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Abstract 23 

The amygdala contributes to negative emotional states associated with relapse to drug seeking, 24 

but the cell type-specific gene regulatory programs that are involved in addiction are unknown. 25 

Here we generate an atlas of single nucleus gene expression and chromatin accessibility in the 26 

amygdala of outbred rats with low and high cocaine addiction-like behaviors following a 27 

prolonged period of abstinence. Between rats with different addiction indexes, there are 28 

thousands of cell type-specific differentially expressed genes and these are enriched for 29 

molecular pathways including GABAergic synapse in astrocytes, excitatory, and somatostatin 30 

neurons. We find that rats with higher addiction severity have excessive GABAergic inhibition in 31 

the amygdala, and that hyperpolarizing GABAergic transmission and relapse-like behavior are 32 

reversed by pharmacological manipulation of the metabolite methylglyoxal, a GABAA receptor 33 

agonist. By analyzing chromatin accessibility, we identify thousands of cell type-specific 34 

chromatin sites and transcription factor (TF) motifs where accessibility is associated with 35 

addiction-like behaviors, most notably at motifs for pioneer TFs in the FOX, SOX, and helix-36 

loop-helix families.  37 

Introduction 38 

The amygdala mediates emotional processing of both rewarding and aversive environmental 39 

stimuli, which allows organisms to engage in subsequent valence-specific behaviors1. The 40 

amygdala is implicated in numerous neuropsychiatric disorders including addiction2, and during 41 

excessive drug use, it regulates the negative emotions associated with drug withdrawal3,4. 42 

Avoidance of these negative emotions enhances the incentive value of the drug, leading to 43 

sustained drug-seeking behaviors and relapse5–7. Given prevention of relapse is the cornerstone 44 

of effective treatments for addiction, it is important to understand the amygdala’s role in 45 

addiction and relapse. 46 

  47 

The amygdala is composed of multiple discrete and interconnected subregions, each 48 

characterized by highly specialized neuronal populations distinguishable by their morphology 49 

and electrophysiological properties8. The major subdivisions include the basolateral amygdala 50 

(BLA), composed of excitatory glutamatergic neurons and inhibitory interneurons, and the 51 

central amygdala (CeA), composed of GABAergic neurons9–11. While the behavioral function 52 

and connectivity of individual subregions of the amygdala have recently been established1, the 53 

mechanisms by which distinct subpopulations of neuronal and non-neuronal cells contribute to 54 

its function remains unclear. 55 

  56 

Single-cell genomics is a powerful new approach for determining the cellular function and 57 

diversity of complex tissues like the amygdala. Single-cell RNA-sequencing (scRNA-seq), which 58 

profiles gene expression in individual cells, has identified and cataloged diverse cell types in 59 

human, mouse, and non-human primate brains12–18. In addition, single-cell assays for 60 

transposase-accessible chromatin (scATAC-seq), which profile open chromatin at single cell 61 

resolution, has identified regulatory DNA sequences in the rodent and human brain12,19–25. 62 
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Regulatory elements identified by scATAC-seq include promoters and enhancers, which confer 63 

cell type-specificity to gene expression by recruiting sequence-specific transcription factors 64 

(TFs)26–29.  65 

 66 

Single cell assays have the potential to reveal, at a molecular level, how specialized amygdalar 67 

cell populations are involved in addiction. For example, given that most genetic variants 68 

associated with complex human diseases like addiction are located in noncoding regions of the 69 

genome30, snATAC-seq could uncover genetically determined, cell-type specific differences and 70 

facilitate functional interpretation of genetic variants31. Thus far, however, the application of 71 

single-cell assays to the study of addiction-like behaviors in rodents has been limited. Single 72 

nucleus RNA-seq (snRNA-seq) has been applied to characterize cellular diversity in brain 73 

regions involved in the reward system32–35, and has been used to analyze transcriptional 74 

changes induced by cocaine and morphine36,37.  However, these prior studies used isogenic 75 

rodents, which means that genetically-mediated differences in susceptibility to addiction-like 76 

behaviors were not examined. Furthermore, these studies performed experiments following 77 

acute, experimenter-administration of drug treatments, which means that they reflect the acute 78 

effects of drug use rather than molecular differences associated with the development of long-79 

lasting addictive-like behaviors. For these reasons, the results from prior single nucleus studies 80 

have significant limitations. 81 

 82 

To address this knowledge gap, we performed snRNA-seq and snATAC-seq using amygdala 83 

tissue from outbred rats obtained from a large genetic study of cocaine addiction-related traits38. 84 

These rats are subjected to prolonged abstinence from voluntary cocaine intake in a well-85 

validated model of extended access to drug intravenous self-administration (IVSA)5,38–40. IVSA is 86 

associated with neurochemical changes in key brain regions, which are similar to those 87 

observed in humans with cocaine use disorder41. This study used outbred heterogeneous stock 88 

(HS) rats because they have high levels of genetic variation and rich phenotypic diversity42–45. 89 

By analyzing differences in gene expression and chromatin accessibility in rats with low and 90 

high addiction indexes, we identify genes and transcriptional regulators associated with cocaine 91 

addiction-like behaviors, including those implicated in GABAA receptor-mediated pathways. 92 

Finally, we perform pharmacological manipulation in tissue slices and in rats to validate insights 93 

gained from the transcriptomic data.   94 

Results 95 

Behavioral characterization of HS rats exhibiting low or high 96 

cocaine addiction-like traits  97 

To investigate how chronic cocaine use influences cellular states associated with addiction-like 98 

behaviors, we performed snRNA-seq and snATAC-seq on amygdala tissues from HS rats 99 

subjected to protracted abstinence (4 weeks) from extended access to cocaine IVSA38,46–49 (Fig. 100 

1a). The animals were trained to self-administer cocaine in operant chambers in two hour (short 101 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.08.506493doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?AvA47k
https://www.zotero.org/google-docs/?Tmcg9w
https://www.zotero.org/google-docs/?8UJrem
https://www.zotero.org/google-docs/?CckraV
https://www.zotero.org/google-docs/?kgLy8w
https://www.zotero.org/google-docs/?HKwlXe
https://www.zotero.org/google-docs/?2bu3qa
https://www.zotero.org/google-docs/?U558zo
https://www.zotero.org/google-docs/?l6GPmg
https://www.zotero.org/google-docs/?aatRrn
https://doi.org/10.1101/2022.09.08.506493
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

access, ShA) and 6 hour (long access, LgA) sessions. We measured the mean number of 102 

cocaine rewards (lever presses) over the course of the behavioral protocol to quantify the 103 

escalation of intake, motivation (rewards measured in a progressive ratio (PR) schedule of 104 

reinforcement) and drug seeking despite adverse consequences (rewards paired with an 105 

electric foot-shock) (Fig. 1b). Based on individual behavioral measures (Fig. 1c), we calculated 106 

an addiction index (AI)38 (average of the Z-score values of the three behavioral measures) as a 107 

measure of vulnerability (positive AI) or resilience (negative AI) to develop cocaine addiction-like 108 

behaviors. Based on the AI, we classified rats into high and low AI groups (Fig. 1d). High and 109 

low AI rats acquired different numbers of cocaine rewards during short access (ShA) vs long 110 

access (LgA) phases of the IVSA protocol (Fig. 1e, two-way repeated measures ANOVA, 111 

addiction index x phase interaction p<0.0001, F23,1012=8.523). While there was no difference 112 

between groups in cocaine rewards during ShA sessions, high AI rats had a significantly higher 113 

escalation of drug intake during LgA sessions compared to low AI rats (Fig. 1e, p<0.001, post 114 

hoc comparisons with Bonferroni correction). We measured motivation with a PR schedule at 115 

the end of the ShA and LgA phases, where the number of lever presses required to acquire a 116 

cocaine infusion was increased progressively. Following extended access to cocaine self-117 

administration, motivation for cocaine increased in the high AI rats but not in low Al rats (Fig. 1f, 118 

mixed effect model, addiction index × phase interaction, p=0.0049, F1,41=8.83; Bonferroni 119 

corrected p=0.0001, post hoc comparisons). Finally, high AI rats showed increased responses 120 

despite adverse consequences compared to low AI rats, as demonstrated by the higher number 121 

of cocaine infusions when the reward was paired with an electric foot shock (Fig. 1g, p<0.001, 122 

unpaired t-test), which may reflect compulsive-like drug use. These results show that we can 123 

capture individual differences in multiple behavioral aspects that are relevant to cocaine use 124 

disorders by using the outbred population of HS rats in combination with the model of extended 125 

access to cocaine IVSA. 126 

snRNA-seq and snATAC-seq defines distinct populations of cell 127 

types in the amygdala 128 

The amygdala is thought to contribute to relapse through its regulation of negative emotional 129 

states associated with drug-seeking behavior. In rats, these negative emotional states 130 

progressively increase after withdrawal from drug IVSA5,50. To identify neuroadaptations that 131 

persist after chronic drug exposure during the withdrawal stage, we collected amygdala tissues 132 

after 4 weeks of abstinence from cocaine IVSA (Fig. 1a).  We purified nuclei and measured the 133 

gene expression and open chromatin profiles of individual nuclei by performing snRNA-seq and 134 

snATAC-seq with the 10X Genomics Chromium workflow (see Methods). We performed these 135 

experiments on high and low AI rats, as well as naive rats (never exposed to cocaine). For 136 

snRNA-seq, we used 19 rats among which 6 were high AI, 6 were low AI, and 7 were naive. For 137 

snATAC-seq we used 12 rats among which 4 were high AI, 4 were low AI, and 4 were naive.   138 

 139 

After filtering low quality nuclei and potential doublets based on quality metrics (Fig. S1-6, Table 140 

S1 and S2), we obtained a combined total of 163,003 and 81,912 high quality nuclei from the 141 

snRNA-seq and snATAC-seq experiments, respectively. Across the snRNA-seq samples, the 142 

mean reads per cell varied from 11,967 to 50,343 and the median number of detected genes 143 
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ranged from 1,293 to 2,855. Across the 12 snATAC-seq samples, the median number of high-144 

quality fragments per nucleus ranged from 7,111 to 22,018. Using these data, we performed 145 

normalization, integration across rats, dimensionality reduction and clustering using Seurat51 146 

(snRNA) and Signac52 (snATAC). In total, we identified 49 cell type clusters in the integrated 147 

snRNA-seq dataset and 41 cell type clusters in the integrated snATAC-seq dataset (Fig. S7). 148 

Visualization of the integrated data indicated that the clustering is not influenced by batch 149 

effects such as sequencing library, percentage of mitochondrial DNA, or individual rats53 (Fig. 150 

S8).  151 

 152 

We annotated the snRNA-seq clusters based on the expression of established cell type-specific 153 

marker genes54–58 (Fig. 2a-b). The major cell types included excitatory neurons (denoted by 154 

expression of Slc17a7), inhibitory GABAergic neurons (Gad1/Gad2), astrocytes (Gja1), 155 

microglia (Ctss), mature oligodendrocytes (Cnp), oligodendrocyte precursor cells (OPC) 156 

(Pdgfra), and endothelial cells (Cldn5) (Fig. 2c). To annotate the snATAC-seq clusters, we 157 

estimated gene activity from pseudo bulk chromatin accessibility at promoter regions of cell 158 

marker genes and used these gene activity scores to impute gene expression in the snATAC-159 

seq samples (Fig. S9). The imputed gene expression clearly delineates the cell clusters into the 160 

same major cell types described above demonstrating strong concordance between our snRNA-161 

seq and snATAC-seq data (Fig. 2d). In addition to the major cell types, we also identified seven 162 

subtypes of inhibitory neurons based on the expression of known cell marker genes (Fig. 2e). 163 

We also sub-clustered the excitatory neurons and identified 18 distinct clusters (Fig. S10), with 164 

top markers including known subpopulation markers such as Cdh13, Nr4a2, Bdnf59. 165 

 166 

The total number of nuclei we obtained for each cell type varied substantially (Fig. 2f). As 167 

expected, excitatory and inhibitory neurons are the most common major cell types, with over 168 

50,000 inhibitory neurons and 20,000 excitatory neurons in the snRNA-seq dataset. Endothelial 169 

cells and some subtypes of inhibitory and excitatory neurons have small numbers of nuclei in 170 

the dataset, so for most downstream analyses we focused on reporting the six most common 171 

major cell types (Fig. 2a-b).  172 

 173 

In combination, the snRNA-seq and snATAC-seq datasets that we generated are the first 174 

single-cell atlas of molecularly-defined cell types in the rat amygdala. The inclusion of multiple 175 

high AI, low AI, and naive rats make these datasets an important resource for studying gene 176 

expression and chromatin accessibility in the amygdala under both normal conditions as well as 177 

in the context of cocaine addiction-like behaviors.  178 

Measuring cell type-specific differential gene expression between 179 

rats displaying a high versus a low addiction index for cocaine 180 

We used MAST60, a generalized linear model designed for single-cell RNA-seq, to identify 181 

differentially expressed genes (DEGs) between high and low AI rats in each cell type(Fig. 3a-b, 182 

Table S3). To control for batch effects, which can cause false signals of differential expression 183 

in single cell data61–63, we performed the same statistical test after permuting the AI labels of the 184 

rats. While the results from the unpermuted data are highly enriched for low p-values, the p-185 
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values from the permuted data resemble the null expectation. This indicates that the DEGs we 186 

identified are unlikely to be caused by batch effects61–63 (Fig. 3c, Fig. S11, Table S4).  187 

 188 

We grouped DEGs into small (abs(avg_log2FC)<0.1) or large effect size groups 189 

(abs(avg_log2FC)≥0.1) and observed that most of the DEGs have small effect sizes (Fig. 3d). In 190 

total, we identified 1,227 unique DEGs with large effect sizes in at least one cell type and 191 

13,114 DEGs with small effect sizes in at least one cell type. The number of significant DEGs 192 

(FDR<10%) between high and low AI rats correlates with the size of the cell type population, 193 

which likely reflects greater power to detect differential expression in common cell types (Fig. 194 

3d). Most (1,078) of the large-effect DEGs are also a small-effect DEG in at least one other cell 195 

type, indicating that while there are shared patterns of differential expression across cell types, 196 

the effect sizes vary across cell types. We identified 65 DEGs with large effect sizes but 197 

discordant directions of effect across cell types (i.e. some genes that are substantially 198 

upregulated in one cell type are substantially downregulated in another). These results support 199 

our hypothesis that most addiction-related pathways operate via cell type-specific mechanisms 200 

(Fig. S12). Some of the most significant DEGs with the largest effect sizes have previously-201 

reported roles in cocaine or other substance use disorders. Among these genes, Ppp1r1b (also 202 

known as dopamine- and cAMP-regulated phosphoprotein, 32 kDa, DARPP-32), is differentially 203 

expressed in both inhibitory neurons and astrocytes, and has long been associated with drugs 204 

of abuse64–68. Similarly, the proenkephalin encoding gene Penk is differentially expressed in 205 

Sst+ neurons and across different glial cell types and is associated with cocaine, opioid and 206 

cannabinoid use69–71.  207 

 208 

To identify pathways with altered regulation between high and low AI rats, we performed gene 209 

set enrichment analysis (GSEA)72,73 to measure KEGG pathway enrichment in the cell type-210 

specific DEGs. We identified significant enrichment of several pathways related to addiction 211 

(e.g. nicotine addiction and morphine addiction), neurotransmission (e.g. GABAergic, 212 

glutamatergic and dopaminergic synapse), stress (e.g. Cushing syndrome and cortisol 213 

synthesis), energy metabolism (e.g. glycolysis, pyruvate metabolism, and oxidative 214 

phosphorylation), and others (Fig. 3e, Table S5). Most cell types showed dysregulation of 215 

oxidative phosphorylation which, together with glucose metabolism, is the main energy source 216 

for synaptic activity and action potentials74,75. This observation suggests that addiction-like 217 

behaviors are associated with alterations in the metabolic state of amygdalar cell populations, 218 

which can directly impact neural network activity within the amygdala.  219 

 220 

We closely examined the DEGs belonging to the GABAergic synapse pathway, which was 221 

significantly enriched in the DEGs of astrocytes, excitatory and Sst+ neurons (Fig. 3f) and found 222 

that genes involved in GABA type A (GABAA) receptor signaling were more highly expressed in 223 

high versus low AI rats, including four GABAA receptors subunits (Gabrg2, Gabrg3, Gabrb1, 224 

Gabra3), four voltage-gated calcium channels (VGCCs) isoforms (Cacan1a, Cacan1b, 225 

Cacan1c, Cacan1d), and three protein kinase C (PKC) isoforms (Prkca, Prkcb, Prkcg). Long-226 

term changes in GABAA receptor activity can be induced by signaling cascades, which are 227 

triggered by calcium influx through VGCCs and subsequent phosphorylation by PKC3,76–78.  228 
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These results suggest that differences in GABAA receptor signaling in specific amygdalar cell 229 

types may be involved in cocaine addiction-related behaviors. 230 

The development of cocaine addiction-like behaviors is linked to 231 

GABAA receptor-mediated hyperpolarizing inhibition in the 232 

amygdala 233 

Based on the above results, we hypothesized that altered energy metabolism within the 234 

amygdala can alter GABAA receptor activity in the amygdala of high AI rats following prolonged 235 

abstinence from cocaine IVSA. To test this hypothesis, we measured GABAergic transmission 236 

by recording spontaneous inhibitory postsynaptic currents (sIPSCs) in the central amygdala 237 

(CeA). CeA slices were collected from a separate cohort of 5 low AI and 5 high AI HS rats that 238 

were subjected to prolonged abstinence following the same behavioral protocol described for 239 

the snRNA-seq and snATAC-seq experiments (Fig. 4a). As a control, we used CeA slices 240 

prepared from 5 age-matched naive HS rats to record baseline GABAergic transmission. There 241 

were significant differences in means among the groups (one-way ANOVA F2,22=6.77, 242 

p=0.0051), and in post hoc tests, naive versus high AI rats were significantly different (Tukey 243 

HSD adjusted p-value=0.0037), reflecting an increase in GABAergic transmission from naive to 244 

low AI to high AI (Fig. 4b). These results suggest that the development of severe cocaine 245 

addiction-like behaviors coincides with a hyperpolarization of GABAergic transmission in the 246 

amygdala and are consistent with the results from our snRNA-seq differential gene expression 247 

analysis (Fig. 3a-b).  248 

 249 

To further investigate the link between GABAergic transmission and energy metabolism in the 250 

amygdala with cocaine addiction-like behaviors, we modulated the activity of GABAA receptors 251 

by altering the endogenous levels of methylglyoxal (MG), which is a byproduct of glycolysis that 252 

has been shown to act as a competitive partial agonist of GABAA receptors79. To modulate MG 253 

levels in the amygdala, we inhibited glyoxalase 1 (GLO1), the rate limiting enzyme for the 254 

metabolism of MG, using S-bromobenzylglutathione cyclopentyl diester (pBBG)79,80. When we 255 

applied pBBG to CeA slices from naive, low AI or high AI rats, pBBG reduced the sIPSC 256 

frequency compared to vehicle for both high and low AI rats (paired t-tests, p=7.6e-5 and 257 

p=3.9e-3, respectively), but not naive rats (p=0.51) (Fig. 4c-f). These findings demonstrate that 258 

GABAA receptor-mediated hyperpolarization in high AI rats is normalized by the inhibition of 259 

GLO1. 260 

 261 

These results led us to hypothesize that GLO1 inhibition would revert behavioral responses 262 

after prolonged abstinence from cocaine IVSA. To test this hypothesis, we measured cue-263 

induced reinstatement of cocaine seeking behavior in a separate cohort of 26 low and high AI 264 

rats 30 minutes after systemic injection of pBBG or vehicle following 4 weeks of abstinence from 265 

cocaine IVSA (Fig. 4g). During this test, rats were subjected to the same operant conditions of 266 

cocaine IVSA, but without drug availability. Then, reinstatement was triggered by re-exposure to 267 

the cocaine infusion-associated light cue. The two-way repeated measures ANOVA showed a 268 

significant interaction between the addiction index and pharmacological treatment (F1,24=6.609, 269 
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p<0.05), indicating that pBBG versus vehicle reduced cue-induced reinstatement in high AI rats 270 

(p-value<0.05, post hoc comparisons with Bonferroni correction), but not in low AI rats (p>0.05). 271 

Overall. these results demonstrate that modulating GABAA transmission with the 272 

pharmacological inhibition of GLO1 decreases relapse-like behaviors in animals with high 273 

cocaine AI. 274 

Mapping differences in chromatin accessibility associated with to 275 

cocaine addiction-like behaviors 276 

To identify regions of open chromatin from the snATAC-seq data, we used MACS281 to call 277 

accessible chromatin peaks from the aligned reads for each rat and created a union peak set 278 

across rats. We examined pseudo bulk chromatin accessibility at the TSS of selected cell type 279 

marker genes and observed cell type-specific patterns of accessibility at the expected marker 280 

genes of each cell type (Fig. 5a, Fig. 2c-d), indicating that the chromatin accessibility 281 

corresponds well with the transcriptome measurements. 282 

 283 

Open chromatin regions harbor cell type-specific regulatory elements82,83, and enrichment 284 

analyses that measure intersections between ATAC-seq peaks and GWAS signals can yield 285 

insight into the mechanisms by which genetic variants confer risk84. However, cell type-specific 286 

measurements of chromatin accessibility are difficult to obtain from human brain tissues. To 287 

assess whether our rat snATAC-seq data is meaningful for interpreting human addiction-related 288 

traits, we mapped the accessible chromatin peaks to the human reference genome and 289 

performed cell type-specific LD score regression85. We chose to use summary statistics from 290 

well-powered GWAS for alcohol and tobacco use86,87 because there is significant genetic 291 

overlap among GWAS for all known substance use disorders88 and because available GWAS 292 

for cocaine use disorder are much smaller and less powerful. We found significant enrichments 293 

(FDR<10%) of SNP heritability in every trait tested in almost every cell type (Fig. 5b), with the 294 

most significant enrichments in neurons, astrocytes, oligodendrocytes and OPCs. Overall, these 295 

results support the hypothesis that, despite the millions of years of evolution separating humans 296 

and rats, the regulatory architecture identified in HS rats that are divergent for IVSA-related 297 

phenotypes is relevant for human addiction-related traits. 298 

 299 

To better understand the regulatory mechanisms involved in cocaine addiction, we analyzed 300 

differences in chromatin accessibility between high and low AI rats. We performed negative 301 

binomial tests to measure cell type-specific differential chromatin accessibility (Table S6), and 302 

compared the observed p-values to those obtained from permuted data (as we did for our DEG 303 

analysis). The p-values of the permuted data resemble the null expectation, confirming that the 304 

differential peaks between high and low addiction are likely true biological differences rather 305 

than batch effects (Fig. S13, Table S7). In total we identified >20,000 peaks across cell types 306 

with significant differential accessibility (FDR<10%), however, as with gene expression, most 307 

differences are small (log2FC < 0.1) (Fig. S14). This indicates that differences in addiction-like 308 

behaviors between rats are associated with modest regulatory changes at a large number of 309 

sites.  310 

 311 
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The differential peaks can be subdivided into those where accessibility is higher (upregulated) 312 

or lower (downregulated) in the high AI rats (Fig. S14). In astrocytes, there are roughly equal 313 

numbers of up- and downregulated peaks, but the other cell types have profound biases. 314 

Excitatory neurons are the most biased with only two detected downregulated peaks, and over 315 

8000 upregulated peaks. Inhibitory neurons show the opposite bias with over 4000 316 

downregulated peaks but only ~500 upregulated peaks (Fig. S14). These biases likely reflect 317 

differences in the activity of specific TFs that control large transcriptional programs.  318 

 319 

To determine whether the differential chromatin accessibility is consistent with the differential 320 

gene expression, we tested whether the promoters of DEGs are enriched for differential 321 

accessibility. We overlapped the significant differential accessible chromatin peaks in each cell 322 

type with the promoters of DEGs and computed a log odds ratio (log2OR) as a measure of 323 

enrichment. Across all of the major cell types, there is a large and significant (Fisher’s exact 324 

test, p<0.05) enrichment of differentially accessible peaks at the promoters of DEGs compared 325 

to non-DEGs (Fig. 5c, Table S8). This confirms that the differential chromatin accessibility and 326 

differential gene expression are concordant, and is additional evidence that the observed 327 

differences between high and low AI rats are true biological effects. 328 

 329 

To characterize differentially accessible chromatin, we examined the genomic annotations for 330 

the significant differential peaks (Fig. S15). Differentially accessible peaks are highly enriched in 331 

promoter regions (compared to non-differential peaks), occurring there at least four times more 332 

frequently than expected in most of the major cell types (Fisher’s exact test, FDR<10%) (Fig. 333 

5d, Table S9). This enrichment may indicate that changes in chromatin are more concentrated 334 

at promoters, or that we have greater statistical power to detect changes at promoters, due to 335 

larger effect sizes or greater overall chromatin accessibility.  336 

 337 

We hypothesized that differences in chromatin accessibility between high and low AI rats are 338 

caused by differential TF activity. To test this hypothesis, we analyzed the snATAC-seq data 339 

using chromVAR, which identifies TF motifs associated with differential accessibility using 340 

sparse single cell data89. A large number of motifs have significant differences in accessibility 341 

between the high and low AI rats, and since many TFs recognize similar motifs, we grouped 342 

them into motif clusters (see Methods) and summarized results across cell types (Fig. 5e).  343 

 344 

The motif cluster with the most significant difference in accessibility between high and low AI 345 

rats contains motifs for basic helix-loop-helix (BHLH) TFs. This motif cluster has substantially 346 

higher accessibility within the excitatory neurons of high AI rats compared to low AI rats 347 

(deviance 3.8, p=1e-280), as well as a modest increase in accessibility in inhibitory neurons 348 

(deviance 0.38, p=1e-34) (Fig. 5f-h). The top-ranked motifs in this cluster all harbor the 349 

sequence CAGATGG, which is a close match to binding site motifs for multiple neuronal pioneer 350 

TFs including NeuroD1, NeuroD2, NeuroG2 and Atoh190,91. Thus, the widespread increases in 351 

chromatin accessibility in excitatory neurons of high AI rats could reflect increased activity of 352 

pioneer TFs that recruit chromatin remodelers.  353 

 354 
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We noticed that many motif clusters with increased accessibility in the neurons of high AI rats 355 

have decreased accessibility in oligodendrocytes (Fig. 5e-h). Prominent among these motif 356 

clusters are those containing FOX and RFX motifs (Fig. 5e-h). 357 

 358 

Several motif clusters also have opposite effects between excitatory and inhibitory neurons. 359 

SOX motifs have decreased accessibility in high AI rats in excitatory neurons but increased 360 

accessibility in all other major cell types including inhibitory neurons (Fig. 5e). MEF2 and FOS 361 

(AP1) motifs all have increased accessibility in the excitatory neurons of high AI rats but 362 

decreased accessibility in inhibitory neurons (Fig. 5e). AP1 and MEF2 motifs are of particular 363 

interest because they are associated with addiction92–95 and their expression increases in the 364 

brain following chronic exposure to cocaine and other drugs96–100.  365 

 366 

While our analysis cannot pinpoint the precise TFs involved, it implicates many motif clusters 367 

that are associated with addiction-like behaviors across thousands of regulatory regions and in 368 

a cell type-specific manner. 369 

Discussion 370 

To better understand the molecular basis of addiction and illuminate long-term changes in gene 371 

regulation and chromatin accessibility associated with chronic drug use, we have generated an 372 

atlas of single-cell gene expression and chromatin accessibility in the amygdala of rats that 373 

showed divergent cocaine addiction-like behaviors. Our dataset is the largest resource of cell 374 

types in the mammalian amygdala, with over 163,000 nuclei in our snRNA-seq dataset and 375 

81,000 nuclei in our snATAC-seq dataset (Fig. 2a-b). The snATAC-seq dataset provides the first 376 

map of cell type-specific regulatory elements in the amygdala, which has allowed us to identify 377 

TF motifs that may drive addiction-related processes.  378 

 379 

Previous single cell transcriptomic studies have focused on the effects of acute passive 380 

treatment with psychoactive drugs in rodents36,37, which cannot fully capture the motivational 381 

processes underlying addiction. In contrast, our behavioral protocol involves extended access to 382 

cocaine IVSA and reflects several key aspects of cocaine addiction, including escalation of drug 383 

use, enhanced motivation for drug seeking and taking, and persistent drug use despite adverse 384 

consequences, which might reflect compulsive-like drug consumption101. Thus, our study is the 385 

first to examine long-term molecular changes in distinct brain cell populations following 386 

abstinence from chronic voluntary cocaine use. 387 

 388 

One striking finding from our study is that there are thousands of significant differences in gene 389 

expression and chromatin accessibility between high and low AI rats (Fig. 3d, Fig. S14). Most of 390 

these differences were small, which suggests that cocaine addiction-related behaviors may 391 

result from the combined action of many small effects on gene expression and chromatin 392 

accessibility. Because the HS rats are genetically diverse, the molecular differences between 393 

high and low AI rats could arise from genetic differences or from the consumption of different 394 

quantities of cocaine. These results are consistent with a polygenic model wherein addiction-like 395 

behaviors would result from the collective action of a large number of genetic risk loci with small 396 
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individual effects. This is a plausible explanation because of the high genetic diversity in the HS 397 

rats and because complex traits in humans are highly polygenic102,103. Further support for this 398 

hypothesis comes from DEGs such as Pp1r1b and Penk (Fig. 3a-b) which have gene 399 

expression quantitative trait loci (eQTLs) in HS rats104, indicating that heritable differences 400 

influence their expression. Alternatively, the effects could be mediated by a relatively small 401 

number of TFs that affect many downstream genes and chromatin sites. Because some of the 402 

motifs with the strongest chromatin accessibility differences (Fig. 5e-h) are recognized by 403 

pioneer TFs (e.g. BHLH, SOX, FOX), it is tempting to speculate that widespread differences in 404 

accessibility are due to pioneer TFs, which have an intrinsic ability to modify chromatin105. 405 

These explanations are not mutually exclusive and it is likely that some differences are caused 406 

by eQTLs while others are caused by differences in the activity of upstream regulators (which 407 

themselves may be affected by genetics or other factors). To properly uncouple pre-existing 408 

genetically controlled gene expression differences from cocaine-induced neuroadaptations 409 

would require larger datasets of genotyped rats. One way this could be accomplished is through 410 

the use of polygenic risk scores for addiction-related traits, which will become possible as more 411 

rat behavioral GWAS are completed42,44–46,106. 412 

 413 

Human and animal studies have provided genetic and behavioral evidence that GABAA 414 

receptor-mediated pathways are involved in addiction3,107–111. Our differential gene expression 415 

(Fig. 3f) and electrophysiology (Fig. 4b) results support these prior findings and provide 416 

evidence for excessive GABAergic transmission in the high AI rats. Moreover, we found that 417 

inhibition of GLO1, the enzyme responsible for MG metabolism, normalizes electrophysiological 418 

(Fig. 4c-f) and behavioral differences (Fig. 4h) associated with severe addiction-like behaviors. 419 

While the pharmacological inhibition experiments are not cell type-specific, the transcriptomic 420 

data suggest that increases in GABAergic synapse-related genes may be specific to astrocytes, 421 

excitatory and Sst+ neurons. Furthermore, our results corroborate previous findings that MG 422 

acts as an endogenous competitive agonist for GABAA receptors107,112, and offer a promising 423 

pharmacological target for improving therapeutic approaches for cocaine addiction. While our 424 

single-cell assays used only male rats, our validation experiments included both male and 425 

female rats. Future experiments including both sexes will be necessary to determine the 426 

influence of sex on gene expression and chromatin accessibility in the amygdala. 427 

 428 

The results from the GLO1 inhibition experiments indicate a close connection between localized 429 

energy metabolism and neurotransmission113. Moreover, genes which are differentially 430 

regulated in high versus low AI rats are enriched in pathways related to energy metabolism, 431 

including glycolysis, pyruvate metabolism, and oxidative phosphorylation (Fig. 3e). Most 432 

notably, the expression levels of genes related to oxidative phosphorylation, which determines 433 

cellular ATP levels114, are altered across most amygdalar cell types. Not only is ATP crucial for 434 

sustaining electrophysiological activity and cell signaling in the brain115,116, but it is also required 435 

for ATP-dependent chromatin remodeling events initiated by pioneer TFs117. This could 436 

potentially explain why excitatory and inhibitory neurons show opposite directions of regulation 437 

in chromatin accessibility (Fig. S14) and in the enrichment of DEGs in the oxidative 438 

phosphorylation pathway (Fig. 3e). In combination, these observations suggest that an altered 439 

metabolic state within the amygdala impacts multiple cellular processes that are involved in 440 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.08.506493doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?PudbnF
https://www.zotero.org/google-docs/?k9dxCW
https://www.zotero.org/google-docs/?1oZP9n
https://www.zotero.org/google-docs/?mpUZnX
https://www.zotero.org/google-docs/?4aDjoK
https://www.zotero.org/google-docs/?gW20Tz
https://www.zotero.org/google-docs/?ziCkUZ
https://www.zotero.org/google-docs/?y7TbTJ
https://www.zotero.org/google-docs/?M61zNf
https://www.zotero.org/google-docs/?K9TTRW
https://doi.org/10.1101/2022.09.08.506493
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

vulnerability to and development of addiction. Future experiments that directly manipulate the 441 

expression of specific metabolic enzymes or pioneer TFs in a cell type-specific manner will be 442 

necessary to fully elucidate their role in addiction. 443 

 444 

In conclusion, the cellular atlas created by this study is a valuable resource for understanding 445 

cell type-specific gene regulatory programs in the amygdala and their role in the development of 446 

cocaine addiction-related behaviors. Our results emphasize the contribution of the GABAA-447 

mediated signaling to the enduring effects of cocaine use, which led us to perform experiments 448 

that manipulate GABAA transmission and identify a novel potential target for treatment of 449 

cocaine addiction. We anticipate that future studies will utilize our data to further investigate 450 

novel cell type-specific mechanisms involved in addiction. 451 

Methods 452 

Experimental 453 

Animals 454 

All protocols were reviewed and approved by the institutional Animal Care and Use Committee 455 

at the University of California San Diego. HS rats (Rat Genome Database NMcwiWFsm 456 

#13673907, sometimes referred to as N/NIH) which were created to encompass as much 457 

genetic diversity as possible at the NIH in the 1980’s by outbreeding eight inbred rat strains 458 

(ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N) were provided by Dr. 459 

Leah Solberg Woods (Wake Forest University School of Medicine). To minimize inbreeding and 460 

control genetic drift, the HS rat colony consists of more than 64 breeder pairs and is maintained 461 

using a randomized breeding strategy, with each breeder pair contributing one male and one 462 

female to subsequent generations. To keep track of the rats, their breeding, behavior, organs 463 

and genomic info, each rat received a chip with an RFID code. Rats were shipped at 3-4 weeks 464 

of age, kept in quarantine for 2 weeks and then housed two per cage on a 12 h/12 h reversed 465 

light/dark cycle in a temperature (20-22°C) and humidity (45-55%) controlled vivarium with ad 466 

libitum access to tap water and food pellets (PJ Noyes Company, Lancaster, NH, USA). We 467 

used 57 HS rats for the behavioral experiments, of which 31 male rats were used for the 468 

generation of genomic data and 26 rats (13 female, 13 male) were used for cue-induced 469 

reinstatement. For snRNA-seq we used 19 male rats (6 high AI, 6 low AI, 7 naive). For the 470 

snATAC-seq we used 12 male rats (4 high AI, 4 low AI, 4 naive). In addition, we used 15 female 471 

and male rats (5 high AI, 5 low AI, 5 naive) for the electrophysiology experiments.  472 

 473 

Drugs 474 

Cocaine HCl (National Institute on Drug Abuse, Bethesda, MD, USA) was dissolved in 0.9% 475 

saline (Hospira, Lake Forest, IL, USA) and administered intravenously at a dose of 0.5 476 

mg/kg/infusion as described below. pBBG was synthesized in the laboratory of Prof. Dionicio 477 

Siegel (University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical 478 
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Sciences). pBBG was dissolved in a vehicle of 8% dimethylsulfoxide, 18% Tween-80, and 74% 479 

distilled water and administered intraperitoneally 30 minutes before the test session. 480 

Brain Samples 481 

Brain tissues were obtained from the cocaine brain bank at UCSD38, which collects tissues from 482 

HS rats that are part of an ongoing study of addiction-like behavior42. We used 31 HS rats for 483 

the generation of single-cell genomic data reported in this study which were selected as having 484 

low or high AI for cocaine addiction-related behaviors, using behavioral methods previously 485 

described47. Brain tissues were extracted and snap-frozen (at −30°C). Cryosections of 486 

approximately 500 microns (Bregma -1.80 - 3.30mm) were used to dissect the amygdala on a 487 

−20°C frozen stage, including the central nucleus of the amygdala, basolateral amygdala, and 488 

medial amygdala from both hemispheres. Punches from three sections were combined for each 489 

rat. 490 

Single-cell library preparation, sequencing, and alignment 491 

Single nucleus RNA-seq was performed by the Center for Epigenomics, UC San Diego using 492 

the Droplet-based Chromium Single-Cell 3’ solution (10x Genomics, v3 chemistry). Briefly, 493 

frozen amygdala tissue was homogenized via glass dounce. Nuclei were then resuspended in 494 

500 µL of nuclei permeabilization buffer (0.1% Triton-X-100 (Sigma-Aldrich, T8787), 1X 495 

protease inhibitor, 1 mM DTT, and 1U/µL RNase inhibitor (Promega, N211B), 2% BSA (Sigma-496 

Aldrich, SRE0036) in PBS). Sample was incubated on a rotator for 5 min at 4°C and then 497 

centrifuged at 500 rcf for 5 min (4°C, run speed 3/3). Supernatant was removed and pellet was 498 

resuspended in 400 µL of sort buffer (1 mM EDTA 0.2 U/µL RNase inhibitor (Promega, N211B), 499 

2% BSA (Sigma-Aldrich, SRE0036) in PBS) and stained with DRAQ7 (1:100; Cell Signaling, 500 

7406). Up to 75,000 nuclei were sorted using a SH800 sorter (Sony) into 50 µL of collection 501 

buffer consisting of 1 U/µL RNase inhibitor in 5% BSA; the FACS gating strategy sorted based 502 

on particle size and DRAQ7 fluorescence. Sorted nuclei were then centrifuged at 1000 rcf for 15 503 

min (4°C, run speed 3/3) and supernatant was removed. Nuclei were resuspended in 35 µL of 504 

reaction buffer (0.2 U/µL RNase inhibitor (Promega, N211B), 2% BSA (Sigma-Aldrich, 505 

SRE0036) in PBS) and counted on a hemocytometer. 12,000 nuclei were loaded onto a 506 

Chromium Controller (10x Genomics). Libraries were generated using the Chromium Single-Cell 507 

3′ Library Construction Kit v3 (10x Genomics, 1000075) with the Chromium Single-Cell B Chip 508 

Kit (10x Genomics, 1000153) and the Chromium i7 Multiplex Kit for sample indexing (10x 509 

Genomics, 120262) according to manufacturer specifications. cDNA was amplified for 12 PCR 510 

cycles.  511 

 512 

For snATAC-seq library preparations, nuclei were purified from frozen amygdala tissues using 513 

an established method118. Briefly, frozen amygdala tissue was homogenized using a 2 ml glass 514 

dounce with 1 ml cold 1x Homogenization Buffer (HB). The cell suspension was filtered using a 515 

70 μm Flowmi strainer (BAH136800070, Millipore Sigma) and centrifuged at 350g for 5 min at 516 

4°C. Nuclei were isolated by iodixanol (D1556, Millipore Sigma) density gradient. The nuclei 517 

iodixanol solution (25%) was layered on top of 40% and 30% iodixanol solutions. Samples were 518 

centrifuged in a swinging bucket centrifuge at 3,000g for 20 min at 4°C. Nuclei were isolated 519 
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from the 30-40% interface. Libraries were generated using the Chromium Next GEM Single Cell 520 

ATAC v1.1 (10x Genomics, PN-1000175) with the Chromium Next GEM Chip H Single Cell Kit 521 

(10x Genomics, 1000162) and the Chromium i7 Multiplex Kit for sample indexing (10x 522 

Genomics, 1000212) according to manufacturer specifications. DNA was amplified for 8 cycles. 523 

For both library types, SPRISelect reagent (Beckman Coulter, B23319) was used for size 524 

selection and clean-up steps. Final library concentration was assessed by Qubit dsDNA HS 525 

Assay Kit (Thermo-Fischer Scientific) and post library QC was performed using Tapestation 526 

High Sensitivity D1000 (Agilent) to ensure that fragment sizes were distributed as expected. 527 

Final libraries were sequenced using the NovaSeq6000 (Illumina). 528 

 529 

Raw base call (BCL) files were used to generate FASTQ files using Cell Ranger 3.1.0 with the 530 

`cellranger mkfastq` command for RNA-seq reads and `cellranger-atac mkfastq` for ATAC-seq 531 

reads119,120. Next, we used `cellranger count` and `cellranger-atac count` to align the reads to a 532 

custom rat reference genome based on the UCSC rn6 reference genome121–123. This reference 533 

genome was created from FASTA and genome annotation files for Rattus norvegicus Rnor_6.0 534 

(Ensembl release 98)124 and JASPAR2022 motifs125. We then filtered cells based on quality 535 

control metrics and performed barcode and UMI counting for the RNA-seq and ATAC-seq 536 

reads.  537 

Electrophysiology 538 

Slices of the CeA were prepared from cocaine dependent rats during protracted abstinence or 539 

age-matched naive rats. High AI (n=5), low AI (n=5) and naive (n=5) rats were used for patch 540 

clamp baseline recordings. Slices from each group were also used to record iPSCs after pBBG 541 

treatment. The naive rats received sham IV surgery. The rats were deeply anesthetized with 542 

isoflurane and brains were rapidly removed and placed in oxygenated (95% O2, 5% CO2) ice-543 

cold cutting solution that contained 206 mM sucrose, 2.5 mM KCl, 1.2 mM NaH2PO4, 7 mM 544 

MgCl2, 0.5 mM CaCl2, 26 mM NaHCO3, 5 mM glucose, and 5 mM Hepes. Transverse slices 545 

(300 μm thick) were cut on a Vibratome (Leica VT1200S; Leica Microsystems) and transferred 546 

to oxygenated artificial cerebrospinal fluid (aCSF) that contained 130 mM NaCl, 2.5 mM KCl, 1.2 547 

mM NaH2PO4, 2.0 mM MgSO4·7H2O, 2.0 mM CaCl2, 26 mM NaHCO3, and 10 mM glucose. The 548 

slices were first incubated for 30 min at 35°C and then kept at room temperature for the 549 

remainder of the experiment. Individual slices containing CeA were transferred to a recording 550 

chamber that was mounted on the stage of an upright microscope (Olympus BX50WI). The 551 

slices were continuously perfused with oxygenated aCSF at a rate of 3 mL/min. Neurons were 552 

visualized with a 60Å~ water-immersion objective (Olympus), infrared differential interference 553 

contrast optics, and a charge coupled device camera (EXi Blue; QImaging). Whole-cell 554 

recordings were performed using a Multiclamp 700B amplifier (10-kHz sampling rate, 10-kHz 555 

low-pass filter) and Digidata 1440A and pClamp 10 software (Molecular Devices). Patch 556 

pipettes (4–6 MΩ) were pulled from borosilicate glass (Warner Instruments) and filled with 70 557 

mM KMeSO4, 55 mM KCl, 10 mM NaCl, 2 mM MgCl2, 10 mM Hepes, 2 mM Na-ATP, and 0.2 558 

mM Na-GTP. Pharmacologically isolated spontaneous inhibitory postsynaptic currents (sIPSCs) 559 

were recorded in the presence of the glutamate receptor blockers, CNQX (Tocris #0190) and 560 

APV (Tocris #189), and the GABA-B receptor antagonist CGP55845 (Tocris #1246). 561 

Experiments with a series resistance of >15 MΩ or >20% change in series resistance were 562 
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excluded from the final dataset. pBBG (2.5uM) was acutely applied in the bath. The frequency, 563 

amplitude, and kinetics of sIPSCs were analyzed using semi-automated threshold-based mini 564 

detection software (Easy Electrophysiology) and visually confirmed. Data were analyzed using 565 

Prism 9.0 software (GraphPad, San Diego, CA, USA) with one-way ANOVA followed by post 566 

hoc Tukey HSD test or with paired t-tests.  The data are expressed as mean ± SEM unless 567 

otherwise specified. Values of p < 0.05 were considered statistically significant. 568 

Behavioral experiments 569 

Intravenous catheterization and behavioral testing of rats used for the generation of snRNA-seq 570 

and snATAC-seq were carried out using an established protocol of extended access to cocaine 571 

IVSA, PR testing, and foot shock, as reported previously38,47,48. Briefly, after surgical 572 

implantation of intravenous catheters and a week of recovery, HS rats were trained to self-573 

administer cocaine (0.5 mg/kg/infusion) in 10 short access (ShA) sessions (2h/day, 5 days per 574 

week). Next, the animals were allowed to self-administer cocaine in 14 long access (LgA) 575 

sessions (6h/day, 5 days/week) to measure the escalation of drug intake. Following the 576 

escalation phase, rats were screened for motivation using the PR test and for persistent drug-577 

seeking despite adverse consequences using contingent foot-shock. Rats were classified as 578 

having a low or high AI by a median split. AI was computed by averaging normalized 579 

measurements (z-scores) for the three behavioral tests (escalation, motivation, resistance to 580 

punishment)126. The z-scores are calculated as follows 𝑧 =
𝑥−𝜇

𝜎
, where 𝑥 is the raw value, 𝜇 is the 581 

mean of the cohort, and 𝜎 is the standard deviation of the cohort. Brain tissues were collected after 582 

four weeks of abstinence.  583 

 584 

For the pBBG studies, rats were placed back in the self-administration chambers without the 585 

availability of cocaine 28 days after the last drug self-administration session and the number of 586 

responses to the previous drug-paired lever (cocaine seeking behavior) was measured 30 587 

minutes after intraperitoneal injection of pBBG (15 mg/kg/ml) or its vehicle, in a Latin square 588 

design. Specifically, the rats were presented with a neutral stimulus (SN) in a 2 h session to 589 

control for the specificity of the discriminative stimulus (SD) in reinstating extinguished cocaine-590 

seeking behavior. During the SN session, the illumination of a 2.8 W house light that is located 591 

at the top of the chamber’s front panel served as a SN that signaled the non-availability of the 592 

reinforcer. Responses on the right, active lever were followed by 70-dB white noise, during 593 

which the lever remained inactive for 20 s. Two days later, the rats were presented with the SD. 594 

Reintroduction of the cocaine-related SD but not neutral cues significantly reinstated 595 

extinguished cocaine-seeking behavior that was measured as mean number of lever presses. 596 

Data were analyzed using Prism 9.0 software (GraphPad, San Diego, CA, USA). Self-597 

administration data were analyzed using repeated-measures analysis of variance (ANOVA) or 598 

mixed effect model followed by Bonferroni post-hoc tests when appropriate. For pairwise 599 

comparisons, data were analyzed using the unpaired t-test. The data are expressed as mean ± 600 

SEM unless otherwise specified. Values of p < 0.05 were considered statistically significant. 601 
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Computational 602 

Quality control and preprocessing of snRNA-seq data 603 

All snRNA-seq preprocessing was performed with 10x Genomics Cell Ranger 3.1.0 and Seurat 604 

v3.2.351. FASTQ files were aligned to the Rattus norvegicus Ensembl v98 reference genome 605 

(Rnor_6.0). For each sample, we loaded the filtered feature barcode matrices containing only 606 

detected cellular barcodes returned by `cellranger count` into Seurat. We computed the number 607 

of unique genes detected in each cell (nFeature_RNA); the total number of molecules detected 608 

within a cell (nCount_RNA); and the percentage of reads mapping to the mitochondrial genome 609 

(percent.mt) (Fig. S1-3, Table S1). We removed all cells for which the value of any of these 610 

metrics was more than three standard deviations from the mean within the sample (𝑥 > 𝜇 ± 3𝜎). 611 

Next, we normalized the count data for each sample using sctransform127 with percent.mt as a 612 

covariate.  613 

Integrating snRNA-seq data across samples and clustering 614 

To integrate snRNA-seq data across all of our samples, we used reciprocal principal component 615 

analysis (RPCA), as implemented in Seurat51,128. First, we identified 2000 highly variable 616 

features (genes) across all of the samples to use as integration features using the 617 

`SelectIntegrationFeatures()` function, which we passed as anchor features (`anchor.features`) 618 

to the `PrepSCTIntegration()` function. Next, we performed dimensionality reduction with PCA 619 

on each sample using `RunPCA()`. After this, we ran the `FindIntegrationAnchors()` function to 620 

find a set of anchors between the list of Seurat objects from all of our samples using the same 621 

anchor features passed to `PrepSCTIntegration()`, specifying RPCA as the dimensional 622 

reduction method to be performed for finding anchors (`reduction = rpca`) and the first 30 RPCA 623 

dimensions to be used for specifying the k-nearest neighbor search space. Two rats (1 high AI, 624 

1 low AI) were used as reference samples for the integration. We used the resulting anchor set 625 

to perform dataset integration across all of our samples using `IntegrateData()`. We clustered 626 

the integrated dataset by constructing a K-nearest neighbor (KNN) graph using the first 30 PCs 627 

followed by the Louvain algorithm, implemented in Seurat using the `FindNeighbors()` function 628 

followed by `FindClusters()`. Finally, we ran PCA once again on the integrated dataset and 629 

visualized the data using uniform manifold approximation and projection (UMAP). Visualization 630 

of the integrated data in two-dimensional space indicated that batch correction was successful 631 

(Fig. S8a-c). 632 

Cell type assignment for snRNA-seq data 633 

We identified marker genes of each cluster in our integrated snRNA-seq dataset using MAST60, 634 

implemented with the `FindMarkers()` function in Seurat. Cell type identities were assigned 635 

based on expression of known marker genes of cell types known to be found in the amygdala. 636 

 637 
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Cell type-specific gene expression analysis for snRNA-seq data 638 

Within each cell type, we tested for DEGs between the high AI rats and the low AI rats. We used 639 

MAST60 implemented with the `FindMarkers()` function in Seurat to identify differential 640 

expression between groups, using percent.mt, the library prep date, and the rat sample ID as 641 

covariates. We did not pre-filter genes for testing based on log-fold change or minimum fraction 642 

of cells in which a gene was detected. This approach allowed us to detect weaker signals 643 

because we tested all observed genes in the dataset. Multiple testing correction was performed 644 

using the Benjamini-Hochberg method and we used a false discovery rate of 10% as a 645 

significance threshold (FDR<10%). Permutation tests were performed using the same methods, 646 

covariates, and filtering options but with shuffled addiction index labels and results were 647 

compared by visualizing the distributions of uncorrected p-values with QQ-plots (Fig. S11, Table 648 

S4). We used ClusterProfiler129 to perform gene set enrichment analysis (GSEA) of KEGG 649 

pathways for DEGs from each cell type. Multiple testing correction for GSEA results was 650 

performed using Benjamini-Hochberg adjustment, with statistical significance assessed at a 651 

FDR<10%.  652 

Per sample quality control and preprocessing of snATAC-seq data 653 

As with the snRNA-seq data, we aligned the reads to the Rattus norvegicus Ensembl v98 654 

reference genome (Rnor_6.0). All snATAC-seq data preprocessing was performed with 655 

MACS281 (for peak calling) and Signac52. Although peak calling is performed during alignment 656 

by `cellranger-atac count`, we chose to call peaks separately using MACS2 because Cell 657 

Ranger’s peak calling function has been observed to merge multiple distinct peaks into a single 658 

region130. To minimize loss of informative features for clustering and downstream analysis, we 659 

first called peaks on the snATAC-seq BAM files for each rat with MACS2 (`macs2 callpeak -t 660 

{input} -f BAM -n {sample} --outdir {output} {params} --nomodel --shift -100 --ext 200 --qval 5e-2 661 

-B --SPMR`). We confirmed that MACS2 calls more peaks and peaks with smaller widths 662 

compared to Cell Ranger (Fig. S16). Next, we merged overlapping peaks across all of our 663 

samples to generate a combined peak set using BEDtools131 (`bedtools merge`). We generated 664 

a new peak by barcode matrix for each sample using this combined peak set and all detected 665 

cellular barcodes using the `FeatureMatrix()` function in Signac. We used these new matrices to 666 

create ChromatinAssay objects in Signac with the BSgenome.Rnorvegicus.UCSC.rn6122 667 

reference genome using the `CreateChromatinAssay()` function. From these ChromatinAssay 668 

objects we created Seurat objects with `CreateSeuratObject()`, which are compatible with 669 

functions from the Seurat package. We computed several quality control metrics for each 670 

sample: nucleosome banding pattern (nucleosome_signal); transcriptional start site (TSS) 671 

enrichment score (TSS.enrichment); total number of fragments in peaks 672 

(peak_region_fragments); and fraction of fragments in peaks (pct_reads_in_peaks) (Fig. S4-6, 673 

Table S2). We removed all cells for which the value of any of these metrics was more than two 674 

standard deviations from the mean within the sample (𝑥 > 𝜇 ± 2𝜎). We removed one rat 675 

(FTL_463_M757_933000320046135) from our dataset, due to the very low number of detected 676 

fragments per cell in this sample (Fig. S17). 677 

 678 
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Integrating snATAC-seq data across samples and clustering 679 

Each sample was normalized using term frequency-inverse document frequency (TF-IDF) 680 

followed by singular value decomposition (SVD) on the TF-IDF matrix using all features 681 

(peaks)52,130. The combined steps of TF-IDF followed by SVD are known as latent semantic 682 

indexing (LSI)132,133. Non-linear dimensionality reduction and clustering were performed using 683 

UMAP and KNN following the same procedure used, respectively, just as we did for the snRNA-684 

seq data. We merged the data across all samples within Signac and repeated the process of 685 

LSI in the same manner as it was applied to individual samples. We then integrated the merged 686 

dataset using Harmony134 implemented by Signac, integrating over the sample library variable to 687 

account for the effects of different sequencing libraries used for different samples. We observed 688 

successful reduction of batch effects following integration Fig. S8d-f. We once again performed 689 

non-linear dimensionality reduction and clustering with UMAP and KNN, respectively. Notably, 690 

LSI, UMAP and KNN are used for visualization purposes; raw counts were used for downstream 691 

differential accessibility analyses.  692 

Label transfer and cell type assignment for snATAC-seq data 693 

We created a gene activity matrix for the integrated snATAC-seq data using the `GeneActivity()` 694 

function in Signac. This counts the number of fragments per cell overlapping the promoter 695 

region of a given gene and uses that value as a gene activity score. Gene activity serves as a 696 

proxy for gene expression as gene expression is often correlated with promoter accessibility. 697 

The gene activity scores were log normalized using the `NormalizeData()` function in Seurat 698 

with the normalization method set to `LogNormalize` and the scaling factor set to the median 699 

value of nCount_RNA across all cells, based on the gene activity scores. Cell type identities 700 

were assigned by integrating the snATAC-seq data with the integrated snRNA-seq data and 701 

performing label transfer51 as described in Signac. Briefly, this approach identifies shared 702 

correlation patterns in the gene activity matrix and the scRNA-seq dataset to identify matched 703 

biological states across the two modalities. The process returns a classification score for each 704 

cell for each cell type defined in the scRNA-seq data. Each cell was assigned the cell type 705 

identity with the highest prediction score. Additionally, by identifying matched cells in the 706 

snRNA-seq dataset, we were able to impute RNA expression values for each of the cells in our 707 

snATAC-seq dataset. This enabled us to perform correlative analyses of chromatin accessibility 708 

and gene expression in later downstream analyses, as it produced a pseudo-multimodal 709 

dataset.  710 

Differential chromatin accessibility analysis of snATAC-seq data 711 

Similar to our differential analyses of the snRNA-seq data, we tested for differentially accessible 712 

genomic regions between nuclei from the high versus low AI rats within each cell type. We used 713 

the negative binomial test127,135 implemented with the `FindMarkers()` function from Seurat to 714 

model the raw snATAC-seq count data using peak_region_fragments, library batch date, and rat 715 

sample ID as covariates. Multiple testing correction was performed using Benjamini-Hochberg 716 

adjustment and a false discovery rate below 10% (FDR<10%) was used to determine statistical 717 

significance. Permutation tests were performed in the same manner as for the differential gene 718 
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expression analyses (using the same statistical test and covariates with shuffled addiction index 719 

labels).  720 

Partitioned heritability analysis 721 

We downloaded summary statistics for the Liu et al. 2019 GWAS of tobacco and alcohol use86 722 

and used the munge_sumstats.py script from LD Score (LDSC)102 to parse the summary 723 

statistics file into the proper format for downstream analyses. We used the sets of significant 724 

differential peaks (FDR<10%) for each cell type as foreground peaks and DNaseI 725 

hypersensitivity profiles for 53 epigenomes from ENCODE Honeybadger2. We used the UCSC 726 

liftOver tool to convert the foreground peaks from rn6 to hg19. There was no need to lift over the 727 

background peaks as Honeybadger2 is already in hg19. Next, we generated partitioned LD 728 

scores for the background and foreground regions. We used the make_annot.py script to make 729 

annotation files and the ldsc.py script to compute annotation-specific LD scores. We used the 730 

European 1000 Genomes Phase 3 PLINK136 files to compute the LD scores. Finally, using the 731 

baseline model and standard regression weights from the LDSC Partitioning Heritability tutorial, 732 

we ran a cell type-specific partitioned heritability analysis with the LD scores we computed.  733 

Annotation of open chromatin regions 734 

Before performing any differential analyses, we first used the annotatePeaks.pl script from the 735 

HOMER suite to annotate open chromatin regions and significant differential peaks (FDR<10%) 736 

for each cell type in our integrated dataset137. For each cell type, we performed a Fisher’s Exact 737 

Test to measure the enrichment of genomic regions annotated as a promoter region within the 738 

differential peaks compared to the set of all peaks in the dataset and observed significant 739 

results for all cell types tested. Specifically, we compared the ratio of peaks annotated as 740 

promoter regions to non-promoter regions in the significant differential peaks (FDR<10%) 741 

versus all other peaks. 742 

Fisher’s Exact Tests 743 

We first performed a Fisher’s Exact Test to measure enrichment of DEGs (FDR<10%) with 744 

differentially accessible promoters. We defined the latter as the case where the promoter region 745 

of a gene overlaps a significant differentially accessible peak (FDR<10%). We obtained gene 746 

coordinates from the TxDb.Rnorvegicus.UCSC.rn6.refGene annotation package and defined 747 

promoter regions as being 1500 bases upstream and 500 bases downstream of the TSS 748 

(`promoters(genes(TxDb.Rnorvegicus.UCSC.rn6.refGene), upstream = 1500, downstream = 749 

500)`). We then generated a confusion matrix from the following four values: the number of 750 

DEGs with differentially accessible promoters; the number of DEGs with non-differentially 751 

accessible promoters; the number of non-DEGs with differentially accessible promoters; and the 752 

number of non-DEGs with non-differentially accessible promoters. We then performed a 753 

Fisher’s Exact Test to measure enrichment of differentially accessible peaks (FDR<10%) which 754 

were annotated as TSS/promoter regions by HOMER (annotatePeaks.pl). We generated a 755 

confusion matrix from the following four values: the number of differential peaks with a 756 

TSS/promoter annotation; the number of differential peaks without a TSS/promoter annotation; 757 
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the number of non-differential peaks (FDR>10%) with a TSS/promoter annotation; and the 758 

number of non-differential peaks (FDR>10%) without a TSS/promoter annotation.  759 

Measuring differential activity of transcription factors with chromVAR 760 

We measured cell type specific motif activities using chromVAR to test for per motif deviations 761 

in accessibility between nuclei from high versus low AI rats. Motif data was pulled from the 762 

JASPAR2020 database, and integrated with snATAC-seq data using the `AddMotifs()` function 763 

in Signac. After adding motifs to our snATAC-seq dataset, we ran chromVAR with the 764 

`RunChromVAR()` wrapper in Signac. Differential analysis of chromVAR deviation scores was 765 

performed using the Wilcoxon Rank-Sum test between high AI rats versus lowly addicted rats 766 

within each cell type. Differential testing was performed using Seurat’s `FindMarkers()` function 767 

with the mean function set as `rowMeans()` to calculate average difference in deviation scores 768 

between groups. Multiple testing correction was performed using Benjamini-Hochberg 769 

adjustment and a false discovery rate below 10% (FDR<10%) was used to determine statistical 770 

significance. Motif clusters were defined using the provided cluster numbers from JASPAR's 771 

matrix clustering-results and the names of the clusters were annotated by hand based on the 772 

what TFs were present in each cluster.When selecting clusters to visualize, we retrieved the top 773 

50 motifs (FDR<10%) per cell-type and highlighted their respective clusters. Volcano plots and 774 

heatmap data were generated using Plotly in Python. Hierarchical ordering of heatmap clusters 775 

was generated with Plotly’s `figure_factory.create_dendrogram()` function, which wraps the 776 

`cluster.hierarchy.dendrogram()` function in SciPy. 777 

Data availability 778 

The following publicly available datasets were used: 779 

Rattus norvegicus Ensembl v98 reference genome and genome assembly (Rnor_6.0); 780 

JASPAR2022 transcription factor binding profiles for vertebrates; ENCODE Honeybadger 2 781 

ChIP-seq; 1000 Genomes European reference panel; Liu et al. 201986  GWAS for tobacco and 782 

nicotine addiction. 783 
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Figure 1 1379 

 1380 

 

Figure 1. Experimental design and rat IVSA cocaine model of addiction. a) Schematic of 

the study design. b) Timeline of the behavioral protocol. c) Individual differences in number of 

lever presses in self-administration (SA), progressive ratio (PR) and shock-paired (Shock) 

sessions. d) Barplot showing differences in addiction index scores between high and low AI 

rats. e) Plot showing differences in mean of lever presses across ShA and LgA IVSA sessions 

between high and low AI rats. f) Barplot showing results of breakpoint analysis between high 

and low AI rats under ShA versus LgA. g) Barplot showing differences in mean of lever 

presses despite footshock between high and low AI rats. Error bars represent the standard 

error of the mean (d-g). Statistic represents the difference between low and high AI rats 

(***p < 0.001 were obtained with Two-way ANOVA in (e), mixed effect model in (f), and 

unpaired t-test in (g), or using Bonferroni’s multiple comparison test in e-g). 

 1381 

  1382 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.08.506493doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.506493
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

Figure 2 1383 

 

Figure 2. Summary of single nucleus RNA-seq and ATAC-seq data from the rat 

amygdala. a) Uniform Manifold Approximation and Projection (UMAP) plot of single nucleus 

RNA-seq (snRNA-seq) data from the rat amygdala. Data are combined across 19 samples, 

with high-, low- and -naive addiction labels. Cells are colored by cluster assignments 
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performed with K-nearest neighbors. We assigned cell type labels to the clusters based on the 

expression of known marker genes. b) UMAP plot of single nucleus ATAC-seq data from 12 

rat amygdala samples. snATAC-seq data was integrated with the snRNA-seq data and cluster 

labels were transferred to the snATAC-seq cells. c) Feature plot showing expression of 

marker genes used to label major subsets of cells: Gja1 (astrocytes), Ctss (microglia), Cnp 

(oligodendrocytes), Pdgfra (oligodendrocyte precursor cells (OPCs), Slc17a7 (excitatory 

neurons), Gad1 and Gad2 (inhibitory neurons), and Cldn5 (endothelial cells). d) Feature plot 

showing imputed gene expression of cell type-specific marker genes in snATAC-seq dataset. 

e) Expression of marker genes in cell clusters corresponding to highly specific subsets of 

inhibitory neurons. The shading and diameter of each circle indicate the estimated mean 

expression and the percentage of cells within the cluster in which the marker gene was 

detected. f) The number of nuclei assigned to each cell type cluster for the snATAC-seq and 

snRNA-seq datasets. 
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Figure 3 1386 

 

Figure 3. Differential gene expression between high and low addiction index rats. a) 

Volcano plot summarizing differential gene expression between high and low AI rats. Points 
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are colored by cell type, and the five most-significant genes for each cell type are indicated 

with labels. Within each cell type, we normalized the log fold changes with a z-score and 

plotted the cell type-specific z-scores of the log fold changes on the x-axis. The -log10 false 

discovery rate (FDR) corrected p-values (q-values) are plotted on the y-axis. b) Volcano plot 

summarizing differential gene expression between high and low AI rats for non-neuronal (glial) 

cell type clusters. c) Quantile-quantile plot comparing the distributions of p-values for 

differential gene expression tests between high and low AI rats performed in astrocytes. The 

x-axis is the expected -log10 p-values under the null hypothesis of no differential expression, 

and the y-axis is the observed -log10 differential expression p-values. P-values for differential 

expression were computed using MAST60. The blue points provide results from the same 

statistical test, performed after shuffling the addiction labels of the rats. d) Barplot showing 

numbers (labeled) of significant (FDR<10%) up- and downregulated DEGs by cell type. 

Darker shades indicate DEGs with a large foldchange (abs(avg_log2FC)≥0.1). e) KEGG 

pathways that are enriched for differentially expressed genes by cell type. f) Volcano plot of 

differential gene expression in excitatory neurons. Core enrichment genes in the glyoxalase 

pathway with significant differential expression are highlighted with labels.  
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Figure 4 1390 

 

Figure 4. Electrophysiology and GLO1 inhibition experiments implicate GABAergic 
inhibition in cocaine addiction-like behaviors. a) Schematic showing animal model used 
for electrophysiology recording in the CeA. HS rats were subjected to prolonged abstinence 
following the same behavioral protocol used to generate the snRNA-seq and snATAC-seq 
data. CeA slices were harvested following this period of prolonged abstinence and treated 
with pBBG. Electrophysiological recordings were taken before and after pBBG treatment. b) 
Baseline iPSC frequency (measured before pBBG injection). Significant differences in the 
means between the three groups was observed. c) iPSC frequency following pBBG treatment. 
We observe reduced frequency in the high and low AI rats following pBBG treatment. Change 
in sIPSC frequency following pBBG treatment in naive (d), low (e), and high rats (f). g) 
Schematic of animal model used to test cocaine-seeking behavior in high and low AI rats 
following pBBG injection. Rats were injected with pBBG following a period of prolonged 
abstinence and re-exposed to the self-administration chambers in the absence of cocaine. g) 
Following injection of pBBG, high AI rats showed significantly higher cocaine-seeking 
behavior compared to low AI rats, which was reduced by pBBG treatment. Error bars 
represent the standard error of the mean (b, c, h). Statistic represents the difference between 
low and high rats (## p<0.001, **p < 0.01, *p<0.05 were obtained with unpaired t-test in (c) 
and Two-way ANOVA for each measure, using Bonferroni’s multiple comparison test in c, h). 
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Figure 5 1391 

 

Figure 5. Analysis of chromatin accessibility and regulatory elements involved in 

cocaine dependence. a) Pseudobulk chromatin accessibility at the promoter regions of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.08.506493doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.506493
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

marker genes for major cell types identified in our analysis. b) LD score regression results 

showing significance (-log10p) of enrichment of heritability for several traits related to alcohol 

and nicotine addiction in cell type-specific OCRs (mapped to hg19). c) Enrichment of 

significant DEGs for each major cell type whose promoters are also significantly differentially 

accessible in the snATAC-seq data. We found that all cell types tested were significantly 

enriched for this criterion, indicating that the findings of our snRNA-seq and snATAC-seq 

analyses support one another and point to long-term transcriptional changes driven by 

changes in accessibility of gene promoters. d) Enrichment of cell type specific significant 

differentially accessible peaks are enriched for TSS/promoter regions compared to non-

differentially accessible peaks in our snATAC-seq data. This indicates that our differential 

analysis detects functionally relevant regulatory elements and can discriminate against 

genomic regions of less functional importance. e) Heatmap showing differential activity of 

various motifs in the significant differential peaks of each cell type. Values indicate average 

difference of chromVar deviation scores with -log10(p) in parentheses below. There are many 

cases where motifs display increased activity in the peaks which are more accessible in 

upregulated peaks in neurons while also displaying decreased activity in downregulated 

peaks in oligodendrocytes. f-h) Volcano plots showing average difference (x-axis) and -

log10(q) (y-axis) of chromVAR deviation scores for top 50 motif clusters in f) excitatory 

neurons, g) inhibitory neurons, and h) oligodendrocytes. 
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Supplementary figure legends 1393 

Figure S1. snRNA-seq profiles of 6 high AI rats. For each rat the number of unique genes 1394 

detected per cell (nFeature_RNA), total number of reads within each cell (nCount_RNA), and 1395 

percentage of percent mitochondrial reads are shown for each cell. Quality metrics calculated 1396 

with Seurat. 1397 

 1398 

Figure S2. snRNA-seq profiles of 6 low AI rats. For each rat the number of unique genes 1399 

detected per cell (nFeature_RNA), total number of reads within each cell (nCount_RNA), and 1400 

percentage of percent mitochondrial reads are shown for each cell. Quality metrics calculated 1401 

with Seurat. 1402 

   1403 

Figure S3. snRNA-seq profiles of 7 naive rats. For each rat the number of unique genes 1404 

detected per cell (nFeature_RNA), total number of reads within each cell (nCount_RNA), and 1405 

percentage of percent mitochondrial reads are shown for each cell. Quality metrics calculated 1406 

with Seurat. 1407 

  1408 

Figure S4. snATAC-seq profiles of 4 high AI rats. For each rat the ratio of mononucleosomal to 1409 

nucleosome-free fragments (nucleosome_signal), percentage of fragments that fall within 1410 

ATAC-seq peaks (pct_reads_in_peaks), total number of fragments in peaks 1411 

(peak_region_fragments), and transcription start site enrichment score (TSS.enrichment) are 1412 

shown for each cell. Quality metrics calculated with Signac. 1413 

 1414 

Figure S5. snATAC-seq profiles of 4 low AI rats. For each rat the ratio of mononucleosomal to 1415 

nucleosome-free fragments (nucleosome_signal), percentage of fragments that fall within 1416 

ATAC-seq peaks (pct_reads_in_peaks), total number of fragments in peaks 1417 

(peak_region_fragments), and transcription start site enrichment score (TSS.enrichment) are 1418 

shown for each cell. Quality metrics calculated with Signac. 1419 

 1420 

Figure S6. snATAC-seq profiles of 4 low naive rats. For each rat the ratio of mononucleosomal 1421 

to nucleosome-free fragments (nucleosome_signal), percentage of fragments that fall within 1422 

ATAC-seq peaks (pct_reads_in_peaks), total number of fragments in peaks 1423 

(peak_region_fragments), and transcription start site enrichment score (TSS.enrichment) are 1424 

shown for each cell. Quality metrics calculated with Signac. 1425 

 1426 

Figure S7. UMAP visualization of the clusters identified in integrated single-cell data sets. (a)  1427 

Clustering of integrated snRNA-seq dataset revealed 49 clusters. We first performed a k-1428 

nearest neighbors analysis (KNN) using the first 30 dimensions calculated by reciprocal 1429 

principal component analysis (PCA). This was implemented with the FindNeighbors() function in 1430 

Seurat. Next we used a modularity optimization technique using the Louvain algorithm to cluster 1431 

the data, implemented with the FindClusters() function in Seurat with a resolution parameter of 1432 

0.8. (b) Clustering of integrated snATAC-seq data revealed 41 clusters. Latent semantic 1433 

indexing (LSI) was used for dimensionality reduction rather than PCA. The first 30 dimensions 1434 

minus the first dimension were used for KNN and clustering and the algorithm used for 1435 
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clustering was the smart local moving (SLM) algorithm. These steps were implemented with the 1436 

same Seurat functions.  1437 

 1438 

Figure S8. UMAPS of snRNA-seq and snATAC-seq profiles, respectively, following batch 1439 

correction of integrated datasets, grouped on: addiction index (a, d), rat sample (b, e), and 1440 

batch information (c, f). These plots demonstrate that cells do not cluster by any of these 1441 

covariates following batch correction. Integration and batch correction of the snRNA-seq dataset 1442 

was performed using SCTransform while Harmony was used for the snATAC-seq dataset. 1443 

 1444 

Figure S9. Feature plots showing gene activity of marker genes for each major cell type in the 1445 
snATAC-seq data. Gene activity was calculated with the `GeneActivity()` function in Signac. 1446 
This quantifies the number of fragments mapping anywhere within a 2kb window of an 1447 
annotated gene in the genome. The gene activity information was used for integration of the 1448 
snATAC-seq dataset with the snRNA-seq dataset and for imputing gene expression into the 1449 
cells of the snATAC-seq dataset (see Fig. 2d).  1450 
 1451 

Figure S10. Heatmap of top five marker gene expression within subclustered excitatory 1452 

neurons. 1453 

 1454 

Figure S11. QQ plots showing distribution of p-values for our differential gene expression 1455 

analysis performed on our observed versus permuted data (addiction index labels associated 1456 

with each cell were shuffled). MAST was the statistical test used for the analysis of both the 1457 

observed and permuted datasets.  1458 

 1459 

Figure S12. Venn diagram showing the number of significant DEGs (FDR<10%) that are 1460 

up/downregulated with large (abs(avg_log2FC)≥0.1) or small (abs(avg_log2FC)<0.1) fold 1461 

changes.  1462 

 1463 

Figure S13. QQ plots showing distribution of p-values for our differential peak accessibility 1464 

analysis performed on our observed versus permuted data (addiction index labels associated 1465 

with each cell were shuffled). The negative binomial test was used for the analysis of both the 1466 

observed and permuted datasets.  1467 

 1468 

Figure S14. Bar plot showing number of significant (FDR<10%) differentially accessible peaks 1469 

between high vs. low rats in each cell type.  1470 

 1471 

Figure S15. Pie chart showing genomic annotations of all OCRs in our snATAC-seq dataset 1472 

across all rats. 1473 

 1474 

Figure S16. Histograms showing distribution of peak sizes for peaks called by MACS2 (on the 1475 

BAM files for the snATAC-seq data) versus Cell Ranger’s internal peak calling algorithm. 1476 

MACS2 calls smaller, more precise peaks. 1477 

 1478 
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Figure S17. Ridge plot quantifying the number of unique fragments (log10(nFrags)) per sample 1479 

in the ATAC. Sample FTL_463_M757_933000320046135 was removed at this step and not 1480 

included in any of our snATAC-seq due to its low number of fragments. 1481 

 1482 

Supplementary tables 1483 

Table S1 1484 
List of snRNA-seq rat samples included in analysis, their addiction indexes, batch information, 1485 
and Cell Ranger summary metrics.  1486 
Table S2 1487 
List of snATAC-seq rat samples included in analysis, their addiction indexes, batch information, 1488 
and Cell Ranger summary metrics. 1489 
Table S3 1490 
All cell type-specific differential gene expression analysis results (MAST) 1491 
Table S4 1492 
Permutation test for differential gene expression analysis results 1493 
Table S5 1494 
KEGG GSEA results 1495 
Table S6 1496 
All cell type-specific differential peak accessibility analysis results (negbinom) 1497 
Table S7 1498 
Permutation test for differential peak accessibility analysis results 1499 
Table S8 1500 
Fisher’s exact test for enrichment of DEGs with differentially accessible promoters 1501 
Table S9 1502 
Fisher’s exact test for enrichment of differential peaks with TSS/promoter annotations 1503 
 1504 
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