

1 **RESEARCH ARTICLE**

2 **Long-term population decline of a genetically homogenous continental-wide top Arctic**
3 **predator**

4 Marianne Gousy-Leblanc^{1*}, Jean-François Therrien^{1,2}, Thomas Broquet³, Delphine Rioux⁴, Nadine Curt-
5 Grand-Gaudin⁴, Nathalie Tissot⁴, Sophie Tissot⁴, Ildiko Szabo⁵, Laurie Wilson⁶, Jack T. Evans⁷, Victoria
6 Bowes⁸, Gilles Gauthier⁹, Karen L. Wiebe¹⁰, Glenn Yannic^{4#}, Nicolas Lecomte^{1*#}

7 ¹Canada Research Chair in Polar and Boreal Ecology, Department of Biology, University of Moncton, Moncton, NB, Canada;
8 Central d'Études Nordiques and Quebec Central of Biodiversity Science, QC, Canada; ²Hawk Mountain Sanctuary, Acopian
9 Center for Conservation Learning, Orwigsburg, PA 17961, USA; ³UMR 7144, Station Biologique de Roscoff, CNRS &
10 Sorbonne Université, Roscoff, France; ⁴Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble,
11 France; ⁵Collections Curator, Cowan Tetrapod Collection, UBC Beaty Biodiversity Museum, 2212 Main Mall, Vancouver,
12 BC, Canada; ⁶Wildlife Biologist, Environment and Climate Change Canada, Pacific Wildlife Research Centre, RR#1 Delta,
13 BC, Canada; ⁷Wildlife Biologist, Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Surrey,
14 BC, Canada; ⁸Avian Pathologist, Animal Health Center, BC Ministry of Agriculture, Abbotsford, BC, Canada; ⁹Department de
15 Biologie and Centre d'Études Nordiques, Université Laval, QC, Canada; ¹⁰University of Saskatchewan, Department of
16 Biology, 112 Science Place, Saskatoon, SK, Canada; #Co-senior authors: These authors contributed equally to the paper.*
17 Corresponding authors: Marianne Gousy-Leblanc, marianne.gousyl@gmail.com; Nicolas Lecomte,
18 nicolas.lecomte@umanitoba.ca

19
20 ORCID ID : Marianne Gousy-Leblanc: 0000-0001-7805-8120-Glenn Yannic: 0000-0002-6477-2312- Jean-François Therrien: 0000-0002-1046-
21 0962- Nicolas Lecomte: 0000-0002-8473-5375- Thomas Broquet: 0000-0002-2986-2822- Laurie Wilson: 0000-0002-1972-1196- Gilles
22 Gauthier: [0000-0002-2624-3508](https://orcid.org/0000-0002-2624-3508)

23

24 **ABSTRACT**

25 Genetic analysis can provide valuable information for conservation programs by unraveling the
26 demographic trajectory of populations, by estimating effective population size, or by inferring
27 genetic differentiation between populations. Here, we investigated the genetic differentiation
28 within the Snowy Owl (*Bubo scandiacus*), a species identified as vulnerable by the IUCN, to (i)
29 quantify connectivity among wintering areas, (ii) to evaluate current genetic diversity and
30 effective population size and (iii) to infer changes in the historical effective population size
31 changes from the last millennia to the recent past. The Snowy Owl, a highly mobile top predator,
32 breeds across the Arctic tundra which is a region especially sensitive to current climate change.
33 Using SNP-based analyses on Snowy Owls sampled across the North American nonbreeding
34 range, we found an absence of genetic differentiation among individuals located up to 4,650 km
35 apart. Our results suggest high genetic intermixing and effective dispersal at the continental scale
36 despite documented philopatry to nonbreeding sites in winter. Reconstructing the population

37 demographic indicated that North American Snowy Owls have been steadily declining since the
38 Last Glacial Maximum ca 20,000 years ago and concurrently with global increases in
39 temperature. Conservation programs should now consider North American Snowy Owls as a
40 single, genetically homogenous continental-wide population which is most likely sensitive to the
41 long-term global warming occurring since the Last Glacial Maximum.

42 *Keywords:* Snowy Owl, genetic structure, *Bubo scandiacus*, conservation, SNPs, effective population
43 size

44 INTRODUCTION

45 Natural ecosystems are currently changing at an unpreceded rate as a consequence of global
46 climate change (IPCC 2018, Taylor *et al.* 2020). These changes are particularly apparent in the
47 Arctic, where climate warming is estimated to be three times as fast as the global average (ACIA
48 2004, Box *et al.* 2019, Meredith *et al.* 2020). Species that live in the Arctic are therefore facing a
49 variety of changes and challenges (Gilg *et al.* 2012), and may respond by shifting their
50 geographic ranges, adjusting behaviour or phenotypes, or adapting to the new local conditions
51 (Parmesan 2006, Brown *et al.* 2016, Kelly 2019). In a scenario where environments are changing
52 so quickly and in complex ways, genetic information may be an efficient tool to inform
53 conservation and management programs (Schwartz *et al.* 2007, Hoban *et al.* 2021a, Hohenlohe *et*
54 *al.* 2021). First, understanding genetic structure allows one to infer dispersal of individuals and
55 hence connectivity among populations. The genetic structure of populations is also important for
56 wildlife conservation because it provides a baseline of the geographic scale at which programs
57 should be implemented and helps to define populations and management units (Fraser &
58 Bernatchez 2001, Funk *et al.* 2012, Yannic *et al.* 2016). Furthermore, genetic tools provide key
59 information on the current effective population size of populations (i.e. an essential parameter for
60 monitoring vital rate ;Hoban et al. 2013, 2021b), are useful when calculating the loss of diversity

61 due to inbreeding or intraspecific hybridization (Yannic *et al.* 2017), and help to predict the
62 ability of populations to persist and adapt to new environmental conditions (Hoffmann & Sgrò
63 2011). In addition, the long-term demographic trajectory of a species may also be retrieved from
64 genetic data (Cristofari *et al.* 2018, Cole *et al.* 2019, Cleary *et al.* 2021), which can help to
65 understand how species have responded to past major climatic and environmental changes. Thus,
66 understanding, predicting, and managing biodiversity responses to rapid climate change demand
67 a full consideration of the genetic differentiation within a species, an assessment of the species'
68 evolutionary potential and knowledge of demographic trends.

69 The Snowy Owl (*Bubo scandiacus*), declining according to the IUCN (BirdLife International
70 2020), provides a case study of how conservation actions can be informed and refined using
71 genetic information. This owl is a highly mobile top predator which breeds exclusively on the
72 Arctic tundra (Holt *et al.* 2020). In Canada, Snowy Owls are declining at an estimated -0.03 to -
73 2.85% rate per year depending on the region (Christmas bird counts; Meehan *et al.* 2018). Using
74 very different estimation and extrapolation methods, the global Snowy Owl breeding population
75 was first estimated at *ca* 290,000 individuals (Rich *et al.* 2004) and then more recently at *ca*
76 28,000 mature individuals (Potapov & Sale 2012). Both estimates are, however, probably
77 inaccurate because they are not based on actual continental-wide surveys (Fuller *et al.* 2003,
78 Therrien *et al.* 2014, Holt *et al.* 2020).

79 Currently, there is little genetic information on Snowy Owl populations. A previous study based
80 on mtDNA concluded there was little phylogeographic differentiation across the geographic
81 range of the species, suggesting one global panmictic population (Marthinsen *et al.* 2009). These
82 authors estimated the global species effective population size (N_e) at *ca* 14,000 individuals. This
83 estimate, derived from mtDNA, corresponds to the number of breeding females and does not

84 equate to the whole population size as it is considered by IUCN (BirdLife International 2020).

85 Indeed, not only is Ne not a direct proxy for census population size (e.g., Ferchaud et al. 2016),

86 but this estimate disregards the number of breeding males or the variance in reproductive success

87 among individuals (Storz et al. 2001, Wang et al. 2016). Therefore, further research using

88 genome-wide nuclear data would provide a better understanding of the genetic structure of the

89 population and a more accurate estimate of the current effective population size of Snowy Owls.

90 Snowy Owls exhibit a diversity of movement strategies throughout the year (McCabe et al.

91 2021). During the non-breeding season, individuals regularly overwinter in the Canadian Prairies

92 and the American Great Plains (Chang & Wiebe 2018), and throughout the entire temperate

93 regions of North America during irruption years (Kerlinger & Lein 1988, Robillard et al. 2016,

94 Therrien et al. 2017, Holt et al. 2020). Conversely, some individuals stay in the Arctic

95 throughout winter (Therrien et al. 2011, Robillard et al. 2018). Snowy Owls from the central

96 regions of North America appear to follow similar and constant migration routes from breeding

97 to winter areas (Curk et al. 2020; K. L. Wiebe personal communication), and other studies

98 concluded there was some site fidelity to wintering areas by Snowy Owls (Therrien et al. 2011,

99 Robillard et al. 2018). In contrast, individuals from the eastern part of the North-American

100 continent have non-regular and unpredictable movement patterns (Therrien et al. 2014, Robillard

101 et al. 2018). In summer, there is evidence that Snowy Owls use breeding sites far apart between

102 consecutive years, e.g. 725 km on average and up to 2, 224 km, for individuals in eastern Canada

103 (Therrien et al. (2014) and 1,088 km for individuals in northern Alaska; Fuller et al. 2003),

104 suggesting a lack of breeding site fidelity for the species (Therrien et al. 2014, Doyle et al. 2017,

105 Holt et al. 2020). The large-scale movements of the species among breeding and nonbreeding

106 seasons suggest there could be widespread connectivity among populations. Thus, because

107 Snowy Owls in different parts of their geographic range exhibit both regular and predictable
108 migratory movements and also large-scale unpredictable movements, our primary objective was
109 to study how such movements affect overall genetic structure of the species at a continental
110 scale.

111 Using SNP data, we specifically tested whether the large dispersal capacity of the species
112 resulted in a high degree of genetic mixing or whether, on a continental scale within North
113 America, the owls showed sufficient wintering site fidelity and non-random migration patterns to
114 exhibit population structure. In a conservation context, we also attempted to estimate the current
115 effective population size (Ne) of the species in North America. Our last objective was to
116 investigate the long-term population trajectory of Snowy Owls in North America since the Last
117 Glacial Maximum (~ 21k years ago) and beyond. Understanding how past shifts in climate may
118 have affected population size might provide insight into the resilience of wildlife resilience to
119 climate change in the near future. Past climatic fluctuations deeply affect long-term (historical)
120 effective population size for Arctic terrestrial (Prost *et al.* 2010, Lorenzen *et al.* 2011, Yannic *et*
121 *al.* 2014) and marine species (Louis *et al.* 2020, Cleary *et al.* 2021), and this never been explored
122 for Snowy Owls, an important species which structures the Arctic trophic network (Legagneux *et*
123 *al.* 2012, Gauthier *et al.* 2013).

124 **METHODS**

125 **Sample Collection**

126 We used feathers ($n=74$), blood ($n=2$) and tissue (liver [$n=48$], muscle [$n=26$]) from Snowy Owls
127 collected via live-trapping or carcass collection (brought to rehabilitation centers, government
128 agencies, and veterinary laboratories). Sample collection covered most of the southern
129 nonbreeding region in North America, including British Columbia ($n=50$), Saskatchewan ($n=29$),

130 Minnesota ($n=3$), Ontario ($n=1$), Wisconsin ($n=9$), Michigan ($n=16$), Maryland ($n=3$),
131 Pennsylvania ($n=2$), New York ($n=34$), Québec (Nunavik; $n=1$), Nova Scotia ($n=1$), and Prince
132 Edward Island ($n=1$; Figure 1, Table 1, Supplementary Material Table S1). Sampling spanned a
133 4,650-km distance. We collected samples during winter between 2012 and 2018 (except for two
134 samples that were collected in 2007 and 2008). For each individual, we assessed sex and age
135 class (first year or adult) according to morphological and molt measurements (Solheim 2012).
136 The spatial distribution of the samples was slightly clustered into four groups (i.e. wintering
137 areas) according to longitude (see Figure 1). We called these wintering areas: West (W: British
138 Columbia); Central (C: Saskatchewan); Great Lakes areas (GL: Michigan, Wisconsin, Ontario,
139 and Maryland); and East (E), which included all other individuals (including the one from
140 Nunavik; Figure 1).

141 **DNA Extraction**

142 We used Qiagen DNeasy Blood and Tissue kit (Qiagen, Inc., Valencia, CA, USA) to extract
143 genomic DNA following the manufacturer's instructions and assessed DNA quality and checked
144 for DNA degradation on agarose gels. We quantified DNA concentration for each sample using
145 the QuantiFluor dsDNA System kit (Promega), using samples with a minimum DNA
146 concentration of 3.20 ng/ μ l after extraction for subsequent double digested RAD sequencing
147 (ddRADSeq) library preparation.

148 **ddRADSeq Library Construction and Sequencing**

149 We built four ddRADSeq libraries from the Snowy Owl genomic DNA following a modified
150 version of the protocol in Peterson et al. (2012) and detailed in Gagnon et al. (2019). We
151 randomized the individuals for each wintering area in each library. The Genomic DNA (100 ng)
152 was digested using the enzymes SbfI and MspI and fragments selected between 300 bp and 500
153 bp using BluePippin size-selection system (Sage Science). To control for library quality and

154 consistency, we replicated 15.2 % of our samples ($n=28$) following the recommendations of
155 Mastretta-Yanes et al. (2015). We included 47 samples per library including replicates and a
156 negative control. The four libraries were then sequenced on two full lanes (two libraries per lane)
157 of paired-end (2 x 125bp) Illumina Hi-Seq 2500 (Fasteris SA, Switzerland).

158 **ddRADSeq Data Processing**

159 We used Stacks*1.44 (Catchen et al. 2011, 2013) to demultiplex data, build a *de novo* SNP
160 catalog and call genotypes. Following Mastretta-Yanes et al. (2015), we tested different sets of
161 Stacks core parameters (ustack – m (2 to 6), –M (2 to 6) and –max_locus_stacks (2 to 6) and
162 cstack –n (0 to 5) – Supplementary Material Figure S1 and S2), by varying one parameter at a
163 time while holding the others at their default values. We then selected the set of parameters that
164 minimized error rates between replicates ($n = 28$ pairs) and maximized the amount of data
165 recovered. The optimal values were: –m (5), –M (2), –max_locus_stacks (3) and –n (2; error
166 rates for each set of parameters are presented in Supplementary Material Figure S1 and S2). To
167 produce the final data set, we ran Stacks with all parameters set to their optimal values. We
168 performed the next filtering steps in *R**3.6.2 (R Core Team 2019) from the original VCF file
169 obtained from stacks and by keeping only loci that were typed for at least 85% of samples and
170 only samples that were typed for at least 80% of loci. We then used *dartR* (Gruber et al. 2018)
171 and *Radiator* (Gosselin et al. 2017) packages in *R* and *PDGspider* (Lischer & Excoffier 2012) to
172 convert SNPs VCF files to other formats (e.g. genlight; Jombart 2008).

173 **Population Genetic Structure, Genetic Distance, and Isolation-by-distance**

174 We used complementary analyses to quantifying population genetic structure. Unless mentioned,
175 all analyses were in *R**3.6.2 (R Core Team 2019). We first used Principal Component Analysis
176 (PCA), considering the a priori defined wintering regions with the function *glPCA* using the
177 package *Adegenet* *2.1.1 (Jombart 2008). Next, to compute pairwise F_{ST} among regions

178 according to Weir and Cockerham (1984) we used the *gl.fst.pop* in the *dartR* package (Gruber et
179 al. 2018; See the Supplementary Material Appendix). Also, we performed a Discriminant
180 Analysis of Principal Components (DAPC; Jombart et al. 2010; also implemented in the package
181 *Adegenet* (Jombart 2008)) to infer the number of genetic clusters that best fit our data. In
182 addition, we used a Maximum Likelihood approach using ADMIXTURE*1.3 software (Alexander
183 et al. 2009) to estimate the number of populations underlying the genetic dataset based on
184 individual relatedness without our *a priori* wintering regions. Finally, we tested for Isolation-by-
185 distance at the individual level by investigating the between the natural logarithm of Euclidean
186 distance and relatedness (i.e. *beta*, according to Weir and Goudet 2017) distance matrices
187 between each pair of individuals. An extended description of the methods is provided in
188 Supplementary Material Appendix.

189 **Descriptive Genetic Diversity**

190 We calculated the observed heterozygosity (*Ho*) and the expected heterozygosity (*He*) for each
191 locus using the function *gl.Ho* and *gl.Hs* in the *dartR* (Gruber et al. 2018) package in *R**3.6.2 (R
192 Core Team 2019). We also computed *Ho* and *Hs* for each wintering area. To test whether a
193 significant difference in *Hs* among wintering areas can exist, we performed a Linear Mixed
194 Model (LMM) with wintering area as the fixed effect and the loci ID as a random effect. We
195 verified linearity assumptions of model residuals, and we then computed a post-hoc Tukey test to
196 contrast wintering areas.

197 **Current Effective Population Size (*Ne*)**

198 We used NEESTIMATOR*2.1 (Do et al. 2014) to estimate the current effective population size
199 (*Ne*) of Snowy Owls in North America. We used the linkage disequilibrium (LD) method with a
200 random mating model. Following Waples and Do (2010), we excluded rare alleles (i.e., those
201 SNP with a minor allele frequency ≤ 0.05) to avoid estimation bias.

202 **Population Trajectory Reconstruction**

203 We reconstructed the population history of Snowy Owls using the Stairway Plot 2 method (Liu
204 and Fu 2020). The Stairway Plot infer detailed population demographic history using the site
205 frequency spectrum (SFS: Liu and Fu 2015) from DNA sequence data. This method uses a
206 flexible, multi-epoch model as used in the Skyline Plot method (Strimmer and Pybus 2001,
207 Navascués et al. 2017), and based on the expected composite likelihood of a given SNP
208 frequency spectrum (SFS). It provides information on the history of population effective size
209 (N_e) over time until the recent past. We estimated the folded SFS using the VCF file and a
210 Python script, *EasySFS* (<https://github.com/isaacovercast/easySFS>; Covercast 2017) and
211 included the total number of observed nucleic sites (both polymorphic and monomorphic sites).
212 The “two-epoch” model, with 67% of sites for training and 200 bootstraps was used as
213 recommended. We tested four different numbers of breaking points (i.e. to define the boundaries
214 of each epoch; Liu and Fu 2020) as described in Liu and Fu (2015), i.e. 74, 149, 223, and 298.
215 We assumed a mutation rate of 1.9×10^{-9} which is a recent estimate for birds in general (Zhang
216 et al. 2014) and a generation time of 7.93 years (a generally accepted value; BirdLife
217 International 2020). However, because we have no information on the mutation rate in Snowy
218 owls, and because there is also some uncertainty over generation times in the literature (e.g. 4.7
219 years, Heggøy et al. 2017; 7.93, BirdLife International 2020), we ran sensitivity analyses using
220 various mutation rates retrieved from the literature on birds (i.e. $\mu = 4.6 \times 10^{-9}$, Smeds et al. 2016);
221 $\mu = 1.9 \times 10^{-9}$; Nam et al. 2010, Zhang et al. 2014), and ranges of generation times. We also
222 added the major past glaciation events to the resulting Stairway plot (Clark et al. 2009, 2012,
223 Mann et al. 2009).

224 **RESULTS**

225 **SNPs Genotyping**

226 After the *de novo* SNP calling and filtering procedure, the data set encompassed 13,793 SNPs
227 distributed over 5,987 loci. We only kept the SNPs that had less than 15% of missing data, i.e.,
228 that were typed for at least 85% of birds. Individuals scored on average $5,767 \text{ SNPs} \pm 198$ (SD)
229 [4,826; 5,921], resulting in 3.7% missing data in the genotype matrix. Error rates estimated on
230 the 13,793 SNPs obtained from replicated samples were 0.004 ± 0.003 and dropped to 0.003
231 ± 0.002 when considering single SNP per loci ($n=5,987$ SNPs). For subsequent analyses, we
232 only considered a single SNP per locus, for a final dataset consisting of 5,987 SNPs genotyped
233 on 150 Snowy Owl individuals.

234 **Population Genetic Structure, Genetic Distance, and Isolation-by-distance**

235 Results from the PCA (Supplementary Material Figure S3), the DACP (Supplementary Material
236 Figure S4), and from ADMIXTURE (Supplementary Material Figure S5-S6) were congruent and
237 all revealed a single genetic cluster ($K=1$). When ADMIXTURE was conducted separately on each
238 dataset of yearling owls versus the adult owls, both also revealed a single genetic cluster ($K=1$).
239 Pairwise F_{ST} between wintering areas averaged $7e^{-5} \pm 3e^{-4}$ (Figure 1). However, pairwise F_{ST}
240 analysis on adults from W and E, the two most distant wintering areas, revealed a small, but
241 significant genetic differentiation ($F_{ST} = 0.002$; $p = 0.017$; Figure 1 and Supplementary Table
242 S2), which also held for the adult females between W and E ($F_{ST} = 0.002$; $p = 0.006$;
243 Supplementary Table S2) and the adult females between W and GL ($F_{ST} = 0.001$; $p = 0.042$;
244 Supplementary Table S2). There was also a low genetic differentiation between males from W
245 and C ($F_{ST} = 0.002$; $p=0.042$; Supplementary Table S2). Global F_{IS} was 0.0332 ± 0.2431 . Mean
246 F_{IS} were low to moderate (but all significantly different from zero; all Wilcoxon signed rank tests
247 p -values < 0.001) and were similar within wintering areas: W = 0.037 ± 0.19 ; C = 0.038 ± 0.21 ;
248 GL = 0.048 ± 0.22 and E = 0.040 ± 0.20 .

249 On average, genetic relatedness was 0.017 ± 0.014 (Figure 2), and the maximum value between
250 two individuals was 0.093, one sampled in the E wintering area (New York) and one in the GL
251 area (Michigan; 2,763 km apart). The minimum value between the two individuals was $1.98 \times 10^{-$
252 6 , one from the E (New York) and one from the GL areas (Wisconsin; 2,457 km apart). Genetic
253 distance was similar within and between wintering areas (Figure 2) and between adults and first
254 year (Figure S7). We did not find any pattern of Isolation-by-distance (at a scale of 4,650 km), i)
255 at the individual level (i.e. relatedness vs ln-transformed geographic distance): Mantel's $r =$
256 0.005 , $p = 0.39$ and LMM slope= -8.87×10^{-5} , 95% CI= -1.86×10^{-4} ; 9.30×10^{-6} , and ii) at the population
257 level (i.e. $F_{ST}/(1-F_{ST})$ vs ln-transformed geographic distance): Mantel's $r = -0.258$, $p = 0.70$ and
258 LMM; slope= -3.69×10^{-4} , 95% CI= -6.8×10^{-4} ; 4.75×10^{-5}).

259 **Descriptive Genetic Diversity**

260 At the locus scale, the average observed heterozygosity (H_o) per locus was 0.142 ± 0.143 (SD)
261 and the expected heterozygosity per locus (H_e) was 0.148 ± 0.140 . At the wintering area scale,
262 we found a significant decrease of gene diversity from West to East (H_s ; slope= -1.847×10^{-2} , SE=
263 5.664×10^{-3} , 95% CI= -0.0296 , -0.00737 ; Figure 2).

264 **Current Effective Population Size (N_e)**

265 Using the LD method with a lowest allele frequency set at 0.05, the current effective population
266 size (N_e) for the North American population of Snowy Owls was estimated to be 15,792
267 individuals (95% CI 10,850-28,950). Excluding singleton alleles only, the N_e value was 15,401
268 (95% CI 12,782-19,366).

269 **Population Trajectory Reconstruction**

270 The Stairway plot approach showed that the coalescence N_e of Snowy Owls in North America
271 declined steadily in recent times (Figure 3). There was an expansion of N_e around 100,000 years
272 ago, followed by a long period of stability. Coalescence N_e then started to decline around 6,000

273 years ago, which coincides with an acceleration of deglaciation in North America between 6,000
274 and 8,000 years ago. This is also approximately timed with the beginning of the Holocene
275 period, which was characterized by global temperature increases. During the Little Ice Age
276 period (*ca* 1,400-1,700 AD), the rate of decline in coalescence N_e apparently slowed down. The
277 decline started to speed up again around 200 years ago, approximately at the onset of the
278 worldwide retreat of glaciers and the acceleration of air temperature warming (Figure 3). We
279 cannot infer population changes for the last 100 years because of the uncertainties in the final
280 steps of the Stairway Plot method (Liu and Fu 2015, 2020). The sensitivity analysis showed that
281 despite using different values for mutation rate or generation time, all demography simulations
282 resulted in a declining trend (Supplementary Material Figure S8).

283 **DISCUSSION**

284 **Continent-scale Genetic Homogeneity**

285 Based on the information retrieved from Snowy Owls on the wintering grounds, our results all
286 indicate that populations at the continental scale are genetically homogenous in North America.
287 Two non-mutually exclusive hypotheses could explain the absence of genetic differentiation on a
288 4,500 km scale: breeding dispersal or juvenile (natal) dispersal. Irrespective of their wintering
289 areas, if owls disperse widely during the pre-breeding period or between successive reproduction
290 events (i.e., breeding dispersal, Clobert et al. 2012) individuals from different wintering areas
291 may come into contact, mate, and breed together in the high Arctic. There is some evidence that
292 Snowy Owls have low breeding site fidelity and that long distances may separate breeding sites
293 in consecutive years (Fuller et al. 2003, Therrien et al. 2014, Doyle et al. 2017, Holt et al. 2020).
294 Thus, mating is likely panmictic and not related to the winter origin of birds.

295

296 A second possibility is that high juvenile dispersal from the site of birth to the site of
297 reproduction is driving the genetic mixing. Natal dispersal distance is typically much larger than
298 breeding dispersal in many birds (Clobert et al. 2012) and probably plays a role in genetic
299 intermixing in other owl species such as the Northern Spotted Owl; *Strix occidentalis caurina*;
300 (Miller *et al.* 2018), but nothing is known about natal dispersal in Snowy Owls. This hypothesis
301 could explain the absence of genetic differentiation if juveniles are dispersing among wintering
302 areas during the first years of life, i.e. before their first reproduction. Alternatively, genetic
303 homogenization could occur as a result of periodic winter irruptions when, after a summer with
304 high productivity linked to abundant lemming prey in the Arctic, large numbers of juveniles
305 travel farther south than average during their first winter (Kerlinger & Lein 1988, Potapov &
306 Sale 2012, Holt *et al.* 2020). High gene flow is probably facilitated by the high mobility and
307 nomadic behavior of the species, allowing high breeding and natal dispersal or a combination of
308 both (Yannic *et al.* 2016).

309

310 The pairwise F_{ST} values among winter areas of Snowy Owls (ranging -0.0003 to 0.0004) are low
311 compared to the range of values based on SNPs from other raptor species. Gousy-Leblanc *et al.*
312 (2021) recently reviewed genetic differentiation within raptors and reported values for four
313 species based on data from breeding grounds at smaller scales than our current study and with
314 different ecology than Snowy Owls (*i.e.*, fully sedentary, or partially migratory species): Great
315 Gray Owl *Strix nebulosa* F_{ST} = 0.03-0.15 (Mendelsohn *et al.* 2020), Prairie Falcon *Falco*
316 *mexicanus* F_{ST} = 0.01-0.03 (Doyle *et al.* 2018), Bald Eagle *Haliaeetus leucocephalus*; F_{ST} =
317 0.037-0.203 (Judkins *et al.* 2019), and Northern Goshawk *Accipiter gentilis*; F_{ST} = 0-0.093
318 (Geraldes *et al.* 2019). All estimates were at least an order of magnitude higher than those we

319 found in Snowy Owls, and none of these species had movements as nomadic as those observed
320 in Snowy Owls.

321

322 Conversely, the Gyrfalcon (*Falco rusticolus*), an Arctic raptor which inhabits similar habitats as
323 the Snowy Owl, shows genetic differentiation between the continental populations of Greenland
324 and Iceland, despite the high dispersal capability of the species (Johnson *et al.* 2007). For the
325 Eurasian Arctic Peregrine Falcon (*Falco peregrinus*), four distinct genetic groups were detected
326 at the continental scale, which supposedly arose from the use of distinct population-specific
327 migration routes, and fidelity to breeding and non-breeding areas (Gu *et al.* 2021). At such a
328 large scale and for species with a high dispersal capacity, various factors like fidelity to breeding
329 or non-breeding areas, low breeding and natal dispersal, the use of distinct migration routes, and
330 the interplay between those factors could impede gene flow among populations, promoting
331 genetic differentiation.

332 **Current Genetic Diversity and Effective Population Size (N_e)**

333 For Snowy Owls, we found a slight statistically significant genetic diversity between the most
334 distant regions, i.e., the Western and Eastern regions in North America. This could be explained
335 by the potential inclusion (i.e. via migration) of individuals in the "Western" category which
336 originated from Alaska or Russia but whose dispersal was not far enough to reach the Eastern
337 population (Fuller *et al.* 2003, Holt *et al.* 2020). Such heterogeneous migration could slightly
338 influence allele frequencies across the circumpolar distribution, while not greatly impacting the
339 genetic differentiation overall. Indeed, we observed that the highest H_s occurred in the West. The
340 global population should nonetheless be considered as one population unit genetically.

341

342 The average expected heterozygosity (0.148 ± 0.140 SD) at the locus scale for Snowy Owls is
343 slightly lower compared to the He values computed with SNPs for three other species of raptors.
344 Two species that were partial migrants displayed genetic differentiation at large scale, $He =$
345 0.293 in the Bald Eagle, *H. leucocephalus* (Judkins *et al.* 2019) and $He = 0.340$ in the Golden
346 Eagle *Aquila chrysaetos* (Doyle *et al.* 2016). One obligate migrant species, the Prairie Falcon
347 *Falco mexicanus*, showed no population genetic differentiation at large scale $He = 0.332$ (Doyle
348 *et al.* 2018). However, He in Snowy Owls is quite similar to the Burrowing Owl *Athene*
349 *cunicularia*, another nomadic facultative migrant species ($He = 0.112$) that, exhibited population
350 genetic differentiation at low scale (Mueller *et al.* 2018).

351
352 Although Snowy Owls appear to have lower gene diversity than other raptors, the estimated
353 current effective population size of the species in North America ($Ne = 15,792$ individuals) is
354 large enough to preserve the evolutionary potential of the population and allow it to persist and
355 adapt in a changing environment as suggested by population modelling (see Kamath *et al.* (2015)
356 and Hoban *et al.* 2020). In general, a minimum Ne of 100 individuals is recommended to prevent
357 loss of genetic diversity by genetic drift and a Ne of 1,000 individuals to maintain long-term
358 evolutionary potential (Frankham *et al.* 2014). In a conservation context, Ne/Nc where Nc is the
359 number of individuals counted in a census population, is important for disentangling the relative
360 effects of population size and genetic factors on the persistence of species (Frankham 1995,
361 Palstra & Ruzzante 2008, Ferchaud *et al.* 2016, Waples 2016). Considering our estimated Ne of
362 15,792 individuals (95% CI between 10,850- 28,950) and a Nc of about 30,000 individuals in
363 North America (Rosenberg *et al.* 2016, BirdLife International 2020), we can calculate a Ne/Nc
364 ratio of about 0.57 [range 0.36 - 0.96]. Estimates of Nc for Snowy Owls, are extremely uncertain
365 and may be as low as 7,000-8,000 pairs in North America (Potapov & Sale 2012, BirdLife

366 International 2020). Ne/Nc ratio values derived from these lower Nc estimates would then be
367 around 1.05 [0.77 - 1.81]. All these Ne/Nc values are nonetheless higher than those in many other
368 avian taxa (Frankham 1995) so our results suggest that the North American population as a
369 whole does not face an imminent risk of inbreeding depression or genetic impoverishment.

370 **Past Population Trajectory**

371 Demographic reconstruction suggests that the population size of Snowy Owls declined over the
372 last few thousand years, starting around the Last Glacial Maximum (LGM). A recent
373 reconstruction of demographic history in the Peregrine Falcon (*Falco peregrinus*), another Arctic
374 raptor, resulted in a similar population size trajectory as the Snowy Owl (i.e. expansion during
375 the LGM and a steady decline since the beginning of the Holocene; Gu *et al.* 2021). Perhaps an
376 increase in the total area of tundra habitat may explain the population expansion during the LGM
377 and the subsequent decline in the population occurred when the tundra began to contract
378 northward (Gu *et al.* 2021). Similarly, the population size of Snowy Owls may be closely
379 matched to the amount of Arctic tundra because the species breeds exclusively in that habitat. An
380 implication is that large and long-term environmental changes over the last few thousand years,
381 and in particular to temperature increases since the LGM (Clark *et al.* 2009) may greatly affect
382 the population size of Snowy Owls. Indeed, population reconstructions showed that temperature
383 increases reduced the effective population size of three penguin genera (*Eudyptes*, *Pygoscelis*,
384 and *Aptenodytes*) in Antarctica (Cole *et al.* 2019), highlighting ecosystem-wide responses to
385 climate changes in the Antarctic ocean in the past. Similarly, the climate warming that occurred
386 after the LGM in the Northern Hemisphere reduced effective population sizes, genetic diversity,
387 and/ or census counts of other Arctic species like the polar bear *Ursus maritimus* (Miller *et al.*
388 2012) and the Arctic fox *Vulpes lagopus* (Larsson *et al.* 2019). Global warming has also been
389 implicated as a major factor in the mass extinction of Late Quaternary megafauna in the

390 Northern Hemisphere (Lorenzen *et al.* 2011, Lord *et al.* 2020, Stewart *et al.* 2021; but see
391 Sandom *et al.* 2014).
392 Globally, the warming period of the Holocene has been an important influence on population
393 size and/or range distribution of small mammals including lemmings (Prost *et al.* 2010, 2013,
394 Lanier *et al.* 2015, Fedorov *et al.* 2020) which are the main prey of breeding Snowy Owls. Thus,
395 climate change has the potential to influence entire ecosystems in the Arctic by disrupting the
396 main trophic links between species and Snowy Owls may have declined since the mid-Holocene
397 both as direct result of warmer temperatures (e.g. physiological stress) and/or due to the indirect
398 effect of the climate-induced population reductions and geographic range contractions of its main
399 prey, i.e., the small mammals in the Arctic.

400 **Conclusion**

401 Our findings should help further define some research priorities for Snowy Owls identified by
402 Holt *et al.* (2020). First, the lack of significant genetic differentiation over the span of a continent
403 spanning > 4,500 km does not support the hypothesis that well-separated migration routes, i.e.,
404 north-south corridors to distinct winter grounds are serving to isolate distinct breeding
405 populations of Snowy Owls. Second, and potentially most concerning, our results showed that
406 Snowy Owls experienced a continuous decline in numbers since the end of the Last Glacial
407 Maximum (18-21k years ago) in North America. Although our estimate of current effective
408 population size does not suggest that Snowy Owls are at risk for imminent genetic problems, the
409 finding that the owls were highly sensitive to global changes in the past implies that the
410 population size may decline more precipitously in the future if Arctic warming accelerates, as
411 predicted by many climate changes models.

412 **ACKNOWLEDGEMENTS**

413 This work was supported by the Canada Research Chair Program, Polar Knowledge Canada,
414 NSERC, and the Canadian Foundation for Innovation (N.L.). M.G.L. benefited from a NSERC
415 and a FRQNT graduate grant. We thank C. Miquel as well as the AnaBM (USMB) and AEEM
416 (UGA) laboratory facilities for their help and support during the laboratory work. We thank
417 everyone that contributed samples, including D. Brinker, D. Genesky, G. Jacobs, T. McDonald,
418 S. Weidensaul, A. Robillard as well as Project SNOWstorm members and supporters. In BC, all
419 of the following organization contributed snowy owl carcasses: BC Ministry of Agriculture,
420 Food and Fisheries, BC Ministry of Environment and Climate Change staff from multiple
421 regions, BC Wildlife Park, Hillspring Wildlife Rehabilitation Center, Mars Wildlife Rescue
422 Centre, North Island Wildlife Recovery Assoc., Northern Lights Wildlife Shelter, Orphaned
423 Wildlife Rehabilitation Soc., Northern Wildlife Rescue, South Okanagan Rehabilitation Centre
424 for Owls, University of Northern British Columbia, Vancouver Airport Authority, and Wildlife
425 Rescue Assoc; in the Maritimes: P-Y Daoust, D. Weeks, F. de Biep. For helping to trap owls in
426 Saskatchewan, we thank D. Zazelenchuk and M. Stoffel. This work benefited from access to the
427 Biogenouest genomic platform at Station Biologique de Roscoff and we are grateful to the
428 Roscoff Bioinformatics platform ABiMS for providing storage and computing resources. We
429 thank E. Milot and A.-M. Dion-Coté for the Ms review. **Funding statement:** The Canada
430 Research Program, Polar Knowledge Canada, NSERC, and the Canadian Foundation for
431 Innovation supported N.L. M.G-L. received NSERC and FRQNT grants for her MSc. **Ethics**
432 **statement:** All live captures followed Canadian Animal Care Committees guidelines. **Author**
433 **contributions:** Conceived the idea, design, experiment: N.L., M.G.-L., G. Y., and J-F. T. Data
434 collection: M. G-L, J-F. T., I. S., L. W., J. T. E., V. B, G. G., K. L. W., and N.L. Performed the
435 laboratory work: D. R., N. C-G-G, S. T. and N. T. Analyzed the data: M. G-L., G. Y., T.B., N.L.,
436 and J-F. T. Wrote first drafts: M.G-L, G.Y., N.L., J-F. Final version of the paper revised and

437 agreed by all authors. **Data depository:** Data used in the article can be found on Figshare:

438 <https://figshare.com/s/f1f01dc772d2f8c8698c>.

439

440 LITERATURE CITED

441 **ACIA.** 2004. *Impacts of a warming Arctic-Arctic climate impact assessment*. Cambridge
442 University Press.

443 **Alexander, D.H., Novembre, J. & Lange, K.** 2009. Fast model-based estimation of ancestry in
444 unrelated individuals. *Genome Res.* **19**: 1655–1664.

445 **Bates, D., Maechler, M., Bolker, B., Walker, S. & Haubo Bojesen Christensen, R.** 2015.
446 *lme4: Linear mixed-effects models using Eigen and S4*.

447 **BirdLife International.** 2020. IUCN Red List for birds.

448 **Box, J.E., Colgan, W.T., Christensen, T.R., Schmidt, N.M., Lund, M., Parmentier, F.-J.W.,**
449 **Brown, R., Bhatt, U.S., Euskirchen, E.S. & Romanovsky, V.E.** 2019. Key indicators of Arctic
450 climate change: 1971–2017. *Environ. Res. Lett.* **14**: 045010.

451 **Brown, C.J., O'Connor, M.I., Poloczanska, E.S., Schoeman, D.S., Buckley, L.B., Burrows,**
452 **M.T., Duarte, C.M., Halpern, B.S., Pandolfi, J.M., Parmesan, C. & Richardson, A.J.** 2016.
453 Ecological and methodological drivers of species' distribution and phenology responses to
454 climate change. *Glob. Change Biol.* **22**: 1548–1560.

455 **Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A. & Cresko, W.A.** 2013. Stacks: an
456 analysis tool set for population genomics. *Mol. Ecol.* **22**: 3124–3140.

457 **Catchen, J.M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J.H.** 2011. Stacks:
458 building and genotyping loci de novo from short-read sequences. *G3 Genes Genomes Genet.* **1**:
459 171–182.

460 **Chang, A.M. & Wiebe, K.L.** 2018. Habitat selection by wintering male and female Snowy
461 Owls on the Canadian prairies in relation to prey abundance and a competitor, the Great Horned
462 Owl. *J. Field Ornithol.* **89**: 64–77.

463 **Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica,**
464 **J.X., Hostetler, S.W. & McCabe, A.M.** 2009. The Last Glacial Maximum. *Science* **325**: 710–
465 714.

466 **Clark, P.U., Shakun, J.D., Baker, P.A., Bartlein, P.J., Brewer, S., Brook, E., Carlson, A.E.,**
467 **Cheng, H., Kaufman, D.S., Liu, Z., Marchitto, T.M., Mix, A.C., Morrill, C., Otto-Bliesner,**
468 **B.L., Pahnke, K., Russell, J.M., Whitlock, C., Adkins, J.F., Blois, J.L., Clark, J., Colman,**
469 **S.M., Curry, W.B., Flower, B.P., He, F., Johnson, T.C., Lynch-Stieglitz, J., Markgraf, V.,**
470 **McManus, J., Mitrovica, J.X., Moreno, P.I. & Williams, J.W.** 2012. Global climate evolution
471 during the last deglaciation. *Proc. Natl. Acad. Sci.* **109**: E1134–E1142.

472 **Cleary, A.C., Hoffman, J.I., Forcada, J., Lydersen, C., Lowther, A.D. & Kovacs, K.M.**
473 2021. 50,000 years of ice and seals: Impacts of the Last Glacial Maximum on Antarctic fur seals.
474 *Ecol. Evol.* **11**: 14003–14011.

475 **Cole, T.L., Dutoit, L., Dussex, N., Hart, T., Alexander, A., Younger, J.L., Clucas, G.V.,**
476 **Frugone, M.J., Cherel, Y., Cuthbert, R., Ellenberg, U., Fiddaman, S.R., Hiscock, J.,**
477 **Houston, D., Jouventin, P., Mattern, T., Miller, G., Miskelly, C., Nolan, P., Polito, M.J.,**
478 **Quillfeldt, P., Ryan, P.G., Smith, A., Tennyson, A.J.D., Thompson, D., Wienecke, B.,**
479 **Vianna, J.A. & Waters, J.M.** 2019. Receding ice drove parallel expansions in Southern Ocean
480 penguins. *Proc. Natl. Acad. Sci.* **116**: 26690–26696.

481 **Covercast, I.** 2017. *easySFS*. Github repository.

482 **Cristofari, R., Liu, X., Bonadonna, F., Cherel, Y., Pistorius, P., Le Maho, Y., Raybaud, V.,**
483 **Stenseth, N.C., Le Bohec, C. & Trucchi, E.** 2018. Climate-driven range shifts of the king
484 penguin in a fragmented ecosystem. *Nat. Clim. Change* **8**: 245–251.

485 **Curk, T., Pokrovsky, I., Lecomte, N., Aarvak, T., Burnham, K., Dietz, A., Franke, A.,**
486 **Gauthier, G., Jacobsen, K.-O., Kidd, J., Lewis, S.B., Øien, I.J., Solheim, R., Wiebe, K.,**
487 **Wikelski, M., Therrien, J.-F. & Safi, K.** 2020. Arctic avian predators synchronise their spring
488 migration with the northern progression of snowmelt. *Sci. Rep.* **10**: 7220.

489 **Do, C., Waples, R.S., Peel, D., Macbeth, G.M., Tillett, B.J. & Ovenden, J.R.** 2014.
490 NeEstimator v2: re-implementation of software for the estimation of contemporary effective
491 population size from genetic data. *Mol. Ecol. Resour.* **14**: 209–214.

492 **Doyle, F.I., Therrien, J.-F., Reid, D.G., Gauthier, G. & Krebs, C.J.** 2017. Seasonal
493 Movements of Female Snowy Owls Breeding in the Western North American Arctic. *J. Raptor*
494 *Res.* **51**: 428–438.

495 **Doyle, J.M., Bell, D.A., Bloom, P.H., Emmons, G., Fesnock, A., Katzner, T.E., LaPré, L.,**
496 **Leonard, K., SanMiguel, P., Westerman, R. & Andrew DeWoody, J.** 2018. New insights into
497 the phylogenetics and population structure of the prairie falcon (*Falco mexicanus*). *BMC*
498 *Genomics* **19**: 233.

499 **Doyle, J.M., Katzner, T.E., Roemer, G.W., Cain, J.W., Millsap, B.A., McIntyre, C.L.,**
500 **Sonsthagen, S.A., Fernandez, N.B., Wheeler, M., Bulut, Z., Bloom, P.H. & Andrew**
501 **DeWoody, J.** 2016. Genetic structure and viability selection in the golden eagle (*Aquila*
502 *chrysaetos*), a vagile raptor with a Holarctic distribution. *Conserv. Genet.* **17**: 1307–1322.

503 **Fedorov, V.B., Trucchi, E., Goropashnaya, A.V., Waltari, E., Whidden, S.E. & Stenseth,**
504 **N.Chr.** 2020. Impact of past climate warming on genomic diversity and demographic history of
505 collared lemmings across the Eurasian Arctic. *Proc. Natl. Acad. Sci.* **117**: 3026–3033.

506 **Ferchaud, A.-L., Perrier, C., April, J., Hernandez, C., Dionne, M. & Bernatchez, L.** 2016.
507 Making sense of the relationships between Ne, Nb and Nc towards defining conservation
508 thresholds in Atlantic salmon (*Salmo salar*). *Heredity* **117**: 268–278.

509 **Frankham, R.** 1995. Effective population size/adult population size ratios in wildlife: a review.
510 *Genet. Res.* **66**: 95–107.

511 **Frankham, R., Bradshaw, C.J.A. & Brook, B.W.** 2014. Genetics in conservation management:
512 Revised recommendations for the 50/500 rules, Red List criteria and population viability
513 analyses. *Biol. Conserv.* **170**: 56–63.

514 **Fraser, D.J. & Bernatchez, L.** 2001. Adaptive evolutionary conservation: towards a unified
515 concept for defining conservation units. *Mol. Ecol.* **10**: 2741–2752.

516 **Fuller, M., Holt, D. & Schueck, L.** 2003. Snowy owl movements: variation on the migration
517 theme. In: *Avian Migration* (P. Berthold, E. Gwinner, & E. Sonnenschein, eds), pp. 359–365.
518 Springer, Berlin, Germany.

519 **Funk, W.C., McKay, J.K., Hohenlohe, P.A. & Allendorf, F.W.** 2012. Harnessing genomics
520 for delineating conservation units. *Trends Ecol. Evol.* **27**: 489–496.

521 **Gagnon, M., Yannic, G., Perrier, C. & Côté, S.D.** 2019. No evidence of inbreeding depression
522 in fast declining herds of migratory caribou. *J. Evol. Biol.* **32**: 1368–1381.

523 **Gauthier, G., Béty, J., Cadieux, M.-C., Legagneux, P., Doiron, M., Chevallier, C., Lai, S.,**
524 **Tarroux, A. & Berteaux, D.** 2013. Long-term monitoring at multiple trophic levels suggests
525 heterogeneity in responses to climate change in the Canadian Arctic tundra. *Philos. Trans. R.*
526 *Soc. B Biol. Sci.* **368**: 20120482.

527 **Geraldes, A., Askelson, K.K., Nikelski, E., Doyle, F.I., Harrower, W.L., Winker, K. &**

528 **Irwin, D.E.** 2019. Population genomic analyses reveal a highly differentiated and endangered
529 genetic cluster of northern goshawks (*Accipiter gentilis laingi*) in Haida Gwaii. *Evol. Appl.* **12**:
530 757–772.

531 **Gilg, O., Kovacs, K.M., Aars, J., Fort, J., Gauthier, G., Grémillet, D., Ims, R.A., Meltofte,**
532 **H., Moreau, J., Post, E., Schmidt, N.M., Yannic, G. & Bollache, L.** 2012. Climate change and
533 the ecology and evolution of Arctic vertebrates: Climate change impacts on Arctic vertebrates.
534 *Ann. N. Y. Acad. Sci.* **1249**: 166–190.

535 **Gosselin, T., Lamothe, M. & Grewe, P.** 2017. *Radiator: RADseq Data Exploration, m*
536 *anipulation and Visualization using R*.

537 **Gousy-Leblanc, M., Yannic, G., Therrien, J.-F. & Lecomte, N.** 2021. Mapping our
538 knowledge on birds of prey population genetics. *Conserv. Genet.* **22**: 685–702.

539 **Gousy-Leblanc M., Therrien J.-F., Broquet T., Rioux D., Curt-Grand-Gaudin N., Tissot,**
540 **Tissot S., Szabo I., Wilson L., Evans J.T., Bowes V., Gauthier G., Wiebe K.L., Yannic G.,**
541 **Lecomte N.** 2022. Long-term population decline of a genetically homogenous continental-wide
542 top Arctic predator. Figshare, Dataset, <https://figshare.com/s/f1f01dc772d2f8c8698c>.

543 **Gruber, B., Unmack, P.J., Berry, O.F. & Georges, A.** 2018. DARTR \square : An R package to
544 facilitate analysis of SNP data generated from reduced representation genome sequencing. *Mol.*
545 *Ecol. Resour.* **18**: 691–699.

546 **Gu, Z., Pan, S., Lin, Z., Hu, L., Dai, X., Chang, J., Xue, Y., Su, H., Long, J., Sun, M.,**
547 **Ganusevich, S., Sokolov, V., Sokolov, A., Pokrovsky, I., Ji, F., Bruford, M.W., Dixon, A. &**
548 **Zhan, X.** 2021. Climate-driven flyway changes and memory-based long-distance migration.
549 *Nature* **591**: 259–264.

550 **Heggøy, O., Aarvak, T., Øien, I.J., Jacobsen, K.-O., Solheim, R., Zazelenchuk, D., Stoffel,**
551 **M. & Kleven, O.** 2017. Effects of satellite transmitters on survival in Snowy Owls *Bubo*
552 *scandiacus*. *Ornis Nor.* **40**: 33.

553 **Hoban, S., Bruford, M.W., Funk, W.C., Galbusera, P., Griffith, M.P., Grueber, C.E.,**
554 **Heuertz, M., Hunter, M.E., Hvilsom, C., Stroil, B.K., Kershaw, F., Khoury, C.K., Laikre,**
555 **L., Lopes-Fernandes, M., MacDonald, A.J., Mergeay, J., Meek, M., Mittan, C., Mukassabi,**
556 **T.A., O'Brien, D., Ogden, R., Palma-Silva, C., Ramakrishnan, U., Segelbacher, G., Shaw,**
557 **R.E., Sjögren-Gulve, P., Veličković, N. & Vernesi, C.** 2021a. Global Commitments to
558 Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. *BioScience* **71**:
559 964–976.

560 **Hoban, S., Paz-Vinas, I., Aitken, S., Bertola, L., Breed, M.F., Bruford, M., Funk, C.,**
561 **Grueber, C., Heuertz, M. & Hohenlohe, P.** 2021b. Effective population size remains a
562 suitable, pragmatic indicator of genetic diversity for all species, including forest trees. *Biol.*
563 *Conserv.* **253**: 108906.

564 **Hoban, S.M., Hauffe, H.C., Pérez-España, S., Arntzen, J.W., Bertorelle, G., Bryja, J., Frith,**
565 **K., Gaggiotti, O.E., Galbusera, P., Godoy, J.A., Hoelzel, A.R., Nichols, R.A., Primmer,**
566 **C.R., Russo, I.-R., Segelbacher, G., Siegismund, H.R., Sihvonen, M., Vernesi, C., Vilà, C. &**
567 **Bruford, M.W.** 2013. Bringing genetic diversity to the forefront of conservation policy and
568 management. *Conserv. Genet. Resour.* **5**: 593–598.

569 **Hoffmann, A.A. & Sgrò, C.M.** 2011. Climate change and evolutionary adaptation. *Nature* **470**:
570 479–485.

571 **Hohenlohe, P.A., Funk, W.C. & Rajora, O.P.** 2021. Population genomics for wildlife
572 conservation and management. *Mol. Ecol.* **30**: 62–82.

573 **Holt, D.W., Larson, M.D., Smith, N., Evans, D. & Parmelee, D.F.** 2020. The snowy owl
574 (*Bubo scandiacus*). In: *Birds of the World* (S. M. Billerman, ed). Cornell Lab of Ornithology,

575 Ithaca, New York, USA.

576 **IPCC.** 2018. Global warning of 1.5 C.

577 **Johnson, J.A., Burnham, K.K., Burnham, W.A. & Mindell, D.P.** 2007. Genetic structure
578 among continental and island populations of gyrfalcons: Gyrfalcon population structure. *Mol.*
579 *Ecol.* **16**: 3145–3160.

580 **Jombart, T.** 2008. adegenet: a R package for the multivariate analysis of genetic markers.
581 *Bioinformatics* **24**: 1403–1405.

582 **Jombart, T., Devillard, S. & Balloux, F.** 2010. Discriminant analysis of principal components:
583 a new method for the analysis of genetically structured populations. *BMC Genet.* **11**: 94.

584 **Judkins, M.E., Couger, B.M., Warren, W.C. & Van Den Bussche, R.A.** 2019. A 50K SNP
585 array reveals genetic structure for bald eagles (*Haliaeetus leucocephalus*). *Conserv. Genet.* **21**:
586 65–76.

587 **Kelly, M.** 2019. Adaptation to climate change through genetic accommodation and assimilation
588 of plastic phenotypes. *Philos. Trans. R. Soc. B Biol. Sci.* **374**: 20180176.

589 **Kerlinger, P. & Lein, M.R.** 1988. Population Ecology of Snowy Owls during Winter on the
590 Great Plains of North America. *The Condor* **90**: 866–874.

591 **Kopelman, N.M., Mayzel, J., Jakobsson, M., Rosenberg, N.A. & Mayrose, I.** 2015.
592 CLUMPAK□: a program for identifying clustering modes and packaging population structure
593 inferences across *K*. *Mol. Ecol. Resour.* **15**: 1179–1191.

594 **Lanier, H.C., Gunderson, A.M., Weksler, M., Fedorov, V.B. & Olson, L.E.** 2015.
595 Comparative Phylogeography Highlights the Double-Edged Sword of Climate Change Faced by
596 Arctic- and Alpine-Adapted Mammals. *PLOS ONE* **10**: e0118396.

597 **Larsson, P., Götherström, A., Androsov, S., Germonpré, M., Bergfeldt, N., Fedorov, S.,
598 Eide, N.E., Sokolova, N., Berteaux, D., Angerbjörn, A., Flagstad, Ø., Plotnikov, V., Norén,
599 K., Díez-del-Molino, D., Dussex, N., Stanton, D.W.G. & Dalén, L.** 2019. Consequences of
600 past climate change and recent human persecution on mitogenomic diversity in the arctic fox.
601 *Philos. Trans. R. Soc. B Biol. Sci.*

602 **Legagneux, P., Gauthier, G., Berteaux, D., Béty, J., Cadieux, M.-C., Bilodeau, F., Bolduc,
603 E., McKinnon, L., Tarroux, A., Therrien, J.-F., Morissette, L. & Krebs, C.J.** 2012.
604 Disentangling trophic relationships in a High Arctic tundra ecosystem through food web
605 modeling. *Ecology* **93**: 1707–1716.

606 **Lischer, H.E.L. & Excoffier, L.** 2012. PGDSpider: an automated data conversion tool for
607 connecting population genetics and genomics programs. *Bioinformatics* **28**: 298–299.

608 **Liu, X. & Fu, Y.-X.** 2015. Exploring population size changes using SNP frequency spectra. *Nat.*
609 *Genet.* **47**: 555–559.

610 **Liu, X. & Fu, Y.-X.** 2020. Stairway Plot 2: demographic history inference with folded SNP
611 frequency spectra. *Genome Biol.* **21**: 280.

612 **Lord, E., Dussex, N., Kierczak, M., Díez-del-Molino, D., Ryder, O.A., Stanton, D.W.,
613 Gilbert, M.T.P., Sánchez-Barreiro, F., Zhang, G. & Sinding, M.-H.S.** 2020. Pre-extinction
614 demographic stability and genomic signatures of adaptation in the woolly rhinoceros. *Curr. Biol.*
615 **30**: 3871–3879.

616 **Lorenzen, E.D., Nogués-Bravo, D., Orlando, L., Weinstock, J., Binladen, J., Marske, K.A.,
617 Ugan, A., Borregaard, M.K., Gilbert, M.T.P., Nielsen, R., Ho, S.Y.W., Goebel, T., Graf,
618 K.E., Byers, D., Stenderup, J.T., Rasmussen, M., Campos, P.F., Leonard, J.A., Koepfli, K.-
619 P., Froese, D., Zazula, G., Stafford, T.W., Aaris-Sørensen, K., Batra, P., Haywood, A.M.,
620 Singarayer, J.S., Valdes, P.J., Boeskorov, G., Burns, J.A., Davydov, S.P., Haile, J., Jenkins,
621 D.L., Kosintsev, P., Kuznetsova, T., Lai, X., Martin, L.D., McDonald, H.G., Mol, D.,**

622 **Meldgaard, M., Munch, K., Stephan, E., Sablin, M., Sommer, R.S., Sipko, T., Scott, E.,**
623 **Suchard, M.A., Tikhonov, A., Willerslev, R., Wayne, R.K., Cooper, A., Hofreiter, M., Sher,**
624 **A., Shapiro, B., Rahbek, C. & Willerslev, E.** 2011. Species-specific responses of Late
625 Quaternary megafauna to climate and humans. *Nature* **479**: 359–364.

626 **Louis, M., Skovrind, M., Samaniego Castruita, J.A., Garilao, C., Kaschner, K.,**
627 **Gopalakrishnan, S., Haile, J.S., Lydersen, C., Kovacs, K.M., Garde, E., Heide-Jørgensen,**
628 **M.P., Postma, L., Ferguson, S.H., Willerslev, E. & Lorenzen, E.D.** 2020. Influence of past
629 climate change on phylogeography and demographic history of narwhals, *Monodon monoceros*.
630 *Proc. R. Soc. B Biol. Sci.* **287**: 20192964.

631 **Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D.,**
632 **Ammann, C., Faluvegi, G. & Ni, F.** 2009. Global Signatures and Dynamical Origins of the
633 Little Ice Age and Medieval Climate Anomaly. *Science* **326**: 1256–1260.

634 **Mantel, N.** 1967. The detection of disease clustering and a generalized regression approach.
635 *Cancer Res.* **27**: 209–220.

636 **Marthinsen, G., Wennerberg, L., Solheim, R. & Lifjeld, J.T.** 2009. No phylogeographic
637 structure in the circumpolar snowy owl (*Bubo scandiacus*). *Conserv. Genet.* **10**: 923–933.

638 **Mastretta-Yanes, A., Arrigo, N., Alvarez, N., Jorgensen, T.H., Piñero, D. & Emerson, B.C.**
639 2015. Restriction site-associated DNA sequencing, genotyping error estimation and *de novo*
640 assembly optimization for population genetic inference. *Mol. Ecol. Resour.* **15**: 28–41.

641 **McCabe, R.A., Therrien, J.-F., Wiebe, K.L., Gauthier, G., Brinker, D., Weidensaul, S. &**
642 **Elliott, K.** 2021. Landscape cover type, not social dominance, is associated with the winter
643 movement patterns of Snowy Owls in temperate areas. *The Auk* **138**: ukaa082.

644 **Meehan, T.D., LeBaron, G.S., Dale, K., Michel, N.L., Verutes, G.M. & Langham, G.M.**
645 2018. *Abundance trends of birds wintering in the USA and Canada, from Audubon Christmas*
646 *Bird Counts, 1966-2017, version 2.1.* National Audubon Society, New York, New York, USA.

647 **Meirmans, P.G.** 2012. The trouble with isolation by distance. *Mol. Ecol.* **21**: 2839–2846.

648 **Mendelsohn, B., Bedrosian, B., Love Stowell, S.M., Gagne, R.B., LaCava, M.E.F., Godwin,**
649 **B.L., Hull, J.M. & Ernest, H.B.** 2020. Population genomic diversity and structure at the
650 discontinuous southern range of the Great Gray Owl in North America. *Conserv. Genet.*, doi:
651 10.1007/s10592-020-01280-8.

652 **Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A.,**
653 **Kofinas, G., Mackintosh, A., Melbourne-Thomas, J. & Muelbert, M.M.C.** 2020. Polar
654 Regions. In: *IPCC Special Report on the Ocean and Cryosphere in a Changing Climate* (H.-O.
655 Pörtner, D. C. Roberts, V. Masson-Delmont, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck,
656 A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer, eds).

657 **Miller, J.M., Cullingham, C.I. & Peery, R.M.** 2020. The influence of a priori grouping on
658 inference of genetic clusters: simulation study and literature review of the DAPC method.
659 *Heredity*, doi: 10.1038/s41437-020-0348-2.

660 **Miller, M.P., Davis, R.J., Forsman, E.D., Mullins, T.D. & Haig, S.M.** 2018. Isolation by
661 distance versus landscape resistance: Understanding dominant patterns of genetic structure in
662 Northern Spotted Owls (*Strix occidentalis caurina*). *PLOS ONE* **13**: e0201720.

663 **Miller, W., Schuster, S.C., Welch, A.J., Ratan, A., Bedoya-Reina, O.C., Zhao, F., Kim,**
664 **H.L., Burhans, R.C., Drautz, D.I., Wittekindt, N.E., Tomsho, L.P., Ibarra-Laclette, E.,**
665 **Herrera-Estrella, L., Peacock, E., Farley, S., Sage, G.K., Rode, K., Obbard, M., Montiel,**
666 **R., Bachmann, L., Ingolfsson, O., Aars, J., Mailund, T., Wiig, O., Talbot, S.L. & Lindqvist,**
667 **C.** 2012. Polar and brown bear genomes reveal ancient admixture and demographic footprints of
668 past climate change. *Proc. Natl. Acad. Sci.* **109**: E2382–E2390.

669 **Mueller, J.C., Kuhl, H., Boerno, S., Tella, J.L., Carrete, M. & Kempenaers, B.** 2018.
670 Evolution of genomic variation in the burrowing owl in response to recent colonization of urban
671 areas. *Proc. R. Soc. B Biol. Sci.* **285**: 20180206.

672 **Nam, K., Mugal, C., Nabholz, B., Schielzeth, H., Wolf, J.B., Backström, N., Künstner, A.,**
673 **Balakrishnan, C.N., Heger, A., Ponting, C.P., Clayton, D.F. & Ellegren, H.** 2010. Molecular
674 evolution of genes in avian genomes. *Genome Biol.* **11**: 17.

675 **Navascués, M., Leblois, R. & Burgarella, C.** 2017. Demographic inference through
676 approximate-Bayesian-computation skyline plots. *PeerJ* **5**: e3530.

677 **Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'hara, R.B., Simpson,**
678 **G.L., Solymos, P., Stevens, M.H.H. & Wagner, H.** 2013. Vegan: Community ecology package.
679 *R Package Version 2–0*.

680 **Palstra, F.P. & Ruzzante, D.E.** 2008. Genetic estimates of contemporary effective population
681 size: what can they tell us about the importance of genetic stochasticity for wild population
682 persistence? *Mol. Ecol.* **17**: 3428–3447.

683 **Parmesan, C.** 2006. Ecological and Evolutionary Responses to Recent Climate Change. *Annu.*
684 *Rev. Ecol. Evol. Syst.* **37**: 637–669.

685 **Peterson, B.K., Weber, J.N., Kay, E.H., Fisher, H.S. & Hoekstra, H.E.** 2012. Double Digest
686 RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and
687 Non-Model Species. *PLoS ONE* **7**: 11.

688 **Potapov, E. & Sale, R.** 2012. *The snowy owl*. T&A Poyser, London, United kingdom.

689 **Prost, S., Guralnick, R.P., Waltari, E. & Fedorov, V.B.** 2013. Losing ground: past history and
690 future fate of Arctic small mammals in a changing climate. *Glob. Change Biol.* **11**.

691 **Prost, S., Smirnov, N., Fedorov, V.B., Sommer, R.S., Stiller, M., Nagel, D., Knapp, M. &**
692 **Hofreiter, M.** 2010. Influence of Climate Warming on Arctic Mammals? New Insights from
693 Ancient DNA Studies of the Collared Lemming *Dicrostonyx torquatus*. *PLoS ONE* **5**: e10447.

694 **QGIS Development team.** 2020. *QGIS Geographic Information System. Open Source*
695 *Geospatial Foundation*.

696 **R Core Team.** 2021. *R: A language and environment for statistical computing*. R Foundation for
697 Statistical Computing, Vienna, Austria.

698 **Rich, T.D., Beardmore, H., Blancher, P.J., Bradstreet, M.S.W., Butcher, G.S., Demarest,**
699 **D.W., Dunn, E.H., Hunter, W.C., Inigo-Elias, E.E., Martell, A.M., Panjabi, A.O., Pashley,**
700 **D.N., Rosenberg, K.V., Rustay, C.M., Wendt, J.S. & Will, T.C.** 2004. *Partners in Flight*
701 *North American Landbird Conservation Plan*. Cornell Lab of Ornithology, Ithaca, New York,
702 USA.

703 **Robillard, A., Gauthier, G., Therrien, J.-F. & Béty, J.** 2018. Wintering space use and site
704 fidelity in a nomadic species, the snowy owl. *J. Avian Biol.* **49**: jav-01707.

705 **Robillard, A., Therrien, J.F., Gauthier, G., Clark, K.M. & Béty, J.** 2016. Pulsed resources at
706 tundra breeding sites affect winter irruptions at temperate latitudes of a top predator, the snowy
707 owl. *Oecologia* **181**: 423–433.

708 **Rosenberg, K.V., Kennedy, J.A., Dettmers, R., Ford, R.P., Reynolds, D., Alexander, J.D.,**
709 **Beardmore, C.J., Blancher, P.J., Bogart, R.E., Butcher, G.S., Camfield, A.F., Couturier, A.,**
710 **Demarest, D.W., Easton, W.E., Giocomo, J.J., Keller, R.H., Mini, A.E., Panjabi, A.O.,**
711 **Pashley, D.N., Rich, T.D., Ruth, J.M., Stabins, H., Stanton, J.C. & Will, T.** 2016. *Partners in*
712 *Flight Landbird Conservation Plan: 2016 Revision for Canada and Continental United States*.

713 **Rousset, F.** 1997. Genetic differentiation and estimation of gene flow from F-statistics under
714 isolation by distance. *Genetics* **145**: 1219–1228.

715 **Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C.** 2014. Global late Quaternary

716 megafauna extinctions linked to humans, not climate change. *Proc. R. Soc. B Biol. Sci.* **281**:
717 20133254.

718 **Schwartz, M., Luikart, G. & Waples, R.** 2007. Genetic monitoring as a promising tool for
719 conservation and management. *Trends Ecol. Evol.* **22**: 25–33.

720 **Smeds, L., Qvarnström, A. & Ellegren, H.** 2016. Direct estimate of the rate of germline
721 mutation in a bird. *Genome Res.* **26**: 1211–1218.

722 **Solheim, R.** 2012. Wing feather moult and age determination of Snowy Owls *Bubo scandiacus*.
723 *Ornis Nor.* **35**: 48–67.

724 **Stewart, M., Carleton, W.C. & Groucutt, H.S.** 2021. Climate change, not human population
725 growth, correlates with Late Quaternary megafauna declines in North America. *Nat. Commun.*
726 **12**: 1–15.

727 **Storz, J.F., Ramakrishnan, U. & Alberts, S.C.** 2001. Determinants of effective population size
728 for loci with different modes of inheritance. *J. Hered.* **92**: 497–502.

729 **Strimmer, K. & Pybus, O.G.** 2001. Exploring the Demographic History of DNA Sequences
730 Using the Generalized Skyline Plot. *Mol. Biol. Evol.* **18**: 2298–2305.

731 **Taylor, J.J., Lawler, J.P., Aronsson, M., Barry, T., Bjorkman, A.D., Christensen, T.,
732 Coulson, S.J., Cuyler, C., Ehrich, D. & Falk, K.** 2020. Arctic terrestrial biodiversity status and
733 trends: a synopsis of science supporting the CBMP State of Arctic Terrestrial Biodiversity
734 Report. *Ambio* **49**: 833–847.

735 **Therrien, J.-F., Gauthier, G. & Béty, J.** 2011. An avian terrestrial predator of the Arctic relies
736 on the marine ecosystem during winter. *J. Avian Biol.* **42**: 363–369.

737 **Therrien, J.-F., Gauthier, G., Pinaud, D. & Béty, J.** 2014. Irruptive movements and breeding
738 dispersal of snowy owls: a specialized predator exploiting a pulsed resource. *J. Avian Biol.* **45**:
739 536–544.

740 **Therrien, J.-F., Weidensaul, S., Brinker, D., Huy, S., Miller, T., Jacobs, E., Weber, D.,
741 McDonald, T., Lanzone, M., Smith, N. & Lecomte, N.** 2017. Winter Use of a Highly Diverse
742 Suite of Habitats by Irruptive Snowy Owls. *Northeast. Nat.* **24**: B81–B89.

743 **Van Strien, M.J., Keller, D. & Holderegger, R.** 2012. A new analytical approach to landscape
744 genetic modelling: least-cost transect analysis and linear mixed models: New approach in
745 landscape genetics. *Mol. Ecol.* **21**: 4010–4023.

746 **Wang, I.J., Santiago, E. & Caballero, A.** 2016. Prediction and estimation of effective
747 population size. *Heredity* **117**: 193–206.

748 **Waples, R.S.** 2016. Making sense of genetic estimates of effective population size. *Mol. Ecol.*
749 **25**: 4689–4691.

750 **Waples, R.S. & Do, C.** 2010. Linkage disequilibrium estimates of contemporary N_e using
751 highly variable genetic markers: a largely untapped resource for applied conservation and
752 evolution. *Evol. Appl.* **3**: 244–262.

753 **Weir, B.S. & Cockerham, C.C.** 1984. Estimating F-statistics for the analysis of population
754 structure. *evolution* **38**: 1358–1370.

755 **Weir, B.S. & Goudet, J.** 2017. A Unified Characterization of Population Structure and
756 Relatedness. *Genetics* **206**: 2085–2103.

757 **Wright, S.** 1943. Isolation by distance. *Genetics* **28**: 114–138.

758 **Yannic, G., Pellissier, L., Ortego, J., Lecomte, N., Couturier, S., Cuyler, C., Dussault, C.,
759 Hundertmark, K.J., Irvine, R.J., Jenkins, D.A., Kolpashikov, L., Mager, K., Musiani, M.,
760 Parker, K.L., Røed, K.H., Sipko, T., Pórison, S.G., Weckworth, B.V., Guisan, A.,**
761 **Bernatchez, L. & Côté, S.D.** 2014. Genetic diversity in caribou linked to past and future climate
762 change. *Nat. Clim. Change* **4**: 132–137.

763 **Yannic, G., Statham, M.J., Denoyelle, L., Szor, G., Qulaut, G.Q., Sacks, B.N. & Lecomte,**
764 **N.** 2017. Investigating the ancestry of putative hybrids: are Arctic fox and red fox hybridizing?
765 *Polar Biol.* **40**: 2055–2062.

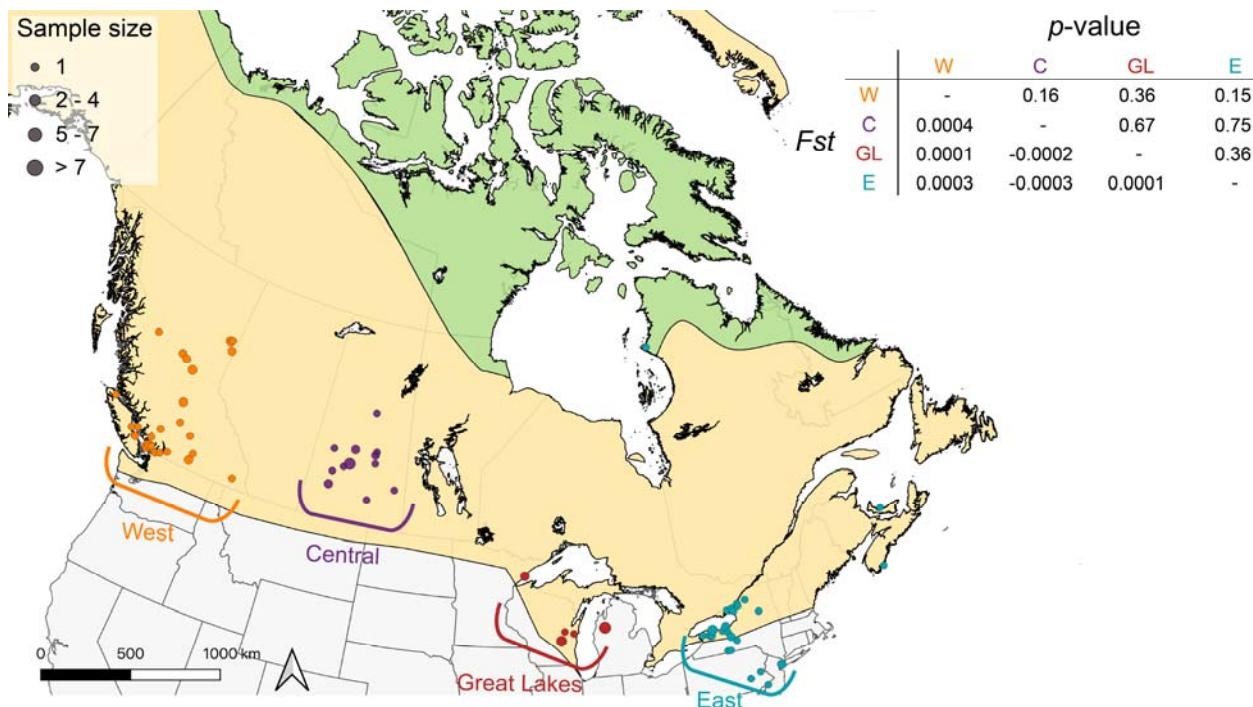
766 **Yannic, G., St-Laurent, M.-H., Ortego, J., Taillon, J., Beauchemin, A., Bernatchez, L.,**
767 **Dussault, C. & Côté, S.D.** 2016. Integrating ecological and genetic structure to define
768 management units for caribou in Eastern Canada. *Conserv. Genet.* **17**: 437–453.

769 **Zhang, G., Li, C., Li, Q., Li, B., Larkin, D.M., Lee, C., Storz, J.F., Antunes, A., Greenwold,**
770 **M.J., Meredith, R.W., Odeen, A., Cui, J., Zhou, Q., Xu, L., Pan, H., Wang, Z., Jin, L.,**
771 **Zhang, P., Hu, H., Yang, W., Hu, J., Xiao, J., Yang, Z., Liu, Y., Xie, Q., Yu, H., Lian, J.,**
772 **Wen, P., Zhang, F., Li, H., Zeng, Y., Xiong, Z., Liu, S., Zhou, L., Huang, Z., An, N., Wang,**
773 **J., Zheng, Q., Xiong, Y., Wang, G., Wang, B., Wang, J., Fan, Y., da Fonseca, R.R., Alfaro-**
774 **Nunez, A., Schubert, M., Orlando, L., Mourier, T., Howard, J.T., Ganapathy, G., Pfenning,**
775 **A., Whitney, O., Rivas, M.V., Hara, E., Smith, J., Farre, M., Narayan, J., Slavov, G.,**
776 **Romanov, M.N., Borges, R., Machado, J.P., Khan, I., Springer, M.S., Gatesy, J., Hoffmann,**
777 **F.G., Opazo, J.C., Hastad, O., Sawyer, R.H., Kim, H., Kim, K.-W., Kim, H.J., Cho, S., Li,**
778 **N., Huang, Y., Bruford, M.W., Zhan, X., Dixon, A., Bertelsen, M.F., Derryberry, E.,**
779 **Warren, W., Wilson, R.K., Li, S., Ray, D.A., Green, R.E., O'Brien, S.J., Griffin, D.,**
780 **Johnson, W.E., Haussler, D., Ryder, O.A., Willerslev, E., Graves, G.R., Alstrom, P.,**
781 **Fjeldsa, J., Mindell, D.P., Edwards, S.V., Braun, E.L., Rahbek, C., Burt, D.W., Houde, P.,**
782 **Zhang, Y., Yang, H., Wang, J., Avian Genome Consortium, Jarvis, E.D., Gilbert, M.T.P.,**
783 **Wang, J., Ye, C., Liang, S., Yan, Z., Zepeda, M.L., Campos, P.F., Velazquez, A.M.V.,**
784 **Samaniego, J.A., Avila-Arcos, M., Martin, M.D., Barnett, R., Ribeiro, A.M., Mello, C.V.,**
785 **Lovell, P.V., Almeida, D., Maldonado, E., Pereira, J., Sunagar, K., Philip, S., Dominguez-**
786 **Bello, M.G., Bunce, M., Lambert, D., Brumfield, R.T., Sheldon, F.H., Holmes, E.C.,**
787 **Gardner, P.P., Steeves, T.E., Stadler, P.F., Burge, S.W., Lyons, E., Smith, J., McCarthy, F.,**
788 **Pitel, F., Rhoads, D. & Froman, D.P.** 2014. Comparative genomics reveals insights into avian
789 genome evolution and adaptation. *Science* **346**: 1311–1320.

790 **Zheng, X., Levine, D., Shen, J., Gogarten, S.M., Laurie, C. & Weir, B.S.** 2012. A high-
791 performance computing toolset for relatedness and principal component analysis of SNP data.
792 *Bioinformatics* **28**: 3326–3328.

793 2012. *Dispersal ecology and evolution* (J. Clobert, M. Baguette, T. G. Benton, & J. M. Bullock,
794 eds). Oxford University Press, Oxford, United Kingdom.

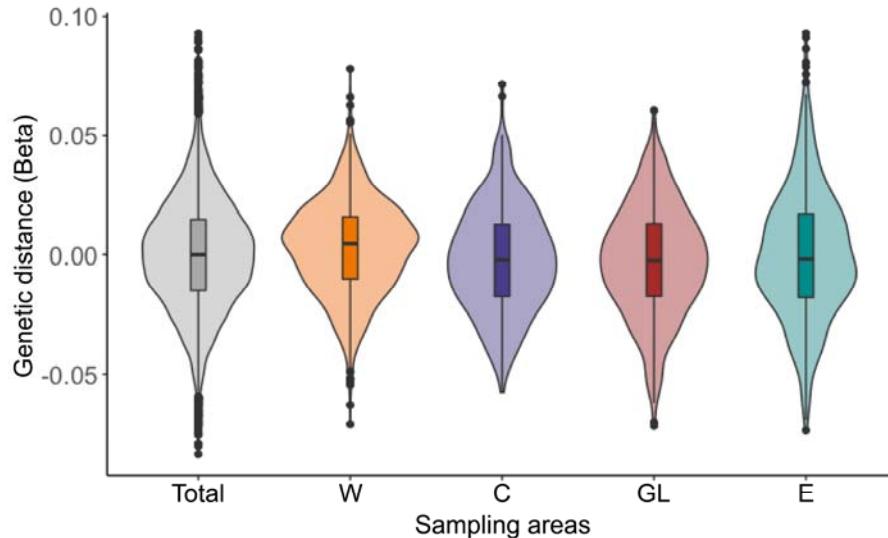
795 2019. *Handbook of the Birds of the world alive* (J. Del Hoyo, A. Elliott, J. Sargatal, D. A.
796 Christie, & G. Kirwan, eds). Lynx Edicions, Barcelona.

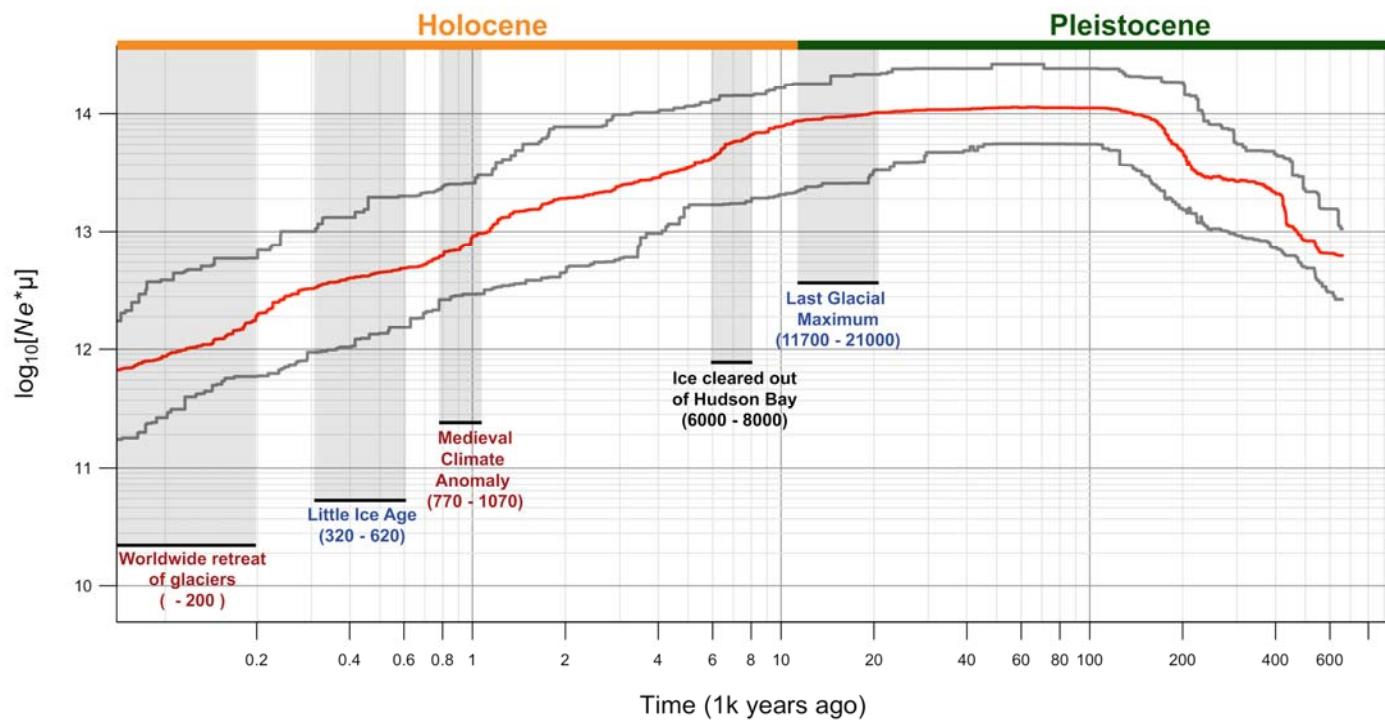

798 **TABLES**

799 **Table 1.** Sampling distribution of Snowy Owls per sex or age for each wintering area.

		Wintering areas			
		West	Central	Great Lakes	East
Sex	Male	24	14	13	18
	Female	25	14	9	24
	Unknown	1	1	5	0
Age	Adult	28	5	13	25
	First year	20	24	12	15
	Unknown	2	0	4	2
Total		50	29	29	42
					150

800


801


802

803 **Figure 1.** Sampling sites of wintering Snowy Owls (n=150) collected during November-March
804 between 2007 and 2018. Green areas represent the geographic year-round range and yellow areas
805 represent nonbreeding range of the species (BirdLife International 2020). Pairwise F_{ST} values
806 among wintering areas (W-West, C-Central, GL- Great Lakes, E-East) and the associated p -
807 values are displayed in the legend section.

808

809
810 **Figure 2.** Violin plot of genetic distance [beta estimation of relatedness between every pair of
811 individuals] for all individual Snowy Owls pooled (Total) and for each wintering area (W-West,
812 C-Central, GL- Great Lakes, E-East).
813

814

815 **Figure 3.** Reconstruction of the effective population size of the snowy owl population (Ne) from
816 600 Ka until 100 years ago in North America, assuming mutation rate of 1.9×10^{-9} and a
817 generation time of 7.93 based on a Stairway Plot 2 (Liu and Fu 2020). The method precludes
818 reliable estimates for the most recent 100 years. Grey lines indicate the 95% confidence interval.
819 Light grey areas represent glaciation events according to Clark et al. (2009, 2012); Mann et al.
820 (2009). Events in red are characterized by higher temperature and events in blue are characterized
821 by lower temperatures.

822 **SUPPLEMENTARY MATERIAL**

823 **Population genetic structure, genetic distance and Isolation-by-distance**

824 Unless mentioned, all analyses were in *R* (3.6.2.; R Core Team 2019). We first computed a
825 Principal Component Analysis (PCA) with the function *glPCA* using the package *Adegenet**2.1.1
826 (Jombart 2008) using the four wintering regions (W, C, GL and E), retaining 100 PCA axes
827 according to the eigenvalues plot. To infer the number of clusters of genetically related
828 individuals to best fit our data, we used a Discriminant Analysis of Principal Components
829 (DAPC; Jombart et al. 2010) also implemented in the package *Adegenet* (Jombart 2008). We
830 followed the recommendation from Miller et al. (2020) to report the methods and results. Without
831 prior information (*de novo*, unsupervised DAPC), we computed the function *find.cluster()* to
832 determine the optimal number of clusters. Precisely, we ran successive *K*-means clustering with
833 an increase in the number of clusters (K=1-10). We used the smallest Bayesian information
834 criterion (BIC) value associated with K for defining the number of clusters. We explored
835 grouping individuals by sex or age (adult only), but we did not find any pattern. We also used
836 ADMIXTURE v 1.3 (Alexander et al. 2009) to estimate the number of clusters in our dataset. We
837 ran 10 replicates of ADMIXTURE (without any prior) allowing for the number of clusters (K) in the
838 model to vary from 1 to 10. We generated random seeds for each run (beta < 0.0001). We chose
839 the *K* value that minimized cross-validation error and hence best fit the data (Alexander et al.
840 2009). The output generated from 10 independent runs across each *K* was summarized and
841 graphically represented using the main pipeline implemented in CLUMPAK with default options
842 (Kopelman et al. 2015). We performed 10 independent runs of ADMIXTURE with adults and first
843 years separated. Additionally, we computed pairwise F_{ST} among wintering areas (W vs. C vs. GL
844 vs. E) with the *gl.fst.pop* in the *dartR* package (Gruber et al. 2018). We calculated pairwise F_{ST}
845 by gender (male vs. female) and age group (adult vs. first year) among wintering areas. We
846 computed global and within wintering regions F_{IS} using *gl.basics.stats* from *DartR* and tested if
847 mean F_{IS} were significantly different from zero using Wilcoxon signed rank tests with continuity
848 correction. We computed a *beta* estimator genetic distance matrix (i.e. a relatedness estimation
849 matrix; according to Weir and Goudet 2017) between each pair of individuals with the function
850 *snpGDSIndvBeta* in the package *SNPRelate* (Zheng et al. 2012). Generated values were homolog
851 to the F_{ST} genetic distance (Weir and Cockerham 1984) measured between pairs of individuals
852 instead of pairs of populations (Weir and Goudet 2017). A value of 0.5 is a first degree of
853 relatedness (expected e.g., for full-sibs) and 0.25 a second degree (e.g. between half-sibs). We
854 also performed a genetic distance matrix between all individuals located in the same wintering
855 areas and a genetic distance matrix per age group (adult vs. first year). We calculated Geographic
856 Euclidean distances between each pair of individuals using distance matrix in QGIS v 3.8. (QGIS
857 Development team 2020). We assessed Isolation-by-distance (IBD; Wright 1943), the tendency
858 for genetic similarity to reflect geographic proximity (Meirmans 2012), with two analyses. First,
859 we computed a Mantel test (Mantel 1967) between the *beta* (i.e. genetic distance matrix) and the
860 geographic matrices using the *mantel* function in the *Vegan* package (Oksanen et al. 2013) with
861 10,000 permutations to assess significance. Second, we also used a maximum-likelihood
862 population-effects model (MLPE) in a linear mixed model (LMM), in which the covariate
863 structure is specifically designed to account for the specific non-independency among column
864 and row values in an $n \times n$ distance matrices (Van Strien et al. 2012). We fitted LMMs with *lme4*
865 package (Bates et al. 2015). We verified linearity assumptions. We also ran the same analysis
866 (Mantel and LMM) at the population scale, i.e. testing the relationship between the logarithm of
867 Euclidian geographic [km] and the pairwise genetic distance $F_{ST}/(1-F_{ST})$ among all pairs of
868 wintering regions following (Rousset 1997).

869 **TABLES**

870 **Table S1:** Sample information. **ID:** unique sample identification; **Lab ID:** identification used during laboratory work (UBC Beaty
 871 Biodiversity; UM Université de Moncton; USMB Université Savoie Mont-Blanc); **Sample type:** liver, tissue, feather or blood;
 872 **Wintering area:** West (British Columbia); Central (Saskatchewan); GL, Great lakes areas (Michigan, Wisconsin, Ontario, and
 873 Maryland); and East, i.e. all other individuals from the east coast of North America including the single Nunavut sample; **Year:** year
 874 of collection; **Sex:** sex of the individual; **Age:** Adult or first year (First); **Stored location:** actual location and long-term storage of the
 875 sample.

ID	Lab ID	Sample type	Wintering area	Year	Sex	Age	Storage location	Organisation	Country	Accession No.
L12771	Bs_256	liver	WEST	2012	M	Adult	BC: Delta BC: Port Coquitlam	UBC	Canada	B016769
L12772	Bs_257a	liver	WEST	2012	F	Adult	BC: Hope	UBC	Canada	B016770
L12773	Bs_258	liver	WEST	2012	F	Adult	BC: Powell River	UBC	Canada	B016771
L12774	Bs_259a	liver	WEST	2012	M	Adult	BC: Squamish	UBC	Canada	B016772
L12954	Bs_260	liver	WEST	2012	F	Adult	BC: Port Hardy	UBC	Canada	B016773
L13573	Bs_261	liver	WEST	2012	M	Adult	BC: Parksville	UBC	Canada	B016776
L13574	Bs_262	liver	WEST	2012	M	Adult	BC: Courtenay BC: Qualicum Beach	UBC	Canada	B016777
L13576	Bs_263	liver	WEST	2012	M	Adult	BC: Richmond	UBC	Canada	B016779
L13577	Bs_264	liver	WEST	2012	M	Adult	BC: Smithers	UBC	Canada	B016780
L13578	Bs_265	feather	WEST	2012	F	Adult	BC: Richmond	UBC	Canada	B016781
L13585	Bs_266	liver	WEST	2013	F	Adult	BC: Prince George	UBC	Canada	B016871
L13586	Bs_267	liver	WEST	2013	M	Adult	BC: Fort St James	UBC	Canada	B016872
L13587	Bs_268a	liver	WEST	2013	F	First	BC: Vanderhoof	UBC	Canada	B016873
L13588	Bs_269b	liver	WEST	2012	F	Adult	BC: Prince George	UBC	Canada	B016874
L13589	Bs_270	liver	WEST	2012	F	Adult	BC: Prince George	UBC	Canada	B016875
L13590	Bs_271	liver	WEST	2012	M	First	BC: Prince George	UBC	Canada	B016876
L13591	Bs_272	liver	WEST	2012	M	Adult	BC: Prince George	UBC	Canada	B016877
L13592	Bs_273	liver	WEST	2012	F	First	BC: Prince George	UBC	Canada	B016878

L13594	Bs_275	liver	WEST	2012	F	First	BC: Prince George BC: Prince George	UBC	Canada	B016880
L13595	Bs_276	liver	WEST	2012	F	Adult	BC: Fort St James	UBC	Canada	B016881
L13596	Bs_277	liver	WEST	2012	F	Adult	BC: Kelowna	UBC	Canada	B016882
L13597	Bs_278	liver	WEST	2013	M	First	BC: Cranbrook BC: Dawson Creek	UBC	Canada	B016883
L13598	Bs_279b	liver	WEST	2012	M	Adult	BC: Dawson Creek	UBC	Canada	B016884
L13599	Bs_280	liver	WEST	NA	M	First	BC: Taylor Creek	UBC	Canada	B016885
L13601	Bs_282	liver	WEST	NA	F	First	BC: Cecil Lake	UBC	Canada	B016887
L13602	Bs_283	liver	WEST	2013	F	First	BC: Fort St John	UBC	Canada	B016888
L13603	Bs_284b	liver	WEST	2008	F	First	BC: Fort St John	UBC	Canada	B016889
L13604	Bs_285	liver	WEST	NA	M	First	BC: Fort St John	UBC	Canada	B016890
L13605	Bs_286	liver	WEST	2008	Unk	First	BC: Fort St John	UBC	Canada	B016891
L13606	Bs_287	liver	WEST	2012	M	Adult	BC: Clinton	UBC	Canada	B016892
L13607	Bs_288	liver	WEST	2012	F	First	BC: Kamloops	UBC	Canada	B016893
L13608	Bs_289	liver	WEST	2013	M	First	BC: Ladner	UBC	Canada	B016894
L13609	Bs_290	feather	WEST	2013	M	First	BC: Ladner	UBC	Canada	B016895
L13610	Bs_291	liver	WEST	2012	F	First	BC: Richmond	UBC	Canada	B017061
L13611	Bs_292	liver	WEST	2012	F	Adult	BC: Richmond	UBC	Canada	B017062
L13612	Bs_293	liver	WEST	2012	M	Unk	BC: Richmond	UBC	Canada	B017063
L13614	Bs_294	liver	WEST	2013	F	First	BC: Ladner	UBC	Canada	B017064
L13616	Bs_295	liver	WEST	2013	F	First	BC: Penticton	UBC	Canada	B017069
L13617	Bs_296	liver	WEST	2013	F	First	BC: Delta	UBC	Canada	B017066
L13625	Bs_297a	liver	WEST	2012	M	Adult	BC: Penticton	UBC	Canada	B016782
L13626	Bs_298b	liver	WEST	2012	F	First	BC: Penticton	UBC	Canada	B016783
L13776	Bs_299	liver	WEST	2012	M	Adult	BC: Delta BC:	UBC	Canada	B016784
L13777	Bs_300	liver	WEST	2012	F	Adult	Williams_Lake	UBC	Canada	B016785
L13778	Bs_301	liver	WEST	2012	F	Adult	BC: Pemberton BC:	UBC	Canada	B016786
L13779	Bs_302	liver	WEST	2012	M	Adult	Williams_Lake	UBC	Canada	B016787

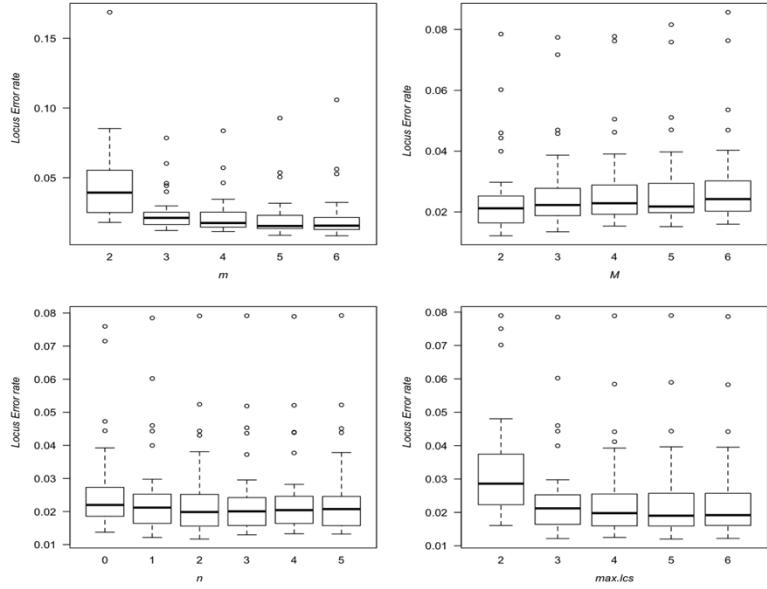
								BC:			
L13780	Bs_303	liver	WEST	2012	M	Adult	Williams_Lake	UBC	Canada	B016788	
L13781	Bs_304	liver	WEST	2012	M	Adult	BC: Richmond	UBC	Canada	B016789	
L13782	Bs_305	liver	WEST	2013	M	First	BC: Abbotsford	UBC	Canada	B016896	
L13783	Bs_306b	liver	WEST	2013	M	Adult	BC: Chilliwack	UBC	Canada	B016897	
L13955	Bs_307	liver	WEST	2012	M	Adult	BC: Coquitlam	UBC	Canada	B016791	
65900455	Bs_047	feather	EAST	2015	M	Adult	NB: Moncton	UM	Canada	-	
67903623	Bs_049	feather	EAST	2018	F	First	NB: Moncton	UM	Canada	-	
92808790	Bs_055b	feather	EAST	2014	M	First	NB: Moncton	UM	Canada	-	
69900560	Bs_056	feather	EAST	2014	M	Adult	NB: Moncton	UM	Canada	-	
78851220	Bs_057	feather	EAST	2018	M	Adult	NB: Moncton	UM	Canada	-	
109801605	Bs_061	feather	EAST	2018	M	Adult	NB: Moncton	UM	Canada	-	
108805542	Bs_062	feather	EAST	2014	M	Adult	NB: Moncton	UM	Canada	-	
65900454	Bs_064	feather	EAST	2015	M	Adult	NB: Moncton	UM	Canada	-	
78836716	Bs_070	feather	EAST	2017	M	Adult	NB: Moncton	UM	Canada	-	
92808795	Bs_075	feather	EAST	2014	M	First	NB: Moncton	UM	Canada	-	
92808796	Bs_076	feather	EAST	2014	M	First	NB: Moncton	UM	Canada	-	
109801896	Bs_083	feather	EAST	2018	M	First	NB: Moncton	UM	Canada	-	
111854551	Bs_086	feather	EAST	2017	M	Adult	NB: Moncton	UM	Canada	-	
92808793	Bs_095	feather	EAST	2014	M	First	NB: Moncton	UM	Canada	-	
69900559	Bs_100a	feather	EAST	2014	F	Adult	NB: Moncton	UM	Canada	-	
65900451	Bs_113	feather	EAST	2015	M	Adult	NB: Moncton	UM	Canada	-	
67903626	Bs_114	feather	EAST	2018	F	First	NB: Moncton	UM	Canada	-	
69900561	Bs_115	feather	EAST	2014	F	Adult	NB: Moncton	UM	Canada	-	
78836713	Bs_118	feather	EAST	2015	F	Adult	NB: Moncton	UM	Canada	-	
65900458	Bs_125	feather	EAST	2017	F	Adult	NB: Moncton	UM	Canada	-	
69900557	Bs_126	feather	EAST	2014	F	First	NB: Moncton	UM	Canada	-	
69900563	Bs_127	feather	EAST	2014	F	Adult	NB: Moncton	UM	Canada	-	
92808800	Bs_128	feather	EAST	2014	M	First	NB: Moncton	UM	Canada	-	
92808798	Bs_129	feather	EAST	2014	M	First	NB: Moncton	UM	Canada	-	

69900562	Bs_130	feather	EAST	2014	F	Adult	NB: Moncton	UM	Canada	-
Bubo5	Bs_136	feather	EAST	2007	F	Adult	NB: Moncton	UM	Canada	-
A1570718	Bs_188	feather	EAST	2018	M	Adult	NB: Moncton	UM	Canada	-
A952818	Bs_189	feather	EAST	2018	F	Adult	NB: Moncton	UM	Canada	-
60868075	Bs_219	feather	EAST	2014	M	First	NB: Moncton	UM	Canada	-
60868076	Bs_220	feather	EAST	2014	M	First	NB: Moncton	UM	Canada	-
60868077	Bs_221	feather	EAST	2014	M	First	NB: Moncton	UM	Canada	-
60868097	Bs_223a	feather	EAST	2014	M	Adult	NB: Moncton	UM	Canada	-
60868093	Bs_227	feather	EAST	2014	F	Adult	NB: Moncton	UM	Canada	-
60880995	Bs_228	feather	EAST	2014	M	First	NB: Moncton	UM	Canada	-
59946963	Bs_238a	feather	EAST EAST	2014	F	Adult	NB: Moncton	UM	Canada	-
59929600	Bs_242	feather	EAST	2014	F	First	NB: Moncton	UM	Canada	-
65903413	Bs_243a	feather	EAST	2015	F	Adult	NB: Moncton	UM	Canada	-
59929599	Bs_245	feather	EAST	2014	F	First	NB: Moncton	UM	Canada	-
59950750	Bs_246	feather	EAST	2014	F	First	NB: Moncton	UM	Canada	-
59950748	Bs_247	feather	EAST	2014	M	First	NB: Moncton	UM	Canada	-
60868085	Bs_251	feather	EAST	2014	M	Adult	NB: Moncton	UM	Canada	-
62923832	Bs_254	feather	EAST	2014	F	Adult	NB: Moncton	UM	Canada	-
WDL16056	Bs_033	feather	GL	2016	F	Adult	NB: Moncton	UM	Canada	-
WDL16083	Bs_034	feather	GL	2016	F	Adult	NB: Moncton	UM	Canada	-
WDL16118	Bs_037	feather	GL	2016	M	First	NB: Moncton	UM	Canada	-
WDL16119	Bs_038a	feather	GL	2016	M	Adult	NB: Moncton	UM	Canada	-
WDL16172	Bs_040	feather	GL	2016	M	Adult	NB: Moncton	UM	Canada	-
WDL16547	Bs_042	feather	GL	2016	F	Adult	NB: Moncton	UM	Canada	-
70902651	Bs_058	dry_blood	GL	2014	F	Adult	NB: Moncton	UM	Canada	-
70902652	Bs_081	dry_blood	GL	2014	F	First	NB: Moncton	UM	Canada	-
65900450	Bs_101	feather	GL	2015	F	Adult	NB: Moncton	UM	Canada	-
59932503	Bs_116b	feather	GL	2014	F	First	NB: Moncton	UM	Canada	-
59932502	Bs_117	feather	GL	2013	F	First	NB: Moncton	UM	Canada	-

78820173	Bs_132	feather	GL	2014	M	Adult	NB: Moncton	UM	Canada	-
WDL15976	Bs_159	feather	GL	2015	M	First	NB: Moncton	UM	Canada	-
WDL151203	Bs_161	feather	GL	2015	F	Adult	NB: Moncton	UM	Canada	-
WDL151059	Bs_171	feather	GL	2015	M	First	NB: Moncton	UM	Canada	-
WDL151045	Bs_172b	feather	GL	2015	M	First	NB: Moncton	UM	Canada	-
WDL15180	Bs_177	feather	GL	2015	F	First	NB: Moncton	UM	Canada	-
WDL15027	Bs_178a	feather	GL	2015	F	Adult	NB: Moncton	UM	Canada	-
WDL15015	Bs_183	feather	GL	2015	F	Adult	NB: Moncton	UM	Canada	-
WDL15213	Bs_184	feather	GL	2015	M	Adult	NB: Moncton	UM	Canada	-
WDL15072	Bs_185a	feather	GL	2015	F	Adult	NB: Moncton	UM	Canada	-
26903001	Bs_207	feather	GL	2016	Unk	Unk	NB: Moncton	UM	Canada	-
26919001	Bs_209	feather	GL	2016	Unk	Unk	NB: Moncton	UM	Canada	-
26919001	Bs_211a	feather	GL	2016	Unk	Unk	NB: Moncton	UM	Canada	-
27219001	Bs_212	feather	GL	2016	Unk	Unk	NB: Moncton	UM	Canada	-
26864001	Bs_215	feather	GL	2016	Unk	Unk	NB: Moncton	UM	Canada	-
26863001	Bs_216	feather	GL	2016	Unk	Unk	NB: Moncton	UM	Canada	-
26879001	Bs_217	feather	GL	2016	Unk	Unk	NB: Moncton	UM	Canada	-
WDL151095	Bs_170	feather	GL	2015	M	First	NB: Moncton Le-Bourget-du- Lac	UM	Canada	-
200421	Bs_001	tissu	CENTRAL	2016	M	Adult	Le-Bourget-du- Lac	USMB	France	-
207465	Bs_002	tissu	CENTRAL	2017	F	First	Le-Bourget-du- Lac	USMB	France	-
500000	Bs_003	tissu	CENTRAL	2018	M	First	Le-Bourget-du- Lac	USMB	France	-
202636	Bs_004	tissu	CENTRAL	2017	F	Adult	Le-Bourget-du- Lac	USMB	France	-
185184	Bs_005	tissu	CENTRAL	2014	M	Adult	Le-Bourget-du- Lac	USMB	France	-
207951	Bs_006a	tissu	CENTRAL	2017	F	First	Le-Bourget-du- Lac	USMB	France	-
208485	Bs_007a	tissu	CENTRAL	2018	M	Adult	Le-Bourget-du- Lac	USMB	France	-
199380	Bs_008	tissu	CENTRAL	2016	M	First	Le-Bourget-du- Lac	USMB	France	-
207829	Bs_009	tissu	CENTRAL	2017	F	First	Le-Bourget-du-	USMB	France	-

Lac									
207131	Bs_010	tissu	CENTRAL	2017	M	First	Le-Bourget-du-Lac	USMB	France
500001	Bs_011a	tissu	CENTRAL	2018	M	First	Le-Bourget-du-Lac	USMB	France
216308	Bs_012	tissu	CENTRAL	2018	Unk	First	Le-Bourget-du-Lac	USMB	France
62951004	Bs_013	tissu	CENTRAL	2015	F	Adult	Le-Bourget-du-Lac	USMB	France
500003	Bs_014	tissu	CENTRAL	2015	F	First	Le-Bourget-du-Lac	USMB	France
500002	Bs_015	tissu	CENTRAL	2017	M	First	Le-Bourget-du-Lac	USMB	France
208151	Bs_016	tissu	CENTRAL	2015	M	First	Le-Bourget-du-Lac	USMB	France
500006	Bs_017a	tissu	CENTRAL	2015	M	First	Le-Bourget-du-Lac	USMB	France
500005	Bs_018	tissu	CENTRAL	2015	M	First	Le-Bourget-du-Lac	USMB	France
187393	Bs_019	tissu	CENTRAL	2015	F	First	Le-Bourget-du-Lac	USMB	France
191937	Bs_020b	tissu	CENTRAL	2015	F	First	Le-Bourget-du-Lac	USMB	France
500004	Bs_021	tissu	CENTRAL	2015	F	First	Le-Bourget-du-Lac	USMB	France
192027	Bs_022b	tissu	CENTRAL	2015	F	First	Le-Bourget-du-Lac	USMB	France
195064	Bs_023	tissu	CENTRAL	2016	F	First	Le-Bourget-du-Lac	USMB	France
18	Bs_024	tissu	CENTRAL	2015	M	First	Le-Bourget-du-Lac	USMB	France
191707	Bs_025b	tissu	CENTRAL	2016	F	First	Le-Bourget-du-Lac	USMB	France
194340	Bs_026	tissu	CENTRAL	2016	F	First	Le-Bourget-du-Lac	USMB	France
153613	Bs_027a	feather	CENTRAL	2008	F	First	NB: Moncton	UM	Canada
PDS1535117	Bs_150	feather	CENTRAL	2016	M	First	NB: Moncton	UM	Canada
PDS1535118	Bs_151	feather	CENTRAL	2016	M	First	NB: Moncton	UM	Canada

876 **Table S2:** Pairwise F_{ST} value (below diagonal) and p-value (above diagonal) between wintering
 877 areas (West (W), Central (C), Great lakes (GL), East (E) for A) adult individuals only B) first-
 878 year individuals only C) female only D) male only. Significant values are represented by a star
 879 and sample size per area is in bold. Negative values are equivalent to $F_{ST} = 0$.
 880


A)		W (28)	C (5)	GL (12)	E (14)	B)			
W	-	0.070	0.059	0.017*	W(20)	-	0.229	0.110	0.653
C	0.002738	-	0.659	0.720	C (24)	0.000414	-	0.171	0.892
GL	0.001420	-0.000773	-	0.590	GL (12)	0.001152	0.000853	-	0.398
E	0.001756	-0.001077	-0.000211	-	E (15)	-	-	-	-

C)		W(28)	C (5)	GL (13)	E (24)	D)		W (24)	C (14)	GL (13)	E (18)
W	-	0.055	0.042*	0.006*	W	-	0.610	0.903	0.230		
C	0.00274	-	0.546	0.356	C	-0.000185	-	0.848	0.076		
GL	0.00144	-0.000226	-	0.200	GL	-0.000964	-0.00103	-	0.814		
E	0.00154	0.000542	0.000707	-	E	0.000493	0.00145	0.000826	-		

881

882 FIGURES

883 **Figure S1.** Effect of the variation of different *Stacks* core parameters locus error rated (proportion of
 884 missing loci in only one of the two replicates of a pair). Each box represents the result of a single *Stacks*
 885 run in which all parameters were set to their default values ($m = 3$, $M = 2$, $N = M+2$, $n = 1$,
 886 $\text{max_locus_stacks (mx.lcs)} = 3$, $\text{model} = \text{SNP}$) except for one that varied (indicated on the x-axis). See
 887 Mastretta-Yanes et al. (2015) for further discussion on parameters.
 888

889

890

891

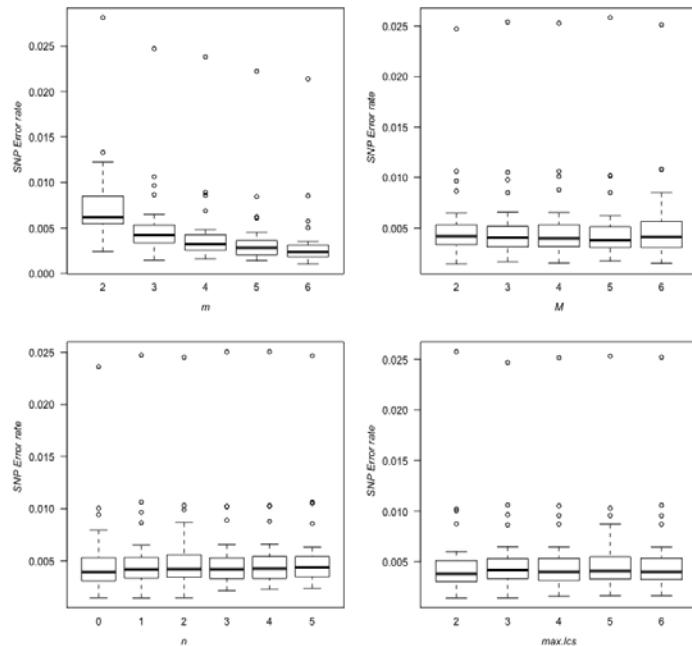
892

893

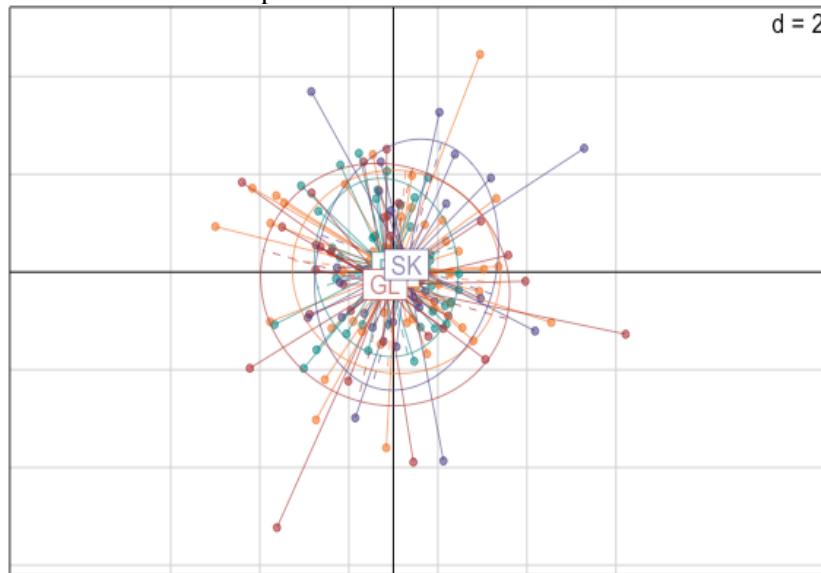
894

895

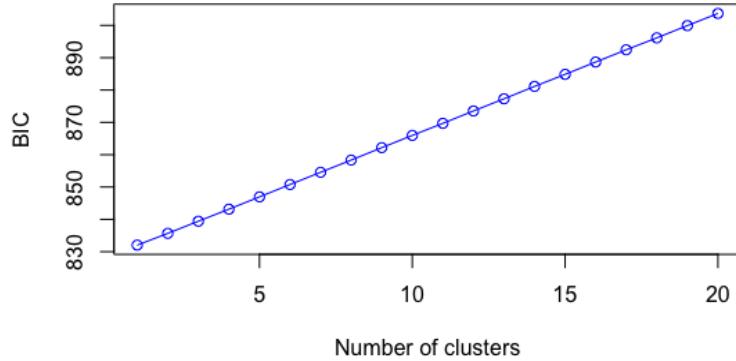
896


897

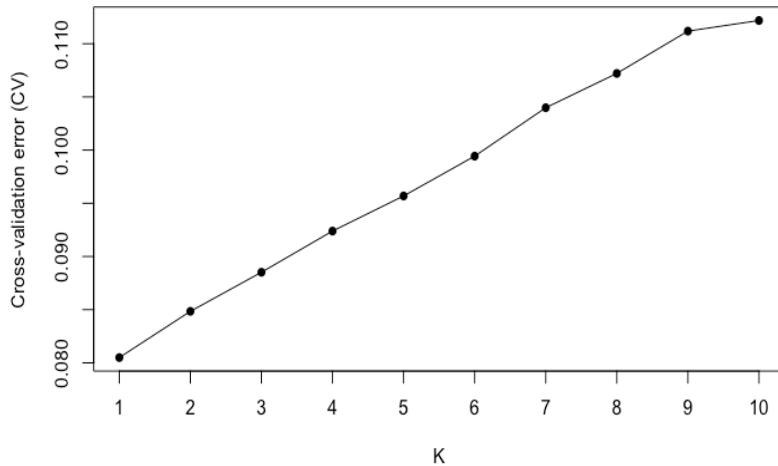
898


899

900


901

918 **Figure S2.** Variation of different *Stacks* core parameters on the SNP error rate (proportion of SNP
919 mismatch within a replicate pair). Each box represents the result of a single *Stacks* run in which all
920 parameters were set to their default values ($m = 3$, $M = 2$, $N = M+2$, $n = 1$, $\text{max_locus_stacks (mx.lcs)} = 3$,
921 model = SNP) except for one that varied (indicated on the x-axis). See Mastretta-Yanes et al. (2015) for
922 further discussion on parameters.

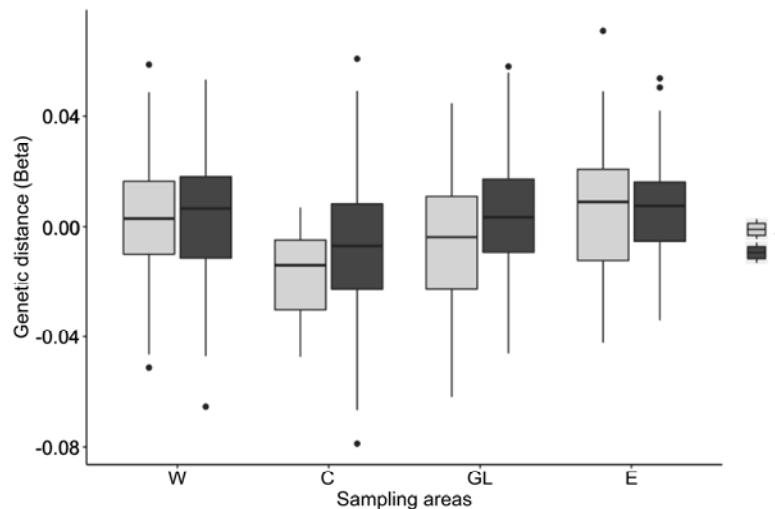


923 **Figure S3.** PCA of all the individuals according to their wintering areas. The number of retained PCs was
924 100. The number of dimensions (d) of the PCA is 2. Color codes: Orange=West (W, British Columbia,
925 n=50), Purple=Central (SK, Saskatchewan, n=29), Red= Great lake (GL, n=29) and Green=East (E,
926 n=42). The boxes with the letter are the centroid of each group.
927
928
929

930
931
932

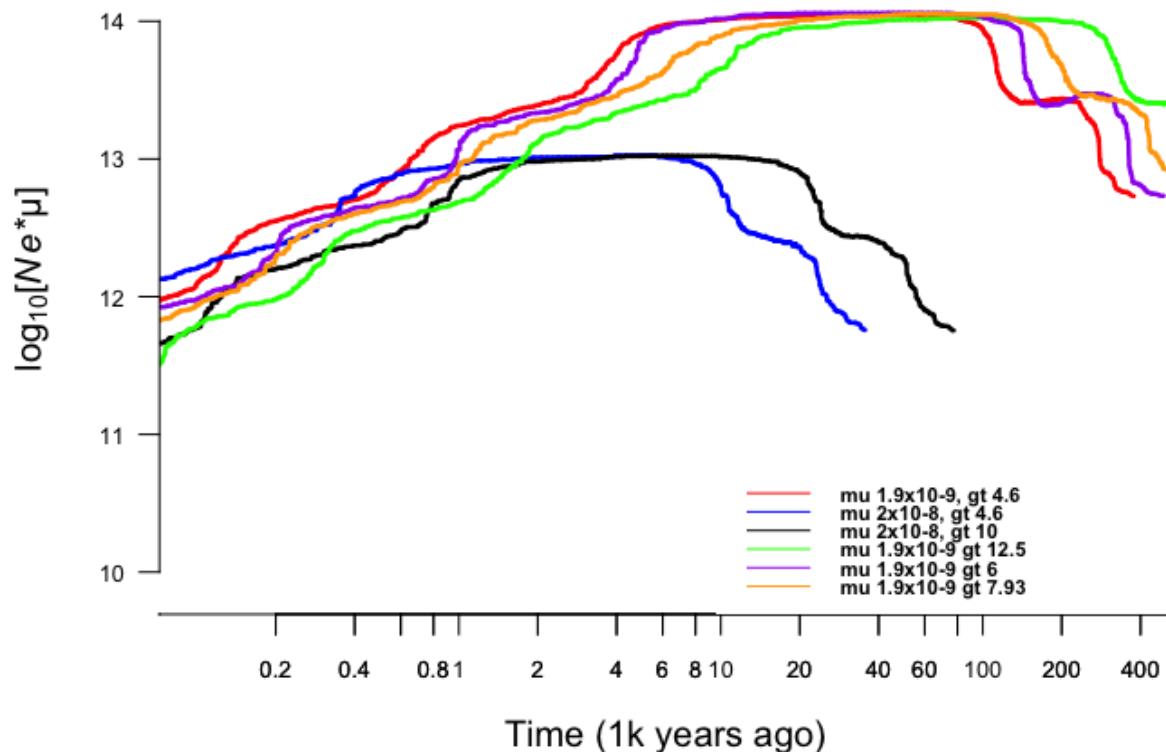
Figure S4. Relationship between the Bayesian information criterion (BIC) value and the number of clusters in the DAPC model.

933
934
935


Figure S5. Cross-validation results of 10 runs (K=1-10) from the ADMIXTURE software. Selected value of the number of clusters (K) should be the lowest value (Alexander et al., 2009)

K=2

936
937
938
939


Figure S6. CLUMPAK results for $K=2$ from 10 runs of ADMIXTURE, without any prior allowing for the number of clusters (K) in the model to vary from 1 to 10. We generated random seeds for each run ($\beta < 0.0001$).

940

941 **Figure S7.** Boxplot of genetic distance (relatedness, beta index) of adults (dark grey) and first year (light
942 grey) for each wintering area.

943

944

945 **Figure S8.** Stairway plot results of runs considering different mutation rates (μ : 2×10^{-8} and 1.9×10^{-9}) or
946 generation time (gt: 4.7, 6, 7.93, 10, and 12.5 years). For the sake of clarity, we did not provide the 95%
947 confidence intervals in the figure (all very similar to the one presented in Fig. 3). The orange slope is the
one that was selected in Figure 3.