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Abstract 

Dynamical information exchange between central and autonomous nervous systems, as referred 

to functional brain–heart interplay, occurs during emotional and physical arousal. Nevertheless, 

the role of such a nervous-system-wise communication in mental stress is yet unknown. In this 

study, we estimate the causal and bidirectional neural modulations between EEG oscillations and 

peripheral sympathetic and parasympathetic activities using a recently proposed computational 

framework for a functional brain–heart interplay assessment, namely the sympatho-vagal 

synthetic data generation model. Mental stress is elicited in 37 healthy volunteers by increasing 

their cognitive demand throughout four tasks associated with increasing stress levels. Stress 

elicitation induced an increased variability in the directional heart–to–brain functional interplay, 

primarily originating from sympathetic activity targeting a wide range of EEG oscillations. These 

findings extend current knowledge on stress physiology, which referred to primarily a top-down 

neural dynamics. Our results suggest that mental stress involves dynamic and bidirectional neural 

interactions at a brain–body level, where bodily feedback may modulate the perceived stress 

caused by an increased cognitive demand. We conclude that directional brain–heart interplay 

measurements may provide suitable biomarkers for a quantitative stress assessment. 
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1. Introduction 

Human physiology entails constant and dynamic adaptations in response to cognitive 

demand through homeostatic and allostatic mechanisms. From a holistic point of view, the 

physiological responses to cognitive load refer to "mental stress", which can be elicited by 

memory, arithmetic, and increased cognitive demand tasks (1). Physical stress involves the 

physiological responses triggered by homeostatic regulations to bodily conditions, emerging from 

physical exercise or environmental changes (e.g., temperature or atmospheric pressure) (1). 

Mental and physical stress encompass physiological responses from different brain structures, 

together with responses from peripheral systems (2). The neurophysiology of stress sets the 

hypothalamus as a central component, in which the paraventricular nucleus is the main integrator 

of stressors, activating systems such as the sympathetic-adreno-medullar and hypothalamus-

pituitary-adrenal axes (3). The brain structures actively involved in stress responses include the 

prefrontal cortex (4) and the amygdala, whose activity is also associated with emotional 

processing (5). Prefrontal projections to the amygdala (6), as well as hippocampus projections to 

the amygdala and prefrontal cortex (7) are involved as well. Underlying stress mechanisms have 

also been captured in EEG studies, showing a high diversity of responses, including hemispheric 

changes in alpha power and wide-range variability in the EEG spectrum (8, 9).  

The central autonomic network integrates the interoceptive and exteroceptive information 

to promote physiological and behavioral changes that allow adaption to ongoing challenges, 

including stress conditions (2, 10–12). Therefore, stress can significantly modulate autonomic 

activity, as previously reported in heart rate variability (13–17), skin conductance (17, 18), 

breathing rate (19), body temperature (20, 21) and blood pressure (13, 14, 17)– but also 

gastrointestinal (22, 23), endocrine (24) and immune responses (25). On the other hand, acute 

stress triggers concurrent fluctuations in heart rate variability and functional connectivity between 

central executive and default mode networks (26). Neural responses to heartbeats have been 

described as a potential indicator of stress, because of the correlations found with sympathetic 

indexes (17). Similarly with the correlations found between EEG power and autonomic indexes 

under mental stress (27). 

Since stress conditions may induce emotional responses (28), physiological responses to 

stress (i.e., stress regulation) may be linked to physiological mechanisms of emotion regulation 

(29). Indeed, while cardiovascular dynamics are modulated by emotions processing (30, 31), 

modulation activity of the functional brain–heart interactions have been observed under thermal 

stress and thermoregulatory responses (21, 32), as well as emotional processing (33). 

Accordingly, cardiac interoceptive feedback seems actively involved under stressful conditions 

(34, 35), and a wider involvement of the functional brain–body axis in mental stress have already 
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been hypothesized (36). Nonetheless, the functional brain-body physiology associated with 

mental stress is yet unknown. 

To overcome this limitation, this study aims to uncover the directional brain–heart 

interplay mechanisms involved in mental stress induced through visual stimulation and memory 

tasks. Specifically, we exploit our recently proposed Sympathovagal Synthetic Data Generation 

model (SV-SDG) (32) to uncover the mutual functional communication between cortical 

oscillations, as measured through EEG, and cardiac sympathetic/parasympathetic activities, 

estimated from heartbeat dynamics. The SV-SDG model provides time-varying estimates of the 

causal interplay between sympathetic/parasympathetic activities and EEG oscillations in a 

specific frequency band. The framework embeds a heartbeat generation model based on the 

estimation of sympathetic and parasympathetic activities from a Laguerre expansions of the 

heartbeat series (37).  
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2. Materials and methods 

2.1 Dataset description 

Data were gathered from 37 healthy participants (age median 30 years, age range 22–45 

years, 20 males, 17 females) who underwent mental stress elicitation tasks. Participants were 

asked to sit comfortably and follow instructions on a screen. Recordings of physiological signals 

included EEG (9-channel, Biopac B-Alert) and one lead ECG, both sampled at 256 Hz.  

This study was performed at Neurons Inc, Taastrup, Denmark, in accordance with the 

Declaration of Helsinki and followed the rules and laws of the Danish Data Protection Agency. 

Data protection policy also followed the European Union law of the General Data Protection 

Regulation, as well as the ethical regulations imposed by the Neuromarketing Science and 

Business Association, Article 6. Each person’s biometric data, survey responses, and other types 

of data were anonymized and only contained the log number as the unique identifier. Personal 

information cannot be identified from the log number. 

 

2.2 Experimental protocol 

The stress induction protocol comprises four stressing conditions, including 1-minute rest 

and three different stress load tasks lasting 14 minutes approximately. The stressors were 

presented in the same order to all participants. The first stress load condition consisted in watching 

a documentary. The second stress load condition consisted in watching a documentary 

concurrently to performing a digit span task. The third stress load condition consisted in watching 

a documentary, performing the digit span task and the red box task. For each condition, 

participants were asked to report the stress level through a discrete scale from 1 to 7.  

More specifically, the first five minutes of the documentary “The Reality of Van Life”, 

Different Media © 2018, was projected onto a screen as first stressor (Figure 1A). The digit span 

task starts with a fixation cross for 1.5 s. Then, three digits are presented for 5 s, followed by a 

blank screen for 4 s. The participant is then asked to verbally state the three digits in up to 5 s 

(Figure 1B). The red box task, run in parallel to the digit span task (Figure 1C), starts with a 

fixation cross for 1.5 s. Then a red box (4x4 red and white box pattern) is presented for 3 s. Next, 

the three digits are presented for 5 s, followed by a blank screen for 4 s. Then the participant is 

asked to verbally state the three digits in up to 5 s. Consecutively, a red box is presented, and the 

participant is asked if the pattern matches to the previously presented one (yes or no answer). 
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Figure 1. Experimental protocol. (A) Sample image from stress load condition 1, The Reality of Van Life, Different 

Media © 2018. (B) Sample image from stress load condition 2: digit span task. (C) Sample figure from stress load 

condition 3: digit span task + red box task. 

 

2.3 EEG pre-processing 

EEG data were pre-processed using MATLAB R2022a and Fieldtrip Toolbox (38). EEG 

data were bandpass filtered with a Butterworth filter of order 4, between 0.5 and 45 Hz. Large 

movement artifacts were visually identified and removed manually from independent component 

space and wavelet filtering. Consecutively, the Independent Component Analysis (ICA) was 

computed to visually recognize and reject the eye movements and cardiac-field artifacts from the 

EEG data. One lead ECG was included as an additional input to the ICA to enhance the process 

of finding cardiac artifacts. Once the ICA components with eye movements and cardiac artifacts 

were visually identified, they were removed to reconstruct the EEG series. Channels were re-

referenced using a common average, which is the most appropriate for a brain–heart interplay 

estimations (39). 

The EEG spectrogram was computed using the short-time Fourier transform with a 

Hanning taper. Calculations were performed through a sliding time window of 2 seconds with a 

50% overlap, resulting in a spectrogram resolution of 1 second and 0.5 Hz. Then, time series were 
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integrated within five frequency bands (delta: 1-4 Hz, theta: 4-8 Hz, alpha: 8-12 Hz, beta: 12-30 

Hz, gamma: 30-45 Hz). 

2.4 ECG data processing 

ECG time series were bandpass filtered using a Butterworth filter of order 4, between 0.5 

and 45 Hz. The R-peaks from the QRS waves are detected in a procedure based on template-

matching method (39). All the detected peaks were visually inspected over the original ECG, 

along with the inter-beat intervals histogram. Manual corrections were performed where needed 

and guided from the automatic detection of ectopic beats (40). 

2.5 Functional brain–heart interplay assessment 

The Sympathovagal Synthetic Data Generation model (SV-SDG) provides time-variant 

estimates of the bidirectional functional coupling between heartbeat and brain components. The 

model uses the estimation of sympathetic and parasympathetic activities proposed in (37, 41). 

2.5.1 Functional Interplay from the brain to the heart 

The top-down functional interplay is quantified through a model of synthetic heartbeat 

generation based on Laguerre expansions of RR series (see Candia-Rivera et al., 2021a for further 

details). Briefly, heartbeat generation is based on the modulation function m(t), which contains 

the fluctuations with respect to the baseline heart rate. Such fluctuations are modeled including 

the sympathetic and parasympathetic interplay. In Eq. (1), the modulation function is expressed 

as a linear combination of sympathetic (SAI) and parasympathetic activity index (PAI), and their 

respective control coefficients 𝐶𝑆𝐴𝐼 and 𝐶𝑃𝐴𝐼 representing the proportional central nervous system 

contribution: 

 m(t) = CSAI(t) ∙ SAI(t) + CPAI(t) ∙ PAI(t) () 

The modulation function is then taken as input to an integrate-and-fire model  (37). The 

model is fitted on the RR interval series using a 15-seconds sliding time window and a linear 

regression model with no constant term. Then, the interaction between heartbeat dynamics and 

the cortical activity is defined as: 

 SDGEEG F→X(t) = CX(t) / EEGF(t-1) () 

where X ∈ {SAI, PAI}, and 𝐸𝐸𝐺F indicates the time-varying EEG power with F ∈ {δ, θ, α, β, γ}. 

2.5.2 Functional Interplay from the heart to the brain 

The functional interplay from heart to brain is quantified through a model based on the 

generation of synthetic EEG series using an adaptative Markov process (42). The model is fitted 

using a least-square auto-regressive process to estimate cardiac sympathovagal contributions to 

the ongoing fluctuations in EEG power as: 
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 EEGF(t) = κF ∙ EEGF(t-1) + ΨF(t-1) + εF () 

 where F is the EEG frequency band, κF  is a fitting constant, εF is the adjusted error, and 𝛹𝐹 

indicates the fluctuations of EEG power in F. Then, the heart–to–brain functional coupling 

coefficients are calculated as follows: 

 SDGX→EEG F(t) = ΨF(t) / X(t) () 

where X ∈ {SAI, PAI}. For further details, please see Candia-Rivera et al., 2022a. 

The software for computation of SAI and PAI is available at www.saipai-hrv.com. The 

source code implementing the SV-SDG model is available at 

www.github.com/diegocandiar/brain_heart_svsdg. 

 

2.6 Multivariate analysis 

In order to identify the most significant brain-heart features sensitive to mental stress, a 

multivariate analysis was performed. The feature selection is based on the ranking provided by 

the computation of Minimum Redundancy Maximum Relevance (MRMR) scores (43) and was 

computed over the 180 SV-SDG-derived features (180 = 2 directions x 2 autonomic markers x 5 

brain oscillations x 9 channels) to select the five most significant ones in two conditions: (i) a 

linear regression model predicting the median stress level in each condition, and (ii) a binary 

classification algorithm to discern low vs high stress level. 

The MRMR score computation algorithm is as follows: 

1. The relevance 𝑉𝑥 of all features 𝑥 is computed. The feature with the largest relevance 

𝑚𝑎𝑥
𝑥∈𝛺

𝑉𝑥 is selected. The selected feature is added to an empty set of features 𝑆.  

𝑉𝑥 is defined as: 

𝑉𝑥 =  
1

|𝑆|
 ∑ 𝐼(𝑥, 𝑦)

𝑥 ∈𝑆

  
(5) 

  

 

Where 𝑆 ∨ is the number of features in 𝑆 and 𝐼(𝑥, 𝑦) is the mutual information between 

the feature x and the output y: 

𝐼(𝑥, 𝑦) = ∑ 𝑝(𝑥𝑖 , 𝑦𝑗)𝑙𝑜𝑔
𝑝(𝑥𝑖, 𝑦𝑗)

𝑝(𝑥𝑖)𝑝(𝑦𝑗)
𝑖𝑗

 
(6) 
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2. Next, the features with non-zero relevance 𝑉𝑥 and zero redundancy 𝑊𝑥 in  𝑆𝑐 

(complement of 𝑆) are identified. Then, select the feature with the largest relevance, 

𝑚𝑎𝑥
𝑥∈𝑆𝑐,𝑊𝑥=0

𝑉𝑥. The selected feature is added to the set 𝑆.  

𝑊𝑥 is defined as: 

𝑊𝑥 =  
1

|𝑆|2
 ∑ 𝐼(𝑥, 𝑧)

𝑥,𝑧 ∈𝑆

  
(7) 

 

(7) 

 

If 𝑆𝑐 does not include a feature with non-zero relevance and zero redundancy, skip step 

number 3 

3. Repeat step number 2 until the redundancy 𝑊𝑥 is not zero for all features in 𝑆𝑐. 

4. Select the feature with the largest 𝑀𝐼𝑄, with non-zero relevance and non-zero 

redundancy in 𝑆𝑐, and add the selected feature to the set 𝑆.  

𝑀𝐼𝑄 is defined as: 

max
𝑥 ∈ 𝑆𝑐

𝑀𝐼𝑄 =  max
𝑥 ∈ 𝑆𝑐

𝑉𝑥

𝑊𝑥
= max

𝑥 ∈ 𝑆𝑐

𝐼(𝑥, 𝑦)

1
|𝑆|

 ∑ 𝐼(𝑥, 𝑧)𝑧∈𝑆

  
(8) 

  

 

5. Repeat Step 4 until the relevance is zero for all features in 𝑆𝑐. 

6. Add the features with zero relevance to 𝑆 in random order. 

 

The multivariate analyses are performed in a 5-fold cross-validation framework. Linear 

regressions to the stress level are performed using least squares kernel regression with 

regularization strength set to 0.027. The stress level was quantified “0” at rest, “1” for stressor 1, 

“4” for stressor 2, and “5” for stressor 3 to closely match the median stress ratings from subjects’ 

self-assessment reports. The regression performance is measured through Root Mean Squared 

Error (RMSE) for the prediction of median stress ratings. Binary classification for the low vs. 

high stress recognition was performed through a kernel naïve Bayes classifier with a Gaussian 

kernel, with “low stress” class associated with “rest” and “stressor 1” conditions, and “high stress” 

associated with the stressors 2 and 3. The classification performance is quantified through the 

classification accuracy. 
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2.7 Statistical analysis 

Group-wise statistical analysis between resting state and the three stressor levels is 

performed through non-parametric Friedman tests, whereas two-condition comparisons are 

performed through Wilcoxon signed-rank test. The statistical testing was performed per EEG 

channel, in which the inputs correspond to SV-SDG coupling coefficient computed at different 

experimental conditions. The significance level of the p-values was corrected in accordance with 

the Bonferroni rule for 9 channels, with an uncorrected statistical significance set to alpha = 0.05. 

The samples were described group-wise using the median and related dispersion (variability) 

measures that was quantified though the median absolute deviation (MAD). 
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3 Results 

The participants’ self-reports on the perceived level of stress are displayed in Figure 2 for 

each stressful condition, where the group median ± MAD reported stress levels are 1±0, 4±1 and 

5±1 (p = 2 · 10-14 from Friedman test). A multiple comparison analysis showed that the three 

stressful conditions are significantly different (p<0.00005).  

 

Figure 2. Self-reported stress level for three stressful conditions. Each data point corresponds to the reported stress 

level per subject for each for: i) stress load condition 1: documentary, ii) stress load condition 2: documentary + digit 

span task, iii) stress load condition 3: documentary + digit span task + red box task. **** < 0.00005 from Wilcoxon 

signed-rank test. 

 

Cardiac autonomic activity was assessed through the sympathetic and parasympathetic 

activity indices (SAI and PAI, respectively). While condensing the SAI and PAI time-resolved 

information, median SAI and median PAI did not change significantly across the experimental 

conditions (p = 0.0935 from Friedman test on median SAI, and p = 0.3101 from Friedman test on 

median PAI). Nevertheless, SAI and PAI variability (i.e., MAD over time) significantly changes 

across the experimental conditions (p = 7 · 10-6 from Friedman test on SAI variability and p = 4 · 

10-9 from Friedman test on PAI variability). Figure 3 depicts group-wise distributions for SAI and 

PAI median and variability, with evident increase in the autonomic variability in the three stressful 

conditions as compared to rest. 
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Figure 3. Group-wise distributions of SAI and PAI median and variability for each experimental condition. Each data 

point corresponds to the measured autonomic marker per subject at each of the four conditions. (A) SAI and PAI 

median. (B) SAI and PAI variability as measured through median absolute deviation (M.A.D.). The time-varying 

autonomic indexes were z-score normalized for the whole experimental protocol duration before computing median 

and M.A.D values. ** p < 0.005, *** p < 0.0005, **** p < 0.00005 (Bonferroni-corrected significance at α < 0.00833). 

Since autonomic variability is sensitive to stress levels, we further explored how they 

relate to brain–heart interplay. Figure 4 illustrates results from the Friedman tests on group-wise 

brain-heart variability changes among experimental conditions. Most of the significant changes 

among conditions are associated with ascending interactions, especially originating from 

sympathetic and vagal activity targeting EEG oscillations in the alpha band. Ascending heart-to-

brain communication targeting EEG oscillations in the theta, beta and gamma bands show 

significant changes as well, together with descending interactions from cortical gamma 

oscillations to vagal activity. In contrast, cortical power variability mostly shows not significant 

changes, with a few statistical differences associated with gamma oscillations in the left-frontal 

electrodes.  

For the sake of completeness, results on the median brain-heart are shown in 

Supplementary Figure 1. Mental stress mainly modulates heart-to-brain functional 

communication, especially targeting delta, alpha, beta (in the left hemisphere), and gamma bands. 
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Figure 4. Friedman test on brain–heart interplay variability and EEG power variability at the four experimental 

conditions. Colormaps indicate the Friedman test statistic. White electrodes indicate p < 0.0056. 

 

According to the MRMR algorithm, the five most informative features for the linear 

regression analysis and the low vs. high stress classification are reported in Table 1 and depicted 

in Fig. 5. In both multivariate analyses, ascending features from SAI and PAI are prevalent. To 

illustrate, while median stress level prediction mostly uses SAI→beta, most of the information 

needed for low vs high stress classification is provided by PAI→gamma.  

In the regression analysis, the RMSE was 1.6851, and its output shows a significant 

difference between all predicted stress levels but stressor 2 vs stressor 3 (Figure 5C). In the 
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classification, the five brain-heart features achieved a discrimination accuracy as high as 77% 

(Figure 5D), with a sensitivity of 85.14% on detecting high stress, and 68.92% specificity. 

 

 

Figure 5. (A) Best five brain–heart interplay markers to regress the stress level (regression to the group median stress 

level: rest=0, stressor condition 1=1, stressor condition 2=4, stressor condition 3=5). (B) Best five brain–heart 

interplay markers to classify low vs high stress level (low: rest + stressor1, high: stressor2 + stressor3). (C) Model 

output to the stress level linear regression using the best five markers under the MRMR criteria. (D) Model output to 

the stress level linear binary classification using the best five markers under the MRMR criteria. Yellow circles are low 

stress and orange circles are high stress conditions.  ** p < 0.005, *** p < 0.0005, **** p < 0.00005 (Bonferroni-

corrected significance at α < 0.00833). 
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Table 1. Minimum redundancy maximum relevance (MRMR) scores of the best five brain-heart variability markers for 

regression to the level of stress (rest=0, stressor condition 1=1, stressor condition 2=4, stressor condition 3=5) and 

for the binary classification low vs high stress (low=rest + stressor condition 1, high=stressor conditions 2 and 3). 

 1st feature 2nd feature  3rd feature 4th feature  5th feature 

Regression SAI→β, Cz 

MRMR=0.2395  

PAI→α, F3 

MRMR=0.2247  

PAI→γ, F3 

MRMR=0.1771  

SAI→θ, C3 

MRMR=0.1669  

PAI→δ, P4 

MRMR=0.1521 

Binary 

classification 

PAI→γ, C3 

MRMR=0.1464  

SAI→β, P3 

MRMR=0.1399  

SAI→δ, P4 

MRMR=0.1156  

PAI→β, P4 

MRMR=0.0473  

SAI→δ, F3 

MRMR=0.0453 

 

 Figure 6 shows exemplary SAI→beta and SAI→delta estimates from one subject for the 

whole duration of the experimental protocol. An overall increased variability of both markers can 

be observed in stressful conditions 2 and 3 with respect to rest and stressful condition 1. 

 

Figure 6. Exemplary participant during the experimental protocol in their fluctuations in (A) SAI→beta and (B) 

SAI→delta modulations. 
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4 Discussion 

Supported by existing evidence on the physiological responses to mental stress at a central 

and autonomic nervous system levels (2, 10), and by linking stress to emotional responses, which 

are associated with functional brain–heart interplay modulation (and specifically, a directed 

interplay from the heart to the brain) (32, 33), we investigated functional brain–heart interplay 

directionally with the hypothesis of its modulation in mental stress. 

When condensing the temporal dynamics of sympathetic and parasympathetic activities 

throughout the experimental conditions, on the one hand we observed that SAI and PAI central 

tendencies (median) did not change among stress levels. On the other hand, we observed that the 

variability (MAD) of SAI and PAI significantly increased in accordance with stress levels up to 

stressful condition 2.  Sympathetic activity, as measured through systolic blood pressure, heart 

rate, ventricular ejection fraction, and skin conductance, has been associated with mental stress 

(17); moreover, mental stress induced by mental arithmetic increases heart rate variability power 

in the low frequency and a decrease in its high frequency power (44–47), suggesting an increase 

in the sympathetic tone, and a decrease in the parasympathetic one. Stress also modulates 

heartbeat non-linear dynamics (15, 48). Changes in attention have been referred to a source of 

autonomic variability (49). Furthermore, some studies have suggested that high frequency 

fluctuations in heartbeat dynamics are associated with memory retrieval, reaction time, and action 

execution (45, 50, 51), suggesting a dynamic interaction between sympathetic and 

parasympathetic activities under stress elicitation. As stress elicitation may involve some 

executive functions (e.g., self-control and working memory), the role of high frequency 

autonomic activity has been associated with specific dimensions of executive functioning (52–

55). 

We observed differences among stressful conditions in EEG oscillations in the gamma 

band. The existing evidence on EEG and stress shows heterogeneous and divergent findings with 

respect to frequency bands; to illustrate, some studies suggest that different dimensions of stress 

are associated with alpha-beta interactions (9, 46, 56), theta-beta interactions (56, 57), alpha-

gamma interactions (58–60), and theta-alpha interactions (59). Such heterogeneity may be related 

to the subjectivity and thus high inter-subject variability on perceived stress (58), as well as to the 

coping strategies (61). For instance, the processing of concurrent inputs/tasks requires multiple 

access to the working memory (62).  Another source of variability may be associated with the 

level of cognitive demand of the tasks, which may not be directly related to the stress level (63). 

In this study, the digit span task involved a verbal report, which is also associated with EEG 

signatures of parieto-occipital desynchronizations of lower alpha (64). 
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We observed EEG activity modulation as linked to both autonomic branches, whose 

activity was measured through SAI and PAI. Particularly, our results on brain–heart interplay 

shows that the variability of ascending heart–to–brain communication reflects the level of stress, 

especially until stressful condition 2, as compared to descending brain–to–heart modulations. 

Indeed, the highest stress level is not statistically associated with the highest variability of heart–

to–brain modulation, nor with SAI and PAI dynamics. We speculate this may be due to the 

following main factors: (i) perceived stress level is mitigated or masked by mental fatigue due 

sustained attention (65); (ii) the increasing stress conditions may be subject to an attentional-

bradycardic effect to hyper-arousing conditions (66, 67), also known as “freezing” effect, and 

thus highest stress conditions may be associated with a different physiological response than other 

stressful conditions. 

Previous studies on physiological correlates of stress focused on top-down mechanisms 

exclusively (5, 68). While brain responses may precede cardiac responses, as measured through 

EEG (46, 60) and fMRI (69, 70), stressors may elicit activity in the amygdala and hippocampus 

such that a subsequent bottom-up control is activated (71). Indeed, brain and heart continuously 

influence each other (70), and the ascending arousal system shapes brain dynamics to mediate 

awareness of mental states (72), as well as to facilitate performance at different tasks (73, 74) and 

to shape physical and emotional arousal (32, 33). Stress regulation shares mechanisms involved 

in emotion regulation as well (29). To illustrate, anterior insula integrates interoceptive signals 

during emotional and cognitive processing, being these processes involved to the monitoring of 

the physiological state of the body (75). The neural monitoring of cardiac inputs may trigger 

physiological adjustments in the frame of homeostatic and allostatic regulations under emotion 

elicitation (31, 76). The functional brain–heart interplay under stress elicitation has been shown 

in heartbeat-evoked potentials correlating with stress-induced changes in cardiac output (17), and 

correlates of functional connectivity with heart rate variability (26). The role of cardiac inputs in 

the neurophysiology of stress is also supported by the experimental evidence showing an 

increased information flow from heart-to-brain during increased attention (49) and disrupted 

abilities on detecting cardiac and respiratory signals from oneself under anxiety (77, 78). 

On the bottom-up modulation, we observed that both sympathetic and vagal oscillations 

map onto various EEG oscillations at different frequency bands. Indeed, sympathetic origin of 

brain-heart interplay in stress was expected because of previous evidence (13, 14, 17, 18). In this 

study, SAI→beta interplay seems more sensitive to changes in stress levels. The involvement of 

beta waves in mental stress has been previously reported (79), along with alpha-beta interactions 

(9, 46, 56) and theta-beta interactions (56, 57). Note that EEG oscillations in the theta band has 

been consistently reported as a sensitive correlate of emotion processing (80) also in a heart–to–

brain communication (33). Our results show that preferential heart–to–brain communication 
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occur over the frontal and parietal cortical regions, consistently with previous report on stress (4) 

and correlates of cognitive operations (81).  

 We showed that a multivariate analysis helps distinguishing between stress levels, as 

compared to individual autonomic markers. While the use of low-density EEG in this study is 

certainly a limitation to understand the brain mapping and cortical dynamics of stress 

neurophysiology, it proves the suitability of this kind of devices to detect levels of stress with 

potential commercial applications. The study of mental stress elicited in other paradigms, such as 

mental arithmetic, could give a broader view of the physiological processes involved in brain–

heart information exchange. Our study confirms the advantages of analyzing the interactions 

between brain and heart, instead of studying heart rate and brain dynamics exclusively (82, 83). 

The understanding of brain–heart dynamics and the neurophysiological substrates of stress has a 

clinical relevance.  Heart rate variability markers are acknowledged to reflect autonomic 

dysregulation, which may lead to morbidity and mortality (84, 85). The evidence also shows 

differences in heart rate variability between healthy humans and different mood disorders, but 

also as a marker of the effects of antidepressant medications (84). The description of stress 

mechanisms can enlighten the apparent relationships with cardiac death (86), cardiovascular 

disease (87), sudden death (88), and psychiatric disorders (89). The evidence in other markers of 

brain–heart interplay shows as well that the dynamic interaction of these systems may relate to 

different aspects of mental health (17, 90, 91). 
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5 Conclusions 

Stress neurophysiology comprises dynamic and bidirectional brain–body interactions, 

where functional bodily feedback is involved in shaping the perceived mental stress level. These 

results are in line with the experimental evidence showing a dynamical information exchange 

between central and autonomous nervous systems during emotional arousal and physical stress. 

Estimates of functional brain–heart interplay may be suitable biomarkers of mental stress. 
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