
StereoSiTE: A framework to spatially and quantitatively profile the 

cellular neighborhood organized iTME 

 
Xing Liu1*, Chi Qu2,3,1*, Chuandong Liu1*, Na Zhu1*, Huaqiang Huang1, Fei Teng1, Caili 

Huang1, Bingying Luo1, Xuanzhu Liu1, Yisong Xu2,3,1, Min Xie2,3,1, Feng Xi2,3,1, Mei Li1, Liang 

Wu1,2,3, Yuxiang Li1, Ao Chen2,3,1#, Xun Xu1#, Sha Liao2,3,1#, Jiajun Zhang2,3,1#  

 
1. BGI-Shenzhen, Shenzhen 518083, China 
2.BGI Research-Southwest, BGI, Chongqing 401329, China 
3. JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China 

 

*：Theses authors contributed equally to this study.  

#: Co-corresponding author  

Correspondence to: 

Dr. Jiajun ZHANG 

BGI-Shenzhen, Shenzhen 518083, China 

Email: zhangjiajun1@genomics.cn 

 

Highlight 

A framework based on space nearest neighbor graph and gene expression profile to spatially 

resolve iTME and to quantitatively define cell-cell communication intensity (StereoSiTE)
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Abstract 

Spatial Transcriptomics (ST) technology enables systematic depiction of regional 

milieu of a tissue, like tumor immuno-microenvironment (iTME). However, a powerful 

algorithmic framework to dissect spatially resolved niches, and to quantitatively evaluate 

spatial cell interaction intensity will pave the ways to understand the spatial signature 

associated mechanism. In this study, we provide a promising framework (StereoSiTE), which 

is based on space nearest neighbor graph and gene expression profile to spatially resolve 

iTME and to quantitatively define cell-cell communication intensity. We applied StereoSiTE 

to dissect the iTME of xenograft model receiving immunoagonist treatment, 7 distinct 

cellular neighborhoods (CN) were identified, and each CN was considered as the functional 

unit with exclusive cell type (CT) composition. Further deconvolving the joint matrix 

covering CNs and CTs indicated the importance of neutrophils in CN6, which was confirmed 

by pathway enrichment analysis. What's more, analysis of interaction intensity indicated that 

the recruited neutrophils preserved tumor protection activity through paired IL-1β/IL-1R after 

immunoagonist treatment exclusively in CN6. This evidence provided a new possible vision 

of tumor immune evasion orchestrated by neutrophils. StereoSiTE is believed to be a 

promising framework of mapping iTME niches using spatial transcriptomics, which could be 

utilized to spatially reveal tumoribiology mechanisms.   

 

Key words: Stereo-seq, iTME, Cellular neighborhood, Cell to cell communication 

intensity, Xenograft tumor model 
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Introduction 

Dissecting and deciphering the mechanisms by which genes bio-functionally 

orchestrates complex heterogeneity across inter- and intra- tumors is unprecedentedly crucial 

for improving treatment response of tumor. Over the past decade, the target of cancer therapy 

has gradually moved from tumor cells to other cell types in the tumor microenvironment(1). 

The important role of cell types in the immune tumor microenvironment (iTME) in tumor 

progression is increasingly emphasized. The iTME is a complex system of tumor cells, stromal 

cells, immune cells and extracellular components that rely on a high degree of spatial 

organization and interaction of cell types to exert tumor suppressive or promotive effects(2, 3). 

The iTME has been iteratively elucidated to propel malignant progression across cancer types. 

Mechanisms underlying in TME-induced intratumoral heterogeneity are deemed as guaranteed 

frontiers for understanding tumoribiology(4-6). Therefore, dissecting the coordinated activities 

of various cell types in iTME will advance our understanding of the mechanisms of tumor 

progression. 

Unfortunately, trade-off between “-omics” tools generated comprehensive molecular 

measurement and “-targeted” tools conferred low-throughput but highly resolved cellular 

investigation in situ is a long-lasting debate, which, thereby, hinders our understanding in 

biology(7). However, this historical conundrum is being up to termination under the recent 

development of spatial transcriptomic (ST) technologies(8). The recent developments in the 

spatial transcriptome (ST) provide opportunities to better elucidate physiological and 

pathological progress covering cell-type definition(9-11), cellular interaction(7, 12), molecular 

signaling(13, 14), and hence facilitated us to spatially map the microenvironment landscape. 

However, there is still lacking a useful and systematic analytical framework for identifying 

important iTME units, locating major cell types, and delineating the spatial organization and 

orchestration of cell types in iTME functional units under tumor progression or response of 

therapy. 

As most of the published algorithms utilize spatial information and gene expression 

profile by deep learning and graph neural networks model(15), whose performance relies on 

training data leading to poor repeatability and practicality. Some accessible algorithms used 

the spatial coordinate to construct space nearest neighbor graph without taking the gene 

expression profile into consideration(16, 17). Although these algorithms can be used to 

evaluate distance between cells, without valuable information on gene expression profile, 

researchers can hardly address scientific questions with reasonable conclusion from the spatial 

transcriptomics data. The stereoSiTE constructs space nearest neighbor graph based on spatial 
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coordinate and assigns the edge with weight based on ligand-receptor expression. Then, we 

established two key formulas, which can be used to compute the spatial cell interaction 

intensity (SCII). Besides, to quantitatively profile the cellular neighborhood organized iTME, 

StereoSiTE integrates the analysis of distinguishing different cellular neighborhood (CN) 

regions based on cell composition resolved by deconvolution. The combination of SCII with 

CN will pave the ways for exploring significant scientific discovery. 

Here, we present StereoSiTE, an analytical framework for comprehensive depiction of 

iTME multicellular communities from the spatial transcriptome. Our approach combines 

spatial coordinate based spatial nearest neighbor maps and gene expression profiles of cell 

types to elucidate iTME multicellular communities, and to evaluate the quantitative intensity 

of cellular interactions from spatially resolved gene expression data. To demonstrate the utility 

of this framework, we applied StereoSiTE to xenograft models receiving immunoagonist 

treatment. We then defined 7 CNs across 6 xenograft tumor samples. Importantly, CN6 was 

significantly altered after treatment of immunoagonist, which was characterized by enrichment 

of neutrophils. We also observed that the recruited neutrophils preserved tumor protection 

activity through paired IL-1β/IL-1R after immunoagonist treatment exclusively in CN6 by 

analysis of interaction intensity. This evidence provided a new possible vision of tumor 

immune evasion orchestrated by neutrophils. These results underscore the necessity of 

analytical framework, StereoSiTE, to dissect the immune tumor microenvironment by 

identifying cellular neighborhoods and elucidating cell interaction under spatial organization. 

 

Results 

Framework based on space nearest neighbor graph and gene expression profile 

While the spatial transcriptomics data at single-cell resolution was available(18), there 

is urgent need to develop a data analysis solution or algorithms to unearth the spatial signature 

hidden under tumoribiology. We designed a framework for spatial transcriptomics data analysis, 

which can fully utilize the spatial coordinate and gene expression profile (Fig 1A). The 

framework contains two key components. First, we cluster the entire data matrix into specific 

functional units based on their different cellular neighborhood (CN). Then, the spatial cell 

interaction intensity was computed by space nearest neighbor graph which combined the spatial 

coordinate and ligand-receptor expression information (Fig 1B& C). Here, we can collect 

spatially resolved transcriptomic data from tumor tissue by Stereo-seq. As registration of the 

spatial gene expression profile with the nuclear staining, which records the cell nuclear 

morphology, data matrix at resolution of single cell was obtained after cell segmentation 
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processing. Then the cell types will be defined based on their gene expression profile by 

Cell2location(19) with reference from publications(20). One the other side, without taking the 

cell morphology into consideration, we binned data can be obtained by binned 100 × 100 DNB 

bins into one analyzed window with size of 50x50um. We assigned captured mRNA into 

specific binned 100, which is a square of specific size, for example bin100 means a square with 

side length 100 (the unit of length is capture site). We resolved the cell composition of every 

bin100 which contains about 25 cells by deconvolution (Cell2location)(19), which can be 

considered as specific cellular neighborhood associated with iTME (Fig 1C). At last, we can 

perform integrated analysis of the CN distribution and the annotation at single cell resolution. 

CNs of interest were featured by associating to pathological alteration. Then data matrix at 

single cell resolution in featured CNs could be extracted for computing the spatial cell 

interaction intensity (SCII) to explore how intercellularly interacts and biologically function 

(Fig 1A). To compute SCII, we firstly constructed the cell neighborhood graph based on the 

spatial location of every cell, then assigned edge with weight based on ligand-receptor gene 

expression of the corresponding sender and receiver cells. The key formulas to compute 

intensity and intensities are listed in Fig 1B.  Spatial cell interaction intensity of every sender 

cell with its paired receiver cells is calculated by summing of the edge weight between them. 

And the spatial cell interaction intensities of the entire data matrix or specific CN region equals 

to the sum of all connected edge weight. Therefore, we constructed this framework called  

StereoSite, which was a powerful algorithmic tool to Spatially and quantitatively profile the 

cellular neighborhood organized iTME. 

 

StereoSiTE precisely and distinguishingly measures cell-to-cell communication in specific 

cellular neighborhood organized iTME region. 

To verify that StereoSiTE could identify distinct cellular neighborhood organized iTME, 

we applied this framework to a representative Stereo-seq data in single-cell resolution of 

sample from xenograft model. As shown in Fig 2A, the whole slice showed specific 

neighborhood enrichment pattern. We performed clustering analysis and obtained seven 

distinct cellular neighborhood organized iTME regions based on different cell composition. 

The Fig 2B illustrated that each CN region had specific neighborhood enrichment and cell 

composition. For example, CN1, CN3 and CN4 dominantly contained Treg cells, neutrophils 

and Teff cells, respectively. On the other hand, there was more self-neighborhood enrichment 

of different immune cells in CN1 than other CNs, while neighborhood enrichment of 

neutrophils in CN3 and neighborhood enrichment of Teff in CN4 were observed. As each CN 
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showed distinct feature, it was reasonable to group samples based on CNs and to further 

investigate cell-cell communication in the CN region of interest. This framework can help us 

to find some new scientific observation, which could be possibly vailed by analysis of whole 

section. Next, we computed the SCII between non-immune cells with all immune cells in CN4 

region, and presented the results with dot plot (Fig 2C). The size of dot corresponded with SCII 

score, and the color represented ligand-receptor expression. To estimate the performance of 

SCII in assessing the strength of intercellular communication, we computed the p values of 

ligand-receptor pairs by CellPhoneDB, which was re-implemented in squidpy (Fig 2D). Then 

we compared SCII intensity with p values of the paired ligand-receptor.  Fig 2E illustrated that 

SCII could find a greater number of cell-to-cell communication events. Meanwhile, SCII 

covered most of the interaction pairs found by permutation test method. From the comparison 

of the Mif and Cd74 induced cell-to-cell communication results which were highlighted by red 

square in Fig 2C and Fig 2D, we found that SCII had robust power to precisely and 

distinguishingly measure cell-to-cell communication activities. And differences can be 

obviously observed by comparing space cell interaction intensity while the p values from 

different groups were hardly comparable (Fig 2G). To confirm that the discrimination between 

different cell pairs was true, we plotted the spatial cell interaction intensity in situ (Fig 2F). 

Very strong interaction between non-immune cells with Teff and relatively weak interaction 

between non-immune cells with Treg, Monocytes and DC in CN4 region can be observed, 

which was missing in permutation test method. The interactions between non-immune cells 

with M1-like, M2-like and Neutrophils were different, which was consistent with SCII (Fig 

2F& 2G). At last, there was no interaction between non-immune cells and B cells, which had 

similar observation in both of the two methods.  

 

Profiling of tumor microenvironment using spatial transcriptomics  

  To apply designed framework to address iTME associated research questions, we 

introduced xenograft models (Fig 3A) with treatment of immune agonist (STING agonist). 

BALB/c mice were subcutaneously injected with colon cancer-originated CT26 cells and 

respectively treated with vehicle or DMXAA 14 days after tumor transplantation. Samples 

were harvested after 24 hours treatment and Stereo-Seq was subsequently performed (Fig 3A). 

Here, we collected spatially resolved transcriptomic data from xenograft tumor tissues by 

Stereo-seq, a spatial sequencing technology with the subcellular resolution of 500nm. Data 

matrix at resolution of single cell was obtained after cell segmentation processing based on 

nuclear staining. By cell2location induced deconvolution of spatial transcriptomic matrix based  
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on reference previously reported(20), we identified and validated 12 distinct cell types (Fig 

3B), including 6 of lymphoid-lineage, 5 of myeloid-lineage and 1 of non-immune cluster. 

With population proportion of cell types across samples (Fig 3C), we noticed the different 

compositions of immune cells across samples. Further comparison in quantitative analysis 

indicated a divergent variation of cell numbers in different groups (Fig 3D), this may result 

from varied treatment regimens, where necrosis attributed to reducing cell numbers in 

treatment group (Fig 3E). One of advantages of spatially resolved sequencing is to allow in 

situ mapping of cell types (Fig 3F). Notably, control groups had higher frequency of M2-like 

macrophages, while, treatment groups possessed higher frequencies of neutrophils. 

Interestingly, we synchronously observed a location preference (Fig 3F) of M2-like 

macrophages in control groups, where they frequently located and associated with tumor cells 

and of neutrophils in treatment groups, where they tended to cluster around necrosis niches 

(Fig 3E & 3G). However, methods interrogating the correlation between specific bioactivities 

and the corresponding spatial preference were rarely exploited. To validate our hypothesis of 

spatial preference between different cell types, we applied analysis of CN in following 

section.  

   

Organizing TME-associated cellular neighborhood  

  The immune tumor microenvironment (iTME) heterogeneity prevails both intra- and 

inter- tumor, which is intrinsically attributed by varied cell organizations in each spatially 

compartmented niche. The most possible extension to interrogating and elucidating iTME of 

xenografts, in short of distinct histological characteristics, is to visualize tissues with CNs. We 

firstly clustered windows labelling all samples and identified 7 distinct CNs co-currently 

existent in both groups (Fig 4A). Interestingly, constitution of cell types in each CNs 

significantly ranged across the cohort, this in return suggested that different immune cells 

preferentially co-localize and associate with certain cell types in compartmented iTME niche. 

We therefore entitled each CN based on their dominant cell proportions (Fig 4B). We next 

calculated the frequencies of CNs in different groups (Fig 4C) and observed a distinct 

correspondence of CN4 (lymphoid cell lead) and CN6 (neutrophils enriched) elevation in 

treatment group (Fig 4D), which was aligned with the treatment background as expected. To 

spatially exhibit and evaluate CNs (Fig 4E), we sought to assess CN6 in situ since neutrophils 

were acquiescently recruited by chemokine motivation but not persistent in targeted tissues 

(21-23). We therefore orthotopically projected CN6 to adjacent H&E staining to probe the 

putative distribution pattern of this neutrophils dominant iTME niche (Fig 4F). An obvious 
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trend of CN6 co-localizing around necrosis edges comparing to other CNs was observed, which 

potentially highlighted specific bioactivities exserted by tumor cells after receiving 

immunoagonist therapy. Altogether, we herein introduced CNs to spatially organize different 

iTME niches and exclusively exhibited distinct biological characteristics across divergent 

units.   

  

Deconvolving iTME regarding to individual CNs  

  The CNs we herein organized provided a new dimension in evaluating iTME other than 

the CTs, where spatial information of cell neighborhood in tissue was included. We believed 

that we could shape the iTME more comprehensively by synchronous evaluating CTs and CNs. 

We therefore considered, for each sample, the matrix co-currently covering CNs and CTs 

should be utilized, instead of individually evaluating CNs and CTs, to elucidate how iTME 

differs between different groups. Tensor technology was hence induced(24). By decomposing 

the module matrix, we determined that dissecting each sample with 7 CN modules and 7 CT 

modules could furthest retain information and synchronously exhibit biological features across 

different samples (Fig 5A). Subsequent analysis indicated a potent coupling between CN6 and 

neutrophils which was further enhanced in treatment group (Fig 5B). The result suggests a 

prompt and activated crosstalk of neutrophils with other cells in CN6 in response to 

immunoagonist treatment. We next decided to look into CN6 and deeply shape the iTME niche. 

With KEGG analysis in CN6 of treatment set comparing to control set, we identified a potent 

recruitment activity of neutrophils in this milieu, as upregulated IL-17 signaling, TNF signaling 

and chemokine signaling pathways. Moreover, tumor associated inflammatory response was 

also enhanced (Fig 5C). In accordance, GO analysis and GSEA were both performed, and the 

result agreed with conclusion from KEGG analysis (Fig 5D&5E).  In addition, cell-cell 

communication in this unit by SCII indicated a potent interaction between neutrophils and 

tumor cells with IL-1β/IL-1R overexpression (Fig 5F) and in situ intensity visualization of this 

pair revealed the frequent crosstalk around necrosis niches (Fig 5G), which was consistent with 

the biological feature of pro-tumor neutrophils (Fig 3B) and suggested a tumor-protecting 

function of neutrophils in CN6(22, 25). Altogether, we shaped the iTME niche by 

deconvolving the biological event undergoing in CN6 and indicated the recruitment of 

neutrophils with accompanied tumor protection activities after receiving immunoagonist 

treatment. 
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Discussion 

Spatially organized iTME and its disorganized manner can be manifested as pathological 

disease. Therefore, to decode spatial signature of iTME is crucial to find the 

clinicopathological association for understanding mechanism(8). Alterations in tissue 

organization and cellular morphology set up the foundation of diagnosis of cancer, and 

provide gold criteria in pathology(26). It indicates the irreplaceable role of spatial 

information in understanding the initial and process of cancer. Pathological structures like 

invasive front, buddings and Tertiary Lymphoid Structures (TLSs) have been studied or used 

in pathology to indicate risk of metastasis, relapse and survival(8). Ji et al.(12) reported that 

tumor-specific keratinocytes (TSKs) at leading edges of squamous cell cancer associated to 

tumorigenesis. TSKs function like a hub to interact with nearby immune cells to form a 

reactive neighbor. Different cell types build up and remodel the iTME by crosstalk with cells 

in their neighborhood(3). Grunwald et al.(27)  discovered “subTMEs” in human pancreatic 

cancer guided by pathological annotation. Immuno-activities of subTMEs were phenotyped 

by celltype components and differentiation status of cancer associated fibroblasts. Result of 

this paper suggested that reactive unit in iTME can be defined as a group of cells which 

interact within the neighbor, which has more relevant to pathological disease. This conclusion 

agreed with the concept in our framework, in which, cellular neighborhood could be featured 

and associated to alteration in tumor. Key cellular components in targetable structure have 

more accurate prognostic power.  

Emerging evidences show cell neighborhoods could be the important iTME units with 

different cell compositions to indicate distinct biological processes. Schurch et al.(3) reported 

nine conserved cellular neighborhoods at invasive front of the colorectal cancer. CNs were 

characterized by the main cell types, and intra-CN communications orchestrated the antitumor 

activities.  Afterwards, more studies have discussed CNs in multiple disease(28-30). It has been 

indicated that CNs might spatially reflect TME organization. Cell to cell communication in CN 

possibly leads to resultant phenotypes and participants in reprogramming regional environment. 

In our result, we found a specific CN (CN6) associated to inflammatory reaction like IL-17 

signaling pathway. In the meantime, we found CN6 mainly composed of neutrophils whose 

biological activity is aligned with function of CN6. With indication of H&E, the position of 

CN6 lies on the edge of necrosis area. Recent cancer research highlighted importance of 

differentiation of neutrophils including high heterogeneity and plasticity(31). In our model, the 

neutrophils seem to be polarized into protumoral N2(21), which performs the protumoural 

activities. Therefore, our framework utilized the spatial information of cellular neighborhood 
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to target important CN groups associated to pathological condition. In current on-going studies, 

our group has been further proving the molecular mechanism of neutrophils regulating tumoral 

cells in CN6 with wet experimental evidence. 

Spatial multi-omic techniques promises new modalities to obtain spatially informed omic 

data (8). Comparing to other omic methods, spatial transcriptomic technologies can generate 

high-throughput data at resolution of subcellular level(18). The state-of-art sequencing 

method enables researchers to obtain the genuine landscape of TME without unbalanced loss 

of cells caused by dissociation(32). With multi-dimensional and high throughput of gene 

expression, it requires powerful algorithmic toolchain to efficiently associate specific cell 

types to molecular activities, biological processes and clinical manifestation to address 

scientific questions. In this paper, we developed a framework called StereoSiTE to identify 

cellular neighborhood unit harboring disease associated spatial features, and to further 

decipher underlying biological function of each CN. In addition, we offer a new algorithm in 

this framework, which can qualitatively measure the interaction intensity of paired ligand and 

receptor with spatially confined cell to cell communication.  

In our framework, we defined the cellular neighborhood with portion of CTs. However, 

recognizing cell identity in spatial transcriptome is extremely hard due to the relatively high 

dropout rate in gene capturing and low resolution. Deconvolution is a common solution to 

deduce the cell composition in each analytical window based on expression profiles. We used 

Cell2location with reference of single-cell RNA sequencing to perform annotation. Although 

this method has been designed for deconvolution, we also generated a single cell resolution 

data matrix in Stereo-seq data. The result showed purity and specificity of cell markers with 

cell2location in single cell spatial data could be satisfactory. After testing references from 

different publications, we found that quality of reference guaranteed the success of annotation 

in spatial sequencing data. Therefore, we recommended that testing the reference quality 

beforehand. Therefore, cell2location is a recommended tool in annotation of spatial data at 

different resolution in our framework. 

 Recent advent in spatially resolved omic technologies promises the investigation of 

authentic cell to cell communication. Therefore, our framework adds distance filter at cut-off 

of 200um(33). It is proposed that the longest acting distance of paired ligand-receptor is 200um. 

With in situ mapping of each gene expression, we add the distance filter in this framework 

when calculating ligand-receptor to reduce the false positive signal. In addition, we developed 

a novel algorithm to calculate the interaction intensity of paired ligand-receptor based on gene 
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expression. Our framework offers a new paradigm to quantitatively compare cell interaction 

intensity and to avoid false positive interaction by referring to physical distance on tissue.  

We also aware that the function of StereoSiTE has been limited as follows. In our 

approach, the results of deconvolution annotation by cell2location have proved their accuracy, 

but it requires the users to provide a high-quality single-cell reference dataset suitable for their 

study design. Moreover, another key analytic compartment of StereoSiTE is spatial cell 

interaction intensity (SCII) which is a novel method to analyze cell to cell communication by 

integrating gene expression and spatial coordinate information. In this paper, the single-cell 

resolution data is used for SCII analysis. Due to our experimental model with high cell density, 

there is a certain drop-out rate of cells resulted from inaccurate identification of cell 

segmentation. In addition, we used the database from cellphoneDB for SCII analysis of mouse 

samples, databases covering other species will be included in the future. Larger sample sizes 

are needed to make conclusive biological explanations of the differences in cellular 

neighborhoods and cell interactions observed between the treatment and control groups.	

With fast development of spatial transcriptomic technology, we’re granted with high-

throughput data and spatially resolved information when investigating the intricate network of 

tumoribiology. Here, we developed a comprehensive analytic framework, StereoSiTE, which 

contributes to spatially resolved iTME by organizing different iTME niches and dissecting 

detailed biological process within each individual CN. In the xenograft model, we identified a 

distinct CN that phenotypically and quantitatively altered after immunoagonist treatment. 

Subsequent deconvolution of this niche indicated a neutrophil leading bioactivity. Further 

enrichment analysis and spatial cell interaction intensity (SCII) analysis in return revealed a 

tumor exerted defensive action under immunoagonist exposure, which was by recruiting pro-

tumor neutrophils to this very region. Altogether, our approach of mapping iTME niches using 

spatial transcriptomics could be utilized to spatially reveal tumoribiology mechanisms inherent 

in orthotopic tissues.	
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Figure 1. StereoSiTE, framework of SCII and CN A.Workflow sketch of stereoSiTE, showed data analysis process from the raw spatial transcriptomic data to spatial cell 

interaction intensity of specific CN region. B.Algorithm principle of SCII. Construct space nearest neighbor graph based on cell spatial location and assign the gene expression 

as weight to connected edges. Then compute intensity and intensities from the graph. C.Principle of CN. After binned the spatial gene expression matrix with specific window 

and resolving the cell composition by deconvolution, the bins were clustered to different cellular neighborhoods. Finally, show the CN distribution in situ space. 
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Figure 2. StereoSiTE precisely and distinguishingly measure cell-to-cell communication in specific cellular 

neighborhood organized iTME region. A.Cell neighborhood enrichment pattern of the whole slice and cell 

composition of seven distinct CNs. B.Cell neighborhood enrichment pattern of CN1 CN3 and CN4 and their 

spatial distribution on the slice. The squares with black background showed the real cell composition of 

corresponding CN. C.Dot plot presented the SCII result. The size of dot represented spatial cell interaction 

intensity while the shade of color represented ligand-receptor expression high or low. D.Dot plot presented the 

cell-to-cell communication result computed by squidpy. The size of dot represented p values while the shade of 

color represented mean expression of ligand-receptor. E.Venn diagram between result of SCII and squidpy. 

F.Interaction intensity of non-immune cells that express Mif with different immune cells that express Cd74 in 

situ. The red dots represented intensity, blue dots represented Mif expression of non-immune cells and orange 

dots represented Cd74 expression of immune cells. G.The table listed the p values computed by squidpy and the 

spatial cell interaction intensity computed by SCII. All the corresponding sender cell was non-immune cells. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 31, 2022. ; https://doi.org/10.1101/2022.12.31.522366doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.522366
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	

 

               
Figure 3. Spatial Transcriptomic mapping of xenograft model in situ. A.Flow chart of xenograft model 

construction and stereo-seq data management. B.Heatmap of transcriptional markers expression of 11 annotated 

immune cell types at resolution of single cell. C.Cell proportion analysis of indicated samples at single cell 

resolution. D.Cell number analysis of different samples at single cell resolution (blue stands for control group; 

red stands for treatment group). E.Adjacent H&E staining of sample 717 from control group (left) and sample 

718 from treatment group (middle). H&E staining on the (right) side exhibited necrosis area enlarged from the 

black blank marked site. F.In situ visualization of annotated cell types using Stereo-seq data	 (Left); Enlarged 

image of white circle marked site exhibiting distinct cell distribution across samples (Middle); adjacent H&E 

staining of white circle marked site objectively displaying cell distribution (Right) . 
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Figure 4. Organization of TME-associated cellular neighborhood. A.UMAP exhibiting the distribution of the 

identified 7 CN clusters. B.Heatmap indicating varied cell composition in different CNs (left) and confetti labeling 

the corresponding title for each CN (right). C.CN frequencies in different samples from control and treatment 

group, respectively. D.Box plot indicating the statistical variation of CN frequency across groups. E.In situ 

distribution of CNs in different groups. F.CN6 section (black lump indicated) on adjacent H&E staining of 

samples from treatment group, with enlarged image of red circle marked site displaying highly resolved H&E 

staining. 
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Figure 5. Deconvolution of CN of interest. A.Rank selection of Tucker tensor decomposition to stratify CN 

modules and CT modules. Tensor decomposition loss in different CN modules (different colors) or CT modules 

numbers (x axis). B.Decomposition results for both groups. The crosstalk extent of indicated CN and CT was 

represented by weight of the line linking them and weight lines under empirically recognized threshold were 

concealed. C.KEGG analysis of CN6 in control group comparing to treatment group. D.GO analysis of CN6 in 

control group comparing to treatment group. E.GSEA analysis validation with result obtained from KEGG and 

GO analysis. F.SCII calculation of potential ligand-receptor interaction between neutrophils and other cell types 

in CN6. G.In situ visualization of IL-1β/IL-1R between neutrophils and non-immune cells to exhibit the crosstalk 

coordinates. 
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Method and materials  

Mice and cell lines   

Female BALB/c mice at 6 weeks of age were obtained from GemPharmatech Co., Ltd. All 

mice were housed in a specific pathogen–free animal facility at GemPharmatech Co., Ltd. 

CT26 colon cancer cells were purchased from ATCC. Cells were cultured at 37 oC under 5% 

CO2 in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin.   

  

Xenograft tumor models and treatment   

We implanted 5×10^5 cells/100 µL CT26 cells into the right flanks of BALB/c mice. When 

the tumors reached volume of 250-300 mm3, we performed intratumoral injections of the 

STING agonist (0.5 mg/50ul/mouse, DMXAA, Vadimezan). Mice in the control group were 

intratumorally injected with the same volume of PBS, accordingly. Xenograft tumor samples 

were collected 24hours after treatment and embedded by OCT on dry ice.  

  

Stereo-seq library preparation and sequencing  

Tissue processing  

Two consecutive cyro sections of 10 µm were prepared. One section was attached to 

glass slide and stained by H&E staining following previous protocol. The second section was 

adhered to the Stereo-seq chip surface and incubated at 37℃ for 3-5 minutes. Then, the 

sections were fixed in methanol and incubated for 40 minutes at -20℃. Stereo-seq library 

preparation and sequencing followed previous published protocol(18).   

  

In situ reverse transcription  

After washed with 0.1×SSC buffer (Thermo, AM9770) supplemented with 0.05 U/µl 

RNase inhibitor (NEB, M0314L), the chip was permeabilized by incubated in 0.1% pepsin 

(Sigma, P7000) in 0.01M HCl buffer at 37℃ for 10 minutes and followed by washing with 

0.1×SSC buffer supplemented with 0.05 U/µl RNase inhibitor. Released RNAs were captured 

by the DNB and was reverse transcribed overnight at 42℃ using SuperScript II (Invitrogen, 

18064-014). After reverse transcription, remained tissues on sections were washed with 

0.1×SSC buffer and were removal with Tissue Removal buffer (10 mM Tris-HCl, 25 mM 

EDTA, 100 mM NaCl, 0.5% SDS) at 37℃ for 30 minutes. Stereo-seq chips were treated with 

Exonuclease I (NEB, M0293L) for 1 hour at 37°C and were finally washed once with 0.1x 

SSC buffer.  
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Amplification   

The collected cDNAs were amplified with KAPA HiFi Hotstart Ready Mix (Roche, 

KK2602) with 0.8 µM cDNA-PCR primer. PCR reactions were performed in sequential steps 

as incubation at 95℃ for 5 minutes, 15 cycles at 98℃ for 20 seconds, 58℃ for 20 seconds, 

72℃ for 3 minutes and a final incubation at 72℃ for 5 minutes.  

  

Library construction and sequencing   

The concentrations of the PCR products were quantified by Qubit™ dsDNA Assay Kit 

(Thermo, Q32854). A total of 20 ng of DNA were then fragmented with in-house Tn5 

transposase at 55°C for 10 minutes. The reactions were stopped by the adding of 0.02% SDS 

and gently mixing at 37°C for 5 minutes. Fragmented products were amplified as follows: 

25 µl of fragmentation product, 1 × KAPA HiFi Hotstart Ready Mix and 0.3 µM Stereo-seq-

Library-F primer, 0.3 µM Stereo-seq-Library-R primer in a total volume of 100 µl with the 

addition of nuclease-free H2O. The reaction was then run as: 1 cycle of 95°C 5 minutes, 13 

cycles of 98°C 20 seconds, 58°C 20 seconds and 72°C 30 seconds, and 1 cycle of 72°C 

5 minutes. PCR products were purified using the AMPure XP Beads (0.6× and 0.15×), used 

for DNB generation and finally sequenced on MGI SEQ-2000 sequencer.  

  

Data analysis  

Raw sequencing data analysis 

Fastq files were generated by MGI SEQ-2000 sequencer. ssDNA image stitching, tissue 

cut, cell segmentation, gene expression register, and genome mapping, gene count were 

performed by online analysis Platform: Stereo Analysis Platform (SAP, 

https://uat.stomics.tech/sap/researchProject/index.html). Expression profile matrix was 

divided into non-overlapping bins covering an area of 100 × 100 DNBs (bin100) for further 

cellular neighborhood construction and functional enrichment analysis. Gene expression 

matrix for each cell were obtained according to spatial coordinates of cell segmentation result 

and corrected by Sklearn (34)gaussian mixture model. Then anndata data structure were 

constructed by Scanpy (35)in python 3.9 for further analysis. The binned spots with total counts 

less than 1000 and cells with total counts less than 100 were filtered.  

 

Celltype annotation 
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We used a mouse colon cancer cell line CT26 single cell gene expression dataset (20)as 

a reference to deconvolute a mixture of 11 immune cell types and non-immune cells in our 

Stereo-seq data by Cell2location(19) with hyperparameter N_cells_per_location= 1, 

detection_alpha=20. The cell type with maximum abundance was assign to each cell, then cell 

types frequency was calculated and visualized by R package ggplot2 (36).	

 	

Cellular neighborhood construction 

The tissues were binned to side-by-side windows, each with an area of 100 × 100 DNBs 

(bin100). Then Cell2location deconvoluted all cell types abundance of each window. 

According to cell composition matrix, the windows of all samples were subsequently clustered 

to 7 cellular neighborhoods (CNs) (3) by using KNN graph and Leiden with n_neighbors = 20, 

resolution=0.3. Therefore, the windows with similar cell types composition were gather 

together to form a microenvironment. For each CN, all windows cell types abundance were 

summed to calculate percentage and visualized by Python package Seaborn.	

 	

Tensor decomposition 

For each group, we constructed a tensor with 3×7×12 dimensions (3 samples, 7 CNs 

and 12 cell types). We performed Non-negative Tucker decomposition by Tensorly (37)Python 

package. By calculating the decomposition losses of different combinations of the number of 

CN modules and CT modules, we select the suitable rank in the elbow point to performed non-

negative tensor decomposition (Fig 5A). The visualization way of decomposition result refers 

to Schürch's article (3).	

 

Functional enrichment analysis 

We performed differential expression analysis on CN6 between treatment set and 

control set using the scanpy.tl.rank_genes_groups (35) function. Genes were retained when 

abs(logfoldchanges)>log2(1.5) and pvals_adj<0.05. The KEGG enrichment analysis, gene 

ontology enrichment analysis and GSEA were employed to dissect the biological function of 

CN6 using functions of R package ClusterProfiler (38). The top 20 significantly enriched 

pathways of KEGG enrichment analysis and gene ontology enrichment analysis were displayed 

as barplot, respectively. The interesting pathways of GSEA were shown through the gseaplot2() 

function. 
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Spatial cell interaction intensity  

 Firstly, we constructed the space nearest neighbor graph based on spatial coordinate 

of all cells, and cell pairs with distance less than 200um were connected by an edge. Then we 

summed up the ligand and receptor gene expression counts of the corresponding sender and 

receiver cell as weight which was assigned to the edge. Next, we computed the spatial cell 

interaction intensity of every sender cell with its linked receiver cells by summing of the edge 

weight between them, defined as	

 	

  	

(1)	

 	

Besides, the intensities of the entire data matrix between specific sender cell type with receiver 

cell type equaled to the sum of all sender cell’s intensity, which meant the sum of all connected 

edge weight. The formula below presented the computation rule.	

  	 	 	

(2) 

As to the complex ligand or receptor which was composed of several subunits, we selected the 

molecule with minimal expression to compute the SCII.	

 

STAR 

Software and Algorithms 

Stereo Analysis 

Platform (SAP) 

https://uat.stomics.tech/sap/researchProject/index.html 

Python 3.9 https://www.python.org/ 

Numpy 1.22.4 https://numpy.org/ 

Pandas 1.5.1 https://pandas.pydata.org/ 

Sklearn 1.0.1 https://scikit-learn.org/ 

Cell2location 0.1 https://cell2location.readthedocs.io/en/latest/ 

Scanpy 1.9.1 https://scanpy.readthedocs.io/en/stable/index.html 
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