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Abstract

Open-source, publicly available neuroimaging datasets—whether from large-scale data collection efforts or pooled from multiple
smaller studies—offer unprecedented sample sizes and promote generalization efforts. Releasing data can democratize science,
increase the replicability of findings, and lead to discoveries. Due to patient privacy and data storage concerns, researchers typ-
ically release preprocessed data with the voxelwise time series parcellated into a map of predefined regions, known as an atlas.
However, releasing preprocessed data also limits the choices available to the end-user. This is especially true for connectomics, as
connectomes created from different atlases are not directly comparable. Since there exist several atlases with no gold standards,
it is unrealistic to have processed, open-source data available from all atlases. Together, these limitations directly inhibit the po-
tential benefits of open-source neuroimaging data. To address these limitations, we introduce Cross Atlas Remapping via Optimal
Transport (CAROT) to find a mapping between two atlases. This approach allows data processed from one atlas to be directly
transformed into a connectome based on another atlas without the need for raw data access. To validate CAROT, we compare
reconstructed connectomes against their original counterparts (i.e., connectomes generated directly from an atlas), demonstrate the
utility of transformed connectomes in downstream analyses, and show how a connectome-based predictive model can generalize to
publicly available data that was processed with different atlases. Overall, CAROT can reconstruct connectomes from an extensive
set of atlases—without ever needing the raw data—allowing already processed connectomes to be easily reused in a wide range of
analyses while eliminating redundant processing efforts. We share this tool as both source code and as a stand-alone web application
(http://carotproject.com/).
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1. Introduction

A connectome—a matrix describing the connectivity be-
tween any pair of brain regions—is a popular approach used
to model the brain as a graph-like structure (Sporns et al., 2004;
Bassett and Bullmore, 2006; Bullmore and Sporns, 2009). They
are created by parcellating the brain into distinct areas using
an atlas (i.e., the nodes of a graph) and estimating the con-
nections between these regions (i.e., the edges of a graph). A
wide range of works demonstrates the value of connectomics in
studying individual differences in brain function (Elliott et al.,
2019; Dubois and Adolphs, 2016), associating brain-behavior
associations (Sui et al., 2020; Jiang et al., 2019; Beaty et al.,
2018), and understanding brain alterations in neuropsychiatric
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disorders (Yan et al., 2019). Overall, connectomes have high
potential as a biomarker of various phenotypic information.

Nevertheless, the need for an atlas to create a connectome
hinders comparisons across studies and replication and gen-
eralization efforts. Different atlases divide the brain into dif-
ferent regions of varying size and topology. Thus, connec-
tomes created from different atlases are not directly compara-
ble. In other words, simply comparing the results from two in-
dependent studies that use different atlases is challenging. Fur-
ther, several atlases exist with no gold standards (Arslan et al.,
2018), and more are being developed yearly. Currently, no solu-
tions exist to extend previous results and potential biomarkers
to a connectome generated from a different atlas, limiting the
broader use of potential connectome-based biomarkers.

Transforming an existing connectome into one generated
from a different atlas would help these efforts and increase
the utility of existing connectomes. For example, large-scale
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projects—like the Human Connectome Project (HCP) (Van Es-
sen et al., 2013), the Adolescent Brain Cognitive Development
(ABCD) study (Casey et al., 2018), and the UK Biobank (Sud-
low et al., 2015)—share fully processed connectomes. How-
ever, the released connectomes for each project are based on
different atlases, preventing these datasets from being com-
bined without reprocessing data from thousands of participants.
Smaller labs might not have the resources to store and reprocess
these data from scratch (Horien et al., 2021). Finally, due to pri-
vacy concerns of being able to identify a participant based on
unprocessed data, some datasets are only released as fully pro-
cessed connectomes (Yan et al., 2019). Critically, in this case,
it is not possible to go to the data to create connectomes from
another atlas. Thus, algorithms to map and transform connec-
tomes have applications for preserving participant privacy and
democratizing data access, as well as improving the generaliz-
ability of scientific findings.

To this aim, we propose Cross Atlas Remapping via Opti-
mal Transport (CAROT), which uses optimal transport theory,
or the mathematics of converting a probability distribution from
one set to another, to find an optimal mapping between two at-
lases. CAROT is designed for functional connectomes based
on functional magnetic imaging (fMRI) data. It allows a con-
nectome constructed from one atlas to be directly transformed
into a connectome based on a different atlas without needing to
access or preprocess the raw data. We define raw data as data in
any form other than fully preprocessed timeseries from an atlas,
which is the final form of the data used to create a connectome.
Fully preprocessed timeseries from an atlas have several bene-
fits over other intermediate forms derived from a connectomic
processing pipeline. As these data consist of only 200 − 500
timeseries, they require less storage than voxel-wise or vertex-
wise preprocessed data in common space (1 − 3 MB compared
to 500−1000 MB per individual). These data are also not iden-
tifiable if privacy concerns exist.

First, in a training sample with fMRI time series data
from two different atlases, we find a mapping by solving
the Monge–Kantorovich transportation problem (Kantorovich,
1942). Then, by employing this optimal mapping, time series
data based on the first atlas (from individuals independent of
the training data) can be reconstructed into connectomes based
on the second atlas without ever needing to be preprocessed.
To validate CAROT, we compare reconstructed connectomes
against their original counterparts (i.e., connectomes gener-
ated directly from an atlas), demonstrate the utility of trans-
formed connectomes in downstream analyses, and show how a
connectome-based predictive model can be generalized to pub-
licly available data preprocessed with different atlases. Overall,
CAROT can reconstruct connectomes from an extensive set of
atlases—without ever needing the raw data—enabling compar-
ison across connectome-based results from different atlases and
the reuse of already processed connectomes in a wide range of
downstream analyses.

This work builds upon two conference papers presented at
the 2021 and 2022 International Conference on Medical Im-
age Computing and Computer Assisted Intervention (MIC-
CAI) (Dadashkarimi et al., 2021, 2022). The conference pa-

pers present our initial results using optimal transport to map
and transform connectomes from different atlases. We expand
our previous results by presenting an extensive set of valida-
tion studies, increasing the number of atlases tested, and shar-
ing this tool as source code and a stand-alone web application
(http://carotproject.com/).

2. Theory and calculations

2.1. Optimal transport
The optimal transport problem solves how to transport re-

sources from one location α to another β while minimizing
the cost C (Tolstoi, 1930; Hitchcock, 1941; Koopmans, 1949;
Gangbo and McCann, 1996). It has been used for contrast
equalization (Delon, 2004), image matching (Li et al., 2013),
image watermarking (Mathon et al., 2014), text classification
(Huang et al., 2016), and music transportation (Flamary et al.,
2016). Optimal transport is one of the few methods that pro-
vides a well-defined distance metric when the supports of the
distributions are different. Other mapping approaches, such as
Kullback–Leibler divergence, do not make this guarantee.

The original formulation of the optimal transport problem is
known as the Monge problem. Assuming we have some re-
sources x1, .., xn in location α and some other resources y1, .., ym

in location β, we specify weight vectors a and b over these
resources and define matrix C as a measure of pairwise dis-
tances between points xi ∈ α and comparable points T (xi). The
Monge problem aims to solve the following optimizing prob-
lem (Monge, 1781):

min
T

{∑
i

C(xi, T (xi)) : T♯α = β
}
, (1)

where the push forward operator ♯ indicates that mass from
α moves towards β assuming that weights absorbed in b j =∑

T (xi)=y j
ai. An assignment problem when the number of el-

ements in the measures are not equal is a special case of this
problem, where each point in α can be assigned to several points
in β.

As a generalization of the Monge problem, the Kantorvich
relaxation solves the mass transportation problem using a prob-
abilistic approach in which the amount of mass located at xi po-
tentially dispatches to several points in the target (Kantorovich,
1942). An admissible solution for Kantorvich relaxation is de-
fined as T ∈ Rn×m

+ indicating the amount of mass being trans-
ferred from location xi to y j by Ti, j:

U(a, b) = {T ∈ Rn×m
+ : T 1m = a, T T

1n = b}, (2)

where 1 represents a vector of all 1’s. An optimum solution is
obtained by solving the following problem for a given C ∈ Rn×m

(Rubner et al., 2000):

Lc(a, b) = min
T ∈U(a,b)

< C, T >=
∑
i, j

Ci, jTi, j. (3)

While a unique solution is not guaranteed (Peyré et al., 2019),
an optimal solution exists (see proof in Birkhoff (1946); Bert-
simas and Tsitsiklis). Kantorovich and Monge problems
are equivalent under certain conditions (see proof in Brenier
(1991)).
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2.2. Cross Atlas Remapping via Optimal Transport (CAROT)

CAROT operates by transforming timeseries data from one
atlas (labeled the source atlas) into timeseries from an unavail-
able atlas (labeled the target atlas). This transformation is a
spatial mapping between the two atlases. Next, the correspond-
ing functional connectomes can be estimated using standard ap-
proaches (e.g., full or partial correlation). Transforming the
timeseries data rather than connectomes themselves has two
benefits. First, this results in a lower dimensional mapping,
which is more robust to estimate. Second, connectomes can be
constructed with standard methods (like correlation), guaran-
teeing properties like semi-positive definite. Directly mapping
between connectomes may not guarantee this property.

Formally, let us assume we have training timeseries data con-
sisting of T timepoints from the same individuals but from two
different atlases (atlasPn with n regions and atlasPm with m
regions). Additionally, let µt ∈ Rn and νt ∈ Rm to be the vec-
torized brain activity at single timepoint t based on atlasesPn

andPm , respectively. For a fixed cost matrix C ∈ Rn×m, which
measures the pairwise distance between regions inPm andPn ,
we aim to find a mapping T ∈ Rn×m that minimizes transporta-
tion cost between µt and νt:

Lc(µt, νt) = min
T

CTT s.t, AT =
[
µt

νt

]
, (4)

in which T ∈ Rnm is vectorized version of T such that the
i + n( j − 1)’s element of T is equal to Ti j and A is defined as:

. (5)

T represents the optimal way of transforming the brain activ-
ity data from n regions into m regions. Thus, by applying T
to every timepoint from the timeseries data of the source atlas,
we can estimate the timeseries data of the target atlas. As solv-
ing this large linear program is computationally hard (Dantzig,
1983), we use the entropy regularization, which gives an ap-
proximation solution with complexity of O(n2 log(n)η−3) for
ϵ =

4 log(n)
η

Peyré et al. (2019), and instead solve the following:

Lc(µt, νt) = min
T

CTT − ϵH(T ) s.t, AT =
[
µt

νt

]
. (6)

Specifically, we use the Sinkhorn algorithm—an iterative solu-
tion for Equation 6 (Altschuler et al., 2017)—to find T . For
training data with S participants and K time points per partici-
pant, first, we estimate the optimal mapping Ts,k, independently,
for time point k for a given participant s using Equation 6.
Next, we average Ts,k overall time points and participants to
produce a single optimal mapping T in the training data (e.g.,
T = 1

|S ||K|
∑|S |

s=1
∑|K|

k=1 Ts,k).
For the cost matrix C, we used a distance metric (labeled

functional distance) that is based on the similarity of pairs of
timeseries from the different atlases:

C = 1−


ρ(U1,.,N1,.) . . . ρ(U1,.,Nn,.)

...
. . .

...
ρ(Um,.,N1,.) . . . ρ(Um,.,Nn,.)

 ∈ Rm×n (7)

where Ux and Nx are timeseries fromPm andPn and
ρ(Ux,Ny) is Spearman correlation between them. To increase
a reliable estimation of C, we calculate the timeseries corre-
lation independently for each individual in the training data
and average over these correlations. Functional distance was
used over Euclidean distance between nodes for two mains rea-
sons: (i) functional distance does not require having access to
the atlas or node locations, which provides greater flexibility
should a unknown and unavailable atlas be used, and (ii) spatial
proximity in the brain does not guarantee similar function. For
example, the medial prefrontal nodes of the default mode net-
work are more correlated with nodes in the posterior cingulate
cortex than other nodes in the frontal lobe. Nevertheless, we
formally compare the performance of functional and Euclidean
distances.

3. Material and methods

3.1. Evaluation datasets

We evaluated CAROT on six prominent functional atlases
from the literature using three datasets, the Human Connectome
Project (HCP), the REST-Meta-MDD Consortium, and the Yale
Low-Resolution Controls Dataset.

3.1.1. Atlases
The Shen atlas (Shen et al., 2013) was created using func-

tional connectivity data from 45 adult participants. The 268-
node atlas was constructed using a group-wise spectral cluster-
ing algorithm (derived from the N-cut algorithm) and covers the
entire cortex, sub-cortex, and cerebellum. The Craddock atlas
(Craddock et al., 2012) was created using functional connec-
tivity data from 41 adult participants. The 200-node atlas was
constructed using an N-cut algorithm and covers the entire cor-
tex, sub-cortex, and cerebellum. The Schaefer atlas (Schaefer
et al., 2018) was created using functional connectivity data from
744 adult participants from the Genomics Superstruct Project
(Holmes et al., 2015). The 400-node atlas was constructed
using a gradient-weighted Markov Random Field (gwMRF)
model, covering only the cortex. The Brainnetome atlas (Fan
et al., 2016) was created using structural connectivity data from
40 adult participants from the HCP. The 246-node atlas was
constructed using a tractography-based approach and covers the
cortex and sub-cortex. The Dosenbach atlas(Dosenbach et al.,
2010) was created from meta-analyses of task-related fMRI
studies and consists of 160 nodes that cover the cortex, cere-
bellum, and a few sub-cortical nodes. The Power atlas (Power
et al., 2011) was created by combining the meta-analytical ap-
proach of the Dosenbach atlas with areal boundary detection
based on functional connectivity data. The 264-node atlas cov-
ers the cortex, sub-cortex, and cerebellum.
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Figure 1: Schematic of CAROT: A) During training, CAROT transforms timeseries fMRI data from multiple source atlases to a target atlas to obtain transportation
mappings. Mappings between the source and target atlases are found by employing optimal transport and solving Monge–Kantorovich transportation problem using
the Sinkhorn approximation. The solution provides a transformation that maps the brain activity parcellated using the source atlas to brain activity parcellated based
on the target atlas. B) During testing, for each pair of source and target atlases and a single time point in the timeseries data, the offline solutions are used, and
time series and functional connectomes accordingly will be reconstructed in the desired target atlas. Results from several pairs of source and target atlases can be
combined to improve the quality of the final reconstructed connectome. C) A standard image preprocessing pipeline to create functional connectomes.

3.1.2. HCP participants
We used behavioral and functional imaging data from this

data set as previously described (Gao et al., 2019). We restricted
our analyses to those subjects who participated in all nine fMRI
conditions (seven tasks, two rest), whose mean frame-to-frame
displacement was less than 0.1mm and whose maximum frame-
to-frame displacement was less than 0.15mm, and for whom
IQ measures were available (n=515; 241 males; ages 22–36+).
The HCP minimal preprocessing pipeline was used on these
data, which includes artifact removal, motion correction, and
registration to common space (Glasser et al., 2013). All sub-
sequent preprocessing was performed in BioImage Suite (Joshi
et al., 2011) and included standard preprocessing procedures,
including removal of motion-related components of the signal;
regression of mean time courses in white matter, cerebrospinal
fluid, and gray matter; removal of the linear trend; and low-pass
filtering.

3.1.3. REST-meta-MDD
Fully processed data was downloaded from

http://rfmri.org/REST-meta-MDD. Full details about the
dataset have been previously published elsewhere (Yan et al.,
2019). We used data from 21 of the 24 sites. Two sites were
removed due to large imbalance between male and female

participants (i.e., < 30% male or female; sites 2 and 12).
One site was removed as self-reported sex was not provided
(site 4). Briefly, the data was processed as follows. First, the
initial 10 volumes were discarded, and slice-timing correction
was performed. Then, the time series of images for each
subject were realigned using a six-parameter linear transfor-
mation. After realignment, individual T1-weighted images
were co-registered to the mean functional image using a 6
degrees-of-freedom linear transformation without re-sampling
and then segmented into gray matter, white matter, and cere-
brospinal fluid. Finally, transformations from individual native
space to MNI space were computed with the Diffeomorphic
Anatomical Registration Through Exponentiated Lie algebra
(DARTEL) tool. To minimize head motion confounds, the
Friston 24-parameter model was to regressed from the data.
Scrubbing (removing time points with FD>0.2mm) was also
utilized to verify results using an aggressive head motion
control strategy. Other sources of spurious variance (global,
white matter, and CSF signals) were also removed from the
data through linear regression. Additionally, linear trend were
included as a regressor to account for drifts in the blood oxygen
level dependent (BOLD) signal. Temporal bandpass filtering
(0.01-0.1Hz) was performed on all time series.
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3.1.4. Yale participants
In addition, we used resting-state data collected from

100 participants at the Yale School of Medicine. This
dataset included 50 females (age=33.3±12.3) and 50 males
(age=34.9±10.1) with eight functional scans (48 minutes total).
The dataset and processing details can be found in (Scheinost
et al., 2014). Briefly, standard preprocessing procedures were
applied to these data. Structural scans were skull stripped using
an optimized version of the FMRIB’s Software Library (FSL)
pipeline. Slice time and motion correction were performed in
SPM8. The remainder of image preprocessing was performed
in BioImage Suite. The data was cleaned by regressing nui-
sance variables (motion parameters, drift terms, and the mean
time courses of the white matter, cerebrospinal fluid, and gray
matter signals) and band-pass filtering) and was nonlinearly
registered to the MNI template.

3.1.5. Generating connectomes
After processing, the Shen, Schaefer, Craddock, Brain-

netome, Power, and Dosenbach atlases were applied to the pre-
processed fMRI data to create mean timeseries for each node.
For each atlas and dataset, connectomes were generated by cal-
culating the Pearson’s correlation between each pair of these
mean timeseries and then tasking the fisher transform of these
correlations. Connectomes reconstructed by CAROT were also
generated using Pearson’s Correlation.

3.2. Evaluation overview

We performed several evaluations of CAROT. First, we per-
formed a baseline evaluation of CAROT, investigating the simi-
larity of the original and reconstructed connectomes, the impact
of free parameters (e.g., the number of participants used to train
CAROT), and the number of available source atlases. Second,
we investigate how reconstructed connectomes perform in stan-
dard downstream analyses (i.e., do reconstructed connectomes
give similar neuroscience results as the original connectomes?).
Finally, we present a real-world evaluation of how CAROT can
generalize a preexisting connectome-based predic- tive model
when data from the required atlas is unavailable.

3.3. Baseline evaluation of CAROT

3.3.1. Similarity between the original and reconstructed con-
nectomes

We compared reconstructed connectomes to their original
counterpart using HCP data. We partitioned our data into a
25/75 split, where 25% of the individuals is used to estimate
the optimal mapping T and 75% is used to evaluate the recon-
structed connectomes. Reconstructed connectomes were cre-
ated using single and multiple source atlases. To evaluate the
similarity between CAROT reconstructed and original connec-
tomes, the upper triangles of the connectomes were vectorized
and correlated with Spearman’s rank correlation.

3.3.2. Evaluation of free parameters
We investigated the sensitivity of CAROT to the number of

time points and number of participants used to find the map-
pings and the value of ϵ in the Sinkhorn approximation. Using

the same 25/75 split of the HCP participants for training and
testing as above, we varied the number of time points used from
100 to 1100 in increments of 100, varied the number of partic-
ipants from 100 to 515 in increments of 100, and varied ϵ from
0.01 to 10 in increments of 1.

3.3.3. Extending CAROT for multiple atlases
A vital drawback of the single-source optimal transport is

that it relies on a single pair of source and target atlases (i.e., one
source atlas and one target atlas), which ignores additional in-
formation when multiple source atlases exist. As preprocessed
data is often released with timeseries data from multiple atlases
(Yan et al., 2016), we investigated using these additional data to
better reconstruct connectomes from an unavailable atlases. To
incorporate multiple atlases, we applied CAROT to each pair of
atlases, transforming timeseries data for each source atlas into
the timeseries data for the target atlas. Next, the transformed
timeseries data are averaged across all source atlases, and a sin-
gle connectome for the target atlas is created (Fig. 1). Further,
we investigated the impact of using a smaller number of source
atlases by only including k random source atlases when creat-
ing a connectome for the target atlas. This process was repeated
with 100 iterations over k =2–6.

3.3.4. Generalizing mappings across datasets
We investigated if CAROT mappings trained in one dataset

generalize to other datasets. In other words, we tested if
CAROT can be trained once (for example, using the HCP) and
then be applied to any new datasets without the need to re-
run CAROT (for example, the Yale dataset). First, we trained
CAROT using only the HCP dataset. Then, we reconstructed
connectomes using the Yale dataset using these T ’s. Spear-
man’s rank correlation between the upper triangles of the con-
nectomes was used to assess the similarity between the recon-
structed and original connectomes.

3.4. Evaluation of downstream analyses

3.4.1. Consistency of aging results
We tested that the reconstructed connectomes produced con-

sistent neuroscience results compared to the original connec-
tomes. First, we used 25% of the HCP participants to train
CAROT. Next, using the original and reconstructed connec-
tomes for the remaining 75% of participants, we calculated
the association between connectomes and age using mass uni-
variate, edge-wise correlations. Results were threshold at P <
0.05, corrected for multiple comparisons using the Network-
based Statistic (NBS) (Zalesky et al., 2010). To assess whether
the overlap of the significant edges found using the origi-
nal and reconstructed connectomes was statistically significant
(i.e., edge-level), we calculated the probability of the overlap
being due to chance using the hypergeometric cumulative dis-
tribution:

F =
K∑

i=0

(
K
i

)(
M−K
N−i

)(
M
N

) ,

where F is the probability of drawing up to i of a possible K
items in N drawings without replacement from a group of M
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objects. The p-value for the significance of overlap is then
calculated as 1 − F. We also assess the similarity of results
at the node-level by summing over all significant edges for a
node (i.e., the network theory measure—degree) and correlat-
ing these maps for results from the original and reconstructed
connectomes.

3.4.2. IQ prediction
To show that meaningful brain-phenotype associations are

retained in reconstructed connectomes, we used reconstructed
connectomes to predict fluid intelligence using connectome-
based predictive modeling (CPM) (Shen et al., 2017). We par-
titioned the HCP dataset into three groupings: g1, consisting of
25% of the participants; g2, consisting of 50% of the partici-
pants; and, g3, consisting of the final 25% of the participants.
In g1, we trained CAROT for each source and target atlases pair.
We then applied the learned T on g2 and g3 to estimate connec-
tomes for each target atlas, resulting in nine connectomes for
each atlas (seven reconstructed connectomes based on a single
source atlas, one reconstructed connectome based on all source
atlases, and the original connectome). Finally, we trained a
CPM model of fluid intelligence for each set of connectomes
using g2 and tested this model in g3. Fluid intelligence was
quantified using a 24-item version of the Penn Progressive Ma-
trices test. Spearman correlation between observed and pre-
dicted values was used to evaluate prediction performance. This
procedure was repeated with 100 random splits of the data into
three groups.

3.4.3. Identification rate
We investigated if the individual uniqueness of connectomes

is retained in reconstructed connectomes by identifying indi-
viduals scanned on repeated days (Finn et al., 2015). As men-
tioned above, we used the HCP data and a 25/75 split to cre-
ate reconstructed connectomes based on all available source
atlases. In an iterative process, one individual’s connectome
was selected from the target set and compared against each of
the connectivity matrices in the database to find the matrix that
was maximally similar. Spearman correlation between the tar-
get connectome and each in the database was used to assess
similarity. A score of 1 was assigned if the predicted iden-
tity matched the true identity, or 0, if it did not. Each target
connectome was tested against the database in an independent
trial. Connectomes generated from the day 1 resting-state data
were used as the target set, and connectomes generated from
the day 2 resting-state data were used as the database. We per-
formed this identification procedure for the original and recon-
structed connectomes independently. We used permutation test-
ing to generate a null distribution to determine if identification
rates were achieved at above-chance levels. Specifically, partic-
ipants’ identities were randomly shuffled and identification was
performed with these shuffled labels. Identification rates ob-
tained using the correct labels were then compared to this null
distribution to determine significance.

3.5. Real-world evaluation
In this evaluation, we generalize a sex classification model

(using 100 adults collected at the Yale School of Medicine and

created with the Shen atlas) to the REST-Meta-MDD dataset
(Yan et al., 2016), which only provides preprocessed timeseries
data from the Dosenbach, Power, and Craddock atlases. First,
we trained the sex classification model using the Yale dataset’s
resting-state data from 100 individuals (50 males). We trained
a ℓ2-penalized logistic regression model with 10-fold cross-
validation to classify self-reported sex. Then, we used T esti-
mated from the HCP to transform the publicly available prepro-
cessed data (i.e., timeseries data from the Dosenbach, Power,
and Craddock atlases) from the REST-Meta-MDD dataset into
the Shen atlas. Data from each source atlas were combined
to create a single connectome based on the Shen atlas for the
1005 (585 females) health controls. Finally, the sex classifi-
cation model created in the Yale dataset was applied to these
reconstructed Shen connectomes.

3.6. Data availability
All datasets used in this study are open-source: HCP (Con-

nectomeDB database, https://db.humanconnectome.org),
REST-meta-MDD (http://rfmri.org/REST-meta-MDD),
and Yale dataset (http://fcon_1000.projects.
nitrc.org/indi/retro/yale_lowres.html). BioIm-
age Suite tools used for processing can be accessed at
(https://bioimagesuiteweb.github.io/). CAROT
and associated canonical mappings are on GitHub
(https://github.com/dadashkarimi/carot). The
Python Optimal Transport (POT) toolbox is available at
https://pythonot.github.io/.

4. Results

4.1. Baseline evaluation of CAROT
4.1.1. Reconstructed connectomes are similar to original con-

nectomes
As shown in Table 1, the correlation between the recon-

structed connectomes and their original counterparts depends
on the atlas pairing, with more similar atlases appearing to have
higher correlations. For instance, a strong correlation is seen
while transforming data from the Craddock atlas to the Shen
atlas (ρ = 0.48, p < 0.001). Both atlases are based on cluster-
ing timeseries fMRI data using variants of the N-cut algorithm.
In contrast, a weaker correlation exists for transforming data
from the Dosenbach atlas (which was constructed based on a
meta-analysis of task activations) to the Shen atlas (ρ = 0.24,
p < 0.001). Finally, similarity between the reconstructed and
original connectomes was much lower when using Euclidean
distance (Fig. S1).

4.1.2. Using multiple atlases improves CAROT
Overall, we observed a considerable improvement when in-

cluding data from multiple source atlas. In every case, using
all available data produced more similar connectomes to their
original counterparts (all ρ′s > 0.50; Fig. 2). For most atlases,
explained variance is more than tripled using CAROT with mul-
tiple source atlases compared to using a single source atlas. As
shown in Fig. 2, while the similarity between reconstructed and
original connectomes increases as the number of source atlases
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Shen Schaefer Craddock Brainnetome Power Dosenbach
Shen 0.46 ±0.010 0.55 ±0.001 0.42 ±0.003 0.36 ±0.030 0.39 ±0.004

Schaefer 0.31 ±0.001 0.38 ±0.010 0.38 ±0.001 0.33 ±0.010 0.34 ±0.002

Craddock 0.48 ±0.010 0.54 ±0.010 0.51 ±0.003 0.43 ±0.002 0.43 ±0.001

Brainnetome 0.17 ±0.003 0.23 ±0.003 0.23 ±0.002 0.19 ±0.004 0.18 ±0.002

Power 0.24 ±0.002 0.35 ±0.003 0.32 ±0.001 0.29 ±0.070 0.32 ±0.002

Dosenbach 0.24 ±0.001 0.32 ±0.003 0.28 ±0.020 0.28 ±0.001 0.28 ±0.010

Table 1: Spearman correlation between reconstructed connectomes and original connectomes for each source-target pair. Presented results show as mean ± standard
deviation over 100 random splitting the data into training and testing sets.

increases, strong correlations (e.g., ρ > 0.6) can be observed
with as little as two or three source atlases, suggesting that a
small number of atlases may be sufficient for most applications.

4.1.3. CAROT is insensitive to parameter choices
No clear pattern of performance change was observed across

the tested parameter range, suggesting that CAROT is not af-
fected the number of frames and participants, and the range of
ϵ’s (Fig. S2 ). However, using only 100 participants and 100

time points significant (p < 0.05) reduced the processing time
from 2,975 s to 467s.

4.1.4. Mappings generalize across datasets
When applying the mapping trained in the HCP dataset to the

Yale dataset, we observed a strong correspondence between the
reconstructed connectomes and their original counterparts with
ρ′s > 0.50 (Shen: ρ = 0.59; Schaefer: ρ = 0.66; Craddock: ρ =
0.71; Brainnetome: ρ = 0.54; Power: ρ = 0.50; Dosenbach:
ρ = 0.54). Notably, these correlations are in the same range as
those observed when applied these mappings to the HCP data
(i.e., the same dataset used for training the mappings). Together,
these results exhibit that mappings can be trained in one dataset
and applied to another.

4.2. Evaluation of reconstructed connectomes in downstream
analyses

4.2.1. Similar patterns of aging are found with reconstructed
connectomes

At the edge-level, the reconstructed connectomes for all at-
lases produced aging results that significantly overlapped with
the results from using the original connectomes (p < 0.00001).
Similarly, node-level correlations were all significant (r′s >
0.60, p′s < 0.001). Fig ?? shows a representative example of
node-level results between the reconstructed and original con-
nectomes for the Shen atlas.

4.2.2. Reconstructed connectomes predict IQ
In all cases, connectomes reconstructed using all source

atlases performed as well in prediction as the original con-
nectomes (Fig 4A). The reconstructed connectomes using all
source atlases performed better than the original connectomes
for the Schaefer and Power atlases. Similar to other analyses,
connectomes reconstructed from a single atlas varied in predic-
tion performance, depending on the combination of source and
target atlases.

4.2.3. Reconstructed connectomes are unique to an individual
For all analyses, identification of individuals demonstrated

a high success rate that were significantly greater than chance
(5%; p < 0.001; based on permutation testing). (Fig. 4B).
Reconstructed connectomes performed slightly bettwer than
the originals (original connectomes: mean rate=79%; recon-
structed connectomes: mean rate=90%). Overall, these results
suggest that the reconstructed connectomes retain similar levels
of individual differences as their original connectome counter-
parts.

4.3. CAROT facilitates external validation of connectome-
based predictive models

Overall, the sex classification model demonstrated significant
classification accuracy in the Yale dataset (Accuracy=60.5% ±
6%; Naive model accuracy=50%; χ2 = 5.8; p = 0.03).
Next, the sex classification model preformed significantly bet-
ter than chance in the REST-Meta-MDD dataset when using the
reconstructed connectomes (Accuracy=66.5%; Naive model
accuracy=52.3%; χ2 = 13.9; p = 0.0002 ). To better this re-
sult into context, we created connectomes for the Dosenbach,
Power, and Craddock atlases in the Yale dataset, created a sex
classification model for connectome type, and generalized these
models to the REST-Meta-MDD dataset. The generalization
accuracy of reconstructed connectomes (Shen: 66.5%) was nu-
merically superior to the generalization accuracies based on
original connectomes (Dosenbach: 59.6%, Power: 59.0%, and
Craddock: 64.5%), suggesting that using CAROT and recon-
structed connectomes perform as well as original connectomes
in generalizing a preexisting predictive model.

4.4. Software availability and implementation

To facilitate open science and the broader adoption of
CAROT, we have created http://carotproject.com/. This
web application allows end-users to convert timeseries data
from the Shen, Schaefer, Craddock, Brainnetome, Power, and
Dosenbach atlases to connectomes for any of the other at-
lases. As a web application, it works without software instal-
lation and across multiple platforms (e.g., Windows, Linux,
MacOS, Android). The only requirement is a modern web
browser, such as Google Chrome. Please note, that any data
used on http://carotproject.com/ remains on the local
computer and is never uploaded or stored on a remoted server.
In addition, we provide the CAROT software and associated
canonical mapping as opensource at https://github.com/
dadashkarimi/carot/.
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Figure 2: Using multiple source atlases improves the similarity of reconstructed connectomes. A) The Spearman’s rank correlation between the reconstructed
connectomes and connectomes generated directly with the target atlases are shown for each pair of source and target atlas as well as reconstructed connectomes
using all of the source atlases. Using all source atlases produces higher quality reconstructed connectomes for each target atlases. Error bars are generated from 100
iterations of randomly splitting the data into 25% for training and 75% for testing. B) For each target atlas, increasing the source atlases increases the similarity of
reconstructed and original connectomes. For most atlases, a Spearman’s correlation of ρ > 0.60 (red line) can be achieved by using fewer than five source atlases
(i.e., all available source atlases). Circle size represents the variability of the correlation over 100 iterations of splitting the data into training and testing sets.

Figure 3: Reconstructed connectomes give similar aging results as the original connectomes. The top row shows the nodes with the largest number of edges
significantly associated with age for original connectomes from the HCP created with the Shen atlas. The bottom row shows the same but using reconstructed Shen
connectomes. These spatial maps correlate at r = 0.61, suggesting that analyses with the reconstructed connectomes produce the same neuroscientific insights as
analyses with the original connectomes.

Specifically, we provide functionality: (i) to generate the cost
matrix based on functional distance for timeseries data from
two different atlases; (ii) to generate the mapping T between
between two atlases based on the cost matrix defined above; and
(iii) to convert timeseries data from one or more source atlases
to connectomes based on a target atlas. In addition, we provide
canonical mappings based on the HCP data to map between ev-
ery pair of the Shen, Schaefer, Craddock, Brainnetome, Power,
and Dosenbach atlases. Based on the results present here, these
mappings should work in other datasets, saving researchers the
need to regenerate these mappings for themselves. We will look
to provide mappings between additional atlases as they become
available. CAROT is implemented in Python 3, building on the
Python Optimal Transport (POT) toolbox (Flamary and Courty,
2017).

5. Discussion and conclusions

Neuroimaging is at a crossroads, facing a need to increase
replication efforts and use larger-than-ever samples (Yarkoni,
2009; Szucs and Ioannidis, 2020; Marek et al., 2022). These

are tough challenges for functional connectomics, where con-
nectomes created from different atlases are incomparable. As
such, processed connectomes or connectomic results from dif-
ferent atlases must be reprocessed from raw data. Here, we
introduced and validated CAROT, a method that will allow us
to overcome the limitation of not being able to combine connec-
tomes and results from different atlases. CAROT allows func-
tional connectomes from different atlases to be transformed to a
common atlas and combined in downstream analyses. CAROT
relies on optimal transport to find a frame-to-frame mapping of
fMRI time series data used to create functional connectomes for
a missing atlas. We show that these reconstructed connectomes
are highly similar to the original ones and perform similarly
in downstream analyses. Specially, reconstructed connectomes
retain sufficient individual differences to predict IQ and unique-
ness to identify individuals. Finally, we provide a real-world
example of how a connectome-based predictive model (based
on the Shen atlas) can be generalized to open source, prepro-
cessed data that was not processed with the Shen atlas.

Critically, the mappings between connectomes are general to
the dataset used to created the mappings. As such, a single set
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Figure 4: Reconstructed connectomes behave the same as original connectomes in downstream analyses. A) The reconstructed connectomes retain sufficient
individual differences to predict IQ using connectome-based predictive modeling. In all cases, reconstructed connectomes based on all available source atlases
(bottom circle) predicted IQ as well or better than the original connnectome (red line). Size of circle represents the variance of prediction performance of 100
iteration of 10-fold cross-validation. B) The reconstructed connectomes retain sufficient individual uniqueness to identify individuals using the reconstructed
connectomes.

of canonical or gold-standard mappings can be trained with one
dataset and be distributed to work in new datasets without re-
training the mappings. Accordingly, we have released initial
mappings based on the HCP data to map between every pair of
the Shen, Schaefer, Craddock, Brainnetome, Power, and Dosen-
bach atlases as part of our software. We hope that CAROT and
http://carotproject.com/ will save researchers time and
effort by eliminating data reprocessing and increase the ease of
performing mega-analysis and external validation efforts.

Across analyses, we show that CAROT produces recon-
structed connectomes that achieve similar results in IQ predic-
tion and fingerprinting as connectomes created directly from the
data. This observation holds across a range of atlases that differ
in their construction and constituent brain regions. While atlas
pairs that are more similar in terms of their construction and
coverage produced better pair-wise mappings (e.g., the Crad-
dock and Shen atlases were created with N-cut algorithms and
cover the cortex, sub-cortex, and cerebellum (Shen et al., 2013;
Craddock et al., 2012) ), using multiple source atlases is even
better. Likely, combining transformed time series averages out
the minor idiosyncrasies in the individual mappings between
atlas pairs, producing more stable results. Overall, when us-
ing multiple source atlases, CAROT is robust to differences be-
tween the source and target atlases.

While including all available data generated the most simi-
lar connectomes, strong correspondence between reconstructed
and original connectomes was observed when as little as 2 or 3
different source atlases were used. Together, this suggests that
an exhaustive list of every possible atlas does not need to be
released, but that only including a few different atlases could
vastly increase the utility of any released preprocessed data.
Balancing the utility of released data and the effort to release

it is a delicate task. If the data is not in a convenient form for
end-users, it will not be used and, if the effort is too high to
share data, data will not be shared. We believe that CAROT can
help balance these, by increasing the utility of the shared data
with only a slight increase in effort for sharing the data.

Given that using multiple source atlases produces more ro-
bust results, it encourages future studies to release preprocessed
data from a few atlases. Not only does this increase the chances
that the needed atlas is available for an end-user, but also bet-
ter facilitates the use of the data when the needed atlas is un-
available. Some open source datasets already release data from
multiple atlases (e.g., REST-Meta-MDD). That CAROT pre-
forms better with multiple altases may be relevant for large-
scale projects, like ABCD and UK Biobank, that share raw
data and curated releases. Given that these datasets range in
the several thousands of participants, curated data from multi-
ple atlases further facilitates the use of this data by smaller labs
and research groups with a more expansive range of atlases and
tools. Additionally, CAROT may help with connectome-based
meta analyses, for which there are few, by allowing results to be
pooled across studies. Coordinate-based meta analyses are pop-
ular for task activation and brain morphometry studies (Laird
et al., 2005; Yarkoni et al., 2011; Eickhoff et al., 2009) and are
possible as most neuroimaging studies rely on a common tem-
plate (i.e., the MNI template). This common template allows
for spatial comparisons and pooling of results across different
studies.

There are a few notable strengths and limitations of CAROT.
First, CAROT appears to be robust to the choices of algorithmic
parameters such as the number of fMRI frames, sample size
used for training, the choice of cost matrix, and the equation
used to solve the optimal transport problem. We showed that
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the method is not sensitive to parameter search in part due to the
large amount of spatial and temporal autocorrelation in fMRI
data (Shinn et al., 2021), which allow something as complex as
a connectome to be compactly parameterized.

Future work includes generalizing CAROT to other func-
tional time series data—such as electroencephalography (EEG),
functional near infrared spectroscopy (fNIRS), or even wide-
field CA2+ imaging data in mice (Lake et al., 2020)—where
spatial and temporal autocorrelation patterns will be different.
One limitation is that since CAROT is based on time series
data, it is only appropriate for functional connectomes. Nev-
ertheless, the ”missing atlas” problem also exists for structural
connectomes, for which no solution exists. Hence, the problem
still exists for studies looking to uncover structure-function re-
lationships at the connectome level. However, perhaps CAROT
based on Euclidean distance rather than functional distance may
be a reasonable approach to map between atlases used to cre-
ate structural connectomes as well as map between different
atlases used in morphometric analyses (such as the Desikan-
Killiany and Destrieux atlases used in FreeSurfer). While we
tested CAROT with an extensive range of atlases, we could not
test CAROT in every functional atlas, as there are many. Never-
theless, given the range in atlas size (200-500 nodes) and atlas
coverage (whole-brain and cortical only), we expect CAROT to
work well for modern atlases not tested here and look to update
CAROT when a new generation of brain atlases emerges.

In sum, CAROT allows a connectome generated based on
one atlas to be directly transformed into a connectome based
on another without needing raw data. These reconstructed con-
nectomes are similar to and, in downstream analyses, behave
like the original connectomes created from the raw data. Using
CAROT on preprocessed open source data will increase its util-
ity, accelerate the use of big data, and help make generalization
and replication efforts easier.
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Figure S1: CAROT performance (rest) using euclidean distance between the center of gravity for each ROI as the cost measure. The results exhibit significantly
lower performance compared to functional distance.

(a) Frame Size Sensitivity (b) Train Size Sensitivity (c) Entropy Penalty

Figure S2: Parameter sensitivity of frame size, training data, and entropy regularization ϵ for different target atlases.

Figure S3: Optimal transport mappings derived from resting-resting and task data from the Shen atlas (source atlas) to each other atlas. Warmer color indicates
regions that contribute the most towards mapping between atlases. Horizontal blue areas may indicate locations that are missing in the source atlas. For example,
the Schaefer atlas does not include regions in the cerebellum, while the Shen does.
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