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Abstract (250 words)

The gut microbiome-brain axis is increasingly recognized as an important pathway in regulation of cocaine
addiction. Microbial products produced in the murine gut have been shown to affect striatal gene expression,
and depletion of the microbiome by antibiotic treatment alters cocaine-induced behavioral sensitization in
C57BL/6J male mice. Cocaine-induced behavioral sensitization is correlated with drug self-administration
behavior, therefore, is a predictor of addiction vulnerability. Here we profile the composition of the naive
microbiome and its response to cocaine sensitization in two Collaborative Cross (CC) strains. These strains
display extremely divergent behavioral responses to cocaine sensitization. A high-responding strain,
CC004/TauUncJ (CCO04), has a gut microbiome that contains a greater amount of Lactobacillus than the
cocaine-nonresponsive strain CC041/TauUncJ (CC41). The gut microbiome of CC41 is characterized by an
abundance of Eisenbergella, Robinsonella and Ruminococcus. In response to cocaine, CC04 has an
increased Barnsiella population, while the gut microbiome of CC41 displays no significant changes. PICRUSt
functional analysis of the functional potential of the gut microbiome in CC04 shows a significant number of Gut-
Brain Modules altered after exposure to cocaine, specifically those encoding for tryptophan synthesis,
glutamine metabolism, and menaquinone synthesis (vitamin K2). Depletion of the microbiome by antibiotic
treatment revealed a sex-specific altered cocaine-sensitization response to antibiotics in female mice from
CCO04 that was not observed in male CC04 or either sex of CC41. Together these data suggest a complex
relationship between host genetics, microbiome composition and cocaine sensitization behavior.
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1. INTRODUCTION

In the face of the COVID-19 pandemic, the substance use disorder (SUD) and overdose epidemic has
continued to grow [1, 2]. Overdose deaths spiked at the start of the pandemic and stayed high throughout 2020
[3]. Among drugs of abuse, cocaine use disorder is highly heritable, with ~70% of the variation ascribed to
genetics in twin studies [4]. Advanced genetically diverse mouse strains such as Collaborative Cross (CC) are
well suited for exploring the genetic contribution to complex diseases such as cocaine use disorder [5, 6].
Within this population of mice are 45 million SNPs segregating, a level of genetic diversity comparable to that
of the human population. The CC mouse population is a panel of recombinant inbred (RI) mice derived from an
eight-way cross of distinct sequenced inbred mouse strains. All mice within a CC strain are homozygous and
the CC itself is inbred and represents a reproducible population. Approximately 60 CC strains are commercially
available. In addition to their diverse phenotypes and host genetics, the microbiome of these recombinant
inbred lines exhibits tremendous variation [7, 8]. When controlled for diet and environment, host genetics
explains a large part of the variation in microbiome composition [9]. Thus, host genetics may control cocaine
use disorder by influencing the microbiome.

The role of the microbiome in SUD is gaining increasing recognition (reviewed in [10, 11]). Previous
studies in mice have shown that antibiotic ablation of the microbiome alters low-dose cocaine sensitization and
conditioned place preference (CPP) in male C57BL/6J mice [12]. The enhanced CPP response from antibiotics
was corrected by short-chain fatty acid administration, suggesting that an intact microbiome ‘represses’ an
endogenous cocaine response. A similar reversible response was also reported for sensitization and CPP in
response to morphine in male C57BL/6 mice. [13] Recently treatment of male C57BL/6J mice with
Proteobacteria was shown to alter cocaine neurobehavioral responses in a glycine dependent manner[14].
Finally, work in the alcohol field using the binge drinking model, drinking in the dark, using C57BL/6J mice
given a 2-week antibiotic pretreatment showed significantly increased alcohol consumption [15]; which this
increase could be reversed by sodium butyrate supplementation [16]. However opposite results were obtained
in a Wistar derived high drinking selected rat strain in which antibiotic ablation reduced their consumption of
ethanol[17]. Ezquer, F., et al restored the high drink phenotype with oral administration of Lactobacillus
rhamnosus, suggesting the intact microbiome encourages alcohol consumption[17]. Collectively these studies
suggest a role for the microbiome in addiction related behaviors.

We examined two previously reported behaviorally divergent CC strains, CC004/TauUnc (CC4) and
CC041/TauUnc (CC41) [18]. These strains exhibit extreme genetic and biological variation underlying
resistance or vulnerability to the stimulatory and reinforcing effects of cocaine. CC04 mice exhibit a robust
locomotor response to cocaine and demonstrate active operant cocaine intravenous self-administration.
Conversely, CC41 are non-responsive to the locomotor stimulatory effects of cocaine and are unable to
acquire cocaine intravenous self-administration under the same conditions [18]. To determine whether the
microbiome contributes to observed cocaine behavior in these CC04 and CC41, we profiled the fecal
microbiome before they entered a cocaine sensitization protocol and 19 days later on completion of the
protocol by 16S rRNA gene sequencing. We identified distinct microbiome composition and microbiome
metabolic pathways in naive CC04 and CC41 strains, and showed a number of Gut-Brain Modules were
altered in the CCO04 strain in response to cocaine. Finally, we sought to investigate causation using an
antibiotic ablation intervention followed by cocaine sensitization the same strains. In total. we demonstrate that
the microbiomes of the CC4 and CC41 strains are unique to each strain and differentially responsive to
cocaine. The impact of this work is a demonstration that the role of the microbiome in affecting behavioral
response to cocaine is strain specific.
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2 MATERIALS AND METHODS

2.1 Animals

The CC004/TauUncJ and CC041/TauUncJ are CC RI strains obtained from The Jackson Laboratory.
They were bred in an elevated barrier Pathogen & Opportunistic-Free Animal Room (https://www.jax.org/-
/media/jaxweb/health-reports/ax12.pdf?la=en&hash=970E1B297070DD9022BB3CCA38A195F02B4ED295)
and transferred at ween to an intermediate barrier specific pathogen-free room (https://www.jax.org/-
/medial/jaxweb/health-reports/g3b.pdf?la=en&hash=914216 EE4F44ADC1585F1EF219CC7F631F881773). All
animal protocols were reviewed and approved by The Jackson Laboratory Institutional Animal Care and Use
Committee (Approval #10007).

All mice were group-housed with same-sex siblings until six weeks of age in duplex, individually vented
cages (Thoren Caging Systems, Inc. Pennsylvania, USA; Cage #3) with pine-shaving bedding (Hancock
Lumber) and environmental enrichment consisting of a nestlet and a Shepherd Shack® (Shepard Specialty
Papers). Mice were singly housed at six weeks and began behavioral phenotyping at eight weeks of age. Mice
were maintained on a 12:12 light cycle (lights on at 6 AM) and allowed ad libitum access to the standard rodent
chow [sterilized NIH31 5K52 6% fat chow (LabDiet/PMI Nutrition, St. Louis)] and acidified water (pH 2.5-3.0)
supplemented with vitamin K. The mice were identified by ear notching at weaning and moved between cages
by forceps. Cages were changed once a week. If a cage change was scheduled for a testing day, a clean cage
was prepared, and post-test, mice were returned to a new, clean cage. The Jackson Laboratory follows
husbandry practices following the recommendations of the American Association for the Accreditation of
Laboratory Animal Care (AAALAC).

2.2 Phenotyping

2.2.1 Open Field Apparatus

The open field apparatus was a square-shaped, clear polycarbonate arena (Med-Associates #MED-OFAS-
515U) with dimensions 17.5 inches length x 17.5 inches width x10.0 inches height (44.5 cm x 44.5 cm x 25.4
cm). External to the arena's perimeter at the floor level, on the left and right sides, is a pair of horizontal
infrared photo beam sensors (16 x 16 beam array). An additional pair of infrared photo beam sensors raised 3
inches from the arena floor (16 x 16 array) are situated at the arena's front and rear outer sides and used to
capture vertical activity. Each arena is placed within a sound-attenuating, ventilated cabinet with interior
dimensions: 26"W x 20"H x 22"D (Med Associates, #MED-OFA-017) containing a fan that provides white
noise. Each cabinet contains two incandescent lights, each affixed in the upper rear two corners of the cabinet
at the height of approximately 18.5 inches from the center of the arena floor which provides illumination of
60£10 lux when measured in the center of the arena floor. Data was collected using Activity Monitor software
version 7.0.5.10 (SOF-812; Med Associates, Inc; RRID: SCR_014296).

2.2.2 Cocaine Sensitization

On all test days, mice were transported from the housing room on a wheeled rack and left undisturbed to
acclimate in an anteroom adjacent to the procedure room for a minimum of 30 minutes. Before the first mouse
was placed into any behavioral apparatus and between each subject, the equipment was thoroughly sanitized
with 70% ethanol solution (in water), and wiped dry with clean paper towels. After all testing for the day, the
subjects were returned to the housing room and the arenas were sanitized with Virkon (Lanxess), followed by
70% ethanol to remove any residue. Two different sensitization paradigms were used.

2.2.2.1 Cocaine Sensitization using 10 mg/kg

Complete phenotyping details can be found on the Mouse Phenome Database
(https://phenome.jax.org/projects/CSNAO3/protocol?method=open+field+test). The cocaine sensitization
paradigm was carried out as described in [18]. Briefly, cohorts of mice (3 males, 3 females) of each strain were
assigned to sham or cocaine treatment cohorts. Mice were tested for 90 minutes each test day in a 19-day
protocol. On days 1, 2 and 12, all animals received saline; on days 3, 5, 7, 8, 11 and 19, half the animals
received cocaine (10 mg/kg), while the other half received saline. On each test day, mice were placed in the
arena for 30 minutes, then injected with saline or cocaine and returned to the arena for 60 minutes. Before the
start of the sensitization paradigm, fresh fecal boli were collected from each mouse. Following the 19-day
sensitization paradigm, fecal pellets were collected 60 minutes after the last cocaine injection. Fecal samples
were processed and analyzed as described below.
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2.2.2.2 Cocaine Sensitization using 5 mg/kg
Following antibiotic treatment (described below), a different cocaine sensitization paradigm was utilized to
replicate the protocol of Kiraly 2016 [12]. Briefly, mice were given saline on days one, two and three, and on
days 4, 5, 6, 7 and 8, mice were given cocaine at 5 mg/kg i.p. Immediately following cocaine or saline
administration, mice were placed in the open field and behavior was monitored for 45 minutes.
Numerous behaviors were recorded in the open field as described in Table S1. Before the start of the
sensitization paradigm, fresh fecal boli were collected from each mouse. At the completion of testing fecal boli
were collected. Fecal samples were processed and analyzed as described below.

2.3 Antibiotic Treatment

Fecal boli samples were collected from treatment-naive mice. At 8-10 weeks of age, mice started antibiotic
treatment (ABX). Mice were administered sulfatrim (19.75 mg/liter sulfamethoxazole + 3.95 mg/liter
trimethoprim) and 1 g/L of ampicillin sodium salts, 1g/L of Metronidazole, 0.5 g/L Vancomycin hydrochloride,
and 1 g/l of Neomycin (all pharmaceutical grade) in their drinking water continuously. Sweetener (2.5 g/liter,
aspartame) was added to the antibiotic water and the water of a second cohort of control (CTRL) mice [7, 19].
One week following the initiation of antibiotic treatment, which was continuous throughout testing, mice from
both cohorts were tested in the open field, light-dark and holeboard. Following this baseline testing, 48 mice of
both sexes and strains underwent cocaine sensitization in two batches of 24. After testing, fecal boli were
harvested from both groups, and cecal contents and striatum were dissected.

2.4 Fecal Collection

Mice were placed in a clean cage for five minutes. Any fecal pellets deposited were collected, placed in
Eppendorf tubes, and stored at -80 C. If no pellets were produced in the first five minutes, mice were left in the
cage for a longer period.

2.5 Dissections

To control for circadian effects, behavioral testing and euthanasia were consistently performed between 8-12
AM. All surgical instruments were cleaned with RNAase away between each animal (ThermoFischer
Scientific). The mice were euthanized by decapitation rather than cervical dislocation in order to maintain the
brain structure. The cecum was identified, and the fecal contents were extruded into an Eppendorf tube and
flash-frozen on dry ice. All snap-frozen samples were stored at —80°.

2.6 16S Microbiome Analysis

DNA was isolated using the Shoreline complete V1V3 kit (Shoreline Biome, cat #SCV13) per the
manufacturer’s instructions and used to create barcoded V1V3 amplicons. Briefly, ~5mg of mouse fecal pellet
was lysed with a combination of heat, pH, and cell wall disruptors in a single step. DNA was recovered using
the magnetic beads, and an aliquot from each sample was transferred to a well in the provided PCR plate
containing sample barcode/lllumina sequencing primers. Next, 2x PCR mix from the kit was added, and PCR
was performed according to the manufacturer’s instructions. After PCR, samples were pooled, purified using a
MinElute PCR Purification Kit (Qiagen, cat# 28004) and diluted for sequencing on the lllumina MiSeq (RRID:
SCR_020134) platform generating 2X300 paired reads. Sequencing reads are processed by removing the
sequences with low quality (average qual <35) and ambiguous codons (N’s). Paired amplicon reads are
assembled using Flash. Chimeric amplicons were removed using UChime software (RRID: SCR_008057) (73).
Our automatic pipeline used the processed reads for operational taxonomic unit (OTU) generation. Each OTU
will be classified from phylum to genus level using the most updated RDP classifier and training set (RRID:
SCR_006633). A taxonomic abundance table was generated with each row as bacterial taxonomic
classification, each column as sample ID and each field with taxonomic abundance. The abundance of a given
taxon in a sample was presented as relative abundance (the read counts from a given taxon divided by total
reads in the sample).” We also used PICRUSt2 (RRID: SCR_022647) [20] to predict the functional profiling of
the bacterial communities by ancestral state reconstruction using 16S rRNA gene sequences. Following the
protocol described by Valles-Colomer [21], gut-brain module analysis was performed on the PICRUST?2
results. Multiple testing correction of the Gut-Brain Modules was performed using the gvalue package (RRID:
SCR_001073).
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2.7 Metagenomic whole genome shotgun (mMWGS) sequencing, Data Processing and Metagenomics

Species Detection

Cecal feces from both cocaine sensitization experiments (with and without antibiotics) were analyzed by
MmWGS. Libraries are constructed with an average insert size of 500 bases and then sequenced on the
HiSeq2500 instrument producing 150 base read pairs from each fragment, yielding ~3 million read
pairs/sample. Following mMWGS sequencing, sequence data was run through a quality control pipeline to
remove poor-quality reads and sequencing artifacts. Sequencing adapters were first removed using
TRIMMOMATIC (RRID: SCR_011848) [22]. Next, exact duplicates, low quality, low complexity reads and
mouse DNA contamination were removed using GATK-Pathseq (RRID: SCR_005203)[23] pipeline with a k-
mer-based approach. For optimization of mouse DNA decontamination, we have built a new GATK-Pathseq
31-mer database by concatenating the following collection of DNA sequences: MM10_GRCma38 reference;
sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional
loci; NCBI UniVec clone vector sequences; repetitive element sequences from RepBase23.02 database; and
mouse encode transcripts databases (v25). The final clean reads were used for taxonomic classification and
metabolic function analysis for further downstream analysis.

An optimized GATK-Pathseq classification pipeline is time efficient and robust solution for taxonomic
classification at the species level. This pipeline used BWA-MEM alignment (minimum 50 bp length at 95%
identity). It mapped the final clean reads to the latest updated reference of microbial genomes built by
concatenating RefSeq Release 99 (March 2nd, 2020) nucleotide FASTA sequence files of bacteria, viruses,
archaea, fungi, and protozoa. Gatk-Pathseq All read counts of microbial species of all kihgdoms are used for
species abundance analysis.

2.8 Differential abundance analysis of microbial genes and metabolic pathways

The KEGG ortholog (KO) profiling was performed by HumanN2 (RRID: SCR_016280)[24]. Using the DESeq2
package (RRID: SCR_015687)[25] dedicated to performing comparative metagenomics, the inference of the
abundance of genes and pathways was obtained and visualized using a volcano plot. Because of the potential
high false positive rate of DESeq [26], we plotted raw and relative abundance to inspect the results. Following
the protocol described by Valles-Colomer [21], gut-brain module analysis was performed on the mMWGS
results. Multiple testing correction of the Gut-Brain Modules was performed using the gvalue package (RRID:
SCR_001073).

2.9 Biogenic amines analysis

2.9.1 Tissue Extraction

Tissues were frozen at -80° C and shipped to the Vanderbilt Neurochemistry Core for analysis. The samples
were held on dry ice prior to the addition of homogenization buffer to prevent the degradation of biogenic
amines. Tissues were homogenized using a handheld sonic tissue dismembrator in 100-750 ul of 0.1M TCA
containing 0.01M sodium acetate, 0.1mM EDTA, and 10.5 % methanol (pH 3.8). Ten microliters of
homogenate were used for the protein assay. The samples were spun in a microcentrifuge at 10,000 g for 20
minutes. Then, the supernatant was removed for HPLC-ECD analysis. HPLC was performed using a Kinetix
2.6um C18 column (4.6 x 100 mm, Phenomenex, Torrance, CA, USA). The same buffer used for tissue
homogenization is used as the HPLC mobile phase. The following biogenic amines were analyzed
Norepinephrine (NE), 3,4-Dihydroxyphenylacetic acid (DOPAC), dopamine (DA), 5-hydroxyindoleacetic acid
(5-HIAA), homovanillic acid (HVA), serotonin (5-HT),3-methoxytyramine (3-MT).

2.9.2 Protein assay

Protein concentration in cell pellets was determined by BCA Protein Assay Kit (Thermo Scientific). Ten microliter
tissue homogenate is distributed into a 96-well plate and 200 ul) mixed BCA reagent (25 ml of Protein Reagent
A is mixed with 500 pl of Protein Reagent B) is added. Incubate the plate at room temperature for two hours for
color development. A BSA standard curve is run at the same time. Absorbance was measured by the plate
reader (POLARstar Omega), purchased from BMG LABTECH Company.

2.10 Statistics
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Microbial community analysis was performed by R version 3.5.1 (RRID: SCR_001905). Principal
coordinate analysis (PCoA) plots, boxplots and heatmaps were generated for graphical visualization using
Phyloseq, ggplot2 (RRID: SCR_014601)[27] and ComplexHeatmap (RRID: SCR_017270)[28] packages.
Richness was calculated as the number of OTUs present in each sample. The Shannon Diversity Index
combined species richness, and the evenness was computed as Zp*In(pi), where pi presents the proportional
abundance of species. The non-parametric Wilcoxon or Kruskal-Wallis rank sum-tests were used for
differential diversity or abundance between two or more groups and corrected for multiple comparisons by the
Benjamini-Hochberg procedure. Beta diversity was analyzed at the OTU level using the Bray-Curtis distance
for community abundance and the Jaccard distance for community presence/absence.

The among-group differences were determined using the permutational multivariate analysis of
variance by the distance matrices (ADONIS). These tests compare the intragroup distances to the intergroup
distances in a permutation scheme and then calculate a p-value. These functions are implemented in the
Vegan package (RRID: SCR_011950)[29]. For all permutation tests, we used 10,000 permutations.

Statistical analyses for sensitization and neuropeptides (sensitization only) were conducted using JMP 16
(SAS Institute; RRID: SCR_014242). The best model is

Phenotype=BoSex+p1Genotype+ B.Treatment+ B(SexxGenotypexTreatment)+ps(SexxGenotype)+
B4(SexxTreatment) + 5 (TreatmentxGenotype)+U+e,

where ¢ is random error. The parameters (B, €) were estimated by Type Il non-sequential ordinary least
squares in the ANOVA model. Repeated measures analysis of variance was performed using MANOVA to
estimate the effects of strain, sex, treatment and their interaction. U represents the symmetric nature of the
variance co-variance matrix of the random effects. In all cases, the full model was fit and reduced by dropping
non-significant inter-actions followed by main effects. In order to determine the nature of differences detected
in the ANOVA model, planned contrasts were performed giving the terms not included in the model a weight of
zero and giving the terms to be compared (treatment, strain) values of opposite weights, -1 and +1.


https://doi.org/10.1101/2022.12.06.519360
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.06.519360; this version posted December 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

3 Results
3.1 Fecal microbiome composition of CC004 and CCO041 lines

We sought to determine the fecal microbiome composition of two strains of CC mice shown to be behaviorally
divergent in response to cocaine[18]. We performed 16S V1-V3 sequencing on fecal boli from naive male and
female mice and mice that had completed a 19-day cocaine sensitization paradigm. A principal coordinates
analysis of the beta-diversity of the gut microbiome showed significant separation of the microbiomes by strain
(PC1 35.8%) and cocaine effect (PC2 13.4%) (Figure 1A). Analysis of Group Dissimilarity-Adonis based on
microbial abundance matrix with Bray-Curtis distance showed a significant difference between the naive and
cocaine exposure groups in the CC04, [Adonis F22) = 4.3768 p <0.001, R2=0.40866]. This cocaine effect was
strain specific [CC04 F(1,10 =2.6019, p<0.05 R2=0.186; CC41 F11) =1.2826, p=0.17 R?>=0.011]

Naive CCO04 displayed decreased Eisenbergella (W=9, Z=-3.80, q<0.0001 r=0.79), Aneroplasma (W=0, Z=-
4.27, q<0.001, r=0.89), Robinsonella (W=23 Z=-2.69 g=0.018, r=0.56), and Ruminococcus (W=5.5, Z=-3.98,
g<0.001, r=0.83) and an increase in Lactobacillus (W=126, Z=-3.69, g=0.001, r=0.77), and Anaerostipes
(W=128, Z=-3.90, q <0.0001, r=0.813), compared to Naive CC41. (Figure 1B-D). In response to cocaine,
CCO04 showed an increase in Barnsiella (W=0, Z=-3.63, g=0.0082, r=0.93) and unclassified_Coriobacteriaceae
(W=0, Z=-3.60, <0.0082, r=0.93). CC41 showed no significant differences that passed a stringent FDR=0.05
after cocaine treatment. Barnsiella did show an increase (W=20.5, Z=-1.92, p=0.05, g=0.34, r=0.45) in CC41
but it did not pass multiple correction testing. A full table of differences, (p<0.05 and g>0.05) between strains
can be found in Table S2.

3.2 PICRUSt analysis of the 16S data identifies molecular functions that differ between strains and
those that are affected by cocaine treatment in CC04 mice.

Based upon the linkage between phylogeny and function, Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUS) is an approach to predictive metagenomics that has been
demonstrated to provide useful insights into thousands of uncultivated microbial communities [30]. PICRUSt
was used to compare the functional properties of the microbiome before the sensitization paradigm with the
microbiome after the sensitization paradigm in both CC04 and CC41 mice. Outlier samples (19183 CC04 pre
and 19179 CC04 Post) were removed for this analysis. These samples appeared to be switched due to their
position in the PCA, although results were similar when they were included. There were 50 Gut-Brain KEGG
Modules that were significantly different, after correcting for multiple testing, between naive CC04 and naive
CC41. (Table S3, Figure 2A,B). The KO0686 other glutamine showed greatest upregulation (4.48 of log2 fold
change) in CC04 mice, compared to CC41 mice. log fold change (LFC) of 4.48, and the most downregulated
was K0O12942 other_glutamate LFC -6.08. Other modules represented multiple times included Menaquinone
synthesis (vitamin K2), Isovaleric acid synthesis | (KADH pathway), acetate and propionate metabolism. The
KEGG ontology pathways, represented by CC04 microbiome post-sensitization, included 29 Gut-Brain KEGG
Modules that were significantly different after correcting for multiple testing (Table S3, Figure 2C,D). There
were three downregulated modules related to tryptophan synthesis, four downregulated modeules related to
glutamine metabolism, seven modules related to Menaquinone synthesis (vitamin K2), and others related to
glutamate and GABA synthesis. The greatest fold change was -7.06 LFC for other_glutamine K12942
(g=0.007).

3.3 Antibiotic treatment effects on cocaine sensitization behavior

Previous work has shown the involvement of the microbiome in cocaine sensitization and CPP in male
C57BL/6J mice at low doses of cocaine (5 mg/kg) [12]. CC04 and CC41 mice were given ad libitum access to
antibiotic-treated water or control (aspartame) water starting at 8-10 weeks of age (Figure 3) to test for the
involvement of the microbiome in observed differences in cocaine sensitization response in these two strains.
The antibiotic treatment didn’'t cause any adverse effect on the mice as measured by weight differences
between the control and treated groups (Figure S1). In a repeated-measures ANOVA of the full factorial model
that was sequentially reduced there were no significant strain x sex x treatment effects or interactions and only
a univariate effect of sex was observed (F(1,22=16.171 p=0.0006). The CC04 and CC41 strains were
behaviorally divergent, as previously published, with CC04 male and female mice responding to cocaine and
the CC41 mice being unresponsive to the drug (Figure 4). One mouse was excluded as a behavioral outlier
(male, CC04, 25760 ABX). Pairwise t-tests at each time point show no significant difference between treated
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and control mice. However, a repeated measures ANOVA on each sex of mice showed that in females there
was a time x strain x treatment effect [F13) = 1.692784 = p = 0.0356] Post-hoc contrast analysis showed
CCO04 antibiotics vs control F7,13= 3.64, p= 0.0156; whereas CC41 antibiotics vs control F713=0.01318, p = 1.
Univariate effect of strain F1,100 = 70.874, p <0.001. However in males, there was a univariate effect of strain
Fa.18 = 38.4406, p<0.001 but not a significant time x strain x treatment F=7 12 = 0.630, p = 0.4407.

3.4 Effect of antibiotic treatment on the microbiome of CC strains that vary in response to cocaine

16S and mWGS were performed on the cecal contents on all mice at the end of the cocaine sensitization
paradigm. ABX treatment significantly reduced the bacterial abundance in both the CC04 and CC41 strains as
seen in WGS read counts (Figure S2). Consistent with fecal microbiome data, CC04 showed a higher
abundance of Barnsiella (W=30, Z=-2.85, p=0.004, g=0.04, r=.86) post sensitization in comparison to CC41
post sensitization in the cecal microbiome. CC41 showed a higher abundance of Eisenbergiella (W=3, Z=-2.15,
p=0.03, g=0.1) compared to CC04 post sensitization (Figure 5, Table S4). No comparisons were made
between ABX samples as the reads were too low due to the efficacy of the antibiotic ablation. mMWGS of cecal
contents obtained from mice post cocaine sensitization showed an abundance of Lactobacillus johnsonii
(W=30, Z=-2.85 p=0.004, g=0.26, r=0.86) and Muribaculum intestinale (W=30, Z=-2.83, p=0.004, g=0.26,
r=0.86) in CC04. Akkermansia muciniphila (W=3, Z=-2.166, p=0.03, q=0.48, r=.65) were dominant in CC41
mice. Duncaniella abundance was also different (W=30, Z=-2.85, p=-0.004, g=0.26) with higher levels found in
CCO04 (Figure 5B, Table S4). Different results obtained by 16S versus mWGS data profiling are to be
expected based upon the type of reference database available for each technique. To produce more
comparable data, 16S data was mapped to the PathSeq database used for analyzing WGS data. In this
analysis Lactobacillus and Akkermansia trends remained the same (Figure S3).

3.5 PICRUSt analysis of the cecal microbiome of 16S data identifies differential KO modules between
CC04 and CCA41 strains after cocaine treatment. We have previously observed KO cluster differences in
CCO04 in response to cocaine that were absent in the CC41 strain. Based upon PICRUSt analysis using control
samples, 68 KO modules were significantly different across the CTRL strains cocaine-sensitization treatment
(Figure 6A,B Table S5). Of those KO modules 20 were associated with GABA/glutamine/glutamate
metabolism and seven related to short-chain fatty acid metabolism (acetate, butyrate, propionate). The KO
modules K11102 other_glutamate and K13923 Propionate synthesis had the largest fold change (LFC -5.1)
between the strains.

3.6 Pathway analysis using mWGS cecum data

Utilizing the mWGS samples, we looked at the representation of the GBM pathways in the control CC4 vs
CC41 samples post cocaine sensitization protocol. 13 pathways were down regulated and 14 up regulated in
CC04 compared to CC41 mice (Figure 7 and Table S6). PWY.4321.L.glutamate.degradation.IV (LFD -3.317,
p=0.0001, g=0.001) was more abundant in CC04, as was PWY.5044 purine nucleotide degradation
(LFC=1.78, p=0.006, q=0.025) and PWY6666.2.dopamine.degradation (LFC -4.943, p=0.016, g=0.05).

3.7 Antibiotic treatment effects on striatal neurotransmitter levels.

We observed a significant difference in DOPAC (p<0.0001), HVA (p<0.001), 3-MT (p=0.0077) and DA
(p=0.008) between CC004 and CC0041 strains before antibiotic treatment. There was no significant effect of
strain by treatment, except for DA levels. For DA, the full model there was a strain x treatment effect
F@3,41=4.4089, p=0.0093. In a post hoc contrast of the control group there was a significant difference between
CCO04 vs CCO041. However in the antibiotic group there was not a significant difference F,35=4.0438,
p=0.0515. In summary, strain differences in striatal dopamine were diminished by antibiotic treatment (Table
1).

4. DISCUSSION=+

Extensive studies have shown that host genetics have a causal role in the structure and composition of
the gut microbiome [8, 9]. We have previously identified QTL regulating the abundance of numerous bacteria in
the CC breeding population [7], and demonstrate here how two behaviorally divergent CC strains [18] also
have unique microbiome compositions. We have confirmed that repeated cocaine treatment of male and
female CC04 mice results in an upregulation of Barnsiella as was reported in the colon of male C57BL/6N mice
[31]. We have also shown that the effects of the cocaine sensitization paradigm upon the microbiome are strain
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specific and that an intact microbiome (not antibiotic treated) does not significantly repress a low dose cocaine
sensitization response as observed in C57BL/6J males [12]. We did observe that naive strain differences in
striatal DOPAC between CC04 and CC41 are abolished by antibiotic treatment. These findings are consistent
with host genetics controlling both the differential behavior observed in these two strains, their innate
microbiome composition, and the microbiome’s response to repeated drug exposure.

CC strains have been observed to express a great deal of variation in addiction and addiction-related
traits[18, 32-34]. Phenotyping this reference panel of RI lines has revealed phenotypic variation much more
extreme than originally observed in the eight inbred founder strains. The microbial differences include
numerous taxa such as Acetatifactor, Amerpfustis, Anaeroplasma, Butyrivibrio, Catabacter, Christensenella,
Eisenbergiella, Enterococcus, Klebsiella, Lactobacillus, Parvibacter, Robinsoniella, Roseburia, Ruminococcus,
Syntrophococcus and several unclassified microbes among the 82 most abundant genera.

One of the surprising results of this study was the observation that antibiotic treatment did not
dramatically increase behavioral sensitization to a dose of 5 mg/kg cocaine in male and female mice of the
CC04 and CC41 strains. Instead, we observed a sex-specific response to antibiotics in CC04 female mice that
was not observed in CC04 males or either sex of CC41. While the published data showed differences in
cocaine sensitization behavior at 5 mg/kg, there were no behavioral differences of antibiotic treatment at 10
mg/kg in the male B6J mice tested in that same publication[12]. This suggested that the repressive effect of the
microbiome on sensitization behavior may be dose dependent. In our antibiotic experiment, we tested to a
single dose of cocaine (5mg/kg) and perhaps CCO04, a very high responder would have required a lower dose
of cocaine to see antibiotics able to remove the repressive effect of the microbiome on sensitization behavior.
Similarly, CC41 mice exhibit no locomotor response to cocaine at the published dose of 10mg/kg [18] and 5
mg/kg might have shown a more dramatic behavioral response at a higher concentration of cocaine, that could
be altered by the microbiome. Our results, together with those of Kiraly suggest that the microbiome effect on
locomotor sensitization in response to cocaine is dependent on strain, sex and dose of cocaine used [12].

One of the most dramatic differences is the abundance of Eisenbergiella in CC41, a strain that shows
little locomotor response to cocaine and an increase in Lactobacillus in CC04 strain that is highly responsive to
the locomotor effects of cocaine. It is interesting to note that the strain that is not behaviorally responsive to
cocaine did not have any microbiota that were significantly different before and after cocaine administration,
which is in stark comparison to CC04 which is very responsive and exhibited a large increase in Barnesiella
and smaller increase in unclassified_Coriobacteriaceae. Previously a study that treated C57BL/6N male mice
with 20 mg/kg of cocaine ip for 7 consecutive days identified four genera that were decreased, Mucispirillum,
Butyricicoccus, Pseudoflavonifractor and unclassified Ruminococcaceae while there was an increase in
Barnesiella, and unclassified members of Porphyromonadaceae, Bacteriodales, and Proteobacteria [31]. It
must be noted that the C57BL/6N strain of mouse in comparison to the C57BL/6J strain of mice contains a
mutation in Cyfip2 gene and presents with a relatively dampened cocaine sensitization response [35]. The
authors suggest that the change in microbiome composition, dysbiosis, was associated with upregulation of
proinflammatory mediators including NF-kB and IL-1[3. Similarly, they show that cocaine altered the gut-barrier
composition of the tight-junction resulting in a leaky gut. While the authors used only one sex, one strain and
one high repeated dose of cocaine, we have used multiple strains and see the dysbiosis phenotype only in the
strain that is behaviorally responsive to both doses of cocaine [12].

The differential metabolic potential that was identified using either PICRUSt or mWGS pointed to both
glutamate degradation and dopamine degradation enzymes encoded by the microbiome as upregulated in
CCO04 but not CC41 in response to cocaine. Glutamate receptors line the epithelial cells of the gut and have
been show to signal through vagal afferents to regions of the brain [36, 37]. Glutamate is also the substrate for
GABA production and GABA producing strains such as Lactococcus lactis have been shown to modulate
behavior [38]. The fining that glutamate metabolism is altered in response to cocaine in responsive strains
supports the glutamate hypothesis of addiction [39-41], but now extends that process into the gut. These
observations provide some mechanistic insight into the gut-brain axis and SUD.

5. CONCLUSION
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In conclusion, our study indicates that the microbiome shows changes in response to cocaine, in a
strain dependent manner. Strains such as CC041 that appear behaviorally non-responsive to cocaine, also
contain a microbiome that does not robustly respond to cocaine. However, strain CC04 that exhibits a strong
locomotor response to cocaine also displays dramatic changes with its microbiome composition in response to
both a high and low dose of cocaine. These changes in response to cocaine are detectable at the level of
changes to the metabolic potential of the microbiome. CC04 has an increase in microbes with genomes
containing an abundance of glutamate and dopamine metabolic pathways. Furthermore, antibiotic ablation of
the microbiome does not alter the sensitization response of either strain to 5 mg/kg cocaine - CC41 mice
remain non-responsive and CC04 females showed only a minimal increase in locomotor activity in response to
antibiotics.
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Figure legends.

Figure 1- Microbial composition of two naive Collaborative Cross strains and in response to cocaine
sensitization paradigm. A. Principal components analysis of bacterial beta diversity at OTU level using Bray-
Curtis for 16S microbiome data showing clustering of samples by host genotype (PC1 35.8%) and Treatment
(PC2 13.4%). Three males and three females of each strain were tested with cocaine or a sham treatment. B.
The percent abundance of the 20 most abundant genera in female and male mice of strain CC04 and CC041
before a cocaine sensitization paradigm and after a cocaine sensitization paradigm. C. Strain and Treatment
average microbiome composition of the top 20 genera. D. Heat map representation of the microbiome
composition of CC04 and CC041 pre and post cocaine sensitization.

Figure 2 Volcano plots of the functional categories encoded by the microbiome. A. A scatterplot
showing the statistical significance and magnitude of change of the KO clusters as determined by PICRUSt2 of
16S data between CC04 and CCO041 pre sensitization. Blue=ged >0.05, Red=ged <0.05. B. The gut-brain
module KO categories (qed<0.05) from PICRUSt2 of 16S data. C. A scatterplot showing the statistical
significance and D. magnitude of change of the gut-brain module KO clusters as determined by PICRUSt2 of
16S data between CC04 pre sensitization and CC04 post sensitization. *Outlier samples 19183 CC4 pre and
19179 CC4 Post were removed from the later PICRUSt analysis.

Figure 3 Schematic diagram of the experimental design for Antibiotic ablation of the microbiome of
CC4 and CC41 mice.

Figure 4-Cocaine behavioral sensitization of male and female CC04 and CC041 mice in response to
antibiotic treatment and with control. The behavioral sensitization of Kiraly [12] was followed which included
three days of saline treatment followed by five days of 5 mg/kg i.p. cocaine administration.

Figure 5- Microbiome compaosition of CC04 and CC41 cecal contents by 16S and Whole Genome
Shotgun sequencing of control mice following cocaine sensitization. Differences in Lactobacillus and
Akkermansia trend similarly in both methods of microbiome analysis.

Figure 6- Volcano plots of the functional categories encoded by the microbiome 16S PICRUSt and the
modules that are differential between strains after cocaine sensitization. A. A scatterplot showing the
statistical significance and magnitude of change of the KO clusters as determined by PICRUSt2 of 16S data.
B. The gut-brain module KO categories (ged<0.05) from PICRUSt2 of 16S data

Figure 7- The WGS pathways that are differential in the cecal feces between CC4 and CC41 post
sensitization. A. A scatterplot showing the statistical significance and magnitude of change of the KO
pathways from WGS sequencing. B. Example pathways differential representation across CC4 and CC41 mice
after cocaine sensitization.) Blue=significant KO/pathway (p adjusted value<0.05), red=significant KOs that are
GBM (p adjusted value<0.05).

SUPPORTING INFORATION
Table S1 The variable names and all the metadata generated by open field

Table S2- Tab 1-Differences between CC04 and CC41.Tab 2- Differences between CC4 in response to
Cocaine. Tab 3- Differences between CC41 in response to Cocaine. Pink cells represent p<0.05.

Table S3- Tab 1- Gut-Brain Modules from PICRUSt that differed (p<0.05) between CC04 and CC41 Tab 2-
Gut-Brain Modules from PICRUSt that differed (p<0.05) between CCO04 naive and CCO04 post Tarantino
Cocaine Sensitization.

Table S4- Tab 1 Differences between cecum of CC04 and CC41 post cocaine sensitization paradigm of Kiraly.
Tab 2 WGS Differences between cecum of CC04 and CC41 post cocaine sensitization paradigm of Kiraly.
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Table S5 Gut-Brain Modules from PICRUSt of 16S data that differed (p<0.05) between CC04 and CC41
in cecum samples.

Table S6 KEGG Orthology pathways that were differentially abundant in the cecum of CC4 vs CC41
mice based upon the functional potential of the WGS data.

Figure S1 Weight of animals over the eight days of the cocaine sensitization protocol. Based upon
weight there was no adverse effect of the antibiotic treatment upon animal weight.

Figure S2 Total read counts from the control and antibiotic treated mice. There were very few reads
recovered from the antibiotic treated mice, which displayed enlarged cecums consistent with a severe
microbiome disruption.

Figure S3. Microbiome composition of CC04 and CC41 cecal contents by 16S and Whole Genome
Shotgun sequencing of control mice following cocaine sensitization For this analysis the 16S data was
mapped to Pathseq complete genome (90% similarity).

Table 1- The mean and standard error of various neurotransmitters in the striatum of CC04 and CC041
mice with out without antibiotic treatment. NE=Norepinephrine, DOPAC=3,4-Dihydroxyphenylacetic acid,
DA=dopamine, 5-HIAA= 5-hydroxyindoleacetic acid, HYA= homovanillic acid, 5-HT=serotonin, 3-MT= 3-
methoxytyramine. CTRL=Control treatment water with aspartame sweetener. ABX=triple antibiotic cocktail with
aspartame sweetener.** <0.01 Measurements are reported as ng/mg total protein.

Strain Treatment NE DOPAC DA 5-HIAA HVA 5-HT 3-MT

CC04/TauUnc) n=10 CTRL 41+06 7.7+0.5 1643+82  48+02 14.4+0.7 16.2+0.7 143+0.7
CC41/TauUncl n=11 CTRL 3.4+0.5 11.3+0.5 203.9+6.1 5.2+0.3 17.9+05 17.9+1.2 12.2+0.4
CC04/TauUncl n=11 ABX 42+05 9.0+0.7  169.8+58  4.9+0.2 13.9+0.6 17.2+1.0 15.0+0.7

CC41/TauUncl n=10 ABX 3.6+x03 11.5+10 196.2+15 54+04 16.8+1.0 19.1+1.1 13.0+1.1
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Figure 2
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Figure 3
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Figure 4

Locomotor Counts

Male
25000
30000
20000 25000
20000
15000 P
e
3 15000
(&)
10000 S
S 10000
£
3
5000 T T S 5000
J.\
O N E— 5—%

D1 D2 D3 D1 D2 D3 D4 D5
Saline Cocaine 5 mg/kg

Female

D1 D2 D3 D1 D2 D3 D4 D5

Saline Cocaine 5 mg/kg

=@—control CC004 ~==®==ABX CCO04 e=fll=control CCO41 emi==ABX CCO41 —@—control CC004 —@—ABX CCO04 emilimmcontrol CCO41 emimmm ABX CCO41


https://doi.org/10.1101/2022.12.06.519360
http://creativecommons.org/licenses/by-nd/4.0/

Figure 5
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Figure 6
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Figure 7
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Figure S1
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Figure S2
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