

1 **Engineering bacterial blight-resistant plants through**
2 **CRISPR/Cas9-targeted editing of the *MeSWEET10a* promoter in**
3 **cassava**

4 **Yajie Wang^{a,1}, Mengting Geng^{b,1}, Ranran Pan^{d,1}, Tong Zhang^b, Xiaohua Lu^b, Xinghou Zhen^b, Yannian Che^b, Ruimei Li^{a,c},**

5 **Jiao Liu^{a,c}, Yinhua Chen^{b,*}, Jianchun Guo^{a,c*}, Yuan Yao^{a,c*}**

6 ^a *Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese*

7 *Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for*

8 *Tropical Agricultural Resources, Haikou 571101, PR China*

9 ^b *Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China*

10 ^c *Hainan Yazhou Bay Seed Lab, Sanya 572025, PR China*

11 ^d *College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China*

12 * Corresponding author.

13 E-mail address: yhchen@hainanu.edu.cn (Y. Chen); guojianchun@itbb.org.cn (J. Guo); yaoyuan@itbb.org.cn (Y. Yao);

14 ¹ These authors contributed equally to this work.

15 **Abstract:** Cassava starch is a widely used raw materials for industrial production. However, cassava bacterial blight (CBB) caused by
16 *Xanthomonas axonopodis* pv. *manihotis* (*Xam*) results in severe yield losses and is the most destructive bacterial disease in all worldwide cassa-
17 va planting regions. This study showed that editing of the promoter in the disease-susceptibility gene *MeSWEET10a* of SC8 cassava confers
18 resistance to CBB. All mutated cassava lines had normal morphological and yield-related traits as the wild type. The results lay a research foun-
19 dation for breeding cassava resistant to bacterial blight.

20 **Keywords:** Cassava; Cassava bacterial blight; CRISPR/Cas9; *MeSWEET10a* promoter

21 **Highlights:**

22 *MeSWEET10a* gene in SC8 cultivar is hijacked by TALE20 from *Xam11* strain.

23 Editing of the *MeSWEET10a* promoter in SC8 cultivar confers resistance to CBB.

24 All the mutated cassava lines had similar yield-related traits compared to wild-type.

25 **1. Introduction**

26 Starch is one of the most important polymers that has been extensively used in industry. Cassava is a major available
27 source of commercially produced starches in the market. It is extensively cultivated throughout the tropical and subtropical regions.

28 However, cassava bacterial blight (CBB) caused by *Xanthomonas axonopodis* pv. *manihotis* (*Xam*) results in severe yield losses and
29 is the most destructive bacterial disease in all worldwide cassava planting regions (McCallum et al., 2017). The vast majority of
30 cassava cultivars are not resistant to CBB. *Xam* pathogen infection secretes transcription activator-like effectors (TALEs) into
31 cassava host cells through the type III secretion system (Boch and Bonas, 2010). The repeat variable diresidues (RVDs) in TALEs
32 recognize the effector-binding elements (EBEs) on the host susceptibility (S) gene promoters and activate S gene expression which
33 facilitates bacterial growth and disease symptom formation. *Xam668* is a highly virulent *Xam* strain to cassava which contains five
34 transcription activator-like effectors (TALEs) including TALE20_{Xam668} (Bart et al., 2012). The repeat variable diresidues (RVDs) in
35 TALE20_{Xam668} recognize the effector-binding element (EBE) on the *MeSWEET10a* promoter from cassava 60444 cultivar and
36 activate *MeSWEET10a* gene expression which facilitates sucrose transport from the interior of plant cells to the apoplasts and
37 provide carbon sources for the bacteria (Cohn et al., 2014). Thus, editing the EBE in the *MeSWEET10a* promoter may potentially
38 confer resistance to CBB in cassava cultivars.

39 *Xam11* is a highly pathogenic subspecies from Hainan, China that infects the Chinese local planting cassava SC8 cultivar
40 (*Manihot esculenta* Crantz South China 8) with marked pathogenic symptoms. In this study, the CRISPR/Cas9 system was used to
41 edit the EBE_{TALE20} of the *MeSWEET10a* promoter in SC8 cultivar. The EBE_{TALE20} mutant plants showed enhanced resistance to
42 *Xam11*, and did not show any significant differences in major yield-related traits compared to wild-type plants.

43 2. Materials and Methods

44 2.1. Plant Materials

45 For cassava transformation, the SC8 cultivar was used as the recipient. For pathogen inoculation, SC8 and CRISPR/Cas9
46 mutant plants were cultivated in a greenhouse under a 16-h/8-h light/dark cycle at 23-28°C. For agronomic trait (weight and num-
47 ber of tuber root per plant, dry matter ratio, starch content) evaluation, all of the tested mutant plants and WT were planted in the
48 15-cm round pots containing 10% Perlite, 80% soil.

49 2.2. Dual LUC Reporter Gene Assay

50 Genomic DNA extraction from SC8 leaves was performed according to the Plant DNA Kit. The promoter sequence of
51 *MeSWEET10a* from SC8 was amplified by using the specific primers (F: 5'-AACTTTAGAATGAGCCCTG-3'; R:
52 5'-TTCTCCGGCTATAGTAGAGAC-3'), then inserted into pGreenII0800-LUC vector, named as pGreen
53 II0800-p*MeSWEET10a*-LUC vector. The EBE_{TALE20} from the *MeSWEET10a* promoter was deleted and generated
54 p*SWEET10a*-EBE, then inserted into pGreenII0800-LUC, named as pGreenII0800-p*MeSWEET10a*- EBE_{TALE20}-LUC vector.
55 Full-length CDS of TALE20_{xam11} was inserted into pGreen II62-SK vector to generate pGreen II62-SK-TALE20_{xam11} vector. The

56 vectors of pGreen II62-SK or pGreen II62-SK-TALE20_{Xam11} were used as the effectors, and pGreen II0800-pMeSWEET10a-LUC
57 or pGreen II0800-pMeSWEET10a-EBE_{TALE20}-LUC were used as the reporters. The effector and reporter vectors were transformed
58 into tobacco leaves as previously described (Liu et al., 2019b). The activity of Firefly luciferase and the reference Renilla luciferase
59 were quantified using the Dual-Luciferase Reporter Assay System (Promega), according to the manufacturer's instructions. Three
60 biological repeats were analyzed.

61 **2.3. Editing of *MeSWEET10a* EBE_{TALE20} by CRISPR/Cas9 System**

62 In our previous study, the target sgRNA of *MeSWEET10a* EBE_{TALE20} has been designed and constructed the vector of
63 pCAMBIA1301-Cas9-EBE-sgRNA, and the editing function of target sgRNA has been validated in cassava FEC by transient
64 transformation (Zhang et al., 2021). In our current research, the friable embryogenic callus (FEC) of SC8 cassava was infected by
65 *Agrobacterium* LBA4404 harboring editing vector of pCAMBIA1301-Cas9-EBE-sgRNA. The transgenic positive lines were
66 produced according to the protocol described by Nyaboga et al. (2015) (Nyaboga et al., 2015). The transformation conditions of
67 cassava SC8 were *Agrobacterium* strain LBA4404 cell infection (density OD₆₀₀ = 0.65), 250 µM acetosyringone induction, and
68 agro-cultivation with wet FEC for 3 days in dark. To analyze the genotypes of the CRISPR/Cas9 mutants, genomic DNA from the
69 transgenic positive lines were extracted, and analyzed using the Hi-TOM program for high-throughput mutations (Liu et al.,
70 2019a).

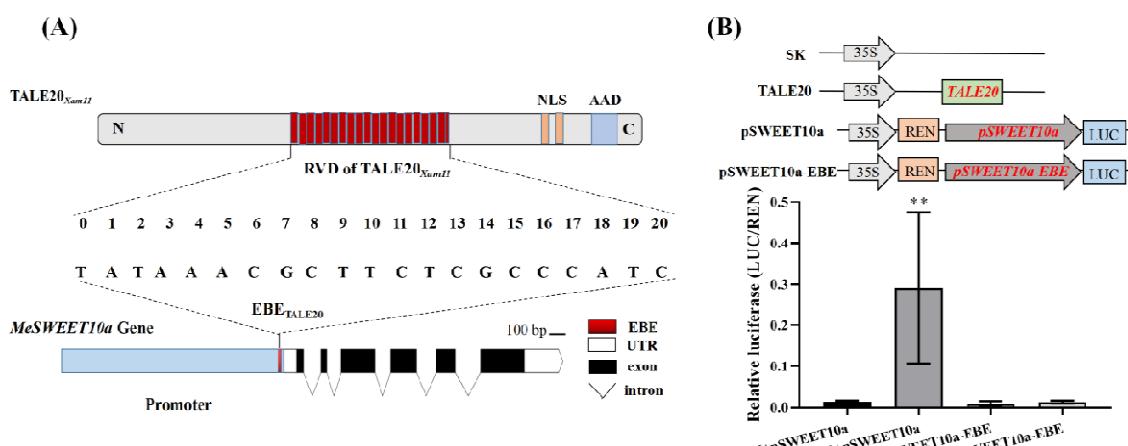
71 **2.4. Plant Inoculation *Xam11* and Symptom Observation**

72 *Xanthomonas* strain *Xam11* was resuspended in 10 mM MgCl₂. For watersoaking assays and qRT-PCR analyses, the leaves
73 of SC8 and mutant lines (#1, #2, #3, #4) were injected by *Xam11* via a 1-mL needleless syringe. 5 µL of the bacterial suspension
74 at OD₆₀₀ = 0.1 density was injected to the back side of leaves. Three biological repeats were analyzed. The expression of
75 *MeSWEET10a* gene was measured at 0, 0.5, 1, 3, and 7 dpi time points. Symptom development after *Xam11* inoculation was pho-
76 tographed at 3, 7, 14, and 40 dpi. The leaf disease areas after *Xam11* inoculation were measured at 3, 7, and 14 dpi. Bacterial
77 numbers of *Xam11* in the SC8 and mutant lines were counted according to the method of Li et al. (2018)(Li et al., 2018).

78 **2.5. qRT-PCR**

79 To analyze *MeSWEET10a* expressions in SC8 cassava and mutant lines, total RNAs isolated from the leaves of SC8 and
80 mutant lines (#1, #2, #3, #4) using RNAplant Plus reagent (TianGen, Beijing, China) following the manufacturer's instructions
81 were reversed by using the reverse transcriptase kit (TaKaRa, Dalian, China). The qRT-PCR was performed with the reversed
82 cDNAs as substrates and the *MeSWEET10a* specific primers (F: 5'-TCCTCACCTTGACTGCGCTG-3'; R:
83 5'-AGCACCATCTGGACAATCCA-3') by using the SYBR Premix Taq Kit (TaKaRa, Dalian, China) in the ABI7500 Re-

84 al-Time PCR System (Applied Biosystems, USA). The expression of cassava tubulin gene (Phytozome name: Manes.08G061700)
85 was used as an internal standard by using the primers (F: 5'-GTGGAGGAAGTGGTCTGGA-3'; R:
86 5'-TGCACATCTGCATTCTCC-3'). The $2^{-\Delta\Delta Ct}$ method was used for relative quantification (Livak and Schmittgen, 2001).
87 Expression data were collected from three biological repeats.

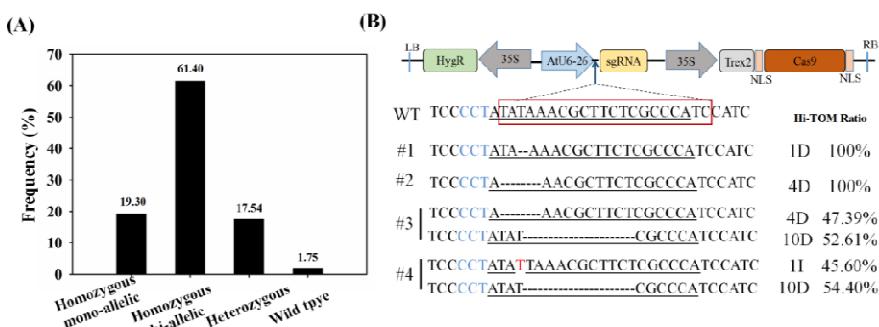

88 **2.6. Statistical Analyses**

89 All the data were presented as mean \pm SD from at least three independent experiments with three replicates. Statistical anal-
90 yses were conducted by using Student's t-tests.

91 **3. Results and discussion**

92 **3.1. *MeSWEET10a* Gene in SC8 Cultivar is Hijacked by TALE20_{Xam11} from Xam11 Strain**

93 TALE20 was cloned based on the genome sequencing information of *Xam11*. TALE20_{Xam11} (TALE20 in *Xam11*) has 20 RVD
94 with variable amino acids at positions 12 and 13 in each repeat, and EBE_{TALE20} is targeted by TALE20_{Xam11} and is located in the -92
95 to -112 bp region before the *MeSWEET10a* start codon (Fig. 1A). The dual luciferase reporter assay demonstrated that TALE20_{Xam11}
96 activated the *MeSWEET10a* promoter from SC8 cultivar and initiated downstream expression of firefly luciferase; however,
97 TALE20_{Xam11} could not activate the *MeSWEET10a* promoter lacking the EBE_{TALE20} region (Fig. 1B). This result suggests that the
98 transcription activator-like effector TALE20_{Xam11} of *Xam11* strain regulates the expression of *MeSWEET10a* genes by binding to the
99 EBE_{TALE20} region of SC8 cultivar.


100
101 (Color print)

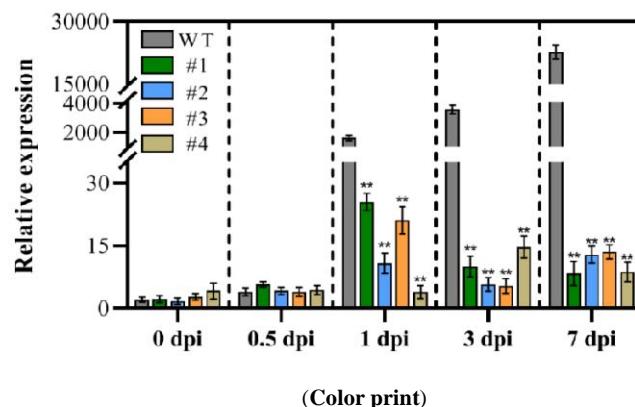
102 **Fig. 1.** Schematic representation of RVD in TALE20_{Xam11} recognize the EBE_{Xam11} on the *MeSWEET10a* promoter from cultivar cassava SC8 (A).
103 The C-terminus of TALE20_{Xam11} has two nuclear localization signals (NLS) and an acidic activation domain (ADD). TALE20_{Xam11} directly acti-
104 vates *MeSWEET10a* expression through the EBE region (B). SK: pGreen II62-SK vector (control vector); TALE20: pGreen

105 II62-SK-TALE20_{Xam11} vector; pSWEET10a: pGreen II0800-pMeSWEET10a-LUC vector; pSWEET10a-EBE: pGreen
106 II0800-pMeSWEET10a-EBE_{TALE20}-LUC vector (deletion of EBE_{TALE20} from the *MeSWEET10a* promoter). Data are displayed from three bio-
107 logical repeats (Student's *t*-test, ***P* < 0.01).

108 **3.2. CRISPR/Cas9-Mediated Editing of EBE_{TALE20} in the Promoter of *MeSWEET10a***

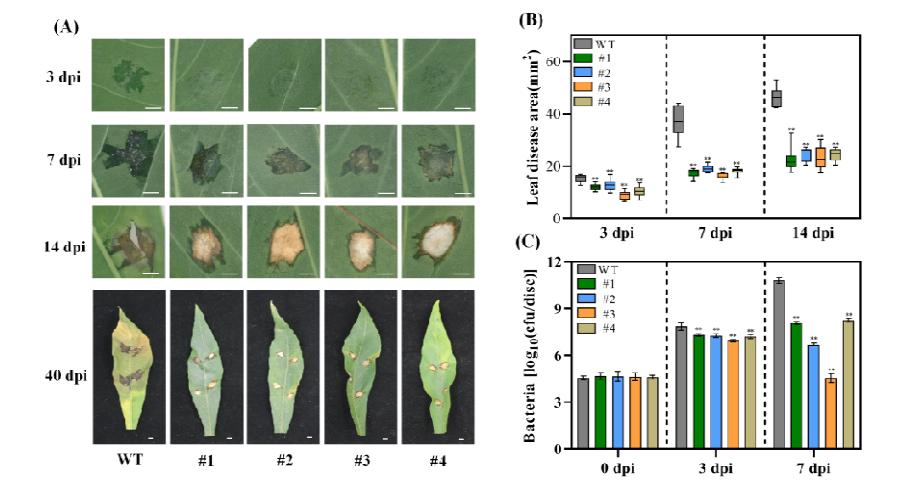
109 Inhibition of S gene expression by genetic engineering is an attractive strategy to improve plant disease resistance (Zaidi et al.,
110 2018). Disruption of EBEs in promoters of three major target rice *SWEET* genes by CRISPR-Cas9 avoids recognition by TALEs
111 from *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) and improves bacterial blight resistance (Xu et al., 2019). In this study, the effect of
112 genetically modifying the EBE in the *MeSWEET10a* promoter on CBB resistance after *Xam11* infection was investigated in SC8
113 cassava. The pCAMBIA1301-Cas9-EBE-sgRNA plasmid was constructed to target EBE_{TALE20} of the *MeSWEET10a* promoter and
114 transformed into the SC8 cassava genome by *Agrobacterium*-mediated fragile embryonic callus (EFC) transformation. In total, 57
115 independent transgenic lines were regenerated. The EBE_{TALE20} regions from all the transgenic lines were subjected to high
116 throughput tracking of mutation (Hi-TOM) sequences, the results showed that Cas9 activity efficiency was 98.2%. Three types of
117 mutations were obtained among the transgenic lines: homozygous mono-allelic (19.30%), homozygous bi-allelic (61.40%), and
118 heterozygous (17.54%) (Fig. 2A). The EBE_{TALE20} regions in the four mutant types of transgenic cassava lines (#1, #2, #3, #4) and
119 wild type SC8 cassava (WT) were shown in Fig. 2B. These studies showed that the gene editing plasmid could efficiently edit the
120 EBE region of *MeSWEET10a* promoter in SC8 cassava and obtained high proportion of homozygous mutant lines. Up to now, there
121 were five genes (*nCBP-1*, *nCBP-2*, *GBSS*, *PTST1*, and *MePDS*) have been mutated in cassava by CRISPR/Cas9 technology;
122 however, the homozygous mutations in these genes were very low (Odipio et al., 2017; Bull et al., 2018; Gomez et al., 2019).

123


124

(Color print)

125 **Fig. 2.** CRISPR/Cas9-induced mutation types and frequency (A). Hi-TOM sequencing of the EBE_{TALE20} regions of wild type (WT) non-transgenic
126 SC8 cassava compared with the engineered lines #1, #2, #3, and #4 (B). The EBE_{TALE20} region of the TALE20_{Xam11} target is marked in a red box in
127 WT; the sgRNA sequences are underlined; the protospacer adjacent motif (PAM) sites are marked in blue text; the hyphens are missing bases, and
128 the red letter is the inserted base.


129 3.3. The EBE_{TALE20} Mutant Shows Enhanced Resistance to CBB

130 The effects of EBE_{TALE20} modification on *MeSWEET10a* expression in the mutant cassava lines were further investigated
131 after inoculation with *XamII*. The relative expression levels of *MeSWEET10a* in the mutant lines showed no obvious difference
132 from that of the wild type at 0 and 0.5 day post-inoculation (dpi); however, markedly lower levels were observed in the mutant
133 lines compared with that of the wild type at 1–7 dpi (Fig. 3), which showed that EBE_{TALE20} mutations repressed *MeSWEET10a*
134 expression after *XamII* infection. The wild type had obvious water-soaked symptoms at 3 dpi, however, which were not observed
135 in the mutant lines (#1, #2, #3, #4). At 7 dpi, the wild type had obvious pustule symptoms, while the mutant lines showed slightly
136 water-soaked symptoms; at 14 dpi, the injection sites in the wild type were withered and turned yellow, while in the mutant lines ,
137 the injection sites started to wither and the plaque expanded slowly; at 40 dpi, the whole leaves in the wild type were withered and
138 become yellow, whereas the leaves in the mutant lines only withered near the plaques (Fig. 4A). Diseased lesions in the mutant
139 lines were significantly smaller at 3 dpi, 7 dpi, and 14 dpi than that in the wild type (Fig. 4B), it suggested that EBE_{TALE20} muta-
140 tions limited the expansion of CBB symptoms in cassava SC8. The bacterial growth assay showed that *XamII* populations in the
141 four mutant lines were significantly lesser than that in the wild type at 3 dpi and 7 dpi (Fig. 4C). These results revealed that
142 EBE_{TALE20} modification of *MeSWEET10a* in the four edited cassava lines had strong and stable resistance to CBB.

(Color print)

143
144 **Fig. 3.** Time course of *MeSWEET10a* expression in mutant lines and WT after *XamII* inoculation. Three biological repeats were performed for
145 each data point. Statistical tests were two-sided using Student's t-test compared to WT (** $p < 0.01$).

147

148

(Color print)

149 **Fig. 4.** Symptom development after *Xam11* inoculation (A). Scale bar, 5 mm. Time course of leaf disease areas (B) and bacterial numbers (C)
150 after *Xam11* inoculation. At least 10 leaves were harvested for the diseased areas with the bacterial number assay performed using three biologi-
151 cal replicates. Statistical tests were two-sided using Student's *t*-test compared to WT (***p* < 0.01).

152 **3.4. The EBE_{TALE20} Mutant Shows Yield-related Traits Similar to the Wild Type**

153 Mutation of *Mildew resistance locus O (Mlo)* through CRISPR-Cas9 has conferred PM resistance in wheat (Wang et al., 2014).
154 In addition, mutations of other S genes such as *eIF4E* and *MPK* enhances disease resistance (Gomez et al., 2019; Xie and Yang,
155 2013). However, these mutations often affect plant fitness with reduced growth, fertility, yield, and abiotic stress tolerance (Zaidi et
156 al., 2018). Recently, Veley et al. (2022) has been reported that directed methylation to EBE_{TALE20} region of *MeSWEET10a* promoter
157 of TME419 in 60444 cassava cultivar, the plants displayed an increased resistance to *Xam668* strain, meanwhile, they maintained
158 normal growth and development (Veley et al., 2022). In our results, there were no significant differences in tuber root traits and
159 starch content between the EBE_{TALE20} mutated lines and the wild type plants when grown under normal conditions (Fig. 5). This
160 indicated that the EBE_{TALE20} mutation in the *MeSWEET10a* promoter of SC8 cultivar has no effect on yield-related traits in cassava.

(A)

(B)

Lines	WT	#1	#2	#3	#4
Tuber root (g)	52.7±28.3a	46.1±15.1a	62.2±15.6a	60.6±10.7a	52.4±22.5a
Number of tuber roots /plant	3.6±2.1a	3.3±1.5a	4.3±1.5a	3.3±1.5a	3.3±0.6a
Dry matter ratio (%)	30.0±4.3a	32.2±3.2a	32.2±2.7a	31.9±6.5a	29.1±1.1a
Starch content (% dry wt)	65.7±11.6a	66.6±9.1a	65.3±11.5a	63.1±11.4a	65.9±5.0a

161

162

(Color print)

163 **Fig. 5.** Tuber root phenotypic characterizations (A). Scale bar, 1 cm. Yield-related traits shown as the mean ± SD from five plants of each line (B).

164

The values marked with the same letter (a) represented no significant difference ($p < 0.01$).

165 4. Conclusions

166 In conclusion, editing of the promoter in the disease-susceptibility gene *MeSWEET10a* in SC8 cassava confers resistance to
167 CBB. All the mutated cassava lines had normal morphological and yield-related traits as the wild type. The results lay a research
168 foundation for breeding Chinese local planting cassava SC8 cultivar resistant to bacterial blight by CRISPR/Cas9 technology.

169

170 CRediT authorship contribution statement

171 **Yajie Wang, Mengting Geng and Ranran Pan:** Investigation, Conceptualization, Visualization, Writing – original draft.
172 **Tong Zhang, Xiaohua Lu, Xinghou Zhen, Yannian Che, Ruimei Li and Jiao Liu:** Investigation, Validation. **Yinhua Chen,**
173 **Jianchun Guo and Yao Yuan:** Writing - review & editing, Funding acquisition, Project administration, Supervision, Validation.

174 Declaration of Competing Interest

175 The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
176 influence the work reported in this paper.

177 Acknowledgments

178 This research was supported by the National Key Research and Development Program of China: 2019YFD1001105; the
179 Hainan Provincial Natural Science Foundation of China: 320RC492; the Major Science and Technology plan of Hainan Province:
180 ZDKJ2021012; Hainan Yazhou Bay Seed Lab: B21HJ0303 and the the earmarked fund for CARS: CARS-11.

181 **References**

182 Bart, R., Cohn, M., Kassen, A., McCallum, E.J., Shybut, M., Petriello, A., et al., 2012. High-throughput genomic sequencing of
183 cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proc. Natl. Acad. Sci. 109,
184 E1972-E1979.

185 Boch, J., Bonas, U., 2010. *Xanthomonas AvrBs3* family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48,
186 419-436.

187 Bull, S.E., Seung, D., Chaney, C., Mehta, D., Kuon, J.E., Truernit, E., et al., 2018. Accelerated ex situ breeding of *GBSS*- and
188 *PTST1*-edited cassava for modified starch. Sci. Adv. 4, eaat6086.

189 Cohn, M., Bart, R.S., Shybut, M., Dahlbeck, D., Gomez, M., Morbitzer, R., et al., 2014. *Xanthomonas axonopodis* virulence is
190 promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Mol. Plant
191 Microbe Interact. 27, 1186-1198.

192 Gomez, M.A., Lin, Z.D., Moll, T., Chauhan, R.D., Hayden, L., Renninger, K., et al., 2019. Simultaneous CRISPR/Cas9-mediated
193 editing of cassava eIF 4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence.
194 Plant Biotechnol. J. 17, 421-434.

195 Li, X., Liu, W., Li, B., Liu, G., Wei, Y., He, C., et al., 2018. Identification and functional analysis of cassava DELLA proteins in
196 plant disease resistance against cassava bacterial blight. Plant Physiol. Bioch. 124, 70-76.

197 Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., et al., 2019a. Hi-TOM: a platform for high-throughput tracking of muta-
198 tions induced by CRISPR/Cas systems. Sci. China Life Sci. 62, 1-7.

199 Liu, Y., Yang, T., Lin, Z., Gu, B., Xing, C., Zhao, L., et al., 2019b. A WRKY transcription factor PbrWRKY53 from *Pyrus*
200 *betulaefolia* is involved in drought tolerance and AsA accumulation. Plant Biotechnol. J. 17, 1770-1787.

201 Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta CT}$
202 method. Methods 25, 402-408.

203 Nyaboga, E.N., Njiru, J.M., Tripathi, L., 2015. Factors influencing somatic embryogenesis, regeneration, and *Agrobacte-*
204 *rium*-mediated transformation of cassava (*Manihot esculenta* Crantz) cultivar TME14. Front. Plant Sci. 6, 411.

205 Odipio, J., Alicai, T., Ingelbrecht, I., Nusinow, D.A., Bart, R., Taylor, N.J., 2017. Efficient CRISPR/Cas9 genome editing of
206 phytoene desaturase in cassava. Front. Plant Sci. 8, 1780.

207 Veley, K.M., Elliott, K., Jensen, G., Zhong, Z., Feng, S., Yoder, M., et al., 2022. Improving disease resistance in plants by editing
208 the epigenome. BioRxiv.

209 Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., et al., 2014. Simultaneous editing of three homoeoalleles in hexaploid
210 bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951.

211 McCallum, E.J., Anjanappa, R.B., Gruisse, W., 2017. Tackling agriculturally relevant diseases in the staple crop cassava (*Manihot*
212 *esculenta*). Curr. Opin. Plant Biol. 38, 50-58.

213 Xie, K., Yang, Y., 2013. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant 6, 1975-1983.

214 Xu, Z., Xu, X., Gong, Q., Li, Z., Li, Y., Wang, S., et al., 2019. Engineering broad-spectrum bacterial blight resistance by simulta-
215 neously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol. Plant 12, 1434-1446.

216 Zaidi, S.S.E.A., Mukhtar, M.S., Mansoor, S., 2018. Genome editing: targeting susceptibility genes for plant disease resistance.
217 Trends Biotechnol. 36, 898-906.

218 Zhang, T., Wang, Y., Guo, W., Li, R., Liu, J., Guo, J., et al., 2021. Construction and verification of editing vector for EBE region
219 of MeSWEET10a promoter in cassava. Chin. J. Trop. Crops 42, 3120.

220