

Extensive topographic remapping and functional sharpening in the adult rat visual pathway upon first visual experience

Joana Carvalho*, Francisca F. Fernandes and Noam Shemesh*

Laboratory of Preclinical MRI, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal

*Corresponding authors:

Dr. Noam Shemesh, Champalimaud Research, Champalimaud Foundation, Av. Brasilia 1400-038, Lisbon, Portugal E-mail: Noam.Shemesh@neuro.fchampalimaud.org

Phone number: +351 210 480 000 ext. #4467; ORCID: 0000-0001-6681-5876

Dr. Joana Carvalho, Champalimaud Research, Champalimaud Foundation, Av. Brasilia 1400-038, Lisbon, Portugal E-mail: Joana.Carvalho@research.fchampalimaud.org

Phone number: +351 210 480 000 ext. #4467; ORCID: 0000-0002-0081-1976

Author Contributions: JC and NS wrote the manuscript; JC conceived the idea; NS supervised the research; JC collected the data, JC and FFF performed the data analysis; all authors reviewed the manuscript.

Acknowledgement: We would like to thank Rita Gil and Federico Severo for setting up the Visual deprivation room. This study was funded by the European Research Council (ERC) (agreement No. 679058), as well as by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101032056. The funding organization had no role in the design, conduct, analysis, or publication of this research. The authors acknowledge the vivarium of the Champalimaud Centre for the Unknown, a facility of CONGENTO which is a research infrastructure co-financed by Lisboa Regional Operational Programme (Lisboa 2020), under the PORTUGAL 2020 Partnership Agreement through the European Regional Development Fund (ERDF) and Fundação para a Ciência e Tecnologia (Portugal), project LISBOA-01-0145-FEDER-022170.

Competing Interest Statement: None

Keywords: Plasticity, high field fMRI, visual field mapping, receptive field, computational modeling, visual deprivation

1 **Abstract**

2 Understanding the dynamics of stability/plasticity balances during adulthood and how they are
3 sculpted by sensory experience is pivotal for learning, disease, and recovery from injury. Although
4 invasive recordings suggest that sensory experience promotes single-cell and population-level
5 plasticity in adults, the brain-wide topography of sensory remapping remains unknown. Here, we
6 investigated topographic remapping in the adult rodent visual pathway using functional MRI
7 (fMRI) coupled with a first-of-its-kind setup for delivering patterned visual stimuli in the scanner.
8 Using this novel setup, and coupled with biologically-inspired computational models, we were
9 able to noninvasively map brain-wide properties (receptive fields (RFs) and spatial frequency (SF)
10 tuning curves) that were insofar only available from invasive electrophysiology or optical imaging.
11 We then tracked the RF dynamics in the chronic Visual Deprivation Model (VDM), and found that
12 light exposure progressively promoted a large-scale topographic remapping in adults. Upon light
13 exposure, the initially unspecialized visual pathway progressively evidenced sharpened RFs
14 (smaller and more spatially selective) and enhanced bandpass filters in SF tuning curves. Our
15 findings reveal that visual experience following VDM reshapes the structure and function of the
16 visual system and shifts the stability/plasticity balance in adults.

17

18

19

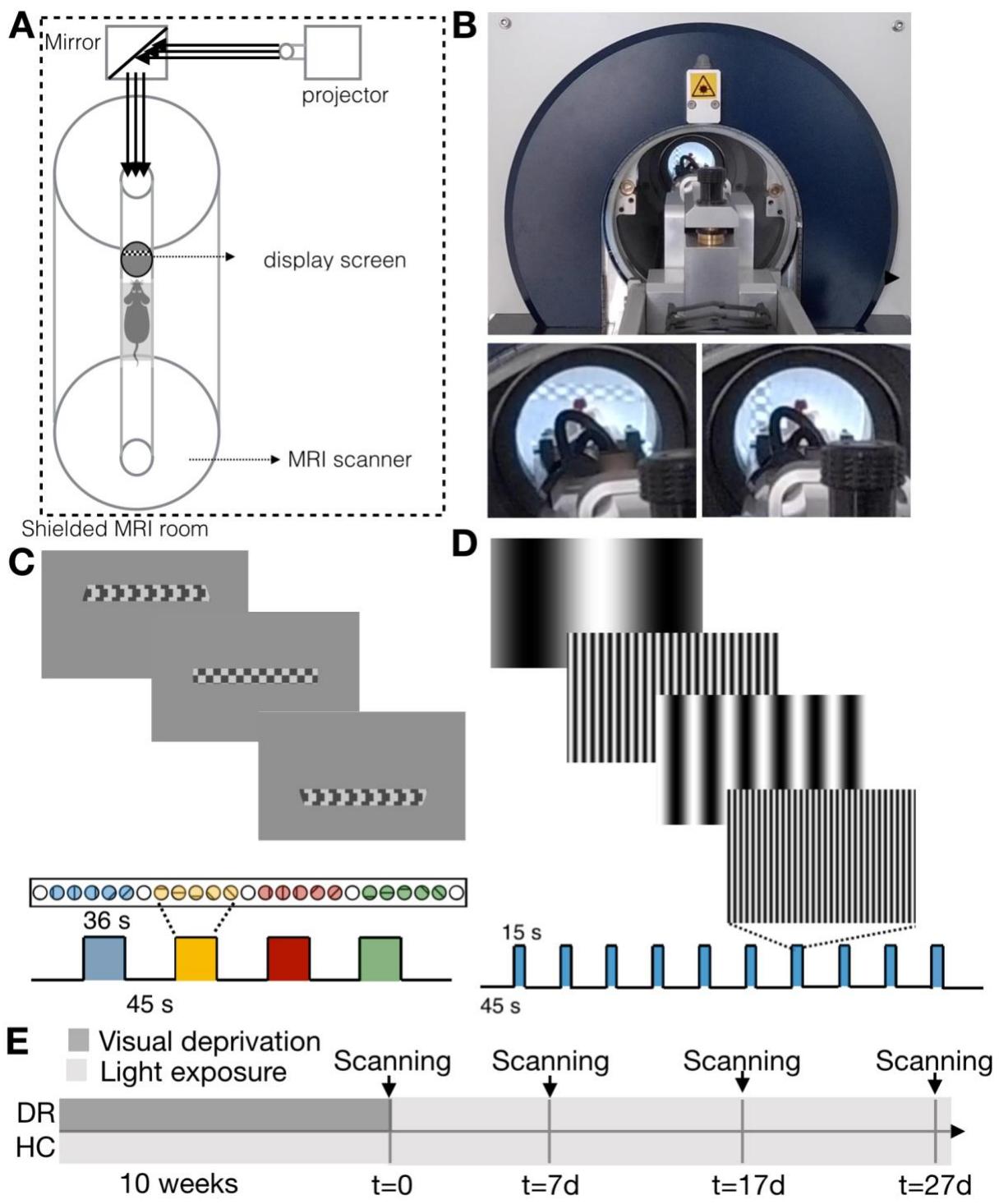
20 1. Introduction

21
22 During critical periods of development, neural circuits undergo massive plasticity and
23 organization processes that are strongly shaped by sensory experience (Dunn et al. 2013; Eimer
24 2004; Hooks and Chen 2007; Kalia et al. 2014). At later stages of life, these plastic changes must
25 reach a certain degree of stability, to ensure that the gained functional refinements persist over
26 time. Understanding the dynamics of stability/plasticity balances and how they are sculpted by
27 experience is pivotal both for identifying mechanisms underlying normal/aberrant development
28 and for recovery from injury.

29 Most studies demonstrating plasticity in rodents have focused on local features. For
30 example, seminal electrophysiological and calcium recordings studies revealed that activity in
31 specific junctions of the rodent visual pathway becomes highly refined during the first ~4-5 weeks
32 of life (Teller et al. 1978; Wiesel and Hubel 1963; Fagiolini et al. 1994). The initially broadly-
33 tuned cortical neurons specialize towards well-defined functional properties, i.e sharper spatial
34 frequency (SF) tuning, and an orderly cortical arrangement of visual areas emerges such that
35 neighboring neurons respond to nearby positions in the visual field (retinotopic organization)
36 (Tschetter et al. 2018; Koehler, Akimov, and Rentería 2011; Hubel and Wiesel 1962). Visual
37 experience refines immature Receptive Fields (RFs) and the underlying neural connectivity,
38 initially established by spontaneous activity, to improve their selectivity (Morales, Choi, and
39 Kirkwood 2002; Mower and Christen 1985; Jenks and Shepherd 2020; Huberman, Feller, and
40 Chapman 2008). As the critical period ends, the plastic potential of the brain decreases and
41 gradually reaches a stable state to support network stability (Fagiolini et al., 1994; Fagiolini and
42 Hensch, 2000; Gordon and Stryker, 1996).

43 Despite the importance of plasticity for e.g. disease and recovery from injury in adulthood,
44 whether a large-scale topographic remapping could be achieved during adulthood remains an open
45 and controversial question. For example, in the Visual Deprivation Model (VDM), (Mower 1991;
46 Fagiolini et al. 1994; Iwai et al. 2003; Hubel and Wiesel 1970), where animals are reared in
47 complete darkness from birth and before exposure to light, the system is in an aberrant state on
48 multiple scales. From a cellular perspective, RFs do not exhibit the sharp properties of normal
49 rodents, and cortical function and structure resemble the conditions typically observed before eye
50 opening. In particular, broad spatial and SF tuning selectivity, (Fagiolini et al. 1994; Sherman and
51 Spear 1982; Gianfranceschi et al. 2003) are found. Furthermore, at the population level, a lack of
52 orderly visual maps and imprecise RF tuning (Jenks and Shepherd 2020; Smith and Trachtenberg
53 2010) was found. Behaviourally, visual acuity remains low (Regal et al. 1976; Teller et al. 1978;
54 Timney, Mitchell, and Giffin 1978).

55 Exposure to light following VDM provides an outstanding opportunity to investigate
56 plasticity/stability balances in adulthood. Whether first light exposure in adulthood promotes a
57 normal development of the visual system is highly controversial, with some electrophysiology
58 studies suggesting that VDM results in permanent deficits most likely driven by aberrant
59 excitatory–inhibitory balances (Di Marco et al. 2009; Gianfranceschi et al. 2003), supporting the
60 view of a remarkable degree of stability in the adult visual system (Daw et al. 1992; Hubel and
61 Wiesel 1970; T. K. Hensch et al. 1998; Baseler et al. 2011). Others however, support the view that
62 the brain remains plastic after the critical period by cortical remapping, in particular, through re-
63 scaling and displacing RFs, in response to visual deprivation (Womelsdorf et al. 2006; Kaas et al.
64 1990; Keck et al. 2008, 2011; Hübener and Bonhoeffer 2014). These findings are corroborated
65 also by lesion studies (Womelsdorf et al. 2006; Kaas et al. 1990; Keck et al. 2008, 2011; Hübener


66 and Bonhoeffer 2014). In particular, although the studies above provide some evidence that a
67 reorganization occurs upon first light exposure in adulthood, it is still unclear whether the system
68 itself exhibits a convergence to the normal topographical mapping and whether it does so in unison
69 or whether different areas of the brain have distinct dynamics. This gap stems from the
70 macroscopic nature of entire networks and the inherently multidimensional time scales involved.

71 Insofar measurements of RF properties in rodents has been limited to electrophysiological
72 measurements of few sparsely distributed neurons (Kaas et al. 1990; Keck et al. 2008; Fagiolini et
73 al. 1994) and by calcium imaging (Zhuang et al. 2017) focusing only on isolated brain regions,
74 lacking the pathway-wide perspective (Girman, Sauvé, and Lund 1999; Meliza and Dan 2006).
75 Furthermore, RF properties are typically compared pre- and post- lesion/conditioning (Kaas et al.
76 1990; Keck et al. 2008; Meliza and Dan 2006). The difficulty of monitoring the same cells (e.g.
77 via electrophysiology or calcium imaging) at different time points may lead to neuronal changes
78 unrelated to plasticity. These bottlenecks limit our knowledge on how the entire pathway adapts
79 and generates a specialization of detailed RFs and SF, which is critical for developing future
80 therapies and rehabilitation strategies.

81 Here, to enable the investigation of entire-pathway plasticity, we bridge this critical gap
82 using preclinical high field functional Magnetic Resonance Imaging (fMRI) coupled with a novel
83 setup capable of delivering complex visual stimuli in the scanner (Figure 1). MRI provides the
84 required whole-pathway view and longitudinal capacity, and population receptive fields (pRF)
85 properties are routinely measured non-invasively in humans and non-human primates, although at
86 a coarse level of detail (Dumoulin and Wandell 2008; Wandell, Dumoulin, and Brewer 2007). In
87 addition, high-field preclinical MRI has proven ability to map in a highly detailed manner brain
88 wide plasticity (Dijkhuizen et al. 1996; Hoehn et al. 2001) after sensory deprivation (Yu et al.

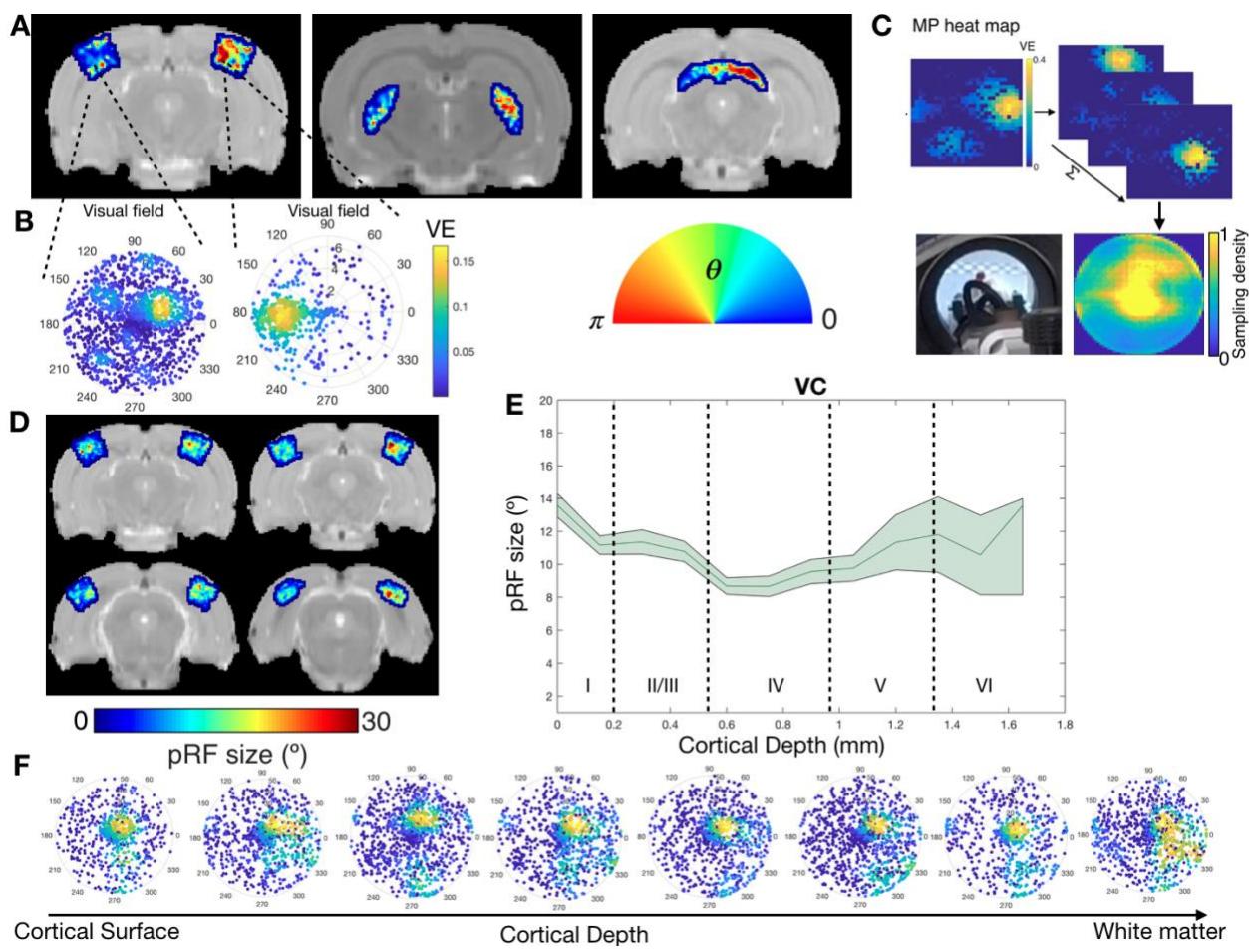
89 2010; Gil, Fernandes, and Shemesh 2021), peripheral nerve injury (Pelled et al. 2007; Yu et al.
90 2012), and stroke (M.-Z. Li et al. 2018; Alves et al. 2021). However, delivery of such complex
91 stimuli for rodents, which would enable a broad spectrum of experiments that are not possible to
92 perform in human or primate counterparts, was insofar considered “impossible” due to space
93 constraints in preclinical scanners. Using this first-of-its-kind setup, we mapped in detail the
94 topographical and neuroanatomical organization of the entire rodent visual pathway for the first
95 time, thereby linking the population level RFs vis-a-vis electrophysiology, of entire visual areas at
96 a whole pathway-level and in a non-invasive manner. We could then probe the plasticity/stability
97 balance in an animal model where control can be exerted on the visual landscape and rearing
98 conditions, i.e adult rodents using the VDM, and follow if and how the system specializes in terms
99 of RFs and SF tuning curves. Our results suggest that light exposure in adulthood results in an
100 extensive topographical remapping and functional sharpening. The outcomes of this study have
101 important implications for visual rehabilitation and restoration therapies.

102

104 **Figure 1. The complex visual stimuli setup for preclinical MRI scanners, stimulation paradigms and scheme of the dark**
 105 **rearing timeline.** A: Visual stimulus display setup. B: Picture of the visual stimulus displayed inside the scanner. C: The retinotopy
 106 **stimulation paradigm: checkerboard bar moving in 8 different directions (2 directions per stimulation block during 36 s followed**
 107 **by a 45 s rest period, repeated 4 times). D: The SF tuning paradigm: 15 s stimulation period followed by a 45 s baseline. Ten**
 108 **different SFs were randomly presented at each stimulation block ranging between 0.003 and 0.5 cpd. E: Timeline of the dark**
 109 **rearing experiment.**

110 2. Results

111 2.1 Retinotopic organization of the rat visual pathway mapped via 112 fMRI


113 Figures S1, S2 and 4 show that the complex visual stimuli setup elicited reliable,
114 temporally reproducible, and robust BOLD activation throughout the entire visual pathway in
115 response to both retinotopic and SF tuning stimuli.

116 To validate the relevance of the complex visual stimulus setup, we first set to perform
117 retinotopy in the rat using fMRI. The RF properties of the population of neurons within each voxel
118 - referred to as “population RF” (pRF) (Dumoulin and Wandell 2008) - were mapped voxelwise.
119 Each pRF was modeled by a 2D Gaussian model and therefore characterized by a center
120 (eccentricity and polar angle-phase) and a size. In addition, we mapped the pRF profiles, which
121 capture the visual representation of each pRF through visual field sampling using very small
122 (0.01°) probes (Carvalho et al. 2020). Figure 2A shows retinotopic (phase) maps averaged across
123 animals for three representative slices containing the main junctions of the visual pathway, namely,
124 lateral geniculate nucleus (LGN), superior colliculus (SC) and visual cortex (VC) areas. For all the
125 studied areas, clear retinotopic organization was evidenced, and neighboring voxels responded to
126 adjacent positions in the visual field as expected. Note that the visual information crosses at the
127 optic chiasm, so the pRFs in the left hemisphere respond to the visual information presented on
128 the right part of the visual field, and vice-versa (Figure 2B). In VC, the phase variation occurs
129 along each cortical layer and it does not appear to vary across cortical depth. In the SC and LGN,
130 strongly organized retinotopic maps were also observed.

131 The visual field representation for a determined ROI can be reconstructed by: 1) converting
132 the pRF profiles into heat maps (histograms of a 30×30 bin grid weighted by its bin variance

133 explained) and 2) aggregating the RFs across the voxels in an entire ROI via a normalized sum
134 (Carvalho et al. 2021). Figure 2C shows the visual field reconstruction at the level of VC,
135 corresponding to what the animal is actually seeing. The yellow regions of the visual field were
136 more highly sampled by the VC during the retinotopic paradigm. The overlap between VC visual
137 field reconstruction and the available FOV is evident and, due to animal bed constraints,
138 corresponds only to the top half of the visual field.

139 Using our setup, we could also determine the size of the receptive fields. In the VC, RF
140 size changes across cortical layers and is constant within layers (Figure 2D), as expected. Figure
141 2E shows how pRF sizes vary with cortical depth. While superficial and deeper layers present
142 larger pRFs, layer IV contains the smallest pRFs (Figure 2E). This is also clearly depicted in the
143 pRF profiles across cortical layers (Figure 2F). These findings are in line with electrophysiological
144 studies in cats and human fMRI reports, where the smallest RF sizes are found in layer IV and the
145 largest at layer VI (Fracasso, Petridou, and Dumoulin 2016; Gilbert 1977). The uncertainty
146 associated with the pRF size estimates increases with cortical depth, likely due to the depth profile
147 of our surface coil and the choice of coronal slices, which impart more partial volume effects in
148 the slice direction.

149

Cortical Surface

Cortical Depth

White matter

150

Figure 2. PRF estimates of HC animals across ROIs and cortical layers at t=0. A: Phase maps averaged across animals obtained for VC, LGN and SC, respectively. The colorbar shows the preferred angle estimated per each voxel. B: Visual representation of two pRF profiles located in the left and right hemispheres, respectively. The colorbar shows the variance explained (VE) of each individual probe. C: Average visual field reconstruction maps across animals for VC (obtained by summing the RF maps across some voxels of VC) and an image of the visual setup depicting the portion of the FOV covered by the animal bed. D: RF size maps averaged across animals in four different slices of the VC. The colorbar corresponds to degree of visual angle. E: Profile of the RF size across cortical depth averaged across subjects, obtained from two slices of the VC. The green area corresponds to the 10% confidence interval. F: Visual representation of eight pRF profiles located across layers of the VC.

151

152

153

154

155

156

157

158

159 2.2 Spatial frequency selectivity across the rat visual pathway 160 mapped via fMRI

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

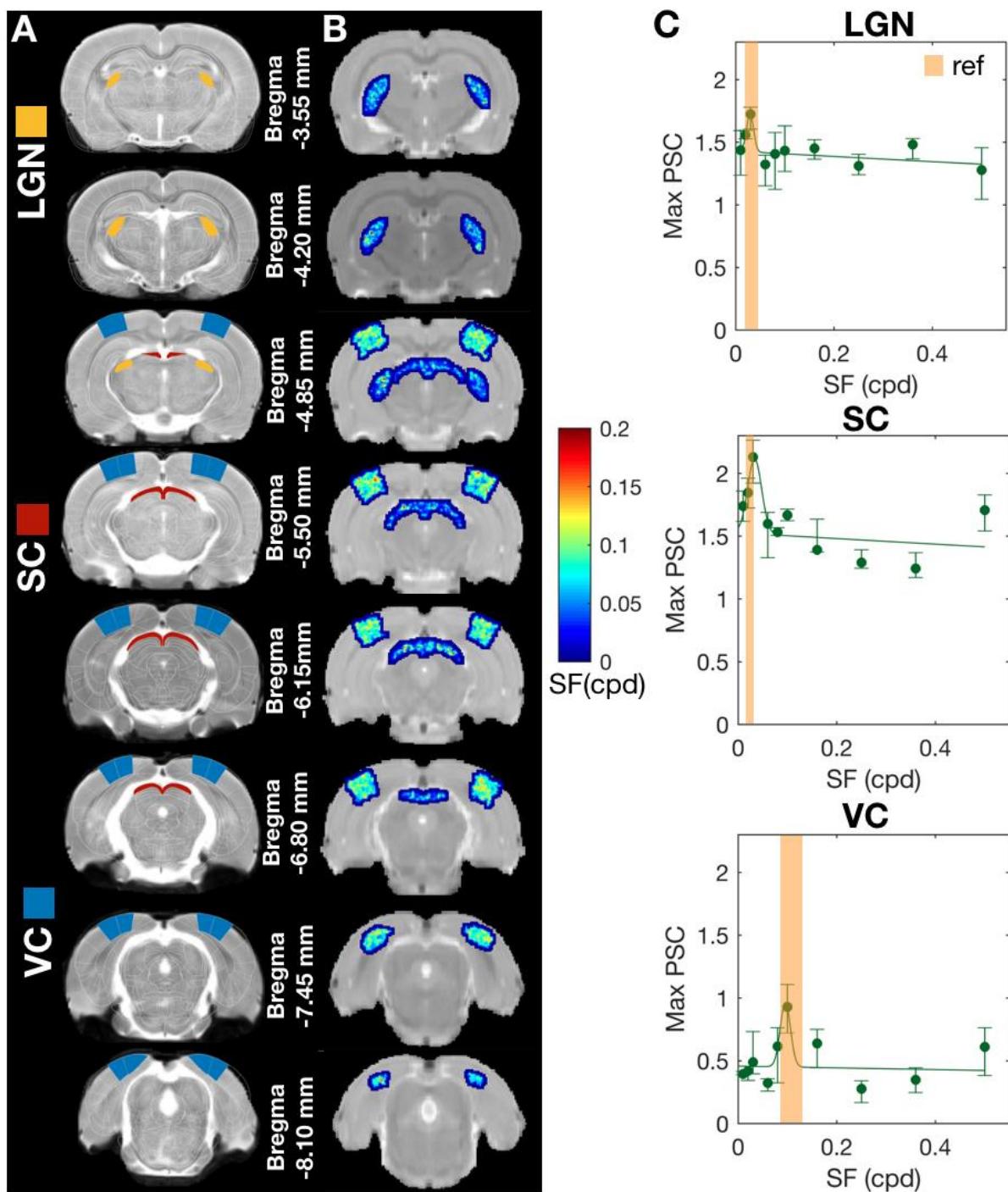
424

425

426

427

428


429

430

431

432

165 (Figure 3). Figure 3A shows the definition of the ROIs (LGN, SC and VC) according to the Paxinos
166 and Watson rat brain atlas overlaid on top of the anatomical images of a particular HC animal. The
167 projection of the optimal SF per voxel is shown in Figure 3B. In contrast with the retinotopic maps,
168 within each visual structure (ROI), we find no organization of SF selectivity, which indicates that
169 each area responds globally to a set of specific SFs. Figure 3C shows the SF tuning curves in LGN,
170 SC and VC in HC. Overall, all the ROIs show a band-pass filter tuned to low SF behavior. Early
171 areas of visual processing such as SC have lower optimal SF than areas that process visual
172 information at a later stage in the visual hierarchy, such as VC. The variation in SF across visual
173 areas is most likely associated with the different filtering behaviors that diverse neurons exhibit,
174 i.e. some neurons present a low-pass filter behavior while others exhibit a band-pass (Sriram,
175 Meier, and Reinagel 2016). The average optimal SF estimated for VC, LGN and SC of HC animals
176 is 0.12 cycles per degree (cpd), 0.06 cpd and 0.05 cpd, respectively. The optimal SF values are in
177 agreement with what has been reported in the literature through calcium and electrophysiology:
178 neurons in the LGN region of awake rats best respond to SFs of 0.03-0.06 cpd (Sriram, Meier, and
179 Reinagel 2016); neurons in VC have a peak response at 1 cpd (Girman, Sauvé, and Lund 1999);
180 and neurons in SC show band-pass profiles with an optimal SF of 0.03 cpd and large tuning widths
181 (Prévost, Lepore, and Guillemot 2007). These reference values are highlighted in Figure 3C.

182

183 **Figure 3. Spatial frequency selectivity across the visual pathway in HC animals at t=0.** A: Anatomical images with Paxinos
184 and Watson Atlas structures overlaid and the ROIs highlighted. B: Optimal SF estimated per voxel for HC, averaged across animals.
185 C: Maximum PSC during the activation period as a function of the SF of the stimulus, calculated for HC. The errorbar represents
186 the 10% confidence interval across animals. The continuous lines represent the Gaussian model fitted to the data. The goodness of
187 fit is shown in Table S1. The orange band denotes the range of optimal SF values reported in the literature measured using
188 electrophysiology (Sriram, Meier, and Reinagel 2016).

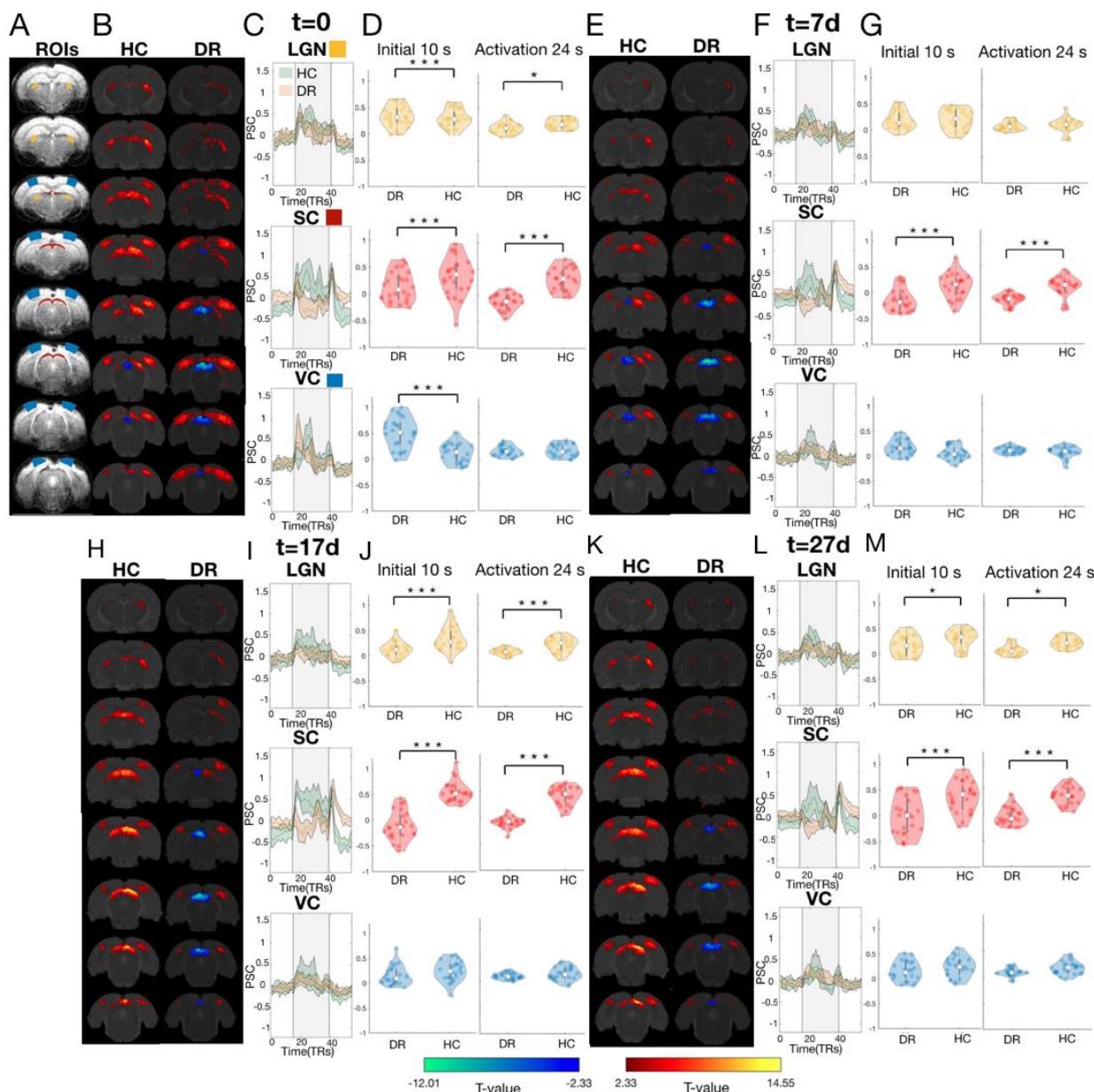
189

190 **2.3 Visual deprivation results in differential BOLD dynamics**
191 **throughout the visual pathway**

192

193 Once we verified that the complex stimuli setup provides insight into the visual pathway
194 organization, we sought to probe the plasticity/stability balance in the adult brain. We first
195 evaluated global fMRI responses in the VC, LGN and SC of mice that underwent visual
196 deprivation (Dark Reared (DR)) as a model of plasticity and compared them to activity in healthy
197 controls (HC) in terms of retinotopic and spatial frequency characteristics at multiple time points
198 ($t = 0$, $t = 7d$, $t = 17d$ and $t = 27d$, Figures 4 and S2, respectively).

199


200 Upon first exposure to light in animals DR from birth, the fMRI responses to the retinotopy
201 stimulus at this $t=0$ were characterized by a markedly faster onset in the DR group when compared
202 with HC in VC and LGN. In the first 10 s of visual stimulation, the BOLD response in VC and
203 LGN in the DR group was significantly higher than in HC (Figure 4C and 4D). In the VC in
204 particular, stronger differences between the DR and HC were observed in response to the SF tuning
205 stimulus (Figure S2). The DR group BOLD responses to the SF tuning stimulus exhibited 3-fold
206 increases in BOLD amplitudes in VC compared to HC at $t = 0$ ($p\text{-value}<0.001$, Figure S2).
207 Interestingly, one week after light exposure, the DR BOLD responses in the VC were attenuated
208 to the level of the HC for both retinotopic and SF tuning stimuli. At $t = 7d$, $t = 17d$ and $t = 27d$,
209 there were no significant differences between the amplitude of the VC BOLD responses of DR
and HC animals (Figure 4E-M and Figure S2).

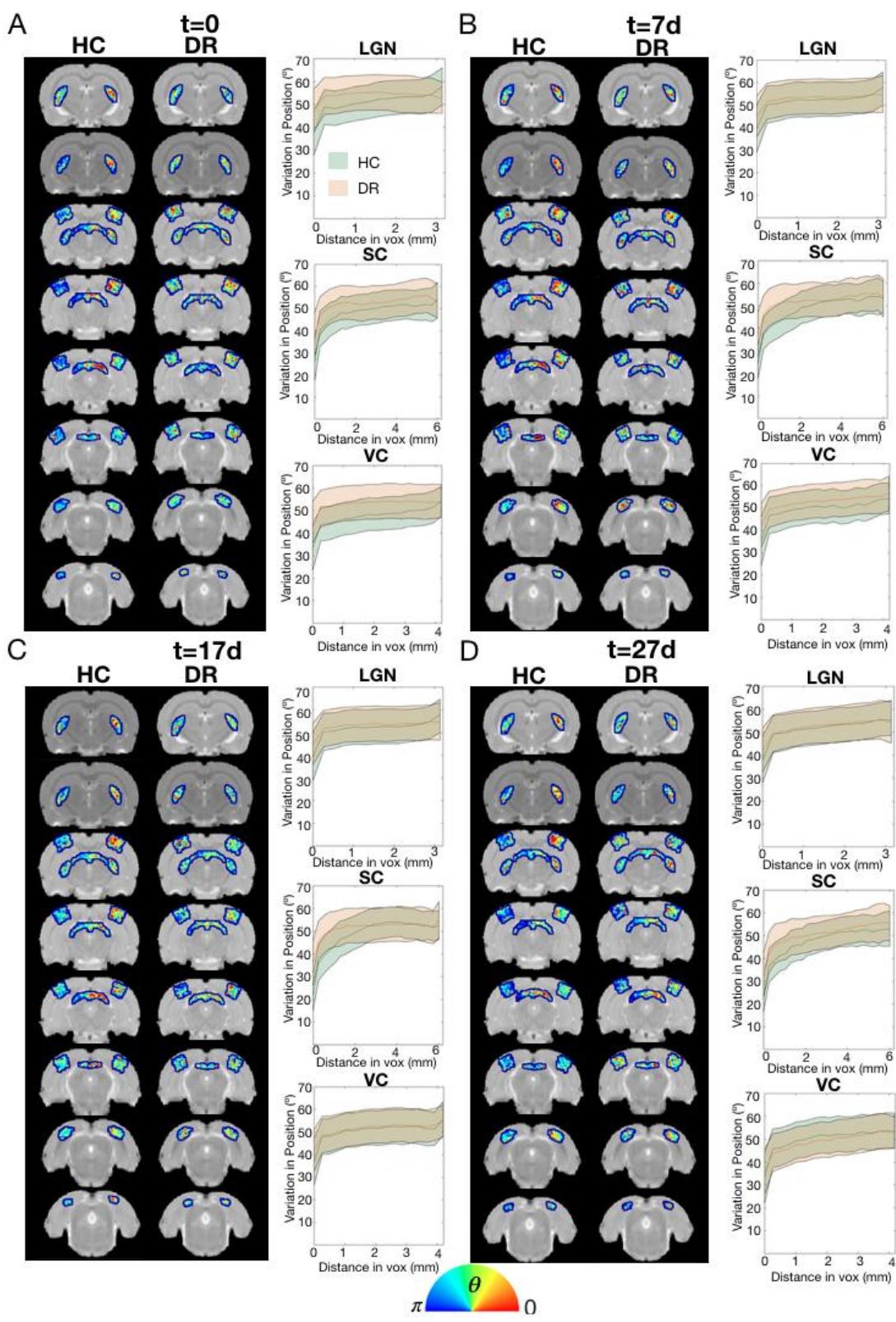
210

211 Moreover, the HCs show stronger signals in the LGN during the entire stimulation period
212 in response to the retinotopic stimulus at $t = 0$, $t = 17d$ and $t = 27d$ (Figure 4 D, J and M,
respectively). Interestingly, the most striking difference between the responses to both stimuli

213 takes place in the SC. For all time points, the DR SC exhibited a negative BOLD response to the
214 retinotopic stimulus, contrasting with the positive BOLD response measured in HC. This
215 difference was highly statistically significant in all time points (Figure 4D, G, J and M). This
216 contrasts with the responses obtained in SC to the SF tuning stimulus, where the DR BOLD
217 response is positive at all time points and even shows increased values compared to the HC at $t =$
218 27d (Figure S2).

219 To summarize, visual deprivation: a) boosts BOLD-fMRI responses and results in faster
220 onset times in the visual cortex; and b) results in negative BOLD responses in the SC in response
221 to the retinotopic stimulus. Moreover following light exposure the responses in the VC of DR
222 animals are comparable to the ones of HC and remain attenuated in the SC and LGN.

223

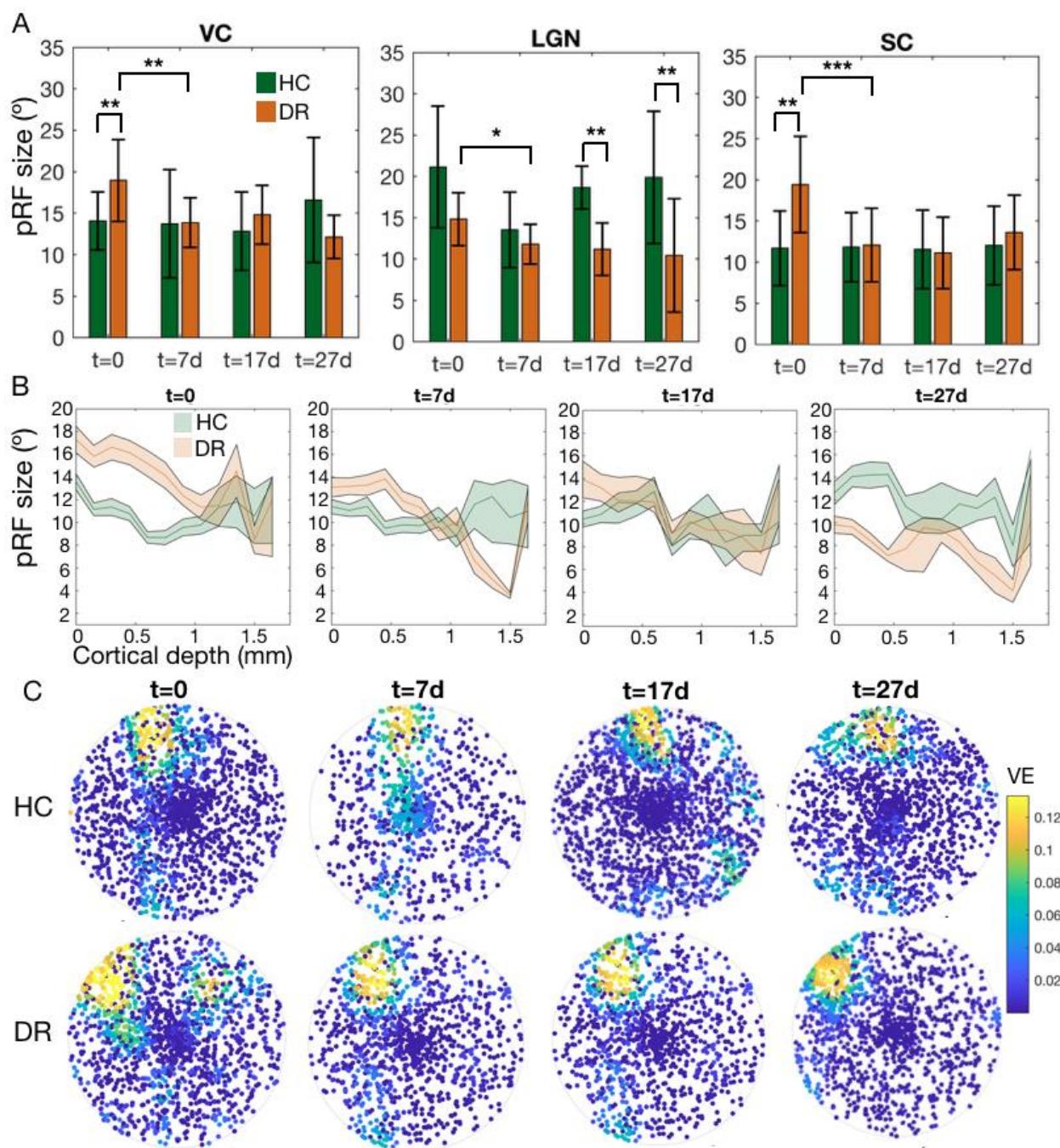

224 **Figure 4. Differential responses between DR animals and HC driven by the retinotopic stimulus.** A: Raw fMRI images with
225 the ROIs (LGN, SC and VC) overlaid. B, E, H, K: fMRI activation patterns of t-contrast maps obtained for HC and DR animals at
226 t=0, t=7d, t=17d and t=27d, respectively. The GLM maps are FDR corrected using a p-value of 0.001 and minimum cluster size of
227 20 voxels. C, F, I, L: PSC of the LGN, SC and VC for the HC and DR animals at t=0, t=7d, t=17d and t=27d, respectively. The
228 grey area represents the stimulation period. D,G, J, M: Violin plot of the amplitude of the BOLD response of DR and HC during
229 the initial 10 s of the activation period (left) and the total duration of the activation period obtained with the retinotopy stimulus
230 (right) at t=0, t=7d, t=17d and t=27d, respectively. The white dot represents the mean, and the grey bar represents the 25% and
231 75% percentiles. The blue, yellow and red colors represent the VC, LGN and SC respectively. The *** represents a p-value<0.001,
232 ** p-value<0.01 and * p-value<0.05.

233 2.4 Large-scale and pathway-wide topographical remapping in 234 adulthood following visual deprivation

235 To gain more specific insights into the reorganization of the adult visual pathway in the
236 brain, we longitudinally tracked changes in pRFs position and size for HC and DR. Figure 5A
237 shows the average phase maps across HC and DR animals obtained for VC, LGN and SC,
238 respectively. At $t = 0$ it is evident that while the HC group displays clear retinotopic organization,
239 the DR topography is highly disorganized.

240 Interestingly, after first light exposure in the adult DR group, the visual pathways
241 progressively become retinotopically organized, and start to resemble the retinotopic organization
242 observed in HC. This progressive organization is particularly apparent in SC (Figure 5). To further
243 quantify this effect we computed the difference of the pRF estimated position between each ROI's
244 voxels as a function of the distance between each pair of voxels across the four time points tested.
245 At $t = 0$, for all the ROIs, the DR animals show a larger difference between the pRF position
246 estimates than HC. This difference is larger for neighboring voxels and it becomes less pronounced
247 for larger distances between voxels. Across scanning sessions the variation in estimated pRF
248 position of the DR becomes closer to the one of HC. The DR's average correlation across ROIs
249 between pRF position variation and the voxel's distance increases across the scanning sessions
250 and at $t = 27d$ it is at the level of HC (DR: $t = 0$, $r^2 = 0.53$; $t = 7d$, $r^2 = 0.61$; $t = 17d$, $r^2 = 0.76$; $t =$
251 $27d$, $r^2 = 0.85$; HC: $t = 0$, $r^2 = 0.77$; $t = 7d$, $r^2 = 0.76$; $t = 17d$, $r^2 = 0.78$; $t = 27d$, $r^2 = 0.84$, all p-
252 values <0.001 , all the correlation values are presented in Tables S1 and S2). Only SC does not
253 recover completely to HC levels after 27d, as noted by both qualitatively assessing the maps and
254 the differences in the red and blue curves (Figure 5).

255
256

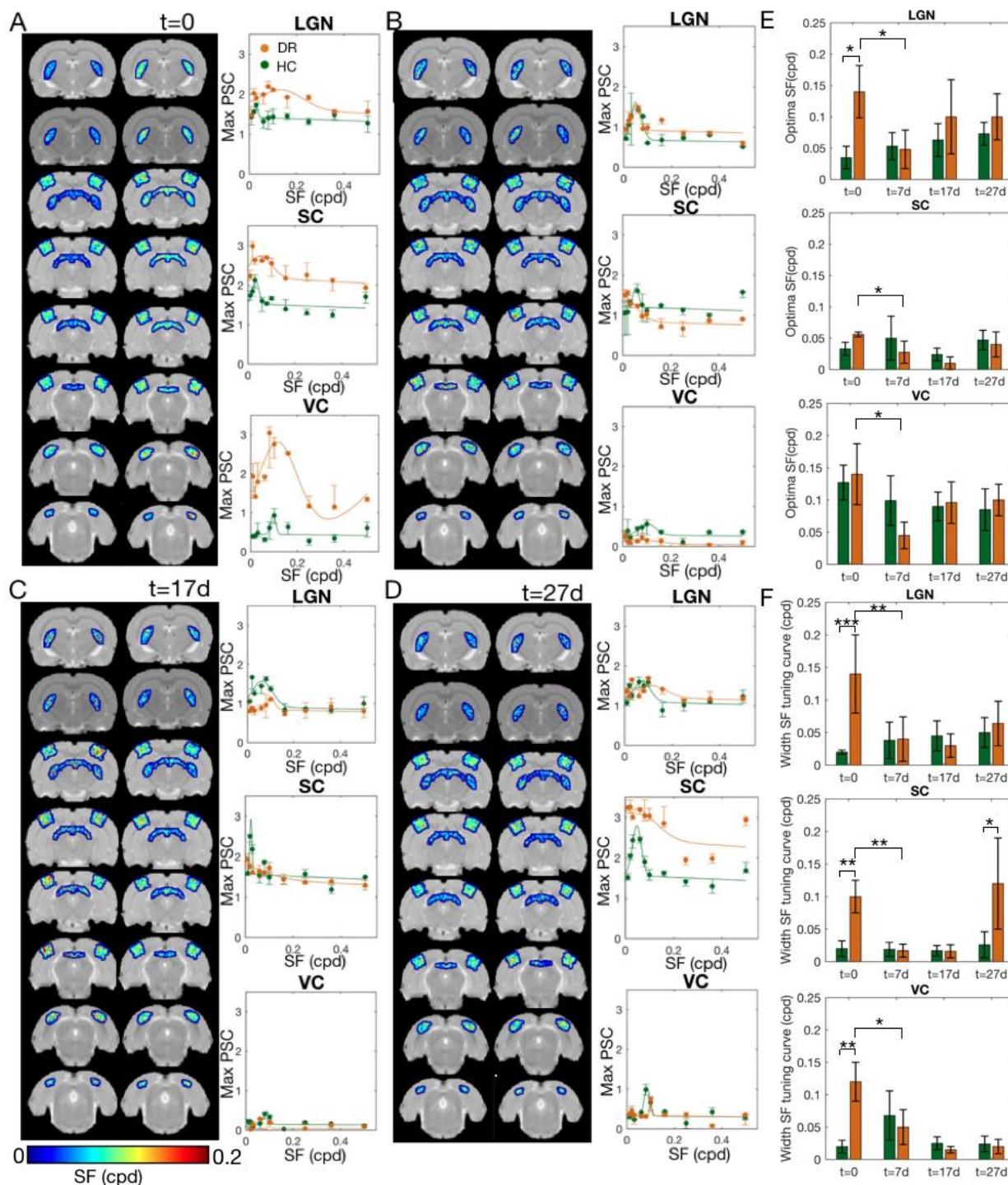


257
258
259
260
261

Figure 5. Refinement of RF position across time for DR and HC. A: Average phase maps obtained for 8 different slices and graphs showing the variation in pRF position measured between voxels of the same ROI as a function of the Dijkstra's distance between voxels, both obtained for DR and HC at the 4 measured time points. The solid lines represent the mean and standard deviation (std).

262 Next we investigated whether the progressive organization of the visual pathways is
263 accompanied by a decrease in pRF size. Figure 6A shows the average pRF size across animals and
264 ROIs for HC and DR at the different time points. At $t = 0$ the pRF size in VC and SC is significantly
265 larger in DR than in HC. One week after light exposure the DR's pRFs in VC, LGN and SC pRF
266 size are significantly smaller compared to its values at $t=0$. For VC and SC at $t=7\text{d}$ the DR's pRF
267 values were at the level of HC. In LGN DR's pRF size gradually shrinks across scanning sessions,
268 in addition the pRF size in HC was larger than in DR at all the time points measured, this effect
269 becomes significant at $t = 27\text{d}$. Importantly the HC pRF estimates for VC, LGN and SC did not
270 significantly differ between scanning sessions. Furthermore the averaged pRF size estimated per
271 visual area in HC (VC = 15° ; LGN = 18° ; SC = 12°) are in line with values reported in the literature
272 and they are in agreement with the size expected taking into account the hierarchy of the visual
273 pathway (Dräger 1975; Binns and Salt 1997). Note our model assumes simple on-center RFs. This
274 provides further evidence of reliability of the pRF estimates. Figure 6B shows the variation in pRF
275 size across cortical layers for HC and DR at multiple scanning sessions. The reduction of RF sizes
276 took place mostly in the superficial and middle layers. At $t = 0$ the pRF sizes at the deepest layers
277 do not differ significantly between HC and DR. Furthermore at $t = 0$ the variation of the pRF size
278 across cortical layers does not follow the trend of the HC, in the DR the pRF size continuously
279 decreases from the cortical surface until the deepest layer. Figure 6C shows RF profiles of two VC
280 voxels, one of HC5 and another of DR5 across scanning sessions; we can appreciate how the DR
281 pRF becomes more refined over scanning sessions.

282
283



284
285
286
287
288
289
290

Figure 6. Refinement of RF size across time for DR and HC. A: Average RF size measured for HC and DR at multiple time points for VC, LGN and SC. The errorbar corresponds to std. The *** represents a p-value<0.001, ** p-value<0.01 and * p-value<0.05. B: Variation of the RF size averaged across animals as a function of the cortical depth for two slices of the VC for DR and HC at multiple time points. C: Visual representation of two population RF profiles (one in HC and another in DR) across the 4 scanning sessions.

291 2.5 Specialization of spatial frequency selectivity is promoted by
292 visual experience

293
294 A hallmark sign of specialization of the visual pathway is the refinement of tuning curves (Hoy
295 and Niell 2015). Figure 7A shows the projection of the optimal SF obtained per voxel. At t=0 a
296 wider range of SFs are apparent for the DR group VC, LGN and SC when compared to the same
297 structures in HCs, while at t = 7d, the DR maps are more similar to HC's. Figure 7B represents the
298 SF tuning curves in VC, LGN and SC at the four time points tested. Panel 7C shows how the
299 optimal SF (Gaussian center) and broadness of the tuning curves (Gaussian width) are shaped by
300 visual experience in HC and DR. For all the visual structures tested (VC, LGN and SC) at t = 0
301 the DR tuning curves are broader than HC ones (VC t(39)=-2.48 p-value<0.01, LGN t(39)=-3.7 p-
302 value<0.001; SC t(39)=-2.61 p-value<0.01); panel C. At t = 7d the DR SF tuning curves become
303 similar to HCs, narrower and with an aligned peak (optimal SF frequency). Note the drop in
304 optimal SF and SF tuning curve with from t = 0 to t = 7d in panel 7C. This is particularly evident
305 in the LGN which shows a much higher correlation between the DR and HC tuning curve points
306 at t = 7d than at t = 0, (t = 0 $r^2=0.11$, t = 7d $r^2=0.73$). While at t = 17d and t = 27d the values of
307 optimal SF estimated for DR tend to stabilize near the SF values estimated for HC, the broadness
308 of the tuning curve is more variable. After the initial shrinkage in SF tuning broadness from t = 0
309 to t = 17d, at t = 27d LGN and SC show large tuning curves, panels 7B and 7C. With the exception
310 of LGN where the HC's SF curves become larger over time and the optimal SF is shifted toward
311 higher values, the optimal SF and broadness of the tuning curve estimated for VC and SC for HC
312 do not vary significantly between time points. In addition areas with strong BOLD signals such as
313 SC the SF estimates tend to be less variable.

314

315 **Figure 7. Visual experience following VDM promotes the specialization of SF tuning curves.** A, B, C, D: Optimal SF estimated
 316 per voxel for HC and DR, at $t=0$, $t=7d$, $t=17d$ and $t=27d$ respectively. E: Maximum PSC during the activation period as a function
 317 of the SF of the stimulus, calculated for DR (orange) and HC (green) at the four measured time points. The errorbar represents the
 318 std. The continuous lines represent the Gaussian model fitted to the data. F: Estimated optimal SF (Gaussian center) and broadness
 319 of the SF tuning curve (Gaussian width) for the VC, LGN and SC at $t=0$, $t=7d$, $t=17d$ and $t=27d$ for HC and DR. The errorbar
 320 corresponds to std. The *** represents a p-value < 0.001, ** p-value < 0.01 and * p-value < 0.05.
 321

322 3. Discussion

323

324 The unique setup for delivery of complex stimuli in rodent preclinical fMRI scanners
325 developed here enabled an in-depth investigation of the plasticity/stability balance in the adult
326 visual pathway. Delivery of such complex stimuli enabled the first fMRI-based mapping of
327 retinotopic organization and SF tuning of the visual pathway in adult rats. In healthy controls, the
328 estimation of the RF properties via BOLD-fMRI reproduced at a pathway-level all the trends
329 expected from prior invasive calcium recording and electrophysiology studies (Zhuang et al. 2017;
330 Espinoza and Thomas 1983; Girman, Sauvé, and Lund 1999; X. Li, Sun, and Shi 2015) including:
331 retinotopic organization, receptive field size, variation of VC RF sizes with cortical depth and SF
332 tuning curves. Hence, BOLD-fMRI signals faithfully represent these specific features while
333 offering a very high resolution, longitudinal investigation, and a comprehensive whole-pathway
334 vantage point. To the best of our knowledge, our work is the first fMRI-based retinotopic mapping
335 and SF tuning curves in the rat visual pathway, and we note that the high-resolution (125x125
336 μm^2) population RFs that could be mapped using this approach can probably be extended in the
337 future using denoising techniques (Ades-Aron et al. 2021; Veraart et al. 2016) and/or adaptation
338 of the system to cryogenic coils (Labbé et al. 2021; Ratering et al. 2008; Baltes et al. 2009).

339 Once all the important features of the visual pathway were reproduced using BOLD-fMRI
340 contrast, we could harness this approach towards investigating plasticity and stability in the visual
341 pathway - in particular, how VDM affects the function and organization of the brain and how the
342 visual experience promotes reorganization. Our main findings are: (1) The adult rat brain is highly
343 plastic and that visual deprivation delays the maturation of RFs, in particular visually deprived
344 animals lack retinotopic organization and SF specialization of the visual pathway; and (2) Light

345 exposure during adulthood (post-critical period) clearly promoted an extensive topographic
346 remapping and functional specialization of the visual system in DR rats. At the level of BOLD
347 signals, we show that the VDM affects the activation magnitude and timing of the responses. Then,
348 using biologically inspired computational models of the RFs applied to the BOLD-signals in
349 response to the complex stimuli, more perceptual features of the pathway could be unraveled,
350 including that exposure to light upon visual deprivation opens a window of plasticity during
351 adulthood that promotes specialization of the pathway towards normal vision. This unique view of
352 the whole pathway, is promising for future characterisations of plasticity in health and disease. In
353 a clinical context this technique holds the potential to assess the optimal timing for visual
354 restoration and rehabilitation therapies, such as retinal stem cell transplantation, and to be pivotal
355 for the translation of preclinical findings to humans. Below we discuss our findings and their
356 implications in detail.

357 **3.1 Visually deprived rats exhibit different BOLD response patterns**
358 **compared to healthy controls which tend to normalize following**
359 **visual experience**

360 **3.1.1 VC and LGN: Visual deprivation model modifies BOLD-fMRI**
361 **response's amplitude and timing**

362 The VC and LGN of visually deprived rats from birth, at the first moment of light exposure ($t=0$)
363 showed an early onset time and the DR's VC and stronger BOLD responses compared to normal
364 reared rats. This may reflect: 1) changes in excitation/inhibition balance of the visual cortex, most
365 likely a reduction of inhibitory signals (Fierro et al. 2005; Castaldi, Lunghi, and Morrone 2020;
366 Lunghi, Burr, and Morrone 2011) and 2) an adaptation mechanism through increase of contrast-
367 gain, which results in enhanced excitability of the visual cortex following visual deprivation

369 (Borojerdi et al. 2000). This cortical increase in gain-control reflects the adaptation mechanisms
370 attempting to optimize weak or absent information during the visual deprivation period.
371 Furthermore, similar mechanisms have also been described in humans, in which short-term
372 monocular patching boosts the patched eye's response in the visual cortex (Jiawei Zhou et al. 2015;
373 J. Zhou, Clavagnier, and Hess 2013; Lunghi, Burr, and Morrone 2011; Borojerdi et al. 2000) and
374 short-term binocular visual deprivation increases the excitability of the visual cortex (Borojerdi
375 et al. 2000). However, our results are in contrast with a previous study using ultra-fast fMRI which
376 showed delayed, broad and low amplitude BOLD responses measured in the DR mice when
377 compared to HCs (Gil, Fernandes, and Shemesh 2021). Two major differences between this study
378 and (Gil, Fernandes, and Shemesh 2021) are that they used simple low frequency flickering visual
379 stimuli and the visual stimulation was monocular. The size and content of the stimulus, the
380 contrast, the spatial frequency and the movement direction very likely influenced the dynamics of
381 the measured BOLD-fMRI responses and are likely to originate the differences between the
382 studies.

383 Furthermore, we examined the BOLD-fMRI responses at multiple time points following
384 light exposure. After one week of light exposure the BOLD responses to the retinotopy and SF
385 tuning stimuli in the DR group returned to the level of HCs, reflecting that the window of plasticity
386 (or critical period) in DR rats has been extended. This extension could be mediated by modification
387 of excitatory–inhibitory balances (Vogels et al. 2011; Takao K. Hensch and Fagiolini 2005) and/or
388 removal of brakes on plasticity (Bavelier et al. 2010; Erchova et al. 2017).

389 3.1.2 SC: Visual deprivation elicits negative BOLD responses to retinotopic
390 stimuli in superior colliculus
391

392 For all the time points, the SC in dark reared animals showed a different behaviour to that described
393 above for VC and LGN. In particular, SC exhibited a negative BOLD response contrasting with
394 the positive BOLD response measured in HC. Although interpretation of negative BOLD
395 responses is ambiguous, mounting evidence suggests that negative BOLD responses correlate with
396 local decreases in neural activity (Shmuel et al. 2006; Boorman et al. 2010). One possible
397 explanation for the negative BOLD responses observed in the DR group is enhanced intracortical
398 or tecto-tectal inhibition (Goodale 1973). Previous studies have shown that visual deprivation
399 potentiates inhibitory feedback and that it reflects a degradation of the visual function (Sten et al.
400 2017; Maffei et al. 2006; Kannan et al. 2016; Miska et al. 2018). The fact that the enhanced
401 intracortical inhibition mostly affects SC is likely linked with the fact that SC receives mostly
402 direct retinal inputs and it has a classical RF with excitatory center and an inhibitory surround
403 (Prévost, Lepore, and Guillemot 2007; X. Li, Sun, and Shi 2015). The inhibitory inputs lead to an
404 enhancement of surround suppression. Some studies suggest that early but not late light exposure
405 protects against the effects of adult visual deprivation on the SC (Pallas 2009).

406

407 3.1.3 Differential vascular responses are not the underlying sources of the
408 differences in BOLD responses observed between DR and HC

409 Negative BOLD can also be driven by reduced cerebral blood volume, a mechanism known as
410 “vascular stealing” (Harel et al. 2002). To discard that differences in vasculature between DR and
411 HC are the dominant driving force for the differential BOLD-fMRI responses observed between
412 the two groups, a hypercapnia challenge was performed. Hypercapnia is a strong vasodilator,
413 causing increases in cerebral blood flow and cerebral blood volume and it is used to calibrate

414 BOLD fMRI (Chen and Pike 2010). We found that the rise times and signal amplitude were nearly
415 identical between DR and HC for the different ROIs, Figure S3. This suggests that vascular
416 responses are similar between the groups and further pointing towards the differences being driven
417 mainly by neural activity.

418 **3.2 Refinement of receptive fields following light exposure during
419 adulthood in dark reared animals across the entire visual pathway**

420 **3.2.1 Mapping non-invasive high resolution population receptive field
421 properties**

422
423 The VC does not receive a direct input from the retina. The activity of rodent VC neurons is driven
424 by the geniculate pathway which projects feedforward visual information to layer IV of VC and
425 by SC (which receives direct input from the retina) that projects broadly to all cortical layers of
426 VC (Priebe and McGee 2014). Therefore, the ability of cortical neurons to integrate visual
427 information varies across visual areas, while SC has limited spatial integration, VC integrated
428 information over a large area (Prévost, Lepore, and Guillemot 2007; X. Li, Sun, and Shi 2015).
429 This notion is in line with our results, as we found that the superficial layer of SC has the smallest
430 receptive fields (~12°), while VC and LGN have larger sizes, 15° and 18° respectively. This also
431 agrees with previous electrophysiology studies and corroborates the view that SC has limited
432 spatial integration. Regarding the RF profiles across cortical layers, in the VC the population RF
433 sizes are the largest at most superficial and deepest layers and smallest at layers IV and V. This is
434 in agreement with electrophysiological studies in cats and human high-field fMRI (Fracasso,
435 Petridou, and Dumoulin 2016; Gilbert 1977). The variation of the RF across cortical layers is
436 linked to the flow of signals across the cortical architecture (Fracasso, Petridou, and Dumoulin
437 2016).

438 3.2.2 Visual experience following dark rearing promotes a pathway wide
439 receptive field remapping and specialization (shrinkage)

440
441 We mapped the specialization of the visual pathway in DR rats during light exposure. Immediately
442 after light exposure, VC, LGN and SC lacked retinotopic organization, the phase maps were totally
443 disorganized when compared to the HC ones. With the continuous light exposure the visual
444 pathway progressively became retinotopically organized, VC and LGN reached at t=27d the same
445 level of retinotopic organization as HC. Although SC progressively reorganized, at t=27d it did
446 not have reached the same level of reorganization as HC. Across the entire visual pathway the
447 progressive organization of the visual pathways was accompanied by a shrinkage in pRF sizes.
448 The pRF shrinkage took place during the first week of light exposure, and it stabilized at t=17d
449 and t=27d. The fact that DR's RF size stabilizes before the retinotopic structure suggests that the
450 shrinkage of RF is the driving force for the reorganization of the retinotopic structure. Our results
451 agree with previous electrophysiology and calcium studies which locally showed that, in DR adult
452 animals, the RF sizes of visual cortical neurons remain large (Fagiolini et al. 1994; Regal et al.
453 1976; Teller et al. 1978). Furthermore the refinement of RFs and SF curves corroborates the notion
454 that dark rearing slows down the maturation of brakes on plasticity and that visual experience acts
455 by modulating the level and the patterning of neural activity within the visual pathways.

456 3.3 Visual experience refines spatial frequency tuning curves

457
458 To investigate how visual deprivation affects the functioning of the visual pathways we estimated
459 for the first-time the SF tuning curve across the rat visual pathway using fMRI. In general the
460 neural populations in VC, LGN and SC respond to SFs between 0.02 and 0.16 cpd, with an average
461 optimal SF estimated for VC, LGN and SC of 0.12; 0.07 and 0.05, respectively and based on HC

462 data. Furthermore we tracked the dynamic in the SF tuning curves in HC and DR from the first
463 moment to 27 days after light exposure. We found when first exposed to light the DR rats show
464 broader tuning curves than HC. One week after light exposure the tuning curves became sharper
465 (narrower and with an aligned peak with HC tuning curves), which suggests an increase in
466 selectivity. This was evident in SC, LGN and VC. Note that the tuning curves obtained for HC are
467 stable over time. These findings are in line with calcium and electrophysiology studies in mice
468 which have shown: a) that SF shifts are accompanied by a decreased tuning bandwidth (Vreysen
469 et al. 2012); and b) the DR delays the maturation on the cutoff SF (highest sinusoidal grating
470 frequency detectable by the visual system) (Zhang et al. 2015). However Zhang and colleagues
471 showed that DR mice showed lower SF cutoffs compared to HCs whereas our results indicate that
472 at t=0 DRs have higher SF cutoffs than HCs. Furthermore the refinement of SF tuning curves
473 tightly links with the results regarding the refinement of the RF over time, once large RF have a
474 preference for low spatial frequencies and vice versa. Similar patterns were also observed in
475 electrophysiology studies where the topographic refinement was accompanied by a decrease in
476 spot size preference and an increase in surround suppression (Tschepper et al. 2018).

477 In summary, our findings suggest that the VDM prevents the maturation of the RFs, as they
478 remain large without spatial/Sf selectivity and simultaneously VDM extends the critical period.
479 Visual experience during adulthood promotes the specialization of the RFs to maturation level
480 similar to the one of healthy controls.

481 3.4 Limitations and Future Research

482 During scanning the animals were sedated. Although medetomidine has been shown to be suitable
483 for the longitudinal studies (Weber et al. 2006), it can introduce bias compared to the awake state

484 due. One way to eliminate the anesthesia effect is to perform the experiments in awake animals,
485 however this requires prolonged training to scanner noises and to the visual stimulus (to maintain
486 a stable fixation throughout the experiment) which would be very difficult in DR animals. Another
487 limitation of the study is that although the DR animals were kept in a dark room from birth,
488 husbandry was performed under red light. A recent study has shown that although rats do not
489 possess red cones, their visual capacity under red light is still preserved (Nikbakht and Diamond
490 2021). Hence, the animals are not “completely” deprived of light, but their visual pathways can
491 still be expected to be highly immature.

492 Despite the usefulness of BOLD-fMRI, its neuronal underpinnings are still controversial
493 (Logothetis 2003). To better dissect the origins of the observed BOLD responses simultaneous
494 electrical recordings, calcium recordings and/ or optical imaging could be fruitfully applied (Lake
495 et al. 2020; Wang et al. 2018; Liang et al. 2017).

496

497 4. Conclusion

498
499 This study illustrates how high-resolution fMRI, in combination with complex visual stimulation,
500 can bridge the spatiotemporal scales necessary for repeatedly interrogating structural and
501 functional changes underlying plasticity and longitudinally investigate how the stability/plasticity
502 balance is sculpted by visual experience. Besides its relevance to understand the foundation of
503 vision and plasticity, the findings of this study will form the basis for future assessment of the
504 effect of retinal degeneration on visual function and the efficacy of any therapeutic intervention in
505 animal models of retinal degeneration.

506 5. Materials and Methods

507 All the experiments strictly adhered to the ethical and experimental procedures in
508 agreement with Directive 2010/63 of the European Parliament and of the Council, and were
509 preapproved by the competent institutional (Champalimaud Animal Welfare Body) and national
510 (Direcção Geral de Alimentação e Veterinária, DGAV) authorities.

511 5.1 Dark rearing

512 In this study, N=20 Adult Long Evan rats (N=18 Females, 12-20 weeks old, mean weight
513 322 g; range: 233-445 g) were used. The animals were randomly assigned into two groups: healthy
514 controls (HC, N=10) and dark reared (DR, N=10). The DR animals were born and kept in the dark
515 until 10-12 weeks of age with *ad libitum* access to food and water. Specifically, the animals were
516 housed in a sound protected dark room. The husbandry and animal preparation for the MRI
517 scanners were performed using red light (for which the animals are blind). They were first exposed
518 to light during the first MRI scan (t=0). Thereafter, the DR animals were housed in a normal
519 environment with a 12h light/12h dark cycle. Follow-up scans took place 7, 17 and 27 days after
520 t=0. The normal reared HC rats were scanned following the same protocol but were born and kept
521 in the normal environment (12 h/12 h light/dark cycle) from birth. The experiment timeline is
522 shown in Figure 1E.

523 5.2 Animal preparation

524 All in-vivo experiments were performed under sedation. The animals were induced into
525 deep anesthesia in a custom box with a flow of 5% isoflurane (Vetflurane, Virbac, France) mixed

526 with oxygen-enriched medical air for ~2 min. Once sedated, the animals were moved to a custom
527 MRI animal bed (Bruker Biospin, Karlsruhe, Germany) and maintained under ~2.5–3.5%
528 isoflurane while being prepared for imaging. The animals were placed 2.5 cm from a screen, where
529 the stimuli were projected, and eye drops (Bepanthen, Bayer, Leverkusen, Germany) were applied
530 to prevent the eyes from drying during anesthesia. Approximately 5 minutes after the isoflurane
531 induction, a bolus (0.05 mg/kg) of medetomidine (Dormilan, Vetpharma Animal Health, Spain)
532 consisting of a 1 mg/ml solution diluted 1:10 in saline was administered subcutaneously. Ten to
533 eighteen minutes after the bolus, a constant infusion of 0.1 mg/kg/h of medetomidine, delivered
534 via a syringe pump (GenieTouch, Kent Scientific, Torrington, Connecticut, USA), was started.
535 During the period between the bolus and the beginning of the constant infusion, isoflurane was
536 progressively reduced until reaching 0%.

537 Temperature and respiration rate were continuously monitored via a rectal optic fiber
538 temperature probe and a respiration sensor (Model 1025, SAM-PC monitor, SA Instruments Inc.,
539 USA), respectively, and remained constant throughout the experiment. Each MRI session lasted
540 between 2h30 and 3h. At the end of each MRI session, to revert the sedation, 2.0 mg/kg of
541 atipamezole (5 mg/ml solution diluted 1:10 in saline) (Antisedan, Vetpharma Animal Health,
542 Spain) was injected subcutaneously at the same volume of the initial bolus.

543 5.3 MRI acquisition

544 All the MRI scans were performed using a 9.4T Bruker BioSpin MRI scanner (Bruker,
545 Karlsruhe, Germany) operating at a ¹H frequency of 400.13 MHz and equipped with an AVANCE
546 III HD console and a gradient system capable of producing up to 660 mT/m isotropically. An 86

547 mm volume quadrature resonator was used for transmittance and a 20 mm loop surface coil was
548 used for reception. The software running on this scanner was ParaVision® 6.0.1.

549 After placing the animal in the scanner bed, localizer scans were performed to ensure that
550 the animal was correctly positioned and routine adjustments were performed. B0 maps were
551 acquired. A high-definition anatomical T₂-weighted Rapid Acquisition with Refocused Echoes
552 (RARE) sequence (TE/TR = 13.3/2000 ms, RARE factor = 5, FOV = 20 × 16 mm², in-plane
553 resolution = 80 × 80 μm², slice thickness = 500 μm, t_{acq} = 1 min 18 s) was acquired for accurate
554 referencing. Functional scans were acquired using a gradient-echo echo-planar imaging (GE-EPI)
555 sequence (TE/TR = 16.7/1500 ms, FOV = 20.5 × 15 mm², resolution = 125 × 125 μm², slice
556 thickness = 650 μm, 12 slices covering the visual pathway, flip angle = 15°). Importantly, the
557 functional MRI scans were started ~30 min after the isoflurane was removed from the breathing
558 air to avoid the potentially confounding effects of isoflurane (Tsurugizawa, Takahashi, and Kato
559 2016; Wu et al. 2016; Masamoto et al. 2007).

560 We performed two types of visual stimulus: retinotopy mapping and spatial frequency
561 tuning. The animals underwent a total of 6 runs of the retinotopic stimulus, each run taking 7 min
562 and 39 s to acquire (306 repetitions), and 2 runs of spatial frequency tuning experiment, each
563 lasting 12 min and 15 s (490 repetitions).

564 5.4 Visual stimulus delivery setup and paradigm

565 5.4.1 Setup

566 The complex visual stimuli necessary for retinotopic mapping, insofar never achieved in
567 rodent fMRI, were generated outside the scanner and back-projected with an Epson EH-TW7000
568 projector onto a semitransparent screen positioned 2.5 cm from the animals eyes (Figure 1A and

569 B). The projector was located in the scanner room outside the fringe field. An acrylic mirror of
570 $30 \times 30 \text{ cm}^2$ was positioned ~ 2 meters from the projector and ~ 2.6 meters from the animal. The
571 mirror was angled at 45° so that the light coming from the projector was reflected with a 90° angle
572 towards the scanner bore. The light was focused in a semi-circular screen with 4 cm radius,
573 resulting in a field of view of $\sim 116^\circ$ of visual angle. A scheme of the setup is shown on Figure 1A.
574 The animals viewed the stimulus binocularly. Using this setup, two sets of stimuli were presented:
575 a retinotopy stimulus which allows us to derive the population receptive field parameters, and a
576 spatial frequency tuning stimulus. Visual stimuli were created using MATLAB (Mathworks,
577 Natick, MA, USA) and the Psychtoolbox (Brainard 1997; Pelli 1997). An Arduino MEGA260
578 receiving triggers from the MRI scanner was used to control stimuli timings.

579 5.4.2 Retinotopy

580 The visual stimuli consisted of a luminance contrast-inverting checkerboard drifting bar
581 (Dumoulin and Wandell 2008). The bar aperture was composed by alternating rows of high-
582 contrast luminance checks moved in 8 different directions (4 bar orientations: horizontal, vertical
583 and the two diagonal orientations, with two opposite drift directions for each orientation, Figure
584 1C). The bar moved across the screen in 16 equally spaced steps, each lasting 1 TR. The bar
585 contrast, width, and spatial frequency were 50%, $\sim 14.5^\circ$, and ~ 0.2 cycles per degree of visual angle
586 (cpd), respectively. The retinotopic stimulus consisted of four stimulation blocks. At each
587 stimulation block, the bar moved across the entire screen during 24 s (swiping the visual field in
588 the horizontal or vertical directions) and across half of the screen for 12 s (swiping half of the
589 visual field diagonally), followed by a blank full screen stimulus at mean luminance for 45 s,
590 Figure 1C. A single retinotopic mapping run consisted of 246 functional images (60 pre-scan
591 images were deliberately planned to be discarded due to coil heating).

592 5.4.3 Spatial frequency tuning

593 The stimulus consisted of a block design on/off task, with a baseline of 45 s which consisted
594 of a black screen, and an activation task of 15 s (Figure 1D), in a total of 10 stimulation blocks.
595 The activation stimulus consisted of vertical sinusoidal gratings of multiple spatial frequencies:
596 0.003, 0.02, 0.04, 0.08, 0.1, 0.16, 0.20, 0.25, 0.36, 0.5 cpd moving left to right at 5 Hz. The SF
597 stimulation blocks were randomized. The grating contrast was 100%. A single retinotopic mapping
598 run consisted of 430 functional images (60 pre-scan images were deliberately planned to be
599 discarded due to coil heating).

600 5.5 Hypercapnia

601 A hypercapnia experiment was performed to determine the influence of the vascular
602 component in putative changes in activation, retinotopic maps and SF tuning curves, and to
603 disentangle between the neural and vascular components of the BOLD responses in multiple
604 regions of the visual pathway. To achieve this, N=10 additional animals (N=6 Females, 12-28
605 weeks old, median weight 340 g; range 285-470 g) underwent the hypercapnia condition (DR,
606 N=5, HC, N=5). The animals performed the hypercapnia condition at t=0. The hypercapnia
607 paradigm consisted of 90 s ventilation with medical air followed by a manual switch to a
608 hypercapnia state with 6.5% CO₂ for 90 s. In the end of the hypercapnia period, the CO₂ was
609 switched off, the animals resumed breathing medical air and data kept being acquired for 1.5
610 additional minutes. In between hypercapnia “runs”, the animals rested for 2 minutes.

611 5.6 Data Analysis

612 5.6.1 Preprocessing

613

614 The images were first converted to Nifti. Then, outlier correction was performed (time

615 points whose signal intensity was 3 times higher or lower than the standard deviation of the entire

616 time course were replaced by the mean of the 3 antecedent and 3 subsequent time points).

617 Simultaneous motion and slice timing correction were performed using Nipy's SpaceTimeRealign

618 function (Roche 2011). The brain extraction was done using AFNI function Automask applied to

619 a bias field corrected (ANTs) mean functional image. The skull stripped images were inspected

620 and upon visual inspection a further mask was manually drawn when needed using a home-written

621 script. The skull stripped images then underwent co-registration and normalization to an atlas

622 (Barrière et al. 2019). The co-registration alignment was performed by calculating the transform

623 matrix that aligns the mean functional image of each run to the anatomical image, and

624 normalization was performed by calculating the transform matrix that aligns each anatomical

625 image with the atlas template. These two sets of matrices were then applied to all the runs per

626 animal. Co-registration and normalization were performed in ANTs and, when necessary,

627 manually adjusted using ITK SNAP. Following normalization, the voxels' signals were detrended

628 using a polynomial function of factor 2 fitted to the resting periods and spatially smoothed (FWHM

629 = 0.15 mm²). All preprocessing steps were performed using a home-written Python pipeline using

630 Nypipe. The code is available for free download at <https://github.com/Joana-Carvalho>.

631

632 5.6.2 ROI analysis

633

634 Five regions of interest (ROIs) were defined according to the SIGMA atlas (Barrière et al.
635 2019) and manually adjusted per animal. These ROIs comprehended different visual pathway
636 structures such as the binocular visual cortex (VC), the lateral geniculate nucleus (LGN) and the
637 superior layer of the superior colliculus (SC). The detrended time series of the voxels comprising
638 each ROI were converted into percentage signal change (PSC) and averaged across epochs, runs
639 and animals providing the averaged response within each region per acquisition time point. The
640 25%, 50% and 75% percentiles per ROI were also calculated (Figures 4, S1 and S2).

641

642 5.6.3 Retinotopic mapping analysis

643
644 Retinotopic mapping analysis was performed using both conventional population receptive
645 field (pRF) mapping (Dumoulin and Wandell 2008) and micro-probing (Carvalho et al., n.d.). In
646 brief, these methods model the population of neurons measured within a voxel as a two-
647 dimensional Gaussian, where the center corresponds to the pRF's position and the width to its size.

648 5.6.3.1 Conventional pRF mapping

649
650 In the conventional method, a 2D-Gaussian model $n(x, y)$ was fitted with parameters:
651 center (x_0, y_0) and size (σ - width of the Gaussian), for each voxel.

652

$$n(x, y) = e^{\frac{(x-x_0)^2+(y-y_0)^2}{-2\sigma^2}} \quad \text{Eq. 1}$$

653 The predicted response of a voxel $p(t)$ to the stimulus was then calculated as the overlap
654 between the stimulus mask (binary image of the stimulus aperture over time: $s(x, y, t)$) at each
655 time point and the neural model $n(x, y)$.

656

$$p(t) = \sum_{x,y} s(x, y, t) * n(x, y) \quad \text{Eq. 2}$$

657 Subsequently, the delay in hemodynamic response was accounted for by convolving the
658 predicted time courses with a haemodynamic response function (HRF) model consisting of a
659 double-gamma function with a peak at 1.4 s. Finally, the pRF model parameters were adjusted for
660 each cortical location to minimize the difference between the prediction and the measured BOLD
661 data. The best fitting parameters are the output of the analysis.

662 The pRF properties estimation was performed using a home-written script. The data was
663 thresholded by retaining the pRF models that explained at least 5% of the variance.

664 5.6.3.2 Micro-probing

665
666 Micro-probing applies large numbers of “micro-probes”, 2D-Gaussians with a narrow
667 standard deviation, to sample the entire stimulus space and create high-resolution probe maps. The
668 number of micro-probes included, 10000, was calculated based on the trade off between achieving
669 a good coverage of the visual field and the time to compute a probe map. Like the conventional
670 pRF approach, these micro-probes sample the aggregate response of neuronal subpopulations, but
671 they do so at a much higher spatial resolution. Consequently, for each voxel, the micro-probing
672 generates a RF profile representing the density and variance explained (VE) for all the probes.

673 5.6.4 General Linear Model (GLM) analysis

674
675 For the statistical t-maps, different GLMs were fitted, targeting (1) a per-subject analysis
676 and (2) a group-level analysis. In all cases, each session from every animal was regressed with
677 their respective realignment parameters and a double-gamma HRF (described in the previous
678 section) convolved with the stimulation paradigm (contrast obtained using on and off blocks).

679 The t-values associated with the activation contrast were then mapped voxelwise. The maps
680 were FDR corrected for multiple comparisons using a p-value of 0.001 and minimum cluster size
681 of 20 voxels.

682 **5.6.5 Spatial frequency analysis**

683 The optimal SF per voxel was determined. First, we calculated the maximum BOLD
684 modulation during the activation period of each individual activation block. The SF that elicited
685 the strongest BOLD response was considered the optimal SF for that specific voxel.

686 The ROI specific tuning curves were obtained by calculating the optimal SF on the
687 averaged ROI signal during the activation period of each individual activation block. Then, we
688 plotted the BOLD magnitude (i.e., the maximum PSC) of the activation blocks as a function of the
689 SF. Finally, we fitted a 1d Gaussian model to the SF turning curve:

690
$$SF_{tuning\ curve} = A \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$
 Eq. 3

691 where the center (μ) corresponds to the optimal SF and σ to the broadness of the tuning curve.

692 References

693 Ades-Aron, Benjamin, Gregory Lemberskiy, Jelle Veraart, John Golfinos, Els Fieremans, Dmitry S. Novikov, and
694 Timothy Shepherd. 2021. "Improved Task-Based Functional MRI Language Mapping in Patients with Brain
695 Tumors through Marchenko-Pastur Principal Component Analysis Denoising." *Radiology* 298 (2): 365–73.

696 Alves, Rita, Rafael Neto Henriques, Leevi Kerkelä, Cristina Chavarriás, Sune N. Jespersen, and Noam Shemesh.
697 2021. "Correlation Tensor MRI Deciphers Underlying Kurtosis Sources in Stroke." *NeuroImage*, December,
698 118833.

699 Baltes, Christof, Nicole Radzwill, Simone Bosshard, Daniel Marek, and Markus Rudin. 2009. "Micro MRI of the
700 Mouse Brain Using a Novel 400 MHz Cryogenic Quadrature RF Probe." *NMR in Biomedicine* 22 (8): 834–42.

701 Barrière, D. A., R. Magalhães, A. Novais, P. Marques, E. Selingue, F. Geffroy, F. Marques, et al. 2019. "The
702 SIGMA Rat Brain Templates and Atlases for Multimodal MRI Data Analysis and Visualization." *Nature
703 Communications* 10 (1): 5699.

704 Baseler, Heidi A., André Gouws, Koen V. Haak, Christopher Racey, Michael D. Crossland, Adnan Tufail, Gary S.
705 Rubin, Frans W. Cornelissen, and Antony B. Morland. 2011. "Large-Scale Remapping of Visual Cortex Is
706 Absent in Adult Humans with Macular Degeneration." *Nature Neuroscience* 14 (5): 649–55.

707 Bavelier, Daphne, Dennis M. Levi, Roger W. Li, Yang Dan, and Takao K. Hensch. 2010. "Removing Brakes on
708 Adult Brain Plasticity: From Molecular to Behavioral Interventions." *The Journal of Neuroscience: The
709 Official Journal of the Society for Neuroscience* 30 (45): 14964–71.

710 Binns, K. E., and T. E. Salt. 1997. "Post Eye-Opening Maturation of Visual Receptive Field Diameters in the
711 Superior Colliculus of Normal- and Dark-Reared Rats." *Brain Research. Developmental Brain Research* 99
712 (2): 263–66.

713 Boorman, L., A. J. Kennerley, D. Johnston, M. Jones, Y. Zheng, P. Redgrave, and J. Berwick. 2010. "Negative
714 Blood Oxygen Level Dependence in the Rat: A Model for Investigating the Role of Suppression in
715 Neurovascular Coupling." *Journal of Neuroscience*. <https://doi.org/10.1523/jneurosci.6063-09.2010>.

716 Boroojerdi, B., K. O. Bushara, B. Corwell, I. Immisch, F. Battaglia, W. Muellbacher, and L. G. Cohen. 2000.
717 "Enhanced Excitability of the Human Visual Cortex Induced by Short-Term Light Deprivation." *Cerebral
718 Cortex* 10 (5): 529–34.

719 Brainard, D. H. 1997. "The Psychophysics Toolbox." *Spatial Vision* 10 (4): 433–36.

720 Carvalho, Joana, Azzurra Invernizzi, Khazar Ahmadi, Michael B. Hoffmann, Remco J. Renken, and Frans W.
721 Cornelissen. 2020. "Micro-Probing Enables Fine-Grained Mapping of Neuronal Populations Using fMRI." *NeuroImage* 209 (April): 116423.

722 ———. n.d. "Micro-Probing Enables High-Resolution Mapping of Neuronal Subpopulations Using fMRI." <https://doi.org/10.1101/709006>.

723 Carvalho, Joana, Azzurra Invernizzi, Joana Martins, Nomdo M. Jansonius, Remco J. Renken, and Frans W.
724 Cornelissen. 2021. "Visual Field Reconstruction Using fMRI-Based Techniques." *Translational Vision Science
725 & Technology* 10 (1): 25.

726 Castaldi, Elisa, Claudia Lunghi, and Maria Concetta Morrone. 2020. "Neuroplasticity in Adult Human Visual
727 Cortex." *Neuroscience & Biobehavioral Reviews*. <https://doi.org/10.1016/j.neubiorev.2020.02.028>.

728 Chen, J. Jean, and G. Bruce Pike. 2010. "Global Cerebral Oxidative Metabolism during Hypercapnia and
729 Hypocapnia in Humans: Implications for BOLD fMRI." *Journal of Cerebral Blood Flow and Metabolism:
730 Official Journal of the International Society of Cerebral Blood Flow and Metabolism* 30 (6): 1094–99.

731 Daw, N. W., K. Fox, H. Sato, and D. Czepita. 1992. "Critical Period for Monocular Deprivation in the Cat Visual
732 Cortex." *Journal of Neurophysiology* 67 (1): 197–202.

733 Dijkhuizen, R. M., M. van Lookeren Campagne, T. Niendorf, W. Dreher, A. van der Toorn, M. Hoehn-Berlage, H.
734 B. Verheul, et al. 1996. "Status of the Neonatal Rat Brain after NMDA-Induced Excitotoxic Injury as Measured
735 by MRI, MRS and Metabolic Imaging." *NMR in Biomedicine* 9 (2): 84–92.

736 Di Marco, Stefano, Vincent A. Nguyen, Silvia Bisti, and Dario A. Protti. 2009. "Permanent Functional
737 Reorganization of Retinal Circuits Induced by Early Long-Term Visual Deprivation." *The Journal of
738 Neuroscience: The Official Journal of the Society for Neuroscience* 29 (43): 13691–701.

739 Dodwell, P. C. 1961. "Visual Orientation Preferences in the Rat." *Quarterly Journal of Experimental Psychology*.
740 <https://doi.org/10.1080/17470216108416467>.

741 Dräger, U. C. 1975. "Receptive Fields of Single Cells and Topography in Mouse Visual Cortex." *The Journal of
742 Comparative Neurology* 160 (3): 269–90.

743 Dumoulin, Serge O., and Brian A. Wandell. 2008. "Population Receptive Field Estimates in Human Visual Cortex."
744

746 *NeuroImage* 39 (2): 647–60.

747 Dunn, Felice A., Luca Della Santina, Edward D. Parker, and Rachel O. L. Wong. 2013. “Sensory Experience Shapes
748 the Development of the Visual System’s First Synapse.” *Neuron* 80 (5): 1159–66.

749 Eimer, Martin. 2004. “Multisensory Integration: How Visual Experience Shapes Spatial Perception.” *Current
750 Biology: CB* 14 (3): R115–17.

751 Erchova, Irina, Asta Vasalauskaite, Valentina Longo, and Frank Sengpiel. 2017. “Enhancement of Visual Cortex
752 Plasticity by Dark Exposure.” *Philosophical Transactions of the Royal Society of London. Series B, Biological
753 Sciences* 372 (1715). <https://doi.org/10.1098/rstb.2016.0159>.

754 Espinoza, S. G., and H. C. Thomas. 1983. “Retinotopic Organization of Striate and Extrastriate Visual Cortex in the
755 Hooded Rat.” *Brain Research* 272 (1): 137–44.

756 Fagiolini, M., T. Pizzorusso, N. Berardi, L. Domenici, and L. Maffei. 1994. “Functional Postnatal Development of
757 the Rat Primary Visual Cortex and the Role of Visual Experience: Dark Rearing and Monocular Deprivation.”
758 *Vision Research* 34 (6): 709–20.

759 Fierro, Brigida, Filippo Brighina, Gaetano Vitello, Aurelio Piazza, Simona Scalia, Giuseppe Giglia, Ornella Daniele,
760 and Alvaro Pascual-Leone. 2005. “Modulatory Effects of Low- and High-Frequency Repetitive Transcranial
761 Magnetic Stimulation on Visual Cortex of Healthy Subjects Undergoing Light Deprivation.” *The Journal of
762 Physiology* 565 (Pt 2): 659–65.

763 Fracasso, Alessio, Natalia Petridou, and Serge O. Dumoulin. 2016. “Systematic Variation of Population Receptive
764 Field Properties across Cortical Depth in Human Visual Cortex.” *NeuroImage* 139 (October): 427–38.

765 Gianfranceschi, Laura, Rosita Siciliano, Jennifer Walls, Bernardo Morales, Alfredo Kirkwood, Z. Josh Huang,
766 Susumu Tonegawa, and Lamberto Maffei. 2003. “Visual Cortex Is Rescued from the Effects of Dark Rearing
767 by Overexpression of BDNF.” *Proceedings of the National Academy of Sciences of the United States of
768 America* 100 (21): 12486–91.

769 Gilbert, C. D. 1977. “Laminar Differences in Receptive Field Properties of Cells in Cat Primary Visual Cortex.” *The
770 Journal of Physiology* 268 (2): 391–421.

771 Gil, Rita, Francisca F. Fernandes, and Noam Shemesh. 2021. “Neuroplasticity-Driven Timing Modulations
772 Revealed by Ultrafast Functional Magnetic Resonance Imaging.” *NeuroImage*.
773 <https://doi.org/10.1016/j.neuroimage.2020.117446>.

774 Girman, S. V., Y. Sauvé, and R. D. Lund. 1999. “Receptive Field Properties of Single Neurons in Rat Primary
775 Visual Cortex.” *Journal of Neurophysiology* 82 (1): 301–11.

776 Goodale, M. A. 1973. “Cortico-Tectal and Intertectal Modulation of Visual Responses in the Rat’s Superior
777 Colliculus.” *Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale* 17 (1):
778 75–86.

779 Harel, Noam, Sang-Pil Lee, Tsukasa Nagaoka, Dae-Shik Kim, and Seong-Gi Kim. 2002. “Origin of Negative Blood
780 Oxygenation Level-Dependent fMRI Signals.” *Journal of Cerebral Blood Flow and Metabolism: Official
781 Journal of the International Society of Cerebral Blood Flow and Metabolism* 22 (8): 908–17.

782 Hensch, Takao K., and Michela Fagiolini. 2005. “Excitatory–inhibitory Balance and Critical Period Plasticity in
783 Developing Visual Cortex.” In *Progress in Brain Research*, 147:115–24. Elsevier.

784 Hensch, T. K., M. Fagiolini, N. Mataga, M. P. Stryker, S. Baekkeskov, and S. F. Kash. 1998. “Local GABA Circuit
785 Control of Experience-Dependent Plasticity in Developing Visual Cortex.” *Science* 282 (5393): 1504–8.

786 Hoehn, Mathias, Klaas Nicolay, Claudia Franke, and Boudewijn van der Sanden. 2001. “Application of Magnetic
787 Resonance to Animal Models of Cerebral Ischemia.” *Journal of Magnetic Resonance Imaging*.
788 <https://doi.org/10.1002/jmri.1213>.

789 Hooks, Bryan M., and Chinfei Chen. 2007. “Critical Periods in the Visual System: Changing Views for a Model of
790 Experience-Dependent Plasticity.” *Neuron* 56 (2): 312–26.

791 Hoy, Jennifer L., and Christopher M. Niell. 2015. “Layer-Specific Refinement of Visual Cortex Function after Eye
792 Opening in the Awake Mouse.” *The Journal of Neuroscience: The Official Journal of the Society for
793 Neuroscience* 35 (8): 3370–83.

794 Hubel, D. H., and T. N. Wiesel. 1962. “Receptive Fields, Binocular Interaction and Functional Architecture in the
795 Cat’s Visual Cortex.” *The Journal of Physiology*. <https://doi.org/10.1113/jphysiol.1962.sp006837>.

796 ———. 1970. “The Period of Susceptibility to the Physiological Effects of Unilateral Eye Closure in Kittens.” *The
797 Journal of Physiology* 206 (2): 419–36.

798 Hübener, Mark, and Tobias Bonhoeffer. 2014. “Neuronal Plasticity: Beyond the Critical Period.” *Cell* 159 (4): 727–
799 37.

800 Huberman, Andrew D., Marla B. Feller, and Barbara Chapman. 2008. “Mechanisms Underlying Development of
801 Visual Maps and Receptive Fields.” *Annual Review of Neuroscience* 31 (1): 479–509.

802 Iwai, Youichi, Michela Fagiolini, Kunihiko Obata, and Takao K. Hensch. 2003. "Rapid Critical Period Induction by
803 Tonic Inhibition in Visual Cortex." *The Journal of Neuroscience: The Official Journal of the Society for
804 Neuroscience* 23 (17): 6695–6702.

805 Jenks, Kyle R., and Jason D. Shepherd. 2020. "Experience-Dependent Development and Maintenance of Binocular
806 Neurons in the Mouse Visual Cortex." *Cell Reports* 30 (6): 1982–94.e4.

807 Kaas, J. H., L. A. Krubitzer, Y. M. Chino, A. L. Langston, E. H. Polley, and N. Blair. 1990. "Reorganization of
808 Retinotopic Cortical Maps in Adult Mammals after Lesions of the Retina." *Science* 248 (4952): 229–31.

809 Kalia, Amy, Luis Andres Lesmes, Michael Dorr, Tapan Gandhi, Garga Chatterjee, Suma Ganesh, Peter J. Bex, and
810 Pawan Sinha. 2014. "Development of Pattern Vision Following Early and Extended Blindness." *Proceedings of
811 the National Academy of Sciences of the United States of America* 111 (5): 2035–39.

812 Kannan, Madhuvanthi, Garrett G. Gross, Don B. Arnold, and Michael J. Higley. 2016. "Visual Deprivation During
813 the Critical Period Enhances Layer 2/3 GABAergic Inhibition in Mouse V1." *The Journal of Neuroscience: The
814 Official Journal of the Society for Neuroscience* 36 (22): 5914–19.

815 Keck, Tara, Thomas D. Mrsic-Flogel, Miguel Vaz Afonso, Ulf T. Eysel, Tobias Bonhoeffer, and Mark Hübener.
816 2008. "Massive Restructuring of Neuronal Circuits during Functional Reorganization of Adult Visual Cortex."
817 *Nature Neuroscience* 11 (10): 1162–67.

818 Keck, Tara, Volker Scheuss, R. Irene Jacobsen, Corette J. Wierenga, Ulf T. Eysel, Tobias Bonhoeffer, and Mark
819 Hübener. 2011. "Loss of Sensory Input Causes Rapid Structural Changes of Inhibitory Neurons in Adult Mouse
820 Visual Cortex." *Neuron* 71 (5): 869–82.

821 Koehler, Christopher L., Nikolay P. Akimov, and René C. Rentería. 2011. "Receptive Field Center Size Decreases
822 and Firing Properties Mature in ON and OFF Retinal Ganglion Cells after Eye Opening in the Mouse." *Journal of
823 Neurophysiology* 106 (2): 895–904.

824 Labbé, Aimé, Gilles Authelat, Bertrand Baudouy, Cornelis J. van der Beek, Javier Briatico, Luc Darrasse, and Marie
825 Poirier-Quinot. 2021. "Recent Advances and Challenges in the Development of Radiofrequency HTS Coil for
826 MRI." *Frontiers of Physics* 9 (July). <https://doi.org/10.3389/fphy.2021.705438>.

827 Lake, Evelyn M. R., Xinxin Ge, Xilin Shen, Peter Herman, Fahmeed Hyder, Jessica A. Cardin, Michael J. Higley, et
828 al. 2020. "Simultaneous Cortex-Wide Fluorescence Ca²⁺ Imaging and Whole-Brain fMRI." *Nature Methods*
829 17 (12): 1262–71.

830 Liang, Zhifeng, Yuncong Ma, Glenn D. R. Watson, and Nanyin Zhang. 2017. "Simultaneous GCaMP6-Based Fiber
831 Photometry and fMRI in Rats." *Journal of Neuroscience Methods* 289 (September): 31–38.

832 Li, Man-Zhong, Yi Zhang, Hai-Yan Zou, Jun-Yao Ouyang, Yu Zhan, Le Yang, Brian Chi-Yan Cheng, et al. 2018.
833 "Investigation of Ginkgo Biloba Extract (EGb 761) Promotes Neurovascular Restoration and Axonal
834 Remodeling after Embolic Stroke in Rat Using Magnetic Resonance Imaging and Histopathological Analysis."
835 *Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie* 103 (July): 989–1001.

836 Li, Xiaoyuan, Chaokui Sun, and Li Shi. 2015. "Comparison of Visual Receptive Field Properties of the Superior
837 Colliculus and Primary Visual Cortex in Rats." *Brain Research Bulletin* 117 (August): 69–80.

838 Logothetis, Nikos K. 2003. "The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal."
839 *The Journal of Neuroscience: The Official Journal of the Society for Neuroscience* 23 (10): 3963–71.

840 Lunghi, Claudia, David C. Burr, and Concetta Morrone. 2011. "Brief Periods of Monocular Deprivation Disrupt
841 Ocular Balance in Human Adult Visual Cortex." *Current Biology: CB* 21 (14): R538–39.

842 Maffei, Arianna, Kiran Nataraj, Sacha B. Nelson, and Gina G. Turrigiano. 2006. "Potentiation of Cortical Inhibition
843 by Visual Deprivation." *Nature*. <https://doi.org/10.1038/nature05079>.

844 Masamoto, Kazuto, Tae Kim, Mitsuhiro Fukuda, Ping Wang, and Seong-Gi Kim. 2007. "Relationship between
845 Neural, Vascular, and BOLD Signals in Isoflurane-Anesthetized Rat Somatosensory Cortex." *Cerebral Cortex*
846 17 (4): 942–50.

847 Meliza, C. Daniel, and Yang Dan. 2006. "Receptive-Field Modification in Rat Visual Cortex Induced by Paired
848 Visual Stimulation and Single-Cell Spiking." *Neuron* 49 (2): 183–89.

849 Miska, Nathaniel J., Leonidas Ma Richter, Brian A. Cary, Julijana Gjorgjieva, and Gina G. Turrigiano. 2018.
850 "Sensory Experience Inversely Regulates Feedforward and Feedback Excitation-Inhibition Ratio in Rodent
851 Visual Cortex." *eLife* 7 (October). <https://doi.org/10.7554/eLife.38846>.

852 Moeller, Steen, Pramod Kumar Pisharady, Sudhir Ramanna, Christophe Lenglet, Xiaoping Wu, Logan Dowdle,
853 Essa Yacoub, Kamil Ugurbil, and Mehmet Akçakaya. n.d. "NOise Reduction with DIstribution Corrected
854 (NORDIC) PCA in dMRI with Complex-Valued Parameter-Free Locally Low-Rank Processing."
855 <https://doi.org/10.1101/2020.08.25.267062>.

856 Morales, Bernardo, Se-Young Choi, and Alfredo Kirkwood. 2002. "Dark Rearing Alters the Development of
857 GABAergic Transmission in Visual Cortex." *The Journal of Neuroscience: The Official Journal of the Society*

858 for *Neuroscience* 22 (18): 8084–90.
859 Mower, G. D. 1991. “The Effect of Dark Rearing on the Time Course of the Critical Period in Cat Visual Cortex.”
860 *Brain Research. Developmental Brain Research* 58 (2): 151–58.
861 Mower, G. D., and W. G. Christen. 1985. “Role of Visual Experience in Activating Critical Period in Cat Visual
862 Cortex.” *Journal of Neurophysiology* 53 (2): 572–89.
863 Nikbakht, Nader, and Mathew E. Diamond. 2021. “Conserved Visual Capacity of Rats under Red Light,” July.
864 <https://doi.org/10.7554/eLife.66429>.
865 Pallas, Sarah L. 2009. *Developmental Plasticity of Inhibitory Circuitry*. Springer.
866 Pelled, Galit, Kai-Hsiang Chuang, Stephen J. Dodd, and Alan P. Koretsky. 2007. “Functional MRI Detection of
867 Bilateral Cortical Reorganization in the Rodent Brain Following Peripheral Nerve Deafferentation.”
868 *NeuroImage* 37 (1): 262–73.
869 Pelli, D. G. 1997. “The VideoToolbox Software for Visual Psychophysics: Transforming Numbers into Movies.”
870 *Spatial Vision* 10 (4): 437–42.
871 Prévost, François, Franco Lepore, and Jean-Paul Guillemot. 2007. “Spatio-Temporal Receptive Field Properties of
872 Cells in the Rat Superior Colliculus.” *Brain Research* 1142 (April): 80–91.
873 Priebe, Nicholas J., and Aaron W. McGee. 2014. “Mouse Vision as a Gateway for Understanding How Experience
874 Shapes Neural Circuits.” *Frontiers in Neural Circuits* 8 (October): 123.
875 Ratering, David, Christof Baltes, Jurek Nordmeyer-Massner, Daniel Marek, and Markus Rudin. 2008. “Performance
876 of a 200-MHz Cryogenic RF Probe Designed for MRI and MRS of the Murine Brain.” *Magnetic Resonance in
877 Medicine*. <https://doi.org/10.1002/mrm.21629>.
878 Regal, D. M., R. Boothe, D. Y. Teller, and G. P. Sackett. 1976. “Visual Acuity and Visual Responsiveness in Dark-
879 Reared Monkeys (*Macaca Nemestrina*).” *Vision Research* 16 (5): 523–30.
880 Roche, Alexis. 2011. “A Four-Dimensional Registration Algorithm with Application to Joint Correction of Motion
881 and Slice Timing in fMRI.” *IEEE Transactions on Medical Imaging* 30 (8): 1546–54.
882 Sherman, S. M., and P. D. Spear. 1982. “Organization of Visual Pathways in Normal and Visually Deprived Cats.”
883 *Physiological Reviews* 62 (2): 738–855.
884 Shmuel, Amir, Mark Augath, Axel Oeltermann, and Nikos K. Logothetis. 2006. “Negative Functional MRI
885 Response Correlates with Decreases in Neuronal Activity in Monkey Visual Area V1.” *Nature Neuroscience* 9
886 (4): 569–77.
887 Smith, Spencer L., and Joshua T. Trachtenberg. 2010. “The Refinement of Ipsilateral Eye Retinotopic Maps Is
888 Increased by Removing the Dominant Contralateral Eye in Adult Mice.” *PloS One* 5 (3): e9925.
889 Sriram, Balaji, Philip M. Meier, and Pamela Reinagel. 2016. “Temporal and Spatial Tuning of Dorsal Lateral
890 Geniculate Nucleus Neurons in Unanesthetized Rats.” *Journal of Neurophysiology* 115 (5): 2658–71.
891 Sten, S., K. Lundengård, S. T. Witt, G. Cedersund, F. Elinder, and M. Engström. 2017. “Neural Inhibition Can
892 Explain Negative BOLD Responses: A Mechanistic Modelling and fMRI Study.” *NeuroImage* 158
893 (September): 219–31.
894 Teller, D. Y., D. M. Regal, T. O. Videen, and E. Pulos. 1978. “Development of Visual Acuity in Infant Monkeys
895 (*Macaca Nemestrina*) during the Early Postnatal Weeks.” *Vision Research* 18 (5): 561–66.
896 Timney, B., D. E. Mitchell, and F. Giffin. 1978. “The Development of Vision in Cats after Extended Periods of
897 Dark-Rearing.” *Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale* 31
898 (4): 547–60.
899 Tschetter, Wayne W., Gubbi Govindaiah, Ian M. Etherington, William Guido, and Christopher M. Niell. 2018.
900 “Refinement of Spatial Receptive Fields in the Developing Mouse Lateral Geniculate Nucleus Is Coordinated
901 with Excitatory and Inhibitory Remodeling.” *The Journal of Neuroscience: The Official Journal of the Society
902 for Neuroscience* 38 (19): 4531–42.
903 Tsurugizawa, Tomokazu, Yukari Takahashi, and Fusao Kato. 2016. “Distinct Effects of Isoflurane on Basal BOLD
904 Signals in Tissue/vascular Microstructures in Rats.” *Scientific Reports* 6 (December): 38977.
905 Veraart, Jelle, Dmitry S. Novikov, Daan Christiaens, Benjamin Ades-aron, Jan Sijbers, and Els Fieremans. 2016.
906 “Denoising of Diffusion MRI Using Random Matrix Theory.” *NeuroImage* 142 (November): 394–406.
907 Vogels, T. P., H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner. 2011. “Inhibitory Plasticity Balances Excitation
908 and Inhibition in Sensory Pathways and Memory Networks.” *Science* 334 (6062): 1569–73.
909 Vreysen, Samme, Bin Zhang, Yuzo M. Chino, Lutgarde Arckens, and Gert Van den Bergh. 2012. “Dynamics of
910 Spatial Frequency Tuning in Mouse Visual Cortex.” *Journal of Neurophysiology* 107 (11): 2937–49.
911 Wandell, Brian A., Serge O. Dumoulin, and Alyssa A. Brewer. 2007. “Visual Field Maps in Human Cortex.”
912 *Neuron* 56 (2): 366–83.
913 Wang, Maosen, Yi He, Terrence J. Sejnowski, and Xin Yu. 2018. “Brain-State Dependent Astrocytic Ca²⁺ Signals

914 Are Coupled to Both Positive and Negative BOLD-fMRI Signals.” *Proceedings of the National Academy of*
915 *Sciences of the United States of America* 115 (7): E1647–56.

916 Weber, Ralph, Pedro Ramos-Cabrer, Dirk Wiedermann, Nadja van Camp, and Mathias Hoehn. 2006. “A Fully
917 Noninvasive and Robust Experimental Protocol for Longitudinal fMRI Studies in the Rat.” *NeuroImage* 29 (4):
918 1303–10.

919 Womelsdorf, Thilo, Katharina Anton-Erxleben, Florian Pieper, and Stefan Treue. 2006. “Dynamic Shifts of Visual
920 Receptive Fields in Cortical Area MT by Spatial Attention.” *Nature Neuroscience* 9 (9): 1156–60.

921 Wu, Tung-Lin, Arabinda Mishra, Feng Wang, Pai-Feng Yang, John C. Gore, and Li Min Chen. 2016. “Effects of
922 Isoflurane Anesthesia on Resting-state fMRI Signals and Functional Connectivity within Primary
923 Somatosensory Cortex of Monkeys.” *Brain and Behavior* 6 (12): e00591.

924 Yu, Xin, Seungsoo Chung, Der-Yow Chen, Shumin Wang, Stephen J. Dodd, Judith R. Walters, John T. R. Isaac,
925 and Alan P. Koretsky. 2012. “Thalamocortical Inputs Show Post-Critical-Period Plasticity.” *Neuron* 74 (4):
926 731–42.

927 Yu, Xin, Shumin Wang, Der-Yow Chen, Stephen Dodd, Artem Goloshevsky, and Alan P. Koretsky. 2010. “3D
928 Mapping of Somatotopic Reorganization with Small Animal Functional MRI.” *NeuroImage* 49 (2): 1667–76.

929 Zhang, Xian, Xu An, Hanxiao Liu, Jing Peng, Shanshan Cai, Wei Wang, Da-Ting Lin, and Yupeng Yang. 2015.
930 “The Topographical Arrangement of Cutoff Spatial Frequencies across Lower and Upper Visual Fields in
931 Mouse V1.” *Scientific Reports* 5 (January): 7734.

932 Zhou, J., S. Clavagnier, and R. F. Hess. 2013. “Short-Term Monocular Deprivation Strengthens the Patched Eye’s
933 Contribution to Binocular Combination.” *Journal of Vision*. <https://doi.org/10.1167/13.5.12>.

934 Zhou, Jiawei, Daniel H. Baker, Mathieu Simard, Dave Saint-Amour, and Robert F. Hess. 2015. “Short-Term
935 Monocular Patching Boosts the Patched Eye’s Response in Visual Cortex.” *Restorative Neurology and*
936 *Neuroscience* 33 (3): 381–87.

937 Zhuang, Jun, Lydia Ng, Derric Williams, Matthew Valley, Yang Li, Marina Garrett, and Jack Waters. 2017. “An
938 Extended Retinotopic Map of Mouse Cortex.” *eLife* 6 (January). <https://doi.org/10.7554/eLife.18372>.

939

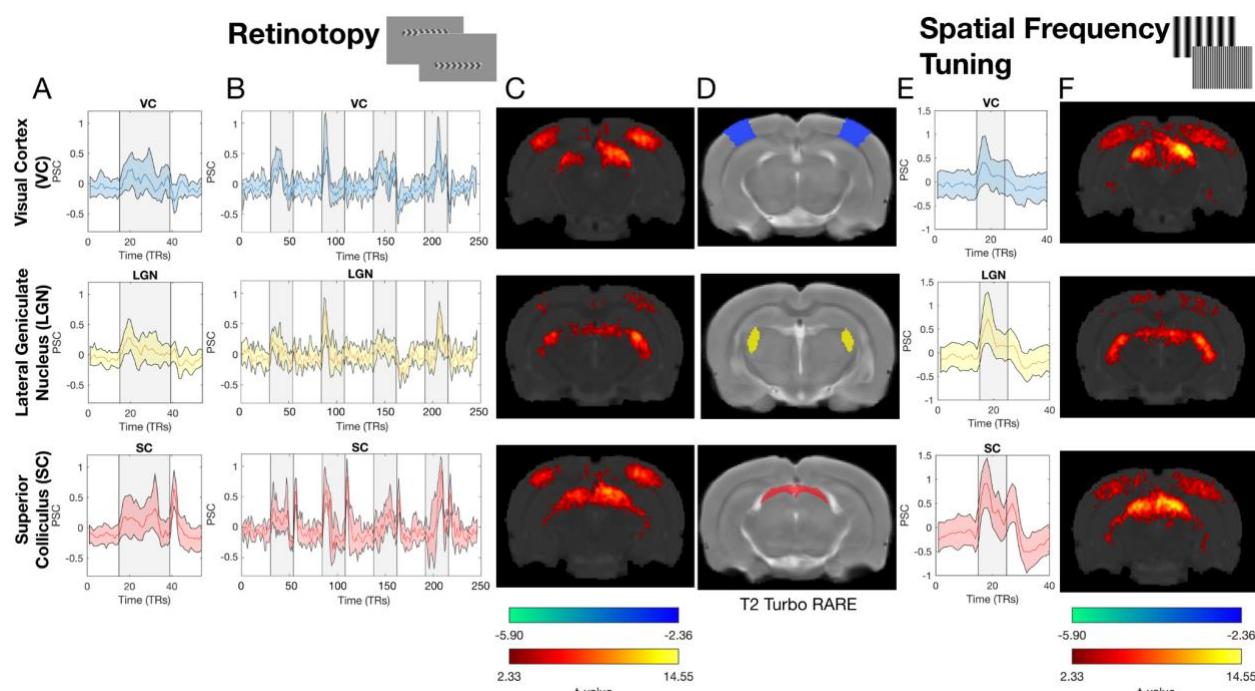
940 Supplementary Information

941 1. Robust activation upon complex stimulation
942 2. Differential BOLD responses to the SF tuning stimulus between DR and HC
943 3. Correlation between the difference of estimated pRFs position and distance between
944 voxels
945 4. Goodness of Gaussian fits to the SF tuning curves
946 5. The differences between HC and DR cannot be explained based on different vascular
947 properties.

948

949 1. Robust activation upon complex stimulation

950

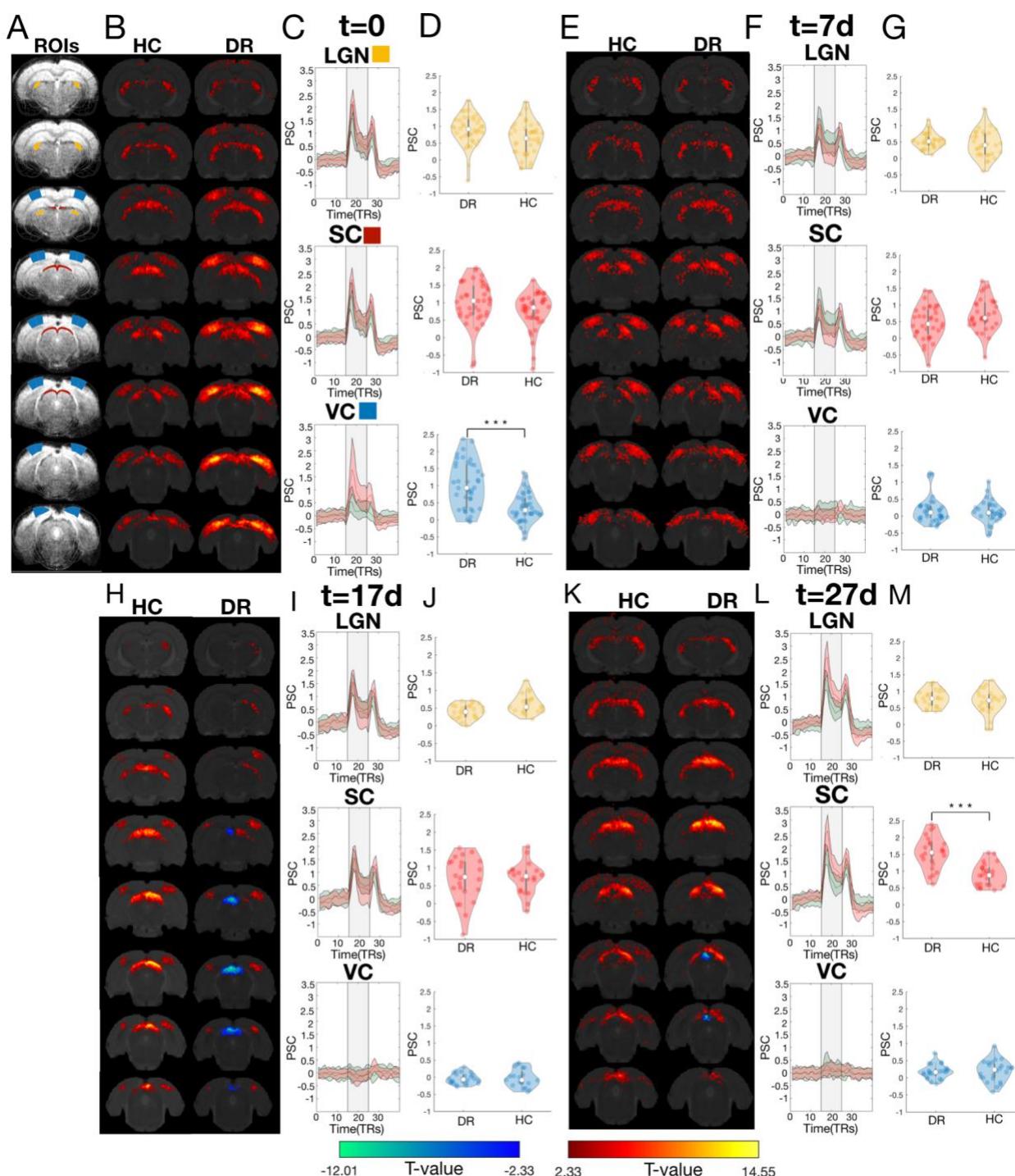

951 Figure S1 shows that the retinotopic and SF tuning stimuli elicited reliable and robust
952 BOLD activation throughout the entire visual pathway of HC, i.e. LGN, VC and SC. Figure S1A
953 and E shows the percentage of BOLD signal change (PSC) of the LGN, VC and SC (Figure S1D)
954 averaged across animals, runs and cycles obtained for both types of complex stimuli. The SF tuning
955 response is overall stronger than the response to the retinotopy stimulus, likely driven by the fact
956 that the SF tuning stimulus is observed across the entire field of view and that the contrast of SF
957 tuning stimulus (100%) was double that of the retinotopy stimulus.

958 The retinotopy stimulus yielded stronger BOLD responses to the vertical movement, i.e. in
959 the second (84-118 TRs) and fourth (192-216 TRs) stimulation blocks, compared to the horizontal
960 movement (in the first (30-54 TRs) and third (138-162 TRs) blocks), likely due to the preference
961 for vertical movements compared to horizontal ones in rats (Dodwell 1961).

962 In both stimuli, SC has the strongest response, followed by LGN, and VC has the lowest
963 BOLD response amplitude, following the hierarchical preprocessing from early order areas (LGN,
964 SC) to later areas in the processing of visual information (VC). Also, all visual structures show a
965 post-stimulus overshoot, most noticeable in SC.

966 Importantly, the activation maps show robust responses limited to the areas of the visual
967 pathway. The activation patterns are consistent across scanning sessions, in particular with the
968 retinotopy stimulus, Figure 4 and S3. For the SF tuning stimulus, the responses of LGN and SC
969 are consistent across scanning sessions, however, the VC's response at t=17d and t=27d is absent
970 or highly attenuated when compared to t=0 and t=7d. This suggests an adaptation to these strong
971 stimuli, rather than e.g. loss of sensitivity given that the VC's response to the retinotopy stimulus
972 remains highly robust at all the time points measured.

973



974
975 **Figure S1. Retinotopic and SF tuning visual stimuli result in robust BOLD signals confined to the visual pathway in HC at**
976 **t=0.** A, B and E: Percentage of BOLD signal change (PSC) of the ROIs defined in D averaged across animals, runs (B) and cycles
977 (A, E), upon retinotopic (A, B) and SF tuning (E) visual stimulation. The colored areas correspond to the 95% confidence interval
978 and the gray area to the stimulation period. C and F: GLM functional maps obtained after retinotopic (C) and SF tuning (F) visual
979 stimulation. The maps are FDR corrected using a p-value of 0.001 and minimum cluster size of 20 voxels. D: Anatomical images
980 with the delineation of the ROIs.

981
982

983

984 2. Differential BOLD responses to the SF tuning stimulus between
 985 DR and HC

986
 987 **Figure S2. Differential responses between DR animals and HC driven by the SF tuning stimulus.** A: Raw fMRI images with
 988 the ROIs (LGN, SC and VC) overlaid. B, E, H, K: fMRI activation patterns of t-contrast maps obtained for HC and DR animals at
 989 t=0, t=7d, t=17d and t=27d, respectively. The GLM maps are FDR corrected using a p-value of 0.001 and minimum cluster size of
 990 20 voxels. C, F, I, L: PSC of the LGN, SC and VC for the HC and DR animals at t=0, t=7d, t=17d and t=27d, respectively. The
 991 grey area represents the stimulation period. D,G, J, M: Violin plot of the amplitude of the BOLD response of DR and HC during

992 the total duration of the activation period obtained with the SF tuning stimulus (right) at t=0, t=7d, t=17d and t=27d, respectively.
993 The white dot represents the mean, and the grey bar represents the 25% and 75% percentiles. The blue, yellow and red colors
994 represent the VC, LGN and SC respectively. The *** represents a p-value<0.001, ** p-value<0.01 and * p-value<0.05.
995

996 **3. Correlation between the difference of estimated pRFs position
997 and distance between voxels**

998

	HC			DR		
	VC	LGN	SC	VC	LGN	SC
t=0	0.77	0.80	0.75	0.64	0.32	0.63
t=7d	0.77	0.76	0.74	0.78	0.32	0.72
t=17d	0.80	0.70	0.83	0.85	0.69	0.74
t=27d	0.85	0.85	0.83	0.88	0.82	0.86

999

1000 **Table S1. Correlation coefficient between the difference of estimated pRFs position and the Dijkstra's distance between
1001 voxels.**

1002

1003

1004

	HC			DR		
	VC	LGN	SC	VC	LGN	SC
t=0	0.000	0.001	0.000	0.005	0.286	0.001
t=7d	0.000	0.003	0.000	0.000	0.282	0.000
t=17d	0.000	0.008	0.000	0.000	0.009	0.000
t=27d	0.000	0.000	0.000	0.000	0.001	0.000

1005

1006 **Table S2. P-values associated with the correlations shown on Table S1.**

1007

1008

1009

1010

1011

1012

1013

1014

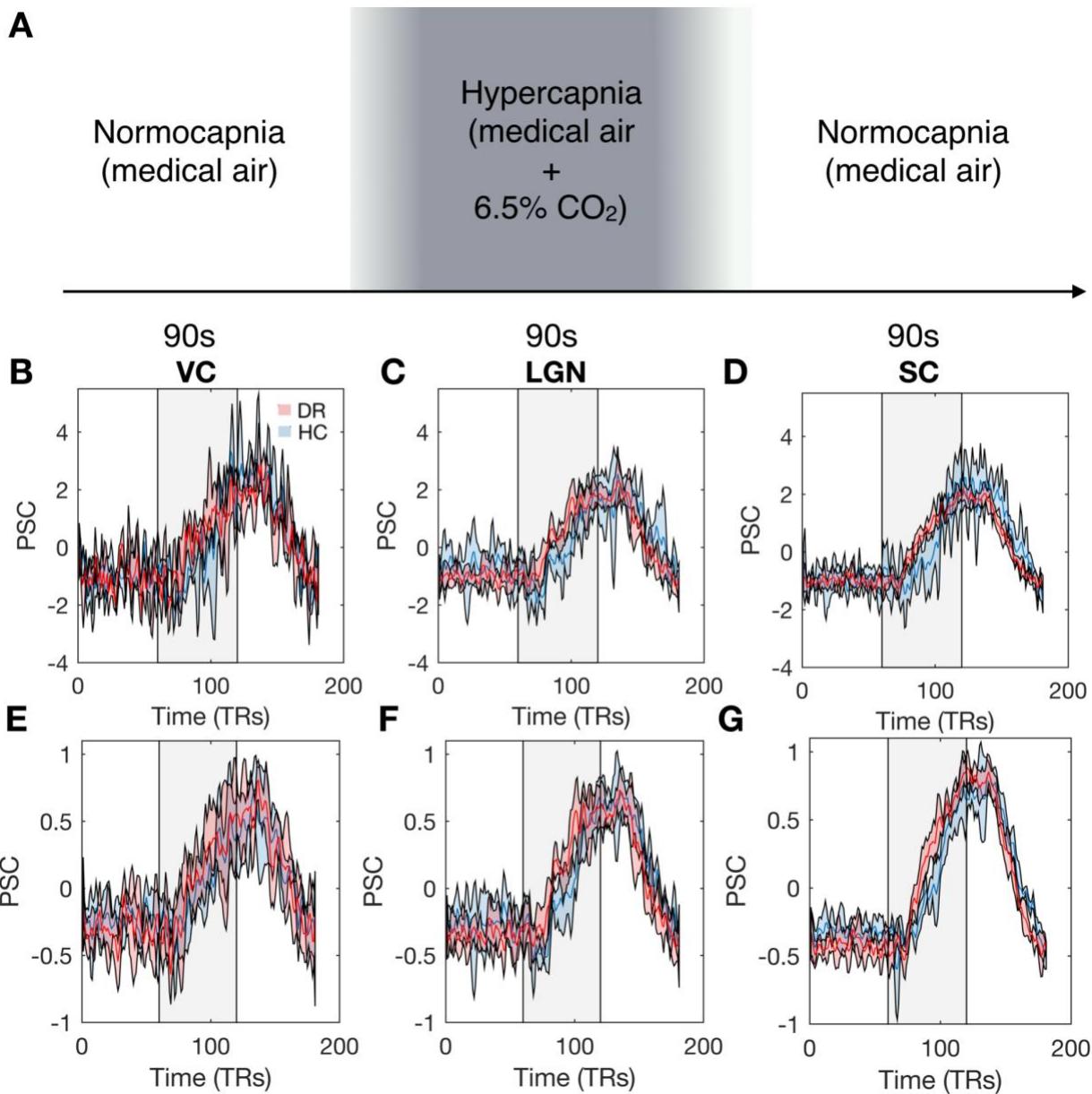
1015

1016 4. Goodness of Gaussian fits to the SF tuning curves

1017

Gaussian Fit Tuning Curve r^2							
HC				DR			
0.61	0.35	0.73	0.85	0.81	0.45	0.00	0.66
0.77	0.87	0.74	0.65	0.61	0.70	0.72	0.45
0.68	0.27	0.85	0.88	0.70	0.89	0.83	0.59

1018


1019 Table S3. Pearson's coefficient between the maximum BOLD response to each SF and the Gaussian fit.

1020

1021 5. The differences between HC and DR cannot be explained based
1022 on different vascular properties.

1023

1024 In order to verify that the differences in BOLD amplitude and dynamics measured between HC
1025 and DR animals are not driven by different vascular properties between the two group of animals
1026 and between visual structures, the animals performed a hypercapnia challenge. A total of $N = 5$
1027 HC (26 runs averaged) and $N=5$ DR (27 runs averaged) were exposed to 1.5 min normocapnia,
1028 1.5 min hypercapnia and 1.5min normocapnia (Figure 6A). The rise times and signal amplitude
1029 nearly identical onsets between DR and HC for the different ROIs (Panels B-G). The mean PSC
1030 sinal between DR and HC are highly correlated (VC: $r^2=0.95$ $p<0.001$; LGN: $r^2=0.86$ $p<0.001$;
1031 SC: $r^2=0.91$ $p<0.001$). In addition a Granger causality test showed that HC hypercapnic response
1032 is very useful to predict the DR one (VC: $F=10$ $p\text{-val}=0.0017$; LGN: $F=8.286$ $p\text{-val}=0.0045$; SC:
1033 $F=23$ $p\text{-val}=3.27\times 10^{-6}$). This excludes vasculature as the major contributing factor for the different
1034 measured timing parameters. In addition the rise times and signal amplitude are nearly identical
1035 for all areas, suggesting that the vascular response dynamics becomes dissociated only at later
1036 stages.

1038 **Figure S3. Hypercapnia experiment testing the dynamics of vascular responses.** A: Hypercapnia paradigm consisted of a
1039 manual switch, after 1.5 minutes of medical air, to a hypercapnic state with 6.5% CO₂ for 1.5 minutes. This was followed by a
1040 manual switch again to medical air for 1.5 minutes. Each run consisted in only one repetition of this block. B, C and D: PSC
1041 response profile (mean \pm std) obtained for DR (red) and HC (blue) for different ROIs: VC, LGN and SC, respectively. The shaded
1042 grey area indicates the hypercapnic period. E, F and G: Normalized PSC response profile (mean \pm std) obtained for DR (red) and
1043 HC (blue) for different ROIs: VC, LGN and SC, respectively.

1044
1045