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ABSTRACT

Variants of a coronavirus (SARS-CoV-2) have been spreading in a global pandemic.
Improved understanding of the infectivity of future new variants is important so that
effective countermeasures against them can be quickly undertaken. In our research
reported here, we aimed to predict the infectivity of SARS-CoV-2 by using a
mathematical model with molecular simulation analysis, and we used phylogenetic
analysis to determine the evolutionary distance of the spike protein gene (S gene) of
SARS-CoV-2. We subjected the six variants and the wild type of spike protein and human
angiotensin-converting enzyme 2 (ACE2) to molecular docking simulation analyses to
understand the binding affinity of spike protein and ACE2. We then utilized regression
analysis of the correlation coefficient of the mathematical model and the infectivity of
SARS-CoV-2 to predict infectivity. The evolutionary distance of the S gene correlated
with the infectivity of SARS-CoV-2 variants. The coefficient of the mathematical model
obtained with results of molecular docking simulation also correlated with the infectivity
of SARS-CoV-2 variants. These results suggest that the data from the docking simulation
for the receptor binding domain of variant spike proteins and human ACE2 were valuable
for prediction of SARS-CoV-2 infectivity. In addition, we developed a mathematical
model for prediction of SARS-CoV-2 variant infectivity by using binding affinity

obtained via molecular docking and the evolutionary distance of the S gene.
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1. Introduction

Variants of the novel coronavirus (SARS-CoV-2 [severe acute respiratory
syndrome coronavirus 2]) that are responsible for the worldwide pandemic known as
COVID-19 have led to difficulties in enacting countermeasures against infection, because
many variants have occurred in succession [ 1]. Infection control methods for SARS-CoV-
2 have mainly included wearing face masks, avoiding close contact with other people
(such as via lockdowns in urban areas), and providing multiple injections of vaccines [2].
The infectivity of SARS-CoV-2 variants has been rapidly changing, so understanding the
infectivity of new variants is important for effective responses to the pandemic [3]. These

changes have resulted in higher infectivities of new SARS-CoV-2 variants compared with
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past variants [4-9]. These alterations in infectivity indicate that the infectivity of new
coronavirus variants may be estimated by utilizing the evolutionary distance of the spike
protein gene (S gene) between the wild type and the variants. We previously described a
mathematical model in which we used docking simulation results to predict UDP-
glucuronosyltransferase 1Al conjugation capacity [10]. By using the molecular docking
simulation analyses, we found a plant leaf extract that inhibited the binding of
SARS-CoV-2 spike protein to angiotensin-converting enzyme 2 (ACE2) [11]. Similarly,
in silico docking data for a variant of SARS-CoV-2 spike protein and ACE2 may be used
to estimate the infectivity of the new variant. In this research here, we choose these two
approaches with mathematical models to achieve rapid and better understanding of the

infectivity of new SARS-CoV-2 variants.

2. Materials and methods
2.1. Determination of the evolutionary distance between wild-type and variant S
genes and infectivities of the variants

We chose six variants of SARS-CoV-2—alpha [12], beta [13], gamma [14], delta
[15], omicron BA.1[16], and omicron BA.2 [17]—for this research. We used the multiple
sequence alignment method for the S gene of the SARS-CoV-2 variants, whose nucleotide
sequences were obtained from NCBI, to perform an analysis via the Clustal W program
[18]. FastTree [19] with default parameters then provided the phylogenetic tree and
evolutionary distances between each mutant and wild type. The infectivity of each SARS-
CoV-2 variant was obtained from previous research, and we summarized these data and

developed an infectivity index for our research [4-9].

2.2. Analysis of the three-dimensional structures of SARS-CoV-2 spike protein,
analysis of docking of the receptor-binding domain (RBD) and ACE2 protein, and

development of a mathematical model

The amino acid sequence of Analysis of 3-D structures for wild-type and mutant

i . X SARS-CoV-2 spike proteins by using the
w11d-type SARS-CoV-2 Splke protein was homology modeling method and structural optimization
obtained from UniProt (UniProt ID: Docking analysis of the RBD domain with
PODTC2).  The  three-dimensional ACE2 protein gDB ID: 6Mo0J)
structure of SARS-CoV-2 spike protein Cluster analysis of the docking results
(Protein Data Bank [PDB] ID: 62GQ), Selection of the average ZDOCK score of the most stable
Wthh lS an Open State trimer, was used as cluster and ZDOCK score of the most stable complex
the template for homology modeling of Development of the mathematical model to predict

: . . infectivity of SARS-CoV-2 vari
wild-type and variant SARS-CoV-2 spike infectiviy © o2 varants

Figure 1. The method used for molecular simulation analysis.
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proteins. We used Molecular Operating Environment software (Chemical Computing
Group, Montreal, Quebec, Canada) to perform the homology modeling. The model
structures were then subjected to structural optimization with molecular dynamics (MD)
simulation, as described in our previous report [20]. After 10,000-ps MD simulation of
each spike protein, docking analysis with ACE2 was performed as follows: The ACE2
structure was obtained from the PDB (PDB ID: 6M0J).

To reduce the search space for docking, a partial structure of the RBD in the “up”
conformation was cut from our simulated structure of the SARS-CoV-2 spike protein
trimer. Docking sites were defined on the basis of the crystal structure of SARS-CoV-2
spike protein RBD bound with ACE2 (PDB ID: 6M0J). Two thousand docking runs were
performed by using ZDOCK software (University of Massachusetts Medical School,
Worcester, MA). To determine the stable complex group among the docking runs, the
ZDOCK scores of the resulting complexes were clustered by using the group average
clustering algorithm. The upper tail rule [21] was applied to determine the number of
clusters. We used the most stable ZDOCK score in the docking runs and the average
ZDOCK score of the most stable complex group to derive a mathematical model

according to our previous research [10]. Figure 1 provides a flow diagram of this research.

Omicron Omicron
Measure Wild type Alpha Beta Gamma Delta
BA.1 BA.2
Evolutionary distance 0 0.00420 0.00446 0.01077 0.01209 0.01426 0.02600
ZDOCK scores of the
216.076 253.965 264.905 282.820 454.240 509.856 615.442
most stable complexes
ZDOCK scores of the 219.633 417.824 595.340
247.478 260.243 270.947 428.721
most stable clusters +50.513 +4.936 +4.736
(n=1) (n=1) (n=1) (n=1)
(mean + SD) (n=10) (n=5) (n=3)

Table 1
Evolutionary distances and binding affinities of SARS-CoV-2 spike proteins with ACE2.
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3. Results
3.1. Evolutionary distances for S gene variants and results of docking of RBD with
ACE2 protein

Table 1 shows the evolutionary distances between the wild type and the variants,
as well as the docking affinities of RBD with ACE2. After multiple alignments of wild-
type and variant S genes by using the Clustal W program, FastTree was used to determine
the phylogenetic tree (data not shown) and evolutionary distances. The binding affinity
of the SARS-CoV-2 spike protein RBD and ACE2 was determined by using the ZDOCK
score as an indicator. ZDOCK scores were utilized in cluster analysis to determine the
average ZDOCK score of the most stable cluster and ZDOCK score of the most stable
complex for each variant. We used these results to develop a mathematical model to
predict infectivities of SARS-CoV-2 variants.

3.2. Development of a mathematical model to estimate infectivities of SARS-CoV-2
wild type and variants

We developed a mathematical model to predict the infectivities of SARS-CoV-2
wild type and variants according to our previous research [10]. According to Fig. 2, the
relationship between the evolutionary distance and infectivity of each variant can be
represented by the following equation:

F=px+q

where x is the evolutionary distance between the wild-type (wild) and a mutant SARS-
CoV-2 spike protein. Constant values p and ¢ were estimated by minimizing the sum of
squared error between the calculated infectivity and the reported infectivity (ratio per wild
type) [4-9]. We then derived the mathematical model for the binding affinity of RBD and
ACE2 by using the results of docking analyses. The coefficient of the mathematical model
was derived from the following equation:
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where A is the average ZDOCK score of the most stable cluster and B is the ZDOCK

score of the most stable complex. The relationship between the coefficient of the variant

infectivity and the reported infectivity (Fig. 3) can be represented by the following
equation:
B B A
G=sX B log (Awu) +t

Constant values s and ¢ were estimated by minimizing the sum of squared error between

the calculated infectivity and the reported infectivity (ratio per wild type) [4-9]. The
infectivity of SARS-CoV-2 (P) is defined by the evolutionary distance and the docking
result with ACE2:

B A
P=uF+vG+w=u(px+q)+v(sx log( >+t>+w
Byita Ayia

Constant values u, v, and w were estimated by minimizing the sum of squared error
between the calculated infectivity P and the reported infectivity of each SARS-CoV-2

variant V-

(u,v,w) = argmin {Z (P — V)Z}

where set M represents the SARS-CoV-2 variants whose infectivities are reported. A
correlation was seen between the coefficient of the mathematical model and the
evolutionary distance of SARS-CoV-2 spike protein (data not shown). These results
suggest that our mathematical model can predict the infectivities of SARS-CoV-2 wild
type and variants. Finally, the infectivity of SARS-CoV-2 variants is defined by the

following equation:

B A
P =0.3074869 x log( ) + 1.18598 x x + 1.3879845
Bwild Awild

4. Discussion

Reported infectivities of SARS-CoV-2 variants were correlated with both
evolutionary distance of the S gene and the coefficient of the mathematical model
according to our in silico docking data (Figs. 2 and 3). With our mathematical model,
these two factors reproduced the reported infectivity better than the model using only one
factor in the coefficient of determination (data not shown).

In previous research, only the RBD domain of the spike protein was used in the
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analysis of binding affinity with ACE2: no MD analysis of the structure optimization [22-
26] and/or local optimization of only the RBD domain [22-28] of the spike protein.
However, we chose the three-dimensional structure of the complete trimeric spike protein
(PDB ID: 6ZGG) in homology modeling in this research. After MD analysis, we
confirmed the trajectory of the root mean square deviation and the disallowed regions of
the Ramachandran plot for proper quality of each variant spike protein structure. The
RBD domain of the variant trimeric spike protein structures was then provided for the
docking analyses with ACE2. Therefore, our experimental strategy achieved high
accuracy because we used a molecular simulation method which possibly imitates the
behavior of the biomolecules. In addition, our previous research [29-34] suggested the
value of this prediction that utilized our molecular simulation methods. Additional
analyses of binding affinities of other spike proteins of SARS-CoV-2 variants with ACE2

may provide greater accuracy, and such experiments are now in progress.
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