62 is not appropriate for 

baseline-corrected, linearly deconvolved calcium data because it requires positive response 

values. We show in the Supplemental Mathematical Derivations that kurtosis, the 4th order 

moment of a distribution, is a sparseness measure 63 which can be corrected for variability-

related biases and is appropriate for all our datasets. This metric quantifies the “long-

tailedness” of the distribution. Sparse response properties correspond to rare and strong 

responses which generate long-tailed response distributions as opposed to dense response 

properties which correspond to more compact response distributions. For lifetime sparseness, 

measured for each neuron separately, Kurtosis is defined as:  

 

in which <>s indicates averaging over sounds and 𝜈𝑛,𝑠 is the noise-free response of neuron n 

to sound s. In the case of population sparseness, which is measured for each sound 

separately, <>s should be replaced by <>n which indicates averaging over neurons. The 

Kurtosis formula can be developed into the moments of order 1 to 4 of 𝜈𝑛,𝑠. 

 

  

Starting from the second order, estimates of these moments based on trial-averaged response 

include noise-related bias terms, which skew the kurtosis estimates for limited trial counts. We 

analytically demonstrated and numerically verified that these biases can be suppressed using 

noise corrected formulae of all moments that are detailed in the Supplemental Mathematical 

Derivations. Code for these calculations is provided with the online data set. 

When calculating population sparseness, we analyzed all neurons including non-responsive 

neurons. Non-responsive neurons with aberrant response levels (>5 times the maximal value 

of responsive neurons) were excluded. Based on this, the percentages of units used were : 

ICE : 92%, IC: 80%, TH: 61%, THE: 97%, AC:92%). 

Population activity classifiers  

To evaluate the accuracy of sound identification based on single-trial population responses, 

we trained a nearest-neighbor classifier on a subset of trials and cross-validated it on a distinct 

subset of trials. Training and testing sets were constructed by randomly selecting half of the 

trials for each unit. For each sound, we correlated the population response averaged over the 

training trials for this sound with the population response averaged over the testing trials for 

all the other sounds. The sound with the highest correlation was assigned as the prediction. 

Decoding accuracy is defined as the proportion of correctly assigned sounds. 

Sequence and time-averaged codes were defined as for the correlation measures. Statistical 

significance was evaluated using the same bootstrap procedure as for the correlation 
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measures. Importantly, decoding depends inherently on trial-to-trial noise which limits the 

possibility of comparing between areas. This analysis serves to contrast sequence and time-

averaged codes within an area. 

To measure the information contained at different timescales, the temporal sequence of 

population activity was decomposed into its Fourier coefficients corresponding to a discrete 

set of timescales ranging from T, the 750 ms sound response duration, down to 2∆t, where ∆t 

is the discretization time of the dataset (1/2∆t = f  the Nyquist frequency ; ∆t = T/24 = 31.25 ms 

for 2P-imaging data and ∆t = T/96 = 7.81 ms for electrophysiology data).  

The Fourier coefficient Cn,r for frequency n/T and neuron r is defined as  

𝐶𝑛,𝑟  = ∑2𝐾
𝑘=1 𝜈𝑟(𝑘) 𝑒

𝑖2𝜋𝑘𝑛

𝑇𝑓   

where νr(k) is the activity of neuron r at timestep k, i = √−1 and K = Tf. Each coefficient is a 

complex number or, equivalently, a two-dimensional vector. Hence the activity sequence for 

a given neuron is either represented by a vector of 2K data points or of 2K Fourier coefficients. 

To measure the information present at a given time scale, we applied the population activity 

classifier on the population vector containing the 2N Fourier coefficients for this time scale for 

the N neurons of the dataset (Fig. S3G). To measure information present above a particular 

time scale Tmax, we used the Fourier coefficients from 1 to Tmax for each neuron and 

concatenated them into a 2NTmax population vector (Fig. S3H). Of note, when evaluating 

information at particular time scales, we did not apply any temporal filtering steps to avoid 

artifacts due to the finite size of the filter and preserve the full bandwidth of the data. 

Tuning analysis 

To quantify the number of neurons significantly tuned to a specific property, we first performed 

a parametric ANOVA test to identify the neurons which respond significantly more to one of 

the sounds of interest (e.g. 60, 70 or 80 dB levels across all pure tones for intensity tuning, up 

vs down modulations in a given frequency range for frequency modulation). We used a 

threshold of p=0.05. We do not compare the absolute number of neurons tuned to a given 

property between areas since this will largely reflect the different levels of noise in the data 

sets and we focus on the properties of significantly tuned neurons. 

To measure the tuning of individual units to classes of stimuli (for example up chirps vs down 

chirps) we used the following modulation index:  

𝑀𝐼 =  
𝜈𝑎 − 𝜈𝑏

0.5 ∗ (|𝜈𝑎| + |𝜈𝑏|)
 

 

Reinforcement learning model 

We adjusted a previously published reinforcement learning model 41, to learn discriminations 

between pairs of temporal inputs. The model receives as inputs the temporal responses for 

two sounds: ( ) for the rewarded sound and ( ) for the non-rewarded sound. The 

model learns the synaptic weights between these input representations and a downstream 

decision circuit (Fig. 4A). This circuit is composed of a Go-unit which outputs the decision 
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(synaptic weights : wE) and an inhibitory neuron that provides immediate linear inhibition to the 

reward neuron (synaptic weights : wI). The temporal output, y(t), of the model can therefore 

be described as :  

𝑦(𝑡)  =  𝑤𝐸 . 𝑋 (𝑡)  − 𝑤𝐼 . 𝑋 (𝑡)  −  𝜉  where 𝜃 is the Heaviside step function, 𝜉 is a time -

independent Gaussian random noise process that models stochasticity of behavioral choices. 

The decision to go is made if the mean activity of the Go-unit within the response window <

𝑦(𝑡) >𝑡  is larger than 0.2 (<. >𝑡. denotes time averaging over 0.5s).  

The synaptic weights are updated according to a learning rule which compares the reward 

prediction to the actual reward, assuming that reward prediction corresponds to the mean 

input received by the Go-unit. The learning rule has three particularities that have been 

previously shown to be important to account for mouse behavior41 and compatible with our 

knowledge of synaptic plasticity rules. First, it is asymmetric : the learning rate is larger when 

an unexpected reward occurs than when an expected reward does not. Second, it is 

multiplicative : the learning rate at a given synapse depends on the current weight of that 

synapse. Finally, it takes into account the known dynamics of the eligibility trace in the striatum 
43,64 which is a key target of both AC and TH in discrimination learning44. The eligibility trace is 

a key mechanism in the “neohebbian framework” that aims to explain how synaptic plasticity 

can accommodate delays between action initiation and environmental feedback. This theory 

proposes that synapses that undergo pre-post coincidence prior to feedback are tagged via a 

long-lasting (~ few seconds) eligibility trace. Weight changes will only occur at these tagged 

synapses if they are subsequently exposed to neuromodulatory feedback before this eligibility 

trace decays 64. In line with this, in the striatum, potentiation of synapses is conditioned on 

dopamine release within a ~3s time window following coincidence of pre- and post-synaptic 

activity 43. To implement this in our model, the temporal signal for the model input is convolved 

with a kernel corresponding to the temporal profile of dopaminergic plasticity gating taken from 

Yagishita et al 43 before calculation of the weight update.  

The learning rule is implemented as :  

 

 

where  the learning rate,  is the action outcome (  = 1 for reward,  = -1 for no 

reward,  is the behavioral noise level parameter that sets the models peak performance,  

is the function that implements asymmetric learning such that  

  

  

 is the learning rate asymmetry ratio,  
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where  is the temporal function shown in Fig. 4A and taken from Yagishita et al 43 and 

 = 0.5s. 

In order to estimate the speed at which the model learns to discriminate between different 

neural representations, we used as input the population vector time series for two different 

sounds from a given area. For calcium imaging, we first performed clustering of the response 

to reduce dimensionality. The model was then run for three independent simulations to 

average out the stochastic contribution and we evaluated the number of trials to reach 80% 

based on the average learning curve over these three repeats.  

For dimensionality reduction of the population vector, we performed agglomerative 

hierarchical clustering based on the euclidean distance between each neuron’s full temporal 

response to all stimuli. The number of clusters was established by increasing the number of 

clusters until the sound-pair RSA matrix constructed from the clusters explained 95% of the 

variance of the matrix constructed from the full neural population. Clustering was performed 

independently for each data set and yielded approximately 150 clusters in all areas. AC data 

displayed in Fig. 2B represent clusters rather than single neurons. 

Convolutional neural networks  

Augmented sound set. In order to train deep neural networks, we created an augmented 

sound set that covered all the basic parameters explored by the original 140 sound set used 

in experiments. We first augmented the basic sounds composing the sound set from 140 to 

2169. This first step generated the sounds by independently varying all features defining the 

sounds (frequency, intensity, amplitude modulation direction or period, frequency modulation 

direction, chord composition). Thereby, a given feature cannot be predicted based on other 

features as in the experimental sound set. We further augmented the sound set using the 

approach from 26. Each 500ms sound is embedded at a random time in a randomly chosen 

1.5 s snippet taken from an auditory scene (bus station, park, street…) with a random intensity 

(average : 53db, std : 7dB). We thus generated a total of 150.000 sounds for the test (6.000), 

train (110.000) and validation (34.000) sets respectively.  

Task definitions. The multi-category task required the network to output a 14-element binary 

category vector in which 1 indicates that the sound presented belongs to one of 14 categories, 

divided into 4 groups within which categories are mutually exclusive: frequency range, 

intensity range, frequency modulation type, and amplitude modulation type. However, all 

sounds had to receive one label from each group. The group structure was not provided to the 

network which therefore had to learn that a sound could not be simultaneously high and mid 

frequency for example. The categories were defined as follows:  

Frequency range group: high frequency (4-8 kHz) / mid frequency (9-17 kHz) / low frequency 

18-38 kHz) / broadband (white noise only). For chords and frequency modulated chirps, the 

frequency value used for categorization was the average of all frequencies (i.e. middle of the 

chirp). Intensity range group: high time-averaged intensity (80dB) / mid time-averaged 

intensity (70dB) / and low time averaged intensity (60 dB). Amplitude modulated sounds were 

assigned to their closest time-averaged range group. We obtained different overall intensities 

by ramping sounds sublinearly, linearly or supralinearly. Amplitude-modulation group: Up-

ramping/ down-ramping / sinusoidal modulation / no modulation. Frequency-modulation 

group: Up chirp / Down chirp / no modulation. 
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We also implemented reduced versions of the multi-category task in which some category 

groups were excluded. In order to probe the effect of changing the category structure on 

representations of specific sounds, we selected a subset of sound pairs for each auditory 

feature that differed only according to one of the 14 categories (Fig. 6 and S5). 

The sound identification task required the network to output the identity of each of the 2169 

different sounds without any category. 

The convolutional autoencoder is a network trained to reproduce with minimal loss its input 

with the constraint of passing all information through a small, central bottleneck layer. It is 

composed of an encoder sub-network that processes the input to allow for compression in the 

bottleneck layer and a decoder sub-network that reconstructs the output from the low-

dimensional bottleneck representation.  

Architecture definition and training All networks take as input a 2D (time x frequency) matrix 

of the log-scaled spectrogram of the sound and must produce as output the labels described 

above. In order to achieve this, a series of convolutional blocks is applied to transform the 

input. All classification networks were built from a series of 6 blocks composed of the same 

layers :  

- convolution : the input is convolved by a filter whose weights the network must learn, 

each layer applies multiple filters, generating a 3D matrix (time x frequency channel) 

from the initial 2D input (free parameters : kernel size, kernel stride, channel number) 

- activation : the output of the convolution is passed through a Relu non-linear activation 

function 

- maxpooling : the output of activation is downsampled by taking the maximal value of 

neighboring values (free parameters : pool size, pool stride) 

- dropout : in order to improve the robustness of training, during each training batch a 

random 50% selection of connections are eliminated. During testing and validation, all 

connections are active. 

After these convolutional blocks, a final 64-node fully connected layer with a Relu non-linearity 

allows to aggregate information across time, frequency and channel dimensions. The output 

layer is obtained for the multilabel task by applying a sigmoid function to the fully connected 

output and for the identification task by applying a softmax function.  

The output of the last layer allowed us to calculate the value of the loss function that comprises 

the error the network makes (categorical cross entropy loss function) and a L1 regularization 

term in order to improve network robustness. This loss was then back-propagated during 

training in order to optimize the weights of the connections using the Adam optimizer.  

Any given architecture requires arbitration across a wide range of free parameters, most 

notably the kernel and max pooling size and stride as well as the number of channels in each 

block. One approach to this problem is to perform a search across architectures to obtain 

optimal performance on the task. This has allowed optimization on ecologically-relevant tasks 

to be proposed as a criteria for building deep networks that function like the brain. However 

we focused on general properties of CNNs and were using a simple task without natural 

sounds. We therefore chose to assess the generality of our results on various architectures 

instead of performing an exhaustive search. We also verified the reliability of our results for a 
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given architecture by using 2 different initialization weights per architecture. The four 

architectures we evaluated are defined as follows (CV : convolution layer, MP : max pooling 

layer, FC : fully connected layer, Ker : kernel size) :  

(1) Input : 109 x 150; Cv1 : 109 x 150 x 18, Ker(3,3); MP; CV2 : 55 x 75 x 20, Ker(5,5); CV3 : 

55 x 75 x 24, Ker(6,6) ; MP; CV4 : 28 x 38x 28, Ker(7,7) ; CV5 : 28 x 38 x 32, Ker(8,8); MP; 

CV6 : 14 x 19 x 32, Ker(9,9); FC : 64  

(2) Input : 109 x 150; Cv1 : 55 x 75 x 18, Ker(3,3); CV2 : 55 x 75 x 20, Ker(5,5); CV3 : 28 x 38 

x 24, Ker(6,6); CV4 : 28 x 38x 28, Ker(7,7); CV5 : 14 x 19 x 32, Ker(8,8); CV6 : 14 x 19 x 32, 

Ker(9,9); FC : 64  

(3) Input : 109 x 150; Cv1 : 55 x 75 x 1, Ker(7,7)8; CV2 : 55 x 75 x 20, Ker(7,7); CV3 : 28 x 38 

x 24, Ker(7,7); CV4 : 28 x 38x 28, Ker(7,7); CV5 : 14 x 19 x 32, Ker(7,7); CV6 : 14 x 19 x 32, 

Ker(7,7); FC : 64  

(4) Input : 109 x 150; Cv1 : 55 x 75 x 24, Ker(3,3); CV2 : 55 x 75 x 24, Ker(5,5); CV3 : 28 x 38 

x 24, Ker(6,6); CV4 : 28 x 38x 24, Ker(7,7); CV5 : 14 x 19 x 24, Ker(8,8); CV6 : 14 x 19 x 24, 

Ker(9,9); FC : 64 

One prominent consequence of the choice of CNN architecture is the way in which the input 

volume evolves throughout the network. Choosing a large stride in the convolutional or a large 

window size in the max pooling layer will lead to a shrinkage of the input dimensions (time and 

frequency). Given that the temporal dimension is preserved in the brain, we examined an 

architecture in which there is no shrinkage at all of the temporal dimension. To do this, we 

used the 4 same architectures described above, with the temporal dimension kept constant 

by setting all strides to 1 and eliminating max pooling. This results in a large expansion of the 

parameters in the network and impacts training speed although asymptotic performance 

remains the same (Fig. 5).  

The convolutional autoencoder receives as input the 2D spectrogram and must output a 

denoised spectrogram (spectrogram of the central sound without the background noise). The 

autoencoder was composed of 4 convolutional blocks as previously described in the encoding 

part and decoding networks, the bottleneck is a fully-connected, 20 node layer. Training was 

performed with an Adam optimizer, L1 and L2 regularization and MSE as a loss function.  

The convolutional neural network trained on word and musical genre recognition was 

previously published26 and parameters have been made available at 

(https://github.com/mcdermottLab/kelletal2018). This network is composed of a central branch 

that splits into two branches, with one branch trained to identify musical genres and the other 

branch trained to identify words. In the original paper, the network was shown to achieve 

human-like performance and to qualitatively reproduce psychophysical measures during these 

tasks. 

Analysis of CNN activations Once the networks had been trained, we analyzed the 

responses of all nodes in each activation layer to the 140 sounds that were presented during 

experimental sessions. Each sound generates at a given layer a 3D matrix (time x frequency 

x channels). By considering the temporal response of each frequency x channel combination 

we obtained analogs to the temporal response of individual neurons. We then applied the 

same analysis techniques to these artificial responses as described above for neural 

recordings. In order to perform decoding which requires multiple presentations of the same 
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sound, we presented to the network multiple copies of each sound embedded in different noise 

backgrounds.  

Cochlear model 

A computational model of the mouse cochlea was implemented based on the seminal model 

of Meddis65,66. The model consists of a cascade of six stages recapitulating stapes velocity, 

basilar membrane velocity, inner hair cell (IHC) receptor potential, IHC presynaptic calcium 

currents, transmitter release events at the ribbon synapse, and firing response in auditory 

nerve fibers (ANFs) including refractory effects. The input model is a sound stimulus (in 

Pascals). The output is a train of spiking events (in spikes/s) in 590 ANFs innervating 40 IHCs 

with a characteristic frequency (CF) distributed at regular intervals along the cochlear 

tonotopic from 5 to 50 kHz, 12 IHCs per octave. This distribution covered 82.8% of the basilar 

membrane length from 1.2% (apex) to 83.9% (base) in 2.07% increments. According to 

experimental data, the number of ANFs per IHC (N) was controlled by the relationship N=-

0.0038x^2+0.375x+7.9 where x is the IHC location along the basilar membrane such that x=-

56.5+82.5 log⁡(CF), with x in percent from the apex and CF in kHz67. By adjusting the time 

constant of the calcium clearance τ_Ca within each IHC synapse66, ANFs with different 

spontaneous discharge rate (SR=91.1 τCa
2.66, with τCa in ms and SR in spikes/s) were 

simulated from 0.5 to 95 spikes/s (21 ± 19.8 spikes/s, mean ± SD) to match the SR distribution 

reported in mouse auditory nerve. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Statistical results (degrees of freedom, p-values and statistical values) are reported in figure 

legends or in Supplemental Table 3. For statistical analysis of neural data, we performed a 

bootstrap analysis as detailed above. For statistical analysis of behavioral data provided in the 

manuscript, the Kolmogorov–Smirnov normality test was first performed on the data. If the 

data failed to meet the normality criterion, statistics relied on non-parametric tests. We 

therefore represent the median and quartiles of data in boxplots in all figures, in accordance 

with the use of non-parametric tests. Ranksum and signed rank: we report the signed rank 

statistic if the number of replicates is too weak to provide the normal Z statistic. 
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Supplemental figures and tables 
 

 

Figure S1. Details of auditory system sampling. A. Mean intrinsic imaging responses (n=32 

mice) for 4, 16 and 32 kHz sounds (black) and the subtraction of 32kHz and 4kHz maps (color). 

This extended data set allowed us to construct a consensus map to align mice included in the 

study. B. Illustration of method used to identify AC subregions based on the tonotopic 

gradients established in28. C. Localization of all recorded ROIs on the consensus tonotopic 
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map with AC subregions. D. Localization of responsive neurons to increasing frequency and 

intensity. Note the larger recruitment with stronger intensity and the spatial shift with 

frequency. E. Proportion of units per subarea. F. Depth distribution of units per subarea. G. 

Example thalamocortical axon expressing GCaMP6s merged with Vglut2. Thalamic axonal 

boutons expressing Vglut2 appear yellow as shown in the magnified region (right). H. Density 

of labeled boutons (Vglut2+;GCaMP6s-expressing in yellow; GCaMP6s alone in green) in layer 

1 of the AC (12 sample regions; 4 regions per confocal image; means and STD: 

0.0122±0.0052, 0.0005±0.0008, density of co-labelled and green only boutons, respectively). 

I. Peristimulus time histogram of an auditory nerve fiber (ANF) with a characteristic frequency 

equal to that of the presented 12-kHz tone burst (10-ms rise/fall, 500-ms duration) with 

increasing level from 60, 70 and 80 dB SPL. Note the rapid adaptation of the firing. J. Basilar 

membrane velocity and sound-activated auditory nerve fibers per inner hair cell (IHC) along 

the tonotopic axis. Note the reduced frequency selectivity with the increasing intensity. Gray 

dashed line shows the mouse synaptic cochleogram. The criterion for sound-activated 

auditory nerve fibers was 10 spikes/s above the spontaneous rate. 
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Figure S2. Single cell tuning to diverse acoustic features from cochlea to auditory 

cortex 

A-E. Right: For each tuning property we show the responses of example neurons from the 

IC, TH and AC to sounds that differ according to that property and provide the tuning strength 

(TS) and best frequency (BF) for that neuron. Asterisks indicate significant tuning of the neuron 

to a specific value, for example the leftmost neuron in A is an IC neuron that is significantly 

tuned to frequency modulation speed with a maximum response for decreasing frequency at 

3oct/s. Left : Boxplot giving the distribution of tuning strengths across the whole population 

and piecharts showing the proportion of neurons maximally tuned to each parameter value for 

significantly tuned neurons.  
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Figure S3. Robustness of correlation and accuracy measures 

A-B. Noise-corrected sparseness measured using kurtosis (n=140 sounds for population 

kurtosis (A) and n=all neurons for lifetime kurtosis (B)). C. Mean sound decoding accuracy for 

time-averaged and sequence codes. D. Noise-corrected correlation for time-averaged and 

sequence code in each area with varying numbers of sub-selected neurons. E. Decoding 

accuracy for time-averaged and sequence code in each area with varying numbers of sub-

selected neurons. F. Sketch illustrating the decomposition of population responses by 

timescale as in G and H. G. Mean decoding accuracy based on successive Fourier coefficients 

of neural responses. 0Hz = time-averaged code. H. Same as G but for the concatenation of 

successive Fourier coefficients. The robustness of AC representations to time averaging can 

be seen in this figure as the fact that accuracy is already very close to plateau value at 0Hz 

(time-averaged activity level), contrary to other areas which show an increase when adding 

faster timescales. As expected, 2 photon data only contained information up to 3Hz whereas 

electrophysiology data was informative even above 12Hz. Importantly, in all brain areas the 

cumulative information saturated around 3Hz, which is much lower than the known 30 Hz 

frequency cutoff for AC 11,38. I-K. Mean noise-corrected correlation between sound pairs 

differing by only one acoustic property : I. frequency sweeps with identical frequency content 

and duration at 60dB vs 80dB, J. frequency sweeps with identical frequency content of 

different duration, K. amplitude modulated sounds with same carrier frequencies modulated 

at 1Hz vs 3Hz (p-value for 100 bootstraps comparing time-averaged correlation of each region 

to AC, error bars are S.D). P-values and details of statistical tests are given in the 

Supplemental Table 3.  
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Figure S4. Details of optogenetic cortical stimulation protocol 

A. Population average intrinsic imaging map of tonotopic areas in AC showing the localization 

of all spots used for optogenetic stimulation. B-C. Control experiment showing that response 

to optogenetic stimulation is specific to cortical activation : mice ceased responding to light 

stimulation when the cranial was blocked by a small cache that left all other light cues intact. 

Note also that the lick probability for time-averaged or sequence patterns is identical during 

this initial phase. (paired Wilcoxon test, p = 0.0156, signed rank value = 28, n=7) D. Learning 

curves from two example mice in both tasks. E. Accuracy over the last 300 trials for all mice. 

(paired Wilcoxon test, p = 0.015, signed rank value = 28, n=7). 
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Figure S5. Details of CNN training and task specificity 

A. Mean correlations from the network trained on natural sounds from Kell et al for musical 

snippets (left) or words (center). Note that the branch trained to perform musical genre 

recognition (music branch - red) decorrelates music but not words and vice versa. B-C. 

Category by category performance of CNNs trained without shrinking of the temporal 

dimension (B) or with (C) (n=8, error bars are sem). D. Mean response correlations from RSA 

matrices from untrained networks with the same architecture as those trained on the multi-

category task (n=8, error bars are sem) E. Accuracy of trained network at identifying each 

individual sound out of 2169. F. RSA matrix of original sounds and reconstructed sounds 

showing that the autoencoder fully preserved the relations between all the sounds. G. Mean 

decoding accuracy based on successive Fourier coefficients of CNN responses. 0Hz = time-

averaged code (n=8, shaded areas are sem). H. Same as G but for the concatenation of 

successive Fourier coefficients. I. Average correlation between the RSA matrices from each 

region of the mouse auditory system and the different layers of networks performing different 

tasks. J. Mean time-averaged correlation between representations of sounds differing by a 

specific property throughout networks trained on variations of the multi-class task. Blue curves 

correspond to networks not trained on the class relevant for the sounds (ex not trained on 
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frequency for sounds differing only by frequency (top left)) whereas black curves correspond 

to networks trained on all variations of the task that include the relevant class. 
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Supplemental Table 1. Details of dataset 

Brain region Recording 

method 

Units 

recorded 

Responsive 

units 

Number 

of 

animals 

Number of 

sessions 

Recorded units 

per animal (min, 

mean, max) 

Recorded units 

per session (min, 

mean, max) 

Auditory 

cortex 

Cell body 2 photon 

calcium imaging 

60822 19414 (32%) 7 60 2164 / 8688 / 

20631 

57 / 1013 / 1782 

Auditory 

thalamus 

Axonal bouton 2 

photon calcium 

imaging 

39191 3969 (12%) 4 24 1280 / 9287 / 

19870 

477 / 1632 / 3120 

Single unit 

electrophysiology 

498 484 (97%) 10 33 4 / 49 / 113 2 / 15 / 32 

Inferior 

colliculus 

Cell body 2 photon 

calcium imaging 

15312 5936 (39%) 30 101 25 / 510 / 2975 25 / 151 / 495 

Single unit 

electrophysiology 

563 442 (78%) 11 30 10 / 56 / 119 4 / 18 / 54 
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Supplemental table 2. Sound parameters 

   Start freq. (kHz) Stop freq. (kHz) Start int. (dB) Stop int. (dB) Dur. (ms) 

1  blank NaN NaN NaN NaN 500 

2 

Pure tones 

tono60dB_4kHz 4 4 60 60 500 

3 tono60dB_5kHz 5 5 60 60 500 

4 tono60dB_6kHz 6 6 60 60 500 

5 tono60dB_7kHz 7 7 60 60 500 

6 tono60dB_9kHz 9 9 60 60 500 

7 tono60dB_12kHz 12 12 60 60 500 

8 tono60dB_15kHz 15 15 60 60 500 

9 tono60dB_19kHz 19 19 60 60 500 

10 tono60dB_24kHz 24 24 60 60 500 

11 tono60dB_29kHz 29 29 60 60 500 

12 tono60dB_37kHz 37 37 60 60 500 

13 tono70dB_4kHz 4 4 70 70 500 

14 tono70dB_5kHz 5 5 70 70 500 

15 tono70dB_6kHz 6 6 70 70 500 

16 tono70dB_7kHz 7 7 70 70 500 

17 tono70dB_9kHz 9 9 70 70 500 

18 tono70dB_12kHz 12 12 70 70 500 

19 tono70dB_15kHz 15 15 70 70 500 

20 tono70dB_19kHz 19 19 70 70 500 

21 tono70dB_24kHz 24 24 70 70 500 

22 tono70dB_29kHz 29 29 70 70 500 

23 tono70dB_37kHz 37 37 70 70 500 

24 tono80dB_4kHz 4 4 80 80 500 

25 tono80dB_5kHz 5 5 80 80 500 

26 tono80dB_6kHz 6 6 80 80 500 

27 tono80dB_7kHz 7 7 80 80 500 

28 tono80dB_9kHz 9 9 80 80 500 

29 tono80dB_12kHz 12 12 80 80 500 

30 tono80dB_15kHz 15 15 80 80 500 

31 tono80dB_19kHz 19 19 80 80 500 

32 tono80dB_24kHz 24 24 80 80 500 
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33 tono80dB_29kHz 29 29 80 80 500 

34 tono80dB_37kHz 37 37 80 80 500 

35 

Pure up 
ramps 

Up4kHz 4 4 60 80 500 

36 Up6kHz 6 6 60 80 500 

37 Up9kHz 9 9 60 80 500 

38 Up15kHz 15 15 60 80 500 

39 Up24kHz 24 24 60 80 500 

40 

Chord up 
ramps 

Up4+6kHz 4, 6 4, 6 60 80 500 

41 Up4+9kHz 4, 9 4, 9 60 80 500 

42 Up4+15kHz 4, 15 4, 15 60 80 500 

43 Up4+24kHz 4, 24 4, 24 60 80 500 

44 Up6+9kHz 6, 9 6, 9 60 80 500 

45 Up6+15kHz 6, 15 6, 15 60 80 500 

46 Up6+24kHz 6, 24 6, 24 60 80 500 

47 Up9+15kHz 9, 15 9, 15 60 80 500 

48 Up9+24kHz 9, 24 9, 24 60 80 500 

49 Up15+24kHz 15, 24 15, 24 60 80 500 

50 Up4+6+9+15kHz 4, 6, 9, 15 4, 6, 9, 15 60 80 500 

51 Up4+6+9+24kHz 4, 6, 9, 15, 24 4, 6, 9, 15, 24 60 80 500 

52 Up4+6+15+24kHz 4, 6, 15, 24 4, 6, 15, 24 60 80 500 

53 Up4+9+15+24kHz 4, 9, 15, 24 4, 9, 15, 24 60 80 500 

54 Up6+9+15+24kHz 6, 9, 15, 24 6, 9, 15, 24 60 80 500 

55 UpmultiHz 4, 6, 9, 15, 24 4, 6, 9, 15, 24 60 80 500 

56 

Pure down 
ramps 

Down4kHz 4 4 80 60 500 

57 Down6kHz 6 6 80 60 500 

58 Down9kHz 9 9 80 60 500 

59 Down15kHz 15 15 80 60 500 

60 Down24kHz 24 24 80 60 500 

61 

Chord down 
ramps 

Down4+6kHz 4, 6 4, 6 80 60 500 

62 Down4+9kHz 4, 9 4, 9 80 60 500 

63 Down4+15kHz 4, 15 4, 15 80 60 500 

64 Down4+24kHz 4, 24 4, 24 80 60 500 

65 Down6+9kHz 6, 9 6, 9 80 60 500 

66 Down6+15kHz 6, 15 6, 15 80 60 500 

67 Down6+24kHz 6, 24 6, 24 80 60 500 
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68 Down9+15kHz 9, 15 9, 15 80 60 500 

69 Down9+24kHz 9, 24 9, 24 80 60 500 

70 Down15+24kHz 15, 24 15, 24 80 60 500 

71 Down4+6+9+15kHz 4, 6, 9, 15 4, 6, 9, 15 80 60 500 

72 Down4+6+9+24kHz 4, 6, 9, 15, 24 4, 6, 9, 15, 24 80 60 500 

73 Down4+6+15+24kHz 4, 6, 15, 24 4, 6, 15, 24 80 60 500 

74 Down4+9+15+24kHz 4, 9, 15, 24 4, 9, 15, 24 80 60 500 

75 Down6+9+15+24kHz 6, 9, 15, 24 6, 9, 15, 24 80 60 500 

76 DownmultiHz 4, 6, 9, 15, 24 4, 6, 9, 15, 24 80 60 500 

77 

Sinusoid AM 
modulation 

Sin1Hz9kHz 9 9 60 - 80 60 - 80 500 

78 Sin3Hz9kHz 9 9 60 - 80 60 - 80 500 

79 Sin7Hz9kHz 9 9 60 - 80 60 - 80 500 

80 Sin20Hz9kHz 9 9 60 - 80 60 - 80 500 

81 Sin1Hz24kHz 24 24 60 - 80 60 - 80 500 

82 Sin3Hz24kHz 24 24 60 - 80 60 - 80 500 

83 Sin7Hz24kHz 24 24 60 - 80 60 - 80 500 

84 Sin20Hz24kHz 24 24 60 - 80 60 - 80 500 

85 Sin1HzWhitenoise WN WN 60 - 80 60 - 80 500 

86 Sin3HzWhitenoise WN WN 60 - 80 60 - 80 500 

87 Sin7HzWhitenoise WN WN 60 - 80 60 - 80 500 

88 Sin20HzWhitenoise WN WN 60 - 80 60 - 80 500 

89 

Up chirp 
varying speed 

ChirpUp4kHz60dB100ms 4 9 60 60 100 

90 ChirpUp4kHz60dB250ms 4 9 60 60 250 

91 ChirpUp4kHz60dB500ms 4 9 60 60 500 

92 ChirpUp24kHz60dB100ms 9 24 60 60 100 

93 ChirpUp24kHz60dB250ms 9 24 60 60 250 

94 ChirpUp24kHz60dB500ms 9 24 60 60 500 

95 

Down chirp 
varying speed 

ChirpDown4kHz60dB100ms 9 4 60 60 100 

96 ChirpDown4kHz60dB250ms 9 4 60 60 250 

97 ChirpDown4kHz60dB500ms 9 4 60 60 500 

98 ChirpDown24kHz60dB100ms 24 9 60 60 100 

99 ChirpDown24kHz60dB250ms 24 9 60 60 250 

100 ChirpDown24kHz60dB500ms 24 9 60 60 500 

101 Up chirp - 60 
dB 

ChirpUpclose4kHz60dB 4 6 60 60 500 

102 ChirpUpclose4to9kHz60dB 4 9 60 60 500 
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103 ChirpUpclose4to15kHz60dB 4 15 60 60 500 

104 ChirpUpclose4to24kHz60dB 4 24 60 60 500 

105 ChirpUpclose6kHz60dB 6 9 60 60 500 

106 ChirpUpclose6to15kHz60dB 6 15 60 60 500 

107 ChirpUpclose6to24kHz60dB 6 24 60 60 500 

108 ChirpUpclose9kHz60dB 9 15 60 60 500 

109 ChirpUpclose9to24kHz60dB 9 24 60 60 500 

110 ChirpUpclose15kHz60dB 15 24 60 60 500 

111 

Down chirp - 
60 dB 

ChirpDownclose6kHz60dB 6 4 60 60 500 

112 ChirpDownclose9to4kHz60dB 9 4 60 60 500 

113 ChirpDownclose15to4kHz60dB 15 4 60 60 500 

114 ChirpDownclose24to4kHz60dB 24 4 60 60 500 

115 ChirpDownclose9kHz60dB 9 6 60 60 500 

116 ChirpDownclose15to6kHz60dB 15 6 60 60 500 

117 ChirpDownclose24to6kHz60dB 24 6 60 60 500 

118 ChirpDownclose15kHz60dB 15 9 60 60 500 

119 ChirpDownclose24to9kHz60dB 24 9 60 60 500 

120 ChirpDownclose24kHz60dB 24 15 60 60 500 

121 

Up chirp - 80 
dB 

ChirpUpclose4kHz80dB 4 6 80 80 500 

122 ChirpUpclose4to9kHz80dB 4 9 80 80 500 

123 ChirpUpclose4to15kHz80dB 4 15 80 80 500 

124 ChirpUpclose4to24kHz80dB 4 24 80 80 500 

125 ChirpUpclose6kHz80dB 6 9 80 80 500 

126 ChirpUpclose6to15kHz80dB 6 15 80 80 500 

127 ChirpUpclose6to24kHz80dB 6 24 80 80 500 

128 ChirpUpclose9kHz80dB 9 15 80 80 500 

129 ChirpUpclose9to24kHz80dB 9 24 80 80 500 

130 ChirpUpclose15kHz80dB 15 24 80 80 500 

131 

Down chirp - 
80 dB 

ChirpDownclose6kHz80dB 6 4 80 80 500 

132 ChirpDownclose9to4kHz80dB 9 4 80 80 500 

133 ChirpDownclose15to4kHz80dB 15 4 80 80 500 

134 ChirpDownclose24to4kHz80dB 24 4 80 80 500 

135 ChirpDownclose9kHz80dB 9 6 80 80 500 

136 ChirpDownclose15to6kHz80dB 15 6 80 80 500 

137 ChirpDownclose24to6kHz80dB 24 6 80 80 500 
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138 ChirpDownclose15kHz80dB 15 9 80 80 500 

139 ChirpDownclose24to9kHz80dB 24 9 80 80 500 

140 ChirpDownclose24kHz80dB 24 15 80 80 500 

 

 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.14.520391doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520391
http://creativecommons.org/licenses/by-nc/4.0/


53 

Supplemental Table 3. Detail of statistical comparisons 

Fig 2F & G. Bootstrap comparison of sequence and time-averaged mean correlations in structure X vs in AC 

 AN ICE IC THE TH  

Sequence <0.01 0.43 0.12 0.01 <0.01  

Time averaged <0.01 <0.01 <0.01 <0.01 <0.01  

(Seq - T.A) norm <0.01 <0.01 0.032 0.01 0.086  

       

Fig 2H. Bootstrap comparison of RSA matrix similarity in structure X vs in AC 

 AN ICE IC THE TH  

Seq vs T.A <0.01 <0.01 0.01 <0.01 0.01  

       

Fig 2I. Bootstrap comparison of difference between sequence and time-averaged accuracy in structure X vs in AC 

 AN ICE IC THE TH  

(Seq - T.A) norm <0.01 <0.01 0.01 0.04 0.15  

       

Fig 3. Bootstrap comparison of time-averaged mean correlations in structure X vs in AC 

 AN ICE IC THE TH  

3C - freq <0.01 0.25 0.61 <0.01 0.27  

3D - int PT <0.01 0.27 0.71 0.03 0.52  

3E - FM direction  <0.01 

 

<0.01 <0.01 <0.01 0.04  

3F - AM direction  <0.01 

 

<0.01 <0.01 <0.01 0.1  

       

Fig 6E. Wilcoxon sign rank test of difference RSA matrix correlation between area X and network Y (p-value / signed 

rank value) 

 AN ICE IC THE TH AC 

Cat vs ID 0.28 / 64 0.28 / 64 0.003 / 75 0.0016 / 76 0.12 / 67 0.0016 / 76 

Cat vs Rec 0.08 / 39 0.01 / 60 0.01 / 60 0.0121 / 60 0.012 / 60 0.012 / 60 

       

Fig 6H. Wilcoxon sign rank test of difference RSA matrix correlation between area X and network Y (p-value / signed 

rank value) 

 AN ICE IC THE TH AC 

Full vs NoFreq 0.79 / 65 0.87 / 66 0.19 / 81 0.87 / 70 0.23 / 56 0.87 / 66 

Full vs noFM 0.16 / 82 0.10 / 84 0.0047 / 94 0.02 / 90 0.10 / 84 0.01 / 92 

Full vs noInt 0.015 / 45 0.0002 / 100 0.0003 / 99 0.0003 / 99 0.0002 / 100 0.0002 / 100 

Full vs noAM 0.28 / 79 0.007 / 93 0.0006 / 98 0.0002 / 100 0.007 / 93 0.0047 / 94 

 

       

Fig S3 I-K Bootstrap comparison of time-averaged mean correlations in structure X vs AC 

S3I - int FM <0.01 <0.01 <0.01 <0.01 <0.01  

S3J - FM speed <0.01 0.04 <0.01 0.12 0.22  

S3K - AM freq <0.01 <0.01 0.66 0.27 0.81  
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