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Abstract

Accurate temporal modelling of functional brain networks is essential in the quest
for understanding how such networks facilitate cognition. Researchers are beginning to
adopt time-varying analyses for electrophysiological data that capture highly dynamic
processes on the order of milliseconds. Typically, these approaches, such as clustering
of functional connectivity profiles and Hidden Markov Modelling (HMM), assume mu-
tual exclusivity of networks over time. Whilst a powerful constraint, this assumption
may be compromising the ability of these approaches to describe the data effectively.
Here, we propose a new generative model for functional connectivity as a time-varying
linear mixture of spatially distributed statistical “modes”. The temporal evolution of
this mixture is governed by a recurrent neural network, which enables the model to
generate data with a rich temporal structure. We use a Bayesian framework known
as amortised variational inference to learn model parameters from observed data. We
call the approach DyNeMo (for Dynamic Network Modes), and show using simulations
it outperforms the HMM when the assumption of mutual exclusivity is violated. In
resting-state MEG, DyNeMo reveals a mixture of modes that activate on fast time
scales of 100-150 ms, which is similar to state lifetimes found using an HMM. In task
MEG data, DyNeMo finds modes with plausible, task-dependent evoked responses with-
out any knowledge of the task timings. Overall, DyNeMo provides decompositions that
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are an approximate remapping of the HMM’s while showing improvements in overall
explanatory power. However, the magnitude of the improvements suggests that the
HMM’s assumption of mutual exclusivity can be reasonable in practice. Nonetheless,
DyNeMo provides a flexible framework for implementing and assessing future modelling
developments.

1 Introduction

Functional connectivity (FC, [1]) has traditionally been studied across the duration of an
experiment, be it metabolic (e.g. [2, 3, 4, 5]) or electrophysiological in nature (e.g. [6, 7, 8, 9]).
Such studies have shown that the brain forms well-defined spatio-temporal networks which
are seen both in task [10] and at rest [11]. However, there is a growing body of evidence
supporting the idea that these networks are transient [12, 13, 14], and that they emerge and
dissolve on sub-second time scales. It is now well established that the dynamics of these
networks underpin healthy brain activity and cognition [15] and that the disruption of FC is
implicated in disease [16, 17].

A systematic understanding of the neuroscientific significance of these networks of whole-
brain activity is only facilitated by accurate modelling across the spatial, temporal and
spectral domains. Sliding window analyses have been used successfully to study time-varying
FC in both M/EEG [18, 19, 20, 21, 22, 23, 24, 13, 25] and fMRI [26, 27, 28, 29, 30, 31, 32,
33, 34, 35]. Recent studies have calculated very short, or even instantaneous, time-point-
by-time-point estimates of FC, which are then combined with a second stage of clustering
such as k-means (e.g. [13]) to pool over recurrent patterns of otherwise poorly estimated FC.
These two-stage approaches allow access to FC on fast time scales [36, 37].

Although they remain popular, sliding window analyses are a heuristic approach to data
analysis and lack a generative model. An alternative approach to studying dynamics of
functional brain networks is via the adoption of a formal model. An Hidden Markov Model
(HMM) [38] is one such option. As with the two-stage approaches mentioned above, HMMs
can pool non-contiguous periods of data together to make robust estimations of the activity
of brain networks, including FC. However, they do so by incorporating these two stages into
one model. HMMs (as well as other techniques, such as microstates [39]) have been used to
show that brain networks evolve at faster time scales than previously suggested by competing
techniques (such as independent component analysis) [14]. In the context of M/EEG, HMMs
have been used to elucidate transient brain states [12], model sensor level fluctuations in
covariance [40] and reveal latent task dynamics attributed to distributed brain regions [10].
More recently, Seedat et al. applied an HMM to detect transient bursting activity and showed
it was correlated to aspects of the electrophysiological connectome [41], whilst Higgins et al.
were able to show that replay in humans coincides with activation of the default mode
network [42].

Although very powerful, convenient, and informative, traditional HMMs are themselves
limited in two key ways. Firstly, there is the modelling choice that the state at any time point
is only conditionally dependent on the state at the previous time point (i.e. the model is
Markovian). This limits the modelling capability of the technique as there is no way for any
long-range temporal dependencies between historic state occurrences and the current state
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to be established [43]. While approaches that use Hidden Semi-Markov Models have been
proposed, they are limited in the complexity of long-range temporal dependencies they can
capture [44]. Secondly, HMMs adopt a mutually exclusive state model, meaning that data
can only be generated by one set of observation model parameters at any given instance.
True brain dynamics might be better modelled by patterns that can flexibly combine and
mix over time. The mutual exclusivity constraint was found to lead to errors in inferred
functional brain network metrics in [45].

We set to address these two limitations in this paper and do so by introducing a new
generative model for neuroimaging data. Specifically, we model the time-varying mean and
covariance of the data as a linear weighted sum of spatially distributed patterns of activity
or “modes”. Notably, we do not impose mutual exclusivity on mode activation. Similarly, we
drop the assumption that the dynamics of the modes are a function of a Markovian process.
This is achieved by using a unidirectional recurrent neural network (RNN) [46] to model the
temporal evolution of the weighted sum. The memory provided by the RNN facilitates a
richer context to the changes in the instantaneous mean and covariance than what would be
afforded by a traditional HMM.

In this work, we use Bayesian methods [47] to infer the parameters of the generative model.
With this method, we learn a distribution for each parameter, which allows us to incorporate
uncertainty into our parameter estimates. Having observed data, we update the distributions
to find likely parameters for the model to have generated the data. In this work, we adapt a
method used in variational autoencoders [48] to infer the model parameter distributions. One
component of this is amortised inference, which works through the deployment of an inference
network. In our case the inference network is another RNN, which is bidirectional [46] and
learns a mapping from the observed data to the model parameter distributions. The use of
an inference network facilitates the scaling and application of this technique to very large
datasets, without ever needing (necessarily) to increase the number of inference network
parameters to be learnt.

To update our model parameter distributions, we minimise the variational free energy (see
Section 2.2) using stochastic gradient descent [46]. We do this by sampling from the model
parameter distributions using the reparameterisation trick [48]. The ability to estimate the
variational free energy by sampling enables us to use sophisticated generative models that
include highly non-linear transformations that would not be feasible with classical Bayesian
methods. Taken together, we call the generative model and inference framework DyNeMo
(Dynamic Network Modes).

2 Methods

In this section we outline the generative model and describe the inference of model parame-
ters. We also describe the datasets and preprocessing steps carried out in this work.

2.1 Generative Model

Here we propose a model for generating neuroimaging data that explicitly models functional
brain networks, including a metric of their FC, as a dynamic quantity. The model describes
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Figure 1: Generative model employed in DyNeMo. Historic values of a latent logit time series
(solid squares, blue background), θ<t, are fed into a unidirectional model RNN. The output
of the model RNN parameterises a normal distribution, p(θt|θ<t), which we sample to predict
the next logit, θt, (unfilled squares). These logits are transformed via a softmax operation to
give the mixing coefficients, αt, (unfilled circles). The softmax transformation enforces the
mixing coefficients are positive and sum to one at any instance in time. Separate from the
dynamics are the corresponding spatial models that describe brain network activity as a set
of modes (depicted in different colours here); via a mean vector, µj, and covariance matrix,
Dj. The mode spatial models combine with the dynamic mixing coefficients (linear mixing)
to parameterise a multivariate normal distribution with a time-varying mean vector, mt, and
covariance matrix, Ct. Note, we do not enforce any constraint on the modes means µj and
covariances Dj, this means they can overlap in time and space and the overall activity (mt

and Ct) can vary.

time series data using a set of modes, which are constituent elements that can be combined
to define time-varying statistics of the data. When trained on neuroimaging data, modes
are simply static spatial brain activity patterns that can overlap with each other. We refer
to them as “modes” to emphasise that the model is not categorical, i.e. that modes should
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not be mistaken for mutually exclusive states (as would be the case in an HMM). Similar
to an HMM, our generative model has two components: a latent representation and a data
generating process given the latent representation, which is referred to as an observation
model. In our case, the latent representation is a set of mixing coefficients αt and the
observation model is a multivariate normal distribution. The mean and covariance of the
multivariate normal distribution is determined by linearly mixing the modes’ spatial models,
i.e. means µj and covariances Dj, with the coefficients αt. The mixing coefficients are
dynamic in nature whereas the modes are static. Therefore, dynamics in the observed data
are captured in the dynamics of the mixing coefficients. The mixing coefficients provide a
low-dimensional and interpretable dynamic description of the data and modes correspond
to static spatial distributions of activity/FC, where mode-specific FC is captured by the
between-brain-region correlations inDj. Both of these quantities are useful for understanding
the data. An overview of the generative model is shown in Figure 1 and a mathematical
formulation is given below.

At each time point t there is a probabilistic vector of free parameters, referred to as a
logit and denoted by θt. The logits are distributed in accordance with a multivariate normal
distribution,

p(θt|θ1:t−1) = N (µθt(θ1:t−1),σ
2
θt(θ1:t−1)), (1)

where θ1:t−1 denotes a sequence of historic logits {θ1, ...,θt−1}, µθt is a mean vector and σ2
θt

is a diagonal covariance matrix. We use a unidirectional RNN to predict future values of µθt
and σθt based on previous logits θ1:t−1. The logit at each time point θt is sampled from the
distribution p(θt|θ1:t−1). The historic values of the logits θ1:t−1 are fed into the RNN:

µθt(θ1:t−1) = gµ(LSTM(θ1:t−1)),

σθt(θ1:t−1) = ξ(gσ(LSTM(θ1:t−1))),
(2)

where gµ and gσ are learnt affine transformations, ξ is a softplus function included to ensure
the standard deviations σθt are positive, and LSTM is a type of RNN known as a Long Short
Term Memory network [49]. We refer to this network as the model RNN. The logits θt are
used to determine a set of mixing coefficients,

αt = ζ(θt), (3)

where ζ is a softmax function which assures that the αt values are positive and sum to one.1

The mixing coefficients are then used together with a set of spatial modes to calculate a
time-varying mean vector and covariance matrix:

mt =
J∑
j=1

αjtµj,

Ct =
J∑
j=1

αjtDj,

(4)

where J is the number of modes, µj is the mean vector for each mode, Dj is the covariance
matrix for each mode and αjt are the elements of αt.

1Including the positivity constraint enables us to interpret the αt values as mixing coefficients and the
sum to one constraint ensures the distribution of mixing coefficients is sufficiently non-Gaussian for the model
to be identifiable [50].
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2.2 Inference

In this section we describe the framework employed to infer the parameters of our generative
model. Namely, the logits θt, mode means µj and covariances Dj. In this work, we use
variational Bayesian inference to learn the full posterior distribution for θt and point estimates
for µj and Dj.

Variational Bayes. In Bayesian inference, we would like to learn a distribution, referred
to as the posterior distribution, for the variable we are trying to estimate given some data we
have observed. In variational Bayesian inference, we approximate the posterior distribution
with a simple distribution, referred to as the variational posterior distribution q(θt), and aim
to minimise the Kullback-Leibler (KL) divergence between the variational and true posterior,
which amounts to minimising the variational free energy (or equivalently, maximising the
evidence lower bound). In classical variational Bayes [51, 52, 53], this involves formulating
update rules for the parameters of the variational posterior distribution given some observed
data. Deriving these update rules is only made possible by limiting the complexity of the
generative model for the observed data and restricting the variational posterior to conjugate
distributions. In addition to this, we have a separate variational distribution for each variable
we are trying to estimate. Also in classical variational Bayes, we learn the parameters of each
variational distribution separately, which becomes problematic in terms of computer memory
requirements when we wish to estimate a large number of variables.

In brief, we overcome these difficulties with a technique adapted from variational autoen-
coders [48]. This deploys a neural network (which we call the inference network) to perform
amortised inference, which helps the approach to scale to large numbers of observations over
time; and a sampling technique (known as the reparameterisation trick) that allows us to
learn a full posterior distribution for θt [48]. We learn point estimates of µj and Dj using
trainable free parameters. We update estimates for µj, Dj, and the posterior distribution
parameters of θt, to minimise the variational free energy using stochastic gradient descent.

Logits θt. Focusing on the full posterior inference of the logits θt, here, we use amortised
inference [52]. This involves using an inference network to learn a mapping from the observed
data to the parameters of the variational posterior. The rationale for this approach is that
the computation from past inferences can be reused in future inferences. The use of an
inference network fixes the number of trainable parameters to the number of internal weights
and biases in the inference network. This is usually significantly smaller than the number of
time points, which allows us to efficiently scale to bigger datasets.

Inference network. We now describe the inference network in detail. Having observed
the time series x1:N , we approximate the variational posterior distribution for θt as

q(θt|x1:N) = N (mθt(x1:N), s2θt(x1:N)), (5)

where mθt and s2θt are the variational posterior mean and covariance of a multivariate normal
distribution respectively. The variational posterior covariance is a diagonal matrix. We use
a bidirectional RNN for the inference network, which we refer to as the inference RNN. This
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network outputs the parameters of the variational posterior distribution given the observed
data:

mθt(x1:N) = fm(BLSTM(x1:N))

sθt(x1:N) = ξ(fs(BLSTM(x1:N))),
(6)

where fm and fs are affine transformations and BLSTM denotes a bidirectional LSTM. The
complete DyNeMo framework and interplay between the generative model and inference
network is shown in Figure 2.

Loss function. Having outlined the inference network for the logits, we turn our attention
to the loss function used in DyNeMo. In variational Bayesian inference we infer a parameter,
in this case θt, by minimising the variational free energy [54],

F = −
∫
q(θ1:N |x1:N) log

(
p(x1:N |θ1:N)p(θ1:N)

q(θ1:N |x1:N)

)
dθ1:N , (7)

where p(θ1:N) is the prior and p(x1:N |θ1:N) is the likelihood. With this approach the inference
problem is cast as an optimisation problem, which can be efficiently solved with the use of
stochastic gradient descent [46]. Here, we make stochastic estimates of a loss function, and use
the gradient of the loss function to update the trainable parameters in our model. However,
to estimate the loss function we must calculate the integral in Equation (7). In DyNeMo, this
is done using a sampling technique (i.e. the reparameterisation trick) to give Monte Carlo
estimates of the loss function.

Insight into the loss function is gained by re-writing Equation (7) as two terms (see SI 9.1):

F = −LL + KL. (8)

The first term is referred to as the log-likelihood term and the second term is referred to as
the KL divergence term. The log-likelihood term acts to give the most probable estimate for
the logits that could generate the training data and the KL divergence term acts to regularise
the estimate. Relating this to components of DyNeMo, it is the inference RNN that infers
the logits, which together with the learnt mode means and covariances determine the log-
likelihood term, whilst the model RNN regularises the inferred logits through its role as the
prior in the KL divergence term. It is the temporal regularisation provided by the model
RNN that distinguishes DyNeMo from a Gaussian mixture model (GMM). The benefit of
including a model RNN for temporal regularisation is discussed in SI 9.4.

We now detail the calculation used to estimate the loss function. The log-likelihood term
is given by

LL =
N∑
t=1

log(p(xt|θ1t )), (9)

where p(xt|θ1t ) is the likelihood of generating data xt at time point t given the latent variable
is θ1t , which is a sample from the variational posterior q(θt|x1:N). The superscript in θ1t
indicates that it is the first sample from q(θt|x1:N). Only one sample from the variational
posterior at each time point is used to estimate the log-likelihood term. Note that the
likelihood is a multivariate normal whose mean and covariance is determined by Equation
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Figure 2: The full DyNeMo framework. A sequence of observed data, x1:N , is fed into a
bidirectional RNN which parameterises the approximate variational posterior distribution
for the logit time series, q(θt|x1:N). We sample θst from the variational posterior distribution
using the reparameterisation trick (asterisks, orange background) and feed the samples into
the model RNN to predict the prior distribution one time step in the future p(θt+1|θ1:t).
The prior and posterior distribution are used to calculate the KL divergence term of the
variational free energy. The samples from the variational posterior distribution θst are also
used to generate the observed data by first applying a softmax transformation to calculate
the mixing coefficients, αt, (unfilled circles, orange background). These mixing coefficients
are then combined with the spatial model of each mode, which is a mean vector, µj, and
covariance matrix, Dj. This gives an estimate of the time-varying mean, mt, and covariance,
Dj, which is used to calculate the negative log-likelihood term of the variational free energy.

(4). Therefore, the likelihood depends on the logits θt, mode means µj and covariances Dj.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.05.03.490453doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490453
http://creativecommons.org/licenses/by-nc-nd/4.0/


The KL divergence term is given by

KL =
N∑
t=2

DKL(q(θt|x1:N) || p(θt|θ11:t−1)), (10)

where p(θt|θ11:t−1) is the prior distribution for θt given a single sample for the previous logits
θ11, ...,θ

1
t−1 from their respective variational posteriors q(θ1|x1:N), ..., q(θt−1|x1:N) and DKL is

the KL divergence [51] between the variational posterior and prior. A full derivation of the
loss function is given in SI 9.1.

Reparameterisation trick. Next, we outline the method used to sample from the vari-
ational posterior distribution q(θt|x1:N). This is a multivariate normal distribution with
mean vector mθt(x1:N) and diagonal covariance matrix s2θt(x1:N). To obtain a sample θst
from q(θt|x1:N), we use the reparameterisation trick [48], where we sample from a normal
distribution,

ε ∼ N (0, I), (11)

where I is the identity matrix. εs denotes the sth sample from N (0, I). We calculate the
samples for the logits as

θst = mθt(x1:N) + sθt(x1:N)εs, (12)

where sθt(x1:N) is a vector containing the square root of the diagonal from s2θt(x1:N). The
use of the reparameterisation trick allows us to directly minimise the loss function using
stochastic gradient descent.

Mode means µj and covariances Dj. Having detailed the inference of the logits θt and
the calculation of the loss function, we now turn our attention to the spatial models described
by the means µj and covariances Dj. We performed fully Bayesian inference on the logits,
as they are temporally local parameters, and hence will have reasonably large amounts of
uncertainty in their estimation which needs to be propagated to the inference of θt over time.
By contrast, the mode means µj and covariances Dj are global parameters whose inference
can draw on information over all time points. As a result we choose to use point estimates
for µj and Dj, which are learnt using trainable free parameters. Additionally, learning point
estimates when they are sufficient has the advantage of simplifying inference.

The time-varying mean vector mt constructed from the mode means µj can take on any
value, and can therefore be treated as free parameters. However, the time-varying covariance
Ct constructed from the Dj matrices is required to be positive definite. We enforce this by
parameterising the Dj’s using the Cholesky decomposition,

Dj = LjL
′
j, (13)

where Lj is a lower triangular matrix known as a Cholesky factor and ′ denotes the matrix
transpose. We learn Lj as a vector of free parameters that is used to fill a lower triangular
matrix. We also apply a softplus operation and add a small positive value to the diagonal
of the Cholesky factor to improve training stability. Using this approach, we learn point
estimates for the mode means and covariances.
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Hyperparameters, initialisation and training. The full DyNeMo model contains sev-
eral hyperparameters, for example the number of layers and hidden units in the RNNs, the
batch size, the learning rate, and many more. These all must be specified before training the
model. DyNeMo also contains a large number of trainable parameters, which must be ini-
tialised. A description of the hyperparameters and the initialisation of trainable parameters
is given in SI 9.2. Hyperparameters for each dataset used in this work are summarised in
Table 1. There are also several techniques that can be used to improve model training, such
as KL annealing [55] and using multiple starts. These are also discussed in detail in SI 9.2.

Table 1: Hyperparameters (see SI 9.2) used in simulation and real data studies.

Hyperparameter Simulation 1 Simulation 2 MEG Data

Number of modes, J 3 6 10
Sequence length, N 200 200 200
Inference RNN hidden units 64 64 64
Model RNN hidden units 64 64 64
KL annealing sharpness, AS 10 10 10
KL annealing epochs, nAE 100 100 300
Training epochs nE 200 200 600
Batch size 16 16 32
Learning rate, η 0.01 0.01 0.0025
Gradient clip (norm.) - - 0.5
Number of multi-starts - - 10
Multi-start epochs - - 20

2.3 Datasets

In this section, we describe the data used to train DyNeMo. This includes simulated data,
described in Sections 2.3.1 and 2.3.2, which was used to evaluate DyNeMo’s modelling and
inference capabilities, and real MEG data, described in Section 2.3.3, which was used for
neuroscientific studies.

2.3.1 Simulation 1: Long-Range Dependencies

The first simulation dataset was used to examine DyNeMo’s ability to learn long-range tem-
poral dependencies in the underlying logits. In simulation 1, data were generated using a
Hidden Semi-Markov Model (HSMM) [56]. Unlike an HMM, state lifetimes are explicitly
modelled in an HSMM. This enables us to specify a lifetime distribution where long-lived
states are probable. We train DyNeMo on this data and examine samples from the genera-
tive model, in this case we sample the model RNN. The lifetime distribution of the sampled
states indicates the memory of the model RNN, i.e. the time scale of temporal dependencies
it has learnt. If samples from DyNeMo show long-lived states that cannot be generated with
an HMM, we say DyNeMo has learnt long-range temporal dependencies. In simulation 1,
we used a gamma distribution (with shape and scale parameters of 5 and 10 respectively) to
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sample state lifetimes. We use a transition probability matrix with self-transitions excluded
to determine the sequence of states to sample a lifetime for. The transition probability ma-
trix and ground truth mode covariances are shown in Figures 4a and 4b respectively. A
multivariate time series with 11 channels, 25,600 samples and 3 hidden states was generated
using an HSMM simulation with a multivariate normal observation model. A zero mean
vector was used for each mode and covariances were generated randomly. The ground truth
state time course and lifetime distribution of this simulation is shown in Figures 4c and 4d
respectively.

2.3.2 Simulation 2: Linear Mode Mixing

The second simulation dataset was used to examine DyNeMo’s ability to infer a linear mixture
of co-activating modes. Here, we simulated a set of J sine waves with different amplitudes,
frequencies and initial phases to represent the logits θt. We applied a softmax operation at
each time point to calculate the ground truth mixing coefficients αt. A multivariate normal
distribution with zero mean and randomly generated covariances was used for the observation
model. A multivariate time series with 80 channels, 25,600 samples and 6 hidden modes was
simulated. The first 2,000 time points of the simulated logits and mixing coefficients are
shown in Figures 5a and 5b respectively.

2.3.3 MEG Data

In addition to the simulation datasets, we trained DyNeMo on two real MEG datasets: a
resting-state and a (visuomotor) task dataset. The MEG datasets were source reconstructed
to 42 regions of interest. The raw data, preprocessing and source reconstruction are described
below.

Raw data and preprocessing. Data from the UK MEG Partnership were used in this
study. The data were acquired using a 275-channel CTF MEG system operating in third-
order synthetic gradiometry at a sampling frequency of 1.2 kHz. Structural MRI scans were
acquired with a Phillips Achieva 7 T. MEG data were preprocessed using the OHBA software
library (OSL, [57]). The time series was downsampled to 250 Hz before a notch filter at 50 Hz
(and harmonics) was used to remove power line noise. The data were then bandpass filtered
between 1 and 98 Hz. Finally, an automated bad segment detection algorithm in OSL was
used to remove particularly noisy segments of the recording. No independent component
analysis was applied to identify artefacts.

Source reconstruction. Structural data were coregistered with the MEG data using an
iterative close-point algorithm; digitised head points acquired with a Polhemous pen were
matched to individual subject’s scalp surfaces extracted with FSL’s BET tool [58, 59]. We
used the local spheres head model in this work [60]. Preprocessed sensor data were source
reconstructed onto an 8 mm isotropic grid using a linearly constrained minimum variance
beamformer [61]. Voxels were then parcellated into 42 anatomically defined regions of in-
terest, before a time series for each parcel was extracted by applying Principal Component
Analysis (PCA) to each region of interest. We use the same 42 regions of interest as [62], see
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the supplementary information of [62] for a list of the regions used and their MNI coordi-
nates. Source reconstruction can lead to artefactual correlations between parcel time courses,
referred to as source leakage. This is a static effect so it should not affect the inference of
dynamics. However, it can affect the inferred FC. We minimise source leakage using the
symmetric multivariate leakage reduction technique described in [63], which unlike pairwise
methods has the benefit of reducing leakage caused by so-called ghost interactions [64]. We
will refer to each parcel as a channel.

Resting-state dataset. The resting-state dataset is formed from the MEG recordings of
55 healthy participants (mean age 38.3 years, maximum age 62 years, minimum age 19 years,
27 males, 50 right handed). The participants were asked to sit in the scanner with their eyes
open while 10 minutes of data were recorded.

Task dataset. The task dataset is formed from MEG recordings of 51 healthy participants
(mean age 38.4 years, maximum age 62 years, 24 males, 46 right handed). The recordings
were taken while the participants performed a visuomotor task [65]. Participants were pre-
sented with a high-contrast grating (visual stimulus). The grating remained on screen for a
jittered duration between 1.5 and 2 seconds. When the grating was removed, the participants
performed an abduction using the index finger and thumb of the right hand. This abduction
response was measured using an electromyograph on the back of the hand. From the grating
removal, an 8 second inter trial interval is incorporated until the grating re-appeared on the
screen. The structure of the task is shown in Figure 3. A total of 1,837 trials are contained
in this dataset. The majority of participants in the UK MEG Partnership study have both
resting-state and task recordings. 48 of the participants in the resting-state and task dataset
are the same.

Data preparation. Before training DyNeMo, we further prepare the preprocessed data
by performing the following steps. The first step is used to encode spectral information into
the observation model (see Figure S1), whereas the other two are to help train the model.
These steps are optional and were only performed on the MEG datasets. The steps are:

1. Time-delay embedding. This involves adding extra channels with time-lagged versions
of the original data. We use 15 embeddings, which results in a total of 630 channels.
By doing this, we introduce additional off-diagonal elements to the covariance matrix,
which contains the covariance of a channel with a time-lagged version of itself. This
element of the covariance matrix is the autocorrelation function of the channel for
a given lag [66]. As the autocorrelation function captures the spectral properties of
a signal, this allows the model to learn spectral features of the data as part of the
covariance matrix.

2. PCA. After time-delay embedding we are left with 630 channels. This is too much for
modern GPUs to hold in memory. Therefore, we use PCA for dimensionality reduction
down to 80 channels.
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1.5 - 2s

(Jitter)

Visual stimulus presented Visual stimulus removed Abduction performed

0s 8s

(Inter-trial interval)

Time

Figure 3: The structure of the visuomotor task. Participants are presented with a visual
stimulus, which is an onscreen grid. After a period of between 1.5 and 2 seconds, the grid is
removed. Upon grid removal, the participant performs a right-hand index finger abduction.
Between the removal of the grid and its reappearance for the next trial, there is an 8 second
inter-trial interval.

3. Standardisation (z-transform) across the time dimension. This is a common trans-
formation that has been found to be essential in many optimisation problems [46].
Standardisation is the final step in preparing the training data.2

Time-delay embedding and PCA are summarised in Figure S1. We train DyNeMo to generate
the prepared MEG data, i.e. the 80 channel time series after time-delay embedding and PCA,
rather than the 42 channel time series of source reconstructed data.

2.4 Post-hoc Analysis of Learnt Latent Variables

In this work, we set each mode’s mean vector, µj, to zero and do not update its value during
training. This is due to our choice of training data. In the simulation datasets, we simulated
modes with a zero mean vector so there is no need to model the mean. In the MEG datasets,
we train on time-delay embedded data. Here, we want all the spectral information to be
contained in the mode covariance matrices, therefore we set the means to zero. Additionally,
we would like to compare our results to those presented in [62], which trained an HMM
without learning the mean. In this work, we use DyNeMo to learn the mixing coefficients,
αt, (via the logits, θt) and the mode covariances, Dj.

DyNeMo provides a variational posterior distribution q(θt|x1:N) at each time point. To
simplify analysis we take the most probable value for θt (this is known as the maximum a
posteriori probability estimate) and use this to calculate the inferred mode mixing coefficients,
αt, which contain a description of latent dynamics in the training data.3

2Note, standardisation was also performed before PCA.
3We only use the maximum a posteriori probability estimate post-hoc, during training we sample from

the variational posterior distribution using the reparameterisation trick.
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We can use the inferred mode mixing coefficients to estimate quantities that characterise
the training data. We describe such analyses in detail in SI 9.3. Quantities calculated in
the post-hoc analyses include: summary statistics that characterise the temporal properties
of each mode, such as activation lifetimes, interval times and fractional occupancies; power
spectra that characterise the spectral properties of each mode and power/FC maps that
characterise the spatial pattern of each mode. Note, we only use the the inferred mixing
coefficients (and the source reconstructed data) in the post-hoc analysis, the mode covariances
are not used.

3 Results

3.1 Simulation 1: Long-Range Dependencies

A simulation dataset was used to examine DyNeMo’s ability to learn long-range temporal
dependencies. DyNeMo was trained on the simulation dataset described in Section 2.3.1. An
HMM was also trained on the simulated data for comparison. In this simulation, a mutually
exclusive hidden state was used to generate the training data. The ground truth hidden state
time course is shown in Figure 4c. DyNeMo was able to correctly infer mutually exclusive
modes, which we can think of as states. The DyNeMo and HMM inferred state time courses
are also shown in Figure 4c. Both DyNeMo and the HMM are able to infer the presence
of long-range dependencies by matching the ground truth, non-exponential, state lifetime
distributions (shown in Figure 4d). A dice coefficient (model inferred vs ground truth) of
greater than 0.99 is achieved for both models. However, this does not mean that the HMM or
DyNeMo generative models have necessarily learnt long-range dependencies, as the inferred
state time courses could be a result of purely data-driven information. To test this, we
can sample state time courses from the trained HMM and DyNeMo generative models and
examine their lifetime distributions. Figure 4e shows the lifetime distribution sampled state
time courses. The state lifetime distribution of the sample from DyNeMo captures the non-
exponential ground truth distribution, demonstrating its ability to learn long-range temporal
dependencies over the scale of at least 50 samples. Contrastingly, the HMM was not able to
generate any long-range temporal dependencies, indicating that, as expected, it is only able
to capture short-range dependencies.

3.2 Simulation 2: Linear Mode Mixing

In contrast to the mutual exclusivity assumption of the HMM, DyNeMo has the ability to infer
a linear a mixture of modes. To test this we trained DyNeMo and the HMM for comparison
on the simulation dataset described in Section 2.3.2. Figure 5b shows the simulated mixing
coefficients and those inferred by DyNeMo. For comparison, the state time course inferred
by an HMM is also shown in Figure 5c. As the HMM is a mutually exclusive state model, it
is unable to infer a linear mixture of modes, whereas DyNeMo’s mixing coefficients estimate
the ground truth very well, demonstrating its ability to learn a mixture of modes. Using the
inferred mixing coefficients or state time course along with the inferred covariances, we can
reconstruct the time-varying covariance, Ct, of the training data. The Riemannian distance
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Figure 4: DyNeMo is able to learn long-range temporal dependencies in the latent dynamics
of simulated data. Parameters of an HSMM simulation are shown along with the parame-
ters inferred by DyNeMo and an HMM. While both DyNeMo and the HMM were able to
accurately infer the hidden state time course and their lifetime distributions, actual samples
from each model show that only DyNeMo was able to learn the lifetime distribution of the
states within its generative model, demonstrating its ability to learn long-range temporal
dependencies. a) Transition probability matrix used in the simulation. b) Covariances: sim-
ulated (top), inferred by DyNeMo (middle) and inferred by an HMM (bottom). c) State time
courses: simulated (top), inferred by DyNeMo (middle) and inferred by an HMM (bottom).
Each colour corresponds to a separate state. d) Lifetime distribution of inferred state time
courses. e) Lifetime distribution of sampled state time courses. The fractional occupancy of
each state is shown as a percentage in each histogram plot.

between the reconstruction and ground truth is shown in Figure 5d. The mean Riemannian
distance for DyNeMo is 1.5, whereas it is 11.9 for the HMM. Using a paired t-test the
difference is significant with a p-value< 10−5. The smaller Riemannian distance indicates
DyNeMo is a more accurate model for the time-varying covariance.

3.3 Resting-State MEG Data

DyNeMo identifies plausible resting-state networks. Figure 6 shows the power maps,
FC maps and power spectral densities (PSDs) of 10 modes inferred by DyNeMo when trained
on the resting-state MEG dataset described in Section 2.3.3. For the PSDs, we plot the
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b) Mixing coefficients

c) State time course

a) Logits
Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

d) Riemannian distance between reconstruction and ground truth

Figure 5: DyNeMo is able to accurately infer a linear mixture of modes. DyNeMo was trained
on a simulation with co-activating modes. The mixing coefficients inferred by DyNeMo follow
the same pattern as the ground truth. The failure of an HMM in modelling this type of
simulation due to its inherent assumption of mutual exclusivity is also shown. a) Logits used
to simulate the training data. b) Mixing coefficients of the simulation (top) and inferred
by DyNeMo (bottom). c) State time course inferred by an HMM. d) Riemannian distance
between the reconstruction of the time-varying covariance, Ct, (via Equation (4)) and the
ground truth for DyNeMo and the HMM. Only the first 2000 time points are shown in each
plot.
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Background Network

Visual Networks

Posterior Default Mode Network

Sensorimotor Network

Auditory/Language Networks

Fronto-Parietal Network

Anterior Default Mode Network

Figure 6: DyNeMo infers modes that form plausible resting-state MEG networks. Ten modes
were inferred using resting-state MEG data from 55 subjects. Mode 1 appears to be a low-
power background network, whereas modes 2-10 show high power in areas associated with
functional networks. Modes are grouped in terms of their functional role. Each box shows
the power map (left), FC map (middle) and PSD relative to the mean averaged over regions
of interest (right) for each group. The top two views on the brain in the power map plots are
lateral surfaces and the bottom two are medial surfaces. The shaded area in the PSD plots
shows the standard error on the mean.

regression coefficients P j(f) to highlight differences relative to the mean PSD P 0(f) common
to all modes. Mode 1 appears to be a low-power background network and does not show any
large deviations in power from the mean PSD for any frequency. Modes 2-10 show high power
localised to specific regions associated with functional activity (see [67] for an overview of
the functional association of different brain networks). Regions with high power also appear
to have high FC. Modes 2 and 3 show power in regions associated with visual activity. Mode
4 shows power in parietal regions and can be associated with the posterior default mode
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network (see Figure 11). Mode 5 shows power in the sensorimotor region. Modes 6-8 show
power in auditory/language regions. Modes 2-8 show power in the alpha band (8-12 Hz) and
modes 4-6 and 8 include power at higher frequencies in the beta band (15-30 Hz). Mode
9 shows power in fronto-parietal regions and is recognised as an executive control network.
Mode 10 shows power in frontal regions which can be associated with the anterior default
mode network. Modes 9 and 10 exhibit low-frequency oscillations in the delta/theta band
(1-7 Hz). The PSD of each mode is consistent with the expected oscillations at the high-
power regions in each mode [68]. A comparison with states inferred with this dataset using
an HMM is presented in the section “Large-scale resting-state networks can be formed from
a linear mixture of modes”.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

1st Half

2nd Half

RV Coefficient 0.70 0.02 0.550.78 0.17 0.730.470.80 0.91 0.42

Figure 7: Power maps are reproducible across two split-halves of a dataset. Each half of the
dataset contains the resting-state MEG data of 27 subjects. Power maps are shown for the
the first half of the dataset (top) and second half of the dataset (middle). The RV coefficient
of the inferred covariances from each half for a given mode (bottom) is also shown. The
modes were matched in terms of their RV coefficient. Pairing the modes from each half we
see the same functional networks are inferred. These networks also match the modes inferred
on the full dataset of 55 subjects, suggesting these networks are reproducible across datasets.
The top two views on the brain in each power map plot are lateral surfaces and the bottom
two are medial surfaces.

Power maps are reproducible across two split-halves of the dataset. To assess the
reproducibility of modes across datasets, we split the full dataset into two halves of 27 sub-
jects. We assess the reproducibility of the modes across halves using the RV coefficient [69],
which is a generalisation of the squared Pearson correlation coefficient. We match the modes
across halves in a pairwise fashion using the RV coefficient as a measure of similarity. Fig-
ure 7 shows the power maps of the matched modes. In general, the same regions are active
in each pair of modes and the functional networks are reproducible across datasets. The
main difference is small changes in how power is distributed across the visual network modes
(mode 4) and across the temporal/frontal regions (mode 9).

Mode activations are anti-correlated with a background mode and modes with
activity in similar regions co-activate. A subset of the inferred mixing coefficients
is shown in Figure 8. Figure 8a shows the raw mixing coefficients inferred directly from
DyNeMo. However, these mixing coefficients do not account for a difference in the relative
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Figure 8: DyNeMo provides a mode description of resting-state MEG data. a) Raw mixing
coefficients αjt inferred by DyNeMo for one subject. b) Mixing coefficients αjt weighted by
the trace of each mode covariance and normalised to sum to one at each time point. c)
Zoomed in normalised weighted mixing coefficients αNW

jt for the first 5 seconds. d) HMM
state time course for the first 5 seconds for comparison. The power/FC maps and PSDs for
the HMM states are shown in Figure S7. e) Correlation between the raw mixing coefficients
αjt for different modes j. Ordering is the same as Figure 6. We see DyNeMo’s description
of the data is a set of co-existing modes whose contribution to the time-varying covariance
fluctuates. Once weighted by the covariance matrices we see each mode has a more equal
contribution. We also see modes 2-10 are anti-correlated with the mode 1 and modes with
activation in similar regions, e.g. modes 2, 3 and 4, are correlated.
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magnitude of each mode covariance. For example, a mode with a small mixing coefficient
may still be a large contributor to the time-varying covariance if the magnitude of its mode
covariance is large. We can account for this by obtaining a weighted mixing coefficient mode
time course by multiplying the raw mixing coefficients with the trace of its mode covariance.
We also normalise the weighted mixing coefficient time course by dividing by the sum over
all modes at each time point to maintain the sum-to-one constraint. Figure 8b and 8c
show these normalised weighted mixing coefficients. Once we account for the magnitude
of the mode covariances, we see each mode’s contribution to the time-varying covariance
is roughly equal. We show the state time course inferred by an HMM in Figure 8d for
comparison. Figure 8e shows the correlation between the raw mixing coefficients αjt for
each mode. Modes 2-10 appear to be anti-correlated with mode 1. This arises due to the
softmax operation (Equation (36)) that constrains the mixing coefficients to sum to one.
For a mode to activate by contributing more to the time-varying covariance, another mode’s
contribution must decrease. The anti-correlation of mode 1 with every other mode suggests
that it is primarily this mode’s contribution that is decreased. This suggests that mode 1
can be thought of as a background mode that is deactivated by the other modes.

DyNeMo reveals short-lived (100-150 ms) mode activations. Using a GMM to de-
fine when a mode is active we calculate summary statistics such as lifetimes, intervals and
fractional occupancies. Mode activation time courses and summary statistics are shown in
Figure 9. Mode 1 appears to have long activation lifetimes and a high fractional occupancy,
which is consistent with the description of it being a background network that is largely
present throughout. Modes 2-10 have mean lifetimes approximately over the range 100-
150 ms, which is slightly longer than the state lifetimes obtained from an HMM, which are
over the range 50-100 ms [62]. Both models reveal transient networks with lifetimes on the
order of 100 ms, suggesting that this is a plausible time scale for these functional networks in
resting-state MEG data, confirming that the short lifetimes previously found by the HMM
are not likely to be caused by the mutual exclusivity assumption.

DyNeMo learns long-range temporal correlations. Latent temporal correlations in
MEG data can be seen by examining the inferred mixing coefficients, which are shown in
Figure 8. A process is considered to possess long-range temporal correlations if its auto-
correlation function decays sufficiently slowly (usually measured relative to an exponential
decay) [70, 71]. The autocorrelation function and PSD form a Fourier transform pair, there-
fore, we can examine the presence of long-range temporal correlations by looking at the
PSD. Figure 10b (top left) shows the PSD of the inferred mixing coefficients. The PSDs
are rapidly decaying with a 1/f -like spectrum. This indicates the autocorrelation function
must have a slow decay, suggesting the presence of long-range temporal correlations. As in
Section 3.1, this does not mean that DyNeMo’s generative model has necessarily learnt long-
range dependencies, as the presence of long-range temporal correlations could be a result of
purely data-driven information. We can examine if the generative model in DyNeMo was
able to learn these long-range temporal correlations by sampling a mixing coefficient time
course from the model RNN. Figure 10a shows a sampled mixing coefficient time course. The
PSD of the mixing coefficient time course sampled from the model RNN, Figure 10b (bot-
tom left), shows the same 1/f -like spectrum as the inferred mixing coefficient time course,
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Figure 9: DyNeMo reveals short-lived mode activations with lifetimes of 100-150 ms. a) Mode
activation time courses. Turquoise regions show when a mode is “active”. Only the first 5
seconds of each mode activation time course for the first subject is shown. b) GMM fits
used to identify mode “activations”. Distribution over activations and subjects of c) mode
activation lifetimes and d) intervals. e) Distribution over subjects of fractional occupancies.
We see mode 1 has a significantly longer mean lifetime (approximately 400 ms) compared to
the other modes (approximately 100-150 ms). There is also a wide distribution of fractional
occupancies across subjects.

demonstrating it was able to learn long-range temporal correlations in the data. This is
in contrast to an HMM, where the PSD of the inferred state time course, Figure 10b (top
right), shows long-range temporal correlations, but the PSD of a sampled state time course,
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a)

b)

Figure 10: DyNeMo learns long-range temporal correlations in resting-state MEG data. a)
Normalised weighted mixing coefficients sampled from the DyNeMo model RNN trained on
resting-state MEG data. b) PSD of the sampled and inferred normalised weighted mixing
coefficients from DyNeMo and sampled and inferred state time courses from an HMM. The red
dashed line in b) shows statistically significant frequencies (p-value< 0.05) when comparing
the inferred time courses with a sample from the HMM using a paired t-test. The mixing
coefficient time course sampled from the DyNeMo model RNN resembles the inferred mixing
coefficient time course and shows a similar PSD. Contrastingly, the sampled state time course
from an HMM does not have the same temporal correlations as the inferred state time course,
which is demonstrated by the flat PSD for the sample. Each mixing coefficient time course
was standardised (z-transformed) across the time dimension before calculating the PSD. The
fractional occupancy in a 200 ms window was used to calculate the PSD of the HMM state
time courses, see [14].

Figure 10b (bottom right), does not. It is also worth noting that the inferred long-range
temporal correlations for the HMM are also less strong than for DyNeMo. This implies that
the DyNeMo inferred long-range temporal correlations are not purely data driven, but also
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Figure 11: HMM states can be represented as a linear mixture of modes. a) Correlation of
HMM state time courses with DyNeMo mode mixing coefficient time courses. The dynamics
of multiple mode time courses correlate with each HMM state time course. In particu-
lar, many modes co-activate with the posterior default mode network (DMN) state. All
elements are significant with a p-value< 0.05. b) Percentage of HMM state power ex-
plained by each DyNeMo mode for the posterior and anterior DMN. This was calculated
as 〈αjt〉Tr(Dj)/Tr(Hi), where Dj (Hi) is the DyNeMo (HMM) covariance for mode j (state
i) and 〈αjt〉 is the time average mixing coefficient for mode j when state i is active. This
shows all modes contribute to some extent to the power in these HMM states. c) The cumula-
tive explained power for each HMM state. The modes were re-ordered in terms of increasing
contribution before calculating the cumulative sum. Error bars are too small to be seen.

come from knowledge about long-range temporal correlations captured by DyNeMo through
gathering information across the whole dataset. Note, although the HMM was not able to
learn long-range temporal correlations, it was still able to infer them. This is because the
inference depends on both the model and the data. Despite the limited memory in the HMM,
there is sufficient information coming from the data to infer long-range temporal correlations
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in the states.

Large-scale resting-state networks can be formed from a linear mixture of modes.
The mixture model in DyNeMo allows it to construct large-scale patterns of covariance using
a combination of modes with localised activity. This can be seen by comparing the modes
inferred by DyNeMo with states that reveal large-scale networks inferred by an HMM. An
HMM was trained on the same resting-state dataset. Power maps, FC maps and PSDs of
the HMM states are shown in Figure S7. Two important networks identified by the HMM
are the anterior and posterior default mode networks (states 1 and 2). The power map for
DyNeMo mode 10 (see Figure 6) resembles the anterior state, however, there is no single
mode that resembles the posterior state. Figure 11a shows the correlation of HMM state
time courses with DyNeMo mode mixing coefficient time courses. We can see the modes
that are correlated most with a state time course have activity in similar locations. Focusing
on the default mode network states, DyNeMo mode 4 is the most correlated the posterior
state and mode 10 is most correlated with the anterior state. In [62], it was shown that the
default mode networks states have a high power in the alpha band for the posterior state and
in the delta/theta band for the anterior state. The PSDs of the modes 4 and 10 also show
this, providing further evidence that these modes are an alternative perspective on these
states. The contribution of each mode to the default mode network HMM states is shown in
Figure 11b. This shows the ratio of the total power in a mode relative to the total power in
an HMM state. We can see that the power in the default mode network states is explained
by many modes, i.e. DyNeMo has found a representation of these states that combines many
modes. This is also true for the other HMM states. Figure 11 shows the fraction of power
explained by a certain number of modes for each HMM state. The fraction of power explained
increases monotonically with number of modes with no one particular mode explaining a large
fraction of power. The mode description provided by DyNeMo appears to be fundamentally
different to the HMM, no segments of time where one mode dominates are found. Instead,
it is a representation where multiple modes co-exist and dynamics are captured by changes
in the relative activation of each mode.

3.4 Task MEG Data

Resting-state networks are recruited in task. The power maps, FC maps and PSDs
of 10 modes inferred by DyNeMo trained from scratch on the task MEG dataset described
in Section 2.3.3 are shown in Figure 12. Very similar functional networks are found in task
and resting-state MEG data (see Section 3.3). The main difference between the resting-state
and task power maps is that the sensorimotor network has split into two asymmetric modes.
This could be due to the more frequent activation of this area in the task dataset, which
incentivises the model to infer modes that best describe power at this location.

Modes show an evoked response to task. When the inferred mixing coefficient time
courses are epoched around task events, an evoked response is seen. With the window around
the presentation of the visual stimulus (Figure 13a, left), DyNeMo shows a strong activation
in mode 2 which corresponds to activity in the visual cortex. It also shows smaller peaks
in modes 4 (posterior default mode network) and 8 (auditory/language) followed by another
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Background Network

Visual Networks

Posterior Default Mode Network

Sensorimotor Networks

Auditory/Language Networks

Fronto-Parietal Network Anterior Default Mode Network

Figure 12: Resting-state networks are recruited in task. Ten modes were inferred using task
MEG data from 51 subjects. Very similar functional networks are inferred as the resting-state
data fit shown in Figure 6. Modes are grouped in terms of their functional role. Each box
shows the power map (left), FC map (middle) and PSD relative to the mean averaged over
regions of interest (right) for each group. The top two views on the brain in the power map
plots are lateral surfaces and the bottom two are medial surfaces. The shaded area in the
PSD plots shows the standard error on the mean.
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a)

b)

Figure 13: A consistent task-dependent response to the visuomotor task is seen for a number
of modes. a) Trial-averaged mode timecourses weighted by the trace of their mode covariances
epoched around the visual (left) and abduction (right) task. The red background shows
significant time points (p-value< 0.05) calculated using a sign-flip permutation t-test with
the family-wise error rate being controlled by using the maximum statistic. b) Individual
trial responses (mode mixing coefficients weighted by the trace of their covariance) for mode
2 (visual, left) and mode 5 (sensorimotor, right). The visual stimulus/abduction task occurs
at Time = 0 s.

larger peak in mode 9 (fronto-parietal network). These represent neural activity moving from
the visual cortex to a broader posterior activation and finally to an anterior activation. With
the window around the abduction event (Figure 13a, right), DyNeMo shows a strong peak in
mode 5, which corresponds to activity in the motor cortex. This is accompanied by a broader
suppression of mode 4 which represents the posterior default mode network. The presence of
task-related activations in the mixing coefficient time courses when DyNeMo is unaware of
the task structure of the data demonstrates its ability to learn modes that are descriptive of
underlying brain activity.

When considering the individual trials, rather than the average response across trials,
we see that the visual mode is consistently activated when the visual stimulus is presented
(Figure 13b, left) and the sensorimotor mode is consistently activated when the abduction
occurs (Figure 13b, right), which suggests the evoked response is not just an aggregated
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b)

a)

c)

d)

Figure 14: DyNeMo is a more accurate model of spectral properties compared to an HMM.
a) Spectrogram of the source reconstructed data epoched around the visual and abduction
task. The spectrogram was baseline corrected by subtracting the mean for the duration
before the task (for each frequency separately). b) The DyNeMo model reconstruction of
the spectrogram epoched around the visual and abduction task (left) and the difference from
the spectrogram of the source reconstructed data (right). c) The HMM reconstruction of
the spectrogram epoched around the visual and abduction task (left) and the difference from
the spectrogram of the source reconstructed data (right). The spectrogram of the data and
reconstruction from both models have been normalised to the range -1 to 1. The average
spectrogram across all channels is shown. d) Absolute value of the reconstruction error for
DyNeMo and the HMM averaged across frequencies for the visual (left) and abduction task
(right). The reconstruction error is expressed as a percentage of power at each time point
calculated by averaging the spectrograms in (a) over frequency. DyNeMo shows a smaller
error in reconstructing the data spectrogram compared to the HMM, indicating it is a more
accurate model of spectral properties.
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effect. An HMM trained on the same dataset also shows trial-wise activation (Figure S10),
although the binary nature of its state activations means that the contribution of a given state
can be either wiped out by another state or falsely activated by reduced activity elsewhere.
DyNeMo avoids this by allowing a mixture of states to be active at a given time.

DyNeMo is a more accurate model of dynamic spectral properties compared to an
HMM. Epoching the spectrogram of the source reconstructed data we can see the evoked
response to task as a function of frequency (Figure 14). For the visual task (Figure 14a, left),
immediately after the stimulus we can see a sharp increase in power around 5 Hz followed
by a reduction in power around 10 Hz and above. This is repeated again around 2 s into the
epoch, which is when the visual stimulus is removed. For the abduction task (Figure 14a,
right), immediately after the task we also see a sharp increase in power at 5 Hz followed
by a reduction in power at 10 Hz and above. However, this is followed by an increase in
power at 10 Hz and above, commonly known as a post-movement beta rebound [72, 73]. We
can reconstruct a model estimate for the spectrogram of the data from a DyNeMo (HMM)
fit by multiplying the inferred mode (state) time course by the estimate of the mode (state)
PSD. Model estimate spectrograms are shown for DyNeMo and the HMM in Figures 14b and
14c respectively, along with their reconstruction errors (i.e. the residual, εt(f), in Eq. (39)).
The absolute value of the reconstruction error averaged over frequency for DyNeMo and the
HMM is shown in Figure 14d. Both DyNeMo and the HMM are able to model dynamics in
spectral content of the data, however, DyNeMo shows a modest improvement in the time-
averaged reconstruction error of 5.0% (4.0%) for the visual (abduction) task compared to
5.2% (4.7%) for the HMM. A paired t-test shows the difference between the DyNeMo and
HMM reconstruction error is significant with a p-value< 0.01.

4 Discussion

We have shown that MEG data can be described using multiple modes of spatiotemporal
patterns that form large-scale brain networks (Figures 6 and 12). Recently, other models
that provide a mode description of neuroimaging data have been proposed. Ponce-Alvarez et
al. and Tewarie et al. used non-negative tensor factorisation to identify dynamic overlapping
spatial patterns of connectivity [74, 36]. Núñez et al. used community detection on a time
series of FC matrices to identify repeated patterns of connectivity [75]. Atasoy et al. propose
‘connectome harmonics’, where an eigendecomposition of the Laplacian of a structural con-
nectivity matrix is calculated, which results in a set of harmonic modes that represent spatial
patterns of connectivity [76]. Atasoy et al. showed that these modes predict resting-state
networks [76]. Glomb et al. and Rué-Queralt et al. used the modes as a basis set to obtain
a spatiotemporal description of EEG data, which revealed fast dynamics [77, 78]. Although,
these technique provide a dynamic description of the data using a set of overlapping spatial
modes, they all lack a generative model. Furthermore, connectome harmonics are determined
from the structural connectivity matrix. In DyNeMo, a mode description of the FC is learnt
directly from the data (see Section 2).

The modes inferred by DyNeMo have distinct spectral properties and correspond to plau-
sible FC systems, such as visual, sensorimotor, auditory or other higher-order cognitive ac-
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tivity. These modes are more localised and can be more lateralised than the spatial patterns
attributed with HMM states. Previous analysis of resting-state MEG data using an HMM [62]
was able to identify large-scale transient networks which exist on time scales between 50 and
100 ms. We find DyNeMo infers transient networks at similar time scales of 100-150 ms (Fig-
ure 9). The implies the fast dynamics inferred by an HMM are not due to the assumption of
mutually exclusive states.

An HMM trained on the resting-state MEG dataset used in this work suggested the
default mode network was split into an anterior and posterior component [62]. In DyNeMo,
the default mode network is further split up into many modes that combine to represent
this network (Figure 11b). The modes that represent the default mode network show power
in the same regions and frequency bands as the HMM states, supporting the fact that the
modes represent an alternative perspective on the data.

Training DyNeMo on task MEG data, we find similar functional networks as inferred with
resting-state data (Figure 12). This finding is supported in literature for other neuroimaging
modalities, where the same networks are found in resting-state and task fMRI data [4]. The
similarity in the functional networks could also be due to the fact that the majority of the
subjects in the task dataset are also present in the resting-state dataset.

In an unsupervised fashion, DyNeMo was able to infer modes associated with the task.
This is seen as an evoked response in the mixing coefficients of a mode to a task (Figure 14).
This demonstrates that the modes inferred by DyNeMo meaningfully represent brain activity.
The modes also reflect the expected time-frequency response to visual and motor tasks, which
builds confidence in the description provided by DyNeMo. We find DyNeMo provides a more
accurate model compared to an HMM of time-varying spectral features in the training data
(Figure 14). However, both DyNeMo and the HMM show errors in modelling high-frequency
spectral content in the task MEG dataset. We believe this arises from the PCA step in the
data preparation, which retains components that explain large amounts of variance. In this
data, lower frequencies have larger amplitudes and are able to explain more variance than
high frequencies with smaller amplitudes, leading to high-frequency spectral content being
filtered out. Avoiding the loss of this information could be investigated in future work with
spectral pre-whitening techniques.

The smaller reconstruction error for the spectrogram of task MEG data from DyNeMo is
due to the linear mixture affording the model a greater flexibility to precisely model dynamics.
The fact that the reconstruction error is only slightly reduced compared to the HMM suggests
that despite the constraint of mutual exclusivity the HMM was still able to provide a good
description of dynamics.

4.1 Methodological Advancements

We believe that DyNeMo improves upon alternative unsupervised techniques in four key
ways: the use of amortised inference; the use of the reparameterisation trick; the ability
to model data as a linear mixture of modes (opposed to mutually exclusive states) and the
ability to model long-range temporal dependencies in the data.

The amortised inference framework used in DyNeMo (described in Section 2) contains
a fixed number of trainable parameters (inference RNN weights and biases). This means
DyNeMo is readily trainable on datasets of varying size. Usually, the number of trainable
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parameters in the inference network is significantly smaller than the size of a dataset, mak-
ing this approach very efficient when scaling to bigger datasets. As the availability of larger
datasets grows, so does the need for models that can utilise them. Here, we believe deep
learning techniques will play an important role, where with more data, models with a deep
architecture begin to outperform shallower ones. Although, in this work we have studied a
relatively small dataset (51-55 subjects) using a shallow model (one RNN layer), DyNeMo
is readily scalable in terms of model complexity to include multiple RNN layers and more
hidden units. In combination with bigger datasets this can reveal new insights into brain
data. For example, previous modelling of a large resting-state fMRI dataset (Human Con-
nectome Project, [79]) using an HMM revealed a link between FC dynamics and heritable
and psychological traits [80]. The training time for DyNeMo and the computational expense
of the analysis presented in this work is comparable to the HMM training time and analysis
performed with the HMM-MAR toolbox4 presented in [62]. We believe due to the use of
amortised inference, DyNeMo will be a more efficient option for larger datasets compared to
the HMM-MAR toolbox.

Provided we are able to apply the reparameterisation trick to sample from the variational
posterior distribution, we are able to infer the parameters for any generative model. This
facilitates the use of more sophisticated and non-linear observation models and opens up a
range of future modelling opportunities. This includes the use of an autoregressive model
capable of learning temporal correlations in the observed data; the hierarchical modelling of
inter-subject variability and the inclusion of dynamics at multiple time scales, similar to the
approach used in [45].

A key modelling advancement afforded by DyNeMo is the ability to model data as a time-
varying linear sum of modes. The extent to which modes mix is controlled by a free parameter
referred to as the temperature, τ , which appears in the softmax transformation of the logits
(see Equation (36) in SI 9.2). Low temperatures lead to mutually exclusive modes whereas
high temperatures lead to a soft mixture of modes. In this work, we allow the temperature
to be a trainable parameter. By doing this, the output of the softmax transformation is able
to be tuned during training to find the appropriate level of mixing to best describe the data.
Such a scheme can be interpreted as form of entropy regularisation [81, 82].

The inclusion of a model RNN in DyNeMo allows it to generate data with long-range
temporal dependencies (Figures 4 and 10). This is because the future value of a hidden logit
is determined by a long sequence of previous values, not just the most recent value. There
is significant evidence for long-range temporal correlations in M/EEG data [83, 70, 84] and
an association between altered long-range temporal correlations and disease [85, 86]. Models
that are capable of learning long-range temporal correlations are advantageous in multiple
ways: they can be more predictive of task or disease than models with a shorter memory;
they can prevent overfitting to noise in the training data through regularisation and finally
they can be used to synthesise data with realistic long-range neural dynamics.

In addition to the modelling and inference advancements discussed above, we also pro-
posed a new method for calculating spectral properties for data described using a set of modes
(see Section 2.4). With an HMM, methods such as a multitaper [12] can be used to provide
high-resolution estimates of PSDs and coherences for each state. This approach relies on the

4https://github.com/OHBA-analysis/HMM-MAR.
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state time course identifying segments of the training data where only one state is active.
This approach is no longer feasible with a description of the data as a set of co-existing
modes. In this paper, we propose fitting a linear regression model to a cross spectrogram
calculated using the data. This method relies on different time points having different ratios
of mixing between the modes. Provided this is the case, this method produces high-resolution
estimates of the PSD and coherence of each mode (Figures 6, 12 and 14).

4.2 Drawbacks

As with most modern machine learning models, DyNeMo contains a large number of hyper-
parameters that need to be specified before the model can be trained. These are discussed in
SI 9.2. An important hyperparameter that affects the interpretation of inferences from the
model is the number of modes, J . We discuss the impact of varying the number of modes
in SI 9.5. In short, as the number of modes is increased, the spatial activity of each mode
becomes more localised and the variability of the inferred spatial patterns increases. The
variational free energy is an approximation to the model evidence [47] so can be used to
compare models with a different number of modes. However, Figure S4 shows the variational
free energy decreases monotonically up to 30 modes. This implies more modes provide a
better model for the data. As we increase the number of modes we lose the low-dimensional
interpretable description of the data. Because of this trade-off we specify the number of
modes by hand rather than using the variational free energy. Additionally, we ensure any
conclusions that are based on studies using DyNeMo are not sensitive to the number of modes
chosen. We tune other hyperparameters by seeking the set of parameters that minimise the
value of the loss function.

In addition to a large number of hyperparameters, we find the model is sensitive to
the initialisation of trainable parameters. This includes the internal weights and biases of
RNN layers and the learnable free parameters for the mode means and covariances. The
initialisations used in this work are listed in SI 9.2. We found the initialisation of the
mode covariances to be particularly important. We overcome the issue of sensitivity to
the initialisation of trainable parameters by training the model from scratch with different
initialisations and only retaining the model with the lowest loss.

4.3 Outlook and Future Applications

The model presented here has many possible future applications. For example, it could be
used to provide a dynamic and interpretable latent description, as done in this work, for
other datasets. Alternatively, it could be used to facilitate future studies, examples of which
are described below.

A common method to study the brain is the use of temporally unconstrained multivariate
pattern analysis (decoding) to predict task, disease or behavioural traits [87]. The latent
representation inferred by DyNeMo (unsupervised) provides a low-dimensional form of the
training data, which is ideal for such analyses. This can overcome overfitting issues that
are commonly encountered in decoding studies that use the raw data directly. Alternatively,
the model architecture could be easily modified to form a semi-supervised learning problem
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where the loss function used has a joint objective to learn a low-dimensional representation
that is useful for decoding as well as reconstructing the training data.

A useful feature of DyNeMo is the possibility of transfer learning, i.e. the ability to trans-
fer information learnt from one dataset to another. This could be exercised by simply train-
ing DyNeMo on one dataset from scratch, before fine tuning the model on another dataset,
which would facilitate the transfer of information through all the trainable parameters of
the model, such as RNN weights, mode means/covariances, etc. Large resting-state datasets
are commonplace in neuroimaging. A problem encountered in studies of small datasets (e.g.
comprising of diseased cohorts) is the lack of statistical power for drawing meaningful con-
clusions [88]. Leveraging information gained from larger resting-state datasets could improve
the predictions made on smaller datasets. For example, it has been shown resting-state data
is predictive of task response [89, 90]. We believe DyNeMo offers the possibility of transfer-
ring information acquired from resting-state datasets with thousands of individuals to the
individual subject level.

The generative model proposed here explictly models the covariance of the training data
as a dynamic quantity. In this paper, we trained on prepared (time-delay embedded/PCA)
source reconstructed data. However, the model could be trained on unprepared sensor-level
data to estimate the sensor covariance as a function of time. Such a model could be utilised
in the field of M/EEG source reconstruction. Algorithms for source reconstruction often
assume the sensor-level covariance is static, which is rarely the case [91]. Using a dynamic
estimate of the covariance, we can construct time-vaying reconstruction weights for source
reconstruction [40], which can improve source localisation.

Finally, whilst we focused on parcellated source reconstructed MEG data in this paper,
DyNeMo could of course be applied to data from other neuroimaging modalities such as
fMRI, sensor level MEG data and other electrophysiological techniques (EEG, ECOG, etc.).

5 Conclusions

We have proposed a new generative model and accompanying inference framework for neu-
roimaging data that is readily scalable to large datasets. Our application of DyNeMo to MEG
data reveals fast transient networks that are spectrally distinct, in broad agreement with ex-
isting studies. We believe DyNeMo can be used to help us better understand the brain by
providing an accurate model for brain data that explicitly models its dynamic nature using
a linear mixture of modes. The modest improvement in modelling dynamic spectral proper-
ties compared to an HMM shows the assumption of mutual exclusivity does not necessarily
impact the HMM’s ability to model the data effectively. Nevertheless, DyNeMo is a novel
and complementary tool that is useful for studying neuroimaging data.
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9 Supplementary Information (SI)

9.1 Derivation of the Loss Function

In variational Bayesian inference we infer a parameter by minimising the variational free
energy,

F = −
∫
q(θ1:N |x1:N) log

(
p(x1:N |θ1:N)p(θ1:N)

q(θ1:N |x1:N)

)
dθ1:N . (14)

where q(θ1:N |x1:N) is the posterior, p(θ1:N) is the prior and p(x1:N |θ1:N) is the likelihood, θt
is the logit at each time point, xt is the observed data at each time point and t = 1, ..., N
denotes the time index. We can separate the logarithm into two terms,

F = −
∫
q(θ1:N |x1:N) log (p(x1:N |θ1:N)) dθ1:N

+

∫
q(θ1:N |x1:N) log

(
q(θ1:N |x1:N)

p(θ1:N)

)
dθ1:N .

= −LL + KL.

(15)

LL is referred to as the log-likelihood term and KL is referred to as the KL divergence term.
Considering the log-likelihood term,

LL =

∫
q(θ1:N |x1:N) log (p(x1:N |θ1:N)) dθ1:N . (16)

We use the mean field approximation for the posterior,

q(θ1:N |x1:N) =
N∏
t=1

q(θt|x1:N). (17)

Each factor q(θt|x1:N) is a multivariate normal distribution parameterised by a mean vector
mθt(x1:N) and diagonal covariance matrix s2θt(x1:N), i.e.

q(θt|x1:N) = N (mθt(x1:N), s2θt(x1:N)) (18)

We also assume the data at each time point is independent and only depends on the logit
at that time point, i.e. we factorise the likelihood as

p(x1:N |θ1:N) =
N∏
t=1

p(xt|θt). (19)

We assume a multivariate normal distribution for the data, i.e.

p(xt|θt) = N (m(θt),C(θt)) (20)

Substituting Equations (17) and (19) into Equation (16),

LL =

∫ [ N∏
τ=1

q(θτ |x1:N)

]
log

(
N∏
t=1

p(xt|θt)

)
dθ1:N

=
N∑
t=1

∫ [ N∏
τ=1

q(θτ |x1:N)

]
log (p(xt|θt)) dθ1:N

(21)
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For each term in the summation we can factorise the integral as

LL =
N∑
t=1

[∫
q(θt|xt) log (p(xt|θt)) dθt

N∏
τ=1,τ 6=t

∫
q(θτ |x1:N)dθτ

]

=
N∑
t=1

∫
q(θt|xt) log (p(xt|θt)) dθt.

(22)

We can use a Monte Carlo estimate to calculate this as

LL ≈
N∑
t=1

1

M

M∑
s=1

log (p(xt|θst)) , (23)

where θst denotes the sth sample from the posterior distribution q(θt|x1:N) at time point
t. In practice we use just one sample, i.e. M = 1. Therefore, the log-likelihood term is
approximated by

LL ≈
N∑
t=1

log
(
p(xt|θ1t )

)
. (24)

Considering the KL divergence term,

KL =

∫
q(θ1:N |x1:N) log

(
q(θ1:N |x1:N)

p(θ1:N)

)
dθ1:N . (25)

We use the mean field approximation for the posterior (Equation (17)) and factorise the prior
as

p(θ1:N) = p(θ1)
N∏
t=2

p(θt|θ1:t−1). (26)

With these substitutions the KL divergence term becomes

KL =

∫ [ N∏
τ=1

q(θτ |x1:N)

]
log

( ∏N
t=1 q(θt|x1:N)

p(θ1)
∏N

κ=2 p(θκ|θ1:κ−1)

)
dθ1:N . (27)

We split up the logarithm as

KL =

∫ [ N∏
τ=1

q(θτ |x1:N)

][
log

(
q(θ1|x1)

p(θ1|x1)

)
+ log

(
N∏
t=2

q(θt|x1:N)

p(θt|θ1:t−1)

)]
dθ1:N (28)

and clip the first logarithm to give

KL ≈
∫ [ N∏

τ=1

q(θτ |x1:N)

]
log

(
N∏
t=2

q(θt|x1:N)

p(θt|θ1:t−1)

)
dθ1:N

≈
N∑
t=2

∫ [ N∏
τ=1

q(θτ |x1:N)

]
log

(
q(θt|x1:N)

p(θ1:N |θ1:t−1)

)
dθ1:N

(29)
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For each term in the summation, we can factorise the integral as

KL ≈
N∑
t=2

∫ [ t∏
τ=1

q(θτ |x1:N)

]
log

(
q(θt|x1:N)

p(θt|θ1:t−1)

)
dθ1:t

[
N∏

κ=t+1

∫
q(θκ|x1:N)dθk

]

≈
N∑
t=2

∫ [ t∏
τ=1

q(θτ |x1:N)

]
log

(
q(θt|x1:N)

p(θt|θ1:t−1)

)
dθ1:t

(30)

We denote the integral over dθt by

DKL (q(θt|x1:N) || p(θt|θ1:t−1)) =

∫
q(θt|x1:N) log

(
q(θt|x1:N)

p(θt|θ1:t−1)

)
dθt. (31)

Substituting this into the KL divergence term, we get

KL ≈
N∑
t=2

∫ t−1∏
τ=1

q(θτ |x1:N)DKL (q(θt|x1:N) || p(θt|θ1:t−1)) dθ1:t−1 (32)

We use a Monte Carlo estimate using a single sample from each posteriors q(θ1|x1:N), ..., q(θt−1|x1:N).
Therefore, our KL divergence term is

KL ≈
N∑
t=2

DKL

(
q(θt|x1:N)) || p(θt|θ11:t−1)

)
. (33)

The prior p(θt|θ11:t−1) is a multivariate normal distribution parameterised by a mean vector
µθt(θ

1
1:t−1) and diagonal covariance matrix σ2

θt
(θ11:t−1), i.e.

p(θt|θ11:t−1) = N (µθt(θ
1
1:t−1),σ

2
θt(θ

1
1:t−1)). (34)

The parameters µθt(θ
1
1:t−1) and σ2

θt
(θ11:t−1) are calculated using the model RNN.

We use stochastic gradient descent to minimise a loss function. The loss function we use
is

L = F = −LL + KL

L = −
N∑
t=1

log
(
p(xt|θ1t )

)
+

N∑
t=2

DKL

(
q(θt|x1:N) || p(θt|θ11:t−1)

)
.

(35)

Using this loss function will minimise the variational free energy, or equivalently, it will
maximise the evidence lower bound [51].

9.2 Training and Hyperparameters

Before training the model we prepare the source reconstructed data. We applied time-delay
embedding, PCA and standardisation. Time-delay embedding and PCA are summarised
in Figure S1. The procedure used to train the model and choices for hyperparameters are
discussed below.
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y1(t1) y2(t1) . . . yn(t1)
y1(t2) y2(t2) . . . yn(t2). . . .. . . .
y1(tT) y2(tT) . . . yn(tT)

Source Reconstructed Data 
Y(t) [T × n]

Time-Delay Embedded Data 
Yte(t) [(T − E + 1) × nE]

y1(t1) y1(t2) . . . y1(tE) y2(t1) y2(t2) . . . y2(tE) . . . yn(t1) yn(t2) . . . yn(tE)
y1(t2) y1(t3) . . . y1(tE+1) y2(t2) y2(t3) . . . y2(tE+1) . . . yn(t2) yn(t3) . . . yn(tE+1). . . . . . . . .. . . . . . . . .

y1(tT−E) y1(tT−E+1) . . . y1(tT) y2(tT−E) y2(tT−E+1) . . . y2(tT) . . . yn(tT−E) yn(tT−E+1) . . . yn(tT)

PCA, Time-Delay Embedded Data 
X(t) [(T − E + 1) × m]

x1(t1) x2(t1) . . . xm(t1)
x1(t2) x2(t2) . . . xm(t2). . . .. . . .

x1(tT−E) x2(tT−E) . . . xm(tT−E)

X(t) = Yte(t)WPCA Components 
W [nE × m]

Figure S1: Preparation applied to the source reconstructed data before training. The use of
time-delay embedding encodes spectral properties of the training data into the covariance by
adding extra elements that correspond to the auto-correlation function to the matrix. PCA
is performed to reduce the number of channels so that the data is not too large to fit within
GPU memory. Standardisation is also applied after PCA. T is the number of time points, n
is the number of parcels/regions of interest, E is the number of time-delay embeddings and
m is the number of channels after PCA.

Logit activation function. To calculate the mixing coefficients from the logits we use
a softmax function,

αjt = {ζ(θt)}j =
exp

(
θjt
τ

)
J∑
j=1

exp

(
θjt
τ

) , (36)

where τ is a hyperparameter known as the temperature, discussed further below. The use
of a softmax function imposes the constraint that the αjt-values are positive and the sum of
αjt over j is equal to one.

Alpha temperature. We can specify a temperature τ for the softmax activation func-
tion. The temperature determines the amount of mixing between modes. A high temperature
corresponds to a more even mixture, whereas a low temperature leads to more mutually ex-
clusive modes. In this work, we allow the temperature to be a learnable parameter.

Learning rate. In this work, we use the Adam optimiser [93] to update trainable pa-
rameters. The learning rate η is a key hyperparameter of the Adam optimiser, which can
affect training. Using a value that is too high can lead to divergence in the loss function,
alternatively, one that is too small can lead to slow convergence.

Sequence length. The input to the model is a sequence of data points x1:N , where N
is the length of the sequence. The sequence length determines the number of previous time

45

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.05.03.490453doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490453
http://creativecommons.org/licenses/by-nc-nd/4.0/


points the model has access to. Therefore, we would like to use the longest sequence length
possible. However, the sequence length is limited by the GPU memory that is available and
the ability to train the model in a reasonable time frame.

Batch learning. Stochastic gradient descent is performed by estimating the loss for a
small group of sequences, referred to as a batch. This loss is used to update the trainable
parameters before the loss for a new batch is calculated. The number of sequences in a batch
is referred to as the batch size. We calculate the loss for a batch by averaging the loss for each
sequence in the batch. When performing batch learning it is important to shuffle the ordering
of the sequences and batches. We did this by first separating the entire dataset into sequences,
shuffling the order of the sequences, then grouping sequences in batches and performing one
final random reordering to give the training dataset. One training loop through all of the
batches is referred to as an epoch. The batches are not reshuffled between epochs.

Hidden units and number of LSTM layers. When using an LSTM we must specify
a number of hidden units. We found small networks had more stable training than large
networks, so only used 64 units in the model and inference LSTM. We also found stacking
multiple LSTMs did not improve the model, so in this work we only use one LSTM layer.

Dropout [94]. This is well-known technique used when training a neural network to
mitigate overfitting. The use of dropout was found not to benefit the model so no dropout
layers have been used in this work.

Normalisation layers [95, 96]. Normalisation layers are often used to train deep neural
networks because they help alleviate the the vanishing/exploding gradient problem [97]. In
this work, we include a single Layer Normalisation [96] transformation to the output of the
LSTMs in Equations (2) and (6) before the affine transformation.

Gradient clipping. RNNs can suffer from exploding gradients when backpropagation
occurs through each time step. A strategy proposed in [98] to avoid this is gradient clipping,
where we rescale the gradients so that their norm is a particular value when gradient norm
would otherwise exceed this value. This strategy has been shown to improve training stability.
In this work, we use gradient clipping when training on real MEG data.

Trainable parameters and initialisation. The trainable parameters in this model
are:

• The weights and biases of the model and inference LSTM. At the start of training these
are set randomly using Glorot initialisation [99].

• Layer Normalisation weights. The output of Layer Normalisation is centred around a
learnable β-parameter and scaled with a γ-parameter [92, 96], these parameters were
initialised using zeros and ones respectively.

• Dense layer weights and biases for the affine transformations. Glorot initialisation [99]
was used for these parameters.

• The alpha temperature. This was initialised using a value of one.

• Elements of the mode means and covariances. In this work, we use zero vectors for the
means and an identity matrix for the covariances. When training on MEG data we
found the initialisation of the mode covariances to be important. We propose a strategy
of initially training the model on the data for a randomly selected single subject to
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estimate its covariances. The covariances are initialised with the identity matrix when
training on a single subject. This removes the subject-to-subject variability in the data.
Then, the model can be trained on the full dataset initialising with the single-subject
mode covariances. We found this strategy helped to avoid local optima when learning
a high latent dimensionality (e.g. J > 10).

Multi-start training. We find the model is sensitive to the initialisation of the trainable
parameters, in particular the inference and model RNNs. When training on real MEG data,
we observe that the model can converge to different local optima with the same dataset. To
help find the global optimum, we propose a multi-start approach, where we train the model
for a small number of epochs a few times and performing the full training on the model
with the lowest loss at the end of the initial training period. This procedure was used when
training on real MEG data and was found to reduce the run-to-run variability.

KL annealing [55] is a technique used at the start of training. An annealing factor λ is
introduced into the loss function,

L = −LL + λ ·KL. (37)

The annealing factor is a smoothly varying function of the number of training epochs. It
takes a value between zero and one. The function used to calculate the annealing factor in
this work is

λ =
1

2
tanh

(
AS(nE − 1

2
nAE)

nAE

)
+

1

2
, (38)

where AS is the annealing sharpness, which determines the shape of the annealing curve, nE

is the number of training epochs and nAE is the number of annealing epochs.
At the start of training, the weights and biases of the model RNN are initialised with

samples from a uniform distribution (Glorot initialisation [99]). As a consequence, the model
RNN is prone to giving naive outputs/estimates for the logit time course in these early
epochs. KL annealing with λ close to zero helps in this period because it prevents the model
RNN from influencing the inference RNN before it has learnt a logit time course that is
useful for describing the training data. As training progresses, λ tends to one and the model
RNN learns the temporal dynamics in the latent representation by predicting probability
distribution of the next logit θt from the samples of previous logits θ1:t−1. By doing this, it
also regularises the inferred logits for the training data.

9.3 Post-hoc Analysis of Learnt Latent Variables

Once trained, DyNeMo provides us with a mixing coefficient time series for each mode,
αjt. We use the inferred mixing coefficients with the source reconstructed data (before
preparation) to perform post-hoc analysis. We describe the quantities calculated in our
post-hoc analysis below.

Summary statistics. We can summarise the mixing coefficients with statistics, which
can give a high-level description of the data. We can take inspiration from the Viterbi
path (referred to as the state time course) of an HMM5 [51]. We typically summarise this

5The Viterbi path is the maximum a posteriori probability estimate for the state in an HMM.
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with state lifetimes6, interval times and the fractional occupancies [14]. One benefit of the
mutual exclusivity assumption made by the HMM is that there are well defined time points
when a state is active, making determining a lifetime and interval time straightforward.
Contrastingly, DyNeMo provides a description where multiple modes are simultaneously
present at each time point. To define when a mode is active we fit a two-component GMM to
the mixing coefficient time series of each mode. One of the Gaussian components corresponds
to time points when the mode is active whereas the other component corresponds to time
points when the mode is inactive. This GMM therefore gives us a mode activation time
course, which we can use to compute the usual summary statistics we would calculate with a
state time course. Note, we fit a GMM separately to each mode, which enables the possibility
of there being time points where multiple modes or no modes activate. The mixing coefficients
have a sum to one constraint, which means their distribution is non-Gaussian. Therefore,
we transform the data using the logit function7 and standardise before fitting the GMM to
make the distribution more Gaussian. We found defining activations with a GMM led to
more stable summary statistics for each mode compared to a simpler approach such as using
an argmax operation. This is because with an argmax operation the mode with the largest
mixing coefficient depends on the full set of modes, whereas with the GMM approach, each
mode is studied in isolation.

Mode spectral properties. Neuronal activity in the brain has oscillatory dynamics. A
useful quantity for examining these oscillations is the power spectral density (PSD), which
displays the power at each frequency for a given channel (i.e. region of interest). Addition-
ally, the cross spectral density, which displays the power coupling across two channels, is of
interest. We can calculate power and cross spectra for each mode directly from source recon-
structed data once we have inferred the mixing coefficients.8 Equation (4) defines a linear
mixture of mode covariances. A property of this model is that the PSD of each mode mixes
with the same coefficients. We can exploit this property to estimate the spectral properties of
each mode. We do this by first calculating a cross spectrogram using the dataset and fitting
a linear regression model using the mixing coefficients:

P t(f) =
J∑
j=1

αjtP j(f) + P 0(f) + εt(f), (39)

where P t(f) is the cross spectrogram of each pair of channels, P j(f) are regression coef-
ficients, which are our mode cross spectra, P 0(f) is a mean term, εt(f) is a residual and
f is the frequency. We standardise (z-transform) the mixing coefficients across the time
dimension before calculating the linear regression. This results in the mean term P 0(f)
corresponding to the time-averaged PSD and the regression coefficients P j(f) corresponding

6Also known as the dwell time.
7logit(x) = ln

(
x

1−x

)
.

8It is possible to extract mode PSDs from the mode covariance matrices by reversing the PCA, which
gives the auto-covariance of the time-delay embedded data. This matrix contains an estimate of the auto-
correlation function, which can be Fourier transformed to give a mode PSD. However, the resolution of this
PSD is limited by the number of time-delay embeddings, which results in a low-resolution PSD. This is why
estimating the mode PSD using the inferred mixing coefficients and source reconstructed data is preferred.
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to PSDs relative to the time-averaged PSD. We calculate the cross spectrogram with the
source reconstructed data using Welch’s method [100], which involves segmenting the data
into overlapping windows and performing a Fourier transform:

Pmn,t(f) =
1

fsW 2
Xm,t(f)X∗n,t(f), (40)

where m and n are channels, fs is the sampling frequency, W is the number of samples in
the window, Xm,t(f) is the Fourier transform of the data in a window centred at time t and
∗ denotes the complex conjugate.

Mode power maps. Additionally, the spatial distribution of power across the brain is of
interest. We can examine the spatial power distribution of each mode separately, which can
highlight the areas of the brain that are active for each mode. Using the cross spectrogram
regression method (Equation (39)), we obtain a PSD for each channel for a given mode. As
each channel corresponds to a region of interest, we obtain a PSD for the activity at each
region of interest. The integral of a PSD is the power. Plotting the power at each region
of interest as a two-dimensional heat map projected onto the surface of the brain shows
the spatial distribution of power for a given mode. It is often more interesting to plot the
power relative to a reference rather than the absolute value to highlight differences in the
power maps of each mode. In this work, we calculate the power by integrating the mode
PSDs P j(f) without the mean term P 0(f). This gives us the power distribution relative to
the mean power common to all modes. We also subtract the mean power across modes for
each region of interest separately when displaying the power maps to help highlight relative
differences between the modes. No thresholding is applied to the power maps. Additionally,
the surface plotting function we use interpolates the power between parcels for visualisation.

Mode FC maps. In addition to power maps, FC maps reveal the brain networks that are
present for each mode. We use the coherence as our measure of FC, which quantifies the
stability of phase difference between two regions of interest, thereby providing a measure of
synchronisation or phase-locking between brain regions. We choose this measure because it
gives us a direct estimate of oscillatory synchronicity, which has been proposed as a mech-
anism for neuronal communication [15]. To calculate the coherence we use the mode cross
spectra estimated with the linear regression model in Equation (39). Estimating the coher-
ence for a window requires us to average multiple estimates of the cross spectra within that
window. We do this by dividing each window into a set of sub-windows and taking the aver-
age cross spectra for each sub-window. Using the cross spectra we calculate a coherence for
each pair of channels. However, most of these connections correspond to a background level
of activity that is are common to all modes. To identify the most prominent connections,
we fit a two-component GMM to the distribution of coherences relative to the mean. We
standardise the relative coherence values before fitting the GMM. One component of the
GMM corresponds to a population of background coherence, whereas the other corresponds
to prominently high relative coherence values. We plot the connection edges in the original
coherence matrix that correspond to high relative coherence values. If we are unable to iden-
tify two components, we plot the top 5% of connections.
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To calculate power and FC maps, we use a window length of 4 seconds, sub-window length
of 0.5 seconds, window step size of 0.08 seconds, and apply a Hann windowing function to
each sub-window before performing the Fourier transform to calculate the cross spectrogram.
We calculate the cross spectrogram and perform the linear regression separately for each
subject. We then average the subject-specific mode PSDs and coherences over subjects to
obtain group-level spectra. We also apply a Hann function to sub-windows of the mixing
coefficient time series to match the windowing applied to the data and average the values
across a full window to calculate the αjt value to use in the regression. To calculate the
spectrograms used to the study the evoked response to task (Section 3.4) we use a window
length of 0.5 seconds and do not separate the window into sub-windows.

State Covariances

Ground Truth State Time Course

a) HMM Parameters

0.10.9 0

0.90 0.1

00 0.9

00 0

00 0

00.1 0

0.10.9 0

0.90 0.1

00 0.9

00 0

00 0

00.1 0

Transition Probability Matrix

State

St
at

e State 1 State 2 State 3

State 4 State 5 State 6

b) Inferred vs Ground Truth Dice Coefficient

ℒ = − LL + λ ⋅ KL ℒ = − LL + KL

ℒ = − LL

Figure S2: Temporal regularisation from the model RNN improves inference. a) HMM
parameters used to simulate data. A 6 state, 11 channel HMM was simulated with the
transition probability matrix shown. 25,600 samples were generated. Only the first 2,000
time steps of the state time course are shown. b) Dice vs epoch when minimising the negative
log-likelihood loss only (top) and the variational free energy (bottom) for different added
noise, σerr, which is the standard deviation of normally distributed errors added to each
channel at each time point. L denotes the loss function used for each stage of training (see
Eqs. (37) and (38)). Each model was fitted 5 times to the same dataset. The solid line is the
mean and the shaded area shows the standard error on the mean.

9.4 Regularisation from the Model RNN

It is possible to construct a model for the training data without including the model RNN.
For example, we could construct a standard variational autoencoder [48], where a normal
distribution with zero mean and unit variance takes the place of the model RNN (i.e. the
prior). Alternatively, point estimates for logits could be learnt and no prior would be needed.
So why include a model RNN? There are two reasons, firstly learning a generative model
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in itself is useful, and secondly the model RNN regularises the inferred logits and can help
alleviate overfitting to noise in the training dataset. The latter can be demonstrated by
training DyNeMo on simulated HMM data with varying noise added. Parameters of the
HMM simulation are shown in Figure S2a. We measure the inference accuracy of the model
by calculating the dice coefficient of the inferred state time course and the ground truth
from the simulation. Figure S2b shows the dice vs epoch during training for different levels
of noise. The top figure is the achieved dice coefficient when minimising the negative log-
likelihood loss only (L = −LL). When the noise is high the model struggles to correctly infer
the ground truth state time course. The bottom figure is the achieved dice when minimising
the variational free energy (L = −LL+λ ·KL). KL annealing was applied during training for
the first 100 epochs. The influence of the model RNN starts to appear when λ is sufficiently
large, which is after the 50th epoch roughly. Figure S2 shows the inclusion of the model
RNN leads to a better inference when training on noisy data.

9.5 Run-to-Run Variability and Number of Modes

When training DyNeMo, our objective is to the minimise the loss function (variational free
energy) by updating the trainable parameters of the model. Due to the random initialisation
of the RNN weights and the use of stochastic gradient descent to update the parameters, it is
possible for DyNeMo to converge to different local optima in the loss function. Neuroimaging
data itself is complex and it is reasonable to expect there could be multiple models with
different parameters that can lead to similar loss values. In this section we look at the
variability in the final loss value for different training runs and look at the impact of varying
the number of modes.

First, we look at the simulation datasets. In Bayesian inference the model evidence,
which is approximated by the variational free energy [47], can be used to compare models
with different hyperparameters. This allows us to select the number of modes to infer using
the variational free energy. Figure S3 shows the variational free energy of DyNeMo trained
on the simulation datasets described in Sections 2.3.1 and 2.3.2 as a function of number of
modes. The ground truth number of modes was 3 for simulation 1 and 6 for simulation 2. We
can see the variational free energy decreases until the correct number of modes is reached.
It then flattens, we see adding more modes no longer shows an improvement. This indicates
the variational free energy can be used to correctly select the number of modes.

Turning to the resting-state MEG dataset, we evaluate the run-to-run variability in the
loss. Figure S4 shows the final training and validation loss as a function of number of modes.
As the number of modes increases so does the variability in the loss. Our strategy for finding
the global optimum involves training DyNeMo multiple times and selecting the model with
the lowest loss. Although there’s a systematic offset in the validation loss compared to the
training loss, which suggests overfitting to the 45 subject dataset, the difference remains the
same as the number of modes is increased, which means overfitting does not get worse with
more modes. The systematic offset is likely to be due to the fact that the validation dataset
contained unseen subjects and the model not generalising to new subjects very well. Over this
range, the loss decreases monotonically meaning more modes provide a better description of
the data. Unlike the simulation studies, we cannot see a clear minimum in the loss function.
This indicates the optimum number of modes maybe greater than 30. However, the aim of
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Figure S3: The loss (variational free energy) indicates the optimum number of modes. Sim-
ulations 1 and 2 are described in Section 3.1 and 3.2. The ground truth in these simulations
was dataset generated using 3 and 6 modes respectively. The mean training (blue) and vali-
dation loss (brown) for a batch vs the number of modes. Each data point is the average of
five runs. The error bar is one standard deviation. The same training dataset was used here
and the results shown in Figures 4 and 5. An additional 5,120 data points were simulated
for the validation dataset.

Figure S4: More modes provide a better description of the data. The mean training (blue)
and validation loss (brown) for a batch vs the number of modes. We split the resting-state
MEG dataset into a 45 subject training dataset and 10 subject validation dataset. Each data
point is the average of ten runs. The error bar is one standard deviation. For 25 modes or
less the error bar is too small to be seen.

this model is to provide a low-dimensional interpretable description of the data. Therefore,
rather than using the variational free energy to determine the number of modes, we preselect
a low value as a hyperparameter.

Figure S5 shows the power maps for the run with the best loss when fitting 4-12 modes.
As the number of modes increases the activation of each brain region becomes more localised.
This is expected as increasing the number of modes allows greater precision in reconstructing
the time-varying covariance Ct from the mode covariances Dj (see Equation (4)). When we
fit 4 modes, we see power is divided amongst the four lobes: the occipital, parietal, temporal
and frontal lobe. As we increase the number of modes, the number of possible ways to
distribute power amongst the modes also increases. In this work, we choose to fit 10 modes
to MEG data as a trade off between obtaining an interesting description of the data and
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Figure S5: Power maps show more localised activation with an increasing number of modes.
These power maps were obtained from a model trained on resting-state MEG data from 45
subjects. Arrows indicate when a power map has split as the number of modes was increased.
The top two views on the brain in the power map plots are lateral surfaces and the bottom
two are medial surfaces.

minimising the variability in the power maps of each run.

b) Taska) Resting-State

Figure S6: DyNeMo learns spectrally distinct modes. Mode PSDs including the activity
common to all modes (top) and mode PSD relative to the mean activity common to all
modes (bottom) for the resting-state (a) and task (b) MEG dataset. The mean PSD across
channels is shown.
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9.6 Mode PSDs

Figure S6 shows the PSD of each mode calculated with the regression method described
in Section 2.4 for the resting-state and task MEG dataset. In Figure S6 (top) we see all
modes have a PSD with a 1/f profile and exhibit a prominent 10 Hz peak. The drop off
towards 0 Hz is due to filtering applied during preprocessing. In Figure S6 (bottom) we see
the mode PSD relative to the activity shared across modes. We see differences in the PSD of
each mode consistent with expected frequency content of activity at locations shown in the
corresponding power maps.

9.7 HMMs Trained on the MEG Datasets

The HMM was also fitted to the MEG datasets described in Section 2.3.3 for comparison
with DyNeMo. Figure S7 shows the power maps, FC maps and PSDs of the HMM states
inferred on the resting-state MEG dataset and Figure S9 shows the power maps, FC maps
and PSDs of the HMM states inferred on the task MEG dataset.
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Figure S7: HMM states inferred on a resting-state MEG dataset consisting of 55 subjects.
Each box shows the power map (left), FC map (middle) and PSD averaged over regions of
interest (right) for each group. The top two views on the brain in the power map plots are
lateral surfaces and the bottom two are medial surfaces. The shaded area in the PSD plots
shows the standard error on the mean.
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State Time Course

Summary Statistics

Figure S8: State time course and summary statistics for the HMM fit to the resting-state
MEG dataset. a) Inferred state time course for the first 80 seconds of the first subject (top)
and zoomed in on the first 5 seconds (bottom). b) Distribution of fractional occupancies over
subjects and distribution of state lifetimes and intervals for all subjects.
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Figure S9: HMM states inferred on a visuomotor task MEG dataset consisting of 51 subjects.
Each box shows the power map (left), FC map (middle) and PSD averaged over regions of
interest (right) for each group. The top two views on the brain in the power map plots are
lateral surfaces and the bottom two are medial surfaces. The shaded area in the PSD plots
shows the standard error on the mean.
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a)

b)

Figure S10: An evoked response to the visuomotor task is seen across trials with the HMM fit
to the visuomotor task MEG dataset. a) State time courses epoched around the visual (left)
and abduction (right) task. The average over trials is shown. b) Individual trial responses
(state time course) for state 3 (visual, left) and state 5 (sensorimotor, right). The visual
stimulus/abduction task occurs at Time = 0 s.
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