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Abstract 11 

 12 

Measuring allele-specific expression in interspecies hybrids is a powerful way to detect cis-13 

regulatory changes underlying adaptation. However, it remains difficult to identify genes most 14 

likely to explain species-specific traits. Here, we outline a simple strategy that leverages 15 

population-scale allele-specific RNA-seq data to identify genes that have constrained cis-16 

regulation within species yet show divergence between species. Applying this strategy to data 17 

from human-chimpanzee hybrid cortical spheroids, we identify signatures of lineage-specific 18 

selection on genes related to cellular proliferation, speech, and glucose metabolism. We also 19 

highlight cis-regulatory divergence in CUX1 and EDNRB that may shape the unique trajectory of 20 

human brain development. 21 
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Background 27 

 28 

Changes in gene expression are thought to play a major role in the evolution of complex traits 29 

[1–4]. As a result, comparing gene expression between species can enable the identification of 30 

molecular changes underlying phenotypic divergence. However, obtaining accurate 31 

comparisons of gene expression between species is challenging due to confounding factors like 32 

age, environmental effects, differential cell type abundances, differences in developmental 33 

timing, and batch effects [5–7]. The use of interspecies hybrids overcomes these issues through 34 

the measurement of allele-specific expression (ASE) [8,9]. In hybrids, the genomes of both 35 

species share the same nucleus and are exposed to identical environments, so there are no 36 

confounding environmental, batch, compositional, or developmental effects. This approach has 37 

been successfully applied in many species and advanced our understanding of the evolution of 38 

gene regulation and its role in establishing phenotypic variation [10–13]. Furthermore, the recent 39 

development of human-chimpanzee allotetraploid “hybrid” cells and organoids enables detailed, 40 

accurate quantification of differences in gene expression between humans and our closest living 41 

relatives [8,9,14]. 42 

 43 

Hybrids also enable the separation of cis and trans components of interspecies differences in 44 

gene expression [8,9]. The cis-component is caused by differences in regulatory elements such 45 

as promoters or enhancers that only affect the expression of a nearby gene or genes on the 46 

same DNA molecule. The trans-component stems from changes in diffusible molecules such as 47 

transcription factors that can regulate gene expression throughout the genome. In hybrids the 48 

genomes of the two species are exposed to the same trans factors. As a result, allele-specific 49 

differences in gene expression can only be explained by cis-regulatory differences. In addition, 50 

using ASE to identify differentially expressed genes (referred to as AS-DEGs) enables 51 
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elimination of many confounding factors (including the environmental, batch, compositional, and 52 

developmental timing effects mentioned above). This not only increases the signal-to-noise 53 

ratio, but also disentangles important, potentially evolutionarily significant gene-specific cis-54 

regulation from broad trans-acting changes [4,15,16]. 55 

 56 

While the resulting list of AS-DEGs from hybrids is likely more accurate and isolates the cis-57 

regulatory component, there are often thousands of AS-DEGs which makes it difficult to 58 

prioritize candidate genes and pathways that may have played a major role in evolution. 59 

Differential expression p-values and fold changes are commonly used to rank genes in 60 

comparative RNA-seq studies. However, large and significant fold changes may often result 61 

from low evolutionary constraint on their expression levels, as opposed to being under positive 62 

directional selection. These large fold changes in unconstrained genes (e.g. pseudogenes) 63 

could result in no or very limited phenotypic changes, since a lack of constraint implies a lack of 64 

phenotypic consequence of changes in expression. Therefore, a large and significant fold 65 

change alone is not sufficient to determine the importance of the gene in the evolution of the 66 

parental species. For example, consider a gene whose expression varies by two-fold between 67 

species. If this gene also varies by two-fold within each species individual members of the same 68 

species, it is unlikely to account for any species-specific phenotypes. In contrast, a gene that is 69 

under strong stabilizing selection—with little variation in expression within species but with a 70 

two-fold change between species–is more likely to have contributed to phenotypic divergence 71 

between species. Most studies of expression divergence between species do not include any 72 

comparison to within-species variation; the few exceptions have been limited by small sample 73 

sizes and the confounding factors inherent to any between-species comparison [17–20].  74 

 75 

Here, we describe a method that leverages population-scale ASE data to approximate 76 

constraint on cis-regulation of gene expression. This method ranks AS-DEGs identified from 77 
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interspecies hybrids in a way that is likely more able to prioritize adaptive, functionally significant 78 

changes. We apply this method to ASE data from human-chimpanzee hybrid cortical spheroids 79 

that recapitulate the gene expression patterns of the developing cerebral cortex. Using this 80 

dataset, we identify lineage-specific selection on the expression of genes related to speech, 81 

glucose metabolism, cellular proliferation, and glycan degradation [8,9]. In addition, we highlight 82 

divergence in the expression of CUX1 and EDNRB that may have played an important role in 83 

human brain evolution.  84 

 85 

Results 86 

 87 

In a typical ASE pipeline, AS-DEGs are identified by comparing the RNA-seq read counts from 88 

the allele from species 1 and the allele from species 2 and ranked using a p-value for differential 89 

expression (Fig. 1A). Various enrichment tests and knowledge from the literature can then be 90 

used to identify interesting trends and prioritize candidate genes. However, these previous 91 

methods do not consider within-species variation in gene expression levels (Fig. 1B). If some 92 

genes have highly variable expression even within a single species, then differences of a similar 93 

(or smaller) magnitude between species are unlikely to explain species-specific traits (e.g. 94 

PDPR in Fig. 1B). Conversely, differential expression of genes with highly constrained 95 

expression in at least one species are more likely to be responsible for differences in organismal 96 

phenotypes between species. For example, ZNF331 and RPS16 have similar fold change 97 

magnitudes in human-chimpanzee hybrid cortical spheroids (Fig. 1C). However, the fold change 98 

for ZNF331 lies well within the distribution of fold changes between alleles in the human 99 

population whereas the fold changes for RPS16 are nearly outside the human population 100 

distribution (Fig. 1C). This indicates that the expression level of RPS16 is much more 101 

constrained and that its differential cis-regulation between human and chimpanzee is more likely 102 

to have phenotypic consequences.  103 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.03.29.486301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/


5 
 

 104 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.03.29.486301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/


6 
 

Figure 1 Outline of methodology: A) Outline of a typical ASE pipeline. Hybrids are generated 105 

and RNA-seq is used to determine the relative expression of each allele. The ASE ratio is 106 

computed as the ratio of species-specific read counts between the two alleles. B) The 107 

distribution of the variance in ASE ratio for each gene in the GTEx data. Insets in orange show 108 

two genes at the extreme ends (EEF2 with low variance suggesting strong stabilizing selection, 109 

and PDPR with high variance suggesting less constraint on gene expression). C) Schematic of 110 

incorporation of the interspecies ASE and population level ASE. ZNF331 has a wide range of 111 

ASE values, and the human-chimpanzee ASE is well within the population distribution whereas 112 

human-chimp ASE in RPS16 is on the edge of the population distribution indicating greater 113 

potential for functional relevance. For both B and C, only GTEx brain samples were used as this 114 

provided clearer illustrative examples, though results are similar using all GTEx samples (Fig 115 

2A).  116 
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To systematically apply this concept, we compute the distribution of ASE in one population and 117 

use the Mann-Whitney U test to compare the population-level ASE distribution to the 118 

interspecies ASE distribution for that gene (see Methods) [21]. The p-value reflects how 119 

divergent the ASE of the gene is between species compared to its divergence within species. 120 

We then use those p-values to separately rank genes with DESeq2 false discovery rate (FDR) 121 

less than or equal to 0.1 and greater than 0.1 such that genes with FDR less than or equal to 122 

0.1 are always ranked higher than genes with FDR greater than 0.1. This method prioritizes 123 

genes based on whether the interspecies difference in ASE is of greater magnitude than would 124 

be expected from the intra-species ASE distribution while minimizing false positives. Notably, 125 

ranking solely by the Mann-Whitney U Test p-value would potentially rank lowly expressed 126 

genes that are not significantly differentially expressed between species very highly, increasing 127 

the number of genes falsely identified as differentially expressed. This problem is eliminated by 128 

incorporating the DESeq2 FDR. The ranked list is then used in enrichment analyses and to 129 

identify of top candidates [22,23].  130 

 131 

We use a large publicly available data set, GTEx, to estimate ASE variance for every gene. The 132 

GTEx v8 data includes RNA-seq from 838 individuals and 54 tissues, a total of 15,253 samples 133 

in which ASE values have been previously estimated [21]. To minimize any allelic bias in the 134 

population distribution, we normalize the median to 1. The resulting rankings are robust to 135 

choosing either the reference or alternative allele as the numerator for the population 136 

distribution (spearman’s rho = 0.999 p < 10-300). Notably, we minimize any batch effects 137 

between GTEx and the human-chimpanzee hybrid dataset by focusing on ASE since direct 138 

comparisons of expression levels between data sets are not involved. For example, if some 139 

technical factor (e.g. sequencing platform or RNA isolation method) caused a gene to show a 140 

spurious 2-fold higher expression in GTEx samples compared to the hybrid data, this would 141 

cancel out in the GTEx ASE calculation.  142 
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 143 

First, we tested whether the variance in ASE in the human population is a reasonable proxy for 144 

constraint on gene expression. We compared the variance of the GTEx ASE distribution for 145 

each gene to its probability of haploinsufficiency score (pHI), a measure of sensitivity to a 50% 146 

reduction in gene dosage [24]. We observe a significant negative correlation (Spearman’s rho = 147 

-0.28, p < 10-170) between the two measures (Supp. Fig. 1) indicating that the variance of the 148 

population-scale ASE distribution provides a reasonable proxy for constraint on expression 149 

levels. This correlation remains significant when only five (as opposed to ten) reads from each 150 

allele for a gene in a sample are required for inclusion (Spearman’s rho = -0.27, p < 10-151 

163). Furthermore, as pHI is computed from copy number variation, there is no circularity in 152 

reasoning when comparing pHI to the variance of the GTEx ASE distribution [24]. While this 153 

indicates that variation in ASE is sufficient to approximate evolutionary constraint on gene 154 

expression, the strength of this relationship should not be interpreted as a quantitative estimate 155 

of how well ASE represents constraint. Overall, the correlation with pHI indicates that within-156 

species ASE variance contains useful information about evolutionary constraint on gene 157 

expression. 158 

 159 

In addition, it is important to determine the extent to which sample heterogeneity may affect 160 

ASE variance and thereby impact our results. For example, GTEx contains data from a wide 161 

range of adult tissues and donors have variable sex and ancestry. To determine to what extent 162 

these factors affect our results, we divided the GTEx dataset along lines of sex (male/female), 163 

ancestry (African descent/European descent), and brain/non-brain tissues. In all cases, the 164 

results obtained were very highly correlated (spearman’s rho > 0.97, p < 10-170, Figure 2 A-C). 165 

This indicates that sample heterogeneity is unlikely to have major effects on our results and that 166 

aggregating across all the GTEx samples provides a reasonable measure of constraint on gene 167 

expression within the human population.  168 
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 169 

In addition, the wide range of adult tissues in GTEx may not accurately reflect gene expression 170 

constraint in cortical spheroids, which mimic fetal development [25,26]. To test this, we used an 171 

ASE dataset generated from neural progenitors, neurons, and fetal cortical wall which 172 

resembles the developmental stage of cortical spheroids more closely than GTEx samples [27]. 173 

There is a strong correlation between the rankings generated by comparing to the fetal cortex 174 

dataset and GTEx (Spearman’s rho = 0.92, p < 10-170 for each of day 50, day 100, and day 150 175 

after initial differentiation of cortical spheroids; Fig 2D). While it is likely that the ASE variance 176 

for some genes changes over development, these genes appear to be somewhat rare. Overall, 177 

these results (Fig 2) indicate that even though gene expression levels vary considerably across 178 

samples, ASE variance is robust to sample heterogeneity. This suggests that within- and 179 

between-species ASE values can be meaningfully compared even when they are not based on 180 

the same tissues or developmental timepoints. We therefore focused our analysis on the full 181 

GTEx data in order to maximize statistical power but verified results for specific genes in the 182 

fetal cortex data when appropriate.  183 

  184 
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 185 

Figure 2 Influence of population differences on gene rankings: A) Comparison of ranks 186 

generated by our method derived from brain vs. non-brain samples. Spearman’s rho = 0.98 p < 187 

10-170. B) Comparison of ranks using only GTEx subjects of African descent vs. subjects of 188 

European descent. Spearman’s rho = 0.98, p < 10-170. C) Comparison of ranks using only male 189 

vs. female GTEx subjects. Spearman’s rho = 0.99, p < 10-170. D) Comparison of ranks derived 190 

from GTEx (across all tissues) vs. data from fetal cortex and primary fetal neurons/neural 191 

progenitors. Spearman’s rho = 0.92, p < 10-170.  192 

  193 
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To highlight differences between our method and the traditional method for ranking genes (Fig 194 

1A vs. Fig 1C), we computed the difference in ranks between the two methods and used 195 

GSEAPY to identify gene sets enriched near the top or bottom of the resulting sorted list 196 

(referred to as the difference in ranks list, Fig 3A) [28]. A top-ranking gene would be one that is 197 

lowly ranked by the traditional method but highly ranked by the population comparison method. 198 

Many gene ontology (GO) categories related to cortical development were enriched near the top 199 

of the difference in ranks list including calcium and potassium channel activity, various 200 

transcription factor (TF) related terms, and cytokine activity (Fig 3B, C and Additional file 1). 201 

This is consistent with previous observations that TFs, ion channel subunits, and important 202 

players in canonical signaling pathways tend to have strongly constrained expression compared 203 

to other genes [24]. Many genes that drive the enrichment of the term “RNA polymerase II 204 

regulatory region sequence-specific DNA binding” are haploinsufficient and play key roles in 205 

neurodevelopment including MEF2C, NEUROD2, and CUX1 (Supp. Fig. 2A) [29–31]. 206 

Differences in the expression of haploinsufficient genes are more likely to have phenotypic 207 

consequences than differences in the expression of genes for which loss of one copy has no 208 

clear phenotypic effect. In particular, there is strong evidence that both increases and decreases 209 

in CUX1 expression alter neurodevelopment in humans, which implies that the CUX1 210 

expression divergence between humans and chimpanzees is likely to have phenotypic 211 

consequences (Box 1) [29,32].  212 

  213 
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 214 

Figure 3 Enrichment summary for difference in ranks: A) Pipeline for gene set enrichment 215 

analysis. Gene set databases tested include Gene Ontology (GO) Cellular Component, GO 216 

Molecular Function, Kyoto Encyclopedia of Genes and Genomes (KEGG) human gene sets, 217 

Human Phenotype Ontology (HPO), and REACTOME [33–37]. Enrichment analysis is 218 

performed for each time point that cortical spheroids frozen for RNAseq (day 50, day 100, and 219 

day 150) separately and significant terms were aggregated with only one copy of redundant 220 
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terms that were significant in multiple timepoints included. Only genes with sufficient reads in 221 

the human-chimpanzee cortical spheroid dataset and a sufficient number of samples in GTEx 222 

were included (see Methods), leaving approximately 10,000 genes in the list used for 223 

enrichment analysis. B) Summary of GO Cellular Component enrichments across all time points 224 

with false discovery rate (FDR) < 0.05. REVIGO in conjunction with a custom python script was 225 

used to generate the plot. The axes are derived from multidimensional scaling and measure 226 

semantic similarity, enabling removal of redundant GO terms and visualization of the similarity 227 

between GO categories. Each circle represents a GO term and circles near each other contain 228 

similar genes in the corresponding gene set. Labeled gene sets are generally those with the 229 

lowest FDR in a cluster of terms on the plot. The size of the circles indicates the number of 230 

genes that are driving the enrichment for that category. C) Summary of GO Molecular Function 231 

enrichments across all time points with FDR < 0.05. 232 

 233 

  234 
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Box 1: Recent work has linked a mutation in a human accelerated region (HAR) that likely 235 

increases CUX1 expression to autism spectrum disorder, suggesting that human-derived 236 

changes in CUX1 expression alter human behavior [32,38]. CUX1 is expressed at a lower level 237 

in humans than chimpanzees across time points in both hybrid and parental cortical spheroids 238 

(e.g. log2 fold-change of -0.93, FDR < 0.005 in parentals, mean log2 fold-change of -0.74, FDR < 239 

0.023 in hybrids at day 150 of differentiation) and the per-sample ASE ratios are well outside the 240 

human fetal cortex population ASE distribution (Supp. Fig. 2 B-E). This reduced expression in 241 

humans is surprising considering that a recent massively parallel reporter assay (MPRA) found 242 

that the HAR linked to CUX1 should increase expression in humans [38]. As expression is lower 243 

in humans, haploinsufficiency of CUX1 might provide a reasonable model of the phenotypic 244 

consequences of this change. CUX1 haploinsufficiency in humans leads to delayed 245 

development of speech and motor skills [29]. One aspect of this condition is that individuals with 246 

one functional CUX1 allele often close the developmental gap over time (i.e. cognitive 247 

impairments and delays disappear with age) [29]. This “catch up” phenotype is very rare and 248 

may even be specific to CUX1 haploinsufficiency [29]. Interestingly, humans develop more 249 

slowly than other great apes (known as neoteny) but eventually “catch up,” reminiscent of the 250 

CUX1 phenotype. While changes in CUX1 expression may have played a role in causing 251 

human neoteny, investigation of the development of layer II-III cortical neurons and behavior of 252 

CUX1 haploinsufficient mice will be required to explore this further. 253 

 254 

Applying the Sign Test to Constrained Differentially Expressed Genes 255 

 256 

While our method is designed to prioritize genes that are relevant to phenotypic differences 257 

between species, it does not, on its own, imply selection on changes in gene expression. On the 258 

other hand, the sign test is designed to detect lineage-specific selection based on systematic 259 

up- or down-regulation of genes that deviates from neutral expectation [39,40]. One important 260 
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requirement of the test is that the expression divergence of every gene being tested should be 261 

driven by independent genetic differences. For example, a single mutation in a trans-acting 262 

factor could cause a whole pathway to be down-regulated, but this would only count as one 263 

genetic difference. For this reason, hybrids are ideal for applying the sign test to gene 264 

expression, since cis-regulation of genes is typically independent (except in the case of some 265 

neighboring genes that share cis-elements, which can be accounted for by using a minimum 266 

distance threshold between genes). For example, in the human-chimpanzee hybrid, if a 267 

particular pathway contains significantly more genes with higher expression from the human 268 

allele than the chimpanzee allele (significance determined by a binomial test), that would 269 

provide evidence of selection on that pathway in the human and/or chimpanzee lineage. Similar 270 

to all tests of selection, the sign test cannot discern what the cause of the selective pressure is. 271 

For example, many cis-regulatory changes could be compensating for a change in a single 272 

trans-acting factor. Alternatively, changes in gene expression might cause a phenotypic change 273 

that is being selected for. In either case, the sign test provides evidence of lineage-specific 274 

selection on cis-regulation. 275 

 276 

While our method (Fig 1C) does not require comparison to the traditional method (Fig 1A), it is 277 

still of interest to determine if any of the categories that contain genes with strong differences in 278 

ranking between our method and the traditional method show signatures of lineage-specific 279 

selection. We therefore applied the sign test to identify gene sets in which highly ranked genes 280 

(i.e. those with a difference in ranks between the population comparison method and the 281 

traditional method above the cutoff found by GSEAPY) show a systematic bias in directionality. 282 

Three gene sets are significant by the binomial test at an FDR cutoff of 0.1: Neuronal Cell Body, 283 

Cytokine Activity and Cytoskeleton (Additional file 2, FDR = 0.085 for all three terms). The 284 

Cytokine Activity category is dominated by genes that promote stem cell proliferation which may 285 

have consequences for the proliferation of human and chimpanzee radial glia (although we 286 
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caution against overinterpretation of this result given the low fold changes of most genes in this 287 

category; Box 2).  288 

  289 
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 290 

Figure 4 Changes in expression of cytokine activity genes: A) Summary of Cytokine Activity 291 

enrichment. Each blue line represents a gene in the gene set and the green curve is the 292 

cumulative enrichment score. Top ranking genes could be human or chimpanzee-biased in 293 
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expression. B) Volcano plot showing expression levels of genes driving Cytokine Activity 294 

enrichment. The log2 fold-change (log2 FC, which refers to the value computed by DESeq2) is 295 

chimpanzee-biased for 15 out of 16 genes. Mean log2 FC between chimpanzee-referenced and 296 

human-referenced log2 FC values is shown. Negative log2 FC indicates chimpanzee-biased 297 

expression. EDNRB does not appear because it is a cytokine receptor rather than a cytokine. C) 298 

Comparison of human-chimpanzee EDNRB ASE to within-human ASE from GTEx and fetal 299 

cortical samples. Raw ASE ratios (as opposed to the value derived from DESeq2) are indicated 300 

by “ASE Ratio”. The human-chimpanzee ASE is significantly outside of the human ASE 301 

distribution. P-values are from the Mann-Whitney U Test comparing the distribution of human 302 

population ASE to human-chimpanzee ASE. D) Comparison of human-chimpanzee EDN1 ASE 303 

to within-human GTEx ASE. Fetal cortical ASE is not shown due to insufficient data. P-value is 304 

the same as in C. E) ASE of EDNRB across timepoints in cortical spheroids. Expression from 305 

the human allele is consistently higher than expression from the chimpanzee allele. F) ASE of 306 

EDN1 across timepoints in cortical spheroids. Expression from the chimpanzee allele is 307 

consistently higher than expression from the human allele except at D200.  308 

 309 

Box 2: The Cytokine Activity category is enriched near the top of the difference in ranks list with 310 

15 out of 16 genes driving the enrichment displaying chimpanzee-biased expression (Fig. 4A, 311 

B). It is dominated by genes that generally promote neural stem cell proliferation, which is 312 

unexpected considering the directionality bias and the higher proliferative capacity of human 313 

neural stem cells. EDN1 had the strongest chimpanzee bias (mean log2 fold-change = -0.92, 314 

FDR < 0.025 at Day 150, Fig 4B). As EDN1 primarily signals through EDNRB in the brain [41], 315 

we also investigated the expression of EDNRB. Surprisingly, EDNRB is one of the most strongly 316 

human-biased genes across all timepoints in both hybrid and parental cortical spheroids (mean 317 

log2 fold-change = 4.46, FDR < 0.005 at Day 150 in hybrids, log2 fold-change = 2.85, FDR < 318 

0.0005 in parental samples). Human-chimpanzee ASE generally exceeds ASE found in human 319 
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populations for EDNRB (Fig 4C; Mann Whitney U Test comparing EDNRB distribution to human 320 

population distribution p = 0.00027 for EDNRB), although this is not the case for EDN1 (Fig 4D). 321 

The human-biased EDNRB expression and chimpanzee-biased EDN1 expression is generally 322 

consistent across timepoints in hybrid cortical spheroids (Fig 4E, F).  323 

 324 

Changes in EDNRB expression appear to be human-derived with respect to gorillas and 325 

macaques (although orangutans may have independently acquired similar expression to 326 

humans in early-stage brain organoids) (Supp. Fig. 3 A, B). We were unable to confidently 327 

determine whether changes in EDN1 expression were human- or chimpanzee-derived using 328 

currently available data (data not shown). Next, we analyzed single-cell RNA-seq data 329 

generated from 1 month, 2 month, and 4 month-old human and chimpanzee brain organoids to 330 

identify the cell types driving increased EDNRB expression. We found that a previously 331 

identified radial glial cell (RGC) cluster was characterized by high EDNRB expression with non-332 

zero expression in over 50% of cells [42]. Furthermore, this cluster had higher expression than 333 

any chimpanzee cluster (Mann-Whitney U test, p < 10-16, Supp. Fig. 4-5). Overall, our results 334 

suggest that a subpopulation of human radial glia have much higher EDNRB expression than 335 

chimpanzee radial glia. 336 

 337 

EDNRB haploinsufficiency reduces proliferation of cerebellar granule precursor cells and 338 

chemical inhibition of EDNRB signaling reduces proliferation of mouse radial glia [43,44]. Based 339 

on this, the change in EDNRB expression may have promoted human brain expansion by 340 

increasing the proliferation of the subpopulation of radial glia that express EDNRB. In addition, a 341 

recent study identified a population of caudal late interneuron progenitor (CLIP) cells marked by 342 

expression of EDNRB and PTGDS along with caudal ganglionic eminence markers [45]. As 343 

both EDNRB and PTGDS have strongly human-biased ASE it would be interesting to 344 

investigate if this population of cells exists in chimpanzee brain organoids and if it may have 345 
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expanded in humans. The phenotypic implications of the higher ENDRB and PTGDS but lower 346 

EDN1 expression in humans will be an exciting area for further research. 347 

Thus far, we have primarily focused on the differences between our new method and the 348 

traditional method for ranking genes. Having established their differences, we now turn to 349 

analysis of results from our new approach (Fig. 1 and Methods). To examine human- and 350 

chimpanzee-biased genes separately, we sorted the list so that highly ranked genes with 351 

human-biased expression are at the top of the list and highly ranked genes with chimpanzee-352 

biased expression are at the bottom of the list. In effect, this results in a test for directionally-353 

biased cis-regulatory divergence that exceeds the cis-regulatory variation among most human 354 

alleles present in the GTEx population. Enrichment testing with GSEAPY identified several 355 

enriched gene sets at an FDR cutoff of 0.25 (the cutoff suggested by the GSEA authors) 356 

including Other glycan degradation (human-biased), Spastic Dysarthria (human-biased), and 357 

Gluconeogenesis (chimpanzee-biased) (Fig 5 A-F, Supp. Table 3). In all three cases, there 358 

were zero genes showing expression bias in the other direction at an identical rank cutoff (p = 359 

0.00012 for gluconeogenesis, p = 0.031 for Other glycan degradation, and p = 0.00195 for 360 

Spastic Dysarthria by binomial test), suggesting lineage-specific selection on genes with 361 

constrained expression in these gene sets [40]. Notably, the bias in gene expression found in 362 

the hybrids for these genes generally matched the bias in expression found in the parental 363 

cortical spheroids (Supp. Fig. 6A-C). 364 

 365 

All three of these enriched categories may influence human-specific phenotypes. 366 

Gluconeogenesis siphons oxaloacetate from the TCA cycle and eventually produces glucose 367 

[46]. Many of the gene expression changes driving the gluconeogenesis enrichment appear to 368 

be human-derived compared to other great apes (Supp. Fig. 7). Decreased gluconeogenesis in 369 

the human lineage would likely enable increased flux through other anabolic pathways and the 370 

TCA cycle possibly increasing the availability of oxaloacetate for anabolic pathways that 371 
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promote proliferation. Spastic dysarthria is a condition in which patients speak in a characteristic 372 

slow, regular, monotone manner [47]. Loss of function of genes in this category are associated 373 

with spastic dysarthria and show systematic human bias, which may be connected to the human 374 

capacity for speech (Fig 5D). Finally, six genes that were ranked very highly by our method and 375 

all have DESeq2 FDR < 0.1 drive the “Other glycan degradation” enrichment. Interestingly, loss 376 

of function of three of the six human-biased glycan degradation genes (MANBA, MAN2B2, and 377 

MAN2B1) is associated with intellectual disability [48–50]. 378 

  379 
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 380 

Figure 5 Evidence of lineage-specific selection: A) Summary of Spastic dysarthria 381 

enrichment (from Human Phenotype Ontology) [33,37]. In A, B, and C, each blue line 382 

represents a gene in the gene set and the green curve is the cumulative enrichment score. B) 383 

Summary of Other glycan degradation enrichment (from KEGG). C) Summary of 384 

Gluconeogenesis enrichment (from REACTOME). D) Volcano plot summarizing of Log2 fold-385 

changes for genes driving the enrichments for Spastic Dysarthria, Other glycan degradation, 386 

and Gluconeogenesis. All genes are human-biased for Other glycan degradation and Spastic 387 

Dysarthria whereas all genes are chimpanzee-biased for Gluconeogenesis.  388 

  389 
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Discussion  390 

 391 

Here we presented a method incorporating population-scale ASE data as a proxy for constraint 392 

on expression. This ranking method helps reveal candidate genes and signatures of selection 393 

that may explain phenotypic differences between humans and chimpanzees. The test is based 394 

on the logic of comparing within- to between-species variation, similar in spirit to the Hudson-395 

Kreitman-Aguade test although it is based on variation in ASE rather than protein-coding 396 

sequences [51]. Although the phenotypic consequences of these differences remain to be 397 

determined, our finding of polygenic lineage-specific selection on several gene sets suggests 398 

that these changes must have some phenotypic effects in order to be under natural selection. 399 

Collectively, these findings more than double the number of known cases of lineage-specific 400 

polygenic selection on gene expression between humans and chimpanzees (the two previous 401 

examples being Hedgehog signaling and astrocyte-related genes) [8,9]. 402 

  403 

Importantly, the strong correlation between the GTEx brain vs. non-brain rankings (Fig. 2A) and 404 

GTEx vs. fetal cortex rankings (Fig. 2D) suggests that comparison to the GTEx ASE distribution 405 

can be meaningfully compared with between-species ASE measured in diverse cell types and 406 

organoids and that comparison to the GTEx population distribution will be useful for other cell 407 

types and organoids. The method can also be applied to any species with sufficient gene 408 

expression data, e.g. comparing ASE in Arabidopsis interspecies hybrids to ASE within A. 409 

thaliana [52].  410 

Conclusion: 411 

We outlined a strategy that uses allele-specific expression data from interspecies hybrids and 412 

population-scale studies to prioritize genes that are more likely to impact species-specific traits 413 
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and applied this method to data from human-chimpanzee cortical spheroids. Our findings 414 

provide opportunities for targeted follow-up experiments and increase our understanding of how 415 

polygenic selection has shaped human and chimpanzee evolution. Overall, we anticipate that 416 

our method will become a useful tool for identifying functionally significant gene expression 417 

changes between species, and will contribute to our understanding of how gene expression 418 

drives phenotypic diversification. 419 

 420 

Methods: 421 

 422 

Read Alignment and RNA-seq Data Processing 423 

Data from hybrid cortical spheroids was mapped as previously described [9]. Briefly, Hornet, a 424 

rewritten version of WASP, was used in conjunction with a curated list of human-chimpanzee 425 

SNPs and indels to correct for mapping bias. Reads for every sample were aligned to both the 426 

human and chimpanzee genomes and the log2 fold-change from both alignments was 427 

compared. Any genes with log2 fold-change that differed by greater than 1 were removed. We 428 

used the ASE log2 fold-change (log2 FC) values available in the supplemental tables of Agoglia 429 

et al. Although this dataset is restricted to hybrids from two humans and two chimpanzees, 430 

previous work has shown that interspecies differences dominate over differences between 431 

populations within a species so we expect that our results generalize well. It also contains 432 

multiple independently derived hybrid lines and independent differentiations, reducing 433 

confounding by technical differences. Throughout, for hybrids the mean log2 FC between human 434 

genome mapped and chimpanzee genome mapped reads is stated as well as the highest p-435 

value. Additional data was downloaded from GSE127898, GSE106245, GSE153076, and 436 

phs000755.v2.p1 and mapped separately for each dataset to the respective species’ genome 437 
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(PanTro6 for chimpanzee, hg38 for human, mmul10 for rhesus macaque, Gorgor6 for gorilla, 438 

and PonAbe3 for orangutan) [53–56]. We used STAR v2.5.4 with arguments: -outSAMattributes 439 

MD NH -outFilterMultimapNmax 1 -sjdbGTFfile -sjdbOverhang N where N is 1 less than the 440 

read length used for each respective dataset [57]. For paired end reads, we used Picard to 441 

remove duplicates with argument: DUPLICATE_SCORING_STRATEGY = RANDOM [58]. We 442 

used HT-Seq with the following arguments: -t exon -i gene_name -m intersection-strict -r pos to 443 

count reads overlapping gene bodies [59]. Transcripts per million (TPM) was computed as 444 

previously described [60]. We used the likelihood ratio test in DESeq2 to test for differential 445 

expression in the downloaded datasets with RIN and sex included as covariates for the 446 

Khrameeva et al. dataset [23,61]. We binarized RIN values as high if greater than or equal to 447 

7.5 and low otherwise as we do not generally expect the expression level of genes to scale 448 

linearly with RIN. 449 

 450 

Comparison of Population and Interspecies ASE Distributions 451 

 452 

GTEx data was downloaded from https://www.gtexportal.org/home/datasets and the fetal cortex 453 

ASE data was kindly provided by the Stein laboratory [21,27]. GTEx contains data from 838 454 

individuals and the data from the Stein laboratory was generated from approximately 235 455 

individuals. To preprocess the GTEx data, we split the file into two files each containing read 456 

counts from 1 of the alleles with a custom R script. As cortical spheroids are a mixture of 457 

different cell types including neural progenitors and immature neurons, we pooled fetal cortical 458 

wall, neural progenitor, and neuron counts per individual in the fetal cortex dataset. For each 459 

gene in each sample, we added one count to each gene (to prevent division by zero) and 460 

computed the ASE ratio as the ratio of counts from allele 1 (the reference) to counts from allele 461 
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2. The distribution for each gene was then normalized so that the median was 1. This 462 

normalization ensures that the Mann-Whitney U-test p-values only take into account the 463 

variance in allelic expression in the human population and are not confounded by consistently 464 

higher/lower expression from a particular allele. Notably, flipping the sign of each value in the 465 

GTEx ASE distribution had minimal effect on the rankings (Spearman’s rho = 0.999, p < 10-300 466 

for day 50, day 100, and day 150 after the beginning of cortical spheroid differentiation) 467 

supporting the efficacy of the correcting the median to 1 in isolating the variance of the human 468 

population expression distribution. All samples with at least 10 counts (not including the single 469 

added count) from each allele for a sample were included in the ASE population distribution. 470 

Notably the rankings and our results are robust to requiring at least 5 counts from each allele 471 

instead of 10 (Spearman’s rho = 0.996, p < 10-300). To filter out genes that are lowly expressed 472 

in cortical spheroids, we removed genes with an average number of counts from the 473 

chimpanzee and human alleles less than 25 (i.e. mean of human and chimpanzee read count 474 

less than 25 and mean of chimpanzee read count less than 25). In addition, we filtered out any 475 

genes showing mapping bias (listed in the supplemental tables of Agoglia et al.) as well as 476 

genes on chromosomes 18 and 20 as parts of these chromosomes were duplicated in some 477 

cortical spheroid samples. Previous work has shown that these structural changes have minimal 478 

effect on the computation of ASE values for genes outside the duplicated region [9]. After 479 

filtering, we computed the interspecies ASE distribution in similar manner to the population ASE 480 

distribution (i.e. by taking the ratio of the counts from the human allele to the ratio of the counts 481 

of the chimpanzee allele). However, we did not require 10 counts from each allele and did not 482 

normalize the medians. We did not require 10 counts from each allele because we expect 483 

extreme differences in expression to be relatively common in between species comparisons. 484 

We compared the log2(ASE Ratio) interspecies distribution to the population distribution using 485 

the Mann-Whitney U Test (a nonparametric test robust to the distribution of data) and used the 486 

resulting p-values to rank genes as described below.  487 
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 488 

Generation of Gene Rankings and Enrichment Analysis 489 

 490 

First, we ranked genes by the Mann-Whitney U Test p-value with the lowest p-value receiving 491 

the highest rank. To reduce false positives at the top of the list, we separately ranked genes 492 

with DESeq2 FDR less than or equal to 0.1 and greater than 0.1. We then concatenated the list 493 

so that genes with FDR less than or equal to 0.1 were always ranked higher than genes with 494 

FDR greater than 0.1 (referred to as the MWU ranking). This consensus gene ranking was then 495 

used in GSEAPY preranked with the rankings used as the score that GSEAPY uses to sort the 496 

list. All results highlighted in the text replicated when using 0.05 as a cutoff instead of 0.1. We 497 

used REVIGO in conjunction with a custom python script to generate the plots shown in figure 2 498 

[62].  499 

 500 

To compare to the traditional method, we also ranked genes by the DESeq2 derived FDR and 501 

used that in GSEAPY preranked (referred to as the DESeq2 ranking). To highlight differences 502 

between the two methods, we computed the difference in ranks between the two methods by 503 

subtracting the DESeq2 ranking from the MWU ranking and sorting the list on those rankings for 504 

use in GSEAPY. In this context, highly ranked genes are likely those that show relatively mild 505 

gene expression changes but have more constrained expression.  506 

 507 

We next performed the expression sign test. First, we generated a list of all gene sets across all 508 

tested ontologies that were nominally enriched at an FDR of 0.25 (using the FDR from GSEAPY 509 

preranked) in at least one time point and that had greater than 10 genes driving the enrichment. 510 
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To avoid testing the same gene set multiple times, we only tested each gene set at the 511 

timepoint that had the lowest GSEAPY FDR. We used the average of the DESeq2 log2 FC from 512 

mapping to the human allele and from mapping to the chimpanzee allele as input for the 513 

binomial test to identify gene sets with significantly more human-biased or chimpanzee-biased 514 

changes than expected by chance. This log2 FC was generated by comparing the reads from 515 

each species’ allele in the cortical spheroid data. For example, if a gene set had 8 human-516 

biased and 3 chimpanzee-biased genes, then the binomial test was used with k = 8, n = 11, and 517 

p = 0.5. We considered any gene set with Benjamini-Hochberg corrected FDR < 0.1 to be 518 

significant.  519 

Finally, we ranked the genes using a signed version of the MWU ranking. More specifically, 520 

genes were effectively ranked by the log10(MWU p-value) multiplied by the sign of mean 521 

DESeq2 log2 fold-change so that top ranked genes with negative L2FC are at the bottom of the 522 

list and top ranked genes with positive L2FC are at the top of the list. This ranking was then 523 

used in GSEAPY preranked. All statistical tests (Mann Whitney U Test, Binomial Test, 524 

correlations) were performed in python using the implementation in scipy. 525 

For enrichment testing, we tested gene sets from the Gene Ontology Cellular Component and 526 

Molecular Function categories, the Human Phenotype Ontology, KEGG, and REACTOME using 527 

the same version as in Gokhman et. al [8,33–37]. Regardless of which ranking was used, we 528 

used GSEAPY preranked with the following arguments: processes=4, permutation_num=1000, 529 

seed=6, min_size = 10, max_size = 300 to test for enrichment [28]. Following the authors 530 

suggestion, we considered any category with an FDR below 0.25 to be nominally enriched [28]. 531 

We required that ASE data be available from at least 50 individuals in GTEx for a gene to be 532 

included in the ranking. We conducted gene set enrichment analysis with the four different 533 

rankings described above.  534 

 535 
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Single Cell RNA-seq Data Processing and Analysis 536 

 537 

Single cell data from human and chimpanzee organoids and associated metadata were 538 

downloaded from E-MTAB-7552 [42]. We used SCANPY to read in the counts matrix and filter 539 

the data so that only data from 1 month, 2 month, and 4 month old organoids remained [63]. We 540 

used a two-sided Mann Whitney U Test to compare EDNRB log2(counts per million) between 541 

the “RGC early 2” cluster and all chimpanzee clusters with and without cells with 0 EDNRB 542 

counts included. Mean counts by cell type and tissue for fetal human expression were 543 

downloaded from GSE156793 [64]. We compared cerebrum counts to all other organs except 544 

eye and cerebellum due to their similarity to the cerebrum and used a binomial test to determine 545 

if more tissues exhibited higher expression than brain than expected by chance. 546 

 547 
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Description of Additional file 2: File name is Additional file 2.csv. Sign test on enriched terms 581 

for difference between traditional and population-based method. This file contains the results for 582 

the sign test applied to a subset (see Methods) of the significant terms from Additional file 1.  583 
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 584 

Supplementary Figure 1 Relationship between the variance of the GTEx ASE distribution 585 

and the probability of Haploinsufficiency score: A) Shows the relationship between the 586 

variance of the GTEx ASE distribution and the probability of Haploinsufficiency score (a 587 

measure of constraint on gene expression) for each gene tested in this manuscript. As the 588 

probability of Haploinsufficiency increases, the variance of the GTEx distribution decreases. The 589 

spearman correlation is -0.28 with p < 10-170. 590 
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Supplementary Figure 2 Exploration of changes in CUX1 expression: A) Summary of RNA 593 

polymerase II regulatory region sequence-specific DNA binding. Each blue line represents a 594 

gene in the gene set and the green curve is the cumulative enrichment score. Genes in the 595 

gene set are enriched at the top of the list. B) Expression of CUX1 in human-chimpanzee hybrid 596 

cortical spheroids (CS). Expression is shown in transcripts per million (TPM). Expression from 597 

the chimpanzee allele is consistently higher than expression from the human allele. C) 598 

Expression of CUX1 in human and chimpanzee parental cortical spheroids (CS). Expression is 599 

shown in transcripts per million (TPM). D) Comparison of the GTEx ASE distribution for CUX1 to 600 

the human-chimpanzee hybrid ASE distribution. E) Comparison of the fetal cortex ASE 601 

distribution for CUX1 to the human-chimpanzee ASE distribution. The human-chimpanzee 602 

hybrid ASE values lie well outside the human fetal cortex distribution. 603 
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Supplementary Figure 3 Changes in EDNRB expression are human derived: A) 606 

Comparison of EDNRB expression between early-stage human and gorilla cerebral organoids 607 

[55]. Human expression is considerably higher than gorilla expression across timepoints 608 

indicating that EDRNB is upregulated in the human lineage (as opposed to downregulated in the 609 

chimpanzee lineage). B) Comparison of EDNRB expression between early-stage human, 610 

chimpanzee, orangutan, and rhesus macaque cerebral organoids [53]. Human expression is 611 

considerably higher than rhesus macaque expression across timepoints. However, orangutan 612 

EDNRB expression is high as well, indicating an independent increase in expression in the 613 

orangutan lineage. C) Phylogenetic tree of old-world primates. Red text indicates a high EDNRB 614 

expression and blue text indicates low expression. Notably, as gorillas are more closely related 615 

to humans than organgutans this implies that the most parsimonious explanation for the data is 616 

that the last common ancestor of gorillas, chimpanzees, and humans had low EDNRB 617 

expression and that there was an increase in the human lineage. 618 
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 620 

Supplementary Figure 4 A population of human radial glia expresses EDNRB: A) Plot 621 

showing mean expression of EDNRB across chimpanzee and human cell clusters [42]. 622 

Expression in the “RGCs early 2” cluster is significantly higher than in all chimpanzee clusters 623 

by Mann-Whitney U Test (p < 10-16 for all comparisons).  624 
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 626 

Supplementary Figure 5 Expression of EDNRB is higher in human radial glia: The 627 

distribution of EDNRB expression in cells with non-zero counts [42]. As there were many more 628 

chimpanzee cells in the Chimp NSC/radial glia category, we down-sampled the number of cells 629 

so that there were an equal number of EDNRB-expressing cells. The distribution in chimpanzee 630 

NSC/radial glia is much more shifted left than that of the human “RGCs Early 2” cluster 631 

indicating higher expression in the human cluster.  632 
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Supplementary Figure 6 Many gene expression changes have the same direction in 635 

hybrid and parental organoids: A) Barplot showing the log2 fold-changes of genes driving the 636 

Spastic dysarthria enrichment comparing parental human and chimpanzee cortical spheroids at 637 

day 100 of differentiation. Asterisks indicate a significant difference for that gene at and FDR 638 

cutoff of 0.1. B) Same as in A but for genes driving the Other glycan degradation enrichment. C) 639 

Same as in A, but for genes driving the Gluconeogenesis enrichment.  640 
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 642 

Supplementary Figure 7 Changes in many gluconeogenesis genes are human-derived: A) 643 

Barplot showing that many changes in the expression of gluconeogenesis genes are human-644 

derived and occur in parental organoids. Data are from Week 5 cerebral organoids [53]. 645 

Asterisks indicate genes for which the human-orangutan difference is significant at an FDR 646 

cutoff of 0.1 and with lower expression in human. Genes whose down-regulation is not human-647 

derived generally show insignificant differences in expression between humans and 648 

chimpanzees potentially indicating compensatory trans-acting genetic changes.  649 
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 651 

Supplementary Figure 9: A) Explanation of computation of difference in ranks. Population ASE 652 

Ranking was subtracted from the traditional ranking. Due to this, genes that are highly ranked in 653 

both the traditional and population ASE rankings (likely those with low p-values and high 654 

difference in ASE) are near the middle of the list in the difference of ranks. On the other hand, 655 

genes with moderately high p-values and high constraint on expression are ranked lowly in the 656 

traditional ranking, but near the middle in the population ASE ranking, and so are very high in 657 

the difference in ranks. 658 

  659 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.03.29.486301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/


43 
 

References 660 

 661 

1. Reilly SK, Noonan JP. Evolution of Gene Regulation in Humans. Annual Review of Genomics 662 

and Human Genetics. 2016;17:45–67.  663 

2. Romero IG, Ruvinsky I, Gilad Y. Comparative studies of gene expression and the evolution of 664 

gene regulation. Nature Reviews Genetics. 2012;13:505–16.  665 

3. King M-C, Wilson AC. Evolution at Two Levels in Humans and Chimpanzees. Science 666 

(1979). 1975;188:107–16.  667 

4. Fraser HB. Gene expression drives local adaptation in humans. Genome Research. 668 

2013;23:1089–96.  669 

5. Kelley JL, Gilad Y. Effective study design for comparative functional genomics. Nature 670 

Reviews Genetics. 2020;21:385–6.  671 

6. Housman G, Gilad Y. Prime time for primate functional genomics. Current Opinion in 672 

Genetics & Development. 2020;62:1–7.  673 

7. Zhu Y, Sousa AMM, Gao T, Skarica M, Li M, Santpere G, et al. Spatiotemporal transcriptomic 674 

divergence across human and macaque brain development. Science (1979). 2018;362.  675 

8. Gokhman D, Agoglia RM, Kinnebrew M, Gordon W, Sun D, Bajpai VK, et al. Human–676 

chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution. Nature 677 

Genetics. 2021;53:467–76.  678 

9. Agoglia RM, Sun D, Birey F, Yoon S-J, Miura Y, Sabatini K, et al. Primate cell fusion 679 

disentangles gene regulatory divergence in neurodevelopment. Nature. 2021;592:421–7.  680 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.03.29.486301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/


44 
 

10. Hu CK, York RA, Metz HC, Bedford NL, Fraser HB, Hoekstra HE. cis-Regulatory changes in 681 

locomotor genes are associated with the evolution of burrowing behavior. Cell Reports. 682 

2022;38:110360.  683 

11. Mack KL, Campbell P, Nachman MW. Gene regulation and speciation in house mice. 684 

Genome Research. 2016;26:451–61.  685 

12. Combs PA, Krupp JJ, Khosla NM, Bua D, Petrov DA, Levine JD, et al. Tissue-Specific cis-686 

Regulatory Divergence Implicates eloF in Inhibiting Interspecies Mating in Drosophila. Current 687 

Biology. 2018;28:3969-3975.e3.  688 

13. Zhang X, Borevitz JO. Global Analysis of Allele-Specific Expression in Arabidopsis thaliana. 689 

Genetics. 2009;182:943–54.  690 

14. Song JHT, Grant RL, Behrens VC, Kučka M, Roberts Kingman GA, Soltys V, et al. Genetic 691 

studies of human–chimpanzee divergence using stem cell fusions. Proceedings of the National 692 

Academy of Sciences. 2021;118.  693 

15. Prud’homme B, Gompel N, Carroll SB. Emerging principles of regulatory evolution. 694 

Proceedings of the National Academy of Sciences. 2007;104:8605–12.  695 

16. Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary 696 

processes underlying divergence. Nature Reviews Genetics. 2012;13:59–69.  697 

17. Blekhman R, Oshlack A, Chabot AE, Smyth GK, Gilad Y. Gene Regulation in Primates 698 

Evolves under Tissue-Specific Selection Pressures. PLoS Genetics. 2008;4:e1000271.  699 

18. Gilad Y, Oshlack A, Smyth GK, Speed TP, White KP. Expression profiling in primates 700 

reveals a rapid evolution of human transcription factors. Nature. 2006;440:242–5.  701 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.03.29.486301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/


45 
 

19. Roy S, Wapinski I, Pfiffner J, French C, Socha A, Konieczka J, et al. Arboretum: 702 

Reconstruction and analysis of the evolutionary history of condition-specific transcriptional 703 

modules. Genome Research. 2013;23:1039–50.  704 

20. Rohlfs R v., Nielsen R. Phylogenetic ANOVA: The Expression Variance and Evolution 705 

Model for Quantitative Trait Evolution. Systematic Biology. 2015;64:695–708.  706 

21. Castel SE, Aguet F, Mohammadi P, Aguet F, Anand S, Ardlie KG, et al. A vast resource of 707 

allelic expression data spanning human tissues. Genome Biology. 2020;21:234.  708 

22. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful 709 

Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological). 710 

1995;57:289–300.  711 

23. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-712 

seq data with DESeq2. Genome Biology. 2014;15:550.  713 

24. Collins RL, Glessner JT, Porcu E, Niestroj L-M, Ulirsch J, Kellaris G, et al. A cross-disorder 714 

dosage sensitivity map of the human genome. Genomic Medicine Institute  [Internet]. Lerner 715 

Research Institute; 15:23–5. Available from: https://doi.org/10.1101/2021.01.26.21250098 716 

25. Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, et al. Functional cortical 717 

neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods. 718 

2015;12:671–8.  719 

26. Ferraro NM, Strober BJ, Einson J, Abell NS, Aguet F, Barbeira AN, et al. Transcriptomic 720 

signatures across human tissues identify functional rare genetic variation. Science (1979). 721 

2020;369:eaaz5900.  722 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.03.29.486301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/


46 
 

27. Aygün N, Elwell AL, Liang D, Lafferty MJ, Cheek KE, Courtney KP, et al. Brain-trait-723 

associated variants impact cell-type-specific gene regulation during neurogenesis. The 724 

American Journal of Human Genetics. 2021;108:1647–68.  725 

28. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set 726 

enrichment analysis: A knowledge-based approach for interpreting genome-wide expression 727 

profiles. Proceedings of the National Academy of Sciences. 2005;102:15545–50.  728 

29. Platzer K, Cogné B, Hague J, Marcelis CL, Mitter D, Oberndorff K, et al. Haploinsufficiency 729 

of CUX1 Causes Nonsyndromic Global Developmental Delay With Possible Catch-up 730 

Development. Annals of Neurology. 2018;84:200–7.  731 

30. Paciorkowski AR, Traylor RN, Rosenfeld JA, Hoover JM, Harris CJ, Winter S, et al. MEF2C 732 

Haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal 733 

and ventral neuronal developmental pathways. neurogenetics. 2013;14:99–111.  734 

31. Runge K, Mathieu R, Bugeon S, Lafi S, Beurrier C, Sahu S, et al. Disruption of NEUROD2 735 

causes a neurodevelopmental syndrome with autistic features via cell-autonomous defects in 736 

forebrain glutamatergic neurons. Molecular Psychiatry. 2021;26:6125–48.  737 

32. Doan RN, Bae B-I, Cubelos B, Chang C, Hossain AA, Al-Saad S, et al. Mutations in Human 738 

Accelerated Regions Disrupt Cognition and Social Behavior. Cell. 2016;167:341-354.e12.  739 

33. Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, et al. 740 

The Human Phenotype Ontology in 2021. Nucleic Acids Research. 2021;49:D1207–17.  741 

34. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S. AmiGO: online access to 742 

ontology and annotation data. Bioinformatics. 2009;25:288–9.  743 

35. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The reactome 744 

pathway knowledgebase. Nucleic Acids Research. 2019;  745 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.03.29.486301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/


47 
 

36. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference 746 

resource for gene and protein annotation. Nucleic Acids Research. 2016;44:D457–62.  747 

37. Köhler S, Doelken SC, Mungall CJ, Bauer S, Firth H v., Bailleul-Forestier I, et al. The 748 

Human Phenotype Ontology project: linking molecular biology and disease through phenotype 749 

data. Nucleic Acids Research. 2014;42:D966–74.  750 

38. Girskis KM, Stergachis AB, DeGennaro EM, Doan RN, Qian X, Johnson MB, et al. Rewiring 751 

of human neurodevelopmental gene regulatory programs by human accelerated regions. 752 

Neuron. 2021;109:3239-3251.e7.  753 

39. Kita R, Venkataram S, Zhou Y, Fraser HB. High-resolution mapping of cis -regulatory 754 

variation in budding yeast. Proceedings of the National Academy of Sciences. 755 

2017;114:E10736–44.  756 

40. Fraser HB. Genome-wide approaches to the study of adaptive gene expression evolution. 757 

BioEssays. 2011;33:469–77.  758 

41. Adams KL, Riparini G, Banerjee P, Breur M, Bugiani M, Gallo V. Endothelin-1 signaling 759 

maintains glial progenitor proliferation in the postnatal subventricular zone. Nature 760 

Communications. 2020;11:2138.  761 

42. Kanton S, Boyle MJ, He Z, Santel M, Weigert A, Sanchís-Calleja F, et al. Organoid single-762 

cell genomic atlas uncovers human-specific features of brain development. Nature. 763 

2019;574:418–22.  764 

43. Vidovic M, Chen M-M, Lu Q-Y, Kalloniatis KF, Martin BM, Tan AHY, et al. Deficiency in 765 

Endothelin Receptor B Reduces Proliferation of Neuronal Progenitors and Increases Apoptosis 766 

in Postnatal Rat Cerebellum. Cellular and Molecular Neurobiology. 2008;28:1129–38.  767 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.03.29.486301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/


48 
 

44. Shinohara H, Udagawa J, Morishita R, Ueda H, Otani H, Semba R, et al. Gi2 Signaling 768 

Enhances Proliferation of Neural Progenitor Cells in the Developing Brain. Journal of Biological 769 

Chemistry. 2004;279:41141–8.  770 

45. Eichmüller OL, Corsini NS, Vértesy Á, Morassut I, Scholl T, Gruber V-E, et al. Amplification 771 

of human interneuron progenitors promotes brain tumors and neurological defects. Science 772 

(1979). 2022;375.  773 

46. Gkini V, Namba T. Glutaminolysis and the Control of Neural Progenitors in Neocortical 774 

Development and Evolution. The Neuroscientist. 2022;107385842110690.  775 

47. Clark HM, Duffy JR, Whitwell JL, Ahlskog JE, Sorenson EJ, Josephs KA. Clinical and 776 

imaging characterization of progressive spastic dysarthria. European Journal of Neurology. 777 

2014;21:368–76.  778 

48. Alkhayat AH, Kraemer SA, Leipprandt JR, Macek M, Kleijer WJ, Friderici KH. Human  -779 

Mannosidase cDNA Characterization and First Identification of a Mutation Associated with 780 

Human  -Mannosidosis. Human Molecular Genetics. 1998;7:75–83.  781 

49. Cathey SS, Sarasua SM, Simensen R, Pietris K, Kimbrell G, Sillence D, et al. Intellectual 782 

functioning in alpha‐mannosidosis. JIMD Reports. 2019;50:44–9.  783 

50. Blomqvist M, Smeland MF, Lindgren J, Sikora P, Riise Stensland HMF, Asin-Cayuela J. β-784 

Mannosidosis caused by a novel homozygous intragenic inverted duplication in MANBA. 785 

Molecular Case Studies. 2019;5:a003954.  786 

51. Hudson RR, Kreitman M, Aguadé M. A Test of Neutral Molecular Evolution Based on 787 

Nucleotide Data. Genetics. 1987;116:153–9.  788 

52. Zhang H, Zhang F, Yu Y, Feng L, Jia J, Liu B, et al. A Comprehensive Online Database for 789 

Exploring ∼20,000 Public Arabidopsis RNA-Seq Libraries. Molecular Plant. 2020;13:1231–3.  790 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.03.29.486301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/


49 
 

53. Field AR, Jacobs FMJ, Fiddes IT, Phillips APR, Reyes-Ortiz AM, LaMontagne E, et al. 791 

Structurally Conserved Primate LncRNAs Are Transiently Expressed during Human Cortical 792 

Differentiation and Influence Cell-Type-Specific Genes. Stem Cell Reports. 2019;12:245–57.  793 

54. Zhu Y, Sousa AMM, Gao T, Skarica M, Li M, Santpere G, et al. Spatiotemporal 794 

transcriptomic divergence across human and macaque brain development. Science (1979). 795 

2018;362.  796 

55. Benito-Kwiecinski S, Giandomenico SL, Sutcliffe M, Riis ES, Freire-Pritchett P, Kelava I, et 797 

al. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell. 798 

2021;184:2084-2102.e19.  799 

56. Khrameeva E, Kurochkin I, Han D, Guijarro P, Kanton S, Santel M, et al. Single-cell-800 

resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome 801 

Research. 2020;30:776–89.  802 

57. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast 803 

universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.  804 

58. Broad Institute. Picard Toolkit. 2019.  805 

59. Givanna H Putri SAPTPJEPFZ. Analysing high-throughput sequencing data in Python with 806 

HTSeq 2.0. ArXiv. 2021;  807 

60. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene expression estimation 808 

with read mapping uncertainty. Bioinformatics. 2010;26:493–500.  809 

61. Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: 810 

removing the noise and preserving large differences. Bioinformatics. 2019;35:2084–92.  811 

62. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO Summarizes and Visualizes Long Lists of 812 

Gene Ontology Terms. PLoS ONE. 2011;6:e21800.  813 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.03.29.486301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/


50 
 

63. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data 814 

analysis. Genome Biology. 2018;19:15.  815 

64. Cao J, O’Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, et al. A human cell atlas of 816 

fetal gene expression. Science (1979). 2020;370.  817 

  818 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.03.29.486301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/

