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Abstract

Dynamical information exchange between central and autonomous nervous systems, as referred
to functional brain—heart interplay, occurs during emotional and physical arousal. Nevertheless,
the role of such a nervous-system-wise communication in mental stress is yet unknown. In this
study, we estimate the causal and bidirectional neural modulations between EEG oscillations and
peripheral sympathetic and parasympathetic activities using a recently proposed computational
framework for a functional brain—heart interplay assessment, namely the sympatho-vagal
synthetic data generation model. Mental stress is elicited in 37 healthy volunteers by increasing
their cognitive demand throughout four tasks associated with increasing stress levels. Stress
elicitation induced an increased variability in the directional heart—to—brain functional interplay,
primarily originating from sympathetic activity targeting a wide range of EEG oscillations. These
findings extend current knowledge on stress physiology, which referred to primarily a top-down
neural dynamics. Our results suggest that mental stress involves dynamic and bidirectional neural
interactions at a brain—body level, where bodily feedback may modulate the perceived stress
caused by an increased cognitive demand. We conclude that directional brain-heart interplay

measurements may provide suitable biomarkers for a quantitative stress assessment.
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1. Introduction

Human physiology entails constant and dynamic adaptations in response to cognitive
demand through homeostatic and allostatic mechanisms. From a holistic point of view, the
physiological responses to cognitive load refer to "mental stress”, which can be elicited by
memory, arithmetic, and increased cognitive demand tasks (1). Physical stress involves the
physiological responses triggered by homeostatic regulations to bodily conditions, emerging from
physical exercise or environmental changes (e.g., temperature or atmospheric pressure) (1).
Mental and physical stress encompass physiological responses from different brain structures,
together with responses from peripheral systems (2). The neurophysiology of stress sets the
hypothalamus as a central component, in which the paraventricular nucleus is the main integrator
of stressors, activating systems such as the sympathetic-adreno-medullar and hypothalamus-
pituitary-adrenal axes (3). The brain structures actively involved in stress responses include the
prefrontal cortex (4) and the amygdala, whose activity is also associated with emotional
processing (5). Prefrontal projections to the amygdala (6), as well as hippocampus projections to
the amygdala and prefrontal cortex (7) are involved as well. Underlying stress mechanisms have
also been captured in EEG studies, showing a high diversity of responses, including hemispheric

changes in alpha power and wide-range variability in the EEG spectrum (8, 9).

The central autonomic network integrates the interoceptive and exteroceptive information
to promote physiological and behavioral changes that allow adaption to ongoing challenges,
including stress conditions (2, 10-12). Therefore, stress can significantly modulate autonomic
activity, as previously reported in heart rate variability (13-17), skin conductance (17, 18),
breathing rate (19), body temperature (20, 21) and blood pressure (13, 14, 17)- but also
gastrointestinal (22, 23), endocrine (24) and immune responses (25). On the other hand, acute
stress triggers concurrent fluctuations in heart rate variability and functional connectivity between
central executive and default mode networks (26). Neural responses to heartbeats have been
described as a potential indicator of stress, because of the correlations found with sympathetic
indexes (17). Similarly with the correlations found between EEG power and autonomic indexes

under mental stress (27).

Since stress conditions may induce emotional responses (28), physiological responses to
stress (i.e., stress regulation) may be linked to physiological mechanisms of emotion regulation
(29). Indeed, while cardiovascular dynamics are modulated by emotions processing (30, 31),
modulation activity of the functional brain—heart interactions have been observed under thermal
stress and thermoregulatory responses (21, 32), as well as emotional processing (33).
Accordingly, cardiac interoceptive feedback seems actively involved under stressful conditions

(34, 35), and a wider involvement of the functional brain—body axis in mental stress have already
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been hypothesized (36). Nonetheless, the functional brain-body physiology associated with

mental stress is yet unknown.

To overcome this limitation, this study aims to uncover the directional brain-heart
interplay mechanisms involved in mental stress induced through visual stimulation and memory
tasks. Specifically, we exploit our recently proposed Sympathovagal Synthetic Data Generation
model (SV-SDG) (32) to uncover the mutual functional communication between cortical
oscillations, as measured through EEG, and cardiac sympathetic/parasympathetic activities,
estimated from heartbeat dynamics. The SV-SDG model provides time-varying estimates of the
causal interplay between sympathetic/parasympathetic activities and EEG oscillations in a
specific frequency band. The framework embeds a heartbeat generation model based on the
estimation of sympathetic and parasympathetic activities from a Laguerre expansions of the
heartbeat series (37).


https://doi.org/10.1101/2022.09.09.507362
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.09.507362; this version posted October 24, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

2. Materials and methods

2.1 Dataset description

Data were gathered from 37 healthy participants (age median 30 years, age range 22-45
years, 20 males, 17 females) who underwent mental stress elicitation tasks. Participants were
asked to sit comfortably and follow instructions on a screen. Recordings of physiological signals
included EEG (9-channel, Biopac B-Alert) and one lead ECG, both sampled at 256 Hz.

This study was performed at Neurons Inc, Taastrup, Denmark, in accordance with the
Declaration of Helsinki and followed the rules and laws of the Danish Data Protection Agency.
Data protection policy also followed the European Union law of the General Data Protection
Regulation, as well as the ethical regulations imposed by the Neuromarketing Science and
Business Association, Article 6. Each person’s biometric data, survey responses, and other types
of data were anonymized and only contained the log number as the unique identifier. Personal

information cannot be identified from the log number.

2.2 Experimental protocol

The stress induction protocol comprises four stressing conditions, including 1-minute rest
and three different stress load tasks lasting 14 minutes approximately. The stressors were
presented in the same order to all participants. The first stress load condition consisted in watching
a documentary. The second stress load condition consisted in watching a documentary
concurrently to performing a digit span task. The third stress load condition consisted in watching
a documentary, performing the digit span task and the red box task. For each condition,

participants were asked to report the stress level through a discrete scale from 1 to 7.

More specifically, the first five minutes of the documentary “The Reality of Van Life”,
Different Media © 2018, was projected onto a screen as first stressor (Figure 1A). The digit span
task starts with a fixation cross for 1.5 s. Then, three digits are presented for 5 s, followed by a
blank screen for 4 s. The participant is then asked to verbally state the three digits in up to 5 s
(Figure 1B). The red box task, run in parallel to the digit span task (Figure 1C), starts with a
fixation cross for 1.5 s. Then a red box (4x4 red and white box pattern) is presented for 3 s. Next,
the three digits are presented for 5 s, followed by a blank screen for 4 s. Then the participant is
asked to verbally state the three digits in up to 5 s. Consecutively, a red box is presented, and the

participant is asked if the pattern matches to the previously presented one (yes or no answer).
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Figure 1. Experimental protocol. (A) Sample image from stress load condition 1, The Reality of Van Life, Different
Media © 2018. (B) Sample image from stress load condition 2: digit span task. (C) Sample figure from stress load

condition 3: digit span task + red box task.

2.3 EEG pre-processing

EEG data were pre-processed using MATLAB R2022a and Fieldtrip Toolbox (38). EEG
data were bandpass filtered with a Butterworth filter of order 4, between 0.5 and 45 Hz. Large
movement artifacts were visually identified and removed manually from independent component
space and wavelet filtering. Consecutively, the Independent Component Analysis (ICA) was
computed to visually recognize and reject the eye movements and cardiac-field artifacts from the
EEG data. One lead ECG was included as an additional input to the ICA to enhance the process
of finding cardiac artifacts. Once the ICA components with eye movements and cardiac artifacts
were visually identified, they were removed to reconstruct the EEG series. Channels were re-
referenced using a common average, which is the most appropriate for a brain—heart interplay

estimations (39).

The EEG spectrogram was computed using the short-time Fourier transform with a
Hanning taper. Calculations were performed through a sliding time window of 2 seconds with a

50% overlap, resulting in a spectrogram resolution of 1 second and 0.5 Hz. Then, time series were


https://doi.org/10.1101/2022.09.09.507362
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.09.507362; this version posted October 24, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

integrated within five frequency bands (delta: 1-4 Hz, theta: 4-8 Hz, alpha: 8-12 Hz, beta: 12-30
Hz, gamma: 30-45 Hz).

2.4 ECG data processing

ECG time series were bandpass filtered using a Butterworth filter of order 4, between 0.5
and 45 Hz. The R-peaks from the QRS waves are detected in a procedure based on template-
matching method (39). All the detected peaks were visually inspected over the original ECG,
along with the inter-beat intervals histogram. Manual corrections were performed where needed

and guided from the automatic detection of ectopic beats (40).

2.5 Functional brain-heart interplay assessment

The Sympathovagal Synthetic Data Generation model (SV-SDG) provides time-variant
estimates of the bidirectional functional coupling between heartbeat and brain components. The
model uses the estimation of sympathetic and parasympathetic activities proposed in (37, 41).

2.5.1 Functional Interplay from the brain to the heart

The top-down functional interplay is quantified through a model of synthetic heartbeat
generation based on Laguerre expansions of RR series (see Candia-Rivera et al., 2021a for further
details). Briefly, heartbeat generation is based on the modulation function m(t), which contains
the fluctuations with respect to the baseline heart rate. Such fluctuations are modeled including
the sympathetic and parasympathetic interplay. In Eq. (1), the modulation function is expressed
as a linear combination of sympathetic (SAI) and parasympathetic activity index (PAIl), and their
respective control coefficients Cs,4; and Cp4; representing the proportional central nervous system

contribution:
m(t) = Csai(t) - SAI(t) + Cpai(t) - PAI(t) )

The modulation function is then taken as input to an integrate-and-fire model (37). The
model is fitted on the RR interval series using a 15-seconds sliding time window and a linear
regression model with no constant term. Then, the interaction between heartbeat dynamics and

the cortical activity is defined as:
SDGegG r—x(t) = Cx(t) / EEGE(t-1) )
where X € {SAI, PAIl}, and EEGy indicates the time-varying EEG power with F € {5, 6, a, B, v}.

2.5.2 Functional Interplay from the heart to the brain

The functional interplay from heart to brain is quantified through a model based on the
generation of synthetic EEG series using an adaptative Markov process (42). The model is fitted
using a least-square auto-regressive process to estimate cardiac sympathovagal contributions to

the ongoing fluctuations in EEG power as:
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EEGk(t) = xr - EEGr(t-1) + Wr(t-1) + &f 3)

where F is the EEG frequency band, kp is a fitting constant, e is the adjusted error, and ¥
indicates the fluctuations of EEG power in F. Then, the heart-to-brain functional coupling

coefficients are calculated as follows:
SDGx_exa r(t) = Wr(t) / X(t) 4)

where X € {SAl, PAI}. For further details, please see Candia-Rivera et al., 2022a.

The software for computation of SAI and PAI is available at www.saipai-hrv.com. The

source code implementing the SV-SDG model IS available at

www.github.com/diegocandiar/brain heart svsdg.

2.6 Multivariate analysis

In order to identify the most significant brain-heart features sensitive to mental stress, a
multivariate analysis was performed. The feature selection is based on the ranking provided by
the computation of Minimum Redundancy Maximum Relevance (MRMR) scores (43) and was
computed over the 180 SV-SDG-derived features (180 = 2 directions x 2 autonomic markers x 5
brain oscillations x 9 channels) to select the five most significant ones in two conditions: (i) a
linear regression model predicting the median stress level in each condition, and (ii) a binary

classification algorithm to discern low vs high stress level.
The MRMR score computation algorithm is as follows:
1. The relevance V, of all features x is computed. The feature with the largest relevance
T)rcleanch is selected. The selected feature is added to an empty set of features S.
V. is defined as:

_ L (5)
o= 157 ), 1)

X €S

Where S V is the number of features in S and I(x, y) is the mutual information between

the feature x and the output y:

p(xi,y;) (6)

I y = i»Yi l
(x,¥) Zp(x ;) ng(xi)p(yj)

i
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2. Next, the features with non-zero relevance V, and zero redundancy W, in S°¢
(complement of S) are identified. Then, select the feature with the largest relevance,

max V. The selected feature is added to the set S.
XESE,W,=0

W, is defined as:

W, = ﬁ z 106, 2) 1)

X,Z ES

If S¢ does not include a feature with non-zero relevance and zero redundancy, skip step

number 3

3. Repeat step number 2 until the redundancy W, is not zero for all features in S¢.

4. Select the feature with the largest MIQ, with non-zero relevance and non-zero
redundancy in S¢, and add the selected feature to the set S.
MIQ is defined as:

v 1(x,9) ®)
c c c1
X€ES xeSCW, xes ZzESI(x'Z)

|51

5. Repeat Step 4 until the relevance is zero for all features in S°¢.

6. Add the features with zero relevance to S in random order.

The multivariate analyses are performed in a 5-fold cross-validation framework. Linear
regressions to the stress level are performed using least squares kernel regression with
regularization strength set to 0.027. The stress level was quantified “0” at rest, “1” for stressor 1,
“4” for stressor 2, and “5” for stressor 3 to closely match the median stress ratings from subjects’
self-assessment reports. The regression performance is measured through Root Mean Squared
Error (RMSE) for the prediction of median stress ratings. Binary classification for the low vs.
high stress recognition was performed through a kernel naive Bayes classifier with a Gaussian
kernel, with “low stress” class associated with “rest” and “stressor 1”” conditions, and “high stress”
associated with the stressors 2 and 3. The classification performance is quantified through the

classification accuracy.

10
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2.7 Statistical analysis

Group-wise statistical analysis between resting state and the three stressor levels is
performed through non-parametric Friedman tests, whereas two-condition comparisons are
performed through Wilcoxon signed-rank test. The statistical testing was performed per EEG
channel, in which the inputs correspond to SV-SDG coupling coefficient computed at different
experimental conditions. The significance level of the p-values was corrected in accordance with
the Bonferroni rule for 9 channels, with an uncorrected statistical significance set to alpha = 0.05.
The samples were described group-wise using the median and related dispersion (variability)
measures that was quantified though the median absolute deviation (MAD).

11
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3 Results

The participants’ self-reports on the perceived level of stress are displayed in Figure 2 for
each stressful condition, where the group median + MAD reported stress levels are 1+0, 4+1 and
5+1 (p = 2 - 10* from Friedman test). A multiple comparison analysis showed that the three
stressful conditions are significantly different (p<0.00005).
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Figure 2. Self-reported stress level for three stressful conditions. Each data point corresponds to the reported stress
level per subject for each for: i) stress load condition 1: documentary, ii) stress load condition 2: documentary + digit
span task, iii) stress load condition 3: documentary + digit span task + red box task. **** < 0.00005 from Wilcoxon
signed-rank test.

Cardiac autonomic activity was assessed through the sympathetic and parasympathetic
activity indices (SAI and PAI, respectively). While condensing the SAI and PAI time-resolved
information, median SAI and median PAI did not change significantly across the experimental
conditions (p = 0.0935 from Friedman test on median SAI, and p = 0.3101 from Friedman test on
median PAI). Nevertheless, SAl and PAI variability (i.e., MAD over time) significantly changes
across the experimental conditions (p = 7 - 10 from Friedman test on SAI variability and p=4 -
10° from Friedman test on PAI variability). Figure 3 depicts group-wise distributions for SAl and
PAI median and variability, with evident increase in the autonomic variability in the three stressful

conditions as compared to rest.
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Figure 3. Group-wise distributions of SAl and PAI median and variability for each experimental condition. Each data
point corresponds to the measured autonomic marker per subject at each of the four conditions. (A) SAl and PAI
median. (B) SAl and PAI variability as measured through median absolute deviation (M.A.D.). The time-varying
autonomic indexes were z-score normalized for the whole experimental protocol duration before computing median
and M.A.D values. ** p < 0.005, *** p < 0.0005, **** p < 0.00005 (Bonferroni-corrected significance at « < 0.00833).

Since autonomic variability is sensitive to stress levels, we further explored how they
relate to brain—heart interplay. Figure 4 illustrates results from the Friedman tests on group-wise
brain-heart variability changes among experimental conditions. Most of the significant changes
among conditions are associated with ascending interactions, especially originating from
sympathetic and vagal activity targeting EEG oscillations in the alpha band. Ascending heart-to-
brain communication targeting EEG oscillations in the theta, beta and gamma bands show
significant changes as well, together with descending interactions from cortical gamma
oscillations to vagal activity. In contrast, cortical power variability mostly shows not significant
changes, with a few statistical differences associated with gamma oscillations in the left-frontal
electrodes.

For the sake of completeness, results on the median brain-heart are shown in
Supplementary Figure 1. Mental stress mainly modulates heart-to-brain functional

communication, especially targeting delta, alpha, beta (in the left hemisphere), and gamma bands.
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PAI —

Friedman’s stat

Figure 4. Friedman test on brain-heart interplay variability and EEG power variability at the four experimental
conditions. Colormaps indicate the Friedman test statistic. White electrodes indicate p < 0.0056.

According to the MRMR algorithm, the five most informative features for the linear
regression analysis and the low vs. high stress classification are reported in Table 1 and depicted
in Fig. 5. In both multivariate analyses, ascending features from SAI and PAI are prevalent. To
illustrate, while median stress level prediction mostly uses SAI—beta, most of the information
needed for low vs high stress classification is provided by PAl—gamma.

In the regression analysis, the RMSE was 1.6851, and its output shows a significant

difference between all predicted stress levels but stressor 2 vs stressor 3 (Figure 5C). In the

14


https://doi.org/10.1101/2022.09.09.507362
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.09.507362; this version posted October 24, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

classification, the five brain-heart features achieved a discrimination accuracy as high as 77%
(Figure 5D), with a sensitivity of 85.14% on detecting high stress, and 68.92% specificity.
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Figure 5. (A) Best five brain—heart interplay markers to regress the stress level (regression to the group median stress
level: rest=0, stressor condition 1=1, stressor condition 2=4, stressor condition 3=5). (B) Best five brain—heart
interplay markers to classify low vs high stress level (low: rest + stressorl, high: stressor2 + stressor3). (C) Model
output to the stress level linear regression using the best five markers under the MRMR criteria. (D) Model output to
the stress level linear binary classification using the best five markers under the MRMR criteria. Yellow circles are low
stress and orange circles are high stress conditions. ** p < 0.005, *** p < 0.0005, **** p < 0.00005 (Bonferroni-

corrected significance at a < 0.00833).
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Table 1. Minimum redundancy maximum relevance (MRMR) scores of the best five brain-heart variability markers for
regression to the level of stress (rest=0, stressor condition 1=1, stressor condition 2=4, stressor condition 3=5) and
for the binary classification low vs high stress (low=rest + stressor condition 1, high=stressor conditions 2 and 3).

1%t feature 2" feature 3" feature 41 feature 5™ feature
Regression SAI—-B, Cz PAl—a, F3 PAI—y, F3 SAl—0, C3 PAI—5, P4

MRMR=0.2395 | MRMR=0.2247 | MRMR=0.1771 | MRMR=0.1669 | MRMR=0.1521
Binary PAI—y, C3 SAI-B, P3 SAI—0, P4 PAI—B, P4 SAI—0, F3
classification MRMR=0.1464 | MRMR=0.1399 | MRMR=0.1156 | MRMR=0.0473 | MRMR=0.0453

Figure 6 shows exemplary SAl—beta and SAl—delta estimates from one subject for the
whole duration of the experimental protocol. An overall increased variability of both markers can

be observed in stressful conditions 2 and 3 with respect to rest and stressful condition 1.
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Figure 6. Exemplary participant during the experimental protocol in their fluctuations in (A) SAl—beta and (B)
SAl—delta modulations.
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4 Discussion

Supported by existing evidence on the physiological responses to mental stress at a central
and autonomic nervous system levels (2, 10), and by linking stress to emotional responses, which
are associated with functional brain—heart interplay modulation (and specifically, a directed
interplay from the heart to the brain) (32, 33), we investigated functional brain—heart interplay
directionally with the hypothesis of its modulation in mental stress.

When condensing the temporal dynamics of sympathetic and parasympathetic activities
throughout the experimental conditions, on the one hand we observed that SAI and PAI central
tendencies (median) did not change among stress levels. On the other hand, we observed that the
variability (MAD) of SAI and PAI significantly increased in accordance with stress levels up to
stressful condition 2. Sympathetic activity, as measured through systolic blood pressure, heart
rate, ventricular ejection fraction, and skin conductance, has been associated with mental stress
(17); moreover, mental stress induced by mental arithmetic increases heart rate variability power
in the low frequency and a decrease in its high frequency power (44-47), suggesting an increase
in the sympathetic tone, and a decrease in the parasympathetic one. Stress also modulates
heartbeat non-linear dynamics (15, 48). Changes in attention have been referred to a source of
autonomic variability (49). Furthermore, some studies have suggested that high frequency
fluctuations in heartbeat dynamics are associated with memory retrieval, reaction time, and action
execution (45, 50, 51), suggesting a dynamic interaction between sympathetic and
parasympathetic activities under stress elicitation. As stress elicitation may involve some
executive functions (e.g., self-control and working memory), the role of high frequency
autonomic activity has been associated with specific dimensions of executive functioning (52—
55).

We observed differences among stressful conditions in EEG oscillations in the gamma
band. The existing evidence on EEG and stress shows heterogeneous and divergent findings with
respect to frequency bands; to illustrate, some studies suggest that different dimensions of stress
are associated with alpha-beta interactions (9, 46, 56), theta-beta interactions (56, 57), alpha-
gamma interactions (58-60), and theta-alpha interactions (59). Such heterogeneity may be related
to the subjectivity and thus high inter-subject variability on perceived stress (58), as well as to the
coping strategies (61). For instance, the processing of concurrent inputs/tasks requires multiple
access to the working memory (62). Another source of variability may be associated with the
level of cognitive demand of the tasks, which may not be directly related to the stress level (63).
In this study, the digit span task involved a verbal report, which is also associated with EEG

signatures of parieto-occipital desynchronizations of lower alpha (64).
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We observed EEG activity modulation as linked to both autonomic branches, whose
activity was measured through SAI and PAI. Particularly, our results on brain—heart interplay
shows that the variability of ascending heart-to—brain communication reflects the level of stress,
especially until stressful condition 2, as compared to descending brain—to—heart modulations.
Indeed, the highest stress level is not statistically associated with the highest variability of heart—
to-brain modulation, nor with SAI and PAI dynamics. We speculate this may be due to the
following main factors: (i) perceived stress level is mitigated or masked by mental fatigue due
sustained attention (65); (ii) the increasing stress conditions may be subject to an attentional-
bradycardic effect to hyper-arousing conditions (66, 67), also known as “freezing” effect, and
thus highest stress conditions may be associated with a different physiological response than other

stressful conditions.

Previous studies on physiological correlates of stress focused on top-down mechanisms
exclusively (5, 68). While brain responses may precede cardiac responses, as measured through
EEG (46, 60) and fMRI (69, 70), stressors may elicit activity in the amygdala and hippocampus
such that a subsequent bottom-up control is activated (71). Indeed, brain and heart continuously
influence each other (70), and the ascending arousal system shapes brain dynamics to mediate
awareness of mental states (72), as well as to facilitate performance at different tasks (73, 74) and
to shape physical and emotional arousal (32, 33). Stress regulation shares mechanisms involved
in emotion regulation as well (29). To illustrate, anterior insula integrates interoceptive signals
during emotional and cognitive processing, being these processes involved to the monitoring of
the physiological state of the body (75). The neural monitoring of cardiac inputs may trigger
physiological adjustments in the frame of homeostatic and allostatic regulations under emotion
elicitation (31, 76). The functional brain-heart interplay under stress elicitation has been shown
in heartbeat-evoked potentials correlating with stress-induced changes in cardiac output (17), and
correlates of functional connectivity with heart rate variability (26). The role of cardiac inputs in
the neurophysiology of stress is also supported by the experimental evidence showing an
increased information flow from heart-to-brain during increased attention (49) and disrupted

abilities on detecting cardiac and respiratory signals from oneself under anxiety (77, 78).

On the bottom-up modulation, we observed that both sympathetic and vagal oscillations
map onto various EEG oscillations at different frequency bands. Indeed, sympathetic origin of
brain-heart interplay in stress was expected because of previous evidence (13, 14, 17, 18). In this
study, SAl—beta interplay seems more sensitive to changes in stress levels. The involvement of
beta waves in mental stress has been previously reported (79), along with alpha-beta interactions
(9, 46, 56) and theta-beta interactions (56, 57). Note that EEG oscillations in the theta band has
been consistently reported as a sensitive correlate of emotion processing (80) also in a heart—to—

brain communication (33). Our results show that preferential heart—to—brain communication
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occur over the frontal and parietal cortical regions, consistently with previous report on stress (4)

and correlates of cognitive operations (81).

We showed that a multivariate analysis helps distinguishing between stress levels, as
compared to individual autonomic markers. While the use of low-density EEG in this study is
certainly a limitation to understand the brain mapping and cortical dynamics of stress
neurophysiology, it proves the suitability of this kind of devices to detect levels of stress with
potential commercial applications. The study of mental stress elicited in other paradigms, such as
mental arithmetic, could give a broader view of the physiological processes involved in brain—
heart information exchange. Our study confirms the advantages of analyzing the interactions
between brain and heart, instead of studying heart rate and brain dynamics exclusively (82, 83).
The understanding of brain-heart dynamics and the neurophysiological substrates of stress has a
clinical relevance. Heart rate variability markers are acknowledged to reflect autonomic
dysregulation, which may lead to morbidity and mortality (84, 85). The evidence also shows
differences in heart rate variability between healthy humans and different mood disorders, but
also as a marker of the effects of antidepressant medications (84). The description of stress
mechanisms can enlighten the apparent relationships with cardiac death (86), cardiovascular
disease (87), sudden death (88), and psychiatric disorders (89). The evidence in other markers of
brain—heart interplay shows as well that the dynamic interaction of these systems may relate to
different aspects of mental health (17, 90, 91).
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5 Conclusions

Stress neurophysiology comprises dynamic and bidirectional brain-body interactions,
where functional bodily feedback is involved in shaping the perceived mental stress level. These
results are in line with the experimental evidence showing a dynamical information exchange
between central and autonomous nervous systems during emotional arousal and physical stress.

Estimates of functional brain-heart interplay may be suitable biomarkers of mental stress.
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