

1 **Fractions strategy differences in those born extremely preterm**

2
3 Sarah Carr^{1,2}, W. Michael Babinchak³, Ana Istrate³, Blaine Martyn-Dow⁴, George Wang⁴,
4 Weicong Chen⁵, Jeremy Fondran⁴, Jing Zhang⁴, Michael Wien⁶, Seo Yeon Yoon¹, Anne
5 Birnbaum⁷, Elizabeth Roth⁷, Carol Gross⁸, Nori Minich⁷, Lee Thompson⁸, Won Hwa Kim^{9,10},
6 Yaakov Stern¹¹, Chiara Nosarti^{12,13}, H. Gerry Taylor¹⁴, Curtis Tatsuoka ^{2,4,15}

7
8 1. Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's
9 College London, London, UK

10 2. Department of Neurology, Case Western Reserve University, Cleveland, OH, USA

11 3. School of Medicine, Case Western Reserve University, Cleveland, OH, USA

12 4. Department of Population and Quantitative Health Sciences, Case Western Reserve
13 University, Cleveland, OH, USA

14 5. Department of Computer and Data Sciences, Case Western Reserve University, Cleveland,
15 OH, USA

16 6. Department of Neuroradiology, University Hospital, Cleveland, OH, USA

17 7. Department of Pediatrics, Rainbow Hospital, Cleveland, OH USA

18 8. Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH
19 USA

20 9. Computer Science and Engineering, University of Texas, Arlington, TX, USA

21 10. Medical Imaging & Vision Lab, Pohang University of Science and Technology, Pohang,
22 South Korea

23 11. Cognitive Neuroscience Division, Columbia University, New York, USA

24 12. Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and
25 Neuroscience, King's College London, London, UK

26 13. Centre for the Developing Brain, Department of Perinatal School of Biomedical Engineering
27 & Imaging Sciences, King's College London, London, United Kingdom

28 14. Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's
29 Hospital, Columbus, OH

30 15. Department of Medicine, University of Pittsburgh, Pittsburgh, PA

31
32 *Corresponding Author:

33 Curtis Tatsuoka

34 University of Pittsburgh

35 Pittsburgh, PA 15232, USA

36 Email: cut4@pitt.edu

37
38 KEY WORDS: extremely preterm, fMRI, mathematics, improper fractions, mixed fractions,
39 strategy differences, working memory

40
41 Abstract

42
43 Introduction: For those with weak cognitive skills, certain mathematical problem-solving
44 strategies may be more difficult than others. Tailored mathematical instruction that recognizes
45 cognitive load and incorporates ways to reduce this may help to overcome mathematical
46 difficulties. To investigate the effects of different strategies and cognitive load we explored brain

47 hemodynamic responses associated with the use of different strategies to solve subtraction of
48 fractions. We focused on those born extremely preterm (EPT; <28 weeks' gestation) as they are
49 known to have cognitive challenges and struggle with mathematics in particular. We also included
50 a group of full-term (FT) peers for comparison.

51
52 Methods: Functional MRI was acquired while the participants mentally solved fraction equations
53 using either an improper fractions strategy, where whole numbers are converted to improper
54 fractions before solving, or a mixed fractions strategy, where computations are carried out
55 separately for the whole numbers and fraction components. Different fraction item types were
56 given, which affected respective required cognitive loads per strategy. Diffusion and T1-weighted
57 structural images were also acquired. All imaging modalities were compared between the two
58 groups.

59
60 Results: The EPT and FT groups differed in terms of task-related hemodynamic responses,
61 regional volumes, and white matter connectivity. Functional group differences varied with strategy
62 and item type. These differences were greatest when the mixed fractions strategy was prompted
63 for an item type that required relatively greater cognitive load and involved borrowing. Other
64 findings showed reduced white and grey matter volume and reduced white matter connectivity in
65 widespread areas in the EPT group compared to the FT group.

66
67 Conclusion: Changes in the brain related to preterm birth are complex. The understanding of
68 function and structure presented here may help inform pedagogical practices by allowing for
69 tailoring of mathematical education through identifying suitable strategy adoption that depends on
70 problem type, to circumvent weaknesses in cognitive skills.

71
72 1.0 Introduction

73 Extremely preterm (EPT) birth is defined as birth before 28 completed weeks of gestation. The
74 incidence of preterm birth (gestational age (GA) < 37 weeks) in the US is about one in ten births
75 [1] and globally, 2-5 births in 1000 are EPT [2]. Survival rates among those born EPT are around
76 33% at 23 weeks' GA, 65% at 24 weeks, 81% at 25 weeks and 94% at 27 weeks [3]. Children born
77 EPT often have deficits in working memory, executive function, inhibition, and processing speed
78 when compared to full-term (FT) control subjects [4, 5]. Children born EPT are known to have
79 cognitive difficulties through adolescence and by early adulthood they are likely to have lower IQ
80 and impaired visuomotor, prospective memory, language and executive functioning skills [6].
81 Therefore, EPT individuals are vulnerable to experience impairments in a range of neurocognitive
82 skills that are crucial for learning, problem solving and effective communication, which are likely
83 to exert a negative impact on their overall academic achievement (with up to 50% needing extra
84 educational help at mainstream schools) [7]. In particular, EPT individuals experience
85 mathematics learning difficulties to a greater extent than other academic and cognitive deficits [7].
86 Mathematics difficulties have been associated with poor performance on working memory and
87 visuo-spatial processing tasks, rather than impairments in numerical representation [4], suggesting
88 that the nature of mathematics difficulties of preterm children is different from that of individuals
89 with developmental dyscalculia. In middle childhood, among those born EPT, 44% had serious
90 difficulty with mathematics compared to 1.3% of FT peers. In contrast, 30% of EPT children had
91 serious difficulty with reading compared to 2% of FT children [7].

92

93 In FT individuals, multiple brain regions have been implicated in the neurobiology of computation,
94 including in the frontal, parietal, and temporal cortices, as well as subcortically, in the thalamus,
95 basal ganglia, and hippocampus [8, 9]. There are much data supporting the intraparietal sulcus
96 (IPS) in the inferolateral parietal lobe as the primary locus of numerical processing, although IPS
97 lesions have been associated with a variety of other deficits of motor, sensory, and associative
98 function, suggesting that the information processing it supports is critical to mathematical
99 reasoning but not necessarily specific [10]. Nevertheless, the IPS is considered as part of a “core”
100 visual-spatial number system, along with the fusiform gyrus [10, 11]. Research studies have
101 investigated white matter associated with mathematics in typically developing children and adults.
102 Tract-specific white matter microstructural characteristics, such as fractional anisotropy (FA),
103 have been associated with mathematical skill. These tracks are the superior longitudinal fasciculus
104 (connecting fronto-parietal cortices) [12-14], inferior longitudinal fasciculus (fronto-occipito-
105 temporal areas) [12, 15] and arcuate fasciculus (inferior fronto-occipito-temporal, connecting
106 Wernicke’s and Broca’s areas) [16]. The processing and maintenance of both visual and verbal
107 information is also often central to mathematical performance [17-19].
108

109 Few functional imaging studies have investigated the neural correlates associated with performing
110 mathematics in preterm-born individuals. Functional magnetic resonance imaging (fMRI) studies,
111 involving tasks such as the Stroop and number estimation, have shown an association between
112 longer gestation and more pronounced hemodynamic responses in parietal brain regions. Shorter
113 GA has also been associated with more prefrontal cortex activity in young adults born < 37 weeks’
114 gestation when completing a magnitude comparison task [20], in 6- to 7-year-old children born
115 between 27-32 weeks with a numerical distance effect task [21, 22] and 11-year-old youth born <
116 28 weeks’ gestation with a working memory/selective attention task [23]. As FT children mature,
117 areas of the brain associated with performing mathematics change from mostly frontal to less
118 frontal and more parietal areas, possibly due to procedural changes in how mathematics is
119 performed [24, 25]. Individuals born EPT may thus have a more ‘immature’ mathematical network
120 [20].
121

122 A study of functional connectivity and performance on mathematical tests showed patterns of
123 association unique to preterm individuals born between 25-36 weeks’ gestation. Functional
124 connectivity derived from resting state fMRI in adulthood (26 years old) showed associations with
125 mathematical ability in childhood in bilateral fronto-parietal networks in preterm adults that were
126 different to FT adults [26]. Specifically, in the right fronto-parietal network, math abilities were
127 correlated with left lateral occipital/middle temporal cortex intrinsic functional connectivity in
128 preterm but not FT individuals. In the left fronto-parietal network a similar pattern was observed,
129 with math abilities being correlated with right angular gyrus/middle temporal cortex intrinsic
130 functional connectivity in preterm but not FT individuals. Also, mathematical abilities recorded in
131 childhood (8 years old) were more positively associated with adult IQ for preterm than for FT
132 individuals.
133

134 A study of mathematics and regional brain volumes found an association between reduced grey
135 matter volume in left parietal lobe and poor mathematics performance in EPT teenagers [27].
136 Diffusion weighted imaging studies assessing white matter characteristics have shown that EPT
137 infants scanned at 38 weeks’ post-conceptual age have alterations in white matter microstructure
138 (reduced FA and increased radial diffusivity) in widespread areas associated with early

139 myelination (such as sensorimotor areas) [28] and frontal and occipital areas [29] compared with
140 FT babies. In older EPT children, 9-16 years of age, lower FA values in the corpus callosum,
141 forceps minor and major, cingulate gyrus, inferior fronto-occipital fasciculus, inferior and superior
142 longitudinal fasciculi and corticospinal tract have been associated with impaired executive
143 functioning [30]. In EPT infants scanned between birth and 4 years of age, changes in mean
144 diffusivity values in the internal and external capsules have been associated with intelligence and
145 language [31]. The long-range connections between frontal, temporal and parietal lobes serve to
146 integrate and control complex brain processes involved in cognition and skills. The authors are not
147 aware of any research investigating mathematics and white matter connectivity in individuals who
148 were born EPT. In summary, the EPT population has a multitude of structural and functional brain
149 changes that affect both their ability to do mathematics and domain-general functions such as
150 attention and working memory.

151
152 Here, we investigate functional and structural brain differences associated with mathematical
153 problem-solving in adolescents born EPT and FT control participants. We focus on fraction
154 problem-solving, as this mathematics domain poses demands on multiple computational abilities,
155 requires more advanced skills than arithmetic problem-solving, and is a key mathematical subject
156 area. Another benefit of focusing on fractions is that the same fraction problems can be solved
157 using either an improper fractions or mixed fractions strategy approach. Depending on the item,
158 the two strategies can impose different cognitive loads (e.g., more or fewer mental operations, or
159 interim steps requiring working memory for problem-solving). We illustrate this further below.

160
161 The present study represents an initial effort to identify individual differences in brain structure
162 and function as a means for developing more targeted approaches to mathematical instruction. We
163 focused on adolescents as they adapt well as an age group to fMRI experimentation and are
164 mathematically advanced enough to have already had instruction in solving fraction problems.
165 fMRI was used to examine hemodynamic response differences between adolescents born EPT and
166 FT control subjects during tasks that required different strategies of fraction problem-solving. The
167 goal was to investigate group differences in hemodynamic response patterns during processing of
168 same types of test items invoking different strategies that varied in cognitive load. We also aimed
169 to explore between group differences in brain structure. We hypothesized that there would be
170 differences between FT and EPT groups in hemodynamic response patterns, particularly for the
171 math problem and strategy combinations that require relatively higher cognitive loads. Discovery
172 of group differences could suggest the need for stronger emphasis on flexible strategy adoption for
173 adolescents born EPT that would allow for reductions in cognitive load.

174
175 2.0 Methods

176
177 2.1 Participants

178
179 The participants made two visits to University Hospitals Cleveland Medical Center (UHCMC) on
180 separate days. The first visit was to undertake neuropsychological testing and training in fractions,
181 (lasting 3 - 4 hours). The second visit was to the MRI department, lasting around 2 hours. Duration
182 between visits ranged from 7 to 364 days with the median duration being 22 days (SD 81.2 days).
183 In total 50 subjects attended for neuropsychological training and a subset was selected for MRI
184 based on: 1) the subject's willingness to participate in an MRI, 2) the lack of physical

185 contraindications to MRI (e.g., claustrophobia, the presence of cardiac pacemakers or other
186 medical devices, metallic fragments such as shrapnel, etc.), and 3) competency in doing fractions
187 without pen and paper. A total of 30 subjects underwent MRI, including 14 EPT adolescents, all
188 with either GA <28 weeks and/or birth weight < 1000 g. EPT participants were 15-17 years of age
189 and included 12 females. The 16 FT adolescences were aged 15-17 years old and included 8 males.
190 The FT youth were recruited from the same regular classrooms as the children born extremely
191 preterm and were thus representative of children attending regular education classes. Eleven EPT
192 and 15 FT participants were right-handed, 2 EPT and 1 FT participants were left-handed and 1
193 EPT participant was ambidextrous. Participant characteristics are summarized in Table 1.
194

195 The Institutional Review Board office at UHCMC granted ethics approval prior to the study. The
196 ethical considerations complied with the Declaration of Helsinki for human subject research.
197 Subjects and their parents gave informed consent prior to taking part.
198

199 2.2 Neuropsychological testing 200

201 Neuropsychological testing was performed using the NIH toolbox -
202 <https://www.healthmeasures.net/explore-measurement-systems/nih-toolbox>. It includes a range of
203 tests to assess cognition, emotion, sensory and motor function. The cognition tests assessed
204 executive function, working memory, verbal fluency, attention, processing speed and episodic
205 memory. In the interests of brevity, the reader is directed to [32] for full details of the tests. Test
206 score summaries of working memory as assessed by WRAML2 (Wide Range Assessment of
207 Memory and Learning, second edition), by birth group, are also reported in Table 1.
208

209 2.3 Fractions strategies 210

211 We have developed a set of problems assessing subtraction of mixed fractions for administration
212 in the scanner that are similar to a diagnostic subtraction of mixed fractions test developed by K.
213 Tatsuoka [33, 34]. This test and its item-skill specifications have been widely studied and
214 validated, with data available at the Royal Statistical Society website (<https://rss.org.uk>) [35]. The
215 problems are solved using mental arithmetic. Each item can be solved with one of two strategies,
216 with the required strategy prompted during the fMRI session. Item types are described as:
217

$$\text{Item Type I: } X \left(\frac{x}{z} \right) - Y \left(\frac{y}{z} \right), \quad \text{where } x > y \text{ and } X > Y \quad (\text{Eq. 1})$$

$$\text{Item Type II: } X \left(\frac{x}{z} \right) - \left(\frac{y}{z} \right), \quad \text{where } y > x \quad (\text{Eq. 2})$$

218 Solving strategies include “mixed” and “improper” methods. Consider $1\frac{3}{4} - \frac{1}{4}$, an Item Type I
219 problem. The “mixed” method involves separate computations on whole number and fraction
220 components, e.g.,

$$1\frac{3}{4} - \frac{1}{4} = (1 - 0) + \left(\frac{3}{4} - \frac{1}{4} \right) = 1\frac{2}{4} \quad (\text{Eq. 3})$$

223 while the “improper” strategy involves solving using improper fractions by converting a whole
224 number to fraction, e.g.,

225
$$1\frac{3}{4} - \frac{1}{4} = \left(\frac{4}{4} + \frac{3}{4}\right) - \frac{1}{4} = \frac{7}{4} - \frac{1}{4} = \frac{6}{4}$$
 (Eq. 4)

226
227
228 Note that in solving an item of this type, the improper strategy requires higher cognitive load,
229 specifically in working memory. However, the relative cognitive demands or difficulty levels
230 imposed by the two strategies (easier vs. harder) vary by the type of problem. For an Item Type I
231 problem, the mixed method requires fewer steps, and thus a lower cognitive load, than does the
232 improper fraction method. However, for an Item Type II problem, the improper fraction approach
233 is more efficient than the mixed fraction method. A problem of this type would be: $2\frac{1}{4} - 1\frac{3}{4}$,
234 which is an Item Type II.

235
236
$$2\frac{1}{4} - 1\frac{3}{4} = (2 - 1) + \left(\frac{1}{4} + \frac{4}{4}\right) - 1\frac{3}{4} = 1\frac{5}{4} - 1\frac{3}{4} = (1 - 1) + \left(\frac{5}{4} - \frac{3}{4}\right) = \frac{2}{4}$$
 (Eq. 5)

237
$$2\frac{1}{4} - 1\frac{3}{4} = \left(\frac{1}{4} + \frac{8}{4}\right) - \left(\frac{3}{4} + \frac{4}{4}\right) = \frac{9}{4} - \frac{7}{4} = \frac{2}{4}$$
 (Eq. 6)

238 In this problem the mixed fractions strategy requires borrowing from a whole number, i.e. 1 or $\frac{4}{4}$
239 from the 2 on the left-hand side of the problem, yielding $1\frac{5}{4}$. In this case, and more generally for
240 items of Type II, converting both numbers to improper fractions before subtracting places similar
241 or even fewer demands on working memory. This can be made more explicit by listing out the
242 computations and steps and numbers that must be held in memory during the problem-solving
243 process. In general, cognitive load varies depending on strategy and item type. Depending on item
244 type, one strategy can impose a higher demand on working memory than the other. See Figure 1.

245 For the two item types that we considered for fMRI, there are thus harder and easier difficulty
246 levels for each of the two strategies. For the items considered, when one strategy is at the harder
247 level, the other strategy is at the easier level, as illustrated above. This suggests that more difficult
248 levels of specific strategies can be avoided through flexibility in adopting alternative strategies.
249 The present study examines associations of different problem-solving strategies that have been
250 taught and practiced to mastery by the participants with patterns of neural activation on fMRI.

251
252 2.4 Fraction Strategy Training

253
254 Training in subtraction of mixed fractions was carried out as part of the initial visit, through a
255 multi-step program that began with review of basic concepts followed by (1) instruction and
256 practice in converting whole and mixed numbers to proper and improper fractions, subtraction of
257 simple proper fractions, and written subtraction problems, using each of the two strategies in order
258 of increasing difficulty; 2) practice and review in mental problem solving, using two strategies (the
259 “improper fraction” and “mixed fraction” approach) for solving problems that are easier or harder
260 depending on whether the items are Type I or Type II ; and 3) computer administration of similar
261 sets of problems to prepare participants to solve fraction problems in the same format that was
262 used for subsequent in-scanner presentations. During training with written problems, the examiner
263 taught each of the two problem solving strategies explicitly and had the subject verbalize the
264 strategy after solving each problem. Practice in doing the problems mentally also included the

265 requirement that subjects verbalize the strategy used after giving their answers. For the computer
266 administrations, subjects were first presented with a problem on the screen and asked to provide
267 the answer verbally as soon as they could while pressing the space bar to indicate their time to
268 solve the problem. They were then asked to verbalize the strategy used to solve that problem.
269 Problems were limited to those with common denominators and subtraction of relatively simple
270 fractions to ensure that subjects could be taught the problem-solving strategies to a high level of
271 accuracy and that in-scanner mental calculations would be feasible. The majority of subjects from
272 both the EPT and FT groups were able to achieve a high level of accuracy on the computer
273 administration, median values for EPT - 32.5 out of 35 (IQR 4.5) and FT - 34 out of 35 (IQR 1.0).
274

275 2.5 fMRI Stimulus protocols
276

277 Respective blocks of items requiring the two fraction solving strategies were presented separately
278 in the scanner. An example sequence is shown in Figure 2. Which strategy to use was prompted
279 through instructions printed on a screen at the beginning of each scan and with the presentation of
280 each equation. Colored Xs were used to prompt the format of the expected solution, e.g.:
281

$$1\frac{3}{4} - \frac{1}{4} = \frac{X}{X} \quad \text{or} \quad 1\frac{3}{4} - \frac{1}{4} = \frac{X}{X}$$

282 Correct strategy adoption was validated by high correctness rates. See Figure 2 for further details.
283 For each strategy, Item Types I and II were presented within each scan in an interleaved fashion.
284 For the improper fractions strategy, the Item Type II involves 3 steps, while Item Type I involves
285 5 steps. For mixed fractions, Item Type I is only 2 steps, while Item Type II is 4 steps. A fraction
286 was displayed on the screen for 12-18 seconds, depending on difficulty level. Difficulty was
287 determined by the cognitive load/number of steps required to solve the equation. In the response
288 phase of solving an item, another screen was then displayed with two possible answers to choose
289 from. The answers were displayed in the format related to the strategy in use, and displayed for
290 only 6 seconds. There was thus insufficient time for subjects to convert their answer if they had
291 used the incorrect strategy, which encouraged correct adoption. Subjects indicated their answer
292 choice by pressing a button on a response box held in the right hand. Finally, the presentation of
293 each fraction item was separated by a 'rest' condition. A black dot was displayed in the center of
294 the screen and subjects were instructed before the scan to look at the dot for the duration.
295

296 The visual stimulus was presented using an in-house custom written program that was developed
297 using Python (Python Software Foundation, <https://www.python.org/>) and libraries from
298 PsychoPy - an open source visual presentation program [36-38]. The Cedrus Lumina controller
299 was used to integrate all the signals. The program connected to the controller box which received
300 the subject responses as well as a trigger pulse from the MRI scanner. The trigger pulse was
301 outputted every scan (every 3 seconds) and was used to synchronize the stimulus to the scan
302 acquisition. On the experimenter's computer screen was displayed a Supervisor Window that
303 tracked the current block number being presented, how many remaining blocks there were and
304 when the subject responded. The software has been made available from the Bitbucket repository:
305 <https://bitbucket.org/tatsuoka-lab/fmri-presentation>.
306

307 2.6 MR Imaging Parameters
308
309 310

311 Scans were acquired using a Philips Ingenuity 3T PET/MR scanner at UHCMC. Subjects were
312 positioned supine on the scanner bed. The head was fixed in position using inflatable pads and an
313 8-channel head coil was used for data acquisition. Echo planar imaging scans were acquired with
314 the following parameters: TR = 3.0 s, TE = 35 ms, voxel resolution = 1.797 x 1.797 x 4 mm (matrix
315 128 x 128), 36 slices in total provided full brain coverage, and flip angle was 90°. A SENSE P
316 reduction factor of 2 was implemented and scans were acquired in an ascending interleaved
317 fashion. Two fMRI scan sessions were run, one for each fraction solving strategy. They consisted
318 of 200 scans each. A high-resolution T1-weighted anatomical image was also acquired using a
319 magnetic preparation gradient-echo sequence (3D IR TFE) with the parameters: TR = 7.5 ms, TE
320 = 3.7 ms, voxel resolution = 1 x 1 x 1 mm, number of slices = 200 slices and flip angle = 8°. A 64-
321 direction diffusion weighted image with a FOV of 224 x 224 producing a final in-plane resolution
322 of 1.75 x 1.75 mm² and 2 mm slices. A TR of 7415 ms was used. Full-brain coverage was achieved
323 with 60 slices. One B₀ image was acquired, and the b factor was 1000.

324

325 2.7 fMRI Individual-level Analysis

326

327 FSL FEAT [39] was used to perform motion correction, spatial smoothing and apply a high pass
328 filter to preprocess the raw data. A rigid body transform with 6 degrees of freedom was used for
329 motion correction. Spatial smoothing was performed with a full-width-at-half-maximum Gaussian
330 kernel of 6 mm, a high pass temporal filter of 90 s was used. All scans were then co-registered to
331 a standard space template (MNI) and an individual level general linear model (GLM) analysis was
332 run. The fractions were presented in a block design and a hemodynamic response double gamma
333 function was convolved with a boxcar function to model the expected signal. We were most
334 interested in the neural correlates of calculation so only scans during the computation time were
335 modelled as active, not the scans during the response phase. The scans related to the response
336 phase recorded the process of reading the possible answers and indicating their choice via a button
337 press. The allowed response duration was kept short to ensure that calculations could not continue
338 into this phase. Recorded response times were related to the time taken by participants to indicate
339 their choice, not the time to do the mental calculation. Response times were not included as
340 regressors in the GLM.

341

342 Note, one EPT subject was unable to complete the fMRI tests and a technical issue prevented one
343 FT subject from taking the fMRI tests, hence the fMRI data reported at both individual and group
344 level contains 13 EPT and 15 FT subjects. However, structural data (DTI and T1 images) were
345 obtained for all 30 subjects. Also note, due to the anatomical heterogeneity reported in EPT
346 individuals, we considered the use of a custom structural brain template created from a group
347 average instead of using the MNI standard template. There were differences in the size of the brain
348 between the MNI and custom templates with the custom template being comparatively smaller
349 (228,453 and 177,110 voxels respectively, custom template was 22 % smaller). The fMRI results
350 were largely in the same anatomical locations. However, peak t-scores and total number of active
351 voxels differed with the fraction solving strategy. The MNI template was kept through all analyses
352 for ease of reporting and interpreting results, as well as minimizing the number of transformation
353 steps. Also note, in the Supplement section S2, activation status of specific regions are compared
354 by birth group.

355

356 2.8 fMRI Group Analysis

357

358 The statistical output from the individual analyses were used to perform the group level statistics
359 using fixed effects modelling in a factorial design involving group and strategy/item type
360 combination. Below, we focus on comparing birth group (EPT and FT) by strategy (mixed or
361 improper), birth group by item type (Type I or Item Type II), and 3-way interaction effects. The
362 latter consisted of within group comparisons of activations to Item Types I vs. II using the same
363 strategy (mixed or improper), and of activations associated with the same item types (Types I and
364 II) using different strategies. Note that strategy by item type interactions were purposely designed
365 so that differences in difficulty levels associated with the two item types would depend on the
366 strategy used to solve the problems. The inclusion of sex as a covariate was considered. However,
367 given that the EPT group consisted of predominantly females (11 out of 13), the sex results were
368 confounded with birth status and so are not reported. To reflect multiple hypotheses at least to
369 some degree, a result was considered significant if the resulting p-value was < 0.001 which equates
370 to a t-score > 3.1 .

371

372 2.9 Linear SVM Classification

373

374 To further explore the activation differences between birth groups and strategy adoption, a linear
375 support vector machine (SVM) analysis was performed. The aim was to determine if it was
376 possible to systematically distinguish activation patterns in each of the item types in an automated
377 way. Preprocessing of BOLD signal were performed using FEAT, as described above. Additional
378 preprocessing steps via PyMVPA toolbox [40] included detrending, normalization, and ANOVA-
379 based feature selection (using top 5% of active voxels) as described in [40]. Rest volumes were
380 excluded from analysis. The linear SVM was implemented using a leave-one-out cross validation
381 approach. For the group level analyses, a single subject's mean activation for all conditions related
382 to a specific strategy type (or strategy-item type combination) was used in classification to perform
383 a leave-one-(subject)-out cross validation. As a result, the SVM would be trained on all strategy
384 conditions from n-1 subjects prior to testing on the subject left out. Overall classification
385 accuracies were determined using the PyMVPA toolbox built-in statistics.

386

387 2.10 Volumetrics and DWI analysis

388

389 MRI-based volumetrics and DWI analyses are described in the Supplement sections S3 and S4.
390 This includes group comparisons of regional volumes and white matter connectivity.

391

392 3.0 Results

393

394 3.1 Accuracy of responses by strategy/item type

395

396 We first establish the accuracy of the performance on the fraction subtraction problems. The
397 accuracy rates by strategy, item type (difficulty level), and strategy/item type combination are
398 given for both the FT and EPT groups in Table 2. Note that in general accuracy is quite high, which
399 supports the effectiveness of the training protocol, and the correct adoption of prompted strategy
400 per item. A Wilcoxon rank sum test was used to compare the differences in accuracy rate between
401 groups for each strategy/item type combination. Within birth groups, item types for same strategy
402 were compared, as well as strategies for a same item type. Most comparisons were not statistically

403 significant. Still, it was found that for both EPT and FT subjects, when using the mixed strategy,
404 Item Type II (harder) problems had significantly lower accuracy rates compared to Item Type I (p
405 = 0.007 and p = 0.002). Performance using different strategies on same item types were compared
406 as well. For Item Type II, both EPT and FT had lower correctness rates (p = 0.049 and p = 0.005)
407 for the mixed fractions strategy compared to improper fractions strategy. No significant difference
408 was found for other item type and strategy combinations. When using the mixed strategy to solve
409 Item Type II problems, EPT subjects had lower correctness rates compared to FT subjects (85.7
410 versus 71.4%, p = 0.050), though even the EPT had relatively high accuracy rates.
411

412 3.2 Main effects of strategy and their interaction with item type

413 The main effect of strategy was investigated. The data were modelled as task (Item Type I and II)
414 versus rest and both EPT and FT groups were included. The improper fraction strategy was
415 associated with hemodynamic response in the left superior and inferior frontal gyri, paracentral
416 lobule, precuneus and middle temporal gyrus; and right cingulate gyrus. Modelling the mixed
417 fractions strategy in a similar way revealed hemodynamic response in left medial frontal gyrus,
418 inferior parietal lobule and thalamus; right superior parietal lobule, superior frontal gyrus,
419 precuneus, precentral gyrus and caudate nucleus.
420

421 The interaction of item type and strategy was also investigated. Improper fractions strategy for
422 Item Type II (easier to solve problems) was associated with hemodynamic response in left superior
423 and medial frontal gyri, paracentral lobule and middle temporal gyrus. Item Type I problems
424 solved by this strategy was associated with hemodynamic response in left superior frontal gyrus
425 and right posterior cingulate. For the mixed fractions strategy, Item Type I (easier to solve
426 problems) showed hemodynamic response in left medial frontal gyrus, insula and fusiform gyrus;
427 right cingulate, superior frontal gyrus, precuneus, precentral gyrus and caudate; and bilateral
428 lingual gyrus. Hemodynamic response associated with Item Type II of mixed fractions strategy
429 were widespread and included in left medial frontal gyrus, lingual gyrus, inferior parietal lobule,
430 cingulate, thalamus and caudate; right superior frontal gyrus, superior parietal lobule and
431 precuneus; bilateral precentral gyrus and posterior cingulate gyrus.
432

433 A conjunction analysis for each strategy and item types shows that much of the functional
434 activation that differs between item types appears around the edges of the overlapping clusters.
435 Statistical contrasts of improper strategy Item Type I versus II and Item Type II versus I were not
436 significant. The contrast of Item Type I versus II for mixed fractions strategy showed statistical
437 differences in left paracentral lobule, insula and precentral gyrus; right lingual and postcentral gyri.
438 The contrast of Item Type II versus I showed greater hemodynamic response mainly in left brain
439 areas including the precuneus, middle frontal gyrus, precentral gyrus and bilateral cingulate gyrus.
440

442 3.3 Between birth group differences by strategy and difficulty level

443 Table 3 shows between group differences in hemodynamic response for the easy and hard levels
444 for each fraction strategy.
445

446 3.3.1 Improper strategy. Comparison of the EPT vs FT groups on the less difficult items (Item
447 Type II) for the improper strategy vs rest revealed greater hemodynamic response in right

449 precuneus in the EPT group compared to the FT group (contrast EPT vs FT). The FT group showed
450 greater hemodynamic response in the left middle and superior frontal gyri, superior parietal lobule
451 and right paracentral lobule (contrast FT vs EPT). For Item Type I (hard) vs rest, we observed no
452 areas displaying greater hemodynamic response in the EPT group compared to the FT group. For
453 the more difficult Item Type I, the FT group showed greater hemodynamic response in left
454 cingulate gyrus, middle and superior frontal gyri, caudate and thalamus, and bilateral superior and
455 inferior parietal lobules compared to the EPT group. Locations for each contrast are shown in
456 Figure 3 and listed in Table 3. A conjunction analysis of EPT and FT group activity is shown in
457 Figure 4. These results are suggestive of the EPT group demonstrating either widespread under-
458 activation during the task compared to FT subjects or it may be due to more variability in brain
459 responses across subjects. Closer inspection of the variance between the groups showed that the
460 EPT group variance is almost twice as much as the FT group – for example FT improper Item
461 Type I: mean voxel level variance = 222.6 (SD 151.6) and EPT improper Item Type I: mean voxel
462 level variance = 428.2 (SD 327.2). Across all strategies and item types, the variance in the EPT
463 group remains consistently around twice the variance in the FT group.
464

465 3.3.2 Mixed strategy. In group comparisons of the less difficult items (Item Type I) versus rest for
466 the mixed strategy data, the EPT group compared to the FT group showed greater hemodynamic
467 response in left insula, middle and medial frontal gyri; right superior frontal gyrus, cingulate,
468 superior parietal lobule and precuneus. In contrast, the FT group compared to the EPT group
469 showed greater hemodynamic response in left cingulate, middle and superior frontal gyri; right
470 precentral gyrus, inferior parietal lobule, caudate nucleus; bilateral medial frontal and postcentral
471 gyri. For Item Type II (hard) versus rest, the EPT group compared to the FT group showed greater
472 hemodynamic response in left medial frontal gyrus and parahippocampal gyrus; right middle
473 frontal and precentral gyri; bilateral precuneus. For the easier Item Type II, the FT group had
474 greater hemodynamic response in left middle, medial and superior frontal gyri, pre- and post-
475 central gyri; right inferior parietal lobule, cingulate, paracentral lobule and thalamus compared to
476 the EPT group. The conjunction analysis for mixed fractions Item Types I and II in Figure 5 shows
477 that much of the activity that is different between the groups appears around the edges of the
478 overlapping clusters where statistical certainty is the lowest. These areas coincide with those listed
479 above.
480

481 3.4 SVM classification 482

483 The purposes of these analyses were to determine if 1) birth group membership can be
484 distinguished from hemodynamic response patterns from each strategy and item type, 2) difficulty
485 level within a birth group and for a given strategy, and 3) strategy adoption within each birth group
486 and for each of the item types. Discriminability with SVM corroborates findings of activation
487 differences with the GLM-based analyses.
488

489 Classification of difficulty level (i.e., distinguishing item types) for the mixed fractions strategy
490 demonstrated accuracies of 56.67% and 71.43% for FT and EPT groups, respectively (Figure 6a).
491 Difficulty level classification for the improper fractions strategy demonstrated accuracies of
492 63.33% and 61.54% for FT and EPT groups, respectively. A similar analysis was performed to
493 classify different strategies within the same item type. Classification of mixed versus improper
494 strategies for Item Type II (improper easy vs mixed fractions hard) demonstrated accuracies of

495 86.67% and 80.77% for FT and EPT groups, respectively (Figure 6b). Strategy classification for
496 Item Type I (improper hard vs mixed fractions easy) demonstrated accuracies of 70% and 69.23%
497 for FT and EPT groups, respectively.

498
499 A further goal was to determine if the task-related BOLD signal measured here could be used by
500 the SVM to identify specific traits about a subject, or more specifically, if the SVM could
501 distinguish between birth status. BOLD signal data from a specific strategy and an item type (e.g.,
502 harder level of mixed fractions) was used with the goal of classifying untested BOLD signal data
503 as belonging to an EPT versus FT subject. This was conducted over multiple cross validation
504 iterations. The resulting classification accuracies and confusion matrices for each strategy-
505 difficulty combination are detailed in Table 4. The strategy-difficulty combinations with the
506 hardest difficulty produced the highest classification accuracies (67.86% and 64.29% for mixed
507 and improper fractions, respectively).

508
509 4.0 Discussion

510
511 This study explored differences in hemodynamic response between extremely preterm and FT born
512 teens associated with using two strategies to solve fractions, where cognitive loads varied by item
513 type and strategy. A main hypothesis of the study was that among the specific strategy and item
514 type combinations, activation differences between birth groups would be particularly pronounced
515 for the harder versus easier difficulty levels of a given strategy.

516
517 Overall, the estimated main effects of strategy indicated hemodynamic responses across
518 widespread areas of the brain associated with mathematical processing. Mixed fractions strategy
519 was associated with the highest number of active voxels and with a pattern of functional activation
520 that was distinct from the improper fractions strategy. Mixed fractions related hemodynamic
521 responses were located in fronto-parietal areas, while improper fractions hemodynamic responses
522 were centered around the precuneus and temporal gyrus. The hemodynamic response of the mixed
523 fractions strategy is consistent with that reported in the literature for mathematics tasks [8, 9].

524
525 In terms of group differences, the interaction between strategy and item type showed areas of
526 greater hemodynamic response specific to each group for each condition, with the exception of
527 Item Type I improper fractions strategy, where the EPT did not show greater functional activation
528 compared to the FT group. The areas of increased hemodynamic response for all other conditions
529 were widespread in fronto-parietal areas and along the midline and temporal gyri and by birth
530 group, strategy and item type. Efforts to solve both item types (I and II) using the mixed fractions
531 produced similar patterns of activity for both groups (see Supplement section S1, within group
532 analyses). In comparison, functional activations for this strategy in the EPT group compared to the
533 FT group were greater in bilateral insulae and middle frontal gyri. The different networks for each
534 strategy may be due to the different processes involved with the calculations (see Figure 1). The
535 mixed fraction strategy can have a greater cognitive load attributable to a higher demand for
536 number memorization necessary to achieve the answer (i.e., the separate answers for the whole
537 number and fractions must both be remembered and one must be kept in memory while the other
538 is calculated), particularly for Type II items (harder level). This finding may also reflect a relatively
539 higher level of demand on executive function. In contrast, when using the improper fractions
540 strategy, each calculation at a given step is used in the next step until the final result is obtained.

541 Some degree of working memory is thus needed to apply the improper fractions strategy,
542 particularly for Type I items (harder level). However, this approach may not require the same
543 magnitude of retention and manipulation as the mixed fractions strategy. The difference between
544 the strategies may also be due to more familiarity with the improper fractions strategy which is
545 often taught in schools. In support of this possibility, Tenison and colleagues found that unfamiliar
546 mathematics problems, compared to more familiar ones, took longer to solve and were
547 accompanied by increased brain activity in the intraparietal sulcus [41].
548

549 Group differences in patterns of functional activation may be associated with several factors. The
550 EPT subjects generally had lower working memory function (see WRAML2 scores in Table 1)
551 and they may have adopted different cognitive strategies to compensate for this weakness,
552 resulting in different areas of neural recruitment. An alternative explanation is that there may be
553 alterations in brain structure. Consistent with the group differences in brain structure observed in
554 this study (discussed below), past research has revealed alterations in grey and white matter
555 volumes and altered folding patterns of the cortical gyri in individuals born EPT [42, 43]. The
556 pattern of functional activity observed here may also be reflective of compensation for reduced
557 capacity or neural efficiency in the areas typically used by FT control subjects. A previous study
558 found evidence for neural compensation in adults with preterm birth on a visual learning task [44].
559 Further evidence in support of compensatory processes, as manifest in “cognitive reserve,” is
560 provided by findings indicating age differences between younger and older adults in the level of
561 task difficulty at which patterns of neural activation change from those observed while doing less
562 difficult problems [45]. Greater variability in brain response at the individual level may also have
563 contributed to activation differences between the EPT and FT groups. Greater variability in
564 functional brain activity has been found among those with developmental dyscalculia [46] and
565 those born EPT [47]. The source of the greater variability may arise from differences in the brain
566 structure associated with preterm birth [42, 43], but may also reflect different developmental
567 trajectories related to atypical patterns of maturation and neuronal pruning [48, 49]. One study
568 found evidence of accelerated brain maturation and earlier neuronal pruning in individuals with
569 EPT compared to those born FT [50].
570

571 The SVM-based classifications with the highest accuracies were observed for strategy
572 classification based on item type (i.e., difficulty level). This higher classification accuracy (> 80%)
573 is seen for both groups. These findings suggest BOLD signals that differentiate strategy may be
574 shared across groups and are consistent with the group-level GLM activation pattern results, which
575 indicate different neural activation patterns by strategy. Classification rates for distinguishing
576 difficulty levels were higher for the EPT group than for the FT participants, particularly for the
577 mixed fractions strategy (71.43% versus 56.67%). This finding provides further evidence that the
578 EPT participants may be straining to solve the more difficult Type II items with this strategy. These
579 results are consistent with other findings from this study, including group differences in accuracy,
580 GLM-based activation patterns, and DWI-based connectivity, indicating that group differences
581 were most pronounced when participants were solving more difficult problems.
582

583 The above-noted group differences in patterns of brain functional activations and structure suggest
584 that some youth with EPT birth may engage different brain networks than FT youth in solving
585 fraction problems. These findings suggest a need to tailor instructions in fraction problem-solving,
586 and perhaps other aspects of mathematics, to individual differences. In solving problems relying

587 on brain networks similar to those engaged by FT youth, similar approaches may be justified.
588 However, the present findings indicate that at least some EPT adolescents may engage different
589 brain networks, depending on the strategy employed in solving a problem, the type of item, and
590 the cognitive competencies of the learner. One implication of these findings for mathematics
591 instruction is the support they provide for adapting problem-solving strategies in ways that are
592 biologically informed. Although procedures for making these modifications are to be determined,
593 the present results suggest the need for the student to recognize both their individual cognitive
594 competencies and the characteristics of the mathematics problems, such as their cognitive load and
595 the corresponding respective efficiencies of problem-solving strategies. Alternatively, efforts
596 could be made to strengthen some of the processes that contribute to problem-solving. An example
597 of these efforts as applies to fraction problem-solving would be to increase the automaticity of
598 retrieval of arithmetic facts as a means for compensating for weaknesses in working memory. In
599 the Supplement section S2, it was found that several areas were more likely to be functionally
600 active in the EPT group than the FT group, including the left parahippocampal and bilateral medial
601 frontal gyri, as well as a lack of functional activation in the precuneus. The precuneus has been
602 studied as a functional hub between multiple interacting brain networks and supports visuospatial
603 imagery and attention activation [51], skills necessary for mathematical calculations.
604

605 We also compared the EPT and FT groups on measures of brain structure using volumetrics and
606 DTI analysis (see Supplement sections S3 and S4). Volumetric analysis revealed reduced volume
607 in the left lingual and parahippocampal gyri in the EPT compared to the FT group. DTI analysis
608 revealed several altered connections for these youth, particularly involving the left
609 parahippocampal gyrus, left visual area and right superior parietal lobule. The findings indicating
610 alterations in the EPT group in brain volumes and connectivity are in line with other studies in
611 very preterm individuals (GA < 33 weeks) [42, 43, 52, 53]. Increased volumes and abnormal
612 patterns of structural connectivity may reflect alterations in brain growth that occur in response to,
613 or in compensation for, the above-noted decreases in brain volumes. For example, stronger
614 connectivity between some brain regions may compensate for weaker connectivity between other
615 regions. The overlap we found between the volumetric and DTI analyses suggests structural
616 changes in the left parahippocampal gyrus and right superior parietal lobule. Both regions had
617 reduced white matter volume and structural connectivity. The superior parietal lobule is involved
618 with action processes and visuomotor functions, attention, reasoning, spatial perception, visual
619 perception and working memory [54]. The function of the parahippocampal gyrus has been linked
620 to retrieval fluency in 7- to 9-year-old children [55]. Reduced grey and white matter volume in this
621 area may impact fluency in retrieval of math facts and suggests that EPT individuals may need to
622 invest more effort in making mental computations. The volumetric analysis also suggested that the
623 EPT group had reduced grey and white matter volume in the left lingual gyrus. The left lingual
624 gyrus has been linked to abilities in visual memory [56], a component of the working memory
625 system [57]. Reduced volume in both the grey and white matter of the lingual gyrus areas raises
626 the possibility of deficits in aspects of the working memory system supported by that region.
627

628 Major study limitations are the small sample size and questions regarding sample
629 representativeness. Participants were recruited from a larger sample of youth assessed several
630 years prior to this study. Many of the families could not be located. Although the EPT and FT
631 groups did not differ in age, most youth in the EPT group were female; thus, the sample was not
632 representative of the broader regional or national population of EPT youth. Further MRI studies

633 with larger and more representative samples are needed to confirm our results, and to continue to
634 explore how heterogeneity in cognitive outcomes of EPT birth may be associated with variability
635 in neural activations that we observed at the group level.

636

637 5.0 Conclusion

638

639 The effects of being born EPT on the brain are multifactorial and complex. The present study
640 explored brain function and structure in those born EPT through the lens of mathematical strategies
641 used in performing mental computation of fraction problems. We found both group and strategy-
642 dependent differences in neural activations to fraction problem-solving. The findings offer support
643 for considering individual differences among EPT in neural structure and function, along with the
644 specific demand characteristics or mathematics problems, in developing more targeted approaches
645 to mathematics instruction. This information may inform pedagogical practices and allow
646 educators to tailor mathematical approaches adapted to the cognitive and neural profiles of EPT
647 individuals. Particularly, hemodynamic response patterns associated with different problem-
648 solving strategies in youth born EPT compared to FT youth could serve as potential biomarkers of
649 approaches to mathematics instruction that may be most appropriate for youth born EPT. The
650 present findings suggest consideration of instructional approaches that focus on strategies with
651 relatively lower cognitive loads and on emphasizing flexibility in strategy adoption.

652

653 Declaration of conflicts of interest: All authors declare no conflicts of interest.

654

655 SC – Study design, analysis and interpretation of data, drafting of manuscript

656 MB – Study design, analysis and interpretation of data, review of manuscript

657 AI – Study design, analysis and interpretation of data, review of manuscript

658 BM-D – Study design, analysis and interpretation of data, review of manuscript

659 GW – analysis and interpretation of data, review of manuscript

660 WC – Study design, analysis and interpretation of data, software development, review of
661 manuscript

662 JF – Study design and software development, review of manuscript

663 JZ – Study design, analysis and interpretation of data, review of manuscript

664 MW – analysis and interpretation of data, review of manuscript

665 SYY – analysis and interpretation of data, review of manuscript

666 AB – Study design, data collection, review of manuscript

667 ER – Study design, analysis and interpretation of data, review of manuscript

668 CG – Study design, analysis and interpretation of data, review of manuscript

669 NM – Study design, analysis and interpretation of data, review of manuscript

670 LT – Study design, analysis and interpretation of data, review of manuscript

671 WHK - Study design, analysis and interpretation of data, review of manuscript

672 YS – study design, interpretation of data, review of manuscript

673 CN – interpretation of data, review of manuscript

674 HGT – Study design, analysis and interpretation of data, drafting of manuscript

675 CT – Study design, analysis and interpretation of data, drafting of manuscript

676

677 Funding: This study was supported by Phillips Healthcare and the National Science Foundation
678 (Award number: 1561716).

679

680 Acknowledgements

681 None

682

683 Data availability

684

685 The raw data supporting the conclusions of this article will be made available by the authors,
686 without undue reservation.

687

688 References

689

1. Purisch, S.E. and C. Gyamfi-Bannerman, *Epidemiology of preterm birth*. Seminars in Perinatology, 2017. **41**(7): p. 387-391.
2. Morgan, A.S., et al., *Management and outcomes of extreme preterm birth*. Bmj-British Medical Journal, 2022. **376**.
3. Stoll, B.J., et al., *Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993-2012*. Jama-Journal of the American Medical Association, 2015. **314**(10): p. 1039-1051.
4. Simms, V., et al., *Nature and origins of mathematics difficulties in very preterm children: a different etiology than developmental dyscalculia*. Pediatric Research, 2015. **77**(2): p. 389-395.
5. Menon, V., *Working memory in children's math learning and its disruption in dyscalculia*. Current Opinion in Behavioral Sciences, 2016. **10**: p. 125-132.
6. O'Reilly, H., et al., *Neuropsychological Outcomes at 19 Years of Age Following Extremely Preterm Birth*. Pediatrics, 2020. **145**(2).
7. Johnson, S., et al., *Academic attainment and special educational needs in extremely preterm children at 11 years of age: the EPICure study*. Archives of Disease in Childhood-Fetal and Neonatal Edition, 2009. **94**(4): p. F283-F289.
8. Moeller, K., K. Willmes, and E. Klein, *A review on functional and structural brain connectivity in numerical cognition*. Frontiers in Human Neuroscience, 2015. **9**.
9. Menon, V., *Memory and cognitive control circuits in mathematical cognition and learning*. Mathematical Brain across the Lifespan, 2016. **227**: p. 159-186.
10. Dehaene, S., et al., *Arithmetic and the brain*. Current Opinion in Neurobiology, 2004. **14**(2): p. 218-224.
11. Metcalfe, A.W.S., et al., *Fractionating the neural correlates of individual working memory components underlying arithmetic problem solving skills in children*. Developmental Cognitive Neuroscience, 2013. **6**: p. 162-175.
12. Li, Y.X., et al., *Individual structural differences in left inferior parietal area are associated with schoolchildrens' arithmetic scores*. Frontiers in Human Neuroscience, 2013. **7**.
13. Matejko, A.A., et al., *Individual differences in left parietal white matter predict math scores on the Preliminary Scholastic Aptitude Test*. Neuroimage, 2013. **66**: p. 604-610.
14. Tsang, J.M., et al., *Frontoparietal white matter diffusion properties predict mental arithmetic skills in children*. Proceedings of the National Academy of Sciences of the United States of America, 2009. **106**(52): p. 22546-22551.
15. van Eimeren, L., et al., *White matter microstructures underlying mathematical abilities in children*. Neuroreport, 2008. **19**(11): p. 1117-1121.

724 16. Van Beek, L., et al., *Left fronto-parietal white matter correlates with individual differences in*
725 *children's ability to solve additions and multiplications: A tractography study.* Neuroimage, 2014.
726 **90**: p. 117-127.

727 17. Simon, O., et al., *Topographical layout of hand, eye, calculation, and language-related areas in*
728 *the human parietal lobe.* Neuron, 2002. **33**(3): p. 475-487.

729 18. Dehaene, S., et al., *Three parietal circuits for number processing.* Cognitive Neuropsychology,
730 2003. **20**(3-6): p. 487-506.

731 19. Ansari, D., *Effects of development and enculturation on number representation in the brain.*
732 *Nature Reviews Neuroscience*, 2008. **9**(4): p. 278-291.

733 20. Clark, C.A.C., et al., *Functional neural bases of numerosity judgments in healthy adults born*
734 *preterm.* Brain and Cognition, 2017. **118**: p. 90-99.

735 21. Klein, E., et al., *Processing of Intentional and Automatic Number Magnitudes in Children Born*
736 *Prematurely: Evidence From fMRI.* Developmental Neuropsychology, 2014. **39**(5): p. 342-364.

737 22. Klein, E., et al., *Gestational age modulates neural correlates of intentional, but not automatic*
738 *number magnitude processing in children born preterm.* International Journal of Developmental
739 *Neuroscience*, 2018. **65**: p. 38-44.

740 23. Griffiths, S.T., et al., *Association between brain activation (fMRI), cognition and school*
741 *performance in extremely preterm and term born children.* Scandinavian Journal of Psychology,
742 2014. **55**(5): p. 427-432.

743 24. Rivera, S.M., et al., *Developmental changes in mental arithmetic: Evidence for increased*
744 *functional specialization in the left inferior parietal cortex.* Cerebral Cortex, 2005. **15**(11): p.
745 1779-1790.

746 25. Peters, L. and B. De Smedt, *Arithmetic in the developing brain: A review of brain imaging studies.*
747 *Developmental Cognitive Neuroscience*, 2018. **30**: p. 265-279.

748 26. Bauml, J.G., et al., *The association of children's mathematic abilities with both adults' cognitive*
749 *abilities and intrinsic fronto-parietal networks is altered in preterm-born individuals.* Brain
750 *Structure & Function*, 2017. **222**(2): p. 799-812.

751 27. Isaacs, E.B., et al., *Calculation difficulties in children of very low birthweight - A neural correlate.*
752 *Brain*, 2001. **124**: p. 1701-1707.

753 28. Knight, M.J., et al., *Cerebral White Matter Maturation Patterns in Preterm Infants: An MRI T2*
754 *Relaxation Anisotropy and Diffusion Tensor Imaging Study.* Journal of Neuroimaging, 2018.
755 **28**(1): p. 86-94.

756 29. Ling, X.Y., et al., *Assessment of brain maturation in the preterm infants using diffusion tensor*
757 *imaging (DTI) and enhanced T2 star weighted angiography (ESWAN).* European Journal of
758 *Radiology*, 2013. **82**(9): p. E476-E483.

759 30. Loe, I.M., J.N. Adams, and H.M. Feldman, *Executive Function in Relation to White Matter in*
760 *Preterm and Full Term Children.* Frontiers in Pediatrics, 2019. **6**.

761 31. Young, J.M., et al., *Longitudinal Study of White Matter Development and Outcomes in Children*
762 *Born Very Preterm.* Cerebral Cortex, 2017. **27**(8): p. 4094-4105.

763 32. Honomichl, R.D., et al., *Identifying individual differences in adolescent neuropsychological*
764 *function using the NIH Toolbox: An application of partially ordered classification modeling.*
765 *American Psychological Association*, 2019.

766 33. Tatsuoka, K.K., *Analysis of Errors in Fraction Addition and Subtraction Problems.* 1984, University
767 *of Illinois: Urbana, IL.* p. 69.

768 34. Tatsuoka, K., *Cognitive Assessment: An Introduction to the Rule Space Method.* Multivariate
769 *applications.* 2009, New York: Routledge. 330.

770 35. Tatsuoka, C., *Data analytic methods for latent partially ordered classification models.* Journal of
771 *the Royal Statistical Society Series C-Applied Statistics*, 2002. **51**: p. 337-350.

772 36. Peirce, J.W., *PsychoPy - Psychophysics software in Python*. Journal of Neuroscience Methods, 773 2007. **162**(1-2): p. 8-13.

774 37. Peirce, J.W., *Generating stimuli for neuroscience using PsychoPy*. Frontiers in Neuroinformatics, 775 2009. **2**.

776 38. Peirce, J. and M. MacAskill, *Building Experiments in Psychopy*. 1st ed. 2018, London, England: 777 Sage Publications Ltd. 312.

778 39. Woolrich, M.W., et al., *Temporal autocorrelation in univariate linear modeling of fMRI data*. 779 Neuroimage, 2001. **14**(6): p. 1370-1386.

780 40. Hanke, M., et al., *PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data*. 781 Neuroinformatics, 2009. **7**(1): p. 37-53.

782 41. Tenison, C., J.M. Fincham, and J.R. Anderson, *Detecting math problem solving strategies: An 783 investigation into the use of retrospective self-reports, latency and fMRI data*. Neuropsychologia, 784 2014. **54**: p. 41-52.

785 42. Allin, M., et al., *Effects of very low birthweight on brain structure in adulthood*. Developmental 786 Medicine and Child Neurology, 2004. **46**(1): p. 46-53.

787 43. Papini, C., et al., *Altered Cortical Gyrification in Adults Who Were Born Very Preterm and Its 788 Associations With and Mental Health*. Biological Psychiatry-Cognitive Neuroscience and 789 Neuroimaging, 2020. **5**(7): p. 640-650.

790 44. Brittain, P.J., et al., *Neural compensation in adulthood following very preterm birth 791 demonstrated during a visual paired associates learning task*. Neuroimage-Clinical, 2014. **6**: p. 792 54-63.

793 45. Stern, Y., et al., *Task difficulty modulates young-old differences in network expression*. Brain 794 Research, 2012. **1435**: p. 130-145.

795 46. Kucian, K., et al., *Impaired neural networks for approximate calculation in dyscalculic children: a 796 functional MRI study*. Behav Brain Funct . 2006. **2**: p. 31.

797 47. Carr, S.J.A., et al., *Early Stopping in Experimentation With Real-Time Functional Magnetic 798 Resonance Imaging Using a Modified Sequential Probability Ratio Test*. Frontiers in 799 Neuroscience, 2021. **15**(1477).

800 48. Berl, M.M., C.J. Vaidya, and W.D. Gaillard, *Functional imaging of developmental and adaptive 801 changes in neurocognition*. Neuroimage, 2006. **30**(3): p. 679-691.

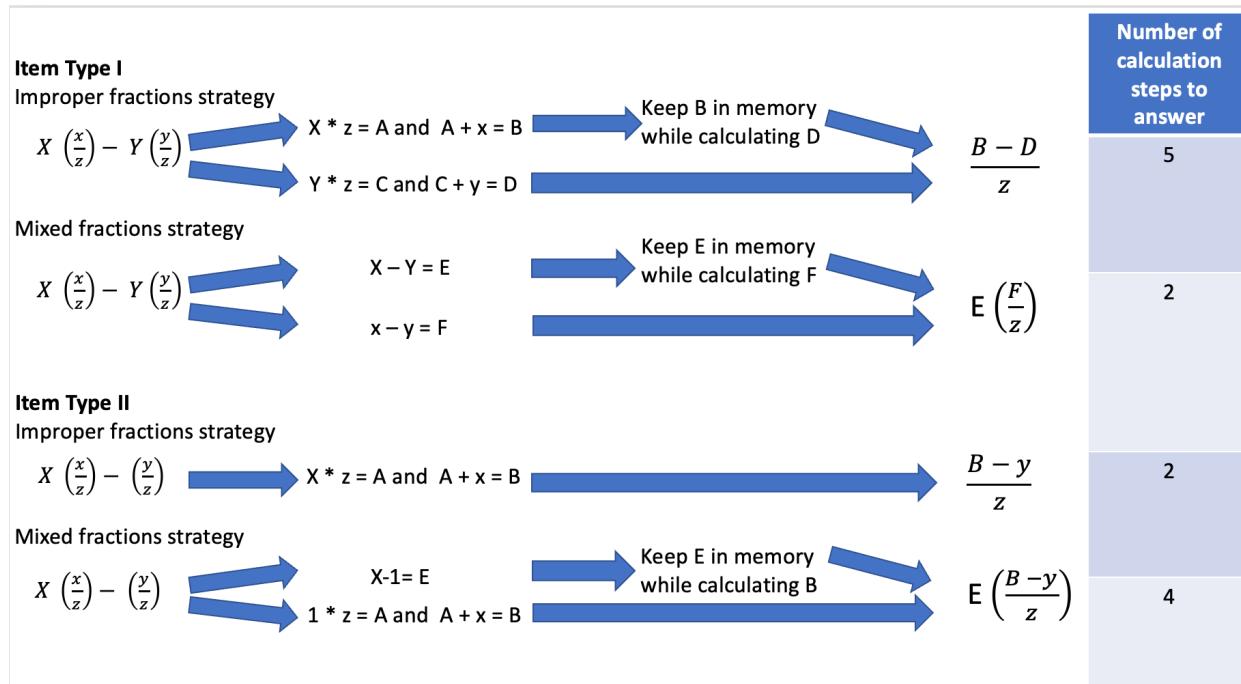
802 49. Giedd, J.N. and J.L. Rapoport, *Structural MRI of Pediatric Brain Development: What Have We 803 Learned and Where Are We Going?* Neuron, 2010. **67**(5): p. 728-734.

804 50. Karolis, V.R., et al., *Volumetric grey matter alterations in adolescents and adults born very 805 preterm suggest accelerated brain maturation*. Neuroimage, 2017. **163**: p. 379-389.

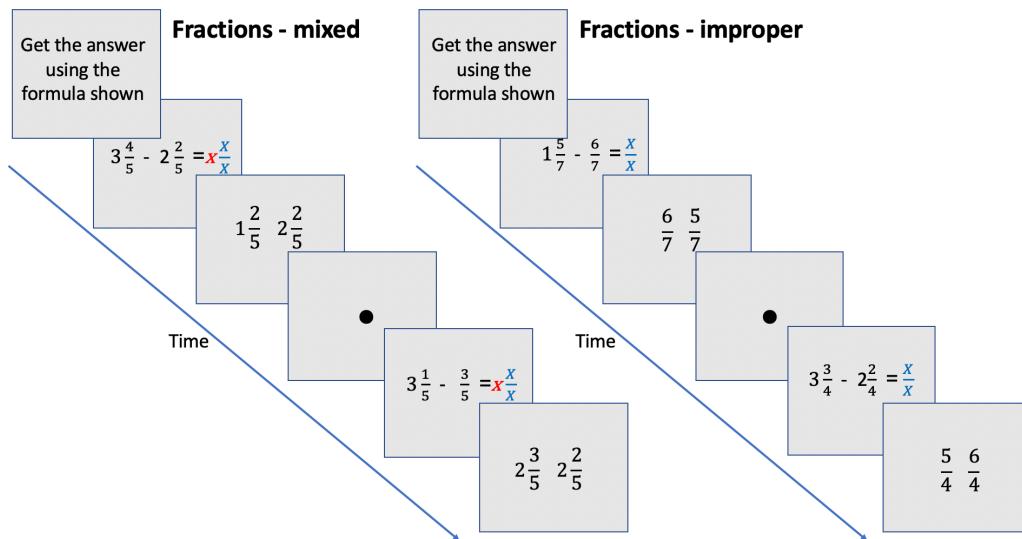
806 51. Cavanna, A.E. and M.R. Trimble, *The precuneus: a review of its functional anatomy and 807 behavioural correlates*. Brain, 2006. **129**: p. 564-583.

808 52. Engelhardt, E., et al., *Regional Impairments of Cortical Folding in Premature Infants*. Annals of 809 Neurology, 2015. **77**(1): p. 154-162.

810 53. Dimitrova, R., et al., *Preterm birth alters the development of cortical microstructure and 811 morphology at term-equivalent age*. Neuroimage, 2021. **243**.

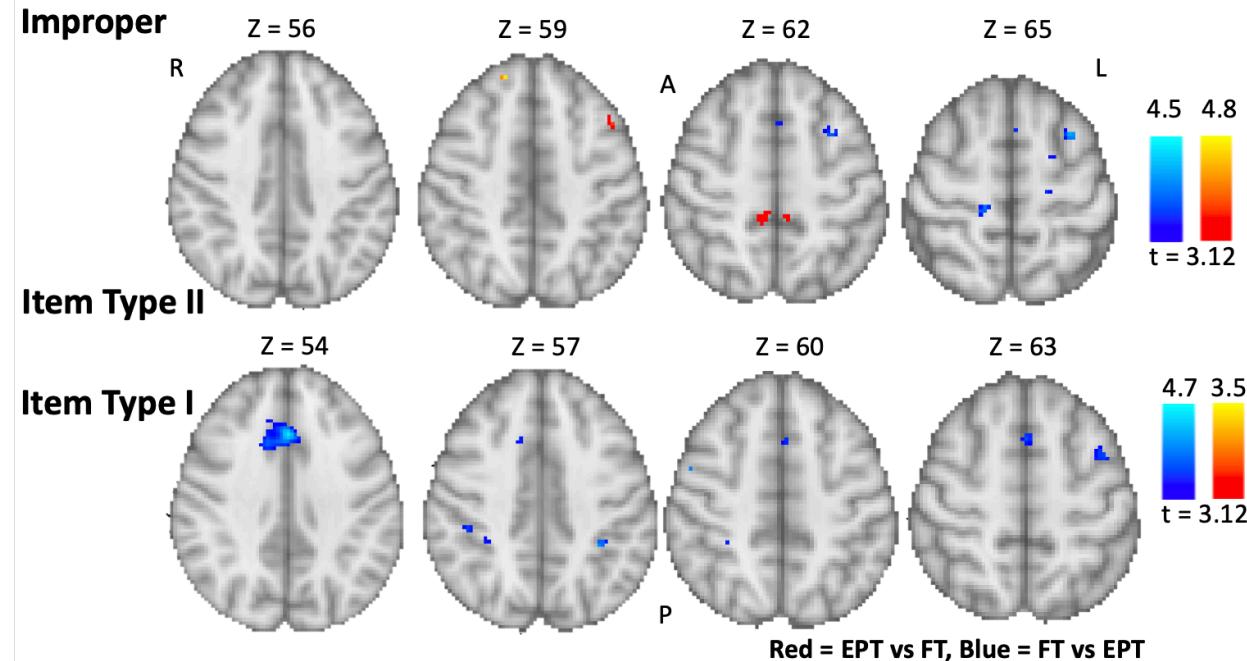

812 54. Wang, J.J., et al., *Convergent Functional Architecture of the Superior Parietal Lobule Unraveled 813 With Multimodal Neuroimaging Approaches*. Human Brain Mapping, 2015. **36**(1): p. 238-257.

814 55. Cho, S., et al., *Hippocampal-Prefrontal Engagement and Dynamic Causal Interactions in the 815 Maturation of Children's Fact Retrieval*. Journal of Cognitive Neuroscience, 2012. **24**(9): p. 1849- 816 1866.

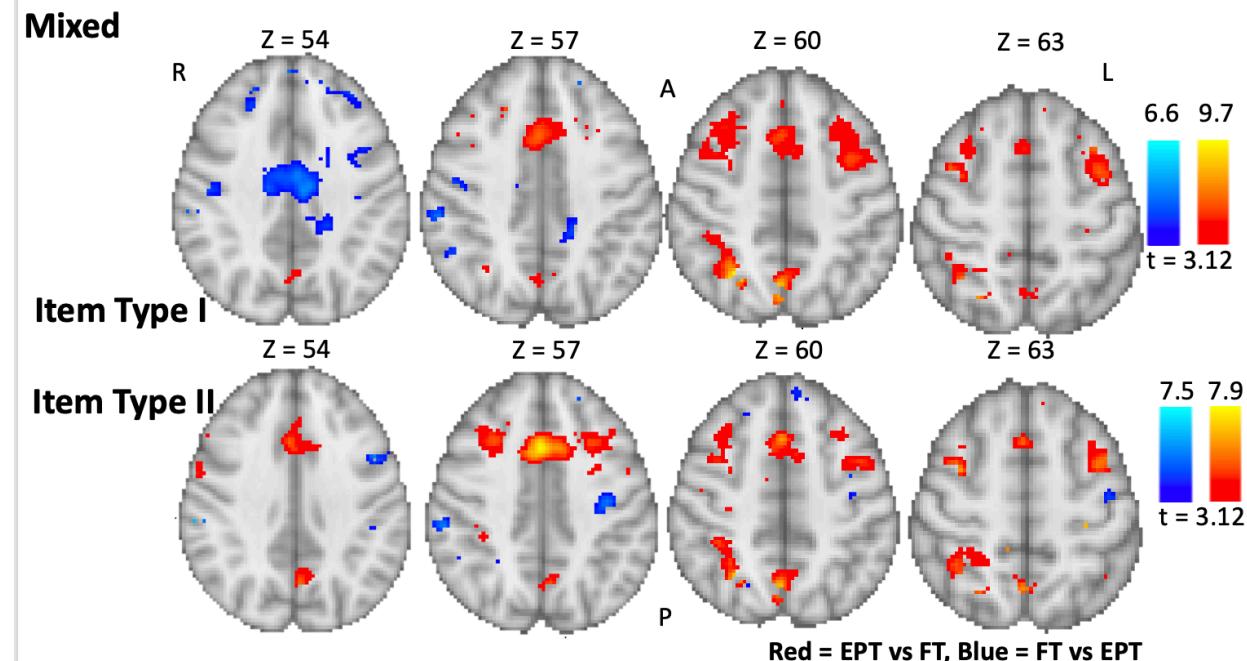

817 56. Slotnick, S.D. and D.L. Schacter, *The nature of memory related activity in early visual areas*. 818 *Neuropsychologia*, 2006. **44**(14): p. 2874-2886.

819 57. Baddeley, A. and G. Hitch, *Working Memory*, in *The psychology of learning and motivation: 820 Advances in research and theory*, G.H. Bowyer, Editor. 1974, Academic Press: New York. p. 47- 821 89.

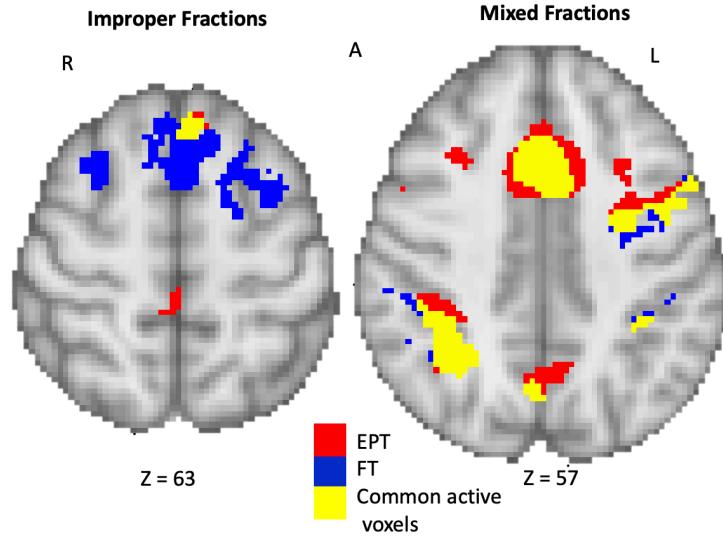
822
823 **Figure 1:** Strategy/Item Type calculation steps demonstrating the cognitive load for each 824 combination.


825
826
827 **Figure 2:** Sample fraction protocol demonstrating the two strategies.

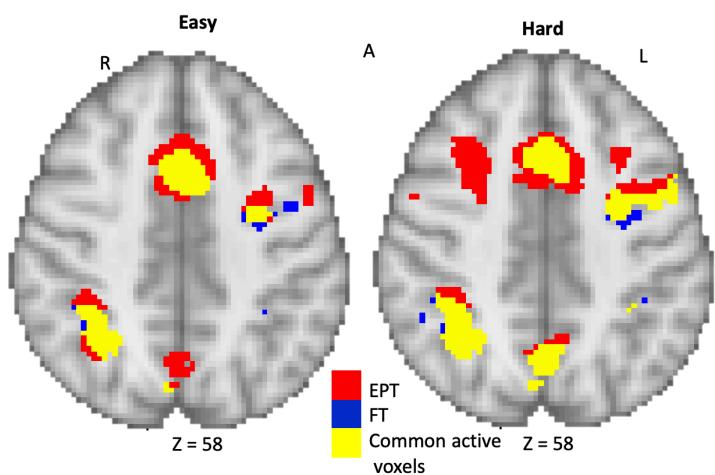
828
829
830


831 **Figure 3:** Hemodynamic responses associated with improper and mixed fractions for both groups.
832 Contrasts are easy EPT vs FT, easy FT vs EPT, hard EPT vs FT, and hard FT vs EPT. Improper
833 fractions (A) and mixed fractions (B) locations are shown separately. L = Left, R = Right, A =
834 Anterior, P = Posterior. Regions include - left side: precuneus, superior, medial and middle frontal
835 gyri, superior and inferior parietal lobule, pre- and post-central gyri, insula, cingulate gyrus,
836 parahippocampal gyrus, caudate nucleus and thalamus. Right side: paracentral lobule, precuneus,
837 pre- and post-central gyri, inferior and superior parietal lobule, superior, medial and middle frontal
838 gyri, cingulate, caudate nucleus and thalamus.
839

A)

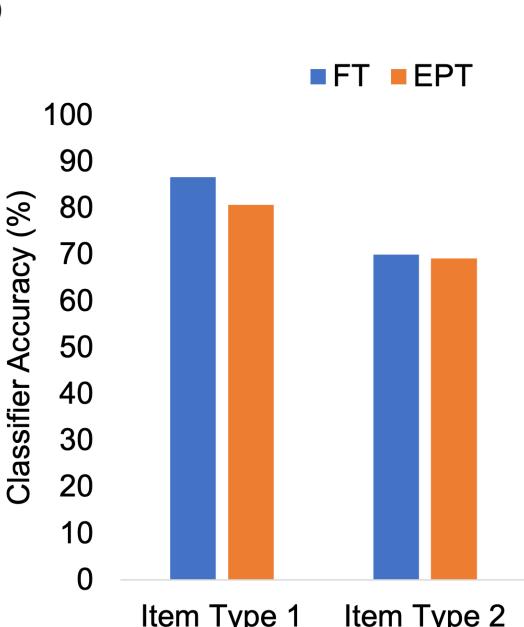
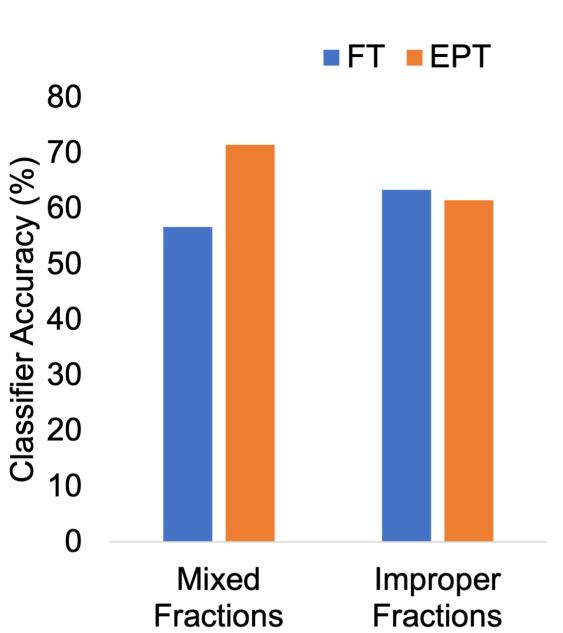

840
841

B)



842

843 **Figure 4:** Conjunction analysis of EPT and FT group results for improper and mixed fractions.
844 The EPT (red) and FT (blue) results have been overlaid. Shared voxels between EPT and FT are
845 shown in yellow. Improper fractions and mixed fractions include both Item types I and II. The
846 brain activity is overlaid on the MNI template brain. L = left, R = right, A = anterior.

847
848
849 **Figure 5:** Conjunction analysis of Item Types I and II for FT and EPT for mixed fractions. The
850 EPT (red) and FT (blue) results have been overlaid for each Item Type. Shared voxels are shown
851 in yellow. The brain activity is overlaid on the MNI template brain. L = left, R = right, A = anterior.

852
853
854 **Figure 6:** Accuracies of group-level SVM classification of difficulty level (A) and strategy (B)
855 from both FT and EPT groups. A leave-one-out cross validation approach was used for all SVM
856 analyses.

857 A)

Table 1: Summary of all subjects recruited for neuropsychological assessment. A subset of 30 subjects received MRI. Normally distributed continuous variables are described using mean (SD) and tested using a t-test. Not normally distributed continuous variables are described using median [IQR, interquartile range] and tested using a Wilcoxon test. Categorical variables are described using percentages and tested using the Chi-squared test or Fisher's exact test (for variables with small values). SD = Standard deviation, ZSES = a composite (mean of sample z scores) of maternal education level, a measure of social advantage based on parent occupation, and medium income of the family. HS = high school, GED = general education degree certificate, NDI = neurodevelopment impairment (CP, Hearing, Vision and/or MDI<70), NeoRisk = number of

872 neonatal risk factors, SepsisNecMeningitis = sepsis, necrotising enterocolitis or menigitis present,
 873 HUS = Head UltraSound, ROP = Retinopathy of prematurity, KTEA3 = Kaufman Test of
 874 Educations Achievement third edition, WIAT3 = Wechsler Individual Achievement Test third
 875 edition. WRAML2 = Wide Range Assessment of Memory and Learning, second edition.

	Level	EPT	FT	P-value	Stat test
Total		14	16		
SEX (%)	Female	12 (85.7)	8 (50.0)	0.058	Fisher's exact
	Male	2 (14.3)	8 (50.0)		
Age (mean (SD))		16.60 (0.61)	16.00 (0.56)	0.009	T-test
Age by year (%)	14	0 (0.0)	2 (12.5)	0.304	Fisher's exact
	15	2 (14.3)	4 (25.0)		
	16	10 (71.4)	10 (62.5)		
	17	2 (14.3)	0 (0.0)		
Ethnicity (%)	Black or African American	7 (50.0)	7 (43.8)	1.000	Fisher's exact
	Mixed	0 (0.0)	1 (6.2)		
	White	7 (50.0)	8 (50.0)		
Handedness (%)	Left	3 (21.4)	0 (0.0)	0.090	Fisher's exact
	Right	11 (78.6)	16 (100.0)		
Grade completed (%)	8th	1 (7.1)	2 (12.5)	0.046	Fisher's exact
	9th	1 (7.1)	7 (43.8)		
	10th	11 (78.6)	7 (43.8)		
	11th	1 (7.1)	0 (0.0)		
ZSES (median [IQR])		0.07 [-0.32, 1.01]	0.50 [-0.16, 1.39]	0.467	Wilcoxon
Maternal type of education (%)	<HS	2 (14.3)	1 (6.2)	0.785	Fisher's exact
	>HS	11 (78.6)	14 (87.5)		
	HS/GED	1 (7.1)	1 (6.2)		
Duration in years of Mothers Education (median [IQR])		14.00 [12.00, 16.00]	15.00 [13.75, 18.00]	0.187	Wilcoxon
Multiple Birth (%)	Multiple Birth	2 (14.3)	0 (0.0)	0.209	Fisher's exact
	Single Birth	12 (85.7)	16 (100.0)		

Birthweight in grams (mean (SD))	780.00 (191.65)	3348.79 (537.28)	<0.001	T-test	
Gestational age (mean (SD))	25.21 (1.42)				
NDI (%)	Impaired	5 (35.7)			
	Not Impaired	9 (64.3)			
NeoRisk (%)	0	6 (46.2)			
	1	3 (23.1)			
	2	2 (15.4)			
	3	1 (7.7)			
	4	1 (7.7)			
Oxygen At 36wks (%)	Not on O2@36wksCA	9 (69.2)			
	On O2@36wksCA	4 (30.8)			
SepsisNecMeningitis (%)	No	9 (64.3)			
	Yes	5 (35.7)			
Severe HUS Abnormality (%)	No	12 (85.7)			
	Yes	2 (14.3)			
ROP (%)	No	10 (76.9)			
	Yes	3 (23.1)			
KTEA3					
Math Computation (mean (SD))		92.21 (19.53)	101.94 (17.99)	0.167	T-test
Math Concepts and Applications (mean (SD))		92.57 (15.28)	103.25 (18.99)	0.104	T-test
WIAT3					
Addition (mean (SD))		87.50 (11.63)	96.88 (17.95)	0.106	T-test
Subtraction (mean (SD))		92.71 (11.47)	98.81 (16.60)	0.258	T-test
Multiplication (mean (SD))		86.93 (13.82)	92.81 (11.93)	0.221	T-test

WRAML2

Number Letter Scaled Score (mean (SD))	10.21 (3.31)	11.00 (3.06)	0.505	T-test
Finger Windows Scaled Score (mean (SD))	8.29 (3.45)	11.81 (2.43)	0.003	T-test

876

877 **Table 2:** Median accuracy rates for the mixed and improper fractions tasks performed during
878 fMRI. Easy and Hard is the overall rates for the improper or mixed fractions. SD = standard
879 deviation.

	Improper	Mixed
	Median accuracy rate (%) (IQR)	Median accuracy rate (%) (IQR)
FT		
Easy	100 (17.6)	100 (14.3)
Hard	100 (17.6)	85.7 (17.9)
EPT		
Easy	100 (28.6)	85.7 (0.0)
Hard	100 (14.3)	71.4 (25.0)

880

881 **Table 3:** Between group differences in hemodynamic responses for Item Types for each fraction
882 strategy. P = 0.001, minimum cluster extent = 10 voxels.

Group	Strategy/ Level	Cluster No.	Coordinates (MNI)	No. of Voxels	Peak t- score	Side	Location
EPT	Improper/ Item Type II	1	8 -38 52	21	3.50	Right	Precuneus
FT > EPT	Improper/ Item Type II	1	-30 8 54	43	4.36	Left	Middle Frontal Gyrus
		2	14 -28 58	36	3.74	Right	Paracentral Lobule
		3	-2 14 54	25	4.01	Left	Superior Frontal Gyrus
		4	-28 -48 64	12	3.95	Left	Superior Parietal Lobule
EPT >FT	Improper/ Item Type I	1	0 22 36	313	4.56	Left	Cingulate Gyrus
		2	-10 -64 64	33	4.66	Left	Superior Parietal Lobule
		3	-28 44 26	25	3.81	Left	Middle Frontal Gyrus
		4	0 12 54	25	3.62	Left	Superior Frontal Gyrus
		5	-32 -42 42	22	4.00	Left	Inferior Parietal Lobule
		6	-12 6 20	21	3.50	Left	Caudate
		7	-40 4 54	16	3.56	Left	Middle Frontal Gyrus
		8	16 -58 64	15	3.67	Right	Superior Parietal Lobule
		9	42 -34 40	13	3.48	Right	Inferior Parietal Lobule
		10	-34 56 16	11	3.76	Left	Superior Frontal Gyrus
		11	-8 -26 16	10	3.28	Left	Thalamus

EPT	Mixed/	1	2 14 42	1258	7.74	Left	Medial Frontal Gyrus
>FT	Item Type	2	2 -60 52	817	7.02	Left	Precuneus
	II	3	34 0 54	315	6.03	Right	Middle Frontal Gyrus
		4	58 0 36	15	4.34	Right	Precentral Gyrus
		5	4 -70 48	13	5.15	Right	Precuneus
		6	-30 -30 -22	12	3.34	Left	Parahippocampal Gyrus
FT >	Mixed/	1	-8 -14 38	653	5.17	Left	Cingulate Gyrus
EPT	Item Type I	2	-46 6 38	221	4.44	Left	Middle Frontal Gyrus
		3	-20 48 38	159	5.81	Left	Superior Frontal Gyrus
		4	-16 -38 40	113	4.33	Left	Cingulate Gyrus
		5	0 50 20	69	5.26	Left	Medial Frontal Gyrus
		6	50 -14 40	60	4.17	Right	Precentral Gyrus
		7	56 -30 38	45	6.42	Right	Inferior Parietal Lobule
		8	30 -26 66	39	3.99	Right	Postcentral Gyrus
		9	-20 -32 70	35	3.93	Left	Postcentral Gyrus
		10	48 -50 42	21	3.92	Right	Inferior Parietal Lobule
		11	18 -8 28	21	3.59	Right	Caudate
		12	2 46 34	12	4.87	Left	Medial Frontal Gyrus
		13	4 -14 60	11	3.34	Right	Medial Frontal Gyrus
	Mixed/	1	-46 6 38	187	6.86	Left	Middle Frontal Gyrus
	Item Type	2	-32 -26 66	115	6.14	Left	Postcentral Gyrus
	II	3	-36 -16 42	106	5.1	Left	Precentral Gyrus
		4	58 -30 38	56	7.35	Right	Inferior Parietal Lobule
		5	22 -34 12	40	3.88	Right	Thalamus
		6	14 -40 68	27	4.06	Right	Paracentral Lobule
		7	4 4 26	25	3.71	Right	Cingulate Gyrus
		8	-4 -10 66	23	3.65	Left	Medial Frontal Gyrus
		9	-6 42 48	16	3.68	Left	Superior Frontal Gyrus
		10	-42 -14 54	15	4.09	Left	Postcentral Gyrus
		11	-32 44 14	10	4.11	Left	Middle Frontal Gyrus

883
884

Table 4. Accuracies and confusion matrices from SVM classification of birth status.

	Classifier Accuracy (%)	Confusion Matrix (Prediction – Target)			
		EPT-EPT	EPT-FT	FT-EPT	FT-FT
Mixed, Item Type I (Easy)	60.71	7	5	6	10
Mixed, , Item Type II (Hard)	67.86	6	2	7	13
Improper, , Item Type II (Easy)	28.57	1	8	12	7
Improper, Item Type I (Hard)	64.29	7	4	6	11
Item Type I (Mixed Easy, Improper Hard)	53.57	6	6	7	9
Item Type II (Mixed Hard, Improper Easy)	50.00	3	4	10	11

885