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resolve iTME and to quantitatively define cell-cell communication intensity (StereoSiTE)

_______________________________________________________________________________________________________________

Featured CN associated to pathological alteration

z > = - //;VV/> 3 i »
aﬁ l(\:lzlilgrﬁ)rorhood /;;/ )

'

g

: é intensity = Y1, receiver;(edgeWeight;)
(edgeWeight = Lexp + Rexp,

) n = number of receiver cells around the sender cell)

cell2| sy . - 4

prs

intensities = Y, Intensity;
(N = number of sender cells of the whole slide)

e mme e e emmemm———————.

-~ E



https://doi.org/10.1101/2022.12.31.522366
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.31.522366; this version posted December 31, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Abstract

Spatial Transcriptomics (ST) technology enables systematic depiction of regional
milieu of a tissue, like tumor immuno-microenvironment (iTME). However, a powerful
algorithmic framework to dissect spatially resolved niches, and to quantitatively evaluate
spatial cell interaction intensity will pave the ways to understand the spatial signature
associated mechanism. In this study, we provide a promising framework (StereoSiTE), which
is based on space nearest neighbor graph and gene expression profile to spatially resolve
iTME and to quantitatively define cell-cell communication intensity. We applied StereoSiTE
to dissect the iTME of xenograft model receiving immunoagonist treatment, 7 distinct
cellular neighborhoods (CN) were identified, and each CN was considered as the functional
unit with exclusive cell type (CT) composition. Further deconvolving the joint matrix
covering CNs and CTs indicated the importance of neutrophils in CN6, which was confirmed
by pathway enrichment analysis. What's more, analysis of interaction intensity indicated that
the recruited neutrophils preserved tumor protection activity through paired IL-1B/IL-1R after
immunoagonist treatment exclusively in CN6. This evidence provided a new possible vision
of tumor immune evasion orchestrated by neutrophils. StereoSiTE is believed to be a
promising framework of mapping iTME niches using spatial transcriptomics, which could be

utilized to spatially reveal tumoribiology mechanisms.
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Introduction

Dissecting and deciphering the mechanisms by which genes bio-functionally
orchestrates complex heterogeneity across inter- and intra- tumors is unprecedentedly crucial
for improving treatment response of tumor. Over the past decade, the target of cancer therapy
has gradually moved from tumor cells to other cell types in the tumor microenvironment(1).
The important role of cell types in the immune tumor microenvironment (iTME) in tumor
progression is increasingly emphasized. The iTME is a complex system of tumor cells, stromal
cells, immune cells and extracellular components that rely on a high degree of spatial
organization and interaction of cell types to exert tumor suppressive or promotive effects(2, 3).
The iTME has been iteratively elucidated to propel malignant progression across cancer types.
Mechanisms underlying in TME-induced intratumoral heterogeneity are deemed as guaranteed
frontiers for understanding tumoribiology(4-6). Therefore, dissecting the coordinated activities
of various cell types in iTME will advance our understanding of the mechanisms of tumor
progression.

Unfortunately, trade-off between “-omics” tools generated comprehensive molecular
measurement and “-targeted” tools conferred low-throughput but highly resolved cellular
investigation in situ is a long-lasting debate, which, thereby, hinders our understanding in
biology(7). However, this historical conundrum is being up to termination under the recent
development of spatial transcriptomic (ST) technologies(8). The recent developments in the
spatial transcriptome (ST) provide opportunities to better elucidate physiological and
pathological progress covering cell-type definition(9-11), cellular interaction(7, 12), molecular
signaling(13, 14), and hence facilitated us to spatially map the microenvironment landscape.
However, there is still lacking a useful and systematic analytical framework for identifying
important iTME units, locating major cell types, and delineating the spatial organization and
orchestration of cell types in iTME functional units under tumor progression or response of
therapy.

As most of the published algorithms utilize spatial information and gene expression
profile by deep learning and graph neural networks model(15), whose performance relies on
training data leading to poor repeatability and practicality. Some accessible algorithms used
the spatial coordinate to construct space nearest neighbor graph without taking the gene
expression profile into consideration(16, 17). Although these algorithms can be used to
evaluate distance between cells, without valuable information on gene expression profile,
researchers can hardly address scientific questions with reasonable conclusion from the spatial

transcriptomics data. The stereoSiTE constructs space nearest neighbor graph based on spatial
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coordinate and assigns the edge with weight based on ligand-receptor expression. Then, we
established two key formulas, which can be used to compute the spatial cell interaction
intensity (SCII). Besides, to quantitatively profile the cellular neighborhood organized iTME,
StereoSiTE integrates the analysis of distinguishing different cellular neighborhood (CN)
regions based on cell composition resolved by deconvolution. The combination of SCII with
CN will pave the ways for exploring significant scientific discovery.

Here, we present StereoSiTE, an analytical framework for comprehensive depiction of
iITME multicellular communities from the spatial transcriptome. Our approach combines
spatial coordinate based spatial nearest neighbor maps and gene expression profiles of cell
types to elucidate iTME multicellular communities, and to evaluate the quantitative intensity
of cellular interactions from spatially resolved gene expression data. To demonstrate the utility
of this framework, we applied StereoSiTE to xenograft models receiving immunoagonist
treatment. We then defined 7 CNs across 6 xenograft tumor samples. Importantly, CN6 was
significantly altered after treatment of immunoagonist, which was characterized by enrichment
of neutrophils. We also observed that the recruited neutrophils preserved tumor protection
activity through paired IL-1B/IL-1R after immunoagonist treatment exclusively in CN6 by
analysis of interaction intensity. This evidence provided a new possible vision of tumor
immune evasion orchestrated by neutrophils. These results underscore the necessity of
analytical framework, StereoSiTE, to dissect the immune tumor microenvironment by

identifying cellular neighborhoods and elucidating cell interaction under spatial organization.

Results
Framework based on space nearest neighbor graph and gene expression profile

While the spatial transcriptomics data at single-cell resolution was available(18), there
is urgent need to develop a data analysis solution or algorithms to unearth the spatial signature
hidden under tumoribiology. We designed a framework for spatial transcriptomics data analysis,
which can fully utilize the spatial coordinate and gene expression profile (Fig 1A). The
framework contains two key components. First, we cluster the entire data matrix into specific
functional units based on their different cellular neighborhood (CN). Then, the spatial cell
interaction intensity was computed by space nearest neighbor graph which combined the spatial
coordinate and ligand-receptor expression information (Fig 1B& C). Here, we can collect
spatially resolved transcriptomic data from tumor tissue by Stereo-seq. As registration of the
spatial gene expression profile with the nuclear staining, which records the cell nuclear

morphology, data matrix at resolution of single cell was obtained after cell segmentation
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processing. Then the cell types will be defined based on their gene expression profile by
Cell2location(19) with reference from publications(20). One the other side, without taking the
cell morphology into consideration, we binned data can be obtained by binned 100 x 100 DNB
bins into one analyzed window with size of 50x50um. We assigned captured mRNA into
specific binned 100, which is a square of specific size, for example bin100 means a square with
side length 100 (the unit of length is capture site). We resolved the cell composition of every
bin100 which contains about 25 cells by deconvolution (Cell2location)(19), which can be
considered as specific cellular neighborhood associated with iTME (Fig 1C). At last, we can
perform integrated analysis of the CN distribution and the annotation at single cell resolution.
CNs of interest were featured by associating to pathological alteration. Then data matrix at
single cell resolution in featured CNs could be extracted for computing the spatial cell
interaction intensity (SCII) to explore how intercellularly interacts and biologically function
(Fig 1A). To compute SCII, we firstly constructed the cell neighborhood graph based on the
spatial location of every cell, then assigned edge with weight based on ligand-receptor gene
expression of the corresponding sender and receiver cells. The key formulas to compute
intensity and intensities are listed in Fig 1B. Spatial cell interaction intensity of every sender
cell with its paired receiver cells is calculated by summing of the edge weight between them.
And the spatial cell interaction intensities of the entire data matrix or specific CN region equals
to the sum of all connected edge weight. Therefore, we constructed this framework called
StereoSite, which was a powerful algorithmic tool to Spatially and quantitatively profile the

cellular neighborhood organized iTME.

StereoSiTE precisely and distinguishingly measures cell-to-cell communication in specific
cellular neighborhood organized iTME region.

To verify that StereoSiTE could identify distinct cellular neighborhood organized iTME,
we applied this framework to a representative Stereo-seq data in single-cell resolution of
sample from xenograft model. As shown in Fig 2A, the whole slice showed specific
neighborhood enrichment pattern. We performed clustering analysis and obtained seven
distinct cellular neighborhood organized iTME regions based on different cell composition.
The Fig 2B illustrated that each CN region had specific neighborhood enrichment and cell
composition. For example, CN1, CN3 and CN4 dominantly contained Treg cells, neutrophils
and Teff cells, respectively. On the other hand, there was more self-neighborhood enrichment
of different immune cells in CN1 than other CNs, while neighborhood enrichment of

neutrophils in CN3 and neighborhood enrichment of Teff in CN4 were observed. As each CN
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showed distinct feature, it was reasonable to group samples based on CNs and to further
investigate cell-cell communication in the CN region of interest. This framework can help us
to find some new scientific observation, which could be possibly vailed by analysis of whole
section. Next, we computed the SCII between non-immune cells with all immune cells in CN4
region, and presented the results with dot plot (Fig 2C). The size of dot corresponded with SCII
score, and the color represented ligand-receptor expression. To estimate the performance of
SCII in assessing the strength of intercellular communication, we computed the p values of
ligand-receptor pairs by CellPhoneDB, which was re-implemented in squidpy (Fig 2D). Then
we compared SCII intensity with p values of the paired ligand-receptor. Fig 2E illustrated that
SCII could find a greater number of cell-to-cell communication events. Meanwhile, SCII
covered most of the interaction pairs found by permutation test method. From the comparison
of the Mif and Cd74 induced cell-to-cell communication results which were highlighted by red
square in Fig 2C and Fig 2D, we found that SCII had robust power to precisely and
distinguishingly measure cell-to-cell communication activities. And differences can be
obviously observed by comparing space cell interaction intensity while the p values from
different groups were hardly comparable (Fig 2G). To confirm that the discrimination between
different cell pairs was true, we plotted the spatial cell interaction intensity in situ (Fig 2F).
Very strong interaction between non-immune cells with Teff and relatively weak interaction
between non-immune cells with Treg, Monocytes and DC in CN4 region can be observed,
which was missing in permutation test method. The interactions between non-immune cells
with M1-like, M2-like and Neutrophils were different, which was consistent with SCII (Fig
2F& 2G). At last, there was no interaction between non-immune cells and B cells, which had

similar observation in both of the two methods.

Profiling of tumor microenvironment using spatial transcriptomics

To apply designed framework to address iTME associated research questions, we
introduced xenograft models (Fig 3A) with treatment of immune agonist (STING agonist).
BALB/c mice were subcutaneously injected with colon cancer-originated CT26 cells and
respectively treated with vehicle or DMXAA 14 days after tumor transplantation. Samples
were harvested after 24 hours treatment and Stereo-Seq was subsequently performed (Fig 3A).
Here, we collected spatially resolved transcriptomic data from xenograft tumor tissues by
Stereo-seq, a spatial sequencing technology with the subcellular resolution of 500nm. Data
matrix at resolution of single cell was obtained after cell segmentation processing based on

nuclear staining. By cell2location induced deconvolution of spatial transcriptomic matrix based
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on reference previously reported(20), we identified and validated 12 distinct cell types (Fig
3B), including 6 of lymphoid-lineage, 5 of myeloid-lineage and 1 of non-immune cluster.
With population proportion of cell types across samples (Fig 3C), we noticed the different
compositions of immune cells across samples. Further comparison in quantitative analysis
indicated a divergent variation of cell numbers in different groups (Fig 3D), this may result
from varied treatment regimens, where necrosis attributed to reducing cell numbers in
treatment group (Fig 3E). One of advantages of spatially resolved sequencing is to allow in
situ mapping of cell types (Fig 3F). Notably, control groups had higher frequency of M2-like
macrophages, while, treatment groups possessed higher frequencies of neutrophils.
Interestingly, we synchronously observed a location preference (Fig 3F) of M2-like
macrophages in control groups, where they frequently located and associated with tumor cells
and of neutrophils in treatment groups, where they tended to cluster around necrosis niches
(Fig 3E & 3G). However, methods interrogating the correlation between specific bioactivities
and the corresponding spatial preference were rarely exploited. To validate our hypothesis of
spatial preference between different cell types, we applied analysis of CN in following

section.

Organizing TME-associated cellular neighborhood

The immune tumor microenvironment (iTME) heterogeneity prevails both intra- and
inter- tumor, which is intrinsically attributed by varied cell organizations in each spatially
compartmented niche. The most possible extension to interrogating and elucidating iTME of
xenografts, in short of distinct histological characteristics, is to visualize tissues with CNs. We
firstly clustered windows labelling all samples and identified 7 distinct CNs co-currently
existent in both groups (Fig 4A). Interestingly, constitution of cell types in each CNs
significantly ranged across the cohort, this in return suggested that different immune cells
preferentially co-localize and associate with certain cell types in compartmented iTME niche.
We therefore entitled each CN based on their dominant cell proportions (Fig 4B). We next
calculated the frequencies of CNs in different groups (Fig 4C) and observed a distinct
correspondence of CN4 (lymphoid cell lead) and CN6 (neutrophils enriched) elevation in
treatment group (Fig 4D), which was aligned with the treatment background as expected. To
spatially exhibit and evaluate CNs (Fig 4E), we sought to assess CN6 in situ since neutrophils
were acquiescently recruited by chemokine motivation but not persistent in targeted tissues
(21-23). We therefore orthotopically projected CN6 to adjacent H&E staining to probe the
putative distribution pattern of this neutrophils dominant iTME niche (Fig 4F). An obvious
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trend of CN6 co-localizing around necrosis edges comparing to other CNs was observed, which
potentially highlighted specific bioactivities exserted by tumor cells after receiving
immunoagonist therapy. Altogether, we herein introduced CNs to spatially organize different
iTME niches and exclusively exhibited distinct biological characteristics across divergent

units.

Deconvolving iTME regarding to individual CNs

The CNs we herein organized provided a new dimension in evaluating iTME other than
the CTs, where spatial information of cell neighborhood in tissue was included. We believed
that we could shape the iTME more comprehensively by synchronous evaluating CTs and CNss.
We therefore considered, for each sample, the matrix co-currently covering CNs and CTs
should be utilized, instead of individually evaluating CNs and CTs, to elucidate how iTME
differs between different groups. Tensor technology was hence induced(24). By decomposing
the module matrix, we determined that dissecting each sample with 7 CN modules and 7 CT
modules could furthest retain information and synchronously exhibit biological features across
different samples (Fig SA). Subsequent analysis indicated a potent coupling between CN6 and
neutrophils which was further enhanced in treatment group (Fig 5B). The result suggests a
prompt and activated crosstalk of neutrophils with other cells in CN6 in response to
immunoagonist treatment. We next decided to look into CN6 and deeply shape the iTME niche.
With KEGG analysis in CN6 of treatment set comparing to control set, we identified a potent
recruitment activity of neutrophils in this milieu, as upregulated IL-17 signaling, TNF signaling
and chemokine signaling pathways. Moreover, tumor associated inflammatory response was
also enhanced (Fig 5C). In accordance, GO analysis and GSEA were both performed, and the
result agreed with conclusion from KEGG analysis (Fig SD&SE). In addition, cell-cell
communication in this unit by SCII indicated a potent interaction between neutrophils and
tumor cells with IL-1B/IL-1R overexpression (Fig 5F) and in situ intensity visualization of this
pair revealed the frequent crosstalk around necrosis niches (Fig 5G), which was consistent with
the biological feature of pro-tumor neutrophils (Fig 3B) and suggested a tumor-protecting
function of neutrophils in CN6(22, 25). Altogether, we shaped the iTME niche by
deconvolving the biological event undergoing in CN6 and indicated the recruitment of
neutrophils with accompanied tumor protection activities after receiving immunoagonist

treatment.
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Discussion

Spatially organized iTME and its disorganized manner can be manifested as pathological
disease. Therefore, to decode spatial signature of iTME is crucial to find the
clinicopathological association for understanding mechanism(8). Alterations in tissue
organization and cellular morphology set up the foundation of diagnosis of cancer, and
provide gold criteria in pathology(26). It indicates the irreplaceable role of spatial
information in understanding the initial and process of cancer. Pathological structures like
invasive front, buddings and Tertiary Lymphoid Structures (TLSs) have been studied or used
in pathology to indicate risk of metastasis, relapse and survival(8). Ji et al.(12) reported that
tumor-specific keratinocytes (TSKs) at leading edges of squamous cell cancer associated to
tumorigenesis. TSKs function like a hub to interact with nearby immune cells to form a
reactive neighbor. Different cell types build up and remodel the iTME by crosstalk with cells
in their neighborhood(3). Grunwald et al.(27) discovered “subTMEs” in human pancreatic
cancer guided by pathological annotation. Immuno-activities of subTMEs were phenotyped
by celltype components and differentiation status of cancer associated fibroblasts. Result of
this paper suggested that reactive unit in iTME can be defined as a group of cells which
interact within the neighbor, which has more relevant to pathological disease. This conclusion
agreed with the concept in our framework, in which, cellular neighborhood could be featured
and associated to alteration in tumor. Key cellular components in targetable structure have
more accurate prognostic power.

Emerging evidences show cell neighborhoods could be the important iTME units with
different cell compositions to indicate distinct biological processes. Schurch et al.(3) reported
nine conserved cellular neighborhoods at invasive front of the colorectal cancer. CNs were
characterized by the main cell types, and intra-CN communications orchestrated the antitumor
activities. Afterwards, more studies have discussed CNs in multiple disease(28-30). It has been
indicated that CNs might spatially reflect TME organization. Cell to cell communication in CN
possibly leads to resultant phenotypes and participants in reprogramming regional environment.
In our result, we found a specific CN (CN6) associated to inflammatory reaction like IL-17
signaling pathway. In the meantime, we found CN6 mainly composed of neutrophils whose
biological activity is aligned with function of CN6. With indication of H&E, the position of
CN6 lies on the edge of necrosis area. Recent cancer research highlighted importance of
differentiation of neutrophils including high heterogeneity and plasticity(31). In our model, the
neutrophils seem to be polarized into protumoral N2(21), which performs the protumoural

activities. Therefore, our framework utilized the spatial information of cellular neighborhood
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to target important CN groups associated to pathological condition. In current on-going studies,
our group has been further proving the molecular mechanism of neutrophils regulating tumoral
cells in CN6 with wet experimental evidence.

Spatial multi-omic techniques promises new modalities to obtain spatially informed omic
data (8). Comparing to other omic methods, spatial transcriptomic technologies can generate
high-throughput data at resolution of subcellular level(18). The state-of-art sequencing
method enables researchers to obtain the genuine landscape of TME without unbalanced loss
of cells caused by dissociation(32). With multi-dimensional and high throughput of gene
expression, it requires powerful algorithmic toolchain to efficiently associate specific cell
types to molecular activities, biological processes and clinical manifestation to address
scientific questions. In this paper, we developed a framework called StereoSiTE to identify
cellular neighborhood unit harboring disease associated spatial features, and to further
decipher underlying biological function of each CN. In addition, we offer a new algorithm in
this framework, which can qualitatively measure the interaction intensity of paired ligand and
receptor with spatially confined cell to cell communication.

In our framework, we defined the cellular neighborhood with portion of CTs. However,
recognizing cell identity in spatial transcriptome is extremely hard due to the relatively high
dropout rate in gene capturing and low resolution. Deconvolution is a common solution to
deduce the cell composition in each analytical window based on expression profiles. We used
Cell2location with reference of single-cell RNA sequencing to perform annotation. Although
this method has been designed for deconvolution, we also generated a single cell resolution
data matrix in Stereo-seq data. The result showed purity and specificity of cell markers with
cell2location in single cell spatial data could be satisfactory. After testing references from
different publications, we found that quality of reference guaranteed the success of annotation
in spatial sequencing data. Therefore, we recommended that testing the reference quality
beforehand. Therefore, cell2location is a recommended tool in annotation of spatial data at
different resolution in our framework.

Recent advent in spatially resolved omic technologies promises the investigation of
authentic cell to cell communication. Therefore, our framework adds distance filter at cut-off
of 200um(33). It is proposed that the longest acting distance of paired ligand-receptor is 200um.
With in situ mapping of each gene expression, we add the distance filter in this framework
when calculating ligand-receptor to reduce the false positive signal. In addition, we developed

a novel algorithm to calculate the interaction intensity of paired ligand-receptor based on gene
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expression. Our framework offers a new paradigm to quantitatively compare cell interaction
intensity and to avoid false positive interaction by referring to physical distance on tissue.

We also aware that the function of StereoSiTE has been limited as follows. In our
approach, the results of deconvolution annotation by cell2location have proved their accuracy,
but it requires the users to provide a high-quality single-cell reference dataset suitable for their
study design. Moreover, another key analytic compartment of StereoSiTE is spatial cell
interaction intensity (SCII) which is a novel method to analyze cell to cell communication by
integrating gene expression and spatial coordinate information. In this paper, the single-cell
resolution data is used for SCII analysis. Due to our experimental model with high cell density,
there is a certain drop-out rate of cells resulted from inaccurate identification of cell
segmentation. In addition, we used the database from cellphoneDB for SCII analysis of mouse
samples, databases covering other species will be included in the future. Larger sample sizes
are needed to make conclusive biological explanations of the differences in cellular
neighborhoods and cell interactions observed between the treatment and control groups.

With fast development of spatial transcriptomic technology, we’re granted with high-
throughput data and spatially resolved information when investigating the intricate network of
tumoribiology. Here, we developed a comprehensive analytic framework, StereoSiTE, which
contributes to spatially resolved iTME by organizing different iTME niches and dissecting
detailed biological process within each individual CN. In the xenograft model, we identified a
distinct CN that phenotypically and quantitatively altered after immunoagonist treatment.
Subsequent deconvolution of this niche indicated a neutrophil leading bioactivity. Further
enrichment analysis and spatial cell interaction intensity (SCII) analysis in return revealed a
tumor exerted defensive action under immunoagonist exposure, which was by recruiting pro-
tumor neutrophils to this very region. Altogether, our approach of mapping iTME niches using
spatial transcriptomics could be utilized to spatially reveal tumoribiology mechanisms inherent

in orthotopic tissues.
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Figure 2. StereoSiTE precisely and distinguishingly measure cell-to-cell communication in specific cellular
neighborhood organized iTME region. A.Cell neighborhood enrichment pattern of the whole slice and cell
composition of seven distinct CNs. B.Cell neighborhood enrichment pattern of CN1 CN3 and CN4 and their
spatial distribution on the slice. The squares with black background showed the real cell composition of
corresponding CN. C.Dot plot presented the SCII result. The size of dot represented spatial cell interaction
intensity while the shade of color represented ligand-receptor expression high or low. D.Dot plot presented the
cell-to-cell communication result computed by squidpy. The size of dot represented p values while the shade of
color represented mean expression of ligand-receptor. E.Venn diagram between result of SCII and squidpy.
F.Interaction intensity of non-immune cells that express Mif with different immune cells that express Cd74 in
situ. The red dots represented intensity, blue dots represented Mif expression of non-immune cells and orange
dots represented Cd74 expression of immune cells. G.The table listed the p values computed by squidpy and the

spatial cell interaction intensity computed by SCII. All the corresponding sender cell was non-immune cells.
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Figure 3. Spatial Transcriptomic mapping of xenograft model in situ. A.Flow chart of xenograft model

construction and stereo-seq data management. B.Heatmap of transcriptional markers expression of 11 annotated
immune cell types at resolution of single cell. C.Cell proportion analysis of indicated samples at single cell
resolution. D.Cell number analysis of different samples at single cell resolution (blue stands for control group;
red stands for treatment group). E.Adjacent H&E staining of sample 717 from control group (left) and sample
718 from treatment group (middle). H&E staining on the (right) side exhibited necrosis area enlarged from the
black blank marked site. F.In situ visualization of annotated cell types using Stereo-seq data (Left); Enlarged
image of white circle marked site exhibiting distinct cell distribution across samples (Middle); adjacent H&E

staining of white circle marked site objectively displaying cell distribution (Right) .
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Figure 4. Organization of TME-associated cellular neighborhood. A.UMAP exhibiting the distribution of the
identified 7 CN clusters. B.Heatmap indicating varied cell composition in different CNs (left) and confetti labeling
the corresponding title for each CN (right). C.CN frequencies in different samples from control and treatment
group, respectively. D.Box plot indicating the statistical variation of CN frequency across groups. E.In situ
distribution of CNs in different groups. F.CN6 section (black lump indicated) on adjacent H&E staining of
samples from treatment group, with enlarged image of red circle marked site displaying highly resolved H&E

staining.
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Figure 5. Deconvolution of CN of interest. A.Rank selection of Tucker tensor decomposition to stratify CN
modules and CT modules. Tensor decomposition loss in different CN modules (different colors) or CT modules
numbers (x axis). B.Decomposition results for both groups. The crosstalk extent of indicated CN and CT was
represented by weight of the line linking them and weight lines under empirically recognized threshold were
concealed. C.KEGG analysis of CN6 in control group comparing to treatment group. D.GO analysis of CN6 in
control group comparing to treatment group. E.GSEA analysis validation with result obtained from KEGG and
GO analysis. F.SCII calculation of potential ligand-receptor interaction between neutrophils and other cell types
in CN6. G.In situ visualization of IL-1B/IL-1R between neutrophils and non-immune cells to exhibit the crosstalk

coordinates.
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Method and materials
Mice and cell lines

Female BALB/c mice at 6 weeks of age were obtained from GemPharmatech Co., Ltd. All
mice were housed in a specific pathogen—free animal facility at GemPharmatech Co., Ltd.
CT26 colon cancer cells were purchased from ATCC. Cells were cultured at 37 °C under 5%

CO2 in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin.

Xenograft tumor models and treatment

We implanted 5x10"5 cells/100 uL CT26 cells into the right flanks of BALB/c mice. When
the tumors reached volume of 250-300 mm’, we performed intratumoral injections of the
STING agonist (0.5 mg/50ul/mouse, DMXAA, Vadimezan). Mice in the control group were
intratumorally injected with the same volume of PBS, accordingly. Xenograft tumor samples

were collected 24hours after treatment and embedded by OCT on dry ice.

Stereo-seq library preparation and sequencing
Tissue processing

Two consecutive cyro sections of 10 pm were prepared. One section was attached to
glass slide and stained by H&E staining following previous protocol. The second section was
adhered to the Stereo-seq chip surface and incubated at 37°C for 3-5 minutes. Then, the
sections were fixed in methanol and incubated for 40 minutes at -20°C. Stereo-seq library

preparation and sequencing followed previous published protocol(18).

In situ reverse transcription

After washed with 0.1xSSC buffer (Thermo, AM9770) supplemented with 0.05 U/l
RNase inhibitor (NEB, M0314L), the chip was permeabilized by incubated in 0.1% pepsin
(Sigma, P7000) in 0.01M HCI buffer at 37°C for 10 minutes and followed by washing with
0.1xSSC buffer supplemented with 0.05 U/ul RNase inhibitor. Released RNAs were captured
by the DNB and was reverse transcribed overnight at 42°C using SuperScript II (Invitrogen,
18064-014). After reverse transcription, remained tissues on sections were washed with
0.1xSSC buffer and were removal with Tissue Removal buffer (10 mM Tris-HCI, 25 mM
EDTA, 100 mM NaCl, 0.5% SDS) at 37°C for 30 minutes. Stereo-seq chips were treated with
Exonuclease I (NEB, M0293L) for 1 hour at 37°C and were finally washed once with 0.1x
SSC buffer.
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Amplification
The collected cDNAs were amplified with KAPA HiFi Hotstart Ready Mix (Roche,
KK2602) with 0.8 uM cDNA-PCR primer. PCR reactions were performed in sequential steps

as incubation at 95°C for 5 minutes, 15 cycles at 98°C for 20 seconds, 58°C for 20 seconds,

72°C for 3 minutes and a final incubation at 72°C for 5 minutes.

Library construction and sequencing

The concentrations of the PCR products were quantified by Qubit™ dsDNA Assay Kit
(Thermo, Q32854). A total of 20 ng of DNA were then fragmented with in-house Tn5
transposase at 55°C for 10 minutes. The reactions were stopped by the adding of 0.02% SDS
and gently mixing at 37°C for 5 minutes. Fragmented products were amplified as follows:
25 pl of fragmentation product, 1 x KAPA HiFi Hotstart Ready Mix and 0.3 uM Stereo-seq-
Library-F primer, 0.3 uM Stereo-seq-Library-R primer in a total volume of 100 pl with the
addition of nuclease-free H20. The reaction was then run as: 1 cycle of 95°C 5 minutes, 13
cycles of 98°C 20 seconds, 58°C 20 seconds and 72°C 30 seconds, and 1 cycle of 72°C
5 minutes. PCR products were purified using the AMPure XP Beads (0.6% and 0.15x), used
for DNB generation and finally sequenced on MGI SEQ-2000 sequencer.

Data analysis
Raw sequencing data analysis

Fastq files were generated by MGI SEQ-2000 sequencer. ssDNA image stitching, tissue
cut, cell segmentation, gene expression register, and genome mapping, gene count were
performed by online analysis Platform: Stereo Analysis Platform (SAP,
https://uat.stomics.tech/sap/researchProject/index.html). Expression profile matrix was
divided into non-overlapping bins covering an area of 100 x 100 DNBs (bin100) for further
cellular neighborhood construction and functional enrichment analysis. Gene expression
matrix for each cell were obtained according to spatial coordinates of cell segmentation result
and corrected by Sklearn (34)gaussian mixture model. Then anndata data structure were
constructed by Scanpy (35)in python 3.9 for further analysis. The binned spots with total counts

less than 1000 and cells with total counts less than 100 were filtered.

Celltype annotation
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We used a mouse colon cancer cell line CT26 single cell gene expression dataset (20)as
a reference to deconvolute a mixture of 11 immune cell types and non-immune cells in our
Stereo-seq data by Cell2location(19) with hyperparameter N cells per location= 1,
detection_alpha=20. The cell type with maximum abundance was assign to each cell, then cell

types frequency was calculated and visualized by R package ggplot2 (36).

Cellular neighborhood construction

The tissues were binned to side-by-side windows, each with an area of 100 x 100 DNBs
(bin100). Then Cell2location deconvoluted all cell types abundance of each window.
According to cell composition matrix, the windows of all samples were subsequently clustered
to 7 cellular neighborhoods (CNs) (3) by using KNN graph and Leiden with n_neighbors = 20,
resolution=0.3. Therefore, the windows with similar cell types composition were gather
together to form a microenvironment. For each CN, all windows cell types abundance were

summed to calculate percentage and visualized by Python package Seaborn.

Tensor decomposition

For each group, we constructed a tensor with 3x7x12 dimensions (3 samples, 7 CNs
and 12 cell types). We performed Non-negative Tucker decomposition by Tensorly (37)Python
package. By calculating the decomposition losses of different combinations of the number of
CN modules and CT modules, we select the suitable rank in the elbow point to performed non-
negative tensor decomposition (Fig 5A). The visualization way of decomposition result refers

to Schiirch's article (3).

Functional enrichment analysis

We performed differential expression analysis on CN6 between treatment set and
control set using the scanpy.tl.rank genes groups (35) function. Genes were retained when
abs(logfoldchanges)>log2(1.5) and pvals_adj<0.05. The KEGG enrichment analysis, gene
ontology enrichment analysis and GSEA were employed to dissect the biological function of
CN6 using functions of R package ClusterProfiler (38). The top 20 significantly enriched
pathways of KEGG enrichment analysis and gene ontology enrichment analysis were displayed
as barplot, respectively. The interesting pathways of GSEA were shown through the gseaplot2()

function.
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Spatial cell interaction intensity

Firstly, we constructed the space nearest neighbor graph based on spatial coordinate
of all cells, and cell pairs with distance less than 200um were connected by an edge. Then we
summed up the ligand and receptor gene expression counts of the corresponding sender and
receiver cell as weight which was assigned to the edge. Next, we computed the spatial cell
interaction intensity of every sender cell with its linked receiver cells by summing of the edge

weight between them, defined as

n

intensity = Z receiver;(edgeWeight)
i=0

(edgeWeight = Lexp + Rexp, n = number of receiver cells around the sender cell) (1)

Besides, the intensities of the entire data matrix between specific sender cell type with receiver
cell type equaled to the sum of all sender cell’s intensity, which meant the sum of all connected

edge weight. The formula below presented the computation rule.

N
intensities = Z Intensity;
i=0

(N = number of sender cells of the entire matrix) (2)

As to the complex ligand or receptor which was composed of several subunits, we selected the

molecule with minimal expression to compute the SCII.

STAR

Software and Algorithms

Stereo Analysis | https://uat.stomics.tech/sap/researchProject/index.html
Platform (SAP)

Python 3.9 https://www.python.org/

Numpy 1.22.4 https://numpy.org/

Pandas 1.5.1 https://pandas.pydata.org/

Sklearn 1.0.1 https://scikit-learn.org/

Cell2location 0.1 https://cell2location.readthedocs.io/en/latest/

Scanpy 1.9.1 https://scanpy.readthedocs.io/en/stable/index.html
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Tensorly 0.7.0 http://tensorly.org/stable/index.html

Seaborn 0.11.2 https://seaborn.pydata.org/index.html

R4.2.1 https://www.r-project.org/

ggplot2 3.4.0 https://ggplot2.tidyverse.org/

ClusterProfiler 4.6.0 https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
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