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ABSTRACT

Integrating gene expression across scales and tissues is crucial for understanding the biological
mechanisms that drive disease and characterise homeostasis. However, traditional multi-tissue
integration methods cannot handle uncollected tissues or rely on genotype information, which
is subject to privacy concerns and often unavailable. To address these challenges, we present
HYFA (Hypergraph Factorisation), a novel method for joint imputation of multi-tissue and cell-type
gene expression. HYFA imputes tissue-specific gene expression via a specialised graph neural
network operating on a hypergraph of individuals, metagenes, and tissues. HYFA is genotype-
agnostic, supports a variable number of collected tissues per individual, and imposes strong inductive
biases to leverage the shared regulatory architecture of tissues. In performance comparison on
data from the Genotype Tissue Expression project, HYFA achieves superior performance over
existing transcriptome imputation methods, especially when multiple reference tissues are available.
Through transfer learning on a paired single-nucleus RNA-seq (snRNA-seq) dataset, we further show
that HYFA can accurately resolve cell-type signatures from bulk gene expression, highlighting the
method’s ability to leverage gene expression programs underlying cell-type identity, even in tissues
that were never observed in the training set. Using Gene Set Enrichment Analysis, we find that the
metagenes learned by HYFA capture information about known biological pathways. Notably, the
HYFA-imputed dataset can be used to identify regulatory genetic variations (eQTLs), with substantial
gains over the original incomplete dataset. Our framework can accelerate effective and scalable
integration of tissue and cell-type gene expression biorepositories.

1 Introduction

Sequencing technologies have enabled profiling the transcriptome at tissue and single-cell resolutions, with great
potential to unveil intra- and multi-tissue molecular phenomena such as cell signalling and disease mechanisms. Due
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to the invasiveness of the sampling process, gene expression is usually measured independently in easy-to-acquire
tissues, leading to an incomplete picture of an individual’s physiological state and necessitating effective multi-tissue
integration methodologies.

A question of fundamental biological significance is to what extent the transcriptomes of difficult-to-acquire tissues
and cell types can be inferred from those of accessible ones [Basu et al., 2021, Consortium, 2020]. Due to their
ease of collection, accessible tissues such as whole blood could have great utility for diagnosis and monitoring of
pathophysiological conditions through metabolites, signalling molecules and other biomarkers, including potential
transcriptome-level associations [Yang et al., 2020]. Moreover, all human somatic cells share the same genetic
information, which may regulate expression in a context-dependent and temporal manner, partially explaining tissue-
and cell-type-specific gene expression variation. Computational models that exploit these patterns could therefore
be used to impute the transcriptomes of uncollected cell types and tissues, with potential to elucidate the biological
mechanisms regulating a diverse range of developmental and physiological processes.

Multi-tissue imputation is a central problem in transcriptomics with broad implications for fundamental biological
research and translational science. The methodological problem can powerfully influence downstream applications,
including performing differential expression analysis, identifying regulatory (genetic) mechanisms, determining co-
expression networks, and enabling drug target discovery. In practice, in experimental follow-up or clinical application,
the task includes the special case of determining a good proxy or easily-assayed system for causal tissues and cell
types. Multi-tissue integration methods can also be applied to harmonise large collections of RNA-seq datasets from
diverse institutions, consortia, and studies [Xu et al., 2021] — each potentially affected by technical artifacts — and
to characterise gene expression co-regulation across tissues. Reconstruction of unmeasured gene expression across a
broad collection of tissues and cell types from available reference transcriptome panels may expand our understanding
of the molecular origins of complex traits and of their context specificity.

Several methods have traditionally been employed to impute uncollected gene expression. Leveraging a surrogate tissue
has been widely used in studies of biomarker discovery, diagnostics, and expression Quantitative Trait Loci (eQTLs),
and in the development of model systems [Hoon et al., 2000, Cai et al., 2010, Istas et al., 2017, Gamazon et al., 2018,
Kim et al., 2020]. Nonetheless, gene expression is known to be tissue and cell-type specific, limiting the utility of a
proxy tissue. Other related studies impute tissue-specific gene expression from genetic information [Zhou et al., 2020].
Wang et al. [2016] propose a mixed-effects model to infer uncollected data in multiple tissues from eQTLs. Sul et al.
[2013] introduce a model termed Meta-Tissue that aggregates information from multiple tissues to increase statistical
power of eQTL detection. However, these approaches do not model the complex, non-linear relationships between
measured and unmeasured gene expression traits among tissues and cell types, and individual-level genetic information
(such as at eQTLs) is subject to privacy concerns and often unavailable.

Computationally, multi-tissue transcriptome imputation is challenging because the data dimensionality scales rapidly
with the number of genes and tissues, often leading to overparameterised models. TEEBoT [Basu et al., 2021] addresses
this issue by employing principal component analysis (PCA) — a non-parametric dimensionality reduction method —
to project the data into a low-dimensional manifold, followed by linear regression to predict target gene expression
from the principal components. However, this technique does not account for non-linear effects and can handle only a
single reference tissue, i.e. whole blood. Approaches such as standard multilayer perceptrons can exploit non-linear
patterns, but are massively overparameterised and computationally infeasible.

To address these challenges, we present HYFA (Hypergraph Factorisation), a parameter-efficient graph representation
learning approach for joint multi-tissue and cell-type gene expression imputation. HYFA represents multi-tissue
gene expression in a hypergraph of individuals, metagenes, and tissues, and learns factorised representations via a
specialised message passing neural network operating on the hypergraph. In contrast to existing methods, HYFA
supports a variable number of reference tissues, increasing the statistical power over single-tissue approaches, and
incorporates inductive biases to exploit the shared regulatory architecture of tissues. In performance comparison,
HYFA attains improved performance over TEEBoT and standard imputation methods across a broad range of tissues
from the Genotype-Tissue Expression (GTEx) project (v8) [Consortium, 2020]. Through transfer learning on a paired
single-nucleus RNA-seq dataset (GTEx-v9) [Eraslan et al., 2021], we further demonstrate the ability of HYFA to resolve
cell-type signatures from bulk gene expression. Thus, HYFA may provide a unifying transcriptomic methodology for
multi-tissue imputation and cell-type deconvolution. In post-imputation analysis, application of eQTL mapping on the
fully-imputed GTEx data yields a substantial increase in number of detected eQTLs. HYFA is publicly accessible at
https://github.com/rvinas/HYFA.
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2 Results

Hypergraph factorisation: a multi-tissue transcriptomic imputation approach We developed HYFA, a framework
for inferring the transcriptomes of unmeasured tissues and cell-types from bulk expression collected in a variable
number of reference tissues (Figure 1, Methods). HYFA receives as input gene expression measurements collected from
a set of reference tissues, as well as demographic information, and outputs gene expression values in a tissue of interest
(e.g. uncollected). The first step of the HYFA workflow is to project the input gene expression into low-dimensional
metagene representations [Brunet et al., 2004, Raychaudhuri et al., 1999] for every collected tissue. Each metagene
summarises abstract properties of groups of genes, e.g. sets of genes that tend to be expressed together [Svensson
et al., 2020], that are relevant for the imputation task. In a second step, HYFA employs a custom message passing
neural network [Gilmer et al., 2017] that operates on a 3-uniform hypergraph, yielding factorised individual, tissue,
and metagene representations. Lastly, HYFA infers latent metagene values for the target tissue — a hyperedge-level
prediction task — and maps these representations back to the original gene expression space. Through higher-order
hyperedges, HYFA can also incorporate cell-type information and infer finer-grained cell-type-specific gene expression
(Methods). Altogether, HYFA offers features to reuse knowledge across tissues, capture non-linear cross-tissue patterns
of gene expression, learn rich representations of biological entities, and account for variable numbers of reference
tissues.

Characterisation of cross-tissue relationships Characterising cross-tissue relationships at the transcriptome level
can help elucidate coordinated gene regulation and expression, a fundamental phenomenon with direct implications
on health homeostasis, disease mechanisms, and comorbidities [Roenneberg and Merrow, 2016, Davière and Achard,
2017, Bodine et al., 2021]. We trained HYFA on bulk gene expression from the GTEx project (GTEx-v8; Methods)
[Consortium, 2020] and assessed the cross-tissue gene expression predictability scores and quality of tissue embeddings
(Figure 2). The application of Uniform Manifold Approximation and Projection (UMAP) [McInnes et al., 2018] on
the learnt tissue representations revealed strong clustering of biologically-related tissues (Figure 2a), including the
gastrointestinal system (e.g. esophageal, stomach, colonic, and intestinal tissues), the female reproductive tissues
(i.e. uterus, vagina, and ovary), and the central nervous system (i.e. the 13 brain tissues). The clustering properties
were robust across UMAP runs and could be similarly appreciated using other dimensionality reduction algorithms
such as t-distributed Stochastic Neighbor Embedding (t-SNE) [Van der Maaten and Hinton, 2008]. For every pair of
reference and target tissues in GTEx, we then computed the Pearson correlation coefficient ρ between the predicted and
actual gene expression, averaged the scores across individuals, and used a cutoff of ρ > 0.5 to depict the top pairwise
associations (Figure 2b). We observed connections between most GTEx tissues and whole blood, which suggests that
blood-derived gene expression is highly informative of (patho)physiological processes in other tissues [Ray et al., 2007].
Notably, brain tissues and the pituitary gland were strongly associated with several target tissues (ρ > 0.5), including
gastrointestinal tissues (i.e. esophagus, stomach, and colon), the adrenal gland, and skeletal muscle, which may account
for known disease comorbidities.

Predictability of tissue-specific gene expression from whole blood transcriptome Knowledge about tissue-specific
patterns of gene expression can increase our understanding of disease biology, facilitate the development of diagnostic
tools, and improve patient subtyping [Lage et al., 2008, Basu et al., 2021], but most tissues are inaccessible or difficult
to acquire. To address this challenge, we studied to what extent HYFA can recover tissue-specific gene expression from
whole-blood transcriptomic measurements (Figures 3a and 3c). For each individual in the test set with measured whole-
blood gene expression, we employed the hypergraph neural network to predict tissue-specific gene expression in the
individual’s remaining collected tissues. We evaluated imputation performance using the Pearson correlation coefficient
ρ between the high-dimensional inferred gene expression and the ground-truth target samples. We observed strong
prediction scores for esophageal tissues (muscularis: ρ = 0.488, gastro: ρ = 0.461, mucosa: ρ = 0.356), heart tissues
(left ventricle: ρ = 0.479, atrial: ρ = 0.455) and lung (ρ = 0.471), while Epstein Barr virus-transformed lymphocytes
(ρ = 0.057), an accessible and renewable resource for functional genomics, was a notable outlier. We compared our
method with TEEBoT [Basu et al., 2021] (without expression single-nucleotide polymorphism information), which first
projects the high-dimensional blood expression data into a low-dimensional space through principal component analysis
(30 components; 75-80% explained variance) and then performs linear regression to predict the gene expression of the
target tissue. Overall, TEEBoT and HYFA attained comparable scores when a single tissue (i.e. whole blood) was used
as reference and both methods outperformed standard imputation approaches (mean imputation, blood surrogate, and k
nearest neighbours; Figure 3c).

Multiple reference tissues improve performance We hypothesised that using multiple tissues as reference would
improve downstream imputation performance. To evaluate this, we selected individuals with measured gene expression
both at the target tissue and 4 reference (accessible) tissues (whole blood, skin sun exposed, skin not sun exposed, and
adipose subcutaneous) and employed HYFA to impute target expression values (Figure 3 and Extended Data Figure
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1). We discarded underrepresented target tissues with less than 25 test individuals. Relative to using whole blood in
isolation, using all accessible tissues as reference resulted in improved performance for 14 out of 18 target tissues
(Extended Data Figure 1), highlighting the benefit of leveraging multiple reference tissues. This particularly boosted
imputation scores for esophageal tissues (muscularis: ∆ρ = 0.068, gastro: ∆ρ = 0.061, mucosa: ∆ρ = 0.048),
colonic tissues (transverse: ∆ρ = 0.065, sigmoid: ∆ρ = 0.056), and artery tibial (∆ρ = 0.079) (Extended Data Figure
1). In contrast, performance for the pituitary gland (∆ρ = −0.011), lung (∆ρ = −0.003), and stomach (∆ρ = −0.002)
remained stable or dropped slightly. Moreover, the performance gap between HYFA and TEEBoT (trained on the set
of complete multi-tissue samples) further widened relative to the single-tissue scenario (Figure 3) — HYFA obtained
better performance in all target tissues. We attribute the improved scores to HYFA’s ability to process a variable number
of reference tissues, reuse knowledge across tissues, and capture non-linear patterns, resulting in increased statistical
strength and better generalisation to unseen combinations of reference-target tissues.

Inference of cell-type signatures We next investigated the ability of HYFA to predict cell-type-specific signatures in a
given tissue of interest. We first matched donors with collected bulk gene expression in GTEx-v8 Consortium [2020] and
individuals with measured single-nucleus RNA-seq profiles from GTEx-v9 [Eraslan et al., 2021], resulting in 16 individ-
uals. We selected the top 3000 highly variable genes using the Scanpy function scanpy.pp.highly_variable_genes
with flavour setting seurat_v3 [Wolf et al., 2018, Stuart et al., 2019] (Methods). We then aggregated the snRNA-seq
profiles for each cell-type, tissue, and individual in GTEx-v9, yielding 226 unique individual-specific signatures. We
discarded under-represented cell-types with less than 10 signatures and split the signatures into train and test (Extended
Data Figure 2). Next, we trained HYFA to infer the cell-type, tissue, and individual-specific signatures from the
multi-tissue bulk expression profiles. We evaluated performance using the observed (Figure 2) and inferred library
sizes (Extended Data Figure 3). To attenuate the small data size problem, we applied transfer learning on the model
trained for the multi-tissue imputation task (Methods). We observed strong prediction scores for vascular endothelial
cells (heart: ρ = 0.79; breast: ρ = 0.87, esophagus muscularis: ρ = 0.79) and fibroblasts (heart: ρ = 0.80; breast:
ρ = 0.89, esophagus muscularis: ρ = 0.80). Strikingly, HYFA recovered the cell-type profiles of tissues that were
never observed in the train set with high correlation (Figures 2 and 4), e.g. skeletal muscle (vascular endothelial cells:
ρ = 0.80, fibroblasts: ρ = 0.76, pericytes/SMC: ρ = 0.70), demonstrating the benefits of the transfer learning approach
and the factorised tissue representations. Our results highlight the potential of HYFA to impute unknown cell-type
signatures even for tissues that were not considered in the original snRNA-seq dataset [Eraslan et al., 2021].

Multi-tissue imputation improves eQTL detection Gene expression acts as an intermediate molecular trait between
DNA and phenotype and, therefore, genetic mapping of genome-wide gene expression can shed light on the genetic
architecture and molecular basis of complex traits. The GTEx project has enabled the identification of numerous genetic
associations with gene expression across a broad collection of tissues [Consortium, 2020], also known as expression
Quantitative Trait Loci (eQTLs) [Nica and Dermitzakis, 2013]. However, eQTL datasets are characterised by small
sample sizes, especially for difficult-to-acquire tissues and cell types, reducing the statistical power to detect eQTLs
[Rockman and Kruglyak, 2006]. To address this problem, we employed HYFA to impute the transcript levels of
every uncollected tissue for each individual in GTEx, yielding a complete gene expression dataset of 834 individuals
and 49 tissues. We then performed eQTL mapping (Methods) on the original and imputed datasets and observed a
substantial gain in the number of unique genes with detected eQTLs (Figure 5). Notably, this metric increased for
tissues with low sample size (Spearman correlation coefficient ρ = −0.83) — which are most likely to benefit from
borrowing information across tissues with shared regulatory architecture. Kidney cortex displayed the largest gain
(from 215 to 12,557), while there was no increase observed for whole blood. Our results generate a large catalog of
new tissue-specific eQTLs (Data availability), with potential to enhance our understanding of how regulatory variation
mediates variation in complex traits, including disease susceptibility.

Brain-gut axis The brain-gut axis is a bidirectional communication system of signalling pathways linking the central
and enteric nervous systems. We investigated the extent to which the transcriptomes of tissues from the gastrointestinal
system are predictive of gene expression in brain tissues. We selected all the unseen individuals with simultaneous
measurements in gastrointestinal tissues (i.e. oesophago gastric junction) and brain tissues (i.e. frontal cortex,
hippocampus, and anterior cingulate) and employed HYFA to predict the expression values of brain tissues (Figure 6).
We observed a small number of individuals with measurements in both brain and non-brain tissues (Supplementary
Materials D). After ranking the genes according to their predicability scores and selecting the top 1000 genes for each
brain tissue (Venn diagram; Figure 6), we found considerable overlap between the 3 brain tissues (153 common genes
in the intersection). We then used Enrichr [Kuleshov et al., 2016] with the gene sets GO_Biological_Process_2021
and GO_Molecular_Function_2021 to identify the enriched Gene Ontology (GO) terms for the shared genes at the
intersection. Overall, the best predicted genes were enriched in multiple signalling-related terms (e.g. cytokine receptor
activity and interleukin-1 receptor activity). This aligns with studies that highlight that gut microbes communicate with
the central nervous system through endocrine and immune signalling mechanisms [Martin et al., 2018]. Genes in the
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intersection were also notably enriched in the ciliary neurotrophic factor receptor activity (molecular function), which
plays an important role in the survival of neurons [Davis et al., 1991], the development of the enteric nervous system
[Liu, 2018], and the control of body weight [Xu and Xie, 2016]. Moreover, our results suggest an association with the
Receptor for Advanced Glycation Endproducts (RAGE), which has been linked to inflammation-related pathological
states such as vascular disease, diabetes, and neurodegeneration [Sparvero et al., 2009].

HYFA-learned metagenes capture known biological pathways A key feature of HYFA is that it reuses knowledge
across tissues and metagenes, allowing to exploit shared regulatory patterns. We explored whether HYFA’s inductive
biases encourage learning biologically relevant metagenes. To determine the extent to which metagene-factors relate to
known biological pathways, we applied Gene Set Enrichment Analysis (GSEA) [Subramanian et al., 2005] to the gene
loadings of HYFA’s encoder (Methods). Similar to [Zhao et al., 2021], for a given query gene set, we calculated the
maximum running sum of enrichment scores by descending the sorted list of gene loadings for every metagene and factor.
We then computed pathway enrichment p-values through a permutation test and employed the Benjamini-Hochberg
method to correct for multiple testing. In total, we identified 18683 statistically significant enrichments (FDR < 0.05) of
KEGG biological processes across all HYFA metagenes and factors (Figure 7a). Among these, 2109 corresponded to
signalling pathways and 1300 to pathways of neurodegeneration (Figure 7b). We observed considerable overlap between
several metagenes in terms of enriched biologically related pathways, e.g. factor 95 of metagene 11 had the lowest FDR
for both Alzheimer’s disease (FDR < 0.001) and Amyotrophic Lateral Sclerosis (FDR < 0.001) pathways (Figure 7d
and 7f). We then applied UMAP to project the latent values of metagene 11 and observed relatively strong clustering of
individuals with Amyotrophic Lateral Sclerosis (spinal cord; Figure 7c) and Alzheimer’s disease or Dementia (brain
cortex, Figure 7e). Altogether, our analysis suggests that HYFA-learned metagenes capture information about known
pathways and are therefore amenable to biological interpretation.

3 Discussion

Effective multi-tissue omics integration promises a system-wide view of human physiology, with potential to shed light
on intra- and multi-tissue molecular phenomena. Such an approach challenges single-tissue and conventional integration
approaches — often unable to model a variable number of tissues with sufficient statistical strength — necessitating
the development of scalable, non-linear, and flexible methods. Here we developed HYFA (Hypergraph Factorisation),
a parameter-efficient approach for joint multi-tissue and cell-type gene expression imputation that imposes strong
inductive biases to learn entity-independent relational semantics and demonstrates excellent imputation capabilities.
The hypergraph factorisation framework is flexible (it supports k-uniform hypergraphs) and may find application beyond
computational genomics.

We performed extensive benchmarks on GTEx (v8) data [Consortium, 2020], the most comprehensive human transcrip-
tome resource available, and evaluated imputation performance over a broad collection of tissues and cell types. In
addition to standard transcriptome imputation approaches, we compared our method with TEEBoT [Basu et al., 2021],
a linear method that predicts target gene expression from the principal components of the reference expression. In the
single-tissue reference scenario, HYFA and TEEBoT attained comparable imputation scores, outperforming standard
methods. In the multi-tissue reference scenario, HYFA consistently outperformed TEEBoT and standard approaches for
all target tissues, demonstrating the effectiveness of HYFA’s capabilities to borrow non-linear information across a
variable number of tissues and exploit shared molecular patterns.

In addition to imputing tissue-level transcriptomics, we investigated the ability of HYFA to predict cell-type-level
gene expression from multi-tissue bulk expression measurements. Through transfer learning, we trained HYFA to
infer cell-type signatures from a cohort of single-nucleus RNA-seq [Eraslan et al., 2021] with matching GTEx-v8
donors. The inferred cell-type signatures exhibited a strong correlation with the ground truth despite the low sample
size, indicating that HYFA’s latent representations are rich and amenable to knowledge transfer. Strikingly, HYFA
also recovered cell-type profiles from tissues that were never observed at transfer time, pointing to HYFA’s ability to
leverage gene expression programs underlying cell-type identity [Kotliar et al., 2019] even in tissues that were not
considered in the original study of Eraslan et al. [2021]. For future work, we will investigate extensions of HYFA to
resolve the cell-type composition of observed and imputed tissue-specific gene expression.

In post-imputation analysis, we studied whether the imputed data improves eQTL discovery. We employed HYFA to
impute the gene expression levels of every uncollected tissue in GTEx-v8, yielding a complete dataset, and performed
eQTL mapping. Compared to the original dataset, we observed a substantial gain in number of genes with detected
eQTLs, with kidney cortex showing the largest gain. The increase was highest for tissues with low sample sizes, which
are the ones expected to benefit the most from knowledge sharing across tissues. Our results uncover a large number of
previously undetected tissue-specific eQTLs and highlight the ability of HYFA to exploit shared regulatory information
across tissues.
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In addition to imputing uncollected gene expression measurements, HYFA can provide insights on coordinated gene
regulation and expression mechanisms across tissues. We analysed to what extent tissues from the gastrointestinal
system are informative of gene expression in brain tissues — an important question that may shed light on the biology
of the brain-gut axis — and identified enriched biological processes and molecular functions. Through Gene Set
Enrichment Analysis [Subramanian et al., 2005], we further introspected the HYFA-learned metagenes and found
a substantial amount of enriched pathways, opening the door to further biological interpretations. We believe that
explainability methods could be integrated in the HYFA pipeline to generate interesting biological insights. Future work
might also seek to impose stronger inductive bias to ensure that metagenes are identifiable and robust to batch effects.

We believe that HYFA, as a versatile graph representation learning framework, provides a novel methodology for
effective integration of large-scale multi-tissue biorepositories. HYFA’s implementation is available online at https:
//github.com/rvinas/HYFA.

4 Methods

4.1 Problem formulation

Suppose we have a transcriptomics dataset of N individuals/donors, T tissues, and G genes. For each individual
i ∈ {1, ..., N}, let Xi ∈ RT×G be the gene expression values in T tissues and define the donor’s demographic
information by ui ∈ RC , where C is the number of covariates. Denote by x

(k)
i the k-th entry of Xi, corresponding to

the expression values of donor i measured in tissue k. For a given donor i, let T (i) represent the collection of tissues
with measured expression values. These sets might vary across individuals. Let X̃i ∈ (R ∪ {∗})T×G be the measured
gene expression values, where ∗ denotes unobserved, so that x̃(k)

i = x
(k)
i if k ∈ T (i) and x̃

(k)
i = ∗ otherwise. Our

goal is to infer the uncollected values in X̃i by modelling the distribution p(X = Xi|X̃ = X̃i,U = ui).

4.2 Multi-tissue model

An important challenge of modelling multi-tissue gene expression is that a different set of tissues might be collected for
each individual. Moreover, the data dimensionality scales rapidly with the total number of tissues and genes. To address
these problems, we represent the data in a hypergraph and develop a parameter-efficient neural network that operates on
this hypergraph. Throughout, we make use of the concept of metagenes [Brunet et al., 2004, Raychaudhuri et al., 1999].
Each metagene characterises certain gene expression patterns and is defined as a positive linear combination of multiple
genes [Brunet et al., 2004, Raychaudhuri et al., 1999].

4.2.1 Hypergraph representation

We represent the data in a hypergraph consisting of three types of nodes: donor, tissue, and metagene nodes.

Mathematically, we define a hypergraph G = {Vd ∪ Vm ∪ Vt, E}, where Vd is a set of donor nodes, Vm is a set of
metagene nodes, Vt is a set of tissue nodes, and E is a set of multi-attributed hyperedges. Each hyperedge connects an
individual i with a metagene j and a tissue k if k ∈ T (i), where T (i) are the collected tissues of individual i. The set
of all hyperedges is defined as E = {(i, j, k, e(k)ij ) | (i, j, k) ∈ Vd × Vm × Vt, k ∈ T (i)}, where e

(k)
ij are hyperedge

attributes that describe characteristics of the interacting nodes, i.e. features of metagene j in tissue k for individual i.

The hypergraph representation allows representing data in a flexible way, generalising the bipartite graph representation
from You et al. [2020]. On the one hand, using a single metagene results in a bipartite graph where each edge connects
an individual i with a tissue k. In this case, the edge attributes e

(k)
i1 are derived from the gene expression x

(k)
i of

individual i in tissue k. On the other hand, using multiple metagenes leads to a hypergraph where each individual
i is connected to tissue k through multiple hyperedges. For example, it is possible to construct a hypergraph where
genes and metagenes are related by a one-to-one correspondence, with hyperedge attributes e(k)ij derived directly from

expression x
(k)
ij . The number of metagenes thus controls a spectrum of hypergraph representations and, as we shall see,

can help alleviate the inherent over-squashing problem of graph neural networks.

4.2.2 Message passing neural network

Given the hypergraph representation of the multi-tissue transcriptomics dataset, we now present a parameter-efficient
graph neural network to learn donor, metagene, and tissue embeddings, and infer the expression values of the unmeasured
tissues. We start by computing hyperedge attributes from the multi-tissue expression data. Then, we initialise the
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embeddings of all nodes in the hypergraph, construct the message passing neural network, and define an inference
model that builds on the latent node representations obtained via message passing.

Computing hyperedge attributes We first reduce the dimensionality of the measured transcriptomics values. For
every individual i and measured tissue k, we project the corresponding gene expression values x(k)

i into low-dimensional
metagene representations e(k)ij :

e
(k)
ij = ReLU(Wjx

(k)
i ) ∀j ∈ 1..M (1)

where M , the number of metagenes, is a user-definable hyperparameter and Wj∀j ∈ 1..M are learnable parameters. In
addition to characterising groups of functionally similar genes, employing metagenes reduces the number of messages
being aggregated for each node, addressing the over-squashing problem of graph neural networks (Supplementary
Materials H).

Initial node embeddings We initialise the node features of the individual Vp, metagene Vm, and tissue Vt partitions
with learnable parameters and available information. For metagene and tissue nodes, we use learnable embeddings
as initial node values. The idea is that these weights, which will be approximated through gradient descent, should
summarise relevant properties of each metagene and tissue. We initialise the node features of each individual with the
available demographic information ui of each individual i (e.g. age and sex). Importantly, this formulation allows
transfer learning between sets of distinct donors.

Message passing layer We develop a custom GNN layer to compute latent donor embeddings by passing messages
along the hypergraph. At each layer of the GNN, we perform message passing to iteratively refine the individual node
embeddings. We do not update the tissue and metagene embeddings during message passing, in a similar vein as
knowledge graph embeddings [Bordes et al., 2013], because their node embeddings already consist of learnable weights
that are updated through gradient descent. Sending messages to these nodes would also introduces a dependency
between individual nodes and tissue and metagene features (and, by transitivity, dependencies between individuals).
However, if we foresee that unseen entities will be present at test time (e.g. new tissue types), our approach can be
extended by initialising their node features with constant values and introducing node-type-specific message passing
equations.

Mathematically, let {hd
1, ...,h

d
N}, {hm

1 , ..,hm
M}, and {ht

1, ..,h
t
T } be the donor, metagene, and tissue node embeddings,

respectively. At each layer of the GNN, we compute refined individual embeddings {ĥd
1, ..., ĥ

d
N} as follows:

ĥd
i = ϕh(h

d
i ,mi), mi =

M∑
j=1

∑
k∈T (i)

ϕa(h
m
j ,ht

k,mijk), mijk = ϕe(h
d
i ,h

m
j ,ht

k, e
(k)
ij ), (2)

where the functions ϕe and ϕh are edge and node operations that we model as multilayer perceptrons (MLP), and ϕa is
a function that determines the aggregation behavior. In its simplest form, choosing ϕa(h

m
j ,ht

k,mijk) =
1

G|T (i)|mijk

results in average aggregation. Optionally, we can stack several message passing layers to increase the expressivity of
the model.

The architecture is flexible to allow the following extensions:

• Incorporation of information about the individual embeddings hd
i into the aggregation mechanism ϕa.

• Incorporation of target tissue embeddings ht
u, for a given target tissue u, into the aggregation mechanism ϕa.

• Update hyperedge attributes e(k)ij at every layer.

Aggregation mechanism In practice, the proposed hypergraph neural network suffers from a bottleneck. In the
aggregation step, the number of messages being aggregated is M |T (i)| for each individual i. In the worst case, when
all genes are used as metagenes (i.e. M = G; it is estimated that humans have around G ≈ 25, 000 protein-coding
genes), this leads to serious over-squashing — large amounts of information are compressed into fixed-length vectors
[Alon and Yahav, 2020]. Fortunately, choosing a small number of metagenes reduces the dimensionality of the original
transcriptomics values which in turn alleviates the over-squashing and scalability problems (Supplementary Materials H).
To further attenuate over-squashing, we propose an attention-based aggregation mechanism ϕa that weighs metagenes
according to their relevance in each tissue:

ϕa(h
m
j ,ht

k,mijk) = αjkmijk, αjk =
exp e(hm

j ,ht
k)∑

k exp e(h
m
v ,ht

k)
, e(hm

j ,ht
k) = a⊤LeakyReLU

(
W[hm

j ||ht
k]
)
,
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where || is the concatenation operation and a and W are learnable parameters. The proposed attention mechanism,
which closely follows the neighbour aggregation method of graph attention networks [Brody et al., 2022, Veličković
et al., 2018], computes dynamic weighting coefficients that prioritise messages coming from important metagenes.
Optionally, we can leverage multiple heads [Vaswani et al., 2017] to learn multiple modes of interaction and increase
the expressivity of the model.

Hypergraph model The hypergraph model, which we define as f , computes latent individual embeddings ĥd
i from

incomplete multi-tissue expression profiles as ĥd
i = f(X̃i,ui).

4.3 Downstream imputation tasks

The resulting donor representations ĥd
i summarise information about a variable number of tissue types collected for

donor i, in addition to demographic information. We leverage these embeddings for two downstream tasks: inference of
gene expression in uncollected tissues and prediction of cell-type signatures.

4.3.1 Inference of gene expression in uncollected tissues

Predicting the transcriptomic measurements x̂(k)
i of a tissue k (e.g. uncollected) is achieved by first recovering the

latent metagene values ê(k)ij for all metagenes j ∈ 1..M , a hyperedge-level prediction task, and then decoding the gene

expression values from the predicted metagene representations ê(k)ij with an appropriate probabilistic model.

Prediction of hyperedge attributes To predict the latent metagene attributes ê(k)ij for all j ∈ 1..M , we employ a
multilayer perceptron that operates on the factorised metagene hm

j and tissue representations ht
k as well as the latent

variables ĥd
i of individual i:

ê
(k)
ij = MLP(ĥd

i ,h
m
j ,ht

k),

where the MLP is shared for all combinations of metagenes, individuals, and tissues.

Negative binomial imputation model For raw count data, we use a negative binomial likelihood. To decode the gene
expression values for a tissue k of individual i, we define the following probabilistic model p(x(k)

i |ĥd
i ,ui, k):

p(x
(k)
i |ĥd

i ,ui, k) =
G∏
j

p(x
(k)
ij |ĥd

i ,ui, j, k), p(x
(k)
ij |ĥd

i ,ui, j, k) = NB(x(k)
ij ;µ

(k)
ij , θ

(k)
ij ),

where NB is a negative binomial distribution. The mean µ
(k)
ij and dispersion θ

(k)
ij parameters of this distribution are

computed as follows:

µ
(k)
i = l

(k)
i s

(k)
i , s

(k)
i = softmax

(
Wsê

(k)
i + bs

)
, θ

(k)
i = exp

(
Wθê

(k)
i + bθ

)
, ê

(k)
i = MLP

(∥∥M
j=1

ê
(k)
ij

)
,

where s
(k)
i are mean gene-wise proportions; Ws, Wθ, bs, and bθ are learnable parameters; and l

(k)
i is the library size,

which is modelled with a log-normal distribution

log l
(k)
i ∼ N (l

(k)
i ; ν

(k)
i , ω

(k)
i ), ν

(k)
i = Wν ê

(k)
i + bν , ω

(k)
i = exp

(
Wωê

(k)
i + bω

)
,

where Wν , Wω , bν , and bω are learnable parameters. Optionally, we can use the observed library size.

Gaussian imputation model For normalised gene expression data (i.e. inverse normal transformed data), we use the
following Gaussian likelihood:

p(x
(k)
i |ĥd

i ,ui, k) =
G∏
j

p(x
(k)
ij |ĥd

i ,ui, j, k), p(x
(k)
ij |ĥd

i ,ui, j, k) = N (x
(k)
ij ;µ

(k)
ij , σ2(k)

ij ),

where the mean µ
(k)
ij and standard deviation σ

(k)
ij are computed as follows:

µ
(k)
i = Wµê

(k)
i + bµ, σ

(k)
i = softplus

(
Wσê

(k)
i + bσ

)
, ê

(k)
i = MLP

(∥∥M
j=1

ê
(k)
ij

)
,

where Wµ, Wσ , bµ, and bσ are learnable parameters and softplus(x) = log
(
1 + exp(x)

)
.
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Optimisation We optimise the model to maximise the imputation performance on a dynamic subset of observed
tissues, that is, tissues that are masked out at train time, similar to Viñas et al. [2021]. For each individual i, we randomly
select a subset C ⊂ T (i) of pseudo-observed tissues and treat the remaining tissues U = T (i) − C as unobserved
(pseudo-missing). We then compute the individual embeddings ĥd

i using the gene expression of pseudo-observed
tissues C and minimise the loss:

L(X̃i,ui, C,U) = − 1

|U|
∑
k∈U

log p(x
(k)
i |ĥd

i ,ui, k),

which corresponds to the average negative log-likelihood across pseudo-missing tissues. Importantly, the pseudo-mask
mechanism generates different sets of pseudo-missing tissues for each individual, effectively enlarging the number of
training examples and regularising our model. We summarise the training algorithm in Algorithm 1 (Supplementary
Materials F).

Inference of gene expression from uncollected tissues At test time, we infer the gene expression values x̂(v)
i of an

uncollected tissue v from a given donor i via the mean, i.e. x̂(v)
i = µ

(v)
i . Alternatively, we can draw random samples

from the conditional predictive distribution p(x
(k)
i |ĥd

i ,ui, k).

4.3.2 Prediction of cell-type signatures

We next consider the problem of imputing cell-type signatures in a tissue of interest. We define a cell-type signature
as the sum of gene expression profiles across cells of a given cell-type in a certain tissue. Formally, let x(k,q)

i be
the gene expression signature of cell-type q in a tissue of interest k of individual i. Our goal is to infer x(k,q)

i from
the multi-tissue gene expression measurements X̃i. To achieve this, we first compute the hyperedge features of a
hypergraph consisting of 4-node hyperedges and then infer the corresponding signatures with a zero-inflated model.

Prediction of hyperedge attributes We consider a hypergraph where each hyperedge groups an individual, a tissue,
a metagene, and a cell-type node. For all metagenes j ∈ 1..M , we compute latent hyperedge attributes ê(k,q)ij for a
cell-type q in a tissue of interest k of individual i as follows:

ê
(k,q)
ij = MLP(ĥd

i ,h
m
j ,ht

k,h
c
q),

where hc
q are parameters specific to each unique cell-type q and the MLP is shared for all combinations of metagenes,

individuals, tissues, and cell-types.

Zero-inflated model We employ the following probabilistic model:

p(x
(k,q)
i |ĥd

i ,ui, k, q) =
G∏
j

p(x
(k,q)
ij |ĥd

i ,ui, j, k, q), p(x
(k,q)
i |ĥd

i ,ui, j, k, q) = ZINB(x(k,q)
ij ;µ

(k,q)
ij , θ

(k,q)
ij , π

(k,q)
ij ),

where ZINB is a zero-inflated negative binomial distribution. The mean µ
(k,q)
ij , dispersion θ

(k,q)
ij , and dropout probability

π
(k,q)
ij parameters are computed as:

µ
(k,q)
i = n

(k,q)
i l

(k,q)
i softmax

(
Wsê

(k,q)
i + bs

)
, θ

(k,q)
i = exp

(
Wθê

(k,q)
i + bθ

)
, π

(k,q)
i = σ(Wπê

(k,q)
i + bπ),

where Ws, Wθ, Wπ , bs, bθ, and bπ are learnable parameters; n(k,q)
i is the number of cells in the signature, and l

(k,q)
i

is their average library size. At train time, we set n(k,q)
i to match the ground truth number of cells. At test time, the

number of cells n(k,q)
i is user-definable. We model the average library size l

(k,q)
i with a log-normal distribution

log l
(k,q)
i ∼ N (l

(k,q)
i ; ν

(k,q)
i , ω

(k,q)
i ), ν

(k,q)
i = Wν ê

(k,q)
i + bν , ω

(k,q)
i = exp

(
Wωê

(k,q)
i + bω

)
,

where Wν , Wω , bν , and bω are learnable parameters. Optionally, we can use the observed library size.

Optimisation Single-cell transcriptomic studies typically measure single-cell gene expression for a limited number of
individuals, tissues, and cell-types, so aggregating single-cell profiles per individual, tissue, and cell-type often results
in small sample sizes. To address this challenge, we apply transfer learning by pre-training the hypergraph model f
on the multi-tissue imputation task (see Section 4.3.1) and then fine-tuning the parameters of the signature inference
module (Section 4.3.2) on the cell-type signature profiles. Concretely, we minimise the loss:

L(x(k,q)
i , X̃i,ui, k, q) = − log p(x

(k,q)
i |ĥd

i ,ui, k, q),

which corresponds to the negative log-likelihood of the observed cell-type signatures.
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Inference of uncollected gene expression To infer the signature of a cell-type q in a certain tissue v of interest,
we first compute the latent individual embeddings ĥd

i from the multi-tissue profiles X̃i and then compute the mean
of the distribution p(x

(k,q)
i |ĥd

i ,ui, k, q) as µ(k,q)
i (1− π

(k,q)
i ). Alternatively, we can draw random samples from that

distribution.

4.4 Data missingness assumption

By employing maximum likelihood inference on the observed data (Supplementary Materials), HYFA assumes that
the data (i.e. tissues) are Missing At Random (MAR; Little and Rubin [2019]), that is, the missingness mechanism
is independent of the unobserved data. Training HYFA via variational inference (Supplementary Materials) also
necessitates the MAR assumption which, similar to Mattei and Frellsen [2019], arises from maximising the log-
likelihood of the observed data through the Evidence Lower Bound (ELBO). The MAR assumption is less restrictive
than the Missing At Completely at Random (MCAR) assumption — the missingness pattern is independent of the
observed and unobserved data — of other methods such as mean imputation and GAIN [Yoon et al., 2018].

HYFA does not support data Missing Not At Random (MNAR), where the missingness mechanism depends on the
unobserved data, i.e. the probability of being missing depends on unknown reasons [Van Buuren, 2018]. To handle
this scenario, we would need to model the joint distribution p(X̃,R) of the observed data X̃ and the missingness
mechanism R, that is, the missingness mechanism would be nonignorable and would need to be explicitly modelled.
This could be achieved through selection modeling [Heckman, 1976], which factorises the joint distribution as
p(X̃,R) = p(R|X̃)p(X̃), or pattern-mixture models [Glynn et al., 1986], which decompose the joint as p(X̃,R) =

p(X̃)p(X̃|R). In general, it is impossible to test if MAR holds in a dataset [Schafer and Graham, 2002], but the impact
of incorrectly assuming MAR is often minor [Collins et al., 2001].

4.5 Related work

Gene expression imputation methods A standard approach for imputation of uncollected transcriptomics values is
to use a proxy tissue (e.g. whole blood) as a surrogate [Hoon et al., 2000]. However, gene expression is known to be
tissue and cell-type specific, limiting the effectiveness of this technique. Other related studies infer tissue-specific gene
expression from genetic information. Wang et al. [2016] propose a mixed-effects model to infer uncollected data in
multiple tissues from expression quantitative trait loci (eQTLs). Sul et al. [2013] introduce a model termed Meta-Tissue
that aggregates information from multiple tissues to increase statistical power of eQTL detection. Nonetheless, these
approaches do not model the complex relationships between measured and unmeasured gene expression traits among
tissues and cell types, and individual-level genetic information (such as at eQTLs) is often unavailable and subject to
privacy concerns. Instead, recent closely related work relies on linear factor analysis and dimensionality reduction
techniques. TEEBoT (Tissue Expression Estimation using Blood Transcriptome) [Basu et al., 2021] projects gene
expression from a single reference tissue (i.e. whole blood) into a low-dimensional space via principal component
analysis (PCA), followed by linear regression to impute uncollected values. HYFA allows a departure from the linearity
assumption of TEEBoT and also handles a variable number of reference tissues.

Knowledge graph embedding techniques Our framework leverages ideas from knowledge graph embedding
techniques by using learnable embeddings for biological entities (i.e. tissues, cell-types, and metagenes). Since the
advent of word embeddings [Mikolov et al., 2013], several approaches have emerged to learn vector representations of
entities and relations in knowledge graphs [Bordes et al., 2013, Wang et al., 2014, Trouillon et al., 2016, Dettmers et al.,
2018]. TransE [Bordes et al., 2013] represents entities as low-dimensional vectors and relationships as translations in
the embedding space, and optimises parameters through an energy-based objective. TransH [Wang et al., 2014] extends
the TransE framework by projecting the entity embeddings into relation-specific hyperplanes. ComplEx [Trouillon
et al., 2016] utilises complex vectors that capture antisymmetric entity relations. ConvE [Dettmers et al., 2018] models
interactions between input entities and relations through convolutional and fully-connected layers. Despite all the recent
advances, knowledge graph embeddings have been understudied for modelling higher-order structures (i.e. hyperedges).
Moreover, while these methods are capable of link prediction, they are limited to a transductive setting, where the full
set of entities (e.g. individuals) must be known at train time [Teru et al., 2020].

Graph representation learning Graph neural networks remedy this problem by leveraging the structure and properties
of graphs to compute node features, allowing to handle unseen entities at inference time (e.g. individuals). Graph
neural networks operating on hypergraphs have recently started to flourish, with approaches such as HEAT [Georgiev
et al., 2022] and rxn-hypergraph [Tavakoli et al., 2022] attaining state-of-the-art results in tasks involving higher-order
relationships, such as source code [Georgiev et al., 2022] and chemical reactions [Tavakoli et al., 2022]. In terms
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of graph-based imputation methods, the closest approach to our framework is GRAPE [You et al., 2020]. GRAPE
represents tabular data as a bipartite graph, where observations and features are two types of nodes, and the observed
feature values are attributed edges between the nodes [You et al., 2020]. Imputation of missing features then corresponds
to an edge-level prediction task. HYFA subsumes GRAPE’s bigraph in that our hypergraph becomes a bipartite graph
when a single metagene is employed. This allows for a trade-off between feature granularity and over-squashing, which
happens when information from a large receptive field is compressed into fixed-length node vectors [Alon and Yahav,
2020]. In terms of message passing, HYFA distinguishes between dynamic nodes (udpated during message passing)
and static nodes (with learnable node features that are not updated during message passing), eliminating the dependency
of tissue and metagene representations on donor features and, by transitivity, undesired dependencies between inviduals.
HYFA is thus a hybrid and flexible approach that combines features from knowledge graph embedding and graph
representation learning techniques.

Single-cell variational inference Our framework is related to single-cell variational inference (scVI) [Lopez et al.,
2018] in that it can also be optimised via variational inference (Supplementary Materials), e.g. via a (zero-inflated)
negative binomial likelihood, treating the individual representations as latent variables. In contrast to scVI, however,
HYFA offers features to handle a variable number of reference tissues. It also incorporates inductive biases to reuse
knowledge across tissues, allowing the model to scale to larger multi-tissue samples.

4.6 eQTL mapping

The breadth of tissues in the GTEx (v8) collection enabled us to comprehensively evaluate the extent to which eQTL
discovery could be improved through the HYFA-imputed transcriptome data. We mapped eQTLs that act in cis to the
target gene (cis-eQTLs), using all SNPs within ± 1 Mb of the transcription start site of each gene. For the imputed
and the original (incomplete) datasets, we considered SNPs significantly associated with gene expression, at a false
discovery rate ≤ 0.10. We applied the same GTEx eQTL mapping pipeline, as previously described [Consortium,
2015], to the imputed and original datasets to quantify the gain in eQTL discovery from the HYFA-imputed dataset.

4.7 Pathway enrichment analysis

Similar to [Zhao et al., 2021], we employed Gene Set Enrichment Analysis (GSEA) [Subramanian et al., 2005] to relate
HYFA’s metagene factors to known biological pathways. This is advantageous to over-representation analysis, which
requires selecting an arbitrary cutoff to select enriched genes. GSEA, instead, computes a running sum of enrichment
scores by descending a sorted gene list [Subramanian et al., 2005, Zhao et al., 2021].

We applied GSEA to the gene loadings in HYFA’s encoder. Specifically, let Wj ∈ RF×G be the gene loadings for
metagene j, where F is the number of factors (i.e. number of hyperedge attributes) and G is the number of genes
(Equation 1). For every factor in Wj , we employed blitzGSEA [Lachmann et al., 2022] to calculate the running sum
of enrichment scores by descending the gene list sorted by the factor’s gene loadings. The enrichment score for a
query gene set is the maximum difference between phit(S, i) and pmiss(S, i) [Zhao et al., 2021], where phit(S, i) is
the proportion of genes in S weighted by their gene loadings up to gene index i in the sorted list [Zhao et al., 2021]. We
then calculated pathway enrichment p-values through a permutation test (with N = 100 trials) by randomly shuffling
the gene list. We employed the Benjamini-Hochberg method to correct for multiple testing.

4.8 GTEx bulk and single-nucleus RNA-seq data processing

The GTEx dataset is a public resource that has generated a broad collection of gene expression data collected from a
diverse set of human tissues [Consortium, 2020]. We downloaded the data from the GTEx portal (Data availability).
After the processing step, the GTEx-v8 dataset consisted of 15197 samples (49 tissues, 834 donors) and 12557 genes.
The dataset was randomly split into 500 train, 167 validation, and 167 test donors. Each donor had an average of 18.22
collected tissues. The processing steps are described below.

Normalised bulk transcriptomics (GTEx-v8) Following the GTEx eQTL discovery pipeline (https://github.
com/broadinstitute/gtex-pipeline/tree/master/qtl), we processed the data as follows:

1. Discard underrepresented tissues (n=5), namely bladder, cervix (ectocervix, endocervix), fallopian tube, and
kidney (medulla).

2. Select set of overlapping genes across all tissues.

3. Discard donors with only one collected tissue (n=4).
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4. Select genes based on expression thresholds of ≥ 0.1 transcripts per kilobase million (TPM) in ≥ 20% of
samples and ≥ 6 reads (unnormalised) in ≥ 20% of samples.

5. Normalise read counts across samples using the trimmed mean of M values (TMM) method [Robinson and
Oshlack, 2010].

6. Apply inverse normal transformation to the expression values for each gene.

Cell-type signatures from a paired snRNA-seq dataset (GTEx-v9) We downloaded paired snRNA-seq data for 16
GTEx individuals [Eraslan et al., 2021] (Data availability) collected in 8 GTEx tissues, namely skeletal muscle, breast,
esophagus (mucosa, muscularis), heart, lung, prostate, and skin. We split the 16 individuals into train, validation, and
test donors according to the GTEx-v8 split. We processed the data as follows:

1. Select set of overlapping genes between bulk RNA-seq (GTEx-v9) and paired snRNA-seq dataset [Eraslan
et al., 2021].

2. Select top 3000 variable genes using the Scanpy function scanpy.pp.highly_variable_genes with flavour
setting seurat_v3 [Wolf et al., 2018, Stuart et al., 2019].

3. Discard underrepresented cell-types occurring in less that 10 tissue-individual combinations.
4. Aggregate (i.e. sum) read counts by individual, tissue, and (broad) cell-type. This resulted in a dataset of 226

unique signatures.

4.9 Implementation and reproducibility

We report the selected hyperparameters in Supplementary Materials H. HYFA is implemented in Python [Van Rossum
and Drake Jr, 1995]. Our framework and implementation are flexible (i.e. we support k-uniform hypergraphs), may be
integrated in other bioinformatics pipelines, and may be useful for other applications in different domains. We used
PyTorch [Paszke et al., 2019] to implement the model and scanpy [Wolf et al., 2018] to process the gene expression
data. We performed hyperparameter optimisation with wandb [Biewald, 2020]. We employed blitzGSEA [Lachmann
et al., 2022] for the pathway enrichment analysis. We also used NumPy [Harris et al., 2020], scikit-learn [Pedregosa
et al., 2011], pandas [Wes McKinney, 2010], matplotlib [Hunter, 2007], and seaborn [Waskom, 2021]. Figure 1 was
created with BioRender.com.

Code availability

HYFA is publicly available at https://github.com/rvinas/HYFA.

Data availability

The datasets analysed for this study, including bulk RNA-seq Consortium [2020] and snRNA-seq Eraslan et al. [2021],
can be found in the GTEx portal: https://gtexportal.org/. A detailed summary of the GTEx samples and
donor information can be found at: https://gtexportal.org/home/tissueSummaryPage. The full catalog of
HYFA-derived eQTLs is downloadable at: https://zenodo.org/deposit/6815784.
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Figure 1: Overview of HYFA. (a) HYFA processes gene expression from a number of collected tissues (e.g. accessible
tissues) and infers the transcriptomes of uncollected tissues. (b) Workflow of HYFA. The model receives as input a
variable number of gene expression samples x(k)

i corresponding to the collected tissues k ∈ T (i) of a given individual
i. The samples x(k)

i are fed through an encoder that computes low-dimensional representations e(k)ij for each metagene
j ∈ 1..M . A metagene is a latent, low-dimensional representation that captures certain gene expression patterns of the
high-dimensional input sample. These representations are then used as hyperedge features in a message passing neural
network that operates on a hypergraph. In the hypergraph representation, each hyperedge labelled with e

(k)
ij connects an

individual i with metagene j and tissue k if tissue k was collected for individual i, i.e. k ∈ T (i). Through message
passing, HYFA learns factorised representations of individual, tissue, and metagene nodes. To infer the gene expression
of an uncollected tissue u of individual i, the corresponding factorised representations are fed through a multilayer
perceptron (MLP) that predicts low-dimensional features e(u)ij for each metagene j ∈ 1..M . HYFA finally processes

these latent representations through a decoder that recovers the uncollected gene expression sample x̂
(u)
ij .
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Figure 2: Analysis of cross-tissue relationships. Colors are assigned to conform to the GTEx Consortium conventions.
(a) UMAP representation of the tissue embeddings learnt by HYFA. Note that human body systems cluster in the
embedding space (e.g. digestive system: stomach, small intestine, colon, esophagus; and central nervous system). (b)
Network of tissues depicting the predictability of target tissues with HYFA. The dimension of each node is proportional
to its degree. Edges from reference to target tissues indicates an average Pearson correlation coefficient ρ > 0.5.
Interestingly, central nervous system tissues strongly correlate with several non-brain tissues such as gastrointestinal
tissues and skeletal muscles.
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Figure 3: Performance comparison across gene expression imputation methods (next page).
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Figure 3 (previous page): Performance comparison across gene expression imputation methods. Error bars indicate
95% confidence intervals. (a, b) Per-tissue comparison between HYFA and TEEBoT when using (a) whole-blood
and (b) all accessible tissues (whole blood, skin sun exposed, skin not sun exposed, and adipose subcutaneous) as
reference. We discarded target tissues represented by less than 25 test individuals. HYFA achieved superior Pearson
correlation in (a) 25 out of 48 target tissues when a single tissue was used as reference and (b) all target tissues when
multiple reference tissues were considered. (c, d) Prediction performance from (c) whole-blood gene expression and (d)
accessible tissues as reference. Mean imputation replaces missing values with the feature averages. Blood surrogate
utilises gene expression in whole blood as a proxy for the target tissue. k-Nearest Neighbours (kNN) imputes missing
features with the average of measured values across the k nearest observations (k=20). TEEBoT projects reference gene
expression into a low-dimensional space with principal component analysis (PCA; 30 components), followed by linear
regression to predict target values. HYFA (all) employs information from all collected tissues.
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Figure 4: Prediction of cell-type signatures. HYFA imputes individual- and tissue-specific cell-type signatures from
bulk multi-tissue gene expression. The scatter plots depict the Pearson correlation ρ between the logarithmised ground
truth and predicted signatures for N unseen individuals. To infer the signatures, we used the observed library size l(k,q)i

and number of cells n(k,q)
i .
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Figure 5: HYFA’s imputed data improves expression Quantitative Trait Loci (eQTL) discovery. (a) Number of unique
genes with detected eQTLs (FDR < 0.1) on observed (circle) and full (observed plus imputed; rhombus) GTEx data.
Note logarithmic scale of y-axis. (b) Increase in number of unique genes with mapped eQTLs as a function of observed
sample size. HYFA’s imputed data substantially increases the number of identified associations, especially for tissues
with low sample sizes.
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Figure 6: Top predicted genes in multiple brain regions with the oesophago gastric junction as the reference tissue. (a)
R2 coefficient of top 20 predicted genes, ranked by average score. (b) Common genes in the top 1000 predicted genes
for each brain tissue. (c) Enriched GO terms of the top shared genes at the interesection. The best predicted genes were
enriched in signalling pathways (FDR < 0.05), consistent with studies reporting that gut microbes communicate to the
central nervous system through endocrine and immune mechanisms. Moreover, these results highlight the potential
association between the elements of the oesophago gastric junction and the ciliary neurotrophic factor, which has been
linked to the survival of neurons [Davis et al., 1991] and the control of body weight [Xu and Xie, 2016].
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Figure 7: Pathway enrichment analysis of metagene factors (next page).
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Figure 7 (previous page): Pathway enrichment analysis of metagene factors. (a) Manhattan plot of the GSEA results
on the metagenes (n=50) and factors (n=98) learned by HYFA. The x-axis represents metagenes (colored bins) and
every offset within the bin corresponds to a different factor. The y-axis is the –log q-value (FDR) from the GSEA
permutation test, corrected for multiple testing via the Benjamini-Hochberg procedure. We identified 18683 statistically
significant enrichments (FDR < 0.05) of KEGG biological processes across all metagenes and factors. (b) Total number
of enriched terms for each type of pathway. (d) FDR for pathways of neurodegeneration. For every pathway and
metagene, we selected the factor with lowest FDR and depicted statistically significant values (FDR < 0.05). Point
sizes are proportional to − log FDR values. Metagene 11 (factor 95) had the lowest FDR for both Amyotropic Lateral
Sclerosis (ALS) and Alzheimer’s Disease. (c) UMAP of latent values of metagene 11 for all spinal cord (c, ALS:
orange) and brain cortex (e, Alzheimer’s Disease or Dementia: orange) GTEx samples. (e) Leading edge subsets of
top-15 enriched gene sets for factor 95 of metagene 11. (f, g) Enrichment plots for Amyotropic Lateral Sclerosis (f) and
Alzheimer’s disease gene sets (g).
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A Prediction scores for different accessible tissues as reference
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Extended Data Figure 1: Prediction scores for different accessible tissues as reference. For each target tissue, we
predicted the expression values based on accessible tissues (whole blood, skin sun exposed, skin not sun exposed, and
adipose subcutaneous). We report the Pearson correlation coefficient between the predicted values and the actual gene
expression values. For any given target tissue, we used the same set of individuals to evaluate performance, namely
individuals in the test set with collected gene expression measurements in all the corresponding tissues. Target tissues
represented by less than 25 test individuals were discarded. Error bars indicate 95% confidence intervals. The method
attains the best performance in 14 out of 18 tissues when all accessible tissues are simultaneously used as reference.
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B Train-test splits of cell-type signatures
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C Prediction of cell-type signatures with inferred library sizes
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Extended Data Figure 3: Prediction of cell-type signatures. HYFA imputes individual- and tissue-specific cell-type
signatures from bulk multi-tissue gene expression. The scatter plots depict the Pearson correlation ρ between the
logarithmised ground truth and predicted signatures for N unseen individuals. To predict the signatures, we inferred the
library sizes l(k,q)i and used the observed number of cells n(k,q)

i .
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D GTEx statistics

D.1 Histogram with samples per tissue
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D.2 Small overlap between brain and gastrointestinal tissues

Extended Data Figure 5: Overlap between brain and gastrointestinal tissues in terms of GTEx individuals.
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E Connection with maximum likelihood

Let xobs be a random variable denoting the observed data (e.g. multi-tissue gene expression with missing values
corresponding to uncollected tissues). Our optimisation procedure (Methods) splits xobs into pseudo-observed x̂obs and
pseudo-missing x̂mis values, that is, xobs = (x̂obs, x̂mis). The log-likelihood of the observed data then corresponds to:

log p(xobs) = log p(x̂obs, x̂mis) = log p(x̂mis|x̂obs) + log p(x̂mis)

and log p(x̂mis|x̂obs) is precisely the quantity that our loss function is maximising through the pseudo-mask mechanism
(Methods).

F Training algorithm

Optimisation. We optimise the model to minimise the mean squared error L between the normalised, ground-truth
gene expression x

(u)
i and the imputed values x̂(u)

i :

L(x(u)
i , x̂

(u)
i ) =

1

G

(
x
(u)
i − x̂

(u)
i

)⊤(
x
(u)
i − x̂

(u)
i

)
where G is the number of genes. At train time, for any given individual, we dynamically mask out the expression values
of a measured tissue type at random and treat them as uncollected, i.e. the ground truth. Algorithm 1 summarises the
training algorithm.

Algorithm 1: Training algorithm

Input: Input dataset {X (i), T (i)}Ni=1, model f
while not convergence criteria reached do

Sample mini-batch B of individuals
foreach individual i in mini-batch B do

Choose collected tissues C and uncollected tissue u:
u ∼ T (i), C = T (i)− {u}

Predict gene expression of proxy uncollected tissue u:
x̂
(u)
i = f(u, {x(k)

i |k ∈ C})
end
Optimise the model by descending its stochastic gradient:
∇ 1

|B|
∑

i∈B L(x
(u)
i , x̂

(u)
i )

end

G Training HYFA via variational inference

HYFA can alternatively be trained via variational inference by introducing a variational distribution q(Z|X̃,U) =∏N
i q(zi|X̃i,ui), where zi is a latent variable that explains the high-dimensional, multi-tissue gene expression data.

Parameters of inference model Given the updated donor representations ĥp
i , we compute the parameters of the

inference model q(zi|X̃i,ui) = N (zi;µi, diag(σ2
i )) as follows:

µi = fµ(X̃i,ui;ϕ) = MLP(ĥp
i ) logσi = fσ(X̃i,ui;ϕ) = MLP(ĥp

i )

where MLP denotes a multilayer perceptron.

Parameters of generative model Assuming a Gaussian likelihood, for a given sample zi ∼ q(zi|X̃i,ui), we
compute the parameters of the generative model p(x(k)

i |zi,ui, k) as follows:

p(x
(k)
i |zi,ui, k) =

G∏
j

p(x
(k)
ij |zi,ui, j, k) p(x

(k)
ij |zi,ui, j, k) = N (x

(k)
ij ;µ

(k)
ij , σ2(k)

ij ),
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where the mean µ
(k)
ij and standard deviation σ

(k)
ij are computed as follows:

µ
(k)
i = Wµê

(k)
i + bµ σ

(k)
i = softplus

(
Wσê

(k)
i + bσ

)
ê
(k)
i = MLP

(∥∥M
j=1

ê
(k)
ij

)
ê
(k)
ij = MLP(zi,hm

j ,ht
k),

where Wµ, Wσ , bµ, and bσ are learnable parameters and softplus(x) = log
(
1 + exp(x)

)
.

Optimisation We maximise the evidence lower bound on the data log-likelihood:

log p(X̃|U) ≥ Eq(Z|X̃,U)[log p(X̃|Z,U) + log p(Z|U)− log q(Z|X̃,U)]

where the prior p(Z|U) is a factorised normal distribution conditioned on demographic information:

p(Z|U) =
N∏
i

p(zi|ui) p(zi|ui) = N (zi;µ
′
i, diag(σ′2

i ))

with parameters µ′
i = MLPµ′(ui) and logσ′

i = MLPσ′(ui). Importantly, leveraging a factorised prior conditioned on
auxiliary variables guarantees identifiability under certain conditions [Khemakhem et al., 2020].

Inference of uncollected gene expression measurements We infer the gene expression values x̂(v)
i of an uncollected

tissue v from a given donor i as follows:

x̂
(v)
ij = Eq(zi|X̃i,ui)

[
E
p(x

(v)
ij |zi,ui,j,v)

[
x
(v)
ij

]]
In other words, given the multi-tissue gene expression X̃i and demographic information ui, we compute the expectation
of the target gene expression x̂

(v)
i over the inference and generative models.

H Ablation of architecture

We ablate the impact of two key architectural components of HYFA: (1) representating multi-tissue gene expression as
a hypergraph of individuals, metagenes, and tissues; and (2) the design of a specialised hypergraph message passing
neural network layer with attentional aggregation.

Number of metagenes In Figure 6, we plot the validation loss and correlation coefficient vs. the number of metagenes
for both attentional (GAT) and standard message passing (MPNN). The attentional model (GAT) refers to HYFA with
an attention-based aggregation mechanism (Methods), while the message passing model (MPNN) refers to HYFA
with simple average aggregation (i.e. mean across all incoming messages). For each number of metagenes, we ran
hyperparameter optimisation with wandb [Biewald, 2020] to obtain the loss and Pearson correlation coefficient ρ for the
best performing model (we ran sweeps with a maximum of 100 runs). For fair comparison across runs, validation metrics
were computed for a fixed subset of target tissues: ‘Lung’, ‘Pancreas’, ‘Heart_Atrial’, and ‘Esophagus_Muscularis’.
The hyperparameter values considered for ablation studies are available in Extended Data Table 2.

As noted in Section 4.2.1, modulating the number of metagenes controls the growth of the receptive field for each
node in the hypergraph and helps alleviate over-squashing. Setting very low number of metagenes is computationally
fast during training and inference but may compress fine-grained information (e.g. setting metagenes to 1 results in a
bipartite graph of individuals and tissues), while a very high number of metagenes preserves fine-grained relationships
between genes, tissues, and individuals but may become computationally intractable. Figure 6 shows that there is a
‘sweet spot’ for the number of metagenes between 50-100. Using over 200 metagenes can consume upwards of 32 GB
of GPU memory with very long iteration times, and we subsequently run into ‘out-of-memory’ errors.

Hypergraph message passing architecture Extended Data Table 1 summarises results for the best performing GAT
and MPNN, demonstrating that the specialised hypergraph attentional aggregation brings notable gains in imputation
performance. This is consistent with the observation that, through the attention mechanism, the model can prioritise
certain messages from others, alleviating the over-squashing problem. As a naïve baseline, we also show results for a
structure-agnostic model which does not perform any message passing and simply predicts the hyperedge attributes via
an MLP, as in Section 4.3.1. The inductive bias of reusing knowledge across tissues via message passing seems critical
for gene expression imputation.
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Extended Data Figure 6: Impact of number of metagenes in hypergraph representations vs. model performance. There
is a ‘sweet spot’ for the number of metagenes between 50-100 that leads to optimal performance for both attentional
(GAT) and standard message passing (MPNN). Curves are estimated via a polynomial regression with order 2.

GNN Layer Val. Loss ↓ Val. Correlation ↑
Structure-agnostic MLP 0.9719 0.0396

Message Passing (MPNN) 0.7488 0.4499
Attentional (GAT) 0.7393 0.4614

Extended Data Table 1: Ablation study of hypergraph message passing design. A specialised hypergraph attentional
aggregation brings significant gains in imputation performance over standard message passing as well as a naïve
structure-agnostic baseline.

Hyperparameter Values Considered Best Value

GNN Layer { GAT, MPNN } GAT
Num. Metagenes 10 – 200 50

Num. Message Passing Layers 1 – 3 2
Num. MLP Layers (within GNN) 1 – 2 1

Num. MLP Layers (Prediction head) 1 – 2 2
Num. Attention Heads (GAT only) 4 – 32 28

Dimension of Donor Emb. hd 16 – 128 71
Dimension of Metagene Emb. hm 16 – 128 48

Dimension of Tissue Emb. ht 16 – 128 120
Dimension of Hyperedge Attr. eij 16 – 128 98

Dimension of Message mijk 16 – 128 28
Learning Rate 0.0001 – 0.005 0.00045

Batch Size 16 – 64 63
Dropout 0.0 – 0.5 0.17385

Normalisation { BatchNorm, LayerNorm, None } BatchNorm
Activation Function { ReLU, Swish } Swish

Extended Data Table 2: Hyperparamter values considered for ablation studies. We used wandb [Biewald, 2020] to run
Bayesian hyperparameter search over the variables and ranges considered. Note that with the Attentional GAT layer,
the total dimension of the message mijk is multiplied by the number of attention heads (here, 28× 28 = 784).
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