

1

2 **Haploidy-linked cell proliferation defects limit larval growth in Zebrafish**

3

4

5 Kan Yaguchi^{1,2*}, Daiki Saito^{1*}, Triveni Menon³, Akira Matsura¹, Miyu Hosono¹, Takeomi
6 Mizutani⁴, Tomoya Kotani⁵, Sreelaja Nair⁶, and Ryota Uehara^{1,2}

7

8 ¹Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku,
9 Sapporo, 001-0021, Japan

10 ²Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku,
11 Sapporo, 001-0021, Japan

12 ³Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA

13 ⁴Department of Life Science and Technology, Faculty of Engineering, Hokkai-Gakuen
14 University, Minami 26, Nishi 11, Chuo-ku, Sapporo, 064-0926, Japan

15 ⁵Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10,
16 Nishi 8, Kita-Ku, Sapporo 060-0810, Japan

17 ⁶Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay,
18 Powai, Mumbai, 400076, India

19

20 * Kan Yaguchi and Daiki Saito are the co-first authors of this paper.

21

22 Corresponding authors:

23

24 Sreelaja Nair, Department of Biosciences and Bioengineering, Indian Institute of
25 Technology Bombay, Powai, Mumbai, 400076, India

26 E-mail: sreelaja@iitb.ac.in

27 Phone: 91-22-25766758

28

29 Ryota Uehara, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11,
30 Kita-Ku, Sapporo 001-0021, Japan

31 E-mail: ruehara@sci.hokudai.ac.jp

32 Phone: 81-11-706-9238

33

34 Keywords: Ploidy, Centrosome, Zebrafish

35 **Abstract**

36

37 Haploid larvae in non-mammalian vertebrates are lethal with characteristic organ growth
38 retardation collectively called "haploid syndrome." In contrast to mammals whose haploid
39 intolerance is attributed to imprinting misregulation, the cellular principle of haploidy-
40 linked defects in non-mammalian vertebrates remains unknown. Here, we investigated
41 cellular defects that disrupt the ontogeny of gynogenetic haploid zebrafish larvae. Unlike
42 diploid control, haploid larvae manifested unscheduled cell death at the organogenesis stage,
43 attributed to haploidy-linked p53 upregulation. Moreover, we found that haploid larvae
44 specifically suffered the gradual aggravation of mitotic spindle monopolarization during 1-
45 3 days post fertilization, causing spindle assembly checkpoint-mediated mitotic arrest
46 throughout the entire body. High-resolution imaging revealed that this mitotic defect
47 accompanied the haploidy-linked centrosome loss occurring concomitantly with the gradual
48 decrease in larval cell size. Either resolution of mitotic arrest or depletion of p53 **partially**
49 improved organ growth in haploid larvae. Based on these results, we propose that haploidy-
50 linked mitotic defects and cell death are **parts of** critical cellular causes **shared among**
51 **vertebrates that limit the larval growth in the haploid state, contributing to an evolutionary**
52 **constraint on allowable ploidy status in the vertebrate life cycle.**

53

54

55

56 **Introduction**

57

58 Compared to plants or fungi, the life cycle in animals is restricted regarding ploidy. In plant
59 and fungal life cycles, cells undergo mitotic divisions and develop multicellular bodies in
60 the haploid and diploid generations (Mable and Otto, 1998). In contrast, the multicellular
61 stage in animals is restricted to the diploid generation, except in some orders of
62 haplodiplontic invertebrates (Mable and Otto, 1998; Otto and Jarne, 2001). The ploidy
63 restriction is especially stringent in vertebrates: Haploid embryos generated through egg
64 activation without the contribution of one parent's genome (e.g., parthenogenesis,
65 gynogenesis, or androgenesis) are almost invariably lethal in vertebrates (Wutz, 2014).

66

67 In mammals, haploid embryonic lethality is mainly attributed to misregulation of imprinted
68 genes. Differential expression of parental alleles of imprinted genes disables the
69 development of mammalian uniparental haploid embryos beyond the preimplantation
70 blastocyst stage (Leeb and Wutz, 2013; Tilghman, 1999). On the contrary, non-mammalian
71 vertebrates are devoid of parent-specific genomic imprinting and, hence, free from
72 imprinting-associated developmental defects. However, despite the lack of the detrimental
73 feature of imprinting misregulation, haploid larvae are lethal even in non-mammalian
74 vertebrates.

75

76 Compared to mammals, ontogenetic defects become evident at later developmental stages
77 in haploid non-mammalian vertebrates. For example, haploid larvae in zebrafish undergo
78 gastrulation and somite formation and initiate organogenesis by 24 hours post fertilization
79 (hpf) with only a modest delay from diploid counterparts (Menon et al., 2020). Haploid
80 larvae in other fish and amphibians also reach the organogenesis stage (Fankhauser, 1938;
81 Hamilton, 1966; Uwa, 1965). However, after the onset of organogenesis, haploid larvae in
82 these non-mammalian species manifest pleiotropic developmental defects and succumb to
83 lethality after hatching. For example, haploid embryos and larvae suffer abnormalities in
84 collective cell migration during gastrulation (Menon et al., 2020), water inflow control
85 through ectoderm in gastrulae (Hamilton and Tuft, 1972), prechordal plate function (Araki
86 et al., 2001), epidermal cell arrangements during post-gastrula stages (Ellinger, 1979;
87 Ellinger and Murphy, 1980), melanophore pigmentation (Uwa, 1965), and blood circulation
88 (Uwa, 1965). These developmental abnormalities have been collectively called "haploid
89 syndrome" (Dasgupta and Matsumoto, 1972; Hamilton, 1966; Luo and Li, 2003).

90

91 In the complex profile of haploid syndrome, a particularly common abnormality across
92 non-mammalian vertebrate species is severe growth retardation of organs, such as the brain
93 and eyes (Dasgupta and Matsumoto, 1972; Fankhauser and Griffiths, 1939; Hertwig, 1911;
94 Oppermann, 1913; Purdom, 1969; Uwa, 1965). Forced diploidization of haploid larvae by
95 artificial induction of whole-genome duplication in the early cleavage stages resolves organ
96 retardations, suggesting that the haploid state per se, rather than loss of heterozygosity of

97 deleterious recessive alleles, causes these defects (Menon and Nair, 2018; Nagy et al.,
98 1978; Streisinger et al., 1981; Subtelny, 1958). Though previous studies identify global
99 developmental errors associated with haploidy, the specific cell biological triggers of
100 haploid organ retardations remain largely unknown. Elucidation of a fundamental cellular
101 cause of the haploidy-linked organ retardations in non-mammalian vertebrates would
102 provide a profound insight into evolutionary constraints that limit the multicellular stage of
103 vertebrate life cycles exclusively to the diploid generation.

104

105 In this study, we investigated cellular defects in haploid zebrafish during the larval stages,
106 when morphological abnormalities became evident (Kroeger et al., 2014). Haploid larvae
107 suffered unscheduled cell death associated with p53 upregulation. High-resolution imaging
108 revealed that, as cell size gradually decreased after 12 hpf, drastic centrosome loss occurred
109 almost exclusively in haploid cells below a certain size threshold. This cell size-linked
110 centrosome loss led to the gradual accumulation of mitotic defects in haploid larvae, which
111 coincided with the characteristic temporal pattern of organ growth retardation at the
112 developmental stage. Alleviating mitotic arrest or artificially reducing p53 levels **partially**
113 improved organ growth, indicating that haploidy-linked poor organ growth stems at least in
114 part from these cellular defects. Our results revealed haploidy-linked incoordination of cell
115 proliferation, whose progression pattern may shape the characteristic profile of "haploid
116 syndrome" in non-mammalian vertebrates.

117

118 **Results**

119 **A drastic increase in unscheduled apoptosis in haploid larvae**

120 We investigated the developmental processes of haploid and diploid zebrafish larvae
121 generated by *in vitro* fertilization using UV-irradiated and non-irradiated spermatozoa,
122 respectively (Fig. S1). At 3.5 days post fertilization (dpf), by when most organs have
123 formed, haploid larvae manifested typical "haploid syndrome" defects, such as curled, short
124 body axis and reduced brain and eye sizes compared with diploid counterparts (Fig. 1A and
125 B) (Kroeger et al., 2014; Luo and Li, 2003; Purdom, 1969; Uwa, 1965). The morphological
126 defects of haploid syndrome occurred in varying phenotypic grades, with some larvae
127 manifesting severe defects and others with milder defects within a clutch (Fig. 1A).
128 Consistent with this, we observed a larger variance of body and organ size distributions in
129 haploid larval groups than in diploids (Fig. 1B). DNA content analysis using flow
130 cytometry showed that the 1C and 2C populations (possessing one and two genome copies,
131 respectively) predominated in the haploid larval groups at 3 and 5 dpf, confirming that cells
132 in haploid zebrafish larvae retained the haploid state throughout the time duration (Fig. S1).
133 This is in sharp contrast to haploid mammalian embryonic cells that quickly convert to
134 diploids during early embryogenesis (Leeb and Wutz, 2011; Sagi et al., 2016).

135

136 The drastically poor organ growth in haploid larvae indicated a possibility that haploid cells
137 suffered defects in cell proliferation. To test this idea, we visualized apoptotic and mitotic
138 cells by immunostaining cleaved caspase-3 and phospho-histone H3 (pH3), respectively

139 (Mendieta-Serrano et al., 2013; Sorrells et al., 2013), in 3 dpf haploid and diploid larvae
140 (Fig. 2A). In diploid larvae, cleaved caspase-3-positive cells were infrequent and found at
141 specific sites, such as the optic tectum, mid-brain, and the inner retinal layers (Fig. 2A, B,
142 and S2), reflecting programmed apoptosis underlying tissue organization (Yamashita,
143 2003). On the other hand, in haploid larvae, cleaved caspase-3-positive cells were
144 frequently detected throughout the whole body (Fig. 2A, B, and S2). Quantification of the
145 density of cleaved caspase-3-positive cells within the right midbrain demonstrated a
146 significantly higher frequency of apoptotic cells in haploids than in diploids (Fig. 2C).
147 Moreover, haploid larvae showed a significant increase in frequency of pH3-positive
148 mitotic cells compared to diploids (Fig. 2A-C, see also Fig. S4E for 3-d distribution of
149 pH3-positive cells in haploids). These results demonstrate that haploid larvae suffer
150 irregularly patterned apoptosis and cell division throughout the body, potentially impairing
151 organ growth during development. Therefore, we decided to address the molecular and
152 cellular bases of these haploidy-linked defects in cell survival and proliferation.

153

154 **Irregular p53 upregulation limits organ growth in haploid larvae**

155 We next sought to determine the cause of the haploidy-linked unscheduled apoptosis. As a
156 candidate apoptosis inducer, we investigated expression levels of p53 protein in haploid
157 and diploid larvae at 3 dpf by immunoblotting (Fig. 3A). p53 expression was significantly
158 higher in haploid larvae than in diploids (Fig. 3A and B). p53 level in haploids was even

159 higher than that in diploid larvae irradiated with UV to induce DNA damage-associated p53
160 upregulation (Fig. 3B).

161

162 To investigate the causality between irregular p53 upregulation and haploidy-linked defects,
163 we next tested the effects of morpholino-mediated p53 depletion on apoptosis in haploid
164 larvae. p53 expression was substantially reduced by a p53-specific morpholino (Fig. 3C and
165 D). In control haploid morphants injected with a 4-base mismatch morpholino, cleaved
166 caspase-3-positive apoptotic cells were detected throughout the body (Fig. 3E and S3A).
167 Depletion of p53 significantly reduced the frequency of cleaved caspase-3-positive cells in
168 haploid larvae compared to control (Fig. 3F and G). DNA content in haploid p53
169 morphants was equivalent to that in control haploids, demonstrating that the ploidy level
170 did not change upon p53 depletion in haploid larvae (Fig. S3B). These results suggest that
171 p53 upregulation contributes to enhanced apoptosis in haploid larvae.

172

173 We also tested the effect of p53 depletion on organ size in haploid larvae (Fig. 3H). p53
174 depletion significantly increased body-axis length and brain width assessed at the mid-brain
175 in haploid larvae (Fig. 3H and I), while the size increase for body axis length, brain width,
176 or eye surface area was about 15.9%, 22.3%, or 5.0%, respectively, of the difference
177 between haploids and diploids. p53 depletion notably eliminated the population of haploid
178 larvae that suffered particularly severe organ size reduction, suggesting modest alleviation

179 of the haploidy-linked poor organ growth (Fig. 3I). The above data indicate p53-induced
180 apoptosis as a part of the cause of haploidy-linked organ growth retardation.

181

182 **Haploidy larvae suffer severe mitotic arrest**

183 Next, we sought to understand the reason for the irregular cell proliferation in haploid
184 larvae and its possible influence on developmental defects in the haploid state. To
185 quantitatively analyze the haploidy-linked change in cell proliferation pattern, we conducted
186 flow cytometry for DNA content and pH3-positive cell proportion in 1-3 dpf haploid and
187 diploid whole-larval cells (Fig. 4A and B). In diploid larvae, the proportion of pH3-positive
188 cells was 1.6 % at 1 dpf, which decreased to 0.4% at 3 dpf (Fig. 4A and B), possibly
189 reflecting the transition from proliferative to postmitotic state in different cell lineages
190 during larval stages (Li et al., 2000; Sugiyama et al., 2009). On the other hand, the
191 proportion of pH3-positive cells in haploid larvae was 1.6% at 1 dpf and 1.2% at 3 dpf (Fig.
192 4A and B). The mitotic index was significantly higher in haploid larvae than in diploids at
193 2-3 dpf (Fig. 4B), consistent with the finding in the whole-mount larval imaging (Fig. 2A-
194 C).

195

196 To address the cause of the mitotic index increase in haploids, we conducted live imaging
197 and analyzed the mitotic progression of endothelial cells in 1.5-3 dpf haploid and diploid
198 larvae stably expressing histone-H2B-mCherry (Tg(fli1:h2b-mCherry)/ncv31Tg) (Yokota
199 et al., 2015). In diploid larvae, almost all cells that entered mitosis (marked by nuclear

200 envelope breakdown (NEBD)) completed chromosome alignment and segregation within
201 30 min after mitotic entry (Fig. 4C and D). On the other hand, 15% of haploid cells spent >
202 60 minutes in the mitotic phase, revealing a severe mitotic delay in haploid larvae. Such
203 mitotically delayed haploid cells often underwent mitotic death or mitotic slippage (exiting
204 mitosis without proper chromosome segregation) (Fig. 4C and E). Mitotic progression was
205 slower in haploid larvae than in diploids for the duration of assessment from 1.5-3 dpf, with
206 more frequent mitotic defects later in the observation (Fig. S4A-D). We also observed
207 severe chromosome misalignment in haploid cells delayed in mitosis (Fig. 4C), suggesting
208 that the increased mitotic index and mitotic delay seen in haploid larvae could be due to the
209 activation of the spindle assembly checkpoint (SAC).

210

211 **Gradual aggravation of mitotic spindle monopolarization with centriole loss in**
212 **haploid larvae during 1-3 dpf**

213 To understand the cause of the frequent mitotic arrest with chromosome misalignment in
214 haploid larvae, we investigated mitotic spindle organization by immunostaining of α -
215 tubulin and centrin, which mark microtubules and the centrioles, respectively, in the head
216 region of haploid and diploid larvae from 0.5 to 3 dpf (Fig. 5 and S5). Almost all mitotic
217 cells in diploids possessed bipolar spindles with the normal number of 4 centrioles in all
218 stages tested. At 0.5 dpf, haploid embryonic cells also possessed bipolar spindles with 4
219 centrioles (Fig. 5A-C, and S5A-D). However, as development progressed, cells in haploid
220 larvae had monopolar spindles with reduced centriole number and severe chromosome

221 misalignment (Fig. 5B and C). In the head region of haploid larvae, including eyes, brain,
222 skin, and olfactory organ, 14.5% of mitotic cells had monopolar spindles at 1 dpf, which
223 increased to 32.6% and 61.5% at 2 and 3 dpf, respectively (Fig. 5B). The timing of the
224 gradual aggravation of spindle monopolarization and centrosome loss corresponded well
225 with the time when mitotic index became significantly higher in haploids than in diploids
226 with increased cell death (Fig. 4A, B and S4D). The trajectory of centriole loss and spindle
227 monopolarization was organ-specific: these defects commenced earlier or **were more**
228 **drastic** in the eyes and brain than in the skin (Fig. S5A-D). However, the frequency of
229 monopolar mitotic cells with centriole loss reached over 50% in all these organs by 3 dpf,
230 revealing the general nature of the cellular defects in haploid larvae.

231

232 Since the first division, embryonic cell size continuously reduces through successive cell
233 divisions during early development (Menon et al., 2020). Cell size reduction continued at
234 the developmental stage when we observed the gradual aggravation of the centrosome loss
235 **in haploid larvae.** Therefore, we tested the relationship between cell size and centriole
236 number in mitotic cells in subepidermal cell layers in the head region of 0.5-3 dpf haploid
237 or diploid larvae (Fig. 5D and E; *see Material and methods*). During 0.5-3 dpf, the largest
238 slice area of mitotic cells reduced from $43 \mu\text{m}^2$ to $16 \mu\text{m}^2$ or from $61 \mu\text{m}^2$ to $29 \mu\text{m}^2$ in
239 haploids or diploids, respectively (Fig. 5D). Interestingly, monopolar spindles with **a**
240 reduced number of the centrioles were observed almost exclusively in the cells whose
241 largest slice area was less than $35 \mu\text{m}^2$, suggesting a lower limit of cell size for supporting

242 centrosome number homeostasis in haploid larvae (Fig. 5D and E). Below the limit,
243 frequency of monopolar spindles monotonically increased as cell size reduced in haploids
244 (Fig. 5E). In contrast, diploid larval cells whose size became lower than this limit still
245 formed bipolar spindles. The above data indicates that the stage-specific aggravation of
246 mitotic spindle monopolarization through the haploidy-specific centrosome loss results in
247 severe mitotic arrest in haploid larvae.

248

249 **Resolution of SAC-dependent mitotic arrest improves larval growth in the haploid**
250 **state**

251 Finally, we sought to address the causality between haploidy-linked mitotic arrest and
252 larvae growth defects. For this, we attempted to resolve the haploidy-linked mitotic arrest
253 by suppressing SAC using reversine, an inhibitor of Mps1 kinase required for SAC
254 activation (Santaguida et al., 2010). In live imaging of histone-H2B-mCherry, 97% of
255 reversine-treated haploid larval cells underwent chromosome segregation or exited mitosis
256 within 30 min after NEBD (Fig. 4C, D, and S4C). Notably, mitotic cell death was
257 substantially suppressed by reversine (Fig. 4E). Therefore, the SAC inactivation resolved
258 the severe mitotic delay and mitigated mitotic cell death in haploid larvae.

259

260 We next tested whether SAC inactivation resolved the abnormal cell proliferation pattern in
261 haploid larvae. For this, we analyzed the mitotic index in 3 dpf haploid larvae treated with
262 reversine using flow cytometry (Fig. 6A and B). Reversine significantly reduced the

263 proportion of pH3-positive cells in haploid larvae to levels equivalent to that in diploids
264 (Fig. 6A and B, see also Fig. 4A and B). In immunostained haploid larvae, we also
265 observed a reduction in pH3-positive cells upon reversine treatment (Fig. 6C-E). These
266 results indicate that the abnormal cell proliferation pattern with the high mitotic index in
267 haploid larvae is mainly due to the SAC-dependent mitotic arrest.

268

269 Based on the finding that SAC inactivation mitigated abnormal cell proliferation in haploid
270 larvae, we tested the effect of reversine treatment on organ growth in haploid larvae.
271 Reversine treatment significantly increased body axis length and eye size in haploid larvae
272 compared to DMSO-treated control (Fig. 6F and G), while the size increase for body axis
273 length, brain width, or eye surface area was about 16.4%, 15.8%, or 23.8%, respectively, of
274 the difference between haploids and diploids. These results indicate that the haploidy-
275 linked mitotic stress with SAC activation is a part of the cause of organ growth defects in
276 haploid larvae.

277

278 **Discussion**

279

280 Many reports have revealed tissue-level developmental abnormalities in haploid embryos
281 since the discovery of haploid embryonic lethality in vertebrates more than 100 years ago
282 (Hertwig, 1911). However, there have been surprisingly few descriptions of cellular
283 abnormalities underlying these tissue defects, precluding an evidence-based understanding
284 of cellular principles that limit developmental ability in haploid embryos. Our basic
285 descriptions of haploidy-linked cellular defects in haploid zebrafish larvae would provide a
286 frame of reference for why vertebrates can not develop in the haploid states.

287

288 **Cell proliferation defects limit organ growth in haploid zebrafish larvae**

289 Poor organ growth is a common feature of haploid syndrome in non-mammalian
290 vertebrates. Since haploid somatic cells are generally smaller than isogenic diploids in
291 animals (Gibeaux et al., 2018; Menon et al., 2020; Yaguchi et al., 2018), haploid embryos
292 have a higher demand for cell proliferation (i.e., need more cells) than diploids for
293 achieving normal organ size. Indeed, such compensatory cell number increase occurs in
294 some cases, such as pronephric tubules and ducts in haploid newt larvae or cellular
295 blastoderms of haploid fry (Edgar et al., 1986; Fankhauser, 1945). However, we found that
296 haploid zebrafish larvae manifested frequent mitotic arrest and cell death across various
297 organs, which blocked efficient cell proliferation during organogenesis. Mitotic defects in
298 haploids also potentially led to the generation of aneuploid progenies. However, cell

299 populations with irregular DNA content were not evident in flow cytometric analyses of
300 haploid larvae (Fig. S1), suggesting that abnormal chromosome segregation ultimately led
301 to cell death or growth arrest in haploids. Resolution of mitotic arrest by SAC inactivation
302 or suppression of apoptosis by p53 depletion modestly improved organ growth in haploid
303 larvae. These results support the idea that poor organ growth in haploid larvae stems, at
304 least in part, from haploidy-linked defects in cell proliferation control, which abolishes the
305 compensatory cell number increase required for ontogenesis in the haploid state.

306

307 The relatively small extent of the rescue in tissue growth by p53 depletion or SAC
308 inactivation may be partially explained by the incomplete resolution of cell death or mitotic
309 defects, respectively, by these treatments. However, this limited rescue also indicates that
310 unaddressed cellular defects other than cell death or mitotic defects potentially contribute to
311 organ growth retardation in haploid larvae, which should be clarified in future studies. We
312 also need to note that defining “fully-rescued” haploid larval size is difficult since the
313 relationship between ploidy and body size differs depending on biological contexts. For
314 example, even in haplodiploitic invertebrate species such as rotifers, normally developing
315 haploid larvae are less than half in their body length compared to their diploid counterparts
316 (Ricci and Melone, 1998). Normally developing haploid male larvae are also smaller than
317 diploid males in some ant species (Yamauchi et al., 2001), while they are the same in size
318 in other ant species (Kureck et al., 2013). Therefore, it remains to be determined whether

319 haploid vertebrate larvae reach diploid-equivalent body size when their cellular defects are
320 sufficiently resolved.

321

322 **Developmental stage-dependent aggravation of mitotic defects**

323 Haploid larvae suffered severe mitotic arrest with the abnormally high mitotic index after 1
324 dpf (Fig. 4). Corresponding to these defects, mitotic chromosome misalignment associated
325 with spindle monopolarization became evident and gradually aggravated after 1 dpf in
326 haploid larvae (Fig. 5). A previous study reported that normal zebrafish embryos acquire
327 SAC function by 4 hpf (Zhang et al., 2015), suggesting that spindle monopolarization after
328 1 dpf activated SAC and arrest mitotic progression. Indeed, SAC inhibition by reversine
329 sufficiently restored mitotic progression and cell proliferation patterns in haploid larvae
330 (Fig. 6), demonstrating that monopolar spindle-driven SAC is a cause of haploidy-linked
331 abnormality in cell proliferation. This data also shows that SAC acquisition is normal even
332 in the haploid state in zebrafish larvae.

333

334 The correlation between centrosome loss and spindle monopolarization indicates that
335 haploid larval cells fail to form bipolar spindle because of the haploidy-linked centrosome
336 loss (see below for further discussions on possible future experiments to address the
337 causality between centrosome loss and haploidy-linked cellular and larval defects). We
338 found that the centrosome loss progressed from 1 to 3 dpf in haploid larvae, concomitantly
339 with the gradual reduction in cell size through continuous cell divisions without full cell

340 growth (Menon et al., 2020). Interestingly, centrosome loss occurred almost exclusively in
341 haploid cells whose size became smaller than a certain border (Fig. 5). Because of the cell
342 size-coupled progression of centrosome loss, severe mitotic defects and size retardation
343 took place mainly in the organs that remained mitotically active even after 1 dpf. Based on
344 these results, we propose that the stage-dependent propagation of centrosome loss shapes
345 the characteristic profile of "haploid syndrome" in zebrafish larvae.

346

347 While it is currently unknown why haploid cells lose their centrosomes only below a
348 certain cell size threshold, a possible explanation could be the depletion of centrosomal
349 protein pool in the cytoplasm with drastic cell size reduction. Consistent with this idea, a
350 previous study in early *C. elegans* embryos proposed that the total centrosomal protein
351 amount proportional to embryonic cell size determined the extent of protein accumulation
352 at the mitotic centrosomes (Decker et al., 2011). **Alternatively, it is also possible that other**
353 **primary causes, such as the lack of a second active allele producing sufficient protein pools,**
354 **induced cell size reduction and centrosome loss in parallel without causality between them.**
355 It is important to note that diploid larval cells also became smaller than the size border
356 found in haploids, though they reached the border 1 or 2 days later than haploids (Fig. 5D).
357 However, diploid larval cells remained free from centrosome loss even when smaller than
358 the border. Therefore, interesting future perspectives are to address the mechanism that
359 secures centrosome number stability upon cell size changes in diploids and to specify the
360 cause that abolishes the mechanism in haploids.

361

362 In contrast to the later organogenetic stages, haploid embryos at 0.5 dpf possessed a normal
363 number of centrosomes. This result demonstrates that centrioles provided by the UV-
364 irradiated sperms are functional to fully support centriole duplication during early
365 developmental stages before 0.5 dpf. This finding excludes the possibility that centrosome
366 loss in later haploid larvae is merely a side effect of sperm UV irradiation for gynogenesis.

367

368 **Generality of haploidy-linked cellular defects across vertebrates**

369 In mammalian cultured cells and embryos, centrosome loss causes chromosome
370 missegregation and chronic mitotic delay, resulting in gradual p53 accumulation that
371 eventually blocks cell proliferation or viability (Bazzi and Anderson, 2014; Fong et al.,
372 2016; Lambrus et al., 2016; Meitinger et al., 2016). Therefore, it is intriguing to speculate
373 that the haploidy-linked p53 upregulation in zebrafish larvae stems from severe centrosome
374 loss. Interestingly, haploid mammalian cultured cells also suffer centrosome loss and
375 chronic p53 upregulation, limiting their proliferative capacity (Olbrich et al., 2017; Yaguchi
376 et al., 2018). Our findings demonstrate a striking commonality of the haploidy-linked
377 cellular defects between mammalian and non-mammalian species while manifesting
378 diverse organismal defects in the haploid state.

379

380 A limitation of our current approach to alleviating mitotic arrest using reversine is that SAC
381 inactivation does not rescue chromosome missegregation caused by premature mitotic exit
382 with erroneous kinetochore-microtubule attachments (Santaguida et al., 2010). This
383 precludes us from investigating the relationship between mitotic fidelity and developmental
384 defects in haploid larvae. In a previous study, drastic mitotic defects caused by the
385 knockdown of several key centrosomal components resulted in a similar profile of
386 developmental defects to haploids, including the formation of microcephaly, body size
387 reduction, and curled tails in zebrafish larvae (Novorol et al., 2013). This indicates that the
388 severe mitotic defects observed in haploid larvae also profoundly contribute to the
389 formation of their morphological defects. For further investigating the causality between
390 mitotic defects and haploid developmental abnormalities, it would be ideal to have an
391 experimental condition that restores intact centrosomal control in haploid larvae. Previously,
392 we found that artificial re-coupling of the DNA replication cycle and centrosome
393 duplication cycle by delaying the progression of DNA replication resolved chronic
394 centrosome loss and mitotic defects in human haploid cultured cells (Yoshizawa et al.,
395 2020). Though we tried to restore centrosome loss by treating aphidicolin in haploid larvae,
396 severe toxicity of the compound on haploid larvae after 1 dpf precluded us from testing its
397 effect on centrosome control. Genetic manipulation of centrosome duplication control in
398 haploid larvae may provide an excellent opportunity to investigate the causality of
399 centrosome loss in the haploid syndrome in future studies. Efforts to specify factors
400 enabling centrosome restoration are currently underway in our laboratory.

401

402 Developmental incompetence of haploid larvae is likely a crucial evolutionary constraint of
403 the diplontic life cycle (Sagi and Benvenisty, 2017). Though parent-specific genome
404 imprinting would serve as the primary mechanism for blocking the development of haploid
405 embryos in mammals, what precludes haploid development in non-mammalian species has
406 been unknown. Based on our results, we propose that the ploidy-centrosome link, as a
407 broadly conserved mechanism, contributes, at least in part, to limiting the developmental
408 capacity of haploid embryos in non-mammalian vertebrates. It is an intriguing future
409 perspective to address how the ploidy-centrosome link is preserved or modulated in
410 invertebrate animal species, especially those with a haplodiplontic life cycle.

411

412 **Material and Methods**

413

414 *Zebrafish strain and embryos*

415 Wild-type zebrafish were obtained from the National BioResource Project Zebrafish Core

416 Institution (NZC, Japan) or a local aquarium shop (Homac, Japan). The *Tg(fli1:h2b-*

417 *mCherry)/ncv31Tg* line (Yokota et al., 2015) was provided by NZC. Transgenic animal

418 experiments in this study were approved by the Committee on Genetic Recombination

419 Experiment, Hokkaido University. Fish were maintained at 28.5°C under a 14 h light and

420 10 h dark cycle. For collecting sperm for *in vitro* fertilization, whole testes from a single

421 male were dissected into 1 mL cold Hank's buffer (0.137 M NaCl, 5.4 mM KCl, 0.25 mM

422 Na₂HPO₄, 0.44 mM KH₂PO₄, 1.3 mM CaCl₂, 1.0 mM MgSO₄ and 4.2 mM NaHCO₃). For

423 sperm DNA inactivation, sperm solution was irradiated with 254 nm UV (LUV-6, AS ONE)

424 at a distance of 30 cm for 1 min with gentle pipetting every 30 seconds (s). For

425 insemination, we added 500 µL sperm solution to ~200 eggs extruded from females

426 immobilized by anesthesia (A5040, Sigma-Aldrich; 0.08% ethyl 3-aminobenzoate

427 methanesulfonate salt, pH 7.2). After 10 s, we added 500 mL Embryo medium (5 mM NaCl,

428 0.17 mM KCl, 0.33 mM CaCl₂, 0.33 mM MgSO₄ and 10⁻⁵% Methylene Blue). After the

429 chorion inflation, embryos were grown in Embryo medium at 28.5°C until use.

430

431 To inhibit pigmentation, we treated embryos with 0.03 g/L N-phenylthiourea (P7629,

432 Sigma Aldrich) at 0.5 dpf. Dechorionation and deyolking were done manually in the cold

433 fish ringer's buffer without Ca^{2+} (55 mM NaCl, 1.8 mM KCl, 12.5 mM NaHCO_3 , pH 7.2).
434 In the case of inducing p53 upregulation for checking the specificity of the anti-p53
435 antibody, diploid larvae were irradiated with 254 nm UV at a distance of 10 cm for 3 min at
436 66 hours post-fertilization (hpf). For SAC inactivation, larvae were treated with 5 μM
437 reversine (10004412, Cayman Chemical) from the time points described elsewhere.
438 Treatment with 0.5% DMSO was used as vehicle control for reversine treatment.

439

440 *Antibodies*

441 Antibodies were purchased from suppliers and used at the following dilutions: mouse
442 monoclonal anti- α -tubulin (1:800 for Immunofluorescence staining (IF); YOL1/34; EMD
443 Millipore); mouse monoclonal anti- β -tubulin (1:1000 for Immunoblotting (IB); 10G10;
444 Wako); mouse monoclonal anti-centrin (1:400 for IF; 20H5; Millipore); rabbit monoclonal
445 anti-active caspase-3 (1:500 for IF; C92-605; BD Pharmingen); rabbit polyclonal anti-p53
446 (1:1000 for IB; GTX128135; Gene Tex); Alexa Fluor 488-conjugated rabbit monoclonal
447 anti-phospho-histone H3 (pH3) (1:200 for IF and 1:50 for flow cytometry; D2C8; Cell
448 Signaling Technology); and fluorescence (Alexa Fluor 488 or Alexa Fluor 594) or
449 horseradish peroxidase-conjugated secondaries (1:100 for IF and 1:1000 for IB; Abcam or
450 Jackson ImmunoResearch Laboratories). Hoechst 33342 was purchased from Dojinjo (1
451 mg/mL solution; H342) and used at 1:100.

452

453 *Flow cytometry*

454 For isolating whole-larval cells, ~ 10 deyolked embryos were suspended in a cold trypsin
455 mixture (27250-018, Gibco; 0.25% trypsin in 0.14 M NaCl, 5 mM KCl, 5 mM glucose, 7
456 mM NaHCO₃, 0.7 mM EDTA buffer, pH 7.2) for ~15 min on ice with continuous pipetting.
457 For 2 dpf or older larvae, 8 mg/mL collagenase P (Roche) was added to the trypsin mixture
458 for thorough digestion. The isolated cells were collected by centrifugation at 1,300 rpm for
459 15 min at 4°C, fixed with 8% PFA in Dulbecco's phosphate-buffered saline (DPBS, Wako)
460 for 5 min at 25°C, permeabilized by adding an equal amount of 0.5% Triton X-100 in
461 DPBS supplemented with 100 mM glycine (DPBS-G), and collected by centrifugation as
462 above for removing the fixative. For DNA content and mitotic index analyses, cells were
463 stained with Hoechst 33342 and Alexa Fluor 488-conjugated anti-pH3, respectively, for 30
464 min at 25°C, washed once with DPBS, and analyzed using a JSAN desktop cell sorter (Bay
465 bioscience).

466

467 *Immunofluorescence staining*

468 For staining active caspase-3, or pH3, larvae were fixed with 4% PFA in DPBS for at least
469 2 h at 25°C, followed by partial digestion with cold trypsin mixture for 3 min. For staining
470 centrin and α -tubulin, larvae were fixed with 100% methanol for 10 min at -20°C. Fixed
471 larvae were manually deyolked in 0.1% Triton X-100 in DPBS and permeabilized with 0.5
472 or 1% Triton X-100 in DPBS overnight at 4°C, followed by treatment with BSA blocking
473 buffer (150 mM NaCl, 10 mM Tris-HCl, pH 7.5, 5% BSA, and 0.1% Tween 20) for >30

474 min at 4°C. Larvae were subsequently incubated with primary antibodies for >24 h at 4°C
475 and with secondary antibodies overnight at 4°C. Following each antibody incubation,
476 larvae were washed three times with 0.1% Triton X-100 in DPBS. Stained larvae were
477 mounted in Fluoromount (K024, Diagnostic BioSystems) or RapiClear 1.52 (RC152001,
478 SunJin Lab).

479

480 The density of cleaved caspase-3- or pH3-positive cells in the right midbrain area was
481 quantified by counting these signal-positive cells using the cell counter plugin of ImageJ
482 and dividing the positive cell number by the volume of the right midbrain area (covering 2-
483 8 confocal layers from the top of the brain as detailed in corresponding figure legends)
484 segmented using the polygon selection tool of Image J (NIH). To estimate mitotic cell size
485 in 1-3 dpf larvae, we measured the area of the largest confocal sections of subepidermal
486 mitotic cells (cells located below the top two epidermal cell layers) using median 3D filters
487 and the polygon selection tool of ImageJ. The cell contour was judged based on
488 microtubule staining.

489

490 *Microscopy*

491 Immunostainings of active caspase-3 or pH3 were observed on an A1Rsi microscope
492 equipped with a 60× 1.4 NA Apochromatic oil immersion objective lens, an LU-N4S
493 405/488/561/640 laser unit, and an A1-DUG detector unit with a large-image acquisition
494 tool of NIS-Elements (Nikon). For live imaging of histone H2B-mCherry-expressing larvae,

495 the larvae were embedded in agarose gel (5805A, Takara) in E3 buffer supplemented with
496 anesthesia and N-phenylthiourea and observed using a TE2000 microscope (Nikon)
497 equipped with a Thermo Plate (TP-CHSQ-C, Tokai Hit; set at 30°C), a 60× 1.4 NA Plan-
498 Apochromatic oil immersion objective lens (Nikon), a CSU-X1 confocal unit (Yokogawa),
499 and iXon3 electron multiplier-charge-coupled device camera (Andor). Immunostaining of
500 centrin and α -tubulin was observed on a C2si microscope equipped with a 100× 1.49 NA
501 Plan-Apochromatic oil immersion objective lens, an LU-N4 405/488/561/640 laser unit,
502 and a C2-DU3 detector unit (Nikon).

503

504 *Immunoblotting*

505 Embryos were deyolked in cold-DPBS supplemented with cOmplete proteinase inhibitor
506 cocktail (Roche, used at 2× concentration), extracted with RIPA buffer (50 mM Tris, 150
507 mM NaCl, 1% NP-40, 0.5% Sodium Deoxycholate and 0.1% SDS) supplemented with 2×
508 cOmplete and centrifuged at 15,000 rpm for 15 min at 4°C to obtain the supernatant.
509 Proteins separated by SDS-PAGE were transferred to Immun-Blot PVDF membrane (Bio-
510 Rad). Membranes were blocked with 0.3% skim milk in TTBS (50 mM Tris, 138 mM NaCl,
511 2.7 mM KCl, and 0.1% Tween 20) and incubated with primary antibodies overnight at 4°C
512 or for 1 h at 25°C and with secondary antibodies overnight at 4°C or 30 min at 25°C. Each
513 step was followed by 3 washes with TTBS. For signal detection, the ezWestLumi plus ECL
514 Substrate (ATTO) and a LuminoGraph II chemiluminescent imaging system (ATTO) were
515 used. Signal quantification was performed using the Gels tool of **ImageJ**.

516

517 *Measurement of larval body size*

518 Larvae were anesthetized, mounted in 3% methylcellulose (M0387, Sigma), and observed
519 under a BX51 transparent light microscope (Olympus) equipped with a 10× 0.25 NA
520 achromatic objective lens (Olympus) and a 20× 0.70 NA Plan-Apochromatic lens
521 (Olympus). We measured the body length, brain width, and lateral eye area of larvae using
522 the segmented line tool of ImageJ. Since haploid larvae were often three-dimensionally
523 curled or bent, we measured lengths of body axes viewed from lateral and dorsal sides and
524 used longer ones for statistical analyses. We realized that the severeness of the haploidy-
525 linked morphological defects tended to differ among larvae from different female parents.
526 Therefore, we used clutches of larvae obtained from the same female parents for
527 comparative analyses of the experimental conditions.

528

529 *Morpholino injection*

530 The morpholino used in this study were 5' -GCG CCA TTG CTT TGC AAG AAT TG- 3'
531 (p53 antisense) and 5' -GCa CCA TcG CTT gGC AAG cAT TG- 3' (4 base-mismatch p53
532 antisense) (Langheinrich et al., 2002). One nL morpholino (dissolved in 0.2 M KCl with
533 0.05% phenol red at 3 mg/mL) was microinjected into haploid embryos at the 1 or 2-cell
534 stage using FemtoJet and InjectMan NI2 (Eppendorf).

535

536 *Statistical analysis*

537 Analyses for significant differences between the two groups were conducted using a two-
538 tailed Student's *t*-test in Excel (Microsoft). **Multiple group analyses were conducted** using
539 one-way ANOVA with Tukey post-hoc test in R software (The R Foundation). Statistical
540 significance was set at $p < 0.05$. *p*-values are indicated in figures or the corresponding
541 figure legends.

542

543 **Acknowledgment**

544 We are grateful to Kentaro Kobayashi and other members of the Nikon Imaging Center at
545 Hokkaido University for imaging technical support, Yoshimitsu Sagara, Kuniharu Ijiro,
546 Hiroshi Hinou, and Shin-Ichiro Nishimura for microinjectors and microscopes, Mithilesh
547 Mishra for kind supports, Koya Yoshizawa for supporting statistical analyses, and the Open
548 Facility, Global Facility Center, Creative Research Institution, Hokkaido University for the
549 flow cytometer. This work was supported by JSPS KAKENHI (Grant Numbers
550 JP19J12210 and JP21K20737 to K.Y., and JP19KK0181, JP19H05413, JP19H03219,
551 JPJSBP120193801, JP21K19244, and JP24K02017 to R.U.), the India Alliance Wellcome
552 Trust/Department of Biotechnology Intermediate Fellowship IA/I/13/2/501042 to S.N., the
553 Princess Takamatsu Cancer Research Fund, the Kato Memorial Bioscience Foundation, the
554 Orange Foundation, the Smoking Research Foundation, Daiichi Sankyo Foundation of Life
555 Science, the Akiyama Life Science Foundation, the Hoansha Foundation, the Terumo Life
556 Science Foundation, and the Nakatani Foundation to R.U. The authors declare no
557 competing financial interests.

558

559 **Author Contributions**

560 Conceptualization, K.Y., and R.U.; Methodology, K.Y., D.S., T.Me., T.Mi., T.K., S.N., and
561 R.U.; Investigation, K.Y., D.S., and M.H.; Formal Analysis, K.Y., D.S., M.H., and R.U.;
562 Resources, K.Y., D.S., T.Me., A.M., T.K., S.N., and R.U.; Writing – Original Draft, K.Y.,

563 and R.U.; Writing – Review & Editing, K.Y, T.Me., A.M., S.N., and R.U.; Funding

564 Acquisition, K.Y., S.N., and R.U.

565 **Figure legend**

566

567 **Figure 1. Morphological comparison between haploid and diploid larvae**

568 (A) Transparent microscopy of haploid or diploid larvae at 3.5 dpf. Broken line: body axis
569 (left panels), brain width (middle panels), or lateral eye contour (right panels). Arrowheads:
570 curling or bending of body axis. Arrows: Edema. (B) Quantification of body axis length,
571 brain width, or lateral eye area of haploid or diploid larvae in A. Box plots and beeswarm
572 plots of ≥ 17 larvae (≥ 34 eyes) from three independent experiments (** $p < 0.01$, two-tailed
573 t -test).

574

575 **Figure 2. Haploid zebrafish larvae suffer irregularly increased apoptosis**

576 (A) Immunostaining of cleaved caspase-3 and phospho-histone H3 (pH3) in whole-mount
577 haploid or diploid larvae at 3 dpf. DNA was stained by DAPI. Z-projected images of
578 confocal sections containing peripheral brain surface are shown. Broken lines indicate brain
579 area. Boxes indicate the areas enlarged in B. (B) Enlarged views of haploid or diploid
580 larvae in A. Arrows or arrowheads indicate examples of cleaved caspase-3- or pH3-positive
581 cells, respectively. (C) The density (cell number per volume) of cleaved caspase-3- or pH3-
582 positive cells in the right midbrain in haploid or diploid larvae in B. Examples of regions of
583 interest and counted cell positions are shown on the top. Five or 8 confocal slice sections
584 from the top of the brain were used for counting the number of caspase-3- or pH3-positive

585 cells, respectively. Means \pm standard deviation (SD) of ≥ 5 larvae from 2 independent
586 experiments for haploids and diploids ($*p < 0.05$, $**p < 0.01$, two-tailed *t*-test). All larvae
587 observed in this experiment are shown in Fig. S2.

588

589 **Figure 3. p53 upregulation limits organ growth in haploid larvae**

590 (A, C) Immunoblotting of p53 in haploid, diploid, or UV-irradiated diploid larvae (A) or
591 haploid larvae treated with control or p53 antisense morpholino (C) at 3 dpf. Arrows and
592 open arrowheads indicate full-length and shorter p53 isoforms, respectively. β -tubulin was
593 detected as a loading control. (B, D) Quantification of relative expression of p53 proteins in
594 A (B) or C (D). Mean \pm standard error (SE) of 3 independent experiments ($*p < 0.05$, $**p <$
595 0.01, the ANOVA followed by the post-hoc Tukey test in B, and two-tailed *t*-test in D). (E)
596 Immunostaining of active caspase-3 in whole-mount haploid control or p53 morphant at 3
597 dpf. DNA was stained by DAPI. Z-projected images of confocal sections containing
598 peripheral brain surfaces are shown. Broken lines indicate brain area. Boxes indicate the
599 areas enlarged in F. (F) Enlarged views of morphants in E. (G) The density of cleaved
600 caspase-3-positive cells in the right midbrain in morpholino-injected haploid larvae in F.
601 Two confocal slice sections from the top of the brain were used for cell counting. Means \pm
602 SD of 6 control morphants and 4 p53 morphants from 2 independent experiments ($**p <$
603 0.01, two-tailed *t*-test). All larvae observed in this experiment are shown in Fig. S3A. (H)
604 Transparent microscopy of haploid control and p53 morphants at 3.5 dpf. Broken line: body
605 axis (left panels), brain width (middle panels), and lateral eye contour (right panels). (I)

606 Quantification of the body axis, brain width, and lateral eye area in haploid control or p53,
607 or diploid control morphants at 3.5 dpf. Box plots and beeswarm plots of ≥ 13 larvae (≥ 26
608 eyes) from 3 independent experiments. Asterisks indicate statistically significant
609 differences among samples (n.s.: not significant, $**p < 0.01$, $***p < 0.001$, the ANOVA
610 followed by the post-hoc Tukey test).

611

612 **Figure 4. Frequent mitotic delay and failures in haploid larvae**

613 (A) Flow cytometric analysis of DNA content (Hoechst signal) and mitotic proportion
614 (marked by anti-pH3) in isolated haploid or diploid larval cells at 1, 2, or 3 dpf. Magenta
615 boxes indicate the pH3-positive mitotic populations. (B) Quantification of mitotic index in
616 A. Mean \pm SE of ≥ 3 independent experiments ($**p < 0.01$, two-tailed *t*-test). (C) Live
617 images of endothelial cells expressing histone H2B-mCherry in haploid, diploid, or
618 reversine-treated haploid larvae. Images were taken at a 7.5 min interval from 1.5 to 3 dpf.
619 Reversine was administrated approximately from 1.5 dpf. Asterisks indicate neighbor cells.
620 (D) Distribution of mitotic length (time duration from NEBD to anaphase onset) in C. At
621 least 75 cells of 6 larvae from 6 independent experiments were analyzed. Asterisks indicate
622 statistically significant differences among samples ($**p < 0.01$, $***p < 0.001$, the ANOVA
623 followed by the post-hoc Tukey test; among cells in the “ >120 min” bin in the histogram,
624 the ones whose mitotic exit time could not be specified were excluded from the statistic
625 analysis). (E) Frequency of mitotic fates in C. Data were sorted into separated graphs by
626 mitotic fates (completion, mitotic death, or mitotic slippage). At least 75 cells of 6 larvae

627 from 6 independent experiments were analyzed. *P*-values obtained by the Fisher exact test
628 with the Benjamini-Hochberg multiple testing correction are shown at the top.

629

630 **Figure 5. Centrosome loss and spindle monopolarization in haploid larvae**

631 (A) Immunostaining of α -tubulin and centrin in haploid and diploid larvae at 0.5, 1, 2, and
632 3 dpf. Magenta boxes in the left or middle panels indicate the enlarged regions of eyes
633 (shown in the middle panels) or mitotic cells (shown in the right panels), respectively.
634 Insets in the right panels show 3 \times enlarged images of centrioles. (B, C) Frequency of
635 spindle polarity and centrin foci number in mitotic cells in the whole-head region
636 (including eyes, brain, skin epithelia, and olfactory organ) at different developmental stages.
637 Mean \pm SE of ≥ 4 larvae from ≥ 2 independent experiments (≥ 98 cells were analyzed for
638 each condition; asterisks indicate statistically significant differences from diploids at the
639 corresponding time points; $*p < 0.05$, $**p < 0.01$, two-tailed *t*-test). Data points taken from
640 the eyes, the brain, or skin epithelia are also shown separately in Fig. S5. (D, E) Areas of
641 the largest confocal section of subepidermal mitotic cells in haploid and diploid larvae
642 during 0.5-3 dpf (D), or frequency of monopolar spindle in haploid and diploid larval cells
643 sorted by their size (E). Centriole number and spindle polarity in each cell are indicated as
644 depicted in the graph legends in D. At least 27 cells from ≥ 4 larvae from ≥ 2 independent
645 experiments were analyzed for each condition in D. At least 13 cells were analyzed for each
646 cell size bin in E.

647

648 **Figure 6. SAC inactivation mitigates abnormal mitotic patterns and organ growth**

649 **defects in haploid larvae**

650 **(A)** Flow cytometric analysis of DNA content (Hoechst signal) and mitotic proportion
651 (marked by anti-pH3) in the cells isolated from 3-dpf haploid larvae treated with DMSO or
652 reversine. DMSO or reversine was treated from 0.5 to 3 dpf. Magenta boxes indicate the
653 pH3-positive mitotic populations. **(B)** Quantification of mitotic index in A. Mean \pm SE of 4
654 independent experiments ($*p < 0.05$, two-tailed *t*-test). **(C)** Immunostaining of pH3 in
655 haploid 3-dpf larvae, which were treated with DMSO or reversine from 1.5 to 3 dpf. Z-
656 projected images of confocal sections containing peripheral brain surfaces are shown.
657 Broken lines indicate brain area. Boxes indicate the areas enlarged in **D**. Note that pH3-
658 positive cells in the immunostaining image are apparently more frequent than those
659 estimated by flow cytometry, presumably because mitotic cells tended to localized at the
660 surface region of larvae (see Fig. S4E for a vertical section of immunostained larvae). **(D)**
661 Enlarged views of haploid or diploid larvae in **C**. **(E)** The density of pH3-positive cells in
662 the right midbrain in haploid larvae in **C**. Eight confocal slice sections from the top of the
663 brain were used for cell counting. Means \pm SD of ≥ 4 larvae from 2 independent
664 experiments ($*p < 0.05$, two-tailed *t*-test). **(F)** Transparent microscopy of haploid 3.5-dpf
665 larvae treated with DMSO or reversine from 1.5 to 3.5 dpf. Broken line: body axis (left
666 panels), brain width (middle panels), and lateral eye contour (right panels). **(G)**
667 Measurement of the body axis, brain width, and lateral eye area in DMSO- or reversine-
668 treated haploid, or DMSO-treated diploid 3.5-dpf larvae. Box plots and beeswarm plots of
669 ≥ 11 larvae (≥ 22 eyes) from 3 independent experiments. Asterisks indicate statistically

670 significant differences among samples (n.s.: not significant, ** $p < 0.01$, *** $p < 0.001$, the
671 ANOVA followed by the post-hoc Tukey test).

672

673

674 **Supplemental Figure 1. Generation of haploid and diploid larvae**

675 Experimental scheme of in vitro fertilization for generating haploid and diploid larvae (left)
676 and flow cytometric DNA content analysis in Hoechst-stained larval cells (right; isolated
677 from 3- or 5-dpf larvae). The labels on the plot (1c, 2c, and 4c) indicate the relative DNA
678 amount (c-value). Representative data from 2 independent experiments are shown.

679

680 **Supplemental Figure 2. Visualization of apoptotic cells in haploid and diploid larvae**

681 Immunostaining of active caspase-3 in whole-mount haploid and diploid larvae at 3 dpf. Z-
682 projected images of confocal sections containing the peripheral brain surface and inner
683 brain area. Broken lines indicate brain area. All larvae analyzed in Fig. 2C are shown. The
684 panel includes the larvae identical to those shown in Fig. 2A (marked by asterisks).

685

686 **Supplemental Figure 3. Visualization of apoptotic cells in haploid control and p53
687 morphants**

688 (A) Immunostaining of active caspase-3 in haploid control and p53 morphants at 3 dpf. Z-
689 projected images of confocal sections containing the peripheral brain surface and inner
690 brain area. Broken lines indicate brain area. All larvae analyzed in Fig. 3G are shown. The
691 panel includes the larvae identical to those shown in Fig. 3E (marked by asterisks). (B)
692 Flow cytometric DNA content analysis in Hoechst-stained larval cells isolated from haploid

693 control and p53 morphant at 3 dpf. Representative data from 2 independent experiments are
694 shown.

695

696 **Supplemental Figure 4. Mitotic progression in haploid, diploid, or reveresine-treated**
697 **haploid larvae**

698 **(A-C)** Mitotic length plot against NEBD time point (dpf) in haploid, diploid, or reversine-
699 treated haploid larvae in Fig. 4C **(A, B, or C, respectively)**. At least 74 cells of 6 larvae
700 from 6 independent experiments were analyzed. **(D)** The frequency of mitotic fates of
701 haploid larval cells arrested at mitosis for > 60 min (shown as percentages in the total
702 mitotic events analyzed in A; 91 haploid larval cells of 8 larvae from 8 independent
703 experiments). Data were sorted by NEBD time point (dpf). **(E)** A vertical section (the X-Z
704 plane view on the bottom) reconstituted from the boxed area in the head region of pH3-
705 immunostained 3-dpf haploid larvae. DNA was stained by DAPI.

706

707 **Supplemental Figure 5. Haploidy-linked centrosome loss in different organs**

708 **(A, B)** Immunostaining of centrin and α -tubulin in haploid and diploid larvae.
709 Representative data of skin (A) and brain (B) of haploid and diploid larvae at 0.5, 1, 2, and
710 3 dpf. Magenta boxes in the left or middle panels indicate the enlarged regions of each
711 organ (shown in middle panels) or mitotic cells (shown in right panels), respectively. Insets
712 in the right panels show 3 \times enlarged images of centrioles. **(C, D)** Spindle polarity and

713 centrin foci number in mitotic cells in each organ at different developmental stages. At least

714 11 cells of 4 larvae from 2 independent experiments were analyzed for each condition.

715 References

716 Araki, K., H. Okamoto, A.C. Graveson, I. Nakayama, and H. Nagoya. 2001. Analysis of
717 haploid development based on expression patterns of developmental genes in the
718 medaka *Oryzias latipes*. *Dev Growth Differ.* 43:591-599.

719 Bazzi, H., and K.V. Anderson. 2014. Acentriolar mitosis activates a p53-dependent
720 apoptosis pathway in the mouse embryo. *Proceedings of the National Academy of
721 Sciences of the United States of America.* 111:E1491-1500.

722 Dasgupta, S., and L. Matsumoto. 1972. The haploid syndrome in isogenic haploid frog
723 embryos of *Rana pipiens* derived by nuclear transplantation. *Journal of
724 Experimental Zoology.* 180:413-419.

725 Decker, M., S. Jaensch, A. Pozniakovsky, A. Zinke, K.F. O'Connell, W. Zachariae, E.
726 Myers, and A.A. Hyman. 2011. Limiting amounts of centrosome material set
727 centrosome size in *C. elegans* embryos. *Current biology : CB.* 21:1259-1267.

728 Edgar, B.A., C.P. Kiehle, and G. Schubiger. 1986. Cell cycle control by the nucleo-
729 cytoplasmic ratio in early *Drosophila* development. *Cell.* 44:365-372.

730 Ellinger, M.S. 1979. Ontogeny of melanophore patterns in haploid and diploid embryos of
731 the frog, *Bombina orientalis*. *Journal of Morphology.* 162:77-91.

732 Ellinger, M.S., and J.A. Murphy. 1980. Cellular morphology in haploid amphibian embryos.
733 *Journal of embryology and experimental morphology.* 59:249-261.

734 Fankhauser, G. 1938. The microscopical anatomy of metamorphosis in a haploid
735 salamander, *triton taeniatus laur*. *Journal of Morphology.* 62:393-413.

736 Fankhauser, G. 1945. Maintenance of normal structure in heteroploid salamander larvae,
737 through compensation of changes in cell size by adjustment of cell number and cell
738 shape. *Journal of Experimental Zoology.* 100:445-455.

739 Fankhauser, G., and R.B. Griffiths. 1939. Induction of Triploidy and Haploidy in the Newt,
740 *Triturus Viridescens*, by Cold Treatment of Unsegmented Eggs. *Proceedings of the
741 National Academy of Sciences of the United States of America.* 25:233-238.

742 Fong, C.S., G. Mazo, T. Das, J. Goodman, M. Kim, B.P. O'Rourke, D. Izquierdo, and M.F.
743 Tsou. 2016. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response
744 to centrosome loss and prolonged mitosis. *eLife.* 5.

745 Gibeaux, R., K. Miller, R. Acker, T. Kwon, and R. Heald. 2018. Xenopus Hybrids Provide
746 Insight Into Cell and Organism Size Control. *Frontiers in physiology.* 9:1758.

747 Hamilton, L. 1966. The role of the genome in the development of the haploid syndrome in
748 Anura. *Development.* 16:559-568.

749 Hamilton, L., and P.H. Tuft. 1972. The role of water-regulating mechanisms in the
750 development of the haploid syndrome in *Xenopus laevis*. *Development.* 28:449-462.

751 Hertwig, O. 1911. Die Radiumkrankheit tierischer Keimzellen, Ein Beitrag zur
752 experimentellen Zeugungs und Vererbungslehre. *Arch. Mikrosk. Anat.* 77:97-164.

753 Kroeger, P.T., Jr., S.J. Poureetezadi, R. McKee, J. Jou, R. Miceli, and R.A. Wingert. 2014.
754 Production of haploid zebrafish embryos by in vitro fertilization. *Journal of
755 visualized experiments : JoVE.*

756 Kureck, I.M., B. Nicolai, and S. Foitzik. 2013. Similar Performance of Diploid and Haploid
757 Males in an Ant Species without Inbreeding Avoidance. *Ethology*. 119:360-367.

758 Lambrus, B.G., V. Daggubati, Y. Uetake, P.M. Scott, K.M. Clutario, G. Sluder, and A.J.
759 Holland. 2016. A USP28-53BP1-p53-p21 signaling axis arrests growth after
760 centrosome loss or prolonged mitosis. *The Journal of cell biology*. 214:143-153.

761 Langheinrich, U., E. Hennen, G. Stott, and G. Vacun. 2002. Zebrafish as a model organism
762 for the identification and characterization of drugs and genes affecting p53 signaling.
763 *Current biology : CB*. 12:2023-2028.

764 Leeb, M., and A. Wutz. 2011. Derivation of haploid embryonic stem cells from mouse
765 embryos. *Nature*. 479:131-134.

766 Leeb, M., and A. Wutz. 2013. Haploid genomes illustrate epigenetic constraints and gene
767 dosage effects in mammals. *Epigenetics & Chromatin*. 6:41.

768 Li, Z., M. Hu, M.J. Ochocinska, N.M. Joseph, and S.S. Easter, Jr. 2000. Modulation of cell
769 proliferation in the embryonic retina of zebrafish (*Danio rerio*). *Developmental
770 dynamics : an official publication of the American Association of Anatomists*.
771 219:391-401.

772 Luo, C., and B. Li. 2003. Diploid-dependent regulation of gene expression: a genetic cause
773 of abnormal development in fish haploid embryos. *Heredity*. 90:405-409.

774 Mable, B.K., and S.P. Otto. 1998. The evolution of life cycles with haploid and diploid
775 phases. *BioEssays*. 20:453-462.

776 Meitinger, F., J.V. Anzola, M. Kaulich, A. Richardson, J.D. Stender, C. Benner, C.K. Glass,
777 S.F. Dowdy, A. Desai, A.K. Shiao, and K. Oegema. 2016. 53BP1 and USP28
778 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic
779 duration. *The Journal of cell biology*. 214:155-166.

780 Mendieta-Serrano, M.A., D. Schnabel, H. Lomelí, and E. Salas-Vidal. 2013. Cell
781 proliferation patterns in early zebrafish development. *Anat Rec (Hoboken)*. 296:759-
782 773.

783 Menon, T., A.S. Borbora, R. Kumar, and S. Nair. 2020. Dynamic optima in cell sizes
784 during early development enable normal gastrulation in zebrafish embryos.
785 *Developmental biology*. 468:26-40.

786 Menon, T., and S. Nair. 2018. Transient window of resilience during early development
787 minimizes teratogenic effects of heat in zebrafish embryos. *Developmental
788 dynamics : an official publication of the American Association of Anatomists*.
789 247:992-1004.

790 Nagy, A., K. Rajki, L. Horváth, and V. Csárfy. 1978. Investigation on carp, *Cyprinus
791 carpio* L. gynogenesis. *Journal of Fish Biology*. 13:215-224.

792 Novorol, C., J. Burkhardt, K.J. Wood, A. Iqbal, C. Roque, N. Coutts, A.D. Almeida, J. He,
793 C.J. Wilkinson, and W.A. Harris. 2013. Microcephaly models in the developing
794 zebrafish retinal neuroepithelium point to an underlying defect in metaphase
795 progression. *Open Biol*. 3:130065.

796 Olbrich, T., C. Mayor-Ruiz, M. Vega-Sendino, C. Gomez, S. Ortega, S. Ruiz, and O.
797 Fernandez-Capetillo. 2017. A p53-dependent response limits the viability of
798 mammalian haploid cells. *Proceedings of the National Academy of Sciences of the
799 United States of America*. 114:9367-9372.

800 Oppermann, K. 1913. Die Entwicklung von Forelieneiern nach Befruchtung mit radium
801 bestrahlten Samenfaden. *Arch. Mikrosk. Anat.* 83:141-189.

802 Otto, S.P., and P. Jarne. 2001. Haploids--Hapless or Happening? *Science*. 292:2441-2443.

803 Purdom, C.E. 1969. Radiation-induced gynogenesis and androgenesis in fish. *Heredity*.
804 24:431-444.

805 Ricci, C., and G. Melone. 1998. Dwarf males in monogonont rotifers. *Aquatic Ecology*.
806 32:361-365.

807 Sagi, I., and N. Benvenisty. 2017. Haploidy in Humans: An Evolutionary and
808 Developmental Perspective. *Developmental Cell*. 41:581-589.

809 Sagi, I., G. Chia, T. Golan-Lev, M. Peretz, U. Weissbein, L. Sui, M.V. Sauer, O. Yanuka,
810 D. Egli, and N. Benvenisty. 2016. Derivation and differentiation of haploid human
811 embryonic stem cells. *Nature*. 532:107-111.

812 Santaguida, S., A. Tighe, A.M. D'Alise, S.S. Taylor, and A. Musacchio. 2010. Dissecting
813 the role of MPS1 in chromosome biorientation and the spindle checkpoint through
814 the small molecule inhibitor reversine. *Journal of Cell Biology*. 190:73-87.

815 Sorrells, S., C. Toruno, R.A. Stewart, and C. Jette. 2013. Analysis of apoptosis in zebrafish
816 embryos by whole-mount immunofluorescence to detect activated Caspase 3.
817 *Journal of visualized experiments : JoVE*:e51060.

818 Streisinger, G., C. Walker, N. Dower, D. Knauber, and F. Singer. 1981. Production of
819 clones of homozygous diploid zebra fish (*Brachydanio rerio*). *Nature*. 291:293-296.

820 Subtelny, S. 1958. The development of haploid and homozygous diploid frog embryos
821 obtained from transplantations of haploid nuclei. *Journal of Experimental Zoology*.
822 139:263-305.

823 Sugiyama, M., A. Sakaue-Sawano, T. Iimura, K. Fukami, T. Kitaguchi, K. Kawakami, H.
824 Okamoto, S.-i. Higashijima, and A. Miyawaki. 2009. Illuminating cell-cycle
825 progression in the developing zebrafish embryo. *Proceedings of the National
826 Academy of Sciences*. 106:20812-20817.

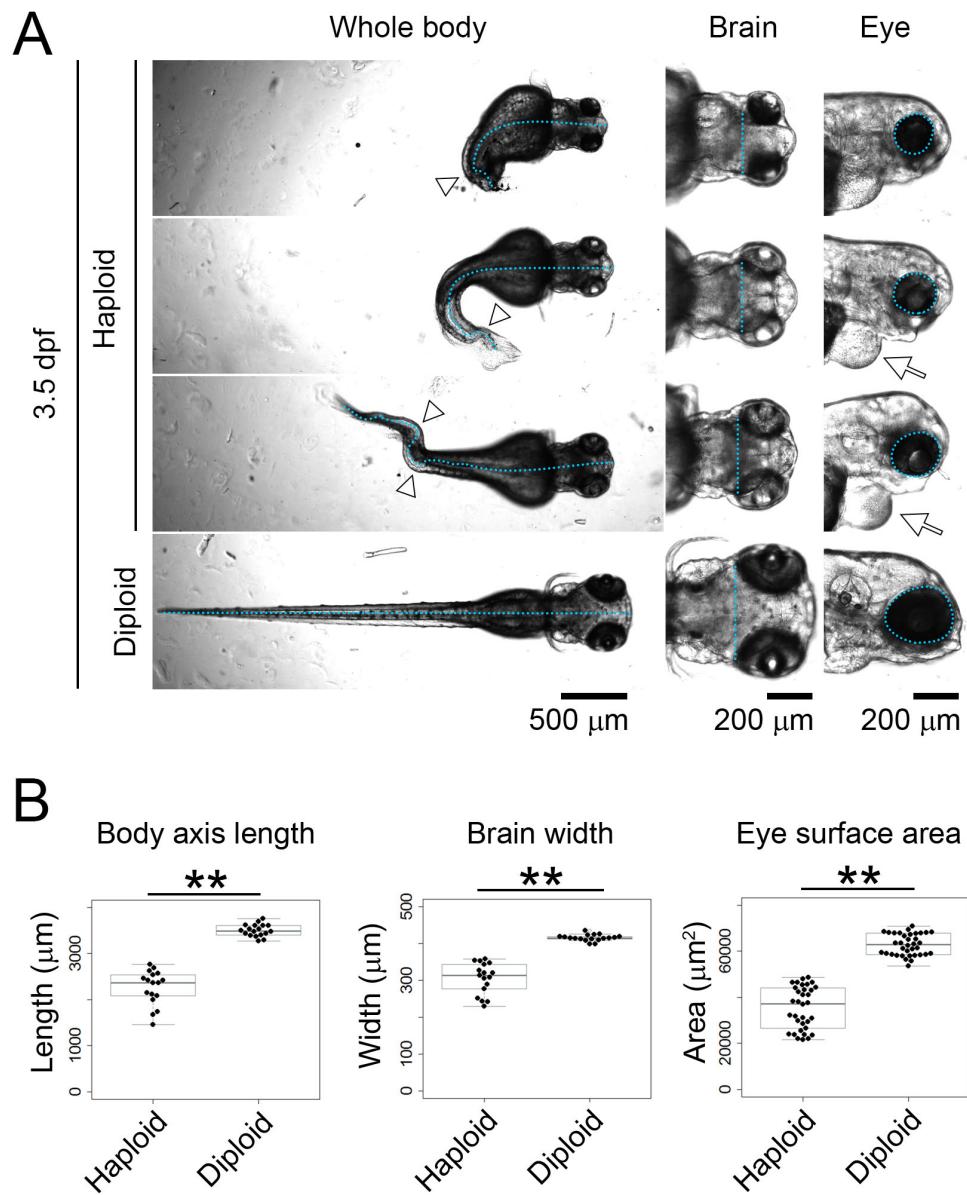
827 Tilghman, S.M. 1999. The Sins of the Fathers and Mothers: Genomic Imprinting in
828 Mammalian Development. *Cell*. 96:185-193.

829 Uwa, H. 1965. Gynogenetic haploid embryos of the Medaka (*Oryzias Latipes*).
830 *Embryologia*. 9:40-48.

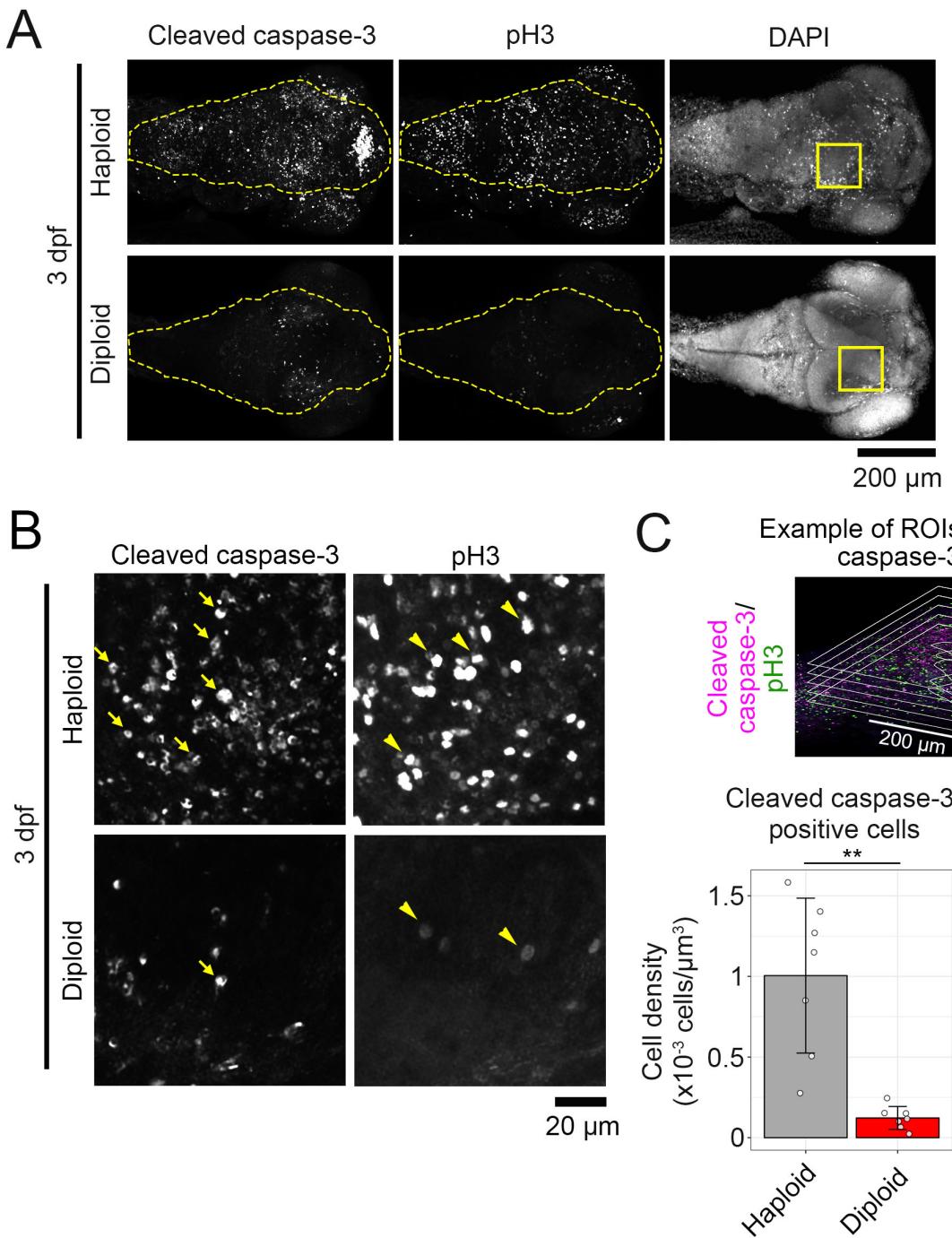
831 Wutz, A. 2014. Haploid animal cells. *Development*. 141:1423-1426.

832 Yaguchi, K., T. Yamamoto, R. Matsui, Y. Tsukada, A. Shibanuma, K. Kamimura, T. Koda,
833 and R. Uehara. 2018. Uncoordinated centrosome cycle underlies the instability of
834 non-diploid somatic cells in mammals. *The Journal of cell biology*. 217:2463-2483.

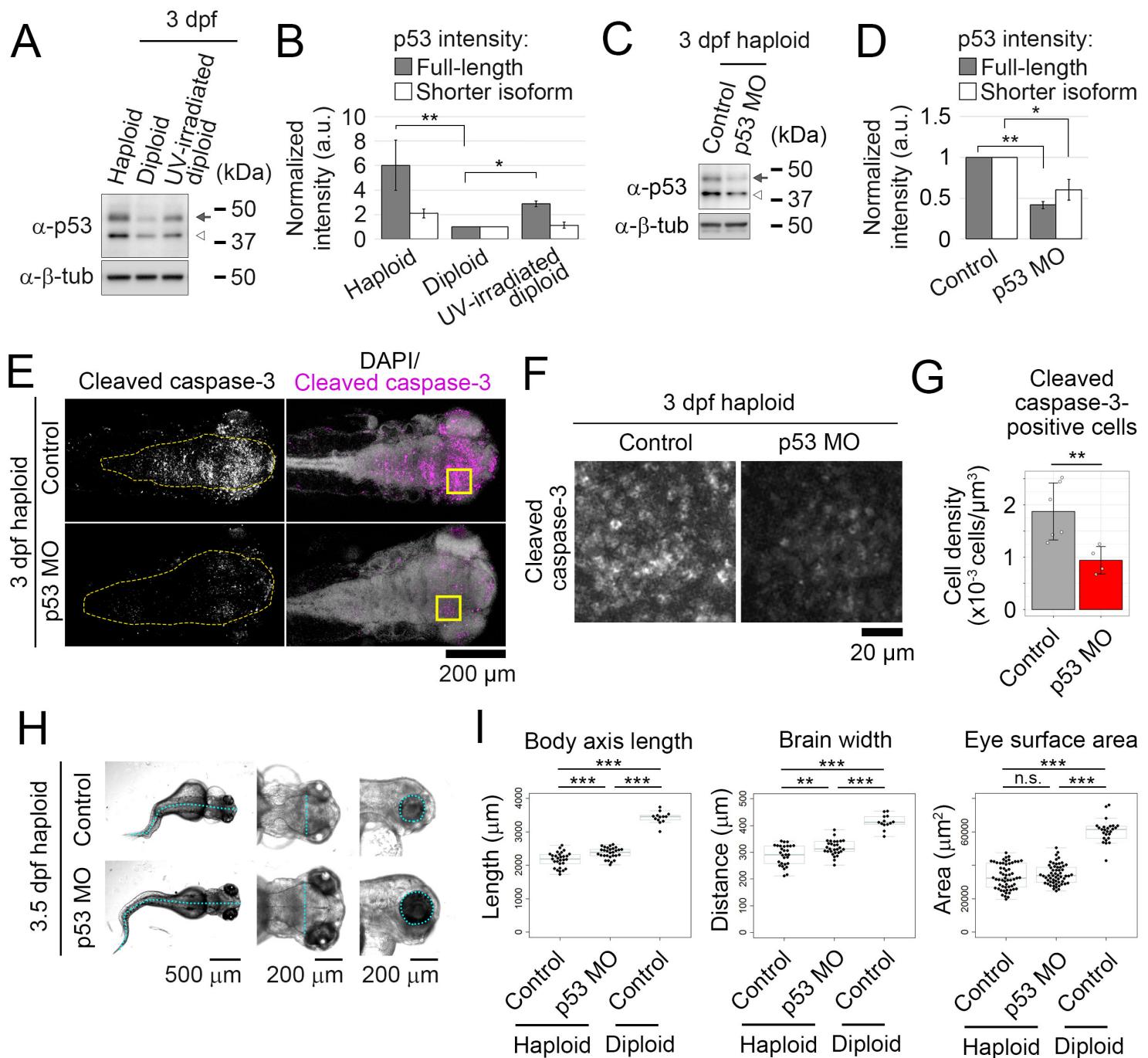
835 Yamashita, M. 2003. Apoptosis in zebrafish development. *Comparative Biochemistry and
836 Physiology Part B: Biochemistry and Molecular Biology*. 136:731-742.

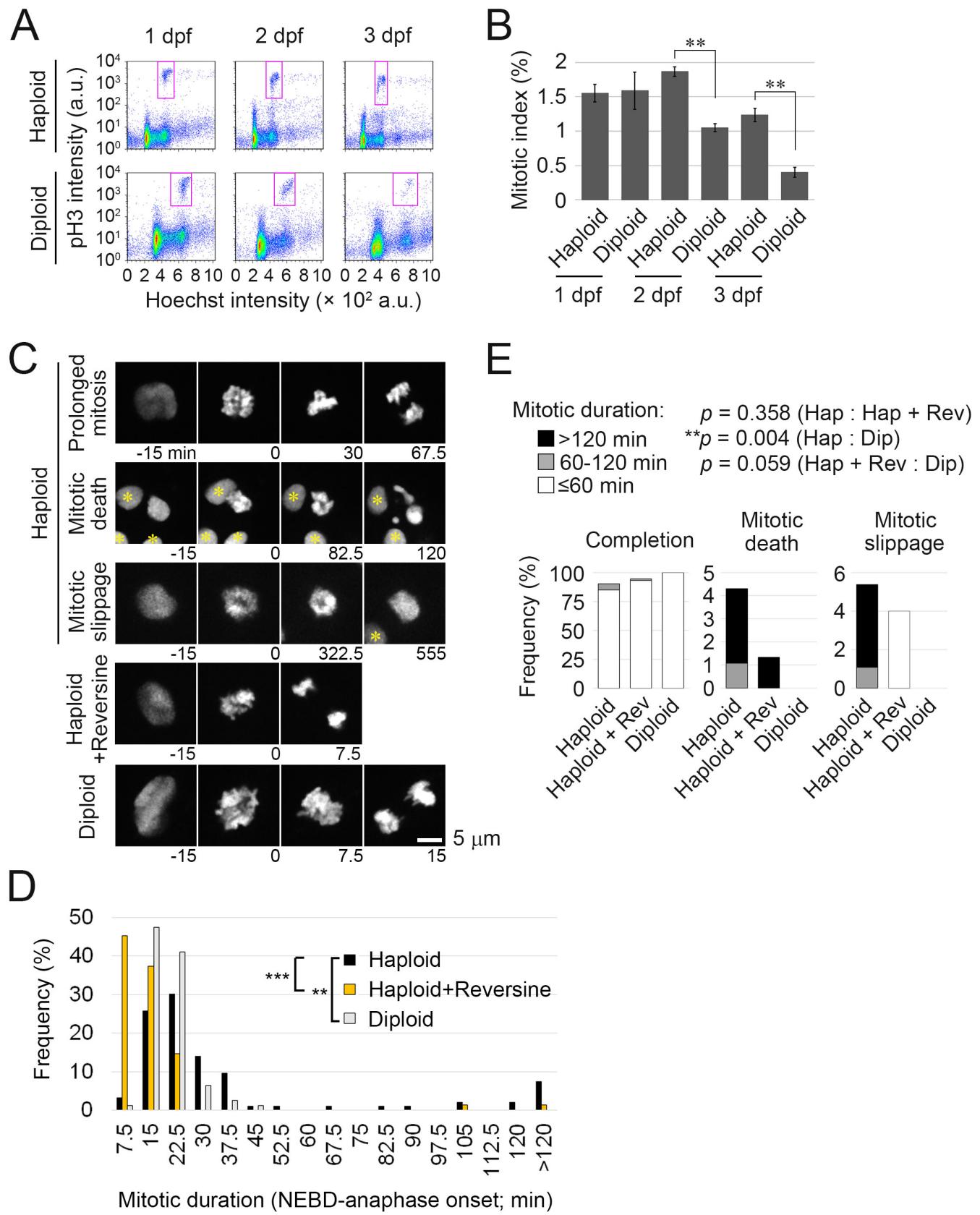

837 Yamauchi, K., T. Yoshida, T. Ogawa, S. Itoh, Y. Ogawa, S. Jimbo, and H.T. Imai. 2001.
838 Spermatogenesis of diploid males in the formicine ant, *Lasius sakagamii*. *Insectes
839 Sociaux*. 48:28-32.

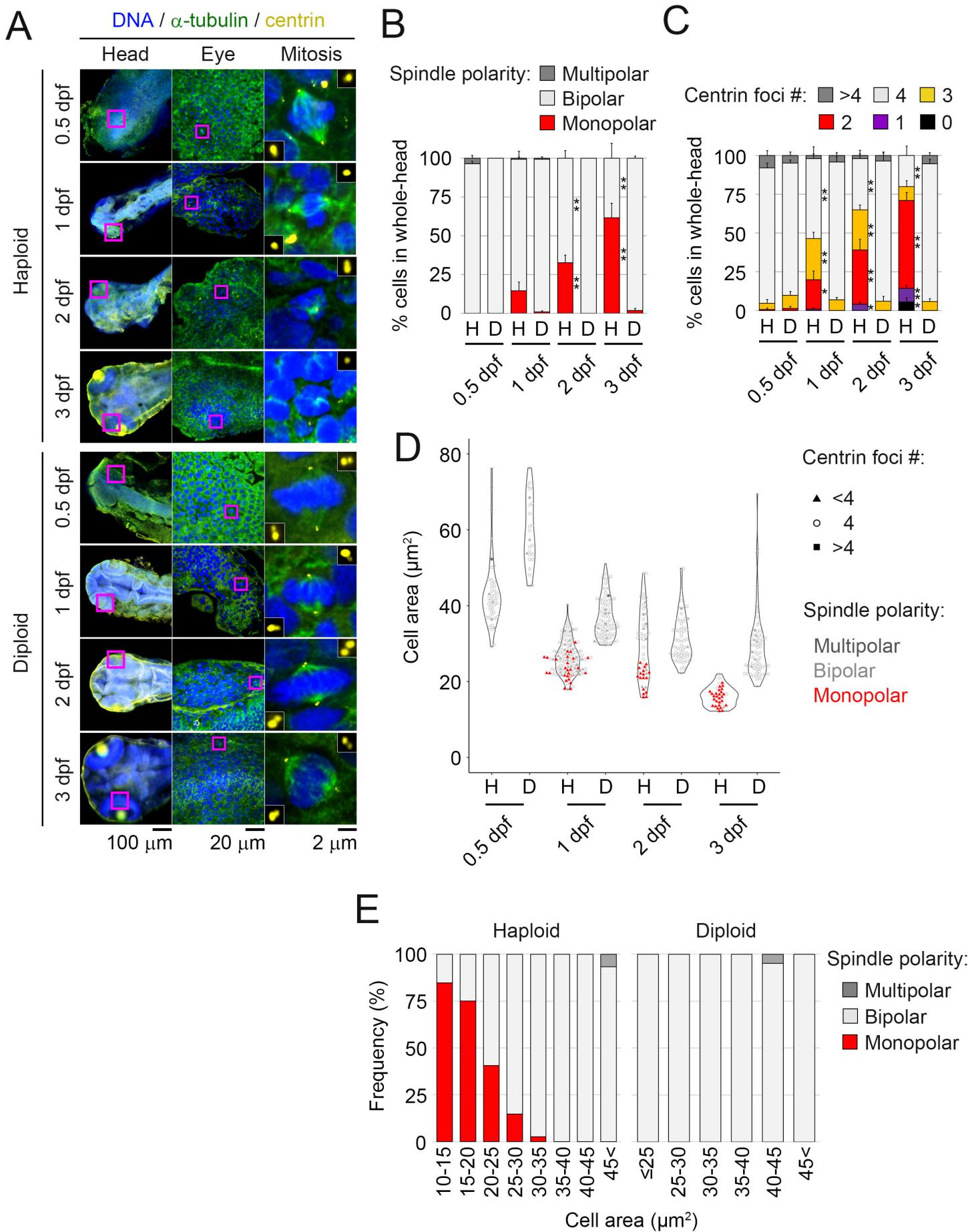
840 Yokota, Y., H. Nakajima, Y. Wakayama, A. Muto, K. Kawakami, S. Fukuwara, and N.
841 Mochizuki. 2015. Endothelial Ca 2+ oscillations reflect VEGFR signaling-regulated
842 angiogenic capacity in vivo. *eLife*. 4.

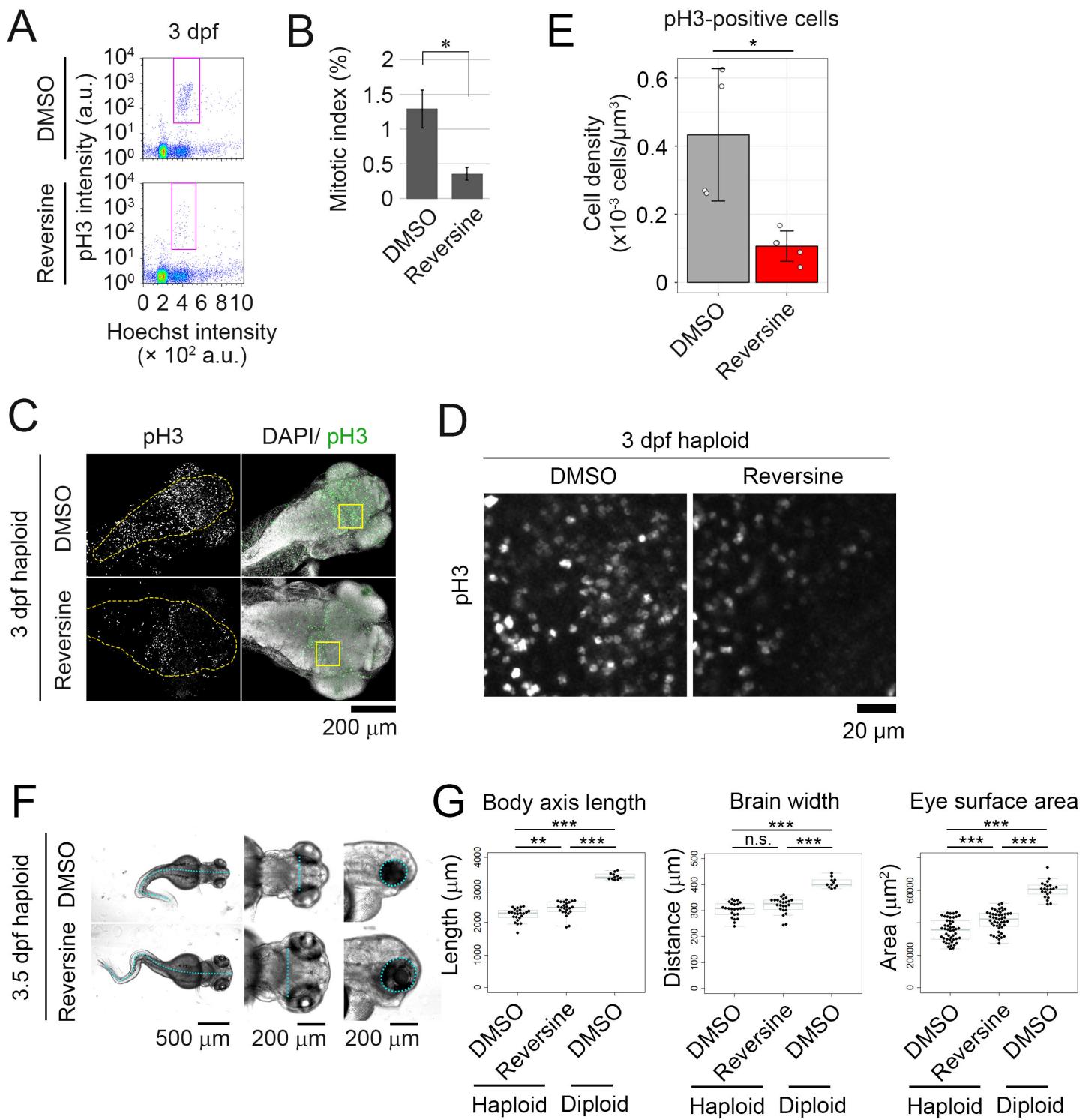

843 Yoshizawa, K., K. Yaguchi, and R. Uehara. 2020. Uncoupling of DNA Replication and
844 Centrosome Duplication Cycles Is a Primary Cause of Haploid Instability in
845 Mammalian Somatic Cells. *Frontiers in cell and developmental biology*. 8:721.
846 Zhang, M., P. Kothari, and M.A. Lampson. 2015. Spindle assembly checkpoint acquisition
847 at the mid-blastula transition. *PLoS One*. 10:e0119285.

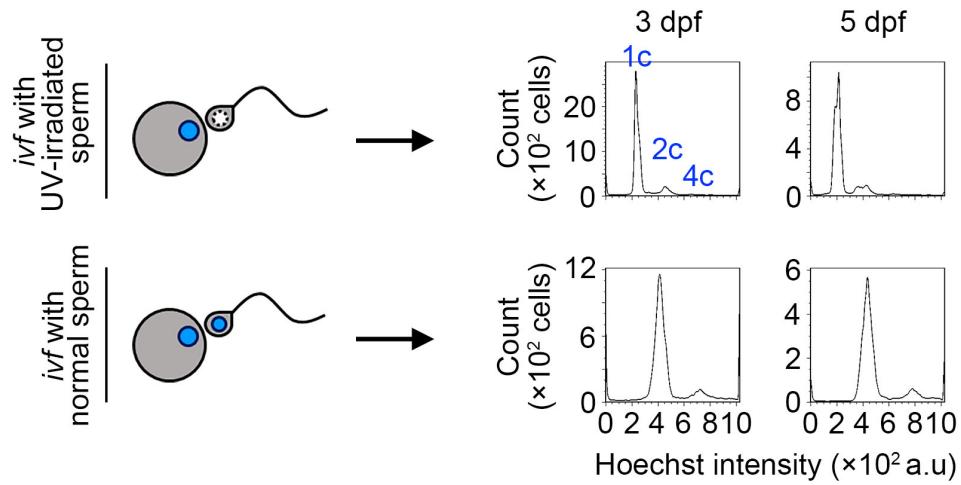
848

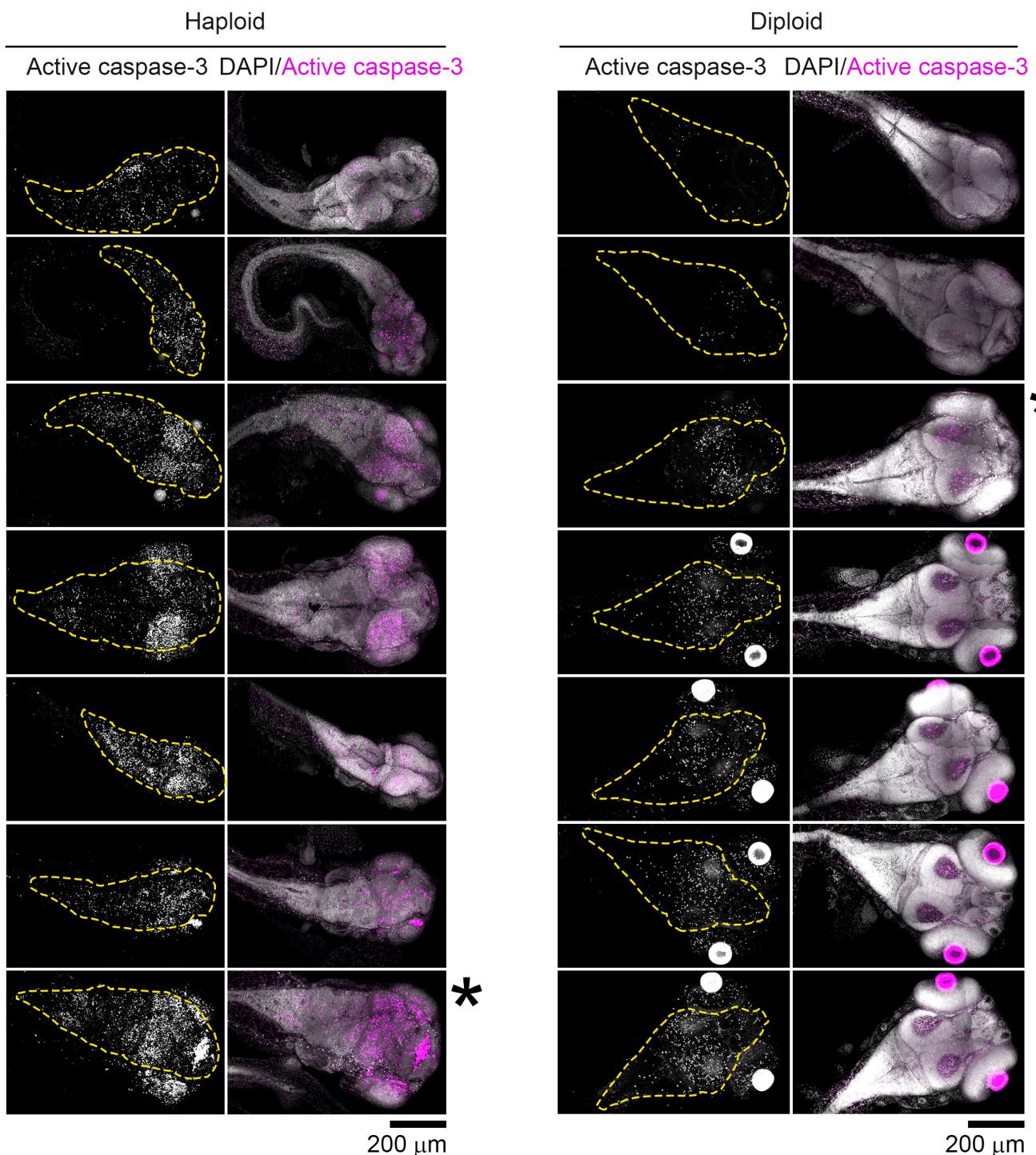

Figure 1


Figure 2

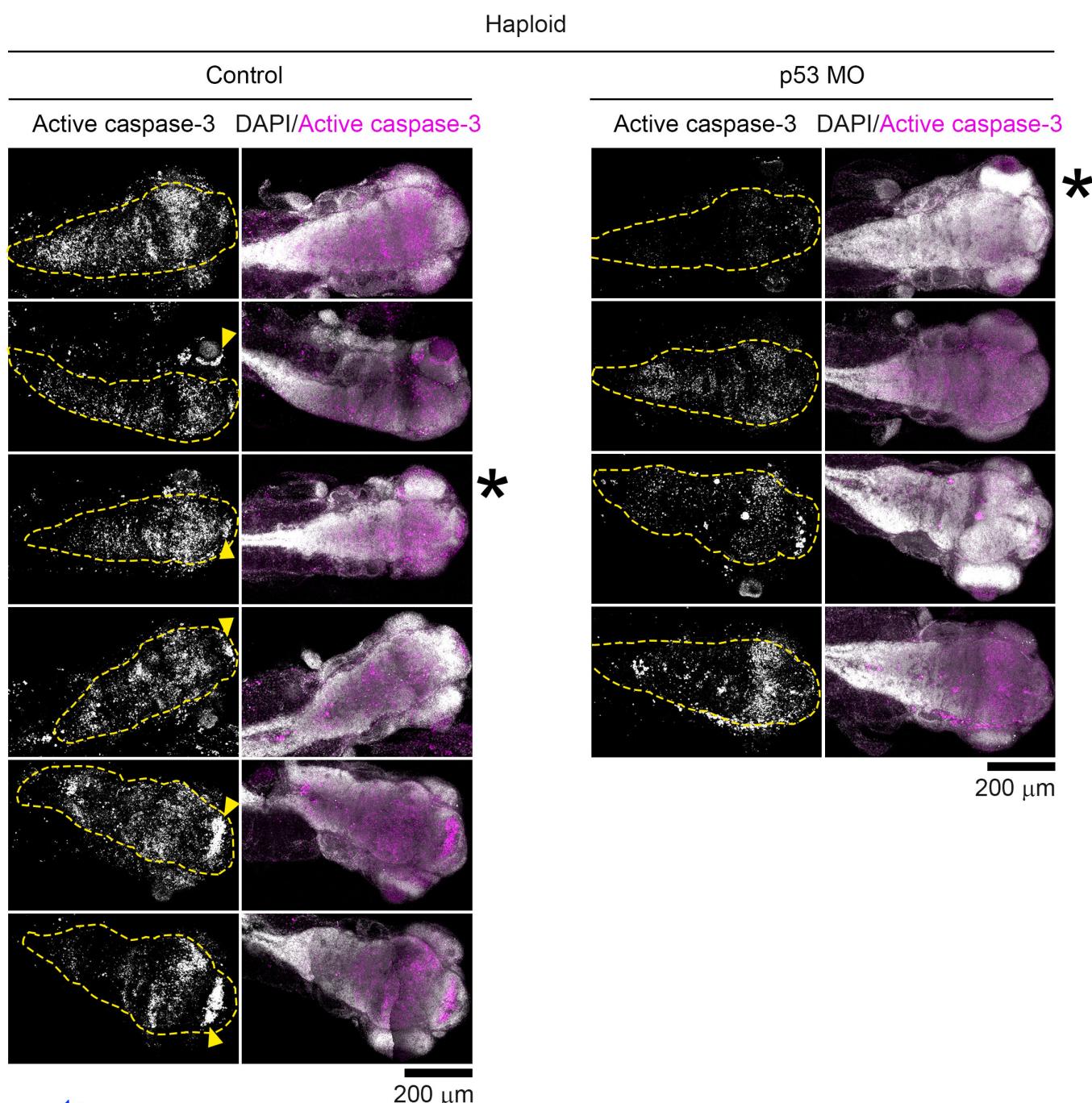

Figure 3


Figure 4

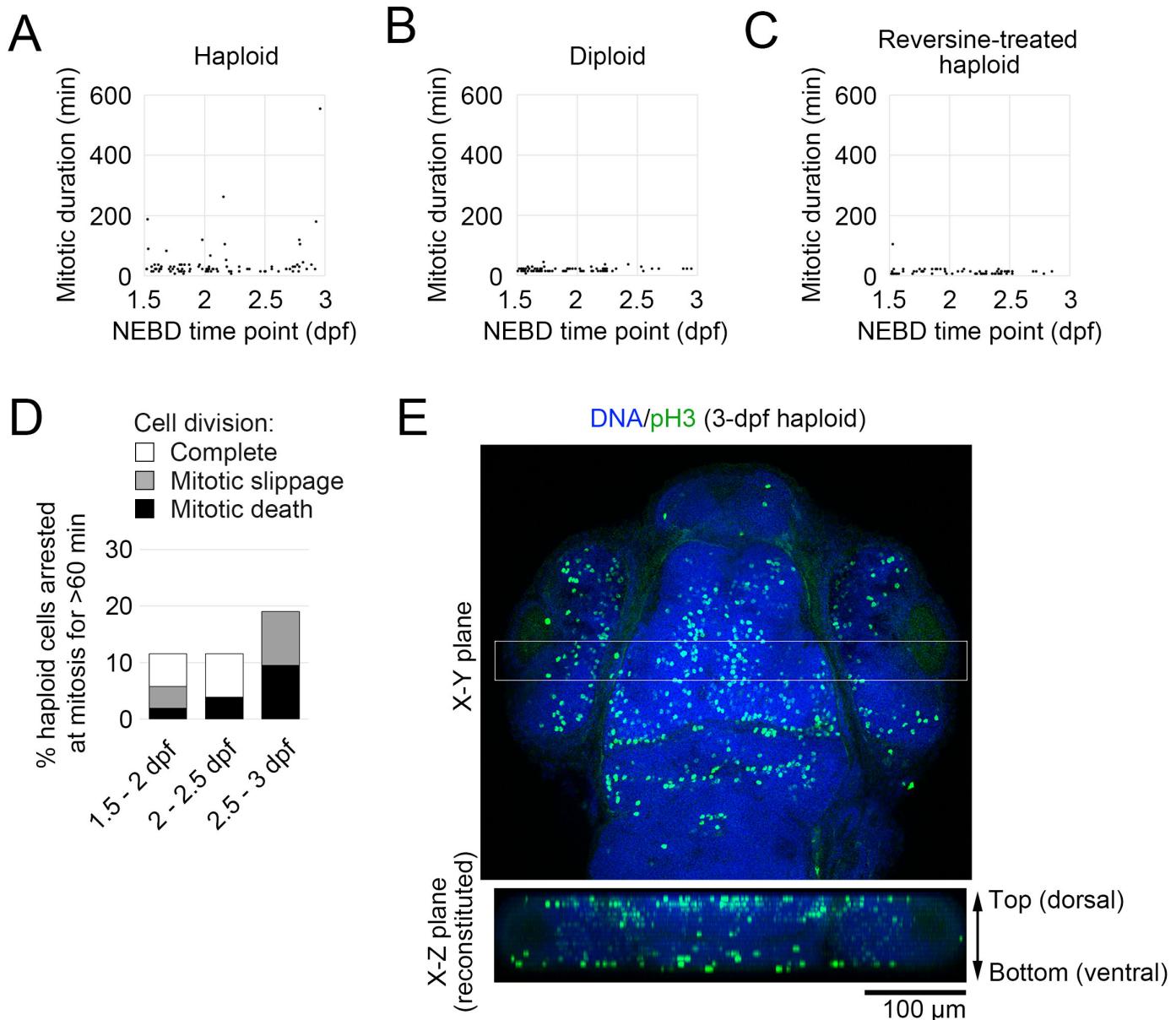

Figure 5


Figure 6

Supplemental figure 1

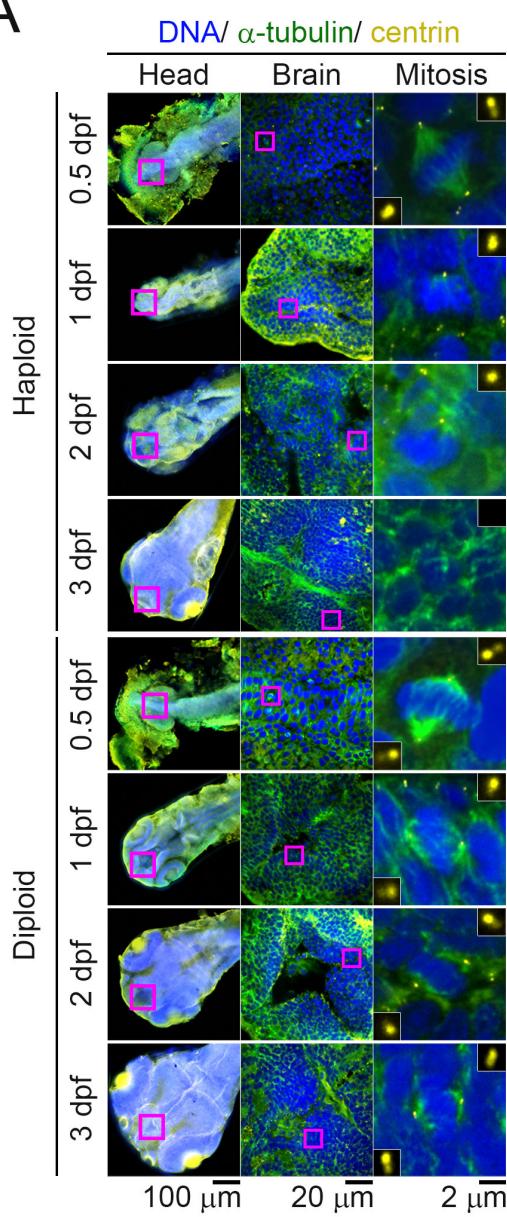


Supplemental figure 2

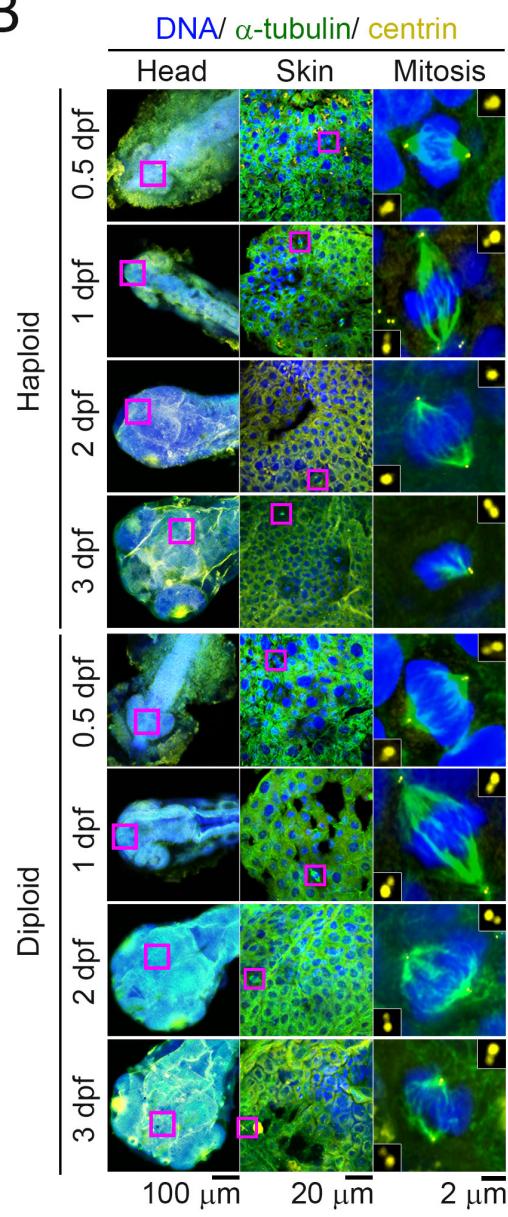


Supplemental figure 3

A



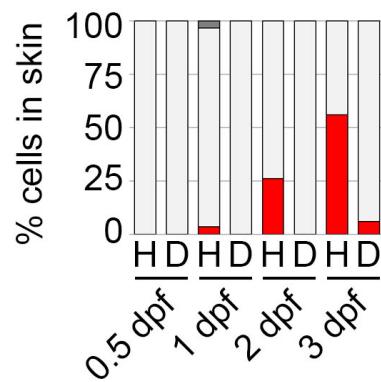
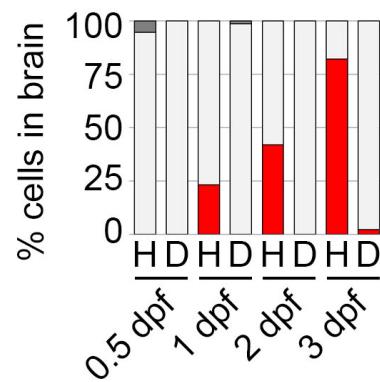
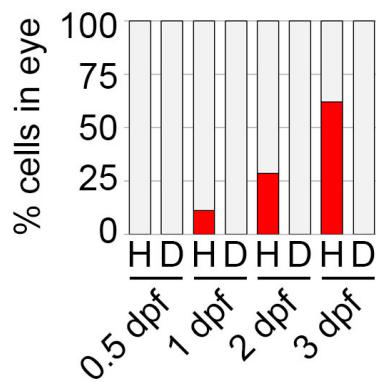
Supplemental figure 4



Supplemental figure 5

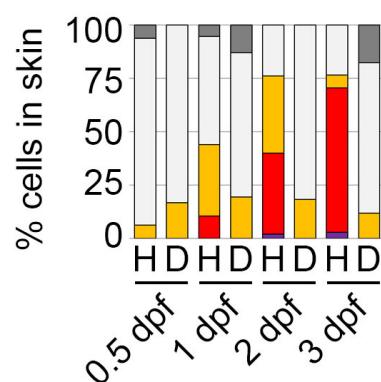
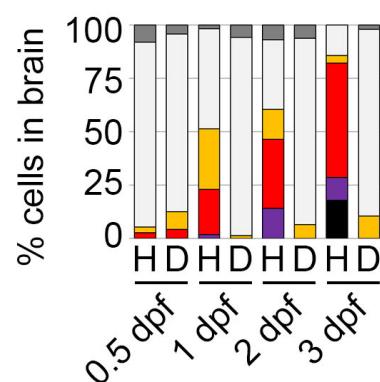
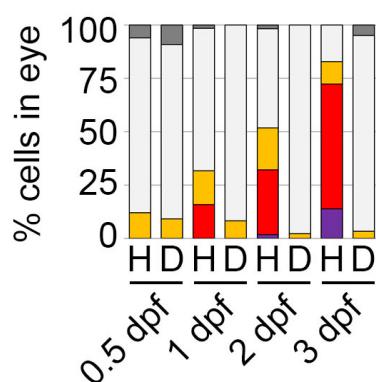
A

B

Supplemental figure 5 (continued)

bioRxiv preprint doi: <https://doi.org/10.1101/102245>; this version posted May 16, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.




C

Spindle polarity: ■ Multipolar □ Bipolar ■ Monopolar

D

Centrin foci #: ■ >4 □ 4 ■ 3 ■ 2 ■ 1 ■ 0

