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Abstract 

Aims: Spatially-organised increases in cytosolic Ca2+ within pancreatic beta cells in the 

pancreatic islet underlie the stimulation of insulin secretion by high glucose. Recent data have 

revealed the existence of subpopulations of beta cells including “leaders” which initiate Ca2+ 

waves. Whether leader cells possess unique molecular features, or localisation, is unknown.  

Main methods: High speed confocal Ca2+ imaging was used to identify leader cells and 

connectivity analysis, running under MATLAB and Python, to identify highly connected “hub” 

cells. To explore transcriptomic differences between beta cell sub-groups, individual leaders 

or followers were labelled by photo-activation of the cryptic fluorescent protein PA-mCherry 

and subjected to single cell RNA sequencing (“Flash-Seq”).  

Key findings: Distinct Ca2+ wave types were identified in individual islets, with leader cells 

present in 73 % (28 of 38 islets imaged). Scale-free, power law-adherent behaviour was also 

observed in 29% of islets, though “hub” cells in these islets did not overlap with leaders. 

Transcripts differentially expressed (295; padj<0.05) between leader and follower cells 

included genes involved in cilium biogenesis and transcriptional regulation. Functionally 

validating these findings, cilia number and length tended to be lower in leader vs follower cells. 

Leader cells were also located significantly closer to delta cells in Euclidian space than were 

follower cells. 

Significance: The existence of both a discrete transcriptome and unique localisation implies 

a role for these features in defining the specialized function of leaders. Specifically, these data 

raise the possibility of altered signalling from delta cells towards somatostatin receptors 

present on leader cell cilia.  
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INTRODUCTION 

Adequate insulin secretion is necessary to regulate blood glucose levels efficiently in 

mammals, and failure to maintain sufficient insulin secretion in the context of insulin resistance 

is at the core of most forms of type 2 diabetes (T2D) [1]. Insulin-secreting beta cells reside 

within the islets of Langerhans, endocrine micro-organs scattered across the pancreas, and 

make up ~60 % in human and 85% of total islet cells in rodents [2]. 

There is considerable evidence to suggest that beta cells are not a homogeneous population. 

Thus, variations between individual cells exist in insulin secreting capabilities and sensitivity 

to glucose [3–7] as well as at the level of the transcriptome [8–15]. Moreover, we [16,17] and 

others [18,19] as reviewed in Korošak et al [20], have shown that specific beta cell 

subpopulations play discrete and definable roles within the intact islet, coordinating the overall 

response to stimulation with glucose or other secretagogues [21,22]. Importantly, artificial 

lowering of heterogeneity across the islet, achieved by forced overexpression of MafA and 

Pdx1 compromises insulin secretion [23]. 

Using high-speed calcium imaging we have previously identified a subgroup of highly 

connected cells named “hubs” [16]. This population corresponds to a small proportion (~10%) 

of cells which, when examined using an optogenetics approach, were shown to control calcium 

responses across the islet [16,17]. Hub cells were shown to display relatively higher levels of 

glucokinase, and lower insulin, immunoreactivity, than follower cells [16], allowing the 

imputation of transcriptomic differences between the two groups through analysis of previously 

published single cell RNA data sets [17]. Other sub-categories include “wave originator” cells, 

from which calcium waves propagate in response to glucose during the first acute insulin 

secretion phase (also called “first responders” in response to a change from low to high 

glucose). During the sustained, plateau phase of the response, “leader” cells represent those 

from which calcium waves emanate [16,17,24]. Whether or not leader cells, first responders 
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and hub cells are fully distinct, or represent partly overlapping subpopulations, is presently 

unclear [24]. 

An important advance in our understanding of the roles of these cells would be made by 

ascribing molecular signatures (e.g. transcriptomic, metabolomic or proteomic) to each group 

after their identification – based on function – and subsequent isolation.  With this goal in mind, 

we first demonstrate that, in mouse islets displaying Ca2+ oscillations at constant glucose 

(11mM), repetitive Ca2+ waves usually emanate from a main stable leader cell. Next, by 

performing connectivity analysis we reveal that hubs and leaders are distinct subpopulations. 

Thirdly, we used targeted photopainting of individual cells, followed by RNA sequencing 

(“Flash-Seq”), to demonstrate that leader cells possess a discrete transcriptome versus 

“follower” cells. Differentially expressed genes included transcriptional regulators and several 

encoded proteins involved in cell cilium biogenesis and assembly. 
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RESULTS 

Repetitive Ca2+ waves usually emanate from a stable leader cell within the islet 

In order to identify and subsequently isolate individual beta cells with distinct roles in the 

generation and transmission of Ca2+ waves, we used islets bearing the recombinant Ca2+ 

probe GCaMP6f and photo-activatable PA-mCherry (Methods).  Ca2+ imaging was performed 

at a stimulatory but submaximal glucose concentration (11 mM), with image acquisition at 5 

Hz in a single plane (Figure 1A,B – Supplementary movie 1). Data were analysed from 43 

islets imaged in five independent experiments involving a total of nine separate islet 

preparations. Of all the islets interrogated, three were unresponsive to glucose stimulation, 

two displayed uncoordinated responses (where cells showed individual calcium oscillations 

without propagation to neighbours), and 38 showed coordinated Ca2+ oscillations where signal 

propagation mobilised >60% of cells through the islet (Figure 1C). Spatially, the observed 

oscillations varied in terms of propagation rate and duration. On average, islets oscillated at a 

rate of 0.86±0.23 oscillations min-1, with 27 islets showing sustained oscillations (whose 

duration was > 5 s from the instant 50% of total cells showed an increased fluorescence signal 

– higher than 50% of baseline – to that at which the signal in 50 % of cells had declined to 

baseline), and 11 islets quick oscillations (duration <4.9 s; Figure 1D,E, Table 1, 

Supplementary Movie 2-3).  

Two types of Ca2+ signal propagation types were identified, and islets were placed into one of 

two categories accordingly. The first included islets where the propagation time of a Ca2+ 

signal from the wave originator cell to neighbouring cells – to the point at which >70% cells 

displayed an increase in Ca2+ signal to 50% above baseline (Figure 1A,B, from first image to 

last image, Supplementary Movie 4) – was >1s. In the second, where the propagation time 

was ≤1s, islets were categorised as displaying an “all-at-once”/high-speed wave (AAO/HS) 

behaviour (Supplementary Movie 5). 
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Leader cells were defined as those exhibiting the first detectable increase in Ca2+ signal (50% 

above baseline) during Ca2+ waves, and were detected in 73±4% of the islets imaged (28 islets 

out of 38 in total, from five independent experiments). Depending on the oscillation rate of 

each islet (i.e., the number of oscillations per minute, observed during the 10 min. acquisition), 

1 - 4 leader cells were observed, with an average of 2.4±0.23 leader cells per plane of view 

(Figure 1F; n= 28 islets from five independent experiments). The vast majority of leader cells 

(86.1±2.5%) acted as wave originators (Figure 1G). Strikingly, the distribution of waves 

between wave originator cells was not even. Thus, the majority of the Ca2+ waves (61±6%) 

emanated from a “principal” leader cell, while a “secondary” leader cell was responsible for 

29±9.6% of Ca2+ waves. The remaining ~10% of waves started from a third leader cell (Figure 

1H). 

Connectivity analysis reveals hubs and leaders are distinct subpopulations  

Islets were next subdivided into four subgroups based on Ca2+ signal propagation rate and 

oscillation behaviour (Figure 1, Table 1).  

We next explored beta cell-beta cell connectivity [16,17,22,24]. Figure 2A shows the Ca2+ 

fluorescence traces and topographic representations of the connected beta cells for each 

subgroup based on the strength of the coactivity between any two cells. Cells are represented 

by differently coloured nodes depending on their coactivity: black indicates cells that coactivate 

with ≥80% of the remaining beta cells, while grey and white nodes represent beta cells that 

coactivate with ≥60% and ≥40% respectively with the rest of the beta cell population. Nodes 

circled with a solid black line indicate leader cells, as defined above (see Supplementary Movie 

2 - 5). 

Unexpectedly, pooled data taken over 38 islets together did not reveal a scale-free network 

topography (Figure 2B), in contrast to previous studies [16,17,22,24], and we were unable to 

identify a small proportion (5% to 10%) of highly connected “hub” cells in these islets. 

Nevertheless, connectivity analysis revealed that more than a third (37.2±6.34%) of beta cells 
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were highly connected, as assessed by counting the number of beta cells displaying 

coordinated Ca2+ responses with at least 50% of all beta cells. This finding also applied when 

subgroup analyses were performed across different wave types (Supplementary Figure 1), 

with one exception. Thus, the 11 islets that exhibited quick waves demonstrated scale-free 

network topography in which ~2% of the beta hub cells hosted >50% of the connections 

(Figure 2C; R2=0.17). 

Beta cells displayed an average of 15.8% coactivity with all beta cells within all islets examined 

(Figure 2D) with the subgroups displaying a wide range of average coactivities: The “Quick” 

subgroup displayed 0.48% coactivity whereas this value was 27.3% in the “AAO” subgroup 

(Figure 2D; overall: 15.8%; AAO: 27.3%; Wave: 6.36%; Quick: 0.48%; Sustained: 24.3%). 

These differences were confirmed by one-way ANOVA (Figure 2D; p≤0.01), with the exception 

of the AAO versus Sustained subgroups (p=0.27). 

Overall, highly connected beta cells (including “hubs” present in the Quick subgroup) displayed 

an average of 75.3% coactivity with all beta cells (Figure 2E). In contrast, identified leaders 

and follower cells had significantly lower coactivity, being linked to an average of only 8.35% 

and 9.70% of all beta cells respectively (Figure 2E; p<.001). There were no significant 

differences in the average coactivity between the leader and follower cells (Figure 2E, p=0.72). 

Similar to the global analysis across all islets, highly connected cells displayed significantly 

higher coactivity on average in comparison to leaders (Supplementary Figure 2; p<.001; AAO: 

77.7% vs 15.9%; Wave: 69.4% vs 4.13%; Quick: 54.1% vs 0.15%; Sustained: 75.6% vs 

13.8%). There was also significantly more coactivation on average in comparison to follower 

cells (Supplementary Figure 2; p<.001; AAO: 77.7% vs 14.9%; Wave: 69.4% vs 6.57%; Quick: 

54.1% vs 0.51%; Sustained: 75.6% vs 15.5%). There were no significant differences in the 

average coactivity between the leader and follower cells across all subgroups (Supplementary 

Figure 2; AAO: p=0.55; Wave: p=0.20; Quick: p=0.50; Sustained: p=0.75). 
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We next explored the possibility that different subgroups of cells may be more or less likely to 

trigger a subsequent Ca2+ wave. Multivariate vector autoregression (MVAR) analysis found 

causal relationships between beta cells in all glucose-responsive islets. However, MVAR 

leaders were found in only 31.6% of the 38 responsive islets. The Wave subgroup made up 

half of these islets (Figure 3A). MVAR leaders were also found in each subgroup (Figure 3B). 

Of the islets that displayed MVAR behaviour, 58.3% had leader cells that were also identified 

as MVAR leaders. Subgroup analyses revealed similar proportions of islets with where leader 

cells were also identified to be MVAR leaders (Figure 3C; AAO: 50%; Wave: 83.3%; Quick 

100%; Sustained: 40%). No highly connected or hub cells were identified as MVAR leaders. 

Leader single cell transcriptomics 

We next sought to determine whether there may be stable transcriptomic differences between 

leader and follower cells. As described above, leaders could be identified rapidly and in real 

time, allowing these cells, or followers, to be labelled on the microscope stage at the end of 

the Ca2+ imaging session by photoactivation of PA-mCherry (Figure 4A). “Photopainting” was 

achieved by exposure to UV light at 405nm using the fluorescence recovery after 

photobleaching (“FRAP”) module on board the microscope (Figure 4A, B & Methods). 

Subsequently, islets were dissociated into individual cells which were then sorted according 

to fluorescence intensity (Methods). Cells which were double positive for GCaMP6 and 

mCherry were individually dispatched into plate wells and cDNA libraries were generated for 

RNA sequencing. From four fully independent experiments, we isolated a total of 14 leader 

cells and 9 follower (control) cells.  In these experiments, 25% of islets showed quick wave 

behaviour vs 68% sustained, and 38% defined wave vs 56% AAO/HS; leaders or followers 

were not subdivided into these groups given the low numbers of cells involved.   

 

Sequencing data were aligned to the mouse transcriptome and differential expression (DE) 

analysis was performed for all transcripts (7810) that were present in at least 60% of the cells 

of one group (control/followers or leaders). Of these, 295 genes were differentially expressed 
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(padj<0.05; Supplementary Table 1). Functional annotation using DAVID (Database for 

Annotation, Visualization and Integrated Discovery; D. W. Huang et al., 2009) revealed a 

substantial proportion of the differentially expressed genes to be associated with 

transcriptional regulation (Figure 5, Supplementary Table 2), including the most significantly 

upregulated gene (~180 fold, padj=0.00000002) Bmi1, a polycomb protein involved in beta 

cell proliferation [26]. Strikingly, we also identified a total of 14 genes involved in cilia function 

and/or assembly (Supplementary Table 2). Examples included the strongly upregulated 

Adcy6, Vhl and Dync2i1 (~150-200 fold, padj=0.002-0.0007) and the downregulated Dcdc2a 

and Rsph1 (~0.004 fold, padj=0.0002 and 0.01-fold, padj=0.002, respectively; Supplementary 

Table 1). 

 

Additionally, Il18bp [27] and Cxcl16 [28] were included in the top five most significantly 

dysregulated genes, possibly influencing actions of cytotoxic cytokines and macrophage 

infiltration in the context of T1D or T2D. Also, MCUb was found among the most down-

regulated gene (0.001-fold, pad=0.01). MCUb is part of the Mitochondrial Calcium Uniporter 

(MCU complex) and negatively regulates the activity of MCU. As such, lowered MCUb levels 

in leader cells may enhance calcium transfer into mitochondria, enhancing oxidative 

metabolism, leafing to further closure of ATP-sensitive K+ channels and Ca2+ influx [29,30].  

 

Gene Set Enrichment Analysis (GSEA) 

We next performed GSEA as a further means of identifying additional gene ontology  sets 

which were coordinately mis-expressed in leader versus follower cells (nominal p-values 

<0.05, Supplemental Table 4)  In line with the functional annotation of differentially expressed 

genes, the top enrichment scores corresponded to gene sets associated with “Epigenetic 

regulation of gene expression” such as “Histone monoubiquitination”, “Euchromatin” and 

“Regulation of DNA template transcription elongation”, and included BMI1 (see above). These 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2022. ; https://doi.org/10.1101/2022.08.26.505442doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505442
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

10 

findings are coherent with demonstrated roles for polycomb-dependent changes in the 

epigenome in controlling normal beta cell function [31,32]. 

Suggestive of a role for cell-cell interactions, we identified enrichment within the “Lateral 

Plasma membrane” and “Basement membrane” gene sets that included AXIN1 and APC, 

involved in Wingless (Wnt) signalling, LOXL2, encoding Lysyl oxidase-like 2 involved in 

connective tissue remodeling and LAMC1, encoding laminin  subunits. 

Consistent with dysregulation of genes involved in cilium biogenesis or function (See DAVID 

analysis) the GOCC_Centriolar Satellite group was also significantly affected, and included 

PARD6A (Par6-family polarity regulator-A), also included in the Gocc_Tight_Junction set, and 

PCNT (pericentrin), the latter a Ca2+-calmodulin regulator component of the pericentrolar 

material, and C2CD3 (C2-domain-containing 3 centriole elongation regulator). The Peptide_N-

Acetyl_transferase group also included NAA40 (N-alpha-acetyl-transferase 40) located in the 

centriolar satellite.  

Suggesting alterations in mitochondrial metabolism, the gene set “Nucleotide Transporter” 

was over-represented at the bottom of the list of ranked genes and included mitochondrial 

solute transporters such as SLC25A32, involved in mitochondrial folate uptake and decreased 

in diabetic islets [33]. Also, in this group were LRRC8, Leucine-rich repeat-containing protein 

A, located at the plasma membrane and implicated in cell adhesion, and ABCC5, ABC Binding 

Cassette Subfamily C, member 5, involved in the export of cyclic nucleotides. 

Additional affected gene sets included Inositol Phosphate-Mediated Signalling Pathway, 

Smoothened Signalling Pathway and Response to Electrical Stimulus (Supplementary Table 

4). 

Association of mis-expressed genes in leader cells with type 2 diabetes 

To determine whether any of the identified misexpressed transcripts may be associated with 

increased risk of Type 2 diabetes or other glycemic trait, and thus causally implicated in 

disease development, we accessed the T2D portal: https://t2d.hugeamp.org/. The human 
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homologues of 215 of the identified mouse genes were located in loci carrying a significant 

(p<0.05) association with any glycemic trait (Supplementary Table 3), of which 16 displayed 

p-values of <10-5; ADAM16, CLASRP, ERLIN1, TMEM123, CCDC186, PDE12, PARD6A, 

FTSJ1, FAM9C, SIDT2, CSCL16, FBX18L, TRAK2, ZNF143, BMI1, SCF8). One of these 

(BMI1, padj=2.2 x10-8) was in a locus with an association signal of <10-7. 

We next determined whether any of the identified genes in leader cells were also mis-

expressed in islets in T2D. Comparison with the data sets provided by Marchetti et al. [34] 

revealed five common genes shared between the leader cell gene list and the organ donor set 

(RSPH1, VAT1L, ZNF704, DUSP10 and GRIA2), with one common gene shared with the 

partial pancreatectomy data set (TMED6). Of the mis-expressed genes identified through 

single cell RNASeq by Segerstolpe et al. [11], one was common to the mouse leader gene list 

(MEIS1). 

Leader cells tend to display lowered cilium frequency and length versus followers 

As the transcriptome analysis pointed to a potential role of cilia biogenesis in defining leader 

cell characteristics, we compared the expression and morphology of primary cilia in leader 

versus follower cells (Figure 6). The cilia marker acetylated tubulin (AcTUB) was used to stain 

primary cilia in islets that were photopainted with mCherry for leader cells (Figure 6B, C) and 

beta cells were detected with green fluorescence from GCaMP6 only. Data were analysed 

from five independent z-projections in three islets each, selected from regions that contained 

clearly painted leader cells. A total of 118 leader cells and 980 follower cells were identified in 

these stacks and were examined for ciliation status and ciliary length. A range of 41.2% to 

91.5% (average 67.6%) of leader cells and a range of 29.8% to 94.6% (average 74.0%) of 

follower cells contained cilia (Figure 6D). Cilia length averaged 3.76 ±0.18µm and 

4.08±0.07µm in leader and follower cells respectively (Figure 6E). Non–significant tendencies 

were observed for lower cilium frequency (p=0.098; Figure 6D) and length (p=0.142; Figure 

6E) in leader versus follower cells. 
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Leader cells are located closer to delta cells than are followers 

It has been suggested that paracrine regulation by delta cells may contribute to, or restrict, the 

transmission of Ca2+ waves between beta cells within the islet [35,36]. To explore this 

possibility, we measured the 3D Euclidian distances between labelled leaders (PA-mCherry) 

and follower beta cells (GCaMP6+) to delta cells (somatostatin+) post hoc (Methods, Figure 

7). The average distance from the photo-labelled leader cells to the nearest delta cell was 18.2 

± 9.1 µm (n=15 leader cells, 443 somatostatin+ cells from 6 islets). In contrast, the average 

distance of follower cells to delta cells was 61.8±15.4 µm (n=5127 follower cells, 443 

somatostatin+ cells from 6 islets; paired two-tailed Student’s t-test, p<0.002). 
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DISCUSSION 

The overall aims of the current study were, firstly, to identify and characterize beta cell 

subpopulations with discrete roles in Ca2+ wave initiation and propagation across the islet. 

Secondly, we sought to determine whether differences may exist at the transcriptomic level 

between leader and follower cells, and between the localisation of leaders vs followers vis a 

vis their proximity to delta cells. Whereas the latter are stimulated by elevated glucose 

concentrations and may conceivably play a paracrine role in controlling beta cell behaviour, 

alpha cells are usually inactivated at high glucose (at least in rodent islets).  

An important finding was that only ~1/3 of islets display small worlds topography, and the 

existence of highly connected hubs, as described by ourselves and others in recent years 

[16,17,37]. This may reflect differences between the methodologies used in the present and 

earlier studies. For example, we used here the fluorescent protein based Ca2+ sensor 

GCaMP6 rather than a low molecular weight chemical probe such as Fluo2. Intracellular 

buffering is likely to affect calcium dynamics, and the greater effective concentration of calcium 

binding sites when using low molecular weight probes may thus dampen fluctuations in Ca2+. 

Indeed, we observed more wave-like behaviour emanating from well-defined leader or groups 

of leader cells in recent studies in which GCaMP6-expressing islets were engrafted into the 

anterior eye chamber of the eye [17,38], versus studies using low molecular weight probes in 

isolated islets [16,39], though hub-leader dynamics were nevertheless observed in the eye 

chamber setting. However, we cannot exclude the possibility that there are actions of the 

calmodulin moiety present in GCaMP6 on calcium-regulated proteins and processes in 

GCaMP6-expressing cells. Consistent with the concentration of calcium-binding sites being a 

key determinant in differing calcium dynamics, our preliminary data (not shown), as well as 

those of others [40], using the bright Cal520 probe demonstrate a greater propensity towards 

wave-like, and less small-worlds behaviour. Importantly, we observed almost no overlap 

between leader cells and highly connected hub cells. Similar conclusions were recently 

reached by Kravets and colleagues [24]. 
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A further unexpected finding was the relatively small proportion of islets that had MVAR 

leaders. MVAR includes Granger causality analysis, as used in our previous study [17], and 

both seek to identify cells whose behaviour predicts that of other cells in the islet. Hence, 

MVAR leaders are defined as a subset of beta cells that, mathematically, cause other beta 

cells to respond. It should be emphasised that even though MVAR leaders were only found in 

a third of the responsive islets, causal relationships were still found between beta cells in the 

other 68.4% of islets. However, these islets were not considered to house MVAR leaders 

because no observable hierarchy of beta cell response was present. Of note, MVAR leaders 

were found across all four subgroups, indicating that small-worlds behaviour was not 

necessary for their presence.  

We also demonstrate in the present study the existence of a “main” leader cell, alongside other 

leaders associated with a smaller number of Ca2+ waves. Thus, and although a few cells (on 

average 2-3/islet optical section) could be observed during the time of acquisition, a single cell 

was at the origin of most of the oscillations (~60%) while a secondary leader controlled ~30%, 

and 1 - 2 leader cells the minority of the remaining oscillations. This indicates that leaders 

themselves represent a heterogeneous subpopulation. Interestingly, in mouse islets, the 

presence of more than one leader cells leads us to hypothesize that there may be partial 

redundancy in leader cell function, wherein inactivation of the “main” leader cell could result 

in a secondary or tertiary leader taking over. Whether follower cells also play an active role as 

suppressors of Ca2+ oscillation initiation remains to be explored, though our previous studies 

[16] did not reveal any increase in Ca2+ oscillations when these cells (rather than hubs) were 

temporally inactivated by optogene stimulation. 

We have developed and used here a novel strategy, which we refer to as "Flash-Seq", to 

interrogate the transcriptomes of leader or follower cells selected according to our analysis of 

calcium dynamics, and then selectively labelled by photo-activation of the fluorescent probe, 

PA-mCherry. Inherently with the experimental methods, the number cells collected was very 

low, as the identification of leader cells only depends on individual cells identification after 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2022. ; https://doi.org/10.1101/2022.08.26.505442doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505442
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

15 

high-speed calcium imaging. Whilst this approach highlighted the existence of a substantial 

number (~300) of significantly miss-expressed genes in leader versus the follower population, 

we would emphasise several challenges in the analysis of these data obtained from a relatively 

small number (23) of individual cells. Firstly, we noted that PCA analysis did not provide a 

clear separation between the groups (leader vs follower). Secondly, we noticed that transcript 

levels showed frequent drop-outs, which resulted in undetectable expression of a specific 

transcript in a minority of cells, even when other cells in the same experiment and group 

(leader versus follower) had extremely high levels of expression. The drop-out rate was not 

influenced by the total number of transcripts expressed in the cell or other characteristics of 

the RNA-seq datasets. This phenomenon was consistent with other single cell transcriptome 

studies [41], where it has usually been dealt with by comparing gene expression between 

groups with over several hundred or thousand clustered single cells or by imputation methods 

[42,43]. Since neither approach was compatible with our data, we chose instead a "simple" 

filtering approach to account for sparsity in the data, which consisted in excluding those genes 

that were not detected in at least 60% of the samples of one of the groups from the differential 

expression analysis. 

Perhaps not surprisingly, a substantial proportion of the miss-regulated genes are involved in 

transcriptional control, and thus potentially in the control of cellular identity. These included 

several members of the polycomb repressor complex, such as Bmi1. Polycomb proteins are 

well-established chromatin modifiers and thus our data supports a role for chromatin 

remodelling in the establishment/maintenance of leader and follower cells within the islets. 

Interestingly, intra-islet beta cell heterogeneity in polycomb states has already been reported, 

and beta-cell polycomb loss of function triggers diabetes-like transcriptional signatures and 

de-differentiation [31]. It is tempting to hypothesise that an alteration of the leader-follower 

roles within these islets may contribute to these defects. Bmi1 plays a positive role in 

proliferation during beta cell development by restricting p16ink4 expression [26]. Nevertheless, 

Cdkn2a (encoding p16ink4) expression is similar in leader and follower cells, indicating a 
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p16ink4-independent effects of Bmi1 in defining these populations.  Of note, the human BMI1 

gene lies in a locus quite strongly (padj <10-7) associated with glycemic risk, suggesting that 

inter-individual differences in BMI1 expression in beta cells may influence leader-follower 

dynamics to impair normal insulin secretion. 

Of note, expression of neither insulin nor glucokinase, previously shown to be differentially 

expressed at the protein level between hub and follower cells [16,17], were impacted in leader 

cells, in accordance with the view that these cells also do not overlap substantially with hub 

cells. 

Remarkably, a significant number of genes associated with cilium biogenesis and assembly 

cilia were represented in the filtered list of differentially-expressed genes. Primary cilia are 

sensory organelles on the surface of islet alpha, beta, and delta cells and play key roles in 

regulating hormone secretion and cell-cell communication [44–46]. Recently, beta cell cilia 

have been reported to be motile as a dynamic regulator of beta cell calcium and insulin 

response to glucose [47], and genes modulating cilia biogenesis and remodelling have been 

found enriched in human T2D beta cells [48]. The primary cilium has previously been shown 

to maintain a functional beta cell population, and ciliary dysfunction impairs beta-cell insulin 

secretion and promotes development of type 2 diabetes in rodents [49,50]. We now find using 

FLASH-Seq that leader cells are defined by differential expression of cilia and centrosome 

structural components, signalling factors, and ciliogenesis regulators (Supplemental Table 2). 

These include centriolar assembly factors CCDC, pericentrin, signalling factors adenylyl 

cyclase and Rab, motile cilia genes dynein and radial spoke head component 1, and known 

human ciliopathy genes such as Tmem138 and Bbs1 which are linked to Joubert and Bardet-

Biedl syndromes. Our first-pass analysis revealed clear tendencies towards lowered cilia 

frequency and length in leader cells. It is equally possible that cilia differences might go beyond 

static morphological measures. In particular, our discovery of motile cilia genes in leader beta 

cells supports the recently reported phenomenon of beta cell cilia motility, which modulates 

calcium and insulin secretory responses to glucose [47]. We speculate that, beyond static 
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structure, primary cilia on leader cells may exhibit differential capacity for movement, nutrient 

sensing, or signalling, giving these cells the ability to initiate Ca2+ waves early. Examination of 

live-cell cilia dynamics in leader beta cells therefore would be an important future experiment. 

In conclusion, despite the limitations of our approach as discussed above, the present results 

provide compelling evidence for the existence of leader cells with a discrete molecular 

phenotype from follower cells. Future experiments, involving larger numbers of cells, should 

allow these transcriptomic differences to be refined and extended, and ultimately to be 

supported by analyses at the level of the proteome. The importance of the mis-expressed 

genes may in the future be revealed by studies in which the expression of these is modified 

across the beta cell population or, ideally, at the level of individual cells.  Nevertheless, an 

important conclusion from the present studies is that the behaviours described for discrete 

subpopulations are unlikely to result purely from of the localisation of these cells within the 

islet, including proximity to other islet cell types, nerve endings, blood vessels and so on. 

Nevertheless, we do not exclude a role for these parameters.  Indeed, and strikingly, we show 

that leaders are located substantially closer to delta cells than are followers. Although this 

result may appear paradoxical insofar as somatostatin secretion from delta cells is expected 

to exert an inhibitory effect on neighbouring beta cells, it is conceivable that the lower number 

and length of cilia – where somatostatin receptors including SSTR3 [51–54] are concentrated 

– may lead to a complex interplay between the leader cell and nearest beta cell neighbours 

which influence the initiation of Ca2+ increases. This may provide an example of how a discrete 

molecular phenotype may interact with a defined localisation to purpose leader cells for their 

role.   

METHODS 

PA-mCherry adenovirus construct generation 

PA-mCherry1-C1 plasmid was from Addgene (gift from Dr. Michael Davidson Addgene 

plasmid # 54495 ; http://n2t.net/addgene:54495 ; RRID:Addgene_54495). The PA-mCherry 
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sequence was cloned into pShuttle-CMV plasmid (gift from Dr. Bert Vogelstein - Addgene 

plasmid # 16403 ; http://n2t.net/addgene:16403 ; RRID:Addgene_16403). An adenovirus 

construct was generated using the pAdeasy system[55]. 

Ca2+ imaging in mouse islets 

Colonies of Ins1Cre.GCCaMP6f/f mice were maintained on a C57/BL6 background on regular 

chow and under controlled temperature (21 – 23 °C), humidity (45 – 50%) and light (12:12 h 

light–dark schedule, lights on at 0700 hours; Salem et al., 2019). Local ethical committee 

approval was obtained (Imperial College AWERB; CRCHUM, Montreal CIPA 2022-10040 

CM21022GRs). Experiments in the U.K were performed under Home Office License 

PA03F7F0F (IL).  

Islets were isolated from male mice aged 8-12 weeks, as previously described [56]. In brief, 

pancreata were inflated by injecting collagenase-containing media (Sigma-Aldrich; 1mg.mL-1) 

into the pancreatic duct, followed by pancreas isolation, exocrine tissue digestion for 10 

minutes at 37 °C and islets separation by gradient density [56]. GCamP6f-expressing islets 

were then cultured in RPMI 1640 medium (GIBCO) containing 11 mM glucose supplemented 

with 2 mM L-glutamine, 100 IU/mL penicillin, and 100 μg/mL streptomycin (GIBCO) and foetal 

bovine serum (FBS - 10% v/v) at 37 °C in 5% CO2 humidified atmosphere. Islets were infected 

with PA-mCherry adenovirus construct (100 Multiplicity of Infection) 24h post isolation and 

Ca2+ imaging was performed 24 h post infection. Islets were transferred from culture media 

into an imaging chamber containing Krebs-HEPES-bicarbonate (KHB) buffer (130mM NaCl, 

3.6mM KCl, 1.5mM CaCl2, 0.5mM MgSO4, 0.5mM NaH2PO4, 24mM NaHCO3, 10mM HEPES; 

pH 7.4) complemented with 11 mM glucose and imaged on a Zeiss LSM-780 inverted confocal 

microscope equipped notably with an incubation system for temperature control (37°C), laser 

lines including 405, 488 and 561 nm and a 20x/0.8 Plan achromat objective.  Acquisitions 

were performed at a ratio of 5 images.s-1 on single plane (256x256 pixels – 415x415 µm) 

without averaging, using the 488nm laser line for GCamP6f excitation, for a total time of 10 

min. High-speed calcium imaging acquisitions were later analysed for connectivity analysis as 
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described below. Raster plots were generated off-line based on the approach of Rupnik and 

colleagues [57] using Python scripts provided at https://github.com/szarma/Physio_Ca. 

Photopainting and isolation of leader or follower cells 

At the end of each high-speed calcium acquisition, movies were screened to identify leader 

cells, defined as the first cell to display a Ca2+ signal increase (>20% of baseline) during an 

oscillation in response to 11mM glucose – i.e. a global activation of the islets, with >75% of 

cells showing a Ca2+ signal increase of >20% of baseline (Figure 1A-D). When possible, a 

leader cell was identified for each oscillation occurring during the 10 min acquisition period. 

We used the FRAP module in the acquisition software ZEN controlling the LSM780 

microscope, which allows to illuminate with the scanning laser a specific region of interest 

(ROI) drawn on a previously acquired image. Thus, after calcium imaging, a ROI was drawn 

around each leader cells, that were then specifically scanned using the 405nm laser line at 

50% for 3 occurrences, to elicit PA-mCherry photoactivation. Correct photoactivation in 

individual leader cells was assessed by imaging using 561 nm laser before and after UV 

illumination (Figure 3B).  

Post photoactivation, islets were put back to culture and on average 10 to 15 islets were 

individually processed per experiment (Figure 3A). Dissociation was performed by incubating 

islets in accutase (GIBCO, 50 islets in 500µL) for 5 min at 37 °C and mechanically 

disaggregated by trituration. After adding 1mL of culture media to accutase solution, 

dissociated cells were pelleted, washed in PBS and resuspended in cell sorting buffer at 4°C 

(PBS pH7.4, FBS 2% v/v, 1mM EDTA). Cells were then sorted at 4°C on a fluorescence-

activated cell sorters BD Aria Fusion with settings selecting cells with both high fluorescence 

signals for GCamP6f (excitation 488nm) and for mCherry (excitation 561nm). Single cells were 

dispatched into a 96-plate well containing 5µL 1x lysis buffer containing Murine RNase 

inhibitor (NEBNext Single Cell/Low Input RNA Library Prep Kit for Illumina).  

Control cells were selected using the same protocol where follower cells were photoactivated.  
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Transcriptomics analysis 

cDNA libraries were generated from 14 leader and 9 follower single cells using the NEBNext 

Single Cell/Low Input RNA Library Prep Kit for Illumina according to the furnisher protocol. 

Briefly, after single cells were lysed in 5µL 1x lysis buffer (see above), reverse transcription 

and template switching steps were performed, and obtained cDNA was amplified by PCR (20 

cycles). After clean-up, cDNA quality and quantity were tested with a Bioanalyzer (Agilent) 

using DNA High Sensitivity chips. Then, a cDNA fragmentation step was performed followed 

by ends preparation for adaptor ligation (NEBNext Adaptor for Illumina; 0.3 µM). After clean-

up of adaptor-ligated DNA, a PCR enrichment step was performed (8 cycles) using unique 

primer pairs for each library (NEBNext Multiplex Oligos for Illumina- Dual Index Primers Set 

1). 

Library quality was assessed with a Bioanalyzer High Sensitivity chip, and an average 

fragment size of 300 pb was confirmed before sequencing in an Illumina HiSeq 4000.  

3.8-5.4 million reads per cell were successfully aligned to the mouse transcriptome (GenCode 

M23) with Salmon v1.3 [58]. Differential expression analysis performed with DESeq2 v1.28.0 

in R v4.0.2 [59]. Only transcripts that were present in at least 60% of the samples of one of 

the two groups (leaders or followers) where included in the analysis. Differentially expressed 

genes (padj<0.05) were subjected to Gene Ontology analysis in the Database for Annotation, 

Visualization and Integrated Discovery, DAVID [25].  

Connectivity analysis 

Signal binarisation 

Ca2+ signals were denoised by subjecting the signal to the Huang-Hilbert type (HHT) empirical 

mode decomposition (EMD), as used in previous studies [16,17]. The signals were 

decomposed into their intrinsic mode functions (IMFs) in MATLAB [60]. The residual and the 

first IMF with the high-frequency components were then rejected to remove random noise. 

The Hilbert-Huang Transform was then performed to retrieve the instantaneous frequencies 

[61–63] of the other IMFs to reconstruct the new signal using 
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𝑋(𝑡) = 𝑅𝑒∑𝑎𝑗(𝑡)𝑒
𝑖 ∫𝜔𝑗(𝑡)𝑑𝑡

𝑁

𝑗=1

 

where aj(t) = amplitude, ωj(t) = frequency of the ith IMF component [64] 

to retrieve a baseline trend and to account for any photobleaching or movement artefacts. A 

20% threshold was imposed to minimise false positives from any residual fluctuations in 

baseline fluorescence. 

Cell signals with deflection above the de-trended baseline were represented as '1' and 

inactivity represented as '0’, thus binarising the signal at each time point. The coactivity of 

every cell pair was then measured as: 

𝐶𝑖𝑗 =
𝑇𝑖𝑗

√𝑇𝑖𝑇𝑗
 

where Tij = total coactivity time, Ti and Tj = total activity time for two cells 

The significance at p < .001 of each coactivity measured against chance was assessed by 

subjecting the activity events of each cell to a Monte Carlo simulation [65,66] with 10,000 

iterations. 

Synchronised Ca2+-spiking behaviour was assessed by calculating the percentage of 

coactivity using the binarised cell activity dataset. A topographic representation of the 

connectivity was plotted in MATLAB [67] with the edge colours representing the strength of 

the coactivity between any two cells. 

A 80% threshold was imposed to determine the probability of the data, which was then plotted 

as a function of the number of connections for each cell to determine if the dataset obeyed a 

power-law relationship [68,69]. 

Finally, the data and figures were written from MATLAB to Microsoft Excel files [70] for easy 

visualisation and dissemination. 

Multivariate vector autoregression 
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Multivariate vector autoregression (MVAR) is a stochastic process model that captures any 

linear interdependencies in a time series while allowing for dynamic multivariate time series 

modelling [71,72]. Its theory is based on the Granger causality test [73,74], a statistical 

hypothesis used in previous studies [17] to examine causality between beta cells in the islets. 

A vector autoregressive model was built in Jupyter Notebook (Python 3) based on: 

𝑌𝑡 = 𝛼1 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2⋯𝛽𝑝𝑌𝑡−𝑝 + 𝜖𝑡 

where α = intercept, β1 and β2 till βp = coefficients of the lags of Y till order p 

First, the time series data of all the signals were visually analysed for any outstanding 

characteristics. Next, causality amongst all time series was tested using first the Granger’s 

Causality Test to prove that the past values of one time series have a causal effect on another 

series [71,73,75–77]. Following that, cointegration of the data was tested to establish the 

presence of any statistically significant connection between two or more time series [76–78]. 

Once it was established that there was a statistically significant connection and causation 

amongst the time series data, stationarity was checked using the Augmented Dickey Fuller 

Test [79] to ensure that the mean and variance of every time series did not change over time. 

Any non-stationary series was made stationary by differentiating all series until all the time 

series data reach stationarity. 

Finally, the data and figures were written from Jupyter Notebook to Microsoft Excel files for 

easy visualisation and dissemination. 

Gene list overlapping  

Of a total of 295 mouse genes that showed differentially expressed (adjusted p-value<0.5) 

between the leader and the follower cells, 268 genes were identified and converted to their 

human equivalent. The r package babelgene was used for converting between human and 

non-human gene orthologs/homologs, which is sourced from multiple datasets and compiled 

by the HGNC Comparison of Orthology Predictions (HCOP) [80–82]. In the type 2 diabetes 

knowledge portal (https://t2d.hugeamp.org/), our dysregulated gene list was then compared 
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with a list of genes that are either the closest genes to a lead SNP which shows associations 

(p-value ≤ 5e-8) for glycemic phenotype, or the genes with a significant (p-value ≤ 2.5e-6) 

gene-level association for the glycemic phenotype (Multi-marker Analysis of GenoMic 

Annotation (MAGMA) method.  

Euclidian distance between cells. 

After images were acquired, the nuclei of each cell labelled by GCaMP6f(beta-cells), SST 

(delta-cells) and photo-labelled PA-mCherry (leader beta-cell), the 3D Euclidian distance was 

calculated [83]. Briefly images were loaded in ImageJ, the center of the nuclei was selected 

manually, and the X, Y and Z coordinates for each nucleus was extracted.  To calculate the 

distance, we used the following formula: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑞) = √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2(𝑧1 − 𝑧2)
2 

where p and q being the center for each cell while x, y, z are the X, Y and Z coordinates for 

each nucleus. 

Cilia imaging and quantitation 

Photopainted mouse islets were fixed in 4% paraformaldehyde (PFA) and permeabilized with 

0.3% Triton X-100 in PBS (PBST) prior to blocking and staining with rabbit anti-acetylated 

alpha tubulin antibody (Cell Signaling #5335). Confocal 3D images of whole islets were used 

for cilia frequency and length quantitation. Individual 3 to 5µm-thick optical slices with 1µm 

step size were selected from lower, mid, and upper regions of the islets, each slice spanning 

a single layer of cell body and cilia. 14 individual slices were evaluated from 3 islets. In total, 

analysis was performed on 118 leader cells and 980 follower cells. Cilia frequency and length 

were measured using ImageJ with CiliaQ v0.1.4 plugins [84]. Images were first processed and 

segmented with CiliaQ Preparator using Canny 3D edge detection in maximum intensity 

projections with low threshold delivered by algorithm Triangle and high threshold by algorithm 

Otsu, Gaussian Blur with sigma 1.0. After segmenting the cilia from background in the 

acetylated tubulin channel, pre-processed images were annotated and edited with CiliaQ 
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Editor.  Extensive review and editing were required for certain islet regions such as the 

periphery which contained nerves and cell bodies that also stained strongly for acetylated 

tubulin. In these cases, manual correction was required to remove non-ciliary structures and 

to trace or exclude any incompletely segmented cilia. Final processed images were analysed 

using CiliaQ. Cilia frequency was calculated by dividing the number of ciliated cells by total 

number of cells from each segment. Statistical significance was determined using two-tailed 

t-test assuming equal variances. Cilia <1µm in length or which were abnormally long due to 

image overlap or possible actual fusion were excluded from the final analysis. 

Statistics 

Data are expressed as mean±SEM unless otherwise stated. Significance was tested by 

Student’s two-tailed t-test in MATLAB R2020a, with p<0.001 being considered significant. 

Significance was also tested by one-way ANOVA with Tukey’s Honestly Significant Difference 

(HSD) multiple comparison test for comparison of more than two groups, using MATLAB 

R2020a. p<0.05 was considered significant. 

Data availability 
 
RNA Seq data will be deposited in a publicly available repository (Gene Expression Omnibus) 

upon acceptance. MATLAB and Python scripts will be available on Github upon acceptance. 
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Tables 

Table 1. Islets classification into subgroups based on Ca2+ signal propagation rate behaviour 

and oscillation behaviour.  

 

 Wave AAO 

Total 

number 

of islets 

Power Law 

compliance 

Quick 7 4 11 Y 

Sustained  9 18 27 N 

Total number of 

islets 
16 22 38  

 

 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2022. ; https://doi.org/10.1101/2022.08.26.505442doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505442
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

27 

FIGURE LEGENDS 

 

Figure 1. Islet Ca2+ wave properties.  A. Timelapse of a calcium wave propagation through 

the islet during an oscillation in response to glucose at 11 mM. The leader cell (arrow) is the 

first cell to show an increase in fluorescence signal, which then propagates to surrounding 

neighbour cells until all the cells show an increased fluorescence signal corresponding to 

calcium entry, step leading to insulin secretion. B. Raster plot corresponding to the acquisition 

shown in A and Supplementary Movie 1. Cell “5” corresponds to the arrowed cell in A. C. 

Categorisation of islets depending on the signal propagation behaviour during calcium waves. 

6% were unresponsive, 4% displayed uncoordinated response ie. no wave, 36% slow 

propagation wave (>1 s) and 53 % quick propagation wave (All-at-once/High-speed AAO/HS 

- <1s) n= 43 islets from 5 experiments D. Categorisation of islets depending on the lasting 

time of oscillations. After wave propagations, the time of activation of each oscillation was 

measured and averaged for each islet showing a waving behaviour (38 islets – 5 experiments). 

Islets for which activation were >5s were classified in the category of sustained oscillations, 

and <5s were classified as quick oscillations E.  Representative trace for islets with sustained 

oscillation (left panel) and islets with quick oscillations (right panel). F. Leader cells were 

defined as being the first cell to show a signal increase during an oscillation. In the great 

majority of cases (from 80 to 95% - 38 islets from 5 experiments) leader cells were wave 

originator, ie signal would propagate from the leader cells to the direct neighbouring cells. G. 

For each islet with a waving behaviour, number of leader cells was determined during time the 

time of acquisition (10 minutes) and were in average from 2 to 4 cells (28 islets – 5 

experiments) H. During acquisition time, islets had in average 1 oscillation per minute. 

Repartition of waves between leader cells were quantified. In average, one main leader cell 

was responsible of 61±6% of the waves, while a secondary one 29±9.6%, and third ~10%. 
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Figure 2 Intra-islet connectivity. A. Fluorescence intensity readouts for all beta cells 

identified during a typical Ca2+ wave (superimposed in different colours) in a single 

representative islet for each subgroup. (i. AAO/HS, ii. Quick, iii. Wave, iv. Sustained) 

Representative cartesian maps of islets with colour coded lines connecting cells according to 

the strength of coactivation (colour coded R values from 0 to 1, blue to red respectively). B. 

Log-log graph of the beta cell-beta cell connectivity distribution (n=38). 37.2% of beta cells 

coactivated with at least 50% of the rest of the beta cells, identifying more than a third of all 

beta cells to be highly connected cells. C. Log-log graph of the beta cell-beta cell connectivity 

distribution in the quick subgroup. 1.86% of beta cells coactivated with at least 50% of the rest 

of the beta cells, identifying hub cells that display an obedience to a power-law distribution 

whereby few beta cells host 50% to 100% of the connections to the rest of the beta cell 

population. D. Average beta cell-beta cell coactivity overall and in each subgroup. A one-way 

ANOVA showed that each subgroup was significantly different in terms of their respective 

intra-islet beta cell coactivity (p≤0.01). However, there were no significant differences between 

the AAO and Sustained subgroups (p=0.27). E. Percentage coactivity of beta cells. Identified 

highly connected cells displayed coordinated Ca2+ responses to an average of 75.3% of all 

beta cells whereas identified leader and follower cells had significantly fewer coordinated Ca2+ 

responses at averages of only 8.35% and 9.70% respectively (p<.001). There were no 

significant differences in the average coactivity between the leaders and follower cells 

(p=0.72). 
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Figure 3 MVAR analysis. A. Categorisation of islets with MVAR leaders depending on signal 

propagation behaviour during calcium waves. 16.7% displayed uncoordinated response, 

50.0% slow propagation wave >1s and 33.3% AAO high-speed waves <1s (n=12). B. 

Percentage of islets with MVAR leaders. 31.6% of all responsive islets had MVAR leaders. 

Each subgroup also had a proportion of islets displaying MVAR behaviour (AAO: 20.0%; 

Wave: 37.5%; Quick: 45.5%; Sustained: 20.0%). C. Percentage of MVAR islets overall and in 

each subgroup where leader cells were also identified to be MVAR leaders. 58.3% of islets 

that display MVAR behaviour had leader cells that were also identified to be MVAR leaders. 

High proportion of MVAR islets in each subgroup had leader cells that were also MVAR 

leaders (AAO: 50.0%, Wave: 83.3%, Quick: 100%, Sustained: 40.0%). 

 
 
Figure 4 A. Experimental procedure for leader cell identification and transcriptomic 

analysis (“Flash-Seq”). B. Representative images of islet expressing GCaMP6f specifically 

in beta cells and infected 24 hours prior to imaging with a construct for PA-mCherry 

expression. Fluorescence from PA-Cherry is not detectable before exposure to UV light (left 

panel), while cells display high fluorescence level after targeted illumination in determined 

region of interest drawn around leader cells (right panel and merged image).   

 
Figure 5. Gene ontology analysis of genes differentially expressed in leader versus 

control cells. The graph shows enrichment scores for one representative term for each 

cluster grouped by semantic similarities and including terms with a p value <0.05. A full list of 

terms is included in Supplementary Table 2. 

 
Figure 6. Quantification of cilium frequency and length. A. Representative islet cross-

section labelled with primary cilia (white), PA-mCherry leader cells (red), and beta cell 

GCaMP6f (green). Scale 10 μm. B. Segmented cilia after maximum intensity projection of islet 

slice and manual correction in CiliaQ Preparator and Editor. C. Insets showing representative 

regions containing (1) leader cells labeled in both green and red, (2) follower cells which are 
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green only. Both leader and follower cells are ciliated (white). D. Cilia frequency quantitation 

showing comparable levels of ciliation among leader and follower cells, p = 0.098. E. Cilia 

length quantitation showing a trend toward shorter cilia in leader cells that did not reach 

statistically significance, p = 0.142. 

 

Figure 7. 3D Euclidian distance of leader and follower beta cells towards SST+ cells.  

A. Confocal image of the photo-painted islet. GCaMP6f (green), somatostatin (blue), and 

photo-labelled PA-mCherry (red) mark the beta cells, the delta cells and a leader beta cell, 

respectively. B. Quantification of the 3D Euclidian distance from leader beta cells and follower 

beta cells to delta cells islets from C57BL/6J Ins1Cre:GCaMP6ffl/fl transgenic mouse. Scale 

bars: 20 μm. See the text for further details. 
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