

1 Cocaine addiction-like behaviors are associated with
2 long-term changes in gene regulation, energy
3 metabolism, and GABAergic inhibition within the
4 amygdala

5

6 Jessica L. Zhou^{1,2}, Giordano de Guglielmo³, Aaron J. Ho², Marsida Kallupi³, Hai-Ri Li⁴, Apurva
7 S. Chitre³, Lieselot LG Carrette³, Olivier George^{3,4}, Abraham A. Palmer^{3,6}, Graham McVicker^{2*},
8 Francesca Telese^{3,4*}

9

10 ¹Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA,
11 92093, USA

12 ²Integrative Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd,
13 La Jolla, CA, 92037, USA

14 ³Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92092, USA

15 ⁴Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA

16 ⁵The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA

17 ⁶Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla,
18 CA 92093, USA

19

20 *Correspondence:

21 Francesca Telese (ftelese@ucsd.edu)

22 Graham McVicker (gmcvicker@salk.edu)

23 Abstract

24 The amygdala contributes to negative emotional states associated with relapse to drug seeking,
25 but the cell type-specific gene regulatory programs that are involved in addiction are unknown.
26 Here we generate an atlas of single nucleus gene expression and chromatin accessibility in the
27 amygdala of outbred rats with low and high cocaine addiction-like behaviors following a
28 prolonged period of abstinence. Between rats with different addiction indexes, there are
29 thousands of cell type-specific differentially expressed genes and these are enriched for
30 molecular pathways including GABAergic synapse in astrocytes, excitatory, and somatostatin
31 neurons. We find that rats with higher addiction severity have excessive GABAergic inhibition in
32 the amygdala, and that hyperpolarizing GABAergic transmission and relapse-like behavior are
33 reversed by pharmacological manipulation of the metabolite methylglyoxal, a GABA_A receptor
34 agonist. By analyzing chromatin accessibility, we identify thousands of cell type-specific
35 chromatin sites and transcription factor (TF) motifs where accessibility is associated with
36 addiction-like behaviors, most notably at motifs for pioneer TFs in the FOX, SOX, and helix-
37 loop-helix families.

38 Introduction

39 The amygdala mediates emotional processing of both rewarding and aversive environmental
40 stimuli, which allows organisms to engage in subsequent valence-specific behaviors¹. The
41 amygdala is implicated in numerous neuropsychiatric disorders including addiction², and during
42 excessive drug use, it regulates the negative emotions associated with drug withdrawal^{3,4}.
43 Avoidance of these negative emotions enhances the incentive value of the drug, leading to
44 sustained drug-seeking behaviors and relapse⁵⁻⁷. Given prevention of relapse is the cornerstone
45 of effective treatments for addiction, it is important to understand the amygdala's role in
46 addiction and relapse.

47
48 The amygdala is composed of multiple discrete and interconnected subregions, each
49 characterized by highly specialized neuronal populations distinguishable by their morphology
50 and electrophysiological properties⁸. The major subdivisions include the basolateral amygdala
51 (BLA), composed of excitatory glutamatergic neurons and inhibitory interneurons, and the
52 central amygdala (CeA), composed of GABAergic neurons⁹⁻¹¹. While the behavioral function
53 and connectivity of individual subregions of the amygdala have recently been established¹, the
54 mechanisms by which distinct subpopulations of neuronal and non-neuronal cells contribute to
55 its function remains unclear.

56
57 Single-cell genomics is a powerful new approach for determining the cellular function and
58 diversity of complex tissues like the amygdala. Single-cell RNA-sequencing (scRNA-seq), which
59 profiles gene expression in individual cells, has identified and cataloged diverse cell types in
60 human, mouse, and non-human primate brains¹²⁻¹⁸. In addition, single-cell assays for
61 transposase-accessible chromatin (scATAC-seq), which profile open chromatin at single cell
62 resolution, has identified regulatory DNA sequences in the rodent and human brain^{12,19-25}.

63 Regulatory elements identified by scATAC-seq include promoters and enhancers, which confer
64 cell type-specificity to gene expression by recruiting sequence-specific transcription factors
65 (TFs)^{26–29}.

66

67 Single cell assays have the potential to reveal, at a molecular level, how specialized amygdalar
68 cell populations are involved in addiction. For example, given that most genetic variants
69 associated with complex human diseases like addiction are located in noncoding regions of the
70 genome³⁰, snATAC-seq could uncover genetically determined, cell-type specific differences and
71 facilitate functional interpretation of genetic variants³¹. Thus far, however, the application of
72 single-cell assays to the study of addiction-like behaviors in rodents has been limited. Single
73 nucleus RNA-seq (snRNA-seq) has been applied to characterize cellular diversity in brain
74 regions involved in the reward system^{32–35}, and has been used to analyze transcriptional
75 changes induced by cocaine and morphine^{36,37}. However, these prior studies used isogenic
76 rodents, which means that genetically-mediated differences in susceptibility to addiction-like
77 behaviors were not examined. Furthermore, these studies performed experiments following
78 acute, experimenter-administration of drug treatments, which means that they reflect the acute
79 effects of drug use rather than molecular differences associated with the development of long-
80 lasting addictive-like behaviors. For these reasons, the results from prior single nucleus studies
81 have significant limitations.

82

83 To address this knowledge gap, we performed snRNA-seq and snATAC-seq using amygdala
84 tissue from outbred rats obtained from a large genetic study of cocaine addiction-related traits³⁸.
85 These rats are subjected to prolonged abstinence from voluntary cocaine intake in a well-
86 validated model of extended access to drug intravenous self-administration (IVSA)^{5,38–40}. IVSA is
87 associated with neurochemical changes in key brain regions, which are similar to those
88 observed in humans with cocaine use disorder⁴¹. This study used outbred heterogeneous stock
89 (HS) rats because they have high levels of genetic variation and rich phenotypic diversity^{42–45}.
90 By analyzing differences in gene expression and chromatin accessibility in rats with low and
91 high addiction indexes, we identify genes and transcriptional regulators associated with cocaine
92 addiction-like behaviors, including those implicated in GABA_A receptor-mediated pathways.
93 Finally, we perform pharmacological manipulation in tissue slices and in rats to validate insights
94 gained from the transcriptomic data.

95 Results

96 Behavioral characterization of HS rats exhibiting low or high 97 cocaine addiction-like traits

98 To investigate how chronic cocaine use influences cellular states associated with addiction-like
99 behaviors, we performed snRNA-seq and snATAC-seq on amygdala tissues from HS rats
100 subjected to protracted abstinence (4 weeks) from extended access to cocaine IVSA^{38,46–49} (Fig.
101 1a). The animals were trained to self-administer cocaine in operant chambers in two hour (short

102 access, ShA) and 6 hour (long access, LgA) sessions. We measured the mean number of
103 cocaine rewards (lever presses) over the course of the behavioral protocol to quantify the
104 escalation of intake, motivation (rewards measured in a progressive ratio (PR) schedule of
105 reinforcement) and drug seeking despite adverse consequences (rewards paired with an
106 electric foot-shock) (Fig. 1b). Based on individual behavioral measures (Fig. 1c), we calculated
107 an addiction index (AI)³⁸ (average of the Z-score values of the three behavioral measures) as a
108 measure of vulnerability (positive AI) or resilience (negative AI) to develop cocaine addiction-like
109 behaviors. Based on the AI, we classified rats into high and low AI groups (Fig. 1d). High and
110 low AI rats acquired different numbers of cocaine rewards during short access (ShA) vs long
111 access (LgA) phases of the IVSA protocol (Fig. 1e, two-way repeated measures ANOVA,
112 addiction index x phase interaction $p<0.0001$, $F_{23,1012}=8.523$). While there was no difference
113 between groups in cocaine rewards during ShA sessions, high AI rats had a significantly higher
114 escalation of drug intake during LgA sessions compared to low AI rats (Fig. 1e, $p<0.001$, post
115 hoc comparisons with Bonferroni correction). We measured motivation with a PR schedule at
116 the end of the ShA and LgA phases, where the number of lever presses required to acquire a
117 cocaine infusion was increased progressively. Following extended access to cocaine self-
118 administration, motivation for cocaine increased in the high AI rats but not in low AI rats (Fig. 1f,
119 mixed effect model, addiction index \times phase interaction, $p=0.0049$, $F_{1,41}=8.83$; Bonferroni
120 corrected $p=0.0001$, post hoc comparisons). Finally, high AI rats showed increased responses
121 despite adverse consequences compared to low AI rats, as demonstrated by the higher number
122 of cocaine infusions when the reward was paired with an electric foot shock (Fig. 1g, $p<0.001$,
123 unpaired t-test), which may reflect compulsive-like drug use. These results show that we can
124 capture individual differences in multiple behavioral aspects that are relevant to cocaine use
125 disorders by using the outbred population of HS rats in combination with the model of extended
126 access to cocaine IVSA.

127 snRNA-seq and snATAC-seq defines distinct populations of cell 128 types in the amygdala

129 The amygdala is thought to contribute to relapse through its regulation of negative emotional
130 states associated with drug-seeking behavior. In rats, these negative emotional states
131 progressively increase after withdrawal from drug IVSA^{5,50}. To identify neuroadaptations that
132 persist after chronic drug exposure during the withdrawal stage, we collected amygdala tissues
133 after 4 weeks of abstinence from cocaine IVSA (Fig. 1a). We purified nuclei and measured the
134 gene expression and open chromatin profiles of individual nuclei by performing snRNA-seq and
135 snATAC-seq with the 10X Genomics Chromium workflow (see Methods). We performed these
136 experiments on high and low AI rats, as well as naive rats (never exposed to cocaine). For
137 snRNA-seq, we used 19 rats among which 6 were high AI, 6 were low AI, and 7 were naive. For
138 snATAC-seq we used 12 rats among which 4 were high AI, 4 were low AI, and 4 were naive.
139

140 After filtering low quality nuclei and potential doublets based on quality metrics (Fig. S1-6, Table
141 S1 and S2), we obtained a combined total of 163,003 and 81,912 high quality nuclei from the
142 snRNA-seq and snATAC-seq experiments, respectively. Across the snRNA-seq samples, the
143 mean reads per cell varied from 11,967 to 50,343 and the median number of detected genes

144 ranged from 1,293 to 2,855. Across the 12 snATAC-seq samples, the median number of high-
145 quality fragments per nucleus ranged from 7,111 to 22,018. Using these data, we performed
146 normalization, integration across rats, dimensionality reduction and clustering using Seurat⁵¹
147 (snRNA) and Signac⁵² (snATAC). In total, we identified 49 cell type clusters in the integrated
148 snRNA-seq dataset and 41 cell type clusters in the integrated snATAC-seq dataset (Fig. S7).
149 Visualization of the integrated data indicated that the clustering is not influenced by batch
150 effects such as sequencing library, percentage of mitochondrial DNA, or individual rats⁵³ (Fig.
151 S8).

152
153 We annotated the snRNA-seq clusters based on the expression of established cell type-specific
154 marker genes^{54–58} (Fig. 2a-b). The major cell types included excitatory neurons (denoted by
155 expression of *Slc17a7*), inhibitory GABAergic neurons (*Gad1/Gad2*), astrocytes (*Gja1*),
156 microglia (*Ctss*), mature oligodendrocytes (*Cnp*), oligodendrocyte precursor cells (OPC)
157 (*Pdgfra*), and endothelial cells (*Cldn5*) (Fig. 2c). To annotate the snATAC-seq clusters, we
158 estimated gene activity from pseudo bulk chromatin accessibility at promoter regions of cell
159 marker genes and used these gene activity scores to impute gene expression in the snATAC-
160 seq samples (Fig. S9). The imputed gene expression clearly delineates the cell clusters into the
161 same major cell types described above demonstrating strong concordance between our snRNA-
162 seq and snATAC-seq data (Fig. 2d). In addition to the major cell types, we also identified seven
163 subtypes of inhibitory neurons based on the expression of known cell marker genes (Fig. 2e).
164 We also sub-clustered the excitatory neurons and identified 18 distinct clusters (Fig. S10), with
165 top markers including known subpopulation markers such as *Cdh13*, *Nr4a2*, *Bdnf*⁵⁹.

166
167 The total number of nuclei we obtained for each cell type varied substantially (Fig. 2f). As
168 expected, excitatory and inhibitory neurons are the most common major cell types, with over
169 50,000 inhibitory neurons and 20,000 excitatory neurons in the snRNA-seq dataset. Endothelial
170 cells and some subtypes of inhibitory and excitatory neurons have small numbers of nuclei in
171 the dataset, so for most downstream analyses we focused on reporting the six most common
172 major cell types (Fig. 2a-b).

173
174 In combination, the snRNA-seq and snATAC-seq datasets that we generated are the first
175 single-cell atlas of molecularly-defined cell types in the rat amygdala. The inclusion of multiple
176 high AI, low AI, and naive rats make these datasets an important resource for studying gene
177 expression and chromatin accessibility in the amygdala under both normal conditions as well as
178 in the context of cocaine addiction-like behaviors.

179 Measuring cell type-specific differential gene expression between 180 rats displaying a high versus a low addiction index for cocaine

181 We used MAST⁶⁰, a generalized linear model designed for single-cell RNA-seq, to identify
182 differentially expressed genes (DEGs) between high and low AI rats in each cell type (Fig. 3a-b,
183 Table S3). To control for batch effects, which can cause false signals of differential expression
184 in single cell data^{61–63}, we performed the same statistical test after permuting the AI labels of the
185 rats. While the results from the unpermuted data are highly enriched for low p-values, the p-

186 values from the permuted data resemble the null expectation. This indicates that the DEGs we
187 identified are unlikely to be caused by batch effects^{61–63} (Fig. 3c, Fig. S11, Table S4).

188

189 We grouped DEGs into small ($\text{abs}(\text{avg_log}_2\text{FC}) < 0.1$) or large effect size groups
190 ($\text{abs}(\text{avg_log}_2\text{FC}) \geq 0.1$) and observed that most of the DEGs have small effect sizes (Fig. 3d). In
191 total, we identified 1,227 unique DEGs with large effect sizes in at least one cell type and
192 13,114 DEGs with small effect sizes in at least one cell type. The number of significant DEGs
193 (FDR<10%) between high and low AI rats correlates with the size of the cell type population,
194 which likely reflects greater power to detect differential expression in common cell types (Fig.
195 3d). Most (1,078) of the large-effect DEGs are also a small-effect DEG in at least one other cell
196 type, indicating that while there are shared patterns of differential expression across cell types,
197 the effect sizes vary across cell types. We identified 65 DEGs with large effect sizes but
198 discordant directions of effect across cell types (i.e. some genes that are substantially
199 upregulated in one cell type are substantially downregulated in another). These results support
200 our hypothesis that most addiction-related pathways operate via cell type-specific mechanisms
201 (Fig. S12). Some of the most significant DEGs with the largest effect sizes have previously-
202 reported roles in cocaine or other substance use disorders. Among these genes, *Ppp1r1b* (also
203 known as dopamine- and cAMP-regulated phosphoprotein, 32 kDa, DARPP-32), is differentially
204 expressed in both inhibitory neurons and astrocytes, and has long been associated with drugs
205 of abuse^{64–68}. Similarly, the proenkephalin encoding gene *Penk* is differentially expressed in
206 Sst+ neurons and across different glial cell types and is associated with cocaine, opioid and
207 cannabinoid use^{69–71}.

208

209 To identify pathways with altered regulation between high and low AI rats, we performed gene
210 set enrichment analysis (GSEA)^{72,73} to measure KEGG pathway enrichment in the cell type-
211 specific DEGs. We identified significant enrichment of several pathways related to addiction
212 (e.g. nicotine addiction and morphine addiction), neurotransmission (e.g. GABAergic,
213 glutamatergic and dopaminergic synapse), stress (e.g. Cushing syndrome and cortisol
214 synthesis), energy metabolism (e.g. glycolysis, pyruvate metabolism, and oxidative
215 phosphorylation), and others (Fig. 3e, Table S5). Most cell types showed dysregulation of
216 oxidative phosphorylation which, together with glucose metabolism, is the main energy source
217 for synaptic activity and action potentials^{74,75}. This observation suggests that addiction-like
218 behaviors are associated with alterations in the metabolic state of amygdalar cell populations,
219 which can directly impact neural network activity within the amygdala.

220

221 We closely examined the DEGs belonging to the GABAergic synapse pathway, which was
222 significantly enriched in the DEGs of astrocytes, excitatory and Sst+ neurons (Fig. 3f) and found
223 that genes involved in GABA type A (GABA_A) receptor signaling were more highly expressed in
224 high versus low AI rats, including four GABA_A receptors subunits (*Gabrg2*, *Gabrg3*, *Gabrb1*,
225 *Gabra3*), four voltage-gated calcium channels (VGCCs) isoforms (*Cacan1a*, *Cacan1b*,
226 *Cacan1c*, *Cacan1d*), and three protein kinase C (PKC) isoforms (*Prkca*, *Prkcb*, *Prkcg*). Long-
227 term changes in GABA_A receptor activity can be induced by signaling cascades, which are
228 triggered by calcium influx through VGCCs and subsequent phosphorylation by PKC^{3,76–78}.

229 These results suggest that differences in GABA_A receptor signaling in specific amygdalar cell
230 types may be involved in cocaine addiction-related behaviors.

231 **The development of cocaine addiction-like behaviors is linked to**
232 **GABA_A receptor-mediated hyperpolarizing inhibition in the**
233 **amygdala**

234 Based on the above results, we hypothesized that altered energy metabolism within the
235 amygdala can alter GABA_A receptor activity in the amygdala of high AI rats following prolonged
236 abstinence from cocaine IVSA. To test this hypothesis, we measured GABAergic transmission
237 by recording spontaneous inhibitory postsynaptic currents (sIPSCs) in the central amygdala
238 (CeA). CeA slices were collected from a separate cohort of 5 low AI and 5 high AI HS rats that
239 were subjected to prolonged abstinence following the same behavioral protocol described for
240 the snRNA-seq and snATAC-seq experiments (Fig. 4a). As a control, we used CeA slices
241 prepared from 5 age-matched naive HS rats to record baseline GABAergic transmission. There
242 were significant differences in means among the groups (one-way ANOVA $F_{2,22}=6.77$,
243 $p=0.0051$), and in post hoc tests, naive versus high AI rats were significantly different (Tukey
244 HSD adjusted p -value=0.0037), reflecting an increase in GABAergic transmission from naive to
245 low AI to high AI (Fig. 4b). These results suggest that the development of severe cocaine
246 addiction-like behaviors coincides with a hyperpolarization of GABAergic transmission in the
247 amygdala and are consistent with the results from our snRNA-seq differential gene expression
248 analysis (Fig. 3a-b).

249

250 To further investigate the link between GABAergic transmission and energy metabolism in the
251 amygdala with cocaine addiction-like behaviors, we modulated the activity of GABA_A receptors
252 by altering the endogenous levels of methylglyoxal (MG), which is a byproduct of glycolysis that
253 has been shown to act as a competitive partial agonist of GABA_A receptors⁷⁹. To modulate MG
254 levels in the amygdala, we inhibited glyoxalase 1 (GLO1), the rate limiting enzyme for the
255 metabolism of MG, using S-bromobenzylglutathione cyclopentyl diester (pBBG)^{79,80}. When we
256 applied pBBG to CeA slices from naive, low AI or high AI rats, pBBG reduced the sIPSC
257 frequency compared to vehicle for both high and low AI rats (paired t-tests, $p=7.6e-5$ and
258 $p=3.9e-3$, respectively), but not naive rats ($p=0.51$) (Fig. 4c-f). These findings demonstrate that
259 GABA_A receptor-mediated hyperpolarization in high AI rats is normalized by the inhibition of
260 GLO1.

261

262 These results led us to hypothesize that GLO1 inhibition would revert behavioral responses
263 after prolonged abstinence from cocaine IVSA. To test this hypothesis, we measured cue-
264 induced reinstatement of cocaine seeking behavior in a separate cohort of 26 low and high AI
265 rats 30 minutes after systemic injection of pBBG or vehicle following 4 weeks of abstinence from
266 cocaine IVSA (Fig. 4g). During this test, rats were subjected to the same operant conditions of
267 cocaine IVSA, but without drug availability. Then, reinstatement was triggered by re-exposure to
268 the cocaine infusion-associated light cue. The two-way repeated measures ANOVA showed a
269 significant interaction between the addiction index and pharmacological treatment ($F_{1,24}=6.609$,

270 p<0.05), indicating that pBBG versus vehicle reduced cue-induced reinstatement in high AI rats
271 (p-value<0.05, post hoc comparisons with Bonferroni correction), but not in low AI rats (p>0.05).
272 Overall, these results demonstrate that modulating GABA_A transmission with the
273 pharmacological inhibition of GLO1 decreases relapse-like behaviors in animals with high
274 cocaine AI.

275 **Mapping differences in chromatin accessibility associated with to 276 cocaine addiction-like behaviors**

277 To identify regions of open chromatin from the snATAC-seq data, we used MACS2⁸¹ to call
278 accessible chromatin peaks from the aligned reads for each rat and created a union peak set
279 across rats. We examined pseudo bulk chromatin accessibility at the TSS of selected cell type
280 marker genes and observed cell type-specific patterns of accessibility at the expected marker
281 genes of each cell type (Fig. 5a, Fig. 2c-d), indicating that the chromatin accessibility
282 corresponds well with the transcriptome measurements.

283
284 Open chromatin regions harbor cell type-specific regulatory elements^{82,83}, and enrichment
285 analyses that measure intersections between ATAC-seq peaks and GWAS signals can yield
286 insight into the mechanisms by which genetic variants confer risk⁸⁴. However, cell type-specific
287 measurements of chromatin accessibility are difficult to obtain from human brain tissues. To
288 assess whether our rat snATAC-seq data is meaningful for interpreting human addiction-related
289 traits, we mapped the accessible chromatin peaks to the human reference genome and
290 performed cell type-specific LD score regression⁸⁵. We chose to use summary statistics from
291 well-powered GWAS for alcohol and tobacco use^{86,87} because there is significant genetic
292 overlap among GWAS for all known substance use disorders⁸⁸ and because available GWAS
293 for cocaine use disorder are much smaller and less powerful. We found significant enrichments
294 (FDR<10%) of SNP heritability in every trait tested in almost every cell type (Fig. 5b), with the
295 most significant enrichments in neurons, astrocytes, oligodendrocytes and OPCs. Overall, these
296 results support the hypothesis that, despite the millions of years of evolution separating humans
297 and rats, the regulatory architecture identified in HS rats that are divergent for IVSA-related
298 phenotypes is relevant for human addiction-related traits.

299
300 To better understand the regulatory mechanisms involved in cocaine addiction, we analyzed
301 differences in chromatin accessibility between high and low AI rats. We performed negative
302 binomial tests to measure cell type-specific differential chromatin accessibility (Table S6), and
303 compared the observed p-values to those obtained from permuted data (as we did for our DEG
304 analysis). The p-values of the permuted data resemble the null expectation, confirming that the
305 differential peaks between high and low addiction are likely true biological differences rather
306 than batch effects (Fig. S13, Table S7). In total we identified >20,000 peaks across cell types
307 with significant differential accessibility (FDR<10%), however, as with gene expression, most
308 differences are small ($\log_2FC < 0.1$) (Fig. S14). This indicates that differences in addiction-like
309 behaviors between rats are associated with modest regulatory changes at a large number of
310 sites.

311

312 The differential peaks can be subdivided into those where accessibility is higher (upregulated)
313 or lower (downregulated) in the high AI rats (Fig. S14). In astrocytes, there are roughly equal
314 numbers of up- and downregulated peaks, but the other cell types have profound biases.
315 Excitatory neurons are the most biased with only two detected downregulated peaks, and over
316 8000 upregulated peaks. Inhibitory neurons show the opposite bias with over 4000
317 downregulated peaks but only ~500 upregulated peaks (Fig. S14). These biases likely reflect
318 differences in the activity of specific TFs that control large transcriptional programs.
319

320 To determine whether the differential chromatin accessibility is consistent with the differential
321 gene expression, we tested whether the promoters of DEGs are enriched for differential
322 accessibility. We overlapped the significant differential accessible chromatin peaks in each cell
323 type with the promoters of DEGs and computed a log odds ratio ($\log_2\text{OR}$) as a measure of
324 enrichment. Across all of the major cell types, there is a large and significant (Fisher's exact
325 test, $p<0.05$) enrichment of differentially accessible peaks at the promoters of DEGs compared
326 to non-DEGs (Fig. 5c, Table S8). This confirms that the differential chromatin accessibility and
327 differential gene expression are concordant, and is additional evidence that the observed
328 differences between high and low AI rats are true biological effects.
329

330 To characterize differentially accessible chromatin, we examined the genomic annotations for
331 the significant differential peaks (Fig. S15). Differentially accessible peaks are highly enriched in
332 promoter regions (compared to non-differential peaks), occurring there at least four times more
333 frequently than expected in most of the major cell types (Fisher's exact test, $\text{FDR}<10\%$) (Fig.
334 5d, Table S9). This enrichment may indicate that changes in chromatin are more concentrated
335 at promoters, or that we have greater statistical power to detect changes at promoters, due to
336 larger effect sizes or greater overall chromatin accessibility.
337

338 We hypothesized that differences in chromatin accessibility between high and low AI rats are
339 caused by differential TF activity. To test this hypothesis, we analyzed the snATAC-seq data
340 using chromVAR, which identifies TF motifs associated with differential accessibility using
341 sparse single cell data⁸⁹. A large number of motifs have significant differences in accessibility
342 between the high and low AI rats, and since many TFs recognize similar motifs, we grouped
343 them into motif clusters (see Methods) and summarized results across cell types (Fig. 5e).
344

345 The motif cluster with the most significant difference in accessibility between high and low AI
346 rats contains motifs for basic helix-loop-helix (BHLH) TFs. This motif cluster has substantially
347 higher accessibility within the excitatory neurons of high AI rats compared to low AI rats
348 (deviance 3.8, $p=1\text{e-}280$), as well as a modest increase in accessibility in inhibitory neurons
349 (deviance 0.38, $p=1\text{e-}34$) (Fig. 5f-h). The top-ranked motifs in this cluster all harbor the
350 sequence CAGATGG, which is a close match to binding site motifs for multiple neuronal pioneer
351 TFs including NeuroD1, NeuroD2, NeuroG2 and Atoh1^{90,91}. Thus, the widespread increases in
352 chromatin accessibility in excitatory neurons of high AI rats could reflect increased activity of
353 pioneer TFs that recruit chromatin remodelers.
354

355 We noticed that many motif clusters with increased accessibility in the neurons of high AI rats
356 have decreased accessibility in oligodendrocytes (Fig. 5e-h). Prominent among these motif
357 clusters are those containing FOX and RFX motifs (Fig. 5e-h).

358

359 Several motif clusters also have opposite effects between excitatory and inhibitory neurons.
360 SOX motifs have decreased accessibility in high AI rats in excitatory neurons but increased
361 accessibility in all other major cell types including inhibitory neurons (Fig. 5e). MEF2 and FOS
362 (AP1) motifs all have increased accessibility in the excitatory neurons of high AI rats but
363 decreased accessibility in inhibitory neurons (Fig. 5e). AP1 and MEF2 motifs are of particular
364 interest because they are associated with addiction⁹²⁻⁹⁵ and their expression increases in the
365 brain following chronic exposure to cocaine and other drugs⁹⁶⁻¹⁰⁰.

366

367 While our analysis cannot pinpoint the precise TFs involved, it implicates many motif clusters
368 that are associated with addiction-like behaviors across thousands of regulatory regions and in
369 a cell type-specific manner.

370 Discussion

371 To better understand the molecular basis of addiction and illuminate long-term changes in gene
372 regulation and chromatin accessibility associated with chronic drug use, we have generated an
373 atlas of single-cell gene expression and chromatin accessibility in the amygdala of rats that
374 showed divergent cocaine addiction-like behaviors. Our dataset is the largest resource of cell
375 types in the mammalian amygdala, with over 163,000 nuclei in our snRNA-seq dataset and
376 81,000 nuclei in our snATAC-seq dataset (Fig. 2a-b). The snATAC-seq dataset provides the first
377 map of cell type-specific regulatory elements in the amygdala, which has allowed us to identify
378 TF motifs that may drive addiction-related processes.

379

380 Previous single cell transcriptomic studies have focused on the effects of acute passive
381 treatment with psychoactive drugs in rodents^{36,37}, which cannot fully capture the motivational
382 processes underlying addiction. In contrast, our behavioral protocol involves extended access to
383 cocaine IVSA and reflects several key aspects of cocaine addiction, including escalation of drug
384 use, enhanced motivation for drug seeking and taking, and persistent drug use despite adverse
385 consequences, which might reflect compulsive-like drug consumption¹⁰¹. Thus, our study is the
386 first to examine long-term molecular changes in distinct brain cell populations following
387 abstinence from chronic voluntary cocaine use.

388

389 One striking finding from our study is that there are thousands of significant differences in gene
390 expression and chromatin accessibility between high and low AI rats (Fig. 3d, Fig. S14). Most of
391 these differences were small, which suggests that cocaine addiction-related behaviors may
392 result from the combined action of many small effects on gene expression and chromatin
393 accessibility. Because the HS rats are genetically diverse, the molecular differences between
394 high and low AI rats could arise from genetic differences or from the consumption of different
395 quantities of cocaine. These results are consistent with a polygenic model wherein addiction-like
396 behaviors would result from the collective action of a large number of genetic risk loci with small

397 individual effects. This is a plausible explanation because of the high genetic diversity in the HS
398 rats and because complex traits in humans are highly polygenic^{102,103}. Further support for this
399 hypothesis comes from DEGs such as *Pp1r1b* and *Penk* (Fig. 3a-b) which have gene
400 expression quantitative trait loci (eQTLs) in HS rats¹⁰⁴, indicating that heritable differences
401 influence their expression. Alternatively, the effects could be mediated by a relatively small
402 number of TFs that affect many downstream genes and chromatin sites. Because some of the
403 motifs with the strongest chromatin accessibility differences (Fig. 5e-h) are recognized by
404 pioneer TFs (e.g. BHLH, SOX, FOX), it is tempting to speculate that widespread differences in
405 accessibility are due to pioneer TFs, which have an intrinsic ability to modify chromatin¹⁰⁵.
406 These explanations are not mutually exclusive and it is likely that some differences are caused
407 by eQTLs while others are caused by differences in the activity of upstream regulators (which
408 themselves may be affected by genetics or other factors). To properly uncouple pre-existing
409 genetically controlled gene expression differences from cocaine-induced neuroadaptations
410 would require larger datasets of genotyped rats. One way this could be accomplished is through
411 the use of polygenic risk scores for addiction-related traits, which will become possible as more
412 rat behavioral GWAS are completed^{42,44-46,106}.
413

414 Human and animal studies have provided genetic and behavioral evidence that GABA_A
415 receptor-mediated pathways are involved in addiction^{3,107-111}. Our differential gene expression
416 (Fig. 3f) and electrophysiology (Fig. 4b) results support these prior findings and provide
417 evidence for excessive GABAergic transmission in the high AI rats. Moreover, we found that
418 inhibition of GLO1, the enzyme responsible for MG metabolism, normalizes electrophysiological
419 (Fig. 4c-f) and behavioral differences (Fig. 4h) associated with severe addiction-like behaviors.
420 While the pharmacological inhibition experiments are not cell type-specific, the transcriptomic
421 data suggest that increases in GABAergic synapse-related genes may be specific to astrocytes,
422 excitatory and Sst+ neurons. Furthermore, our results corroborate previous findings that MG
423 acts as an endogenous competitive agonist for GABA_A receptors^{107,112}, and offer a promising
424 pharmacological target for improving therapeutic approaches for cocaine addiction. While our
425 single-cell assays used only male rats, our validation experiments included both male and
426 female rats. Future experiments including both sexes will be necessary to determine the
427 influence of sex on gene expression and chromatin accessibility in the amygdala.
428

429 The results from the GLO1 inhibition experiments indicate a close connection between localized
430 energy metabolism and neurotransmission¹¹³. Moreover, genes which are differentially
431 regulated in high versus low AI rats are enriched in pathways related to energy metabolism,
432 including glycolysis, pyruvate metabolism, and oxidative phosphorylation (Fig. 3e). Most
433 notably, the expression levels of genes related to oxidative phosphorylation, which determines
434 cellular ATP levels¹¹⁴, are altered across most amygdalar cell types. Not only is ATP crucial for
435 sustaining electrophysiological activity and cell signaling in the brain^{115,116}, but it is also required
436 for ATP-dependent chromatin remodeling events initiated by pioneer TFs¹¹⁷. This could
437 potentially explain why excitatory and inhibitory neurons show opposite directions of regulation
438 in chromatin accessibility (Fig. S14) and in the enrichment of DEGs in the oxidative
439 phosphorylation pathway (Fig. 3e). In combination, these observations suggest that an altered
440 metabolic state within the amygdala impacts multiple cellular processes that are involved in

441 vulnerability to and development of addiction. Future experiments that directly manipulate the
442 expression of specific metabolic enzymes or pioneer TFs in a cell type-specific manner will be
443 necessary to fully elucidate their role in addiction.

444

445 In conclusion, the cellular atlas created by this study is a valuable resource for understanding
446 cell type-specific gene regulatory programs in the amygdala and their role in the development of
447 cocaine addiction-related behaviors. Our results emphasize the contribution of the GABA_A-
448 mediated signaling to the enduring effects of cocaine use, which led us to perform experiments
449 that manipulate GABA_A transmission and identify a novel potential target for treatment of
450 cocaine addiction. We anticipate that future studies will utilize our data to further investigate
451 novel cell type-specific mechanisms involved in addiction.

452

Methods

453

Experimental

454

Animals

455 All protocols were reviewed and approved by the institutional Animal Care and Use Committee
456 at the University of California San Diego. HS rats (Rat Genome Database NMciWFsm
457 #13673907, sometimes referred to as N/NIH) which were created to encompass as much
458 genetic diversity as possible at the NIH in the 1980's by outbreeding eight inbred rat strains
459 (ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N) were provided by Dr.
460 Leah Solberg Woods (Wake Forest University School of Medicine). To minimize inbreeding and
461 control genetic drift, the HS rat colony consists of more than 64 breeder pairs and is maintained
462 using a randomized breeding strategy, with each breeder pair contributing one male and one
463 female to subsequent generations. To keep track of the rats, their breeding, behavior, organs
464 and genomic info, each rat received a chip with an RFID code. Rats were shipped at 3-4 weeks
465 of age, kept in quarantine for 2 weeks and then housed two per cage on a 12 h/12 h reversed
466 light/dark cycle in a temperature (20-22°C) and humidity (45-55%) controlled vivarium with ad
467 libitum access to tap water and food pellets (PJ Noyes Company, Lancaster, NH, USA). We
468 used 57 HS rats for the behavioral experiments, of which 31 male rats were used for the
469 generation of genomic data and 26 rats (13 female, 13 male) were used for cue-induced
470 reinstatement. For snRNA-seq we used 19 male rats (6 high AI, 6 low AI, 7 naive). For the
471 snATAC-seq we used 12 male rats (4 high AI, 4 low AI, 4 naive). In addition, we used 15 female
472 and male rats (5 high AI, 5 low AI, 5 naive) for the electrophysiology experiments.

473

474

Drugs

475 Cocaine HCl (National Institute on Drug Abuse, Bethesda, MD, USA) was dissolved in 0.9%
476 saline (Hospira, Lake Forest, IL, USA) and administered intravenously at a dose of 0.5
477 mg/kg/infusion as described below. pBBG was synthesized in the laboratory of Prof. Dionicio
478 Siegel (University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical

479 Sciences). pBBG was dissolved in a vehicle of 8% dimethylsulfoxide, 18% Tween-80, and 74%
480 distilled water and administered intraperitoneally 30 minutes before the test session.

481 Brain Samples

482 Brain tissues were obtained from the cocaine brain bank at UCSD³⁸, which collects tissues from
483 HS rats that are part of an ongoing study of addiction-like behavior⁴². We used 31 HS rats for
484 the generation of single-cell genomic data reported in this study which were selected as having
485 low or high AI for cocaine addiction-related behaviors, using behavioral methods previously
486 described⁴⁷. Brain tissues were extracted and snap-frozen (at -30°C). Cryosections of
487 approximately 500 microns (Bregma -1.80 - 3.30mm) were used to dissect the amygdala on a
488 -20°C frozen stage, including the central nucleus of the amygdala, basolateral amygdala, and
489 medial amygdala from both hemispheres. Punches from three sections were combined for each
490 rat.

491 Single-cell library preparation, sequencing, and alignment

492 Single nucleus RNA-seq was performed by the Center for Epigenomics, UC San Diego using
493 the Droplet-based Chromium Single-Cell 3' solution (10x Genomics, v3 chemistry). Briefly,
494 frozen amygdala tissue was homogenized via glass dounce. Nuclei were then resuspended in
495 500 µL of nuclei permeabilization buffer (0.1% Triton-X-100 (Sigma-Aldrich, T8787), 1X
496 protease inhibitor, 1 mM DTT, and 1U/µL RNase inhibitor (Promega, N211B), 2% BSA (Sigma-
497 Aldrich, SRE0036) in PBS). Sample was incubated on a rotator for 5 min at 4°C and then
498 centrifuged at 500 rcf for 5 min (4°C, run speed 3/3). Supernatant was removed and pellet was
499 resuspended in 400 µL of sort buffer (1 mM EDTA 0.2 U/µL RNase inhibitor (Promega, N211B),
500 2% BSA (Sigma-Aldrich, SRE0036) in PBS) and stained with DRAQ7 (1:100; Cell Signaling,
501 7406). Up to 75,000 nuclei were sorted using a SH800 sorter (Sony) into 50 µL of collection
502 buffer consisting of 1 U/µL RNase inhibitor in 5% BSA; the FACS gating strategy sorted based
503 on particle size and DRAQ7 fluorescence. Sorted nuclei were then centrifuged at 1000 rcf for 15
504 min (4°C, run speed 3/3) and supernatant was removed. Nuclei were resuspended in 35 µL of
505 reaction buffer (0.2 U/µL RNase inhibitor (Promega, N211B), 2% BSA (Sigma-Aldrich,
506 SRE0036) in PBS) and counted on a hemocytometer. 12,000 nuclei were loaded onto a
507 Chromium Controller (10x Genomics). Libraries were generated using the Chromium Single-Cell
508 3' Library Construction Kit v3 (10x Genomics, 1000075) with the Chromium Single-Cell B Chip
509 Kit (10x Genomics, 1000153) and the Chromium i7 Multiplex Kit for sample indexing (10x
510 Genomics, 120262) according to manufacturer specifications. cDNA was amplified for 12 PCR
511 cycles.

512

513 For snATAC-seq library preparations, nuclei were purified from frozen amygdala tissues using
514 an established method¹¹⁸. Briefly, frozen amygdala tissue was homogenized using a 2 ml glass
515 dounce with 1 ml cold 1x Homogenization Buffer (HB). The cell suspension was filtered using a
516 70 µm Flowmi strainer (BAH136800070, Millipore Sigma) and centrifuged at 350g for 5 min at
517 4°C. Nuclei were isolated by iodixanol (D1556, Millipore Sigma) density gradient. The nuclei
518 iodixanol solution (25%) was layered on top of 40% and 30% iodixanol solutions. Samples were
519 centrifuged in a swinging bucket centrifuge at 3,000g for 20 min at 4°C. Nuclei were isolated

520 from the 30-40% interface. Libraries were generated using the Chromium Next GEM Single Cell
521 ATAC v1.1 (10x Genomics, PN-1000175) with the Chromium Next GEM Chip H Single Cell Kit
522 (10x Genomics, 1000162) and the Chromium i7 Multiplex Kit for sample indexing (10x
523 Genomics, 1000212) according to manufacturer specifications. DNA was amplified for 8 cycles.
524 For both library types, SPRISelect reagent (Beckman Coulter, B23319) was used for size
525 selection and clean-up steps. Final library concentration was assessed by Qubit dsDNA HS
526 Assay Kit (Thermo-Fischer Scientific) and post library QC was performed using Tapestation
527 High Sensitivity D1000 (Agilent) to ensure that fragment sizes were distributed as expected.
528 Final libraries were sequenced using the NovaSeq6000 (Illumina).

529
530 Raw base call (BCL) files were used to generate FASTQ files using Cell Ranger 3.1.0 with the
531 `cellranger mkfastq` command for RNA-seq reads and `cellranger-atac mkfastq` for ATAC-seq
532 reads^{119,120}. Next, we used `cellranger count` and `cellranger-atac count` to align the reads to a
533 custom rat reference genome based on the UCSC rn6 reference genome¹²¹⁻¹²³. This reference
534 genome was created from FASTA and genome annotation files for Rattus norvegicus Rnor_6.0
535 (Ensembl release 98)¹²⁴ and JASPAR2022 motifs¹²⁵. We then filtered cells based on quality
536 control metrics and performed barcode and UMI counting for the RNA-seq and ATAC-seq
537 reads.

538 Electrophysiology

539 Slices of the CeA were prepared from cocaine dependent rats during protracted abstinence or
540 age-matched naive rats. High AI (n=5), low AI (n=5) and naive (n=5) rats were used for patch
541 clamp baseline recordings. Slices from each group were also used to record sIPSCs after pBBG
542 treatment. The naive rats received sham IV surgery. The rats were deeply anesthetized with
543 isoflurane and brains were rapidly removed and placed in oxygenated (95% O₂, 5% CO₂) ice-
544 cold cutting solution that contained 206 mM sucrose, 2.5 mM KCl, 1.2 mM NaH₂PO₄, 7 mM
545 MgCl₂, 0.5 mM CaCl₂, 26 mM NaHCO₃, 5 mM glucose, and 5 mM Hepes. Transverse slices
546 (300 μ m thick) were cut on a Vibratome (Leica VT1200S; Leica Microsystems) and transferred
547 to oxygenated artificial cerebrospinal fluid (aCSF) that contained 130 mM NaCl, 2.5 mM KCl, 1.2
548 mM NaH₂PO₄, 2.0 mM MgSO₄·7H₂O, 2.0 mM CaCl₂, 26 mM NaHCO₃, and 10 mM glucose. The
549 slices were first incubated for 30 min at 35°C and then kept at room temperature for the
550 remainder of the experiment. Individual slices containing CeA were transferred to a recording
551 chamber that was mounted on the stage of an upright microscope (Olympus BX50WI). The
552 slices were continuously perfused with oxygenated aCSF at a rate of 3 mL/min. Neurons were
553 visualized with a 60 \AA water-immersion objective (Olympus), infrared differential interference
554 contrast optics, and a charge coupled device camera (EXi Blue; QImaging). Whole-cell
555 recordings were performed using a Multiclamp 700B amplifier (10-kHz sampling rate, 10-kHz
556 low-pass filter) and Digidata 1440A and pClamp 10 software (Molecular Devices). Patch
557 pipettes (4–6 M Ω) were pulled from borosilicate glass (Warner Instruments) and filled with 70
558 mM KMeSO₄, 55 mM KCl, 10 mM NaCl, 2 mM MgCl₂, 10 mM Hepes, 2 mM Na-ATP, and 0.2
559 mM Na-GTP. Pharmacologically isolated spontaneous inhibitory postsynaptic currents (sIPSCs)
560 were recorded in the presence of the glutamate receptor blockers, CNQX (Tocris #0190) and
561 APV (Tocris #189), and the GABA-B receptor antagonist CGP55845 (Tocris #1246).
562 Experiments with a series resistance of >15 M Ω or >20% change in series resistance were

563 excluded from the final dataset. pBBG (2.5uM) was acutely applied in the bath. The frequency,
564 amplitude, and kinetics of sIPSCs were analyzed using semi-automated threshold-based mini
565 detection software (Easy Electrophysiology) and visually confirmed. Data were analyzed using
566 Prism 9.0 software (GraphPad, San Diego, CA, USA) with one-way ANOVA followed by post
567 hoc Tukey HSD test or with paired t-tests. The data are expressed as mean \pm SEM unless
568 otherwise specified. Values of $p < 0.05$ were considered statistically significant.

569 Behavioral experiments

570 Intravenous catheterization and behavioral testing of rats used for the generation of snRNA-seq
571 and snATAC-seq were carried out using an established protocol of extended access to cocaine
572 IVSA, PR testing, and foot shock, as reported previously^{38,47,48}. Briefly, after surgical
573 implantation of intravenous catheters and a week of recovery, HS rats were trained to self-
574 administer cocaine (0.5 mg/kg/infusion) in 10 short access (ShA) sessions (2h/day, 5 days per
575 week). Next, the animals were allowed to self-administer cocaine in 14 long access (LgA)
576 sessions (6h/day, 5 days/week) to measure the escalation of drug intake. Following the
577 escalation phase, rats were screened for motivation using the PR test and for persistent drug-
578 seeking despite adverse consequences using contingent foot-shock. Rats were classified as
579 having a low or high AI by a median split. AI was computed by averaging normalized
580 measurements (z-scores) for the three behavioral tests (escalation, motivation, resistance to
581 punishment)¹²⁶. The z-scores are calculated as follows $z = \frac{x - \mu}{\sigma}$, where x is the raw value, μ is the
582 mean of the cohort, and σ is the standard deviation of the cohort. Brain tissues were collected after
583 four weeks of abstinence.

584
585 For the pBBG studies, rats were placed back in the self-administration chambers without the
586 availability of cocaine 28 days after the last drug self-administration session and the number of
587 responses to the previous drug-paired lever (cocaine seeking behavior) was measured 30
588 minutes after intraperitoneal injection of pBBG (15 mg/kg/ml) or its vehicle, in a Latin square
589 design. Specifically, the rats were presented with a neutral stimulus (SN) in a 2 h session to
590 control for the specificity of the discriminative stimulus (SD) in reinstating extinguished cocaine-
591 seeking behavior. During the SN session, the illumination of a 2.8 W house light that is located
592 at the top of the chamber's front panel served as a SN that signaled the non-availability of the
593 reinforcer. Responses on the right, active lever were followed by 70-dB white noise, during
594 which the lever remained inactive for 20 s. Two days later, the rats were presented with the SD.
595 Reintroduction of the cocaine-related SD but not neutral cues significantly reinstated
596 extinguished cocaine-seeking behavior that was measured as mean number of lever presses.
597 Data were analyzed using Prism 9.0 software (GraphPad, San Diego, CA, USA). Self-
598 administration data were analyzed using repeated-measures analysis of variance (ANOVA) or
599 mixed effect model followed by Bonferroni post-hoc tests when appropriate. For pairwise
600 comparisons, data were analyzed using the unpaired t -test. The data are expressed as mean \pm
601 SEM unless otherwise specified. Values of $p < 0.05$ were considered statistically significant.

602 Computational

603 Quality control and preprocessing of snRNA-seq data

604 All snRNA-seq preprocessing was performed with 10x Genomics Cell Ranger 3.1.0 and Seurat
605 v3.2.3⁵¹. FASTQ files were aligned to the *Rattus norvegicus* Ensembl v98 reference genome
606 (Rnor_6.0). For each sample, we loaded the filtered feature barcode matrices containing only
607 detected cellular barcodes returned by `cellranger count` into Seurat. We computed the number
608 of unique genes detected in each cell (nFeature_RNA); the total number of molecules detected
609 within a cell (nCount_RNA); and the percentage of reads mapping to the mitochondrial genome
610 (percent.mt) (Fig. S1-3, Table S1). We removed all cells for which the value of any of these
611 metrics was more than three standard deviations from the mean within the sample ($x > \mu \pm 3\sigma$).
612 Next, we normalized the count data for each sample using sctransform¹²⁷ with percent.mt as a
613 covariate.

614 Integrating snRNA-seq data across samples and clustering

615 To integrate snRNA-seq data across all of our samples, we used reciprocal principal component
616 analysis (RPCA), as implemented in Seurat^{51,128}. First, we identified 2000 highly variable
617 features (genes) across all of the samples to use as integration features using the
618 `SelectIntegrationFeatures()` function, which we passed as anchor features (`anchor.features`)
619 to the `PrepSCTIntegration()` function. Next, we performed dimensionality reduction with PCA
620 on each sample using `RunPCA()`. After this, we ran the `FindIntegrationAnchors()` function to
621 find a set of anchors between the list of Seurat objects from all of our samples using the same
622 anchor features passed to `PrepSCTIntegration()`, specifying RPCA as the dimensional
623 reduction method to be performed for finding anchors (`reduction = rcpa`) and the first 30 RPCA
624 dimensions to be used for specifying the k-nearest neighbor search space. Two rats (1 high AI,
625 1 low AI) were used as reference samples for the integration. We used the resulting anchor set
626 to perform dataset integration across all of our samples using `IntegrateData()`. We clustered
627 the integrated dataset by constructing a K-nearest neighbor (KNN) graph using the first 30 PCs
628 followed by the Louvain algorithm, implemented in Seurat using the `FindNeighbors()` function
629 followed by `FindClusters()`. Finally, we ran PCA once again on the integrated dataset and
630 visualized the data using uniform manifold approximation and projection (UMAP). Visualization
631 of the integrated data in two-dimensional space indicated that batch correction was successful
632 (Fig. S8a-c).

633 Cell type assignment for snRNA-seq data

634 We identified marker genes of each cluster in our integrated snRNA-seq dataset using MAST⁶⁰,
635 implemented with the `FindMarkers()` function in Seurat. Cell type identities were assigned
636 based on expression of known marker genes of cell types known to be found in the amygdala.
637

638 Cell type-specific gene expression analysis for snRNA-seq data

639 Within each cell type, we tested for DEGs between the high AI rats and the low AI rats. We used
640 MAST⁶⁰ implemented with the `FindMarkers()` function in Seurat to identify differential
641 expression between groups, using percent.mt, the library prep date, and the rat sample ID as
642 covariates. We did not pre-filter genes for testing based on log-fold change or minimum fraction
643 of cells in which a gene was detected. This approach allowed us to detect weaker signals
644 because we tested all observed genes in the dataset. Multiple testing correction was performed
645 using the Benjamini-Hochberg method and we used a false discovery rate of 10% as a
646 significance threshold (FDR<10%). Permutation tests were performed using the same methods,
647 covariates, and filtering options but with shuffled addiction index labels and results were
648 compared by visualizing the distributions of uncorrected p-values with QQ-plots (Fig. S11, Table
649 S4). We used ClusterProfiler¹²⁹ to perform gene set enrichment analysis (GSEA) of KEGG
650 pathways for DEGs from each cell type. Multiple testing correction for GSEA results was
651 performed using Benjamini-Hochberg adjustment, with statistical significance assessed at a
652 FDR<10%.

653 Per sample quality control and preprocessing of snATAC-seq data

654 As with the snRNA-seq data, we aligned the reads to the *Rattus norvegicus* Ensembl v98
655 reference genome (Rnor_6.0). All snATAC-seq data preprocessing was performed with
656 MACS2⁸¹ (for peak calling) and Signac⁵². Although peak calling is performed during alignment
657 by `cellranger-atac count`, we chose to call peaks separately using MACS2 because Cell
658 Ranger's peak calling function has been observed to merge multiple distinct peaks into a single
659 region¹³⁰. To minimize loss of informative features for clustering and downstream analysis, we
660 first called peaks on the snATAC-seq BAM files for each rat with MACS2 (`macs2 callpeak -t
661 {input} -f BAM -n {sample} --outdir {output} {params} --nomodel --shift -100 --ext 200 --qval 5e-2
662 -B --SPMR`). We confirmed that MACS2 calls more peaks and peaks with smaller widths
663 compared to Cell Ranger (Fig. S16). Next, we merged overlapping peaks across all of our
664 samples to generate a combined peak set using BEDtools¹³¹ (`bedtools merge`). We generated
665 a new peak by barcode matrix for each sample using this combined peak set and all detected
666 cellular barcodes using the `FeatureMatrix()` function in Signac. We used these new matrices to
667 create ChromatinAssay objects in Signac with the BSgenome.Rnorvegicus.UCSC.rn6¹²²
668 reference genome using the `CreateChromatinAssay()` function. From these ChromatinAssay
669 objects we created Seurat objects with `CreateSeuratObject()`, which are compatible with
670 functions from the Seurat package. We computed several quality control metrics for each
671 sample: nucleosome banding pattern (nucleosome_signal); transcriptional start site (TSS)
672 enrichment score (TSS.enrichment); total number of fragments in peaks
673 (peak_region.fragments); and fraction of fragments in peaks (pct_reads_in_peaks) (Fig. S4-6,
674 Table S2). We removed all cells for which the value of any of these metrics was more than two
675 standard deviations from the mean within the sample ($x > \mu \pm 2\sigma$). We removed one rat
676 (FTL_463_M757_933000320046135) from our dataset, due to the very low number of detected
677 fragments per cell in this sample (Fig. S17).

678

679 Integrating snATAC-seq data across samples and clustering

680 Each sample was normalized using term frequency-inverse document frequency (TF-IDF)
681 followed by singular value decomposition (SVD) on the TF-IDF matrix using all features
682 (peaks)^{52,130}. The combined steps of TF-IDF followed by SVD are known as latent semantic
683 indexing (LSI)^{132,133}. Non-linear dimensionality reduction and clustering were performed using
684 UMAP and KNN following the same procedure used, respectively, just as we did for the snRNA-
685 seq data. We merged the data across all samples within Signac and repeated the process of
686 LSI in the same manner as it was applied to individual samples. We then integrated the merged
687 dataset using Harmony¹³⁴ implemented by Signac, integrating over the sample library variable to
688 account for the effects of different sequencing libraries used for different samples. We observed
689 successful reduction of batch effects following integration Fig. S8d-f. We once again performed
690 non-linear dimensionality reduction and clustering with UMAP and KNN, respectively. Notably,
691 LSI, UMAP and KNN are used for visualization purposes; raw counts were used for downstream
692 differential accessibility analyses.

693 Label transfer and cell type assignment for snATAC-seq data

694 We created a gene activity matrix for the integrated snATAC-seq data using the `GeneActivity()`
695 function in Signac. This counts the number of fragments per cell overlapping the promoter
696 region of a given gene and uses that value as a gene activity score. Gene activity serves as a
697 proxy for gene expression as gene expression is often correlated with promoter accessibility.
698 The gene activity scores were log normalized using the `NormalizeData()` function in Seurat
699 with the normalization method set to `LogNormalize` and the scaling factor set to the median
700 value of nCount_RNA across all cells, based on the gene activity scores. Cell type identities
701 were assigned by integrating the snATAC-seq data with the integrated snRNA-seq data and
702 performing label transfer⁵¹ as described in Signac. Briefly, this approach identifies shared
703 correlation patterns in the gene activity matrix and the scRNA-seq dataset to identify matched
704 biological states across the two modalities. The process returns a classification score for each
705 cell for each cell type defined in the scRNA-seq data. Each cell was assigned the cell type
706 identity with the highest prediction score. Additionally, by identifying matched cells in the
707 snRNA-seq dataset, we were able to impute RNA expression values for each of the cells in our
708 snATAC-seq dataset. This enabled us to perform correlative analyses of chromatin accessibility
709 and gene expression in later downstream analyses, as it produced a pseudo-multimodal
710 dataset.

711 Differential chromatin accessibility analysis of snATAC-seq data

712 Similar to our differential analyses of the snRNA-seq data, we tested for differentially accessible
713 genomic regions between nuclei from the high versus low AI rats within each cell type. We used
714 the negative binomial test^{127,135} implemented with the `FindMarkers()` function from Seurat to
715 model the raw snATAC-seq count data using peak_region_fragments, library batch date, and rat
716 sample ID as covariates. Multiple testing correction was performed using Benjamini-Hochberg
717 adjustment and a false discovery rate below 10% (FDR<10%) was used to determine statistical
718 significance. Permutation tests were performed in the same manner as for the differential gene

719 expression analyses (using the same statistical test and covariates with shuffled addiction index
720 labels).

721 Partitioned heritability analysis

722 We downloaded summary statistics for the Liu et al. 2019 GWAS of tobacco and alcohol use⁸⁶
723 and used the munge_sumstats.py script from LD Score (LDSC)¹⁰² to parse the summary
724 statistics file into the proper format for downstream analyses. We used the sets of significant
725 differential peaks (FDR<10%) for each cell type as foreground peaks and DNaseI
726 hypersensitivity profiles for 53 epigenomes from ENCODE Honeybadger2. We used the UCSC
727 liftOver tool to convert the foreground peaks from rn6 to hg19. There was no need to lift over the
728 background peaks as Honeybadger2 is already in hg19. Next, we generated partitioned LD
729 scores for the background and foreground regions. We used the make_annot.py script to make
730 annotation files and the ldsc.py script to compute annotation-specific LD scores. We used the
731 European 1000 Genomes Phase 3 PLINK¹³⁶ files to compute the LD scores. Finally, using the
732 baseline model and standard regression weights from the LDSC Partitioning Heritability tutorial,
733 we ran a cell type-specific partitioned heritability analysis with the LD scores we computed.

734 Annotation of open chromatin regions

735 Before performing any differential analyses, we first used the annotatePeaks.pl script from the
736 HOMER suite to annotate open chromatin regions and significant differential peaks (FDR<10%)
737 for each cell type in our integrated dataset¹³⁷. For each cell type, we performed a Fisher's Exact
738 Test to measure the enrichment of genomic regions annotated as a promoter region within the
739 differential peaks compared to the set of all peaks in the dataset and observed significant
740 results for all cell types tested. Specifically, we compared the ratio of peaks annotated as
741 promoter regions to non-promoter regions in the significant differential peaks (FDR<10%)
742 versus all other peaks.

743 Fisher's Exact Tests

744 We first performed a Fisher's Exact Test to measure enrichment of DEGs (FDR<10%) with
745 differentially accessible promoters. We defined the latter as the case where the promoter region
746 of a gene overlaps a significant differentially accessible peak (FDR<10%). We obtained gene
747 coordinates from the TxDb.Rnorvegicus.UCSC.rn6.refGene annotation package and defined
748 promoter regions as being 1500 bases upstream and 500 bases downstream of the TSS
749 (`promoters(genes(TxDb.Rnorvegicus.UCSC.rn6.refGene), upstream = 1500, downstream =
750 500)`). We then generated a confusion matrix from the following four values: the number of
751 DEGs with differentially accessible promoters; the number of DEGs with non-differentially
752 accessible promoters; the number of non-DEGs with differentially accessible promoters; and the
753 number of non-DEGs with non-differentially accessible promoters. We then performed a
754 Fisher's Exact Test to measure enrichment of differentially accessible peaks (FDR<10%) which
755 were annotated as TSS/promoter regions by HOMER (annotatePeaks.pl). We generated a
756 confusion matrix from the following four values: the number of differential peaks with a
757 TSS/promoter annotation; the number of differential peaks without a TSS/promoter annotation;

758 the number of non-differential peaks (FDR>10%) with a TSS/promoter annotation; and the
759 number of non-differential peaks (FDR>10%) without a TSS/promoter annotation.

760 Measuring differential activity of transcription factors with chromVAR

761 We measured cell type specific motif activities using chromVAR to test for per motif deviations
762 in accessibility between nuclei from high versus low AI rats. Motif data was pulled from the
763 JASPAR2020 database, and integrated with snATAC-seq data using the `AddMotifs()` function
764 in Signac. After adding motifs to our snATAC-seq dataset, we ran chromVAR with the
765 `RunChromVAR()` wrapper in Signac. Differential analysis of chromVAR deviation scores was
766 performed using the Wilcoxon Rank-Sum test between high AI rats versus lowly addicted rats
767 within each cell type. Differential testing was performed using Seurat's `FindMarkers()` function
768 with the mean function set as `rowMeans()` to calculate average difference in deviation scores
769 between groups. Multiple testing correction was performed using Benjamini-Hochberg
770 adjustment and a false discovery rate below 10% (FDR<10%) was used to determine statistical
771 significance. Motif clusters were defined using the provided cluster numbers from JASPAR's
772 matrix clustering-results and the names of the clusters were annotated by hand based on the
773 what TFs were present in each cluster. When selecting clusters to visualize, we retrieved the top
774 50 motifs (FDR<10%) per cell-type and highlighted their respective clusters. Volcano plots and
775 heatmap data were generated using Plotly in Python. Hierarchical ordering of heatmap clusters
776 was generated with Plotly's `figure_factory.create_dendrogram()` function, which wraps the
777 `cluster.hierarchy.dendrogram()` function in SciPy.

778 Data availability

779 The following publicly available datasets were used:
780 Rattus norvegicus Ensembl v98 reference genome and genome assembly (Rnor_6.0);
781 JASPAR2022 transcription factor binding profiles for vertebrates; ENCODE Honeybadger 2
782 ChIP-seq; 1000 Genomes European reference panel; Liu et al. 2019⁸⁶ GWAS for tobacco and
783 nicotine addiction.

784 Acknowledgements

785 We thank S. Preissl from the UC San Diego School of Medicine Center for Epigenomics for
786 technical assistance with the snRNA-seq library preparation. We thank J. Hightower for
787 assistance with figures preparation. We thank P. Montilla-Perez, L. Maturin and P. Schweitzer
788 for technical assistance with sample collection and equipment maintenance. We thank Leah C.
789 Solberg Woods for HS rats breeding colony management. We thank P. Fiaux for his assistance
790 with generating supplementary figures. This work was supported by the National Institutes of
791 Health (NIH) (U01DA050239 to F.T.; F31DA056226 to J.L.Z.; U01DA043799 to O.G.,
792 P50DA037844 to A.A.P.). G.d.G. was supported by the Brain and Behavior Research
793 Foundation 2020 Young Investigator Award, and M.K. by the TDRP (T31KT1859 UC) grant.

794 This publication includes data generated at the UC San Diego IGM Genomics Center utilizing
795 an Illumina NovaSeq 6000 that was purchased with funding from the NIH (S10OD026929).

796 **Contributions**

797 F.T. designed and coordinated the study. G.M. designed the overall bioinformatics analysis flow.
798 J.L.Z. conducted bioinformatic analysis and data interpretation with inputs from F.T., G.M., and
799 A.A.P. A.J.H. conducted chromVAR analysis. O.G. and G.d.G. designed the behavioral protocol
800 for cocaine IVSA. G.d.G. performed the behavioral experiments. M.K. performed the
801 electrophysiological experiments. L.L.C. dissected the brain samples. H.L. performed snATAC-
802 seq experiments. A.S.C. provided genotype data for exploratory analysis. J.L.Z., G.M. and F.T.
803 wrote the manuscript with contributions from all authors.

804

805

806 References

- 807 1. Janak PH, Tye KM. From circuits to behaviour in the amygdala. *Nature*. 2015 Jan 808 15;517(7534):284–292. PMCID: PMC4565157
- 809 2. Schumann CM, Bauman MD, Amaral DG. Abnormal structure or function of the amygdala is 810 a common component of neurodevelopmental disorders. *Neuropsychologia*. 2011 811 Mar;49(4):745–759. PMCID: PMC3060967
- 812 3. Roberto M, Gilpin NW, Siggins GR. The Central Amygdala and Alcohol: Role of γ - 813 Aminobutyric Acid, Glutamate, and Neuropeptides. *Cold Spring Harb Perspect Med*. 2012 814 Dec;2(12):a012195. PMCID: PMC3543070
- 815 4. Buffalari DM, See RE. Amygdala Mechanisms of Pavlovian Psychostimulant Conditioning 816 and Relapse. In: Self DW, Staley Gottschalk JK, editors. *Behavioral Neuroscience of Drug* 817 *Addiction* [Internet]. Berlin, Heidelberg: Springer; 2010 [cited 2022 Aug 4]. p. 73–99. 818 Available from: https://doi.org/10.1007/7854_2009_18
- 819 5. Pickens CL, Airavaara M, Theberge F, Fanous S, Hope BT, Shaham Y. Neurobiology of the 820 incubation of drug craving. *Trends Neurosci*. 2011 Aug;34(8):411–420. PMCID: 821 PMC3152666
- 822 6. Kalivas PW, Volkow ND. The Neural Basis of Addiction: A Pathology of Motivation and 823 Choice. *AJP. American Psychiatric Publishing*; 2005 Aug;162(8):1403–1413.
- 824 7. Kilts CD, Schweitzer JB, Quinn CK, Gross RE, Faber TL, Muhammad F, Ely TD, Hoffman 825 JM, Drexler KPG. Neural Activity Related to Drug Craving in Cocaine Addiction. *Archives of* 826 *General Psychiatry*. 2001 Apr 1;58(4):334–341.
- 827 8. Aerts T, Seuntjens E. Novel Perspectives on the Development of the Amygdala in Rodents. 828 *Front Neuroanat*. 2021 Dec 9;15:786679. PMCID: PMC8696165
- 829 9. Arrigucci R, Bushkin Y, Radford F, Lakehal K, Vir P, Pine R, Martin D, Sugarman J, Zhao Y, 830 Yap GS, Lardizabal AA, Tyagi S, Gennaro ML. FISH-Flow, a protocol for the concurrent 831 detection of mRNA and protein in single cells using fluorescence in situ hybridization and 832 flow cytometry. *Nat Protoc*. 2017 Jun;12(6):1245–1260. PMCID: PMC5548662
- 833 10. Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Lüthi A. Amygdala Inhibitory Circuits 834 and the Control of Fear Memory. *Neuron*. Elsevier; 2009 Jun 25;62(6):757–771. PMID: 835 19555645
- 836 11. Ciocchi S, Herry C, Grenier F, Wolff SBE, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, 837 Deisseroth K, Stadler MB, Müller C, Lüthi A. Encoding of conditioned fear in central 838 amygdala inhibitory circuits. *Nature*. Nature Publishing Group; 2010 Nov;468(7321):277– 839 282.
- 840 12. Yao Z, Liu H, Xie F, Fischer S, Adkins RS, Aldridge AI, Ament SA, Bartlett A, Behrens MM, 841 Van den Berge K, Bertagnolli D, de Bézieux HR, Biancalani T, Booeshaghi AS, Bravo HC, 842 Casper T, Colantuoni C, Crabtree J, Creasy H, Crichton K, Crow M, Dee N, Dougherty EL, 843 Doyle WI, Dudoit S, Fang R, Felix V, Fong O, Giglio M, Goldy J, Hawrylycz M, Herb BR, 844 Hertzano R, Hou X, Hu Q, Kancherla J, Kroll M, Lathia K, Li YE, Lucero JD, Luo C, 845 Mahurkar A, McMillen D, Nadaf NM, Nery JR, Nguyen TN, Niu SY, Ntranos V, Orvis J, 846 Osteen JK, Pham T, Pinto-Duarte A, Poirion O, Preissl S, Purdom E, Rimorin C, Risso D, 847 Rivkin AC, Smith K, Street K, Sulc J, Svensson V, Tieu M, Torkelson A, Tung H, Vaishnav 848 ED, Vanderburg CR, van Velthoven C, Wang X, White OR, Huang ZJ, Kharchenko PV, 849 Pachter L, Ngai J, Regev A, Tasic B, Welch JD, Gillis J, Macosko EZ, Ren B, Ecker JR, 850 Zeng H, Mukamel EA. A transcriptomic and epigenomic cell atlas of the mouse primary 851 motor cortex. *Nature*. 2021;598(7879):103–110. PMCID: PMC8494649
- 852 13. Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W, Kalmbach BE, Crow M, Hodge RD, 853 Krienen FM, Sorensen SA, Eggermont J, Yao Z, Aevermann BD, Aldridge AI, Bartlett A, 854 Bertagnolli D, Casper T, Castanon RG, Crichton K, Daigle TL, Dalley R, Dee N, Dembrow

855 N, Diep D, Ding SL, Dong W, Fang R, Fischer S, Goldman M, Goldy J, Graybuck LT, Herb
856 BR, Hou X, Kancherla J, Kroll M, Lathia K, van Lew B, Li YE, Liu CS, Liu H, Lucero JD,
857 Mahurkar A, McMillen D, Miller JA, Moussa M, Nery JR, Nicovich PR, Niu SY, Orvis J,
858 Osteen JK, Owen S, Palmer CR, Pham T, Plongthongkum N, Poirion O, Reed NM, Rimorin
859 C, Rivkin A, Romanow WJ, Sedeño-Cortés AE, Siletti K, Somasundaram S, Sulc J, Tieu M,
860 Torkelson A, Tung H, Wang X, Xie F, Yanny AM, Zhang R, Ament SA, Behrens MM, Bravo
861 HC, Chun J, Dobin A, Gillis J, Hertzano R, Hof PR, Höllt T, Horwitz GD, Keene CD,
862 Kharchenko PV, Ko AL, Lelieveldt BP, Luo C, Mukamel EA, Pinto-Duarte A, Preissl S,
863 Regev A, Ren B, Scheuermann RH, Smith K, Spain WJ, White OR, Koch C, Hawrylycz M,
864 Tasic B, Macosko EZ, McCarroll SA, Ting JT, Zeng H, Zhang K, Feng G, Ecker JR,
865 Linnarsson S, Lein ES. Comparative cellular analysis of motor cortex in human, marmoset
866 and mouse. *Nature*. 2021;598(7879):111–119. PMCID: PMC8494640

867 14. Scala F, Kobak D, Bernabucci M, Bernaerts Y, Cadwell CR, Castro JR, Hartmanis L, Jiang
868 X, Latusznik S, Miranda E, Mulherkar S, Tan ZH, Yao Z, Zeng H, Sandberg R, Berens P,
869 Tolias AS. Phenotypic variation of transcriptomic cell types in mouse motor cortex. *Nature*.
870 2021;598(7879):144–150. PMCID: PMC8113357

871 15. Booeshaghi AS, Yao Z, van Velthoven C, Smith K, Tasic B, Zeng H, Pachter L. Isoform cell-
872 type specificity in the mouse primary motor cortex. *Nature*. 2021;598(7879):195–199.
873 PMCID: PMC8494650

874 16. Kozareva V, Martin C, Osorno T, Rudolph S, Guo C, Vanderburg C, Nadaf N, Regev A,
875 Regehr WG, Macosko E. Author Correction: A transcriptomic atlas of mouse cerebellar
876 cortex comprehensively defines cell types. *Nature*. 2022;602(7896):E21. PMCID:
877 PMC8828463

878 17. Bhaduri A, Sandoval-Espinosa C, Otero-Garcia M, Oh I, Yin R, Eze UC, Nowakowski TJ,
879 Kriegstein AR. An atlas of cortical arealization identifies dynamic molecular signatures.
880 *Nature*. 2021;598(7879):200–204. PMCID: PMC8494648

881 18. Berg J, Sorensen SA, Ting JT, Miller JA, Chartrand T, Buchin A, Bakken TE, Budzillo A,
882 Dee N, Ding SL, Gouwens NW, Hodge RD, Kalmbach B, Lee C, Lee BR, Alfiler L, Baker K,
883 Barkan E, Beller A, Berry K, Bertagnolli D, Bickley K, Bomben J, Braun T, Brouner K,
884 Casper T, Chong P, Crichton K, Dalley R, de Frates R, Desta T, Lee SD, D’Orazi F, Dotson
885 N, Egdorf T, Enstrom R, Farrell C, Feng D, Fong O, Furdan S, Galakhova AA, Gamlin C,
886 Gary A, Glandon A, Goldy J, Gorham M, Goriounova NA, Gratiy S, Graybuck L, Gu H,
887 Hadley K, Hansen N, Heistek TS, Henry AM, Heyer DB, Hill D, Hill C, Hupp M, Jarsky T,
888 Kebede S, Keene L, Kim L, Kim MH, Kroll M, Latimer C, Levi BP, Link KE, Mallory M, Mann
889 R, Marshall D, Maxwell M, McGraw M, McMillen D, Melief E, Mertens EJ, Mezei L, Mihut N,
890 Mok S, Molnar G, Mukora A, Ng L, Ngo K, Nicovich PR, Nyhus J, Olah G, Oldre A, Omstead
891 V, Ozsvár A, Park D, Peng H, Pham T, Pom CA, Potekhina L, Rajanbabu R, Ransford S,
892 Reid D, Rimorin C, Ruiz A, Sandman D, Sulc J, Sunkin SM, Szafer A, Szemenyei V,
893 Thomsen ER, Tieu M, Torkelson A, Trinh J, Tung H, Wakeman W, Waleboer F, Ward K,
894 Wilbers R, Williams G, Yao Z, Yoon JG, Anastassiou C, Arkhipov A, Barzo P, Bernard A,
895 Cobbs C, de Witt Hamer PC, Ellenbogen RG, Esposito L, Ferreira M, Gwinn RP, Hawrylycz
896 MJ, Hof PR, Idema S, Jones AR, Keene CD, Ko AL, Murphy GJ, Ng L, Ojemann JG, Patel
897 AP, Phillips JW, Silbergeld DL, Smith K, Tasic B, Yuste R, Segev I, de Kock CPJ,
898 Mansvelder HD, Tamas G, Zeng H, Koch C, Lein ES. Author Correction: Human neocortical
899 expansion involves glutamatergic neuron diversification. *Nature*. 2022;601(7893):E12.
900 PMCID: PMC8770134

901 19. Di Bella DJ, Habibi E, Stickels RR, Scalia G, Brown J, Yadollahpour P, Yang SM, Abbate C,
902 Biancalani T, Macosko EZ, Chen F, Regev A, Arlotta P. Molecular Logic of Cellular
903 Diversification in the Mouse Cerebral Cortex. *Nature*. 2021 Jul;595(7868):554–559. PMCID:
904 PMC9006333

905 20. Ziffra RS, Kim CN, Ross JM, Wilfert A, Turner TN, Haeussler M, Casella AM, Przytycki PF,

906 Keough KC, Shin D, Bogdanoff D, Kreimer A, Pollard KS, Ament SA, Eichler EE, Ahituv N,
907 Nowakowski TJ. Single-cell epigenomics reveals mechanisms of human cortical
908 development. *Nature*. 2021;598(7879):205–213. PMCID: PMC8494642

909 21. Zhang Z, Zhou J, Tan P, Pang Y, Rivkin AC, Kirchgessner MA, Williams E, Lee CT, Liu H,
910 Franklin AD, Miyazaki PA, Bartlett A, Aldridge AI, Vu M, Boggeman L, Fitzpatrick C, Nery
911 JR, Castanon RG, Rashid M, Jacobs MW, Ito-Cole T, O'Connor C, Pinto-Duartec A,
912 Dominguez B, Smith JB, Niu SY, Lee KF, Jin X, Mukamel EA, Behrens MM, Ecker JR,
913 Callaway EM. Epigenomic diversity of cortical projection neurons in the mouse brain.
914 *Nature*. 2021;598(7879):167–173. PMCID: PMC8494636cek

915 22. Li YE, Preissl S, Hou X, Zhang Z, Zhang K, Qiu Y, Poirion OB, Li B, Chiou J, Liu H, Pinto-
916 Duarte A, Kubo N, Yang X, Fang R, Wang X, Han JY, Lucero J, Yan Y, Miller M, Kuan S,
917 Gorkin D, Gaulton KJ, Shen Y, Nunn M, Mukamel EA, Behrens MM, Ecker JR, Ren B. An
918 atlas of gene regulatory elements in adult mouse cerebrum. *Nature*. 2021;598(7879):129–
919 136. PMCID: PMC8494637

920 23. Liu H, Zhou J, Tian W, Luo C, Bartlett A, Aldridge A, Lucero J, Osteen JK, Nery JR, Chen H,
921 Rivkin A, Castanon RG, Clock B, Li YE, Hou X, Poirion OB, Preissl S, Pinto-Duarte A,
922 O'Connor C, Boggeman L, Fitzpatrick C, Nunn M, Mukamel EA, Zhang Z, Callaway EM,
923 Ren B, Dixon JR, Behrens MM, Ecker JR. DNA methylation atlas of the mouse brain at
924 single-cell resolution. *Nature*. 2021;598(7879):120–128. PMCID: PMC8494641

925 24. Domcke S, Hill AJ, Daza RM, Cao J, O'Day DR, Pliner HA, Aldinger KA, Pokholok D, Zhang
926 F, Milbank JH, Zager MA, Glass IA, Steemers FJ, Doherty D, Trapnell C, Cusanovich DA,
927 Shendure J. A human cell atlas of fetal chromatin accessibility. *Science*. 2020 Nov
928 13;370(6518):eaba7612. PMCID: PMC7785298

929 25. Zhang K, Hocker JD, Miller M, Hou X, Chiou J, Poirion OB, Qiu Y, Li YE, Gaulton KJ, Wang
930 A, Preissl S, Ren B. A single-cell atlas of chromatin accessibility in the human genome. *Cell*.
931 2021 Nov 24;184(24):5985-6001.e19. PMCID: PMC8664161

932 26. Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shores N, Adrian J, Kawli T, Davis CA,
933 Dobin A, Kaul R, Halow J, Van Nostrand EL, Freese P, Gorkin DU, Shen Y, He Y,
934 Mackiewicz M, Pauli-Behn F, Williams BA, Mortazavi A, Keller CA, Zhang XO, Elhajjajy SI,
935 Huey J, Dickel DE, Snetkova V, Wei X, Wang X, Rivera-Mulia JC, Rozowsky J, Zhang J,
936 Chhetri SB, Zhang J, Victorsen A, White KP, Visel A, Yeo GW, Burge CB, Lécuyer E,
937 Gilbert DM, Dekker J, Rinn J, Mendenhall EM, Ecker JR, Kellis M, Klein RJ, Noble WS,
938 Kundaje A, Guigó R, Farnham PJ, Cherry JM, Myers RM, Ren B, Graveley BR, Gerstein
939 MB, Pennacchio LA, Snyder MP, Bernstein BE, Wold B, Hardison RC, Gingeras TR,
940 Stamatoyannopoulos JA, Weng Z. Expanded encyclopedias of DNA elements in the
941 human and mouse genomes. *Nature*. 2020;583(7818):699–710. PMCID: PMC7410828

942 27. Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to genome-
943 wide predictions. *Nature Reviews Genetics*. 2014 Apr;15(4):272–286.

944 28. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY,
945 Greenleaf WJ. Single-cell chromatin accessibility reveals principles of regulatory variation.
946 *Nature*. 2015 Jul 23;523(7561):486–490. PMCID: PMC4685948

947 29. Cusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA, Berlatch JB, Filippova GN,
948 Huang X, Christiansen L, DeWitt WS, Lee C, Regalado SG, Read DF, Steemers FJ,
949 Disteche CM, Trapnell C, Shendure J. A Single-Cell Atlas of In Vivo Mammalian Chromatin
950 Accessibility. *Cell*. Elsevier; 2018 Aug 23;174(5):1309-1324.e18. PMID: 30078704

951 30. Zhang F, Lupski JR. Non-coding genetic variants in human disease. *Hum Mol Genet*. 2015
952 Oct 15;24(R1):R102–R110. PMCID: PMC4572001

953 31. Srinivasan C, Phan BN, Lawler AJ, Ramamurthy E, Kleyman M, Brown AR, Kaplow IM,
954 Wirthlin ME, Pfenning AR. Addiction-Associated Genetic Variants Implicate Brain Cell Type-
955 and Region-Specific Cis-Regulatory Elements in Addiction Neurobiology. *J Neurosci*. 2021
956 Oct 27;41(43):9008–9030. PMCID: PMC8549541

957 32. Tran MN, Maynard KR, Spangler A, Huuki LA, Montgomery KD, Sadashivaiah V, Tippani M,
958 Barry BK, Hancock DB, Hicks SC, Kleinman JE, Hyde TM, Collado-Torres L, Jaffe AE,
959 Martinowich K. Single-nucleus transcriptome analysis reveals cell-type-specific molecular
960 signatures across reward circuitry in the human brain. *Neuron*. Elsevier; 2021 Oct
961 6;109(19):3088-3103.e5. PMID: 34582785

962 33. Chen R, Blosser TR, Djekidel MN, Hao J, Bhattacherjee A, Chen W, Tuesta LM, Zhuang X,
963 Zhang Y. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. *Nat
964 Neurosci*. 2021 Dec;24(12):1757-1771. PMCID: PMC8639815

965 34. He J, Kleyman M, Chen J, Alikaya A, Rothenhoefer KM, Ozturk BE, Wirthlin M, Bostan AC,
966 Fish K, Byrne LC, Pfenning AR, Stauffer WR. Transcriptional and anatomical diversity of
967 medium spiny neurons in the primate striatum. *Current Biology*. Elsevier; 2021 Dec
968 20;31(24):5473-5486.e6. PMID: 34727523

969 35. Phillips RA, Tuscher JJ, Black SL, Andraka E, Fitzgerald ND, Ianov L, Day JJ. An atlas of
970 transcriptionally defined cell populations in the rat ventral tegmental area. *Cell Reports
971 [Internet]*. Elsevier; 2022 Apr 5 [cited 2022 Aug 4];39(1). Available from:
972 [https://www.cell.com/cell-reports/abstract/S2211-1247\(22\)00364-3](https://www.cell.com/cell-reports/abstract/S2211-1247(22)00364-3) PMID: 35385745

973 36. Avey D, Sankararaman S, Yim AKY, Barve R, Milbrandt J, Mitra RD. Single-Cell RNA-Seq
974 Uncovers a Robust Transcriptional Response to Morphine by Glia. *Cell Rep*. 2018 Sep
975 25;24(13):3619-3629.e4. PMCID: PMC6357782

976 37. Savell KE, Tuscher JJ, Zipperly ME, Duke CG, Phillips RA, Bauman AJ, Thukral S, Sultan
977 FA, Goska NA, Ianov L, Day JJ. A dopamine-induced gene expression signature regulates
978 neuronal function and cocaine response. *Science Advances*. American Association for the
979 Advancement of Science; 2020 Jun 1;6(26):eaba4221.

980 38. Carrette LLG, Guglielmo G de, Kallupi M, Maturin L, Brennan M, Boomhower B, Conlisk D,
981 Sedighim S, Tieu L, Fannon MJ, Velarde N, Martinez AR, Kononoff J, Kimbrough A,
982 Simpson S, Smith LC, Shankar K, Ramirez FJ, Chitre AS, Lin B, Polesskaya O, Woods
983 LCS, Palmer AA, George O. The Cocaine and Oxycodone Biobanks, Two Repositories from
984 Genetically Diverse and Behaviorally Characterized Rats for the Study of Addiction. *eNeuro
985 [Internet]*. Society for Neuroscience; 2021 May 1 [cited 2021 Aug 2];8(3). Available from:
986 <https://www.eneuro.org/content/8/3/ENEURO.0033-21.2021> PMID: 33875455

987 39. Chen BT, Yau HJ, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, Bonci A. Rescuing
988 cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking.
989 *Nature*. Nature Publishing Group; 2013 Apr;496(7445):359-362.

990 40. Cohen A, Koob GF, George O. Robust Escalation of Nicotine Intake with Extended Access
991 to Nicotine Self-Administration and Intermittent Periods of Abstinence.
992 *Neuropsychopharmacology*. Nature Publishing Group; 2012 Aug;37(9):2153-2160.

993 41. Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, Schmeichel B,
994 Vendruscolo LF, Wade CL, Whitfield TW, George O. Addiction as a Stress Surfeit Disorder.
995 *Neuropharmacology*. 2014 Jan;76(0 0):10.1016/j.neuropharm.2013.05.024. PMCID:
996 PMC3830720

997 42. Solberg Woods LC, Palmer AA. Using Heterogeneous Stocks for Fine-Mapping Genetically
998 Complex Traits. *Methods Mol Biol*. 2019;2018:233-247. PMCID: PMC9121584

999 43. Hansen C, Spuhler K. Development of the National Institutes of Health genetically
1000 heterogeneous rat stock. *Alcohol Clin Exp Res*. 1984 Oct;8(5):477-479. PMID: 6391259

1001 44. Saar K, Beck A, Bihoreau MT, Birney E, Brocklebank D, Chen Y, Cuppen E, Demonchy S,
1002 Flieck P, Foglio M, Fujiyama A, Gut IG, Gauguier D, Guigo R, Guryev V, Heinig M, Hummel
1003 O, Jahn N, Klages S, Kren V, Kuhl H, Kuramoto T, Kuroki Y, Lechner D, Lee YA, Lopez-
1004 Bigas N, Lathrop GM, Mashimo T, Kube M, Mott R, Patone G, Perrier-Cornet JA, Platzer M,
1005 Pravenec M, Reinhardt R, Sakaki Y, Schilhabel M, Schulz H, Serikawa T, Shikhagaie M,
1006 Tatsumoto S, Taudien S, Toyoda A, Voigt B, Zelenika D, Zimdahl H, Hubner N. SNP and
1007 haplotype mapping for genetic analysis in the Rat. *Nat Genet*. 2008 May;40(5):560-566.

1059 Groblewski P, Wickersham ian, cetin A, Harris JA, Levi BP, Sunkin SM, Madisen L, Daigle
1060 TL, Looger L, Bernard A, Phillips J, Lein E, Hawrylycz M, Svoboda K, Jones AR, Koch
1061 christof, Zeng H. Shared and distinct transcriptomic cell types across neocortical areas.
1062 *Nature*. 2018 Nov;563(7729):72–78. PMCID: PMC6456269

1063 57. Yao Z, van Velthoven CTJ, Nguyen TN, Goldy J, Sedeno-Cortes AE, Baftizadeh F,
1064 Bertagnolli D, Casper T, Chiang M, Crichton K, Ding SL, Fong O, Garren E, Glandon A,
1065 Gouwens NW, Gray J, Graybuck LT, Hawrylycz MJ, Hirschstein D, Kroll M, Lathia K, Lee C,
1066 Levi B, McMillen D, Mok S, Pham T, Ren Q, Rimorin C, Shapovalova N, Sulc J, Sunkin SM,
1067 Tieu M, Torkelson A, Tung H, Ward K, Dee N, Smith KA, Tasic B, Zeng H. A taxonomy of
1068 transcriptomic cell types across the isocortex and hippocampal formation. *Cell*. 2021 Jun
1069 10;184(12):3222-3241.e26. PMCID: PMC8195859

1070 58. BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the
1071 mammalian primary motor cortex. *Nature*. 2021 Oct;598(7879):86–102. PMCID:
1072 PMC8494634

1073 59. O'Leary TP, Sullivan KE, Wang L, Clements J, Lemire AL, Cembrowski MS. Extensive and
1074 spatially variable within-cell-type heterogeneity across the basolateral amygdala. *eLife*.
1075 9:e59003. PMCID: PMC7486123

1076 60. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW,
1077 McElrath MJ, Prlic M, Linsley PS, Gottardo R. MAST: a flexible statistical framework for
1078 assessing transcriptional changes and characterizing heterogeneity in single-cell RNA
1079 sequencing data. *Genome Biol [Internet]*. 2015 [cited 2020 Oct 26];16. Available from:
1080 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676162/> PMCID: PMC4676162

1081 61. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly
1082 K, Irizarry RA. Tackling the widespread and critical impact of batch effects in high-
1083 throughput data. *Nat Rev Genet*. 2010 Oct;11(10):10.1038/nrg2825. PMCID: PMC3880143

1084 62. Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, Chen J. A benchmark of batch-
1085 effect correction methods for single-cell RNA sequencing data. *Genome Biology*. 2020 Jan
1086 16;21(1):12.

1087 63. Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG. Common genetic
1088 variants account for differences in gene expression among ethnic groups. *Nat Genet*. 2007
1089 Feb;39(2):226–231. PMCID: PMC3005333

1090 64. Hamada M, Hendrick JP, Ryan GR, Kuroiwa M, Higashi H, Tanaka M, Nairn AC, Greengard
1091 P, Nishi A. Nicotine regulates DARPP-32 (dopamine- and cAMP-regulated phosphoprotein
1092 of 32 kDa) phosphorylation at multiple sites in neostriatal neurons. *J Pharmacol Exp Ther*.
1093 2005 Nov;315(2):872–878. PMID: 16040813

1094 65. Lee AM, Picciotto MR. Effects of nicotine on DARPP-32 and CaMKII signaling relevant to
1095 addiction. *Adv Pharmacol*. 2021;90:89–115. PMCID: PMC8008986

1096 66. Nairn AC, Svenningsson P, Nishi A, Fisone G, Girault JA, Greengard P. The role of DARPP-
1097 32 in the actions of drugs of abuse. *Neuropharmacology*. 2004 Jan 1;47:14–23.

1098 67. Zachariou V, Sgambato-Faure V, Sasaki T, Svenningsson P, Berton O, Fienberg AA, Nairn
1099 AC, Greengard P, Nestler EJ. Phosphorylation of DARPP-32 at Threonine-34 is required for
1100 cocaine action. *Neuropsychopharmacology*. 2006 Mar;31(3):555–562. PMID: 16123776

1101 68. Zhu H, Lee M, Guan F, Agatsuma S, Scott D, Fabrizio K, Fienberg AA, Hiroi N. DARPP-32
1102 phosphorylation opposes the behavioral effects of nicotine. *Biol Psychiatry*. 2005 Dec
1103 15;58(12):981–989. PMID: 16084497

1104 69. Jutras-Aswad D, Jacobs MM, Yiannoulos G, Roussos P, Bitsios P, Nomura Y, Liu X, Hurd
1105 YL. Cannabis-Dependence Risk Relates to Synergism between Neuroticism and
1106 Proenkephalin SNPs Associated with Amygdala Gene Expression: Case-Control Study.
1107 *PLoS One*. 2012 Jun 22;7(6):e39243. PMCID: PMC3382183

1108 70. Moeller SJ, Beebe-Wang N, Schneider KE, Konova AB, Parvaz MA, Alia-Klein N, Hurd YL,
1109 Goldstein RZ. Effects of an opioid (proenkephalin) polymorphism on neural response to

1110 errors in health and cocaine use disorder. *Behav Brain Res.* 2015 Oct 15;293:18–26.
1111 PMCID: PMC4567394

1112 71. Nikoshkov A, Drakenberg K, Wang X, Horvath MCs, Keller E, Hurd YL. Opioid neuropeptide
1113 genotypes in relation to heroin abuse: Dopamine tone contributes to reversed mesolimbic
1114 proenkephalin expression. *Proc Natl Acad Sci U S A.* 2008 Jan 15;105(2):786–791. PMCID:
1115 PMC2206614

1116 72. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A,
1117 Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: A
1118 knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl
1119 Acad Sci U S A.* 2005 Oct 25;102(43):15545–15550. PMCID: PMC1239896

1120 73. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P,
1121 Carlsson E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub
1122 TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC. PGC-1 α -
1123 responsive genes involved in oxidative phosphorylation are coordinately downregulated in
1124 human diabetes. *Nat Genet.* Nature Publishing Group; 2003 Jul;34(3):267–273.

1125 74. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. Neural activity triggers
1126 neuronal oxidative metabolism followed by astrocytic glycolysis. *Science.* 2004 Jul
1127 2;305(5680):99–103. PMID: 15232110

1128 75. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. *J
1129 Cereb Blood Flow Metab.* 2001 Oct;21(10):1133–1145. PMID: 11598490

1130 76. Lyons HR, Land MB, Gibbs TT, Farb DH. Distinct signal transduction pathways for GABA-
1131 induced GABA(A) receptor down-regulation and uncoupling in neuronal culture: a role for
1132 voltage-gated calcium channels. *J Neurochem.* 2001 Sep;78(5):1114–1126. PMID:
1133 11553685

1134 77. Brandon NJ, Jovanovic JN, Moss SJ. Multiple roles of protein kinases in the modulation of
1135 γ -aminobutyric acidA receptor function and cell surface expression. *Pharmacology &
1136 Therapeutics.* 2002 Apr 1;94(1):113–122.

1137 78. Nakamura Y, Darnieder LM, Deeb TZ, Moss SJ. Regulation of GABAARs by
1138 Phosphorylation. *Adv Pharmacol.* 2015;72:97–146. PMCID: PMC5337123

1139 79. Distler MG, Plant LD, Sokoloff G, Hawk AJ, Aneas I, Wuenschell GE, Termini J, Meredith
1140 SC, Nobrega MA, Palmer AA. Glyoxalase 1 increases anxiety by reducing GABA receptor
1141 agonist methylglyoxal. *J Clin Invest.* 2012 Jun 1;122(6):2306–2315. PMCID: PMC3366407

1142 80. Perez CL, Barkley-Levenson AM, Dick BL, Glatt PF, Martinez Y, Siegel D, Momper JD,
1143 Palmer AA, Cohen SM. A Metal-Binding Pharmacophore Library Yields the Discovery of a
1144 Glyoxalase 1 Inhibitor. *J Med Chem.* 2019 Feb 14;62(3):1609–1625. PMCID: PMC6467756

1145 81. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers
1146 RM, Brown M, Li W, Liu XS. Model-based Analysis of ChIP-Seq (MACS). *Genome Biology.*
1147 2008 Sep 17;9(9):R137.

1148 82. Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory
1149 epigenome. *Nat Rev Genet.* Nature Publishing Group; 2019 Apr;20(4):207–220.

1150 83. Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, Lee BK, Sheffield NC, Gräf S, Huss
1151 M, Keefe D, Liu Z, London D, McDaniell RM, Shibata Y, Showers KA, Simon JM, Vales T,
1152 Wang T, Winter D, Zhang Z, Clarke ND, Birney E, Iyer VR, Crawford GE, Lieb JD, Furey
1153 TS. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that
1154 shape cell-type identity. *Genome Res.* 2011 Oct;21(10):1757–1767. PMCID: PMC3202292

1155 84. Cano-Gamez E, Trynka G. From GWAS to Function: Using Functional Genomics to Identify
1156 the Mechanisms Underlying Complex Diseases. *Front Genet.* 2020 May 13;11:424. PMCID:
1157 PMC7237642

1158 85. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, Anttila V, Xu H, Zang
1159 C, Farh K, Ripke S, Day FR, Purcell S, Stahl E, Lindstrom S, Perry JRB, Okada Y,
1160 Raychaudhuri S, Daly MJ, Patterson N, Neale BM, Price AL. Partitioning heritability by

1161 functional annotation using genome-wide association summary statistics. *Nature Genetics*.
1162 Nature Publishing Group; 2015 Nov;47(11):1228–1235.

1163 86. Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, Datta G, Davila-Velderrain J, McGuire
1164 D, Tian C, Zhan X, Choquet H, Docherty AR, Faul JD, Foerster JR, Fritsche LG, Gabrielsen
1165 ME, Gordon SD, Haessler J, Hottenga JJ, Huang H, Jang SK, Jansen PR, Ling Y, Mägi R,
1166 Matoba N, McMahon G, Mulas A, Orrù V, Palvainen T, Pandit A, Reginsson GW, Skogholz
1167 AH, Smith JA, Taylor AE, Turman C, Willemsen G, Young H, Young KA, Zajac GJM, Zhao
1168 W, Zhou W, Bjornsdottir G, Boardman JD, Boehnke M, Boomsma DI, Chen C, Cucca F,
1169 Davies GE, Eaton CB, Ehringer MA, Esko T, Fiorillo E, Gillespie NA, Gudbjartsson DF,
1170 Haller T, Harris KM, Heath AC, Hewitt JK, Hickie IB, Hokanson JE, Hopfer CJ, Hunter DJ,
1171 Iacono WG, Johnson EO, Kamatani Y, Kardia SLR, Keller MC, Kellis M, Kooperberg C,
1172 Kraft P, Krauter KS, Laakso M, Lind PA, Loukola A, Lutz SM, Madden PAF, Martin NG,
1173 McGue M, McQueen MB, Medland SE, Metspalu A, Mohlke KL, Nielsen JB, Okada Y,
1174 Peters U, Polderman TJC, Posthuma D, Reiner AP, Rice JP, Rimm E, Rose RJ,
1175 Runarsdottir V, Stallings MC, Stančáková A, Stefansson H, Thai KK, Tindle HA, Tyrfingsson
1176 T, Wall TL, Weir DR, Weisner C, Whitfield JB, Winsvold BS, Yin J, Zuccolo L, Bierut LJ,
1177 Hveem K, Lee JJ, Munafò MR, Saccone NL, Willer CJ, Cornelis MC, David SP, Hinds DA,
1178 Jorgenson E, Kaprio J, Stitzel JA, Stefansson K, Thorleifsson TE, Abecasis G, Liu DJ,
1179 Vrieze S. Association studies of up to 1.2 million individuals yield new insights into the
1180 genetic etiology of tobacco and alcohol use. *Nature Genetics*. Nature Publishing Group;
1181 2019 Feb;51(2):237–244.

1182 87. Polimanti R, Walters RK, Johnson EC, McClintick JN, Adkins AE, Adkins DE, Bacanu SA,
1183 Bierut LJ, Bigdeli TB, Brown S, Bucholz KK, Copeland WE, Costello EJ, Degenhardt L,
1184 Farrer LA, Foroud TM, Fox L, Goate AM, Grucza R, Hack LM, Hancock DB, Hartz SM,
1185 Heath AC, Hewitt JK, Hopfer CJ, Johnson EO, Kendler KS, Kranzler HR, Krauter K, Lai D,
1186 Madden PAF, Martin NG, Maes HH, Nelson EC, Peterson RE, Porjesz B, Riley BP,
1187 Saccone N, Stallings M, Wall TL, Webb BT, Wetherill L, Edenberg HJ, Agrawal A, Gelernter
1188 J. Leveraging genome-wide data to investigate differences between opioid use vs. opioid
1189 dependence in 41,176 individuals from the Psychiatric Genomics Consortium. *Molecular
1190 Psychiatry*. Nature Publishing Group; 2020 Aug;25(8):1673–1687.

1191 88. Hatoum AS, Johnson EC, Colbert SMC, Polimanti R, Zhou H, Walters RK, Gelernter J,
1192 Edenberg HJ, Bogdan R, Agrawal A. The addiction risk factor: A unitary genetic vulnerability
1193 characterizes substance use disorders and their associations with common correlates.
1194 *Neuropsychopharmacology*. 2022 Sep;47(10):1739–1745. PMID: 35472072

1195 89. Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. chromVAR: inferring transcription-factor-
1196 associated accessibility from single-cell epigenomic data. *Nature Methods*. Nature
1197 Publishing Group; 2017 Oct;14(10):975–978.

1198 90. Matsuda T, Irie T, Katsurabayashi S, Hayashi Y, Nagai T, Hamazaki N, Adefuji AMD, Miura
1199 F, Ito T, Kimura H, Shirahige K, Takeda T, Iwasaki K, Imamura T, Nakashima K. Pioneer
1200 Factor NeuroD1 Rearranges Transcriptional and Epigenetic Profiles to Execute Microglia-
1201 Neuron Conversion. *Neuron*. Elsevier; 2019 Feb 6;101(3):472–485.e7. PMID: 30638745

1202 91. Glahs A, Zinzen RP. Putting chromatin in its place: the pioneer factor NeuroD1 modulates
1203 chromatin state to drive cell fate decisions. *EMBO J*. 2016 Jan 4;35(1):1–3. PMID:
1204 PMC4718001

1205 92. Cruz FC, Rubio FJ, Hope BT. Using c-fos to study neuronal ensembles in corticostriatal
1206 circuitry of addiction. *Brain Res*. 2015 Dec 2;1628(0 0):157–173. PMID: PMC4427550

1207 93. Zhang Y, Crofton EJ, Li D, Lobo MK, Fan X, Nestler EJ, Green TA. Overexpression of
1208 DeltaFosB in nucleus accumbens mimics the protective addiction phenotype, but not the
1209 protective depression phenotype of environmental enrichment. *Frontiers in Behavioral
1210 Neuroscience [Internet]*. 2014 [cited 2022 Aug 4];8. Available from:
1211 <https://www.frontiersin.org/articles/10.3389/fnbeh.2014.00297>

1212 94. Bali P, Kenny PJ. Transcriptional mechanisms of drug addiction. *Dialogues Clin Neurosci*.
1213 2019 Dec;21(4):379–387. PMCID: PMC6952748

1214 95. Walker DM, Cates HM, Loh YHE, Purushothaman I, Ramakrishnan A, Cahill KM, Lardner
1215 CK, Godino A, Kronman HG, Rabkin J, Lorsch ZS, Mews P, Doyle MA, Feng J, Labonté B,
1216 Koo JW, Bagot RC, Logan RW, Seney ML, Calipari ES, Shen L, Nestler EJ. Cocaine self-
1217 administration alters transcriptome-wide responses in the brain's reward circuitry. *Biol
1218 Psychiatry*. 2018 Dec 15;84(12):867–880. PMCID: PMC6202276

1219 96. Nestler EJ, Barrot M, Self DW. ΔFosB: A sustained molecular switch for addiction.
1220 *Proceedings of the National Academy of Sciences*. 2001 Sep 25;98(20):11042–11046.

1221 97. Hope BT, Nye HE, Kelz MB, Self DW, Iadarola MJ, Nakabeppu Y, Duman RS, Nestler EJ.
1222 Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by
1223 chronic cocaine and other chronic treatments. *Neuron*. Elsevier; 1994 Nov 1;13(5):1235–
1224 1244. PMID: 7946359

1225 98. Nye HE, Nestler EJ. Induction of chronic Fos-related antigens in rat brain by chronic
1226 morphine administration. *Mol Pharmacol*. American Society for Pharmacology and
1227 Experimental Therapeutics; 1996 Apr 1;49(4):636–645. PMID: 8609891

1228 99. Nye HE, Hope BT, Kelz MB, Iadarola M, Nestler EJ. Pharmacological studies of the
1229 regulation of chronic FOS-related antigen induction by cocaine in the striatum and nucleus
1230 accumbens. *J Pharmacol Exp Ther*. American Society for Pharmacology and Experimental
1231 Therapeutics; 1995 Dec 1;275(3):1671–1680. PMID: 8531143

1232 100. Moratalla R, Elibol B, Vallejo M, Graybiel AM. Network-Level Changes in Expression of
1233 Inducible Fos–Jun Proteins in the Striatum during Chronic Cocaine Treatment and
1234 Withdrawal. *Neuron*. Elsevier; 1996 Jul 1;17(1):147–156. PMID: 8755486

1235 101. Wade CL, Vendruscolo LF, Schlosburg JE, Hernandez DO, Koob GF. Compulsive-Like
1236 Responding for Opioid Analgesics in Rats with Extended Access.
1237 *Neuropsychopharmacology*. 2015 Jan;40(2):421–428. PMCID: PMC4443956

1238 102. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, Daly MJ, Price
1239 AL, Neale BM. LD Score regression distinguishes confounding from polygenicity in genome-
1240 wide association studies. *Nature Genetics*. Nature Publishing Group; 2015 Mar;47(3):291–
1241 295.

1242 103. Visscher PM, Yengo L, Cox NJ, Wray NR. Discovery and implications of polygenicity of
1243 common diseases. *Science*. American Association for the Advancement of Science; 2021
1244 Sep 24;373(6562):1468–1473.

1245 104. Munro D, Wang T, Chitre AS, Polesskaya O, Ehsan N, Gao J, Gusev A, Woods LCS,
1246 Saba LM, Chen H, Palmer AA, Mohammadi P. The regulatory landscape of multiple brain
1247 regions in outbred heterogeneous stock rats [Internet]. bioRxiv; 2022 [cited 2022 Aug 17]. p.
1248 2022.04.07.487560. Available from:
1249 <https://www.biorxiv.org/content/10.1101/2022.04.07.487560v1>

1250 105. Zaret KS. Pioneer Transcription Factors Initiating Gene Network Changes. *Annu Rev
1251 Genet*. 2020 Nov 23;54:367–385. PMCID: PMC7900943

1252 106. Chitre AS, Polesskaya O, Holl K, Gao J, Cheng R, Bimschleger H, Martinez AG, George
1253 T, Gileta AF, Han W, Horvath A, Hughson A, Ishiwari K, King CP, Lamparelli A, Versaggi
1254 CL, Martin C, St. Pierre CL, Tripi JA, Wang T, Chen H, Flagel SB, Meyer P, Richards J,
1255 Robinson TE, Palmer AA, Woods LCS. Genome wide association study in 3,173 outbred
1256 rats identifies multiple loci for body weight, adiposity, and fasting glucose. *Obesity (Silver
1257 Spring)*. 2020 Oct;28(10):1964–1973. PMCID: PMC7511439

1258 107. Stephens DN, King SL, Lambert JJ, Belletti D, Duka T. GABAA receptor subtype
1259 involvement in addictive behaviour. *Genes Brain Behav*. 2017 Jan;16(1):149–184. PMID:
1260 27539865

1261 108. Koob GF, Nestler EJ. The neurobiology of drug addiction. *J Neuropsychiatry Clin
1262 Neurosci*. 1997;9(3):482–497. PMID: 9276849

1263 109. Koob GF. A role for GABA mechanisms in the motivational effects of alcohol.
1264 Biochemical Pharmacology. 2004 Oct 15;68(8):1515–1525.

1265 110. Dixon CI, Morris HV, Breen G, Desrivieres S, Jugurnauth S, Steiner RC, Vallada H,
1266 Guindalini C, Laranjeira R, Messas G, Rosahl TW, Atack JR, Peden DR, Belotti D, Lambert
1267 JJ, King SL, Schumann G, Stephens DN. Cocaine effects on mouse incentive-learning and
1268 human addiction are linked to α 2 subunit-containing GABA_A receptors. Proc Natl Acad Sci
1269 U S A. 2010 Feb 2;107(5):2289–2294. PMCID: PMC2836671

1270 111. Augier E, Barbier E, Dulman RS, Licheri V, Augier G, Domi E, Barchiesi R, Farris S, Nätt
1271 D, Mayfield RD, Adermark L, Heilig M. A molecular mechanism for choosing alcohol over an
1272 alternative reward. Science. American Association for the Advancement of Science; 2018
1273 Jun 22;360(6395):1321–1326.

1274 112. McMurray KMJ, Ramaker MJ, Barkley-Levenson AM, Sidhu PS, Elkin P, Reddy MK,
1275 Guthrie ML, Cook JM, Rawal VH, Arnold LA, Dulawa SC, Palmer AA. Identification of a
1276 novel, fast acting GABAergic anti-depressant. Mol Psychiatry. 2018 Feb;23(2):384–391.
1277 PMCID: PMC5608625

1278 113. Harris JJ, Jolivet R, Attwell D. Synaptic Energy Use and Supply. Neuron. 2012 Sep
1279 6;75(5):762–777.

1280 114. Boyer PD. What makes ATP synthase spin? Nature. Nature Publishing Group; 1999
1281 Nov;402(6759):247–249.

1282 115. Du F, Zhu XH, Zhang Y, Friedman M, Zhang N, Uğurbil K, Chen W. Tightly coupled
1283 brain activity and cerebral ATP metabolic rate. Proc Natl Acad Sci U S A. 2008 Apr
1284 29;105(17):6409–6414. PMCID: PMC2359810

1285 116. Ercińska M, Silver IA. ATP and Brain Function. J Cereb Blood Flow Metab. SAGE
1286 Publications Ltd STM; 1989 Feb 1;9(1):2–19.

1287 117. Swinstead EE, Paakinaho V, Presman DM, Hager GL. Pioneer factors and ATP-
1288 dependent chromatin remodeling factors interact dynamically: A new perspective.
1289 Bioessays. 2016 Nov;38(11):1150–1157. PMCID: PMC6319265

1290 118. Duttke SH, Montilla-Perez P, Chang MW, Li H, Chen H, Carrette LLG, Guglielmo G de,
1291 George O, Palmer AA, Benner C, Telese F. Glucocorticoid Receptor-Regulated Enhancers
1292 Play a Central Role in the Gene Regulatory Networks Underlying Drug Addiction. Frontiers
1293 in Neuroscience [Internet]. 2022 [cited 2022 Jul 22];16. Available from:
1294 <https://www.frontiersin.org/articles/10.3389/fnins.2022.858427>

1295 119. Satpathy AT, Granja JM, Yost KE, Qi Y, Meschi F, McDermott GP, Olsen BN, Mumbach
1296 MR, Pierce SE, Corces MR, Shah P, Bell JC, Jhutty D, Nemec CM, Wang J, Wang L, Yin Y,
1297 Giresi PG, Chang ALS, Zheng GXY, Greenleaf WJ, Chang HY. Massively parallel single-cell
1298 chromatin landscapes of human immune cell development and intratumoral T cell
1299 exhaustion. Nat Biotechnol. Nature Publishing Group; 2019 Aug;37(8):925–936.

1300 120. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler
1301 TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG,
1302 Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R,
1303 Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG,
1304 Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital
1305 transcriptional profiling of single cells. Nat Commun. Nature Publishing Group; 2017 Jan
1306 16;8(1):14049.

1307 121. Navarro Gonzalez J, Zweig AS, Speir ML, Schmelter D, Rosenbloom KR, Raney BJ,
1308 Powell CC, Nassar LR, Maulding ND, Lee CM, Lee BT, Hinrichs AS, Fyfe AC, Fernandes
1309 JD, Diekhans M, Clawson H, Casper J, Benet-Pagès A, Barber GP, Haussler D, Kuhn RM,
1310 Haeussler M, Kent WJ. The UCSC Genome Browser database: 2021 update. Nucleic Acids
1311 Research. 2021 Jan 8;49(D1):D1046–D1057.

1312 122. Team TBD. BSgenome.Rnorvegicus.UCSC.rn6: Full genome sequences for *Rattus*
1313 *norvegicus* (UCSC version rn6). 2014.

1314 123. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler and D.
1315 The Human Genome Browser at UCSC. *Genome Res.* 2002 Jun 1;12(6):996–1006.

1316 124. Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Austine-
1317 Orimoloye O, Azov AG, Barnes I, Bennett R, Berry A, Bhai J, Bignell A, Billis K, Boddu S,
1318 Brooks L, Charkhchi M, Cummins C, Da Rin Fioretto L, Davidson C, Dodiya K, Donaldson
1319 S, El Houdaigui B, El Naboulsi T, Fatima R, Giron CG, Genez T, Martinez JG, Guijarro-
1320 Clarke C, Gymer A, Hardy M, Hollis Z, Hourlier T, Hunt T, Juettemann T, Kaikala V, Kay M,
1321 Lavidas I, Le T, Lemos D, Marugán JC, Mohanan S, Mushtaq A, Naven M, Ogeh DN,
1322 Parker A, Parton A, Perry M, Piližota I, Prosovetskaia I, Sakthivel MP, Salam AIA, Schmitt
1323 BM, Schuilenburg H, Sheppard D, Pérez-Silva JG, Stark W, Steed E, Sutinen K, Sukumaran
1324 R, Sumathipala D, Suner MM, Szpak M, Thormann A, Tricomi FF, Urbina-Gómez D,
1325 Veidenberg A, Walsh TA, Walts B, Willholt N, Winterbottom A, Wass E, Chakiachvili M, Flint
1326 B, Frankish A, Giorgetti S, Haggerty L, Hunt SE, Ilsley GR, Loveland JE, Martin FJ, Moore
1327 B, Mudge JM, Muffato M, Perry E, Ruffier M, Tate J, Thybert D, Trevanion SJ, Dyer S,
1328 Harrison PW, Howe KL, Yates AD, Zerbino DR, Flicek P. Ensembl 2022. *Nucleic Acids*
1329 *Research.* 2022 Jan 7;50(D1):D988–D995.

1330 125. Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Berhanu Lemma R, Turchi L,
1331 Blanc-Mathieu R, Lucas J, Boddie P, Khan A, Manosalva Pérez N, Fornes O, Leung TY,
1332 Aguirre A, Hammal F, Schmelter D, Baranasic D, Ballester B, Sandelin A, Lenhard B,
1333 Vandepoele K, Wasserman WW, Parcy F, Mathelier A. JASPAR 2022: the 9th release of
1334 the open-access database of transcription factor binding profiles. *Nucleic Acids Research.*
1335 2022 Jan 7;50(D1):D165–D173.

1336 126. Guglielmo G de, Carrette LL, Kallupi M, Brennan M, Boomhower B, Maturin L, Conlisk
1337 D, Sedighim S, Tieu L, Fannon MJ, Martinez A, Velarde N, Kononoff J, Kimbrough A,
1338 Simpson S, Smith LC, Shankar K, Crook C, Avelar A, Schweitzer P, Woods LCS, Palmer
1339 AA, George O. Characterization of cocaine addiction-like behavior in heterogeneous stock
1340 rats [Internet]. bioRxiv; 2021 [cited 2022 Aug 19]. p. 2021.07.22.453410. Available from:
1341 <https://www.biorxiv.org/content/10.1101/2021.07.22.453410v2>

1342 127. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq
1343 data using regularized negative binomial regression. bioRxiv. Cold Spring Harbor
1344 Laboratory; 2019 Mar 18;576827.

1345 128. Richards LM, Riverin M, Mohanraj S, Ayyadhury S, Croucher DC, Díaz-Mejía JJ,
1346 Coutinho FJ, Dirks PB, Pugh TJ. A comparison of data integration methods for single-cell
1347 RNA sequencing of cancer samples [Internet]. bioRxiv; 2021 [cited 2022 May 19]. p.
1348 2021.08.04.453579. Available from:
1349 <https://www.biorxiv.org/content/10.1101/2021.08.04.453579v1>

1350 129. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S,
1351 Bo X, Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *The*
1352 *Innovation.* 2021 Aug 28;2(3):100141.

1353 130. Stuart T, Srivastava A, Lareau C, Satija R. Multimodal single-cell chromatin analysis with
1354 Signac. bioRxiv. Cold Spring Harbor Laboratory; 2020 Nov 10;2020.11.09.373613.

1355 131. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
1356 features. *Bioinformatics.* 2010 Mar 15;26(6):841–842.

1357 132. Cusanovich DA, Daza R, Adey A, Pliner H, Christiansen L, Gunderson KL, Steemers FJ,
1358 Trapnell C, Shendure J. Multiplex Single Cell Profiling of Chromatin Accessibility by
1359 Combinatorial Cellular Indexing. *Science.* 2015 May 22;348(6237):910–914. PMID:
1360 PMC4836442

1361 133. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R. Indexing by latent
1362 semantic analysis. *Journal of the American Society for Information Science.*
1363 1990;41(6):391–407.

1364 134. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M,

1365 Loh P ru, Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with
1366 Harmony. *Nature Methods*. Nature Publishing Group; 2019 Dec;16(12):1289–1296.

1367 135. Yirga AA, Melesse SF, Mwambi HG, Ayele DG. Negative binomial mixed models for
1368 analyzing longitudinal CD4 count data. *Sci Rep*. Nature Publishing Group; 2020 Oct
1369 7;10(1):16742.

1370 136. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar
1371 P, de Bakker PIW, Daly MJ, Sham PC. PLINK: A Tool Set for Whole-Genome Association
1372 and Population-Based Linkage Analyses. *Am J Hum Genet*. 2007 Sep;81(3):559–575.
1373 PMCID: PMC1950838

1374 137. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H,
1375 Glass CK. Simple combinations of lineage-determining transcription factors prime cis-
1376 regulatory elements required for macrophage and B cell identities. *Mol Cell*. 2010 May
1377 28;38(4):576–589. PMCID: PMC2898526

1378

1379 **Figure 1**

1380

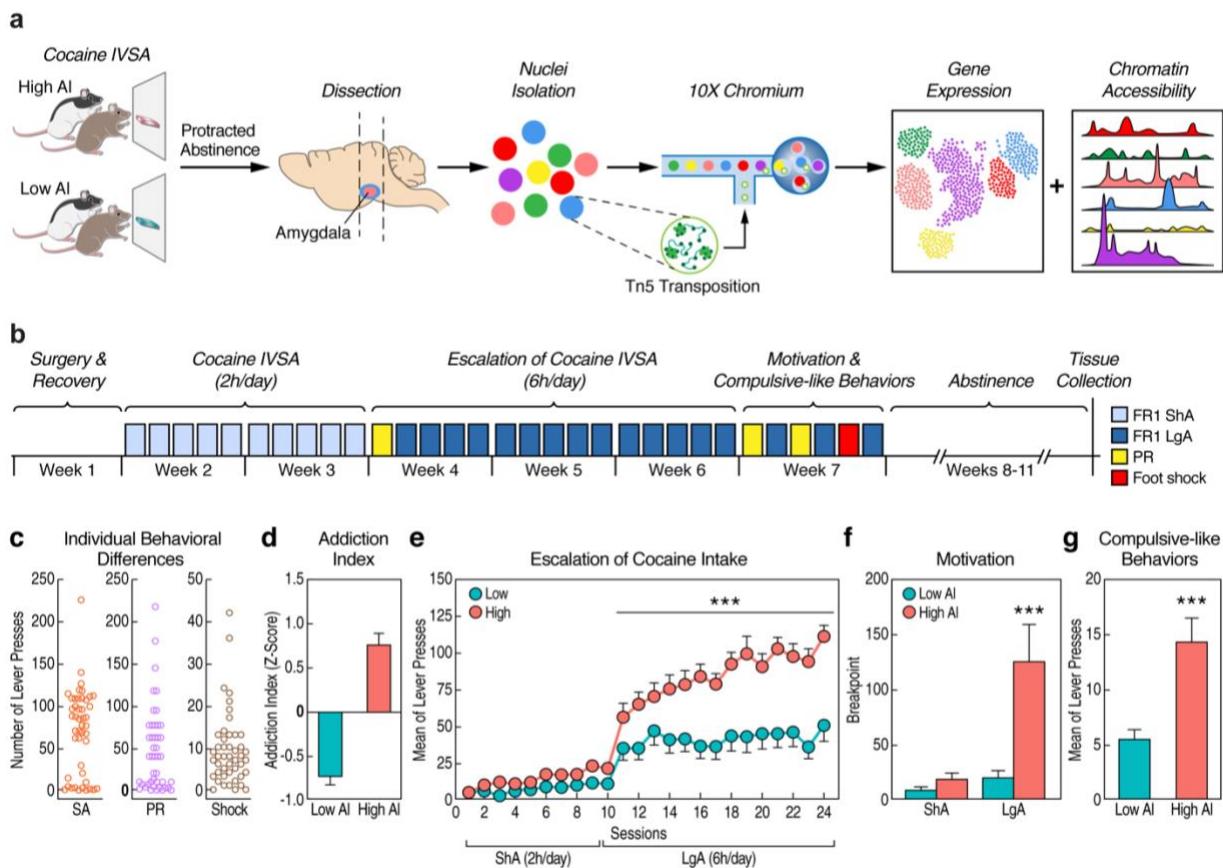


Figure 1. Experimental design and rat IVSA cocaine model of addiction. a) Schematic of the study design. **b)** Timeline of the behavioral protocol. **c)** Individual differences in number of lever presses in self-administration (SA), progressive ratio (PR) and shock-paired (Shock) sessions. **d)** Barplot showing differences in addiction index scores between high and low AI rats. **e)** Plot showing differences in mean of lever presses across ShA and LgA IVSA sessions between high and low AI rats. **f)** Barplot showing results of breakpoint analysis between high and low AI rats under ShA versus LgA. **g)** Barplot showing differences in mean of lever presses despite footshock between high and low AI rats. Error bars represent the standard error of the mean (d-g). Statistic represents the difference between low and high AI rats (**p < 0.001 were obtained with Two-way ANOVA in (e), mixed effect model in (f), and unpaired t-test in (g), or using Bonferroni's multiple comparison test in e-g).

1381

1382

1383 **Figure 2**

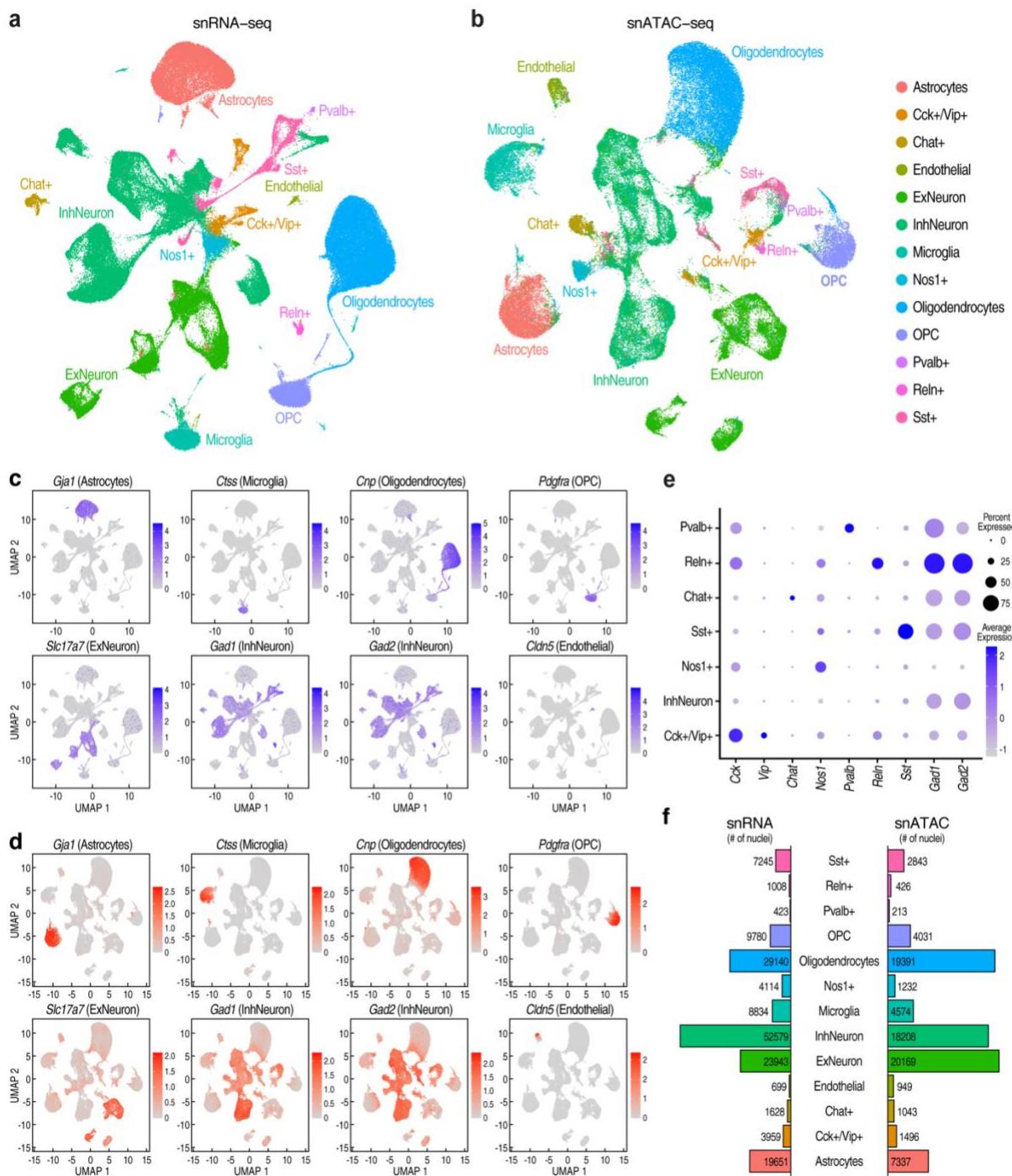


Figure 2. Summary of single nucleus RNA-seq and ATAC-seq data from the rat amygdala. a) Uniform Manifold Approximation and Projection (UMAP) plot of single nucleus RNA-seq (snRNA-seq) data from the rat amygdala. Data are combined across 19 samples, with high-, low- and -naive addiction labels. Cells are colored by cluster assignments

performed with K-nearest neighbors. We assigned cell type labels to the clusters based on the expression of known marker genes. **b)** UMAP plot of single nucleus ATAC-seq data from 12 rat amygdala samples. snATAC-seq data was integrated with the snRNA-seq data and cluster labels were transferred to the snATAC-seq cells. **c)** Feature plot showing expression of marker genes used to label major subsets of cells: *Gja1* (astrocytes), *Ctss* (microglia), *Cnp* (oligodendrocytes), *Pdgfra* (oligodendrocyte precursor cells (OPCs)), *Slc17a7* (excitatory neurons), *Gad1* and *Gad2* (inhibitory neurons), and *Cldn5* (endothelial cells). **d)** Feature plot showing imputed gene expression of cell type-specific marker genes in snATAC-seq dataset. **e)** Expression of marker genes in cell clusters corresponding to highly specific subsets of inhibitory neurons. The shading and diameter of each circle indicate the estimated mean expression and the percentage of cells within the cluster in which the marker gene was detected. **f)** The number of nuclei assigned to each cell type cluster for the snATAC-seq and snRNA-seq datasets.

1384

1385

1386 Figure 3

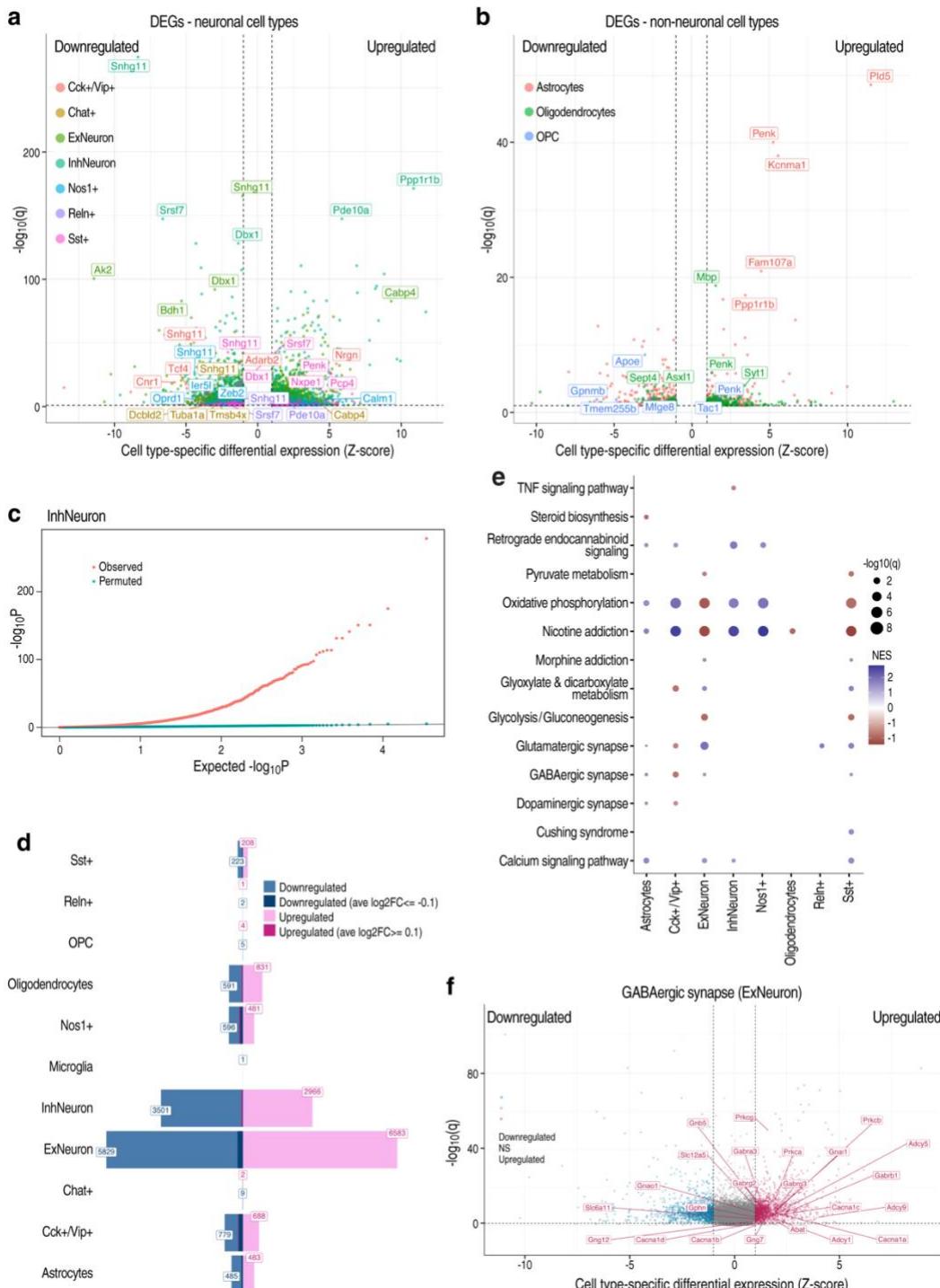


Figure 3. Differential gene expression between high and low addiction index rats. a) Volcano plot summarizing differential gene expression between high and low AI rats. Points

are colored by cell type, and the five most-significant genes for each cell type are indicated with labels. Within each cell type, we normalized the log fold changes with a z-score and plotted the cell type-specific z-scores of the log fold changes on the x-axis. The -log10 false discovery rate (FDR) corrected p-values (q-values) are plotted on the y-axis. **b)** Volcano plot summarizing differential gene expression between high and low AI rats for non-neuronal (glial) cell type clusters. **c)** Quantile-quantile plot comparing the distributions of p-values for differential gene expression tests between high and low AI rats performed in astrocytes. The x-axis is the expected -log10 p-values under the null hypothesis of no differential expression, and the y-axis is the observed -log10 differential expression p-values. P-values for differential expression were computed using MAST⁶⁰. The blue points provide results from the same statistical test, performed after shuffling the addiction labels of the rats. **d)** Barplot showing numbers (labeled) of significant (FDR<10%) up- and downregulated DEGs by cell type. Darker shades indicate DEGs with a large foldchange ($\text{abs}(\text{avg_log2FC}) \geq 0.1$). **e)** KEGG pathways that are enriched for differentially expressed genes by cell type. **f)** Volcano plot of differential gene expression in excitatory neurons. Core enrichment genes in the glyoxalase pathway with significant differential expression are highlighted with labels.

1387
1388
1389

1390 Figure 4

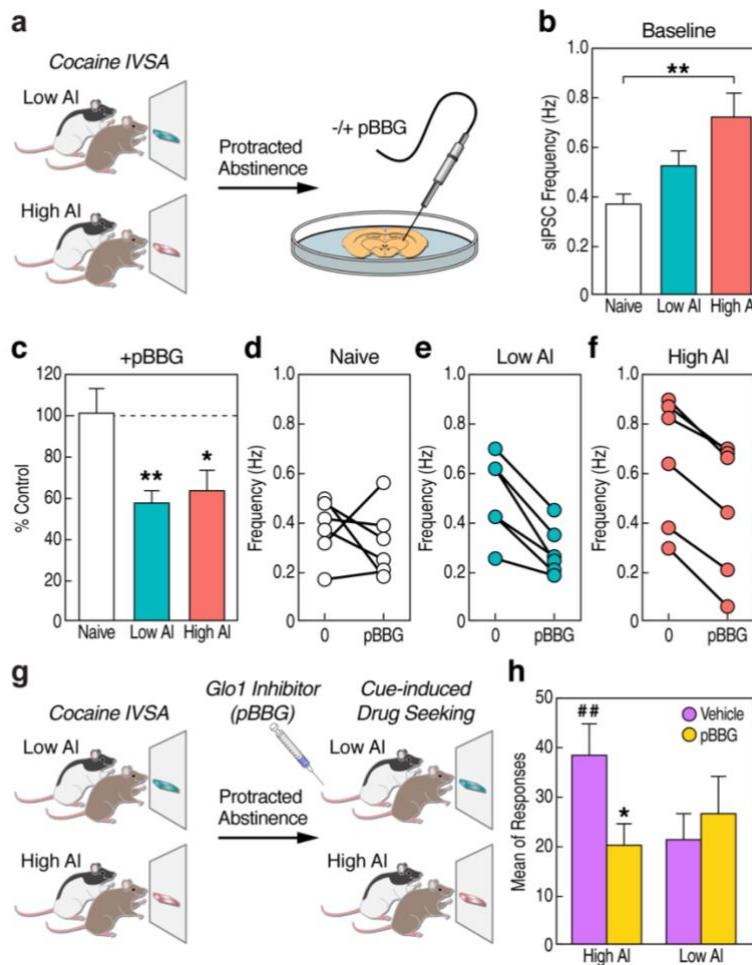


Figure 4. Electrophysiology and GLO1 inhibition experiments implicate GABAergic inhibition in cocaine addiction-like behaviors. **a)** Schematic showing animal model used for electrophysiology recording in the CeA. HS rats were subjected to prolonged abstinence following the same behavioral protocol used to generate the snRNA-seq and snATAC-seq data. CeA slices were harvested following this period of prolonged abstinence and treated with pBBG. Electrophysiological recordings were taken before and after pBBG treatment. **b)** Baseline sIPSC frequency (measured before pBBG injection). Significant differences in the means between the three groups was observed. **c)** sIPSC frequency following pBBG treatment. We observe reduced frequency in the high and low AI rats following pBBG treatment. Change in sIPSC frequency following pBBG treatment in naive (**d**), low (**e**), and high rats (**f**). **g)** Schematic of animal model used to test cocaine-seeking behavior in high and low AI rats following pBBG injection. Rats were injected with pBBG following a period of prolonged abstinence and re-exposed to the self-administration chambers in the absence of cocaine. **g)** Following injection of pBBG, high AI rats showed significantly higher cocaine-seeking behavior compared to low AI rats, which was reduced by pBBG treatment. Error bars represent the standard error of the mean (**b**, **c**, **h**). Statistic represents the difference between low and high rats (## $p < 0.001$, ** $p < 0.01$, * $p < 0.05$ were obtained with unpaired t-test in (**c**) and Two-way ANOVA for each measure, using Bonferroni's multiple comparison test in **c**, **h**).

1391 Figure 5

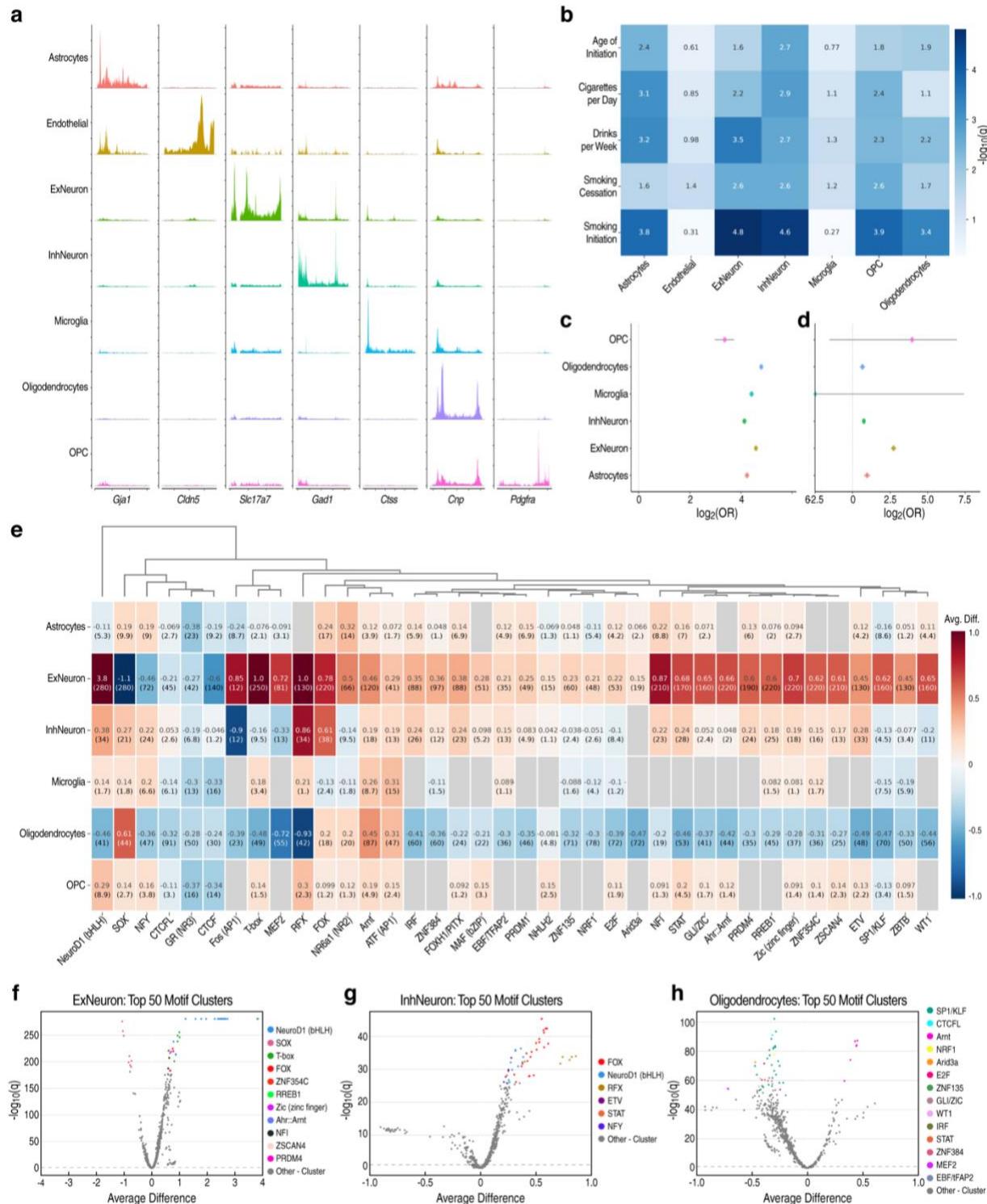


Figure 5. Analysis of chromatin accessibility and regulatory elements involved in cocaine dependence. a) Pseudobulk chromatin accessibility at the promoter regions of

marker genes for major cell types identified in our analysis. **b)** LD score regression results showing significance (-log10p) of enrichment of heritability for several traits related to alcohol and nicotine addiction in cell type-specific OCRs (mapped to hg19). **c)** Enrichment of significant DEGs for each major cell type whose promoters are also significantly differentially accessible in the snATAC-seq data. We found that all cell types tested were significantly enriched for this criterion, indicating that the findings of our snRNA-seq and snATAC-seq analyses support one another and point to long-term transcriptional changes driven by changes in accessibility of gene promoters. **d)** Enrichment of cell type specific significant differentially accessible peaks are enriched for TSS/promoter regions compared to non-differentially accessible peaks in our snATAC-seq data. This indicates that our differential analysis detects functionally relevant regulatory elements and can discriminate against genomic regions of less functional importance. **e)** Heatmap showing differential activity of various motifs in the significant differential peaks of each cell type. Values indicate average difference of chromVar deviation scores with -log10(p) in parentheses below. There are many cases where motifs display increased activity in the peaks which are more accessible in upregulated peaks in neurons while also displaying decreased activity in downregulated peaks in oligodendrocytes. **f-h)** Volcano plots showing average difference (x-axis) and -log10(q) (y-axis) of chromVAR deviation scores for top 50 motif clusters in **f)** excitatory neurons, **g)** inhibitory neurons, and **h)** oligodendrocytes.

1392

1393 Supplementary figure legends

1394 **Figure S1.** snRNA-seq profiles of 6 high AI rats. For each rat the number of unique genes
1395 detected per cell (nFeature_RNA), total number of reads within each cell (nCount_RNA), and
1396 percentage of percent mitochondrial reads are shown for each cell. Quality metrics calculated
1397 with Seurat.

1398

1399 **Figure S2.** snRNA-seq profiles of 6 low AI rats. For each rat the number of unique genes
1400 detected per cell (nFeature_RNA), total number of reads within each cell (nCount_RNA), and
1401 percentage of percent mitochondrial reads are shown for each cell. Quality metrics calculated
1402 with Seurat.

1403

1404 **Figure S3.** snRNA-seq profiles of 7 naive rats. For each rat the number of unique genes
1405 detected per cell (nFeature_RNA), total number of reads within each cell (nCount_RNA), and
1406 percentage of percent mitochondrial reads are shown for each cell. Quality metrics calculated
1407 with Seurat.

1408

1409 **Figure S4.** snATAC-seq profiles of 4 high AI rats. For each rat the ratio of mononucleosomal to
1410 nucleosome-free fragments (nucleosome_signal), percentage of fragments that fall within
1411 ATAC-seq peaks (pct_reads_in_peaks), total number of fragments in peaks
1412 (peak_region_fragments), and transcription start site enrichment score (TSS.enrichment) are
1413 shown for each cell. Quality metrics calculated with Signac.

1414

1415 **Figure S5.** snATAC-seq profiles of 4 low AI rats. For each rat the ratio of mononucleosomal to
1416 nucleosome-free fragments (nucleosome_signal), percentage of fragments that fall within
1417 ATAC-seq peaks (pct_reads_in_peaks), total number of fragments in peaks
1418 (peak_region_fragments), and transcription start site enrichment score (TSS.enrichment) are
1419 shown for each cell. Quality metrics calculated with Signac.

1420

1421 **Figure S6.** snATAC-seq profiles of 4 low naive rats. For each rat the ratio of mononucleosomal to
1422 nucleosome-free fragments (nucleosome_signal), percentage of fragments that fall within
1423 ATAC-seq peaks (pct_reads_in_peaks), total number of fragments in peaks
1424 (peak_region_fragments), and transcription start site enrichment score (TSS.enrichment) are
1425 shown for each cell. Quality metrics calculated with Signac.

1426

1427 **Figure S7.** UMAP visualization of the clusters identified in integrated single-cell data sets. **(a)**
1428 Clustering of integrated snRNA-seq dataset revealed 49 clusters. We first performed a k-
1429 nearest neighbors analysis (KNN) using the first 30 dimensions calculated by reciprocal
1430 principal component analysis (PCA). This was implemented with the FindNeighbors() function in
1431 Seurat. Next we used a modularity optimization technique using the Louvain algorithm to cluster
1432 the data, implemented with the FindClusters() function in Seurat with a resolution parameter of
1433 0.8. **(b)** Clustering of integrated snATAC-seq data revealed 41 clusters. Latent semantic
1434 indexing (LSI) was used for dimensionality reduction rather than PCA. The first 30 dimensions
1435 minus the first dimension were used for KNN and clustering and the algorithm used for

1436 clustering was the smart local moving (SLM) algorithm. These steps were implemented with the
1437 same Seurat functions.

1438

1439 **Figure S8.** UMAPs of snRNA-seq and snATAC-seq profiles, respectively, following batch
1440 correction of integrated datasets, grouped on: addiction index (**a, d**), rat sample (**b, e**), and
1441 batch information (**c, f**). These plots demonstrate that cells do not cluster by any of these
1442 covariates following batch correction. Integration and batch correction of the snRNA-seq dataset
1443 was performed using SCTransform while Harmony was used for the snATAC-seq dataset.

1444

1445 **Figure S9.** Feature plots showing gene activity of marker genes for each major cell type in the
1446 snATAC-seq data. Gene activity was calculated with the `GeneActivity()` function in Signac.
1447 This quantifies the number of fragments mapping anywhere within a 2kb window of an
1448 annotated gene in the genome. The gene activity information was used for integration of the
1449 snATAC-seq dataset with the snRNA-seq dataset and for imputing gene expression into the
1450 cells of the snATAC-seq dataset (see **Fig. 2d**).

1451

1452 **Figure S10.** Heatmap of top five marker gene expression within subclustered excitatory
1453 neurons.

1454

1455 **Figure S11.** QQ plots showing distribution of p-values for our differential gene expression
1456 analysis performed on our observed versus permuted data (addiction index labels associated
1457 with each cell were shuffled). MAST was the statistical test used for the analysis of both the
1458 observed and permuted datasets.

1459

1460 **Figure S12.** Venn diagram showing the number of significant DEGs (FDR<10%) that are
1461 up/downregulated with large ($\text{abs}(\text{avg_log}_2\text{FC}) \geq 0.1$) or small ($\text{abs}(\text{avg_log}_2\text{FC}) < 0.1$) fold
1462 changes.

1463

1464 **Figure S13.** QQ plots showing distribution of p-values for our differential peak accessibility
1465 analysis performed on our observed versus permuted data (addiction index labels associated
1466 with each cell were shuffled). The negative binomial test was used for the analysis of both the
1467 observed and permuted datasets.

1468

1469 **Figure S14.** Bar plot showing number of significant (FDR<10%) differentially accessible peaks
1470 between high vs. low rats in each cell type.

1471

1472 **Figure S15.** Pie chart showing genomic annotations of all OCRs in our snATAC-seq dataset
1473 across all rats.

1474

1475 **Figure S16.** Histograms showing distribution of peak sizes for peaks called by MACS2 (on the
1476 BAM files for the snATAC-seq data) versus Cell Ranger's internal peak calling algorithm.
1477 MACS2 calls smaller, more precise peaks.

1478

1479 **Figure S17.** Ridge plot quantifying the number of unique fragments ($\log_{10}(n\text{Frags})$) per sample
1480 in the ATAC. Sample FTL_463_M757_933000320046135 was removed at this step and not
1481 included in any of our snATAC-seq due to its low number of fragments.
1482

1483 **Supplementary tables**

1484 **Table S1**

1485 List of snRNA-seq rat samples included in analysis, their addiction indexes, batch information,
1486 and Cell Ranger summary metrics.

1487 **Table S2**

1488 List of snATAC-seq rat samples included in analysis, their addiction indexes, batch information,
1489 and Cell Ranger summary metrics.

1490 **Table S3**

1491 All cell type-specific differential gene expression analysis results (MAST)

1492 **Table S4**

1493 Permutation test for differential gene expression analysis results

1494 **Table S5**

1495 KEGG GSEA results

1496 **Table S6**

1497 All cell type-specific differential peak accessibility analysis results (negbinom)

1498 **Table S7**

1499 Permutation test for differential peak accessibility analysis results

1500 **Table S8**

1501 Fisher's exact test for enrichment of DEGs with differentially accessible promoters

1502 **Table S9**

1503 Fisher's exact test for enrichment of differential peaks with TSS/promoter annotations

1504