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Abstract

Measuring allele-specific expression in interspecies hybrids is a powerful way to detect cis-
regulatory changes underlying adaptation. However, it remains difficult to identify genes most
likely to explain species-specific traits. Here, we outline a simple strategy that leverages
population-scale allele-specific RNA-seq data to identify genes that have constrained cis-
regulation within species yet show divergence between species. Applying this strategy to data
from human-chimpanzee hybrid cortical spheroids, we identify signatures of lineage-specific
selection on genes related to cellular proliferation, speech, and glucose metabolism. We also
highlight cis-regulatory divergence in CUX7 and EDNRB that may shape the unique trajectory of

human brain development.
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Background

Changes in gene expression are thought to play a major role in the evolution of complex traits
[1-4]. As a result, comparing gene expression between species can enable the identification of
molecular changes underlying phenotypic divergence. However, obtaining accurate
comparisons of gene expression between species is challenging due to confounding factors like
age, environmental effects, differential cell type abundances, differences in developmental
timing, and batch effects [5-7]. The use of interspecies hybrids overcomes these issues through
the measurement of allele-specific expression (ASE) [8,9]. In hybrids, the genomes of both
species share the same nucleus and are exposed to identical environments, so there are no
confounding environmental, batch, compositional, or developmental effects. This approach has
been successfully applied in many species and advanced our understanding of the evolution of
gene regulation and its role in establishing phenotypic variation [10-13]. Furthermore, the recent
development of human-chimpanzee allotetraploid “hybrid” cells and organoids enables detailed,
accurate quantification of differences in gene expression between humans and our closest living

relatives [8,9,14].

Hybrids also enable the separation of cis and frans components of interspecies differences in
gene expression [8,9]. The cis-component is caused by differences in regulatory elements such
as promoters or enhancers that only affect the expression of a nearby gene or genes on the
same DNA molecule. The frans-component stems from changes in diffusible molecules such as
transcription factors that can regulate gene expression throughout the genome. In hybrids the
genomes of the two species are exposed to the same trans factors. As a result, allele-specific
differences in gene expression can only be explained by cis-regulatory differences. In addition,

using ASE to identify differentially expressed genes (referred to as AS-DEGs) enables
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elimination of many confounding factors (including the environmental, batch, compositional, and
developmental timing effects mentioned above). This not only increases the signal-to-noise
ratio, but also disentangles important, potentially evolutionarily significant gene-specific cis-

regulation from broad trans-acting changes [4,15,16].

While the resulting list of AS-DEGs from hybrids is likely more accurate and isolates the cis-
regulatory component, there are often thousands of AS-DEGs which makes it difficult to
prioritize candidate genes and pathways that may have played a major role in evolution.
Differential expression p-values and fold changes are commonly used to rank genes in
comparative RNA-seq studies. However, large and significant fold changes may often result
from low evolutionary constraint on their expression levels, as opposed to being under positive
directional selection. These large fold changes in unconstrained genes (e.g. pseudogenes)
could result in no or very limited phenotypic changes, since a lack of constraint implies a lack of
phenotypic consequence of changes in expression. Therefore, a large and significant fold
change alone is not sufficient to determine the importance of the gene in the evolution of the
parental species. For example, consider a gene whose expression varies by two-fold between
species. If this gene also varies by two-fold within each species individual members of the same
species, it is unlikely to account for any species-specific phenotypes. In contrast, a gene that is
under strong stabilizing selection—uwith little variation in expression within species but with a
two-fold change between species—is more likely to have contributed to phenotypic divergence
between species. Most studies of expression divergence between species do not include any
comparison to within-species variation; the few exceptions have been limited by small sample

sizes and the confounding factors inherent to any between-species comparison [17-20].

Here, we describe a method that leverages population-scale ASE data to approximate

constraint on cis-regulation of gene expression. This method ranks AS-DEGs identified from
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interspecies hybrids in a way that is likely more able to prioritize adaptive, functionally significant
changes. We apply this method to ASE data from human-chimpanzee hybrid cortical spheroids
that recapitulate the gene expression patterns of the developing cerebral cortex. Using this
dataset, we identify lineage-specific selection on the expression of genes related to speech,
glucose metabolism, cellular proliferation, and glycan degradation [8,9]. In addition, we highlight
divergence in the expression of CUX1 and EDNRB that may have played an important role in

human brain evolution.

Results

In a typical ASE pipeline, AS-DEGs are identified by comparing the RNA-seq read counts from
the allele from species 1 and the allele from species 2 and ranked using a p-value for differential
expression (Fig. 1A). Various enrichment tests and knowledge from the literature can then be
used to identify interesting trends and prioritize candidate genes. However, these previous
methods do not consider within-species variation in gene expression levels (Fig. 1B). If some
genes have highly variable expression even within a single species, then differences of a similar
(or smaller) magnitude between species are unlikely to explain species-specific traits (e.g.
PDPR in Fig. 1B). Conversely, differential expression of genes with highly constrained
expression in at least one species are more likely to be responsible for differences in organismal
phenotypes between species. For example, ZNF331 and RPS16 have similar fold change
magnitudes in human-chimpanzee hybrid cortical spheroids (Fig. 1C). However, the fold change
for ZNF331 lies well within the distribution of fold changes between alleles in the human
population whereas the fold changes for RPS16 are nearly outside the human population
distribution (Fig. 1C). This indicates that the expression level of RPS16 is much more
constrained and that its differential cis-regulation between human and chimpanzee is more likely

to have phenotypic consequences.
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Figure 1 Outline of methodology: A) Outline of a typical ASE pipeline. Hybrids are generated
and RNA-seq is used to determine the relative expression of each allele. The ASE ratio is
computed as the ratio of species-specific read counts between the two alleles. B) The
distribution of the variance in ASE ratio for each gene in the GTEx data. Insets in orange show
two genes at the extreme ends (EEF2 with low variance suggesting strong stabilizing selection,
and PDPR with high variance suggesting less constraint on gene expression). C) Schematic of
incorporation of the interspecies ASE and population level ASE. ZNF331 has a wide range of
ASE values, and the human-chimpanzee ASE is well within the population distribution whereas
human-chimp ASE in RPS16 is on the edge of the population distribution indicating greater
potential for functional relevance. For both B and C, only GTEx brain samples were used as this
provided clearer illustrative examples, though results are similar using all GTEx samples (Fig

2A).
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117  To systematically apply this concept, we compute the distribution of ASE in one population and
118  use the Mann-Whitney U test to compare the population-level ASE distribution to the

119 interspecies ASE distribution for that gene (see Methods) [21]. The p-value reflects how

120 divergent the ASE of the gene is between species compared to its divergence within species.
121 We then use those p-values to separately rank genes with DESeq2 false discovery rate (FDR)
122  less than or equal to 0.1 and greater than 0.1 such that genes with FDR less than or equal to
123 0.1 are always ranked higher than genes with FDR greater than 0.1. This method prioritizes
124  genes based on whether the interspecies difference in ASE is of greater magnitude than would
125  be expected from the intra-species ASE distribution while minimizing false positives. Notably,
126  ranking solely by the Mann-Whitney U Test p-value would potentially rank lowly expressed

127  genes that are not significantly differentially expressed between species very highly, increasing
128  the number of genes falsely identified as differentially expressed. This problem is eliminated by
129  incorporating the DESeg2 FDR. The ranked list is then used in enrichment analyses and to
130 identify of top candidates [22,23].

131

132  We use a large publicly available data set, GTEX, to estimate ASE variance for every gene. The
133  GTEx v8 data includes RNA-seq from 838 individuals and 54 tissues, a total of 15,253 samples
134  in which ASE values have been previously estimated [21]. To minimize any allelic bias in the
135  population distribution, we normalize the median to 1. The resulting rankings are robust to

136  choosing either the reference or alternative allele as the numerator for the population

137  distribution (spearman’s rho = 0.999 p < 10-3%). Notably, we minimize any batch effects

138  between GTEx and the human-chimpanzee hybrid dataset by focusing on ASE since direct
139  comparisons of expression levels between data sets are not involved. For example, if some
140  technical factor (e.g. sequencing platform or RNA isolation method) caused a gene to show a
141  spurious 2-fold higher expression in GTEx samples compared to the hybrid data, this would

142 cancel out in the GTEx ASE calculation.
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143

144  First, we tested whether the variance in ASE in the human population is a reasonable proxy for
145  constraint on gene expression. We compared the variance of the GTEx ASE distribution for

146  each gene to its probability of haploinsufficiency score (pHI), a measure of sensitivity to a 50%
147  reduction in gene dosage [24]. We observe a significant negative correlation (Spearman’s rho =
148  -0.28, p < 107'°) between the two measures (Supp. Fig. 1) indicating that the variance of the
149  population-scale ASE distribution provides a reasonable proxy for constraint on expression

150 levels. This correlation remains significant when only five (as opposed to ten) reads from each
151  allele for a gene in a sample are required for inclusion (Spearman’s rho =-0.27, p < 10

152 '%3). Furthermore, as pHI is computed from copy number variation, there is no circularity in

153  reasoning when comparing pHI to the variance of the GTEx ASE distribution [24]. While this
154  indicates that variation in ASE is sufficient to approximate evolutionary constraint on gene

155  expression, the strength of this relationship should not be interpreted as a quantitative estimate
156  of how well ASE represents constraint. Overall, the correlation with pHI indicates that within-
157  species ASE variance contains useful information about evolutionary constraint on gene

158  expression.

159

160 In addition, it is important to determine the extent to which sample heterogeneity may affect

161  ASE variance and thereby impact our results. For example, GTEx contains data from a wide
162  range of adult tissues and donors have variable sex and ancestry. To determine to what extent
163  these factors affect our results, we divided the GTEXx dataset along lines of sex (male/female),
164  ancestry (African descent/European descent), and brain/non-brain tissues. In all cases, the

165  results obtained were very highly correlated (spearman’s rho > 0.97, p < 10", Figure 2 A-C).
166  This indicates that sample heterogeneity is unlikely to have major effects on our results and that
167  aggregating across all the GTEx samples provides a reasonable measure of constraint on gene

168  expression within the human population.
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169

170  In addition, the wide range of adult tissues in GTEx may not accurately reflect gene expression
171  constraint in cortical spheroids, which mimic fetal development [25,26]. To test this, we used an
172  ASE dataset generated from neural progenitors, neurons, and fetal cortical wall which

173  resembles the developmental stage of cortical spheroids more closely than GTEx samples [27].
174  There is a strong correlation between the rankings generated by comparing to the fetal cortex
175 dataset and GTEx (Spearman’s rho = 0.92, p < 107'° for each of day 50, day 100, and day 150
176  after initial differentiation of cortical spheroids; Fig 2D). While it is likely that the ASE variance
177  for some genes changes over development, these genes appear to be somewhat rare. Overall,
178  these results (Fig 2) indicate that even though gene expression levels vary considerably across
179  samples, ASE variance is robust to sample heterogeneity. This suggests that within- and

180  between-species ASE values can be meaningfully compared even when they are not based on
181 the same tissues or developmental timepoints. We therefore focused our analysis on the full
182  GTEx data in order to maximize statistical power but verified results for specific genes in the
183  fetal cortex data when appropriate.

184
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185

186  Figure 2 Influence of population differences on gene rankings: A) Comparison of ranks
187  generated by our method derived from brain vs. non-brain samples. Spearman’s rho = 0.98 p <
188 1077 B) Comparison of ranks using only GTEx subjects of African descent vs. subjects of

189  European descent. Spearman’s rho = 0.98, p < 10"'7°. C) Comparison of ranks using only male
190 vs. female GTEx subjects. Spearman’s rho = 0.99, p < 10-'7°. D) Comparison of ranks derived
191 from GTEXx (across all tissues) vs. data from fetal cortex and primary fetal neurons/neural

192  progenitors. Spearman’s rho = 0.92, p < 10717°,

193
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194  To highlight differences between our method and the traditional method for ranking genes (Fig
195 1Avs. Fig 1C), we computed the difference in ranks between the two methods and used

196  GSEAPY to identify gene sets enriched near the top or bottom of the resulting sorted list

197 (referred to as the difference in ranks list, Fig 3A) [28]. A top-ranking gene would be one that is
198 lowly ranked by the traditional method but highly ranked by the population comparison method.
199 Many gene ontology (GO) categories related to cortical development were enriched near the top
200 of the difference in ranks list including calcium and potassium channel activity, various

201  transcription factor (TF) related terms, and cytokine activity (Fig 3B, C and Additional file 1).

202 This is consistent with previous observations that TFs, ion channel subunits, and important

203  players in canonical signaling pathways tend to have strongly constrained expression compared
204  to other genes [24]. Many genes that drive the enrichment of the term “RNA polymerase |l

205 regulatory region sequence-specific DNA binding” are haploinsufficient and play key roles in

206  neurodevelopment including MEF2C, NEUROD?2, and CUX1 (Supp. Fig. 2A) [29-31].

207  Differences in the expression of haploinsufficient genes are more likely to have phenotypic

208  consequences than differences in the expression of genes for which loss of one copy has no
209 clear phenotypic effect. In particular, there is strong evidence that both increases and decreases
210  in CUX1 expression alter neurodevelopment in humans, which implies that the CUX1

211  expression divergence between humans and chimpanzees is likely to have phenotypic

212  consequences (Box 1) [29,32].

213
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analysis. Gene set databases tested include Gene Ontology (GO) Cellular Component, GO

Molecular Function, Kyoto Encyclopedia of Genes and Genomes (KEGG) human gene sets,

Human Phenotype Ontology (HPO), and REACTOME [33-37]. Enrichment analysis is

performed for each time point that cortical spheroids frozen for RNAseq (day 50, day 100, and

day 150) separately and significant terms were aggregated with only one copy of redundant
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terms that were significant in multiple timepoints included. Only genes with sufficient reads in
the human-chimpanzee cortical spheroid dataset and a sufficient number of samples in GTEx
were included (see Methods), leaving approximately 10,000 genes in the list used for
enrichment analysis. B) Summary of GO Cellular Component enrichments across all time points
with false discovery rate (FDR) < 0.05. REVIGO in conjunction with a custom python script was
used to generate the plot. The axes are derived from multidimensional scaling and measure
semantic similarity, enabling removal of redundant GO terms and visualization of the similarity
between GO categories. Each circle represents a GO term and circles near each other contain
similar genes in the corresponding gene set. Labeled gene sets are generally those with the
lowest FDR in a cluster of terms on the plot. The size of the circles indicates the number of
genes that are driving the enrichment for that category. C) Summary of GO Molecular Function

enrichments across all time points with FDR < 0.05.
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235 | Box 1: Recent work has linked a mutation in a human accelerated region (HAR) that likely

236 | increases CUX1 expression to autism spectrum disorder, suggesting that human-derived

237 | changes in CUX1 expression alter human behavior [32,38]. CUX1 is expressed at a lower level
238 | in humans than chimpanzees across time points in both hybrid and parental cortical spheroids
239 | (e.g. log: fold-change of -0.93, FDR < 0.005 in parentals, mean log: fold-change of -0.74, FDR <
240 | 0.023 in hybrids at day 150 of differentiation) and the per-sample ASE ratios are well outside the
241 | human fetal cortex population ASE distribution (Supp. Fig. 2 B-E). This reduced expression in
242 | humans is surprising considering that a recent massively parallel reporter assay (MPRA) found
243 | that the HAR linked to CUX1 should increase expression in humans [38]. As expression is lower
244 | in humans, haploinsufficiency of CUX7 might provide a reasonable model of the phenotypic

245 | consequences of this change. CUXT haploinsufficiency in humans leads to delayed

246 | development of speech and motor skills [29]. One aspect of this condition is that individuals with
247 | one functional CUX1 allele often close the developmental gap over time (i.e. cognitive

248 | impairments and delays disappear with age) [29]. This “catch up” phenotype is very rare and
249 | may even be specific to CUXT haploinsufficiency [29]. Interestingly, humans develop more

250 | slowly than other great apes (known as neoteny) but eventually “catch up,” reminiscent of the
251 | CUXT1 phenotype. While changes in CUX1 expression may have played a role in causing

252 | human neoteny, investigation of the development of layer II-1ll cortical neurons and behavior of

253 | CUXT haploinsufficient mice will be required to explore this further.

254

255  Applying the Sign Test to Constrained Differentially Expressed Genes

256

257  While our method is designed to prioritize genes that are relevant to phenotypic differences

258  between species, it does not, on its own, imply selection on changes in gene expression. On the
259  other hand, the sign test is designed to detect lineage-specific selection based on systematic

260  up- or down-regulation of genes that deviates from neutral expectation [39,40]. One important
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261  requirement of the test is that the expression divergence of every gene being tested should be
262  driven by independent genetic differences. For example, a single mutation in a frans-acting

263  factor could cause a whole pathway to be down-regulated, but this would only count as one

264  genetic difference. For this reason, hybrids are ideal for applying the sign test to gene

265  expression, since cis-regulation of genes is typically independent (except in the case of some
266  neighboring genes that share cis-elements, which can be accounted for by using a minimum
267  distance threshold between genes). For example, in the human-chimpanzee hybrid, if a

268  particular pathway contains significantly more genes with higher expression from the human
269 allele than the chimpanzee allele (significance determined by a binomial test), that would

270  provide evidence of selection on that pathway in the human and/or chimpanzee lineage. Similar
271  to all tests of selection, the sign test cannot discern what the cause of the selective pressure is.
272 For example, many cis-regulatory changes could be compensating for a change in a single

273 trans-acting factor. Alternatively, changes in gene expression might cause a phenotypic change
274  thatis being selected for. In either case, the sign test provides evidence of lineage-specific

275  selection on cis-regulation.

276

277  While our method (Fig 1C) does not require comparison to the traditional method (Fig 1A), it is
278  still of interest to determine if any of the categories that contain genes with strong differences in
279  ranking between our method and the traditional method show signatures of lineage-specific

280  selection. We therefore applied the sign test to identify gene sets in which highly ranked genes
281  (i.e. those with a difference in ranks between the population comparison method and the

282  traditional method above the cutoff found by GSEAPY) show a systematic bias in directionality.
283  Three gene sets are significant by the binomial test at an FDR cutoff of 0.1: Neuronal Cell Body,
284  Cytokine Activity and Cytoskeleton (Additional file 2, FDR = 0.085 for all three terms). The

285  Cytokine Activity category is dominated by genes that promote stem cell proliferation which may

286  have consequences for the proliferation of human and chimpanzee radial glia (although we
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287  caution against overinterpretation of this result given the low fold changes of most genes in this
288  category; Box 2).

289


https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.29.486301; this version posted June 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

17

A Cytokine activity enrichment B Cytokine activity log, FC distribution
L
& g 1.00 \ "
§ 0.4 1 = EDNT1
@ ¥ 075
% 0.2 %
E & 050
K FDR = 0.052 =] .
co00 - 2 025 o o %
- 10 | ~ v gk .
[ 1]
0.00
0 2000 4000 6000 8000 08 0.6 0.4 0.2 0.0
Rank in ordered dataset Log, fold-change
C EDNRB D150 GTEx comparison o' EDNRB D150 fetal cortex comparison D EDN1 D150 GTEx comparison
p = 0.00028 p = 0.00095 L p = 0.00038

10°
= - € 107
g 10° 3 3
@ o =
g 3 e
3 L ® ® 10

e B > A . ° 2 1 0 1 2

00 25 50 75 0 2 4 6 8 i - )
loga(ASE ratio) log: (ASE ratio) logz(ASE ratio)
mmm Human/chimp ASE mmm Human/chimp ASE = Human/chimp ASE
s Human population ASE s Human fetal population ASE . Human population ASE

m

F

Expression of EDNRB in hybrid cortical spheroids Expression of EDN1 in hybrid cortical spheroids

B Human 25 EEE Human
S 60 I Chimp s I Chimp
o o 20
= =
5% S 15
[72] (72}
o S 10
g 20 a
‘ slg B T e g
0 0
D50 D100 D150 D200 D50 D100 D150 D200
Timepoint Timepoint

290
291  Figure 4 Changes in expression of cytokine activity genes: A) Summary of Cytokine Activity
292  enrichment. Each blue line represents a gene in the gene set and the green curve is the

293  cumulative enrichment score. Top ranking genes could be human or chimpanzee-biased in
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294  expression. B) Volcano plot showing expression levels of genes driving Cytokine Activity

295  enrichment. The logz fold-change (log> FC, which refers to the value computed by DESeq2) is
296  chimpanzee-biased for 15 out of 16 genes. Mean log, FC between chimpanzee-referenced and
297  human-referenced log> FC values is shown. Negative log, FC indicates chimpanzee-biased
298  expression. EDNRB does not appear because it is a cytokine receptor rather than a cytokine. C)
299  Comparison of human-chimpanzee EDNRB ASE to within-human ASE from GTEx and fetal
300 cortical samples. Raw ASE ratios (as opposed to the value derived from DESeq2) are indicated
301 by “ASE Ratio”. The human-chimpanzee ASE is significantly outside of the human ASE

302 distribution. P-values are from the Mann-Whitney U Test comparing the distribution of human
303  population ASE to human-chimpanzee ASE. D) Comparison of human-chimpanzee EDN1 ASE
304 to within-human GTEx ASE. Fetal cortical ASE is not shown due to insufficient data. P-value is
305 the same as in C. E) ASE of EDNRB across timepoints in cortical spheroids. Expression from
306 the human allele is consistently higher than expression from the chimpanzee allele. F) ASE of
307 EDN1 across timepoints in cortical spheroids. Expression from the chimpanzee allele is

308 consistently higher than expression from the human allele except at D200.

309

310 | Box 2: The Cytokine Activity category is enriched near the top of the difference in ranks list with
311 | 15 out of 16 genes driving the enrichment displaying chimpanzee-biased expression (Fig. 4A,
312 | B). Itis dominated by genes that generally promote neural stem cell proliferation, which is

313 | unexpected considering the directionality bias and the higher proliferative capacity of human
314 | neural stem cells. EDN1 had the strongest chimpanzee bias (mean log; fold-change = -0.92,
315 | FDR < 0.025 at Day 150, Fig 4B). As EDN1 primarily signals through EDNRB in the brain [41],
316 | we also investigated the expression of EDNRB. Surprisingly, EDNRB is one of the most strongly
317 | human-biased genes across all timepoints in both hybrid and parental cortical spheroids (mean

318 | log: fold-change = 4.46, FDR < 0.005 at Day 150 in hybrids, log. fold-change = 2.85, FDR <

319 | 0.0005 in parental samples). Human-chimpanzee ASE generally exceeds ASE found in human
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320 | populations for EDNRB (Fig 4C; Mann Whitney U Test comparing EDNRB distribution to human
321 | population distribution p = 0.00027 for EDNRB), although this is not the case for EDN1 (Fig 4D).
322 | The human-biased EDNRB expression and chimpanzee-biased EDN1 expression is generally
323 | consistent across timepoints in hybrid cortical spheroids (Fig 4E, F).

324
325 | Changes in EDNRB expression appear to be human-derived with respect to gorillas and

326 | macaques (although orangutans may have independently acquired similar expression to

327 | humans in early-stage brain organoids) (Supp. Fig. 3 A, B). We were unable to confidently

328 | determine whether changes in EDN1 expression were human- or chimpanzee-derived using
329 | currently available data (data not shown). Next, we analyzed single-cell RNA-seq data

330 | generated from 1 month, 2 month, and 4 month-old human and chimpanzee brain organoids to
331 | identify the cell types driving increased EDNRB expression. We found that a previously

332 | identified radial glial cell (RGC) cluster was characterized by high EDNRB expression with non-
333 | zero expression in over 50% of cells [42]. Furthermore, this cluster had higher expression than
334 | any chimpanzee cluster (Mann-Whitney U test, p < 106, Supp. Fig. 4-5). Overall, our results
335 | suggest that a subpopulation of human radial glia have much higher EDNRB expression than
336 | chimpanzee radial glia.

337
338 | EDNRB haploinsufficiency reduces proliferation of cerebellar granule precursor cells and

339 [ chemical inhibition of EDNRB signaling reduces proliferation of mouse radial glia [43,44]. Based
340 | on this, the change in EDNRB expression may have promoted human brain expansion by

341 | increasing the proliferation of the subpopulation of radial glia that express EDNRB. In addition, a
342 | recent study identified a population of caudal late interneuron progenitor (CLIP) cells marked by
343 | expression of EDNRB and PTGDS along with caudal ganglionic eminence markers [45]. As

344 | both EDNRB and PTGDS have strongly human-biased ASE it would be interesting to

345 | investigate if this population of cells exists in chimpanzee brain organoids and if it may have
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346 | expanded in humans. The phenotypic implications of the higher ENDRB and PTGDS but lower
347 | EDN1 expression in humans will be an exciting area for further research.

348 | Thus far, we have primarily focused on the differences between our new method and the

349 | traditional method for ranking genes. Having established their differences, we now turn to

350 | analysis of results from our new approach (Fig. 1 and Methods). To examine human- and

351 | chimpanzee-biased genes separately, we sorted the list so that highly ranked genes with

352 | human-biased expression are at the top of the list and highly ranked genes with chimpanzee-
353 biased expression are at the bottom of the list. In effect, this results in a test for directionally-
354 | biased cis-regulatory divergence that exceeds the cis-regulatory variation among most human
355 | alleles present in the GTEx population. Enrichment testing with GSEAPY identified several
356 | enriched gene sets at an FDR cutoff of 0.25 (the cutoff suggested by the GSEA authors)

357 | including Other glycan degradation (human-biased), Spastic Dysarthria (human-biased), and
358 | Gluconeogenesis (chimpanzee-biased) (Fig 5 A-F, Supp. Table 3). In all three cases, there
359 | were zero genes showing expression bias in the other direction at an identical rank cutoff (p =
360 | 0.00012 for gluconeogenesis, p = 0.031 for Other glycan degradation, and p = 0.00195 for
361 | Spastic Dysarthria by binomial test), suggesting lineage-specific selection on genes with

362 | constrained expression in these gene sets [40]. Notably, the bias in gene expression found in

363 | the hybrids for these genes generally matched the bias in expression found in the parental

364 | cortical spheroids (Supp. Fig. 6A-C).

365

366  All three of these enriched categories may influence human-specific phenotypes.

367 Gluconeogenesis siphons oxaloacetate from the TCA cycle and eventually produces glucose
368  [46]. Many of the gene expression changes driving the gluconeogenesis enrichment appear to
369 be human-derived compared to other great apes (Supp. Fig. 7). Decreased gluconeogenesis in
370 the human lineage would likely enable increased flux through other anabolic pathways and the

371  TCA cycle possibly increasing the availability of oxaloacetate for anabolic pathways that
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promote proliferation. Spastic dysarthria is a condition in which patients speak in a characteristic
slow, regular, monotone manner [47]. Loss of function of genes in this category are associated
with spastic dysarthria and show systematic human bias, which may be connected to the human
capacity for speech (Fig 5D). Finally, six genes that were ranked very highly by our method and
all have DESeq2 FDR < 0.1 drive the “Other glycan degradation” enrichment. Interestingly, loss
of function of three of the six human-biased glycan degradation genes (MANBA, MAN2B2, and

MAN2B1) is associated with intellectual disability [48-50].
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Figure 5 Evidence of lineage-specific selection: A) Summary of Spastic dysarthria
enrichment (from Human Phenotype Ontology) [33,37]. In A, B, and C, each blue line
represents a gene in the gene set and the green curve is the cumulative enrichment score. B)
Summary of Other glycan degradation enrichment (from KEGG). C) Summary of
Gluconeogenesis enrichment (from REACTOME). D) Volcano plot summarizing of Log2 fold-
changes for genes driving the enrichments for Spastic Dysarthria, Other glycan degradation,
and Gluconeogenesis. All genes are human-biased for Other glycan degradation and Spastic

Dysarthria whereas all genes are chimpanzee-biased for Gluconeogenesis.


https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.29.486301; this version posted June 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

23

390 Discussion

391

392  Here we presented a method incorporating population-scale ASE data as a proxy for constraint
393  on expression. This ranking method helps reveal candidate genes and signatures of selection
394  that may explain phenotypic differences between humans and chimpanzees. The test is based
395  on the logic of comparing within- to between-species variation, similar in spirit to the Hudson-
396  Kreitman-Aguade test although it is based on variation in ASE rather than protein-coding

397  sequences [51]. Although the phenotypic consequences of these differences remain to be

398 determined, our finding of polygenic lineage-specific selection on several gene sets suggests
399 that these changes must have some phenotypic effects in order to be under natural selection.
400 Collectively, these findings more than double the number of known cases of lineage-specific
401  polygenic selection on gene expression between humans and chimpanzees (the two previous

402  examples being Hedgehog signaling and astrocyte-related genes) [8,9].

403

404  Importantly, the strong correlation between the GTEx brain vs. non-brain rankings (Fig. 2A) and
405  GTEx vs. fetal cortex rankings (Fig. 2D) suggests that comparison to the GTEx ASE distribution
406  can be meaningfully compared with between-species ASE measured in diverse cell types and
407  organoids and that comparison to the GTEx population distribution will be useful for other cell
408 types and organoids. The method can also be applied to any species with sufficient gene

409  expression data, e.g. comparing ASE in Arabidopsis interspecies hybrids to ASE within A.

410  thaliana [52].

411 Conclusion:

412  We outlined a strategy that uses allele-specific expression data from interspecies hybrids and

413  population-scale studies to prioritize genes that are more likely to impact species-specific traits
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414  and applied this method to data from human-chimpanzee cortical spheroids. Our findings

415  provide opportunities for targeted follow-up experiments and increase our understanding of how
416  polygenic selection has shaped human and chimpanzee evolution. Overall, we anticipate that
417  our method will become a useful tool for identifying functionally significant gene expression

418 changes between species, and will contribute to our understanding of how gene expression

419  drives phenotypic diversification.

420

421 Methods:

422

423  Read Alignment and RNA-seq Data Processing

424  Data from hybrid cortical spheroids was mapped as previously described [9]. Briefly, Hornet, a
425  rewritten version of WASP, was used in conjunction with a curated list of human-chimpanzee
426  SNPs and indels to correct for mapping bias. Reads for every sample were aligned to both the
427  human and chimpanzee genomes and the log, fold-change from both alignments was

428 compared. Any genes with logz fold-change that differed by greater than 1 were removed. We
429 used the ASE log: fold-change (log: FC) values available in the supplemental tables of Agoglia
430 et al. Although this dataset is restricted to hybrids from two humans and two chimpanzees,

431  previous work has shown that interspecies differences dominate over differences between

432  populations within a species so we expect that our results generalize well. It also contains

433  multiple independently derived hybrid lines and independent differentiations, reducing

434  confounding by technical differences. Throughout, for hybrids the mean log, FC between human
435 genome mapped and chimpanzee genome mapped reads is stated as well as the highest p-
436  value. Additional data was downloaded from GSE127898, GSE106245, GSE153076, and

437  phs000755.v2.p1 and mapped separately for each dataset to the respective species’ genome


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127898
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438  (PanTro6 for chimpanzee, hg38 for human, mmul10 for rhesus macaque, Gorgor6 for gorilla,
439  and PonAbe3 for orangutan) [53-56]. We used STAR v2.5.4 with arguments: -outSAMattributes
440  MD NH -outFilterMultimapNmax 1 -sjdbGTFfile -sjdbOverhang N where N is 1 less than the
441  read length used for each respective dataset [57]. For paired end reads, we used Picard to

442  remove duplicates with argument: DUPLICATE_SCORING_STRATEGY = RANDOM [58]. We
443  used HT-Seq with the following arguments: -t exon -i gene_name -m intersection-strict -r pos to
444  count reads overlapping gene bodies [59]. Transcripts per million (TPM) was computed as

445  previously described [60]. We used the likelihood ratio test in DESeq2 to test for differential
446  expression in the downloaded datasets with RIN and sex included as covariates for the

447  Khrameeva et al. dataset [23,61]. We binarized RIN values as high if greater than or equal to
448 7.5 and low otherwise as we do not generally expect the expression level of genes to scale

449  linearly with RIN.

450

451  Comparison of Population and Interspecies ASE Distributions

452

453  GTEx data was downloaded from https://www.gtexportal.org/home/datasets and the fetal cortex
454  ASE data was kindly provided by the Stein laboratory [21,27]. GTEx contains data from 838

455 individuals and the data from the Stein laboratory was generated from approximately 235

456 individuals. To preprocess the GTEx data, we split the file into two files each containing read
457  counts from 1 of the alleles with a custom R script. As cortical spheroids are a mixture of

458  different cell types including neural progenitors and immature neurons, we pooled fetal cortical
459  wall, neural progenitor, and neuron counts per individual in the fetal cortex dataset. For each
460 gene in each sample, we added one count to each gene (to prevent division by zero) and

461  computed the ASE ratio as the ratio of counts from allele 1 (the reference) to counts from allele
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462 2. The distribution for each gene was then normalized so that the median was 1. This

463  normalization ensures that the Mann-Whitney U-test p-values only take into account the

464  variance in allelic expression in the human population and are not confounded by consistently
465  higher/lower expression from a particular allele. Notably, flipping the sign of each value in the
466  GTEx ASE distribution had minimal effect on the rankings (Spearman’s rho = 0.999, p < 103%
467  for day 50, day 100, and day 150 after the beginning of cortical spheroid differentiation)

468  supporting the efficacy of the correcting the median to 1 in isolating the variance of the human
469  population expression distribution. All samples with at least 10 counts (not including the single
470 added count) from each allele for a sample were included in the ASE population distribution.
471  Notably the rankings and our results are robust to requiring at least 5 counts from each allele
472  instead of 10 (Spearman’s rho = 0.996, p < 103%), To filter out genes that are lowly expressed
473 in cortical spheroids, we removed genes with an average number of counts from the

474  chimpanzee and human alleles less than 25 (i.e. mean of human and chimpanzee read count
475 less than 25 and mean of chimpanzee read count less than 25). In addition, we filtered out any
476  genes showing mapping bias (listed in the supplemental tables of Agoglia et al.) as well as

477  genes on chromosomes 18 and 20 as parts of these chromosomes were duplicated in some
478  cortical spheroid samples. Previous work has shown that these structural changes have minimal
479  effect on the computation of ASE values for genes outside the duplicated region [9]. After

480 filtering, we computed the interspecies ASE distribution in similar manner to the population ASE
481  distribution (i.e. by taking the ratio of the counts from the human allele to the ratio of the counts
482  of the chimpanzee allele). However, we did not require 10 counts from each allele and did not
483  normalize the medians. We did not require 10 counts from each allele because we expect

484  extreme differences in expression to be relatively common in between species comparisons.
485  We compared the log2(ASE Ratio) interspecies distribution to the population distribution using
486  the Mann-Whitney U Test (a nonparametric test robust to the distribution of data) and used the

487  resulting p-values to rank genes as described below.


https://doi.org/10.1101/2022.03.29.486301
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.29.486301; this version posted June 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

27

488

489  Generation of Gene Rankings and Enrichment Analysis

490

491  First, we ranked genes by the Mann-Whitney U Test p-value with the lowest p-value receiving
492  the highest rank. To reduce false positives at the top of the list, we separately ranked genes
493  with DESeq2 FDR less than or equal to 0.1 and greater than 0.1. We then concatenated the list
494  so that genes with FDR less than or equal to 0.1 were always ranked higher than genes with
495 FDR greater than 0.1 (referred to as the MWU ranking). This consensus gene ranking was then
496  used in GSEAPY preranked with the rankings used as the score that GSEAPY uses to sort the
497  list. All results highlighted in the text replicated when using 0.05 as a cutoff instead of 0.1. We
498  used REVIGO in conjunction with a custom python script to generate the plots shown in figure 2

499 [62].

500

501 To compare to the traditional method, we also ranked genes by the DESeq2 derived FDR and
502 used that in GSEAPY preranked (referred to as the DESeq2 ranking). To highlight differences
503  between the two methods, we computed the difference in ranks between the two methods by
504  subtracting the DESeq2 ranking from the MWU ranking and sorting the list on those rankings for
505 use in GSEAPY. In this context, highly ranked genes are likely those that show relatively mild

506  gene expression changes but have more constrained expression.

507

508 We next performed the expression sign test. First, we generated a list of all gene sets across all
509 tested ontologies that were nominally enriched at an FDR of 0.25 (using the FDR from GSEAPY

510 preranked) in at least one time point and that had greater than 10 genes driving the enrichment.
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511 To avoid testing the same gene set multiple times, we only tested each gene set at the

512  timepoint that had the lowest GSEAPY FDR. We used the average of the DESeq2 log> FC from
513  mapping to the human allele and from mapping to the chimpanzee allele as input for the

514  binomial test to identify gene sets with significantly more human-biased or chimpanzee-biased
515 changes than expected by chance. This log> FC was generated by comparing the reads from
516 each species’ allele in the cortical spheroid data. For example, if a gene set had 8 human-

517  biased and 3 chimpanzee-biased genes, then the binomial test was used with k =8, n =11, and
518 p =0.5. We considered any gene set with Benjamini-Hochberg corrected FDR < 0.1 to be

519  significant.

520 Finally, we ranked the genes using a signed version of the MWU ranking. More specifically,
521  genes were effectively ranked by the logio(MWU p-value) multiplied by the sign of mean

522 DESeq?2 log: fold-change so that top ranked genes with negative L2FC are at the bottom of the
523 list and top ranked genes with positive L2FC are at the top of the list. This ranking was then
524  used in GSEAPY preranked. All statistical tests (Mann Whitney U Test, Binomial Test,

525  correlations) were performed in python using the implementation in scipy.

526  For enrichment testing, we tested gene sets from the Gene Ontology Cellular Component and
527  Molecular Function categories, the Human Phenotype Ontology, KEGG, and REACTOME using
528 the same version as in Gokhman et. al [8,33-37]. Regardless of which ranking was used, we
529 used GSEAPY preranked with the following arguments: processes=4, permutation_num=1000,
530 seed=6, min_size = 10, max_size = 300 to test for enrichment [28]. Following the authors

531  suggestion, we considered any category with an FDR below 0.25 to be nominally enriched [28].
532  We required that ASE data be available from at least 50 individuals in GTEXx for a gene to be
533 included in the ranking. We conducted gene set enrichment analysis with the four different

534  rankings described above.

535
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536  Single Cell RNA-seq Data Processing and Analysis

537

538  Single cell data from human and chimpanzee organoids and associated metadata were

539  downloaded from E-MTAB-7552 [42]. We used SCANPY to read in the counts matrix and filter
540 the data so that only data from 1 month, 2 month, and 4 month old organoids remained [63]. We
541  used a two-sided Mann Whitney U Test to compare EDNRB log2(counts per million) between
542  the “RGC early 2” cluster and all chimpanzee clusters with and without cells with 0 EDNRB

543  counts included. Mean counts by cell type and tissue for fetal human expression were

544  downloaded from GSE156793 [64]. We compared cerebrum counts to all other organs except
545 eye and cerebellum due to their similarity to the cerebrum and used a binomial test to determine

546  if more tissues exhibited higher expression than brain than expected by chance.

547
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556  the supplemental material of Agoglia et al. 2021 (https://www.nature.com/articles/s41586-021-

557  03343-3#Sec35), GSE127898

558  (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127898), GSE106245
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559  (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106245), GSE153076

560 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153076), and phs000755.v2.p1

561  (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study id=phs000755.v2.p1),

562  phs002493.v1.p1 (link unavailable, data was received directly from the Stein lab). The GTEX

563  data was downloaded from https://www.gtexportal.org/home/datasets (although the specific file

564  that was downloaded is no longer available). The software used to perform the analysis in this

565  paper is available at: https://github.com/astarr97/Z Score. There is no restriction on the use of

566 this code.
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577  Description of Additional file 1: File name is Additional file 1.csv. Enrichment testing for
578 difference between traditional and population-based method. This file contains the output from
579  GSEAPY for enrichment testing as well as the dataset that was used for the enrichment

580 analysis.
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581 Description of Additional file 2: File name is Additional file 2.csv. Sign test on enriched terms
582 for difference between traditional and population-based method. This file contains the results for

583 the sign test applied to a subset (see Methods) of the significant terms from Additional file 1.
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Relationship for pHI and GTEXx distribution variance
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585 Supplementary Figure 1 Relationship between the variance of the GTEx ASE distribution
586 and the probability of Haploinsufficiency score: A) Shows the relationship between the

587  variance of the GTEx ASE distribution and the probability of Haploinsufficiency score (a

588  measure of constraint on gene expression) for each gene tested in this manuscript. As the

589  probability of Haploinsufficiency increases, the variance of the GTEXx distribution decreases. The

590 spearman correlation is -0.28 with p < 10170,

591
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593  Supplementary Figure 2 Exploration of changes in CUX1 expression: A) Summary of RNA
594  polymerase Il regulatory region sequence-specific DNA binding. Each blue line represents a

595 gene in the gene set and the green curve is the cumulative enrichment score. Genes in the

596 gene set are enriched at the top of the list. B) Expression of CUX1 in human-chimpanzee hybrid
597  cortical spheroids (CS). Expression is shown in transcripts per million (TPM). Expression from
598 the chimpanzee allele is consistently higher than expression from the human allele. C)

599  Expression of CUX1 in human and chimpanzee parental cortical spheroids (CS). Expression is
600 shown in transcripts per million (TPM). D) Comparison of the GTEx ASE distribution for CUX1 to
601  the human-chimpanzee hybrid ASE distribution. E) Comparison of the fetal cortex ASE

602  distribution for CUX1 to the human-chimpanzee ASE distribution. The human-chimpanzee

603  hybrid ASE values lie well outside the human fetal cortex distribution.

604
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A Expression of EDNRB is human derived compared to gorilla
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606  Supplementary Figure 3 Changes in EDNRB expression are human derived: A)

607  Comparison of EDNRB expression between early-stage human and gorilla cerebral organoids
608  [55]. Human expression is considerably higher than gorilla expression across timepoints

609 indicating that EDRNB is upregulated in the human lineage (as opposed to downregulated in the
610 chimpanzee lineage). B) Comparison of EDNRB expression between early-stage human,

611  chimpanzee, orangutan, and rhesus macaque cerebral organoids [53]. Human expression is
612  considerably higher than rhesus macaque expression across timepoints. However, orangutan
613 EDNRB expression is high as well, indicating an independent increase in expression in the

614  orangutan lineage. C) Phylogenetic tree of old-world primates. Red text indicates a high EDNRB
615  expression and blue text indicates low expression. Notably, as gorillas are more closely related
616  to humans than organgutans this implies that the most parsimonious explanation for the data is
617  that the last common ancestor of gorillas, chimpanzees, and humans had low EDNRB

618  expression and that there was an increase in the human lineage.

619
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Comparison of mean EDNRB expression
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Supplementary Figure 4 A population of human radial glia expresses EDNRB: A) Plot
showing mean expression of EDNRB across chimpanzee and human cell clusters [42].
Expression in the “RGCs early 2” cluster is significantly higher than in all chimpanzee clusters

by Mann-Whitney U Test (p < 107" for all comparisons).
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A Comparison of EDNRB Expression
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Supplementary Figure 5 Expression of EDNRB is higher in human radial glia: The
distribution of EDNRB expression in cells with non-zero counts [42]. As there were many more
chimpanzee cells in the Chimp NSC/radial glia category, we down-sampled the number of cells
so that there were an equal number of EDNRB-expressing cells. The distribution in chimpanzee
NSC/radial glia is much more shifted left than that of the human “RGCs Early 2” cluster

indicating higher expression in the human cluster.
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635 Supplementary Figure 6 Many gene expression changes have the same direction in

636  hybrid and parental organoids: A) Barplot showing the log. fold-changes of genes driving the
637  Spastic dysarthria enrichment comparing parental human and chimpanzee cortical spheroids at
638 day 100 of differentiation. Asterisks indicate a significant difference for that gene at and FDR
639  cutoff of 0.1. B) Same as in A but for genes driving the Other glycan degradation enrichment. C)

640 Same as in A, but for genes driving the Gluconeogenesis enrichment.

641
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Changes in many gluconeogenesis genes are human-derived
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Supplementary Figure 7 Changes in many gluconeogenesis genes are human-derived: A)
Barplot showing that many changes in the expression of gluconeogenesis genes are human-
derived and occur in parental organoids. Data are from Week 5 cerebral organoids [53].
Asterisks indicate genes for which the human-orangutan difference is significant at an FDR
cutoff of 0.1 and with lower expression in human. Genes whose down-regulation is not human-
derived generally show insignificant differences in expression between humans and

chimpanzees potentially indicating compensatory trans-acting genetic changes.
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Supplementary Figure 9: A) Explanation of computation of difference in ranks. Population ASE

Count
(6]
o

Ranking was subtracted from the traditional ranking. Due to this, genes that are highly ranked in
both the traditional and population ASE rankings (likely those with low p-values and high
difference in ASE) are near the middle of the list in the difference of ranks. On the other hand,
genes with moderately high p-values and high constraint on expression are ranked lowly in the
traditional ranking, but near the middle in the population ASE ranking, and so are very high in

the difference in ranks.
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