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Abstract

The amygdala contributes to negative emotional states associated with relapse to drug seeking,
but the cell type-specific gene regulatory programs that are involved in addiction are unknown.
Here we generate an atlas of single nucleus gene expression and chromatin accessibility in the
amygdala of outbred rats with low and high cocaine addiction-like behaviors following a
prolonged period of abstinence. Between rats with different addiction indexes, there are
thousands of cell type-specific differentially expressed genes and these are enriched for
molecular pathways including GABAergic synapse in astrocytes, excitatory, and somatostatin
neurons. We find that rats with higher addiction severity have excessive GABAergic inhibition in
the amygdala, and that hyperpolarizing GABAergic transmission and relapse-like behavior are
reversed by pharmacological manipulation of the metabolite methylglyoxal, a GABAa receptor
agonist. By analyzing chromatin accessibility, we identify thousands of cell type-specific
chromatin sites and transcription factor (TF) motifs where accessibility is associated with
addiction-like behaviors, most notably at motifs for pioneer TFs in the FOX, SOX, and helix-
loop-helix families.

Introduction

The amygdala mediates emotional processing of both rewarding and aversive environmental
stimuli, which allows organisms to engage in subsequent valence-specific behaviors!. The
amygdala is implicated in numerous neuropsychiatric disorders including addiction?, and during
excessive drug use, it regulates the negative emotions associated with drug withdrawal®#.
Avoidance of these negative emotions enhances the incentive value of the drug, leading to
sustained drug-seeking behaviors and relapse®”’. Given prevention of relapse is the cornerstone
of effective treatments for addiction, it is important to understand the amygdala’s role in
addiction and relapse.

The amygdala is composed of multiple discrete and interconnected subregions, each
characterized by highly specialized neuronal populations distinguishable by their morphology
and electrophysiological properties®. The major subdivisions include the basolateral amygdala
(BLA), composed of excitatory glutamatergic neurons and inhibitory interneurons, and the
central amygdala (CeA), composed of GABAergic neurons®*t, While the behavioral function
and connectivity of individual subregions of the amygdala have recently been established?, the
mechanisms by which distinct subpopulations of neuronal and non-neuronal cells contribute to
its function remains unclear.

Single-cell genomics is a powerful new approach for determining the cellular function and
diversity of complex tissues like the amygdala. Single-cell RNA-sequencing (scRNA-seq), which
profiles gene expression in individual cells, has identified and cataloged diverse cell types in
human, mouse, and non-human primate brains'?-8, In addition, single-cell assays for
transposase-accessible chromatin (SCATAC-seq), which profile open chromatin at single cell
resolution, has identified regulatory DNA sequences in the rodent and human brain?19-25,
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Regulatory elements identified by scATAC-seq include promoters and enhancers, which confer
cell type-specificity to gene expression by recruiting sequence-specific transcription factors
(TFs)?6-29,

Single cell assays have the potential to reveal, at a molecular level, how specialized amygdalar
cell populations are involved in addiction. For example, given that most genetic variants
associated with complex human diseases like addiction are located in noncoding regions of the
genome®, snATAC-seq could uncover genetically determined, cell-type specific differences and
facilitate functional interpretation of genetic variants®!. Thus far, however, the application of
single-cell assays to the study of addiction-like behaviors in rodents has been limited. Single
nucleus RNA-seq (snRNA-seq) has been applied to characterize cellular diversity in brain
regions involved in the reward system®>-3°, and has been used to analyze transcriptional
changes induced by cocaine and morphine®¢®’. However, these prior studies used isogenic
rodents, which means that genetically-mediated differences in susceptibility to addiction-like
behaviors were not examined. Furthermore, these studies performed experiments following
acute, experimenter-administration of drug treatments, which means that they reflect the acute
effects of drug use rather than molecular differences associated with the development of long-
lasting addictive-like behaviors. For these reasons, the results from prior single nucleus studies
have significant limitations.

To address this knowledge gap, we performed snRNA-seq and snATAC-seq using amygdala
tissue from outbred rats obtained from a large genetic study of cocaine addiction-related traits®.
These rats are subjected to prolonged abstinence from voluntary cocaine intake in a well-
validated model of extended access to drug intravenous self-administration (IVSA)>3%-40 |[VSA is
associated with neurochemical changes in key brain regions, which are similar to those
observed in humans with cocaine use disorder®:. This study used outbred heterogeneous stock
(HS) rats because they have high levels of genetic variation and rich phenotypic diversity+>-45.
By analyzing differences in gene expression and chromatin accessibility in rats with low and
high addiction indexes, we identify genes and transcriptional regulators associated with cocaine
addiction-like behaviors, including those implicated in GABAA receptor-mediated pathways.
Finally, we perform pharmacological manipulation in tissue slices and in rats to validate insights
gained from the transcriptomic data.

Results

Behavioral characterization of HS rats exhibiting low or high
cocaine addiction-like traits

To investigate how chronic cocaine use influences cellular states associated with addiction-like
behaviors, we performed snRNA-seq and snATAC-seq on amygdala tissues from HS rats
subjected to protracted abstinence (4 weeks) from extended access to cocaine IVSA3®46-49 (Fig.
la). The animals were trained to self-administer cocaine in operant chambers in two hour (short
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access, ShA) and 6 hour (long access, LgA) sessions. We measured the mean number of
cocaine rewards (lever presses) over the course of the behavioral protocol to quantify the
escalation of intake, motivation (rewards measured in a progressive ratio (PR) schedule of
reinforcement) and drug seeking despite adverse consequences (rewards paired with an
electric foot-shock) (Fig. 1b). Based on individual behavioral measures (Fig. 1c), we calculated
an addiction index (Al)*® (average of the Z-score values of the three behavioral measures) as a
measure of vulnerability (positive Al) or resilience (negative Al) to develop cocaine addiction-like
behaviors. Based on the Al, we classified rats into high and low Al groups (Fig. 1d). High and
low Al rats acquired different numbers of cocaine rewards during short access (ShA) vs long
access (LgA) phases of the IVSA protocol (Fig. 1e, two-way repeated measures ANOVA,
addiction index x phase interaction p<0.0001, F231012=8.523). While there was no difference
between groups in cocaine rewards during ShA sessions, high Al rats had a significantly higher
escalation of drug intake during LgA sessions compared to low Al rats (Fig. 1e, p<0.001, post
hoc comparisons with Bonferroni correction). We measured motivation with a PR schedule at
the end of the ShA and LgA phases, where the number of lever presses required to acquire a
cocaine infusion was increased progressively. Following extended access to cocaine self-
administration, motivation for cocaine increased in the high Al rats but not in low Al rats (Fig. 1f,
mixed effect model, addiction index x phase interaction, p=0.0049, F1.41=8.83; Bonferroni
corrected p=0.0001, post hoc comparisons). Finally, high Al rats showed increased responses
despite adverse consequences compared to low Al rats, as demonstrated by the higher number
of cocaine infusions when the reward was paired with an electric foot shock (Fig. 1g, p<0.001,
unpaired t-test), which may reflect compulsive-like drug use. These results show that we can
capture individual differences in multiple behavioral aspects that are relevant to cocaine use
disorders by using the outbred population of HS rats in combination with the model of extended
access to cocaine IVSA.

snRNA-seq and snATAC-seq defines distinct populations of cell
types in the amygdala

The amygdala is thought to contribute to relapse through its regulation of negative emotional
states associated with drug-seeking behavior. In rats, these negative emotional states
progressively increase after withdrawal from drug IVSA®%°, To identify neuroadaptations that
persist after chronic drug exposure during the withdrawal stage, we collected amygdala tissues
after 4 weeks of abstinence from cocaine IVSA (Fig. 1a). We purified nuclei and measured the
gene expression and open chromatin profiles of individual nuclei by performing snRNA-seq and
SNATAC-seq with the 10X Genomics Chromium workflow (see Methods). We performed these
experiments on high and low Al rats, as well as naive rats (never exposed to cocaine). For
snRNA-seq, we used 19 rats among which 6 were high Al, 6 were low Al, and 7 were naive. For
SnATAC-seq we used 12 rats among which 4 were high Al, 4 were low Al, and 4 were naive.

After filtering low quality nuclei and potential doublets based on quality metrics (Fig. S1-6, Table
S1 and S2), we obtained a combined total of 163,003 and 81,912 high quality nuclei from the
snRNA-seq and snATAC-seq experiments, respectively. Across the snRNA-seq samples, the
mean reads per cell varied from 11,967 to 50,343 and the median number of detected genes
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144  ranged from 1,293 to 2,855. Across the 12 snATAC-seq samples, the median number of high-
145  quality fragments per nucleus ranged from 7,111 to 22,018. Using these data, we performed
146  normalization, integration across rats, dimensionality reduction and clustering using Seurat®!
147  (snRNA) and Signac®? (snATAC). In total, we identified 49 cell type clusters in the integrated
148 snRNA-seq dataset and 41 cell type clusters in the integrated snATAC-seq dataset (Fig. S7).
149  Visualization of the integrated data indicated that the clustering is not influenced by batch

150 effects such as sequencing library, percentage of mitochondrial DNA, or individual rats®® (Fig.
151  S8).

152

153 We annotated the snRNA-seq clusters based on the expression of established cell type-specific
154  marker genes®-*8 (Fig. 2a-b). The major cell types included excitatory neurons (denoted by
155  expression of Slcl7a7), inhibitory GABAergic neurons (Gadl/Gad?2), astrocytes (Gjal),

156  microglia (Ctss), mature oligodendrocytes (Cnp), oligodendrocyte precursor cells (OPC)

157  (Pdgfra), and endothelial cells (Cldn5) (Fig. 2c). To annotate the snATAC-seq clusters, we

158 estimated gene activity from pseudo bulk chromatin accessibility at promoter regions of cell

159  marker genes and used these gene activity scores to impute gene expression in the snATAC-
160 seqsamples (Fig. S9). The imputed gene expression clearly delineates the cell clusters into the
161  same major cell types described above demonstrating strong concordance between our snRNA-
162 seq and snATAC-seq data (Fig. 2d). In addition to the major cell types, we also identified seven
163  subtypes of inhibitory neurons based on the expression of known cell marker genes (Fig. 2e).
164  We also sub-clustered the excitatory neurons and identified 18 distinct clusters (Fig. S10), with
165  top markers including known subpopulation markers such as Cdh13, Nr4a2, Bdnf°.

166

167  The total number of nuclei we obtained for each cell type varied substantially (Fig. 2f). As

168 expected, excitatory and inhibitory neurons are the most common major cell types, with over
169 50,000 inhibitory neurons and 20,000 excitatory neurons in the shRNA-seq dataset. Endothelial
170 cells and some subtypes of inhibitory and excitatory neurons have small numbers of nuclei in
171  the dataset, so for most downstream analyses we focused on reporting the six most common
172  major cell types (Fig. 2a-b).

173

174  In combination, the snRNA-seq and snATAC-seq datasets that we generated are the first

175 single-cell atlas of molecularly-defined cell types in the rat amygdala. The inclusion of multiple
176  high Al, low Al, and naive rats make these datasets an important resource for studying gene
177  expression and chromatin accessibility in the amygdala under both normal conditions as well as
178  in the context of cocaine addiction-like behaviors.

179 Measuring cell type-specific differential gene expression between
180 rats displaying a high versus a low addiction index for cocaine

181  We used MAST®, a generalized linear model designed for single-cell RNA-seq, to identify

182  differentially expressed genes (DEGSs) between high and low Al rats in each cell type(Fig. 3a-b,
183 Table S3). To control for batch effects, which can cause false signals of differential expression
184  in single cell data®-%, we performed the same statistical test after permuting the Al labels of the
185 rats. While the results from the unpermuted data are highly enriched for low p-values, the p-
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values from the permuted data resemble the null expectation. This indicates that the DEGs we
identified are unlikely to be caused by batch effects® % (Fig. 3c, Fig. S11, Table S4).

We grouped DEGs into small (abs(avg_log>FC)<0.1) or large effect size groups
(abs(avg_log2FC)=0.1) and observed that most of the DEGs have small effect sizes (Fig. 3d). In

total, we identified 1,227 unique DEGs with large effect sizes in at least one cell type and
13,114 DEGs with small effect sizes in at least one cell type. The number of significant DEGs
(FDR<10%) between high and low Al rats correlates with the size of the cell type population,
which likely reflects greater power to detect differential expression in common cell types (Fig.
3d). Most (1,078) of the large-effect DEGs are also a small-effect DEG in at least one other cell
type, indicating that while there are shared patterns of differential expression across cell types,
the effect sizes vary across cell types. We identified 65 DEGs with large effect sizes but
discordant directions of effect across cell types (i.e. some genes that are substantially
upregulated in one cell type are substantially downregulated in another). These results support
our hypothesis that most addiction-related pathways operate via cell type-specific mechanisms
(Fig. S12). Some of the most significant DEGs with the largest effect sizes have previously-
reported roles in cocaine or other substance use disorders. Among these genes, Ppplrlb (also
known as dopamine- and cAMP-regulated phosphoprotein, 32 kDa, DARPP-32), is differentially
expressed in both inhibitory neurons and astrocytes, and has long been associated with drugs
of abuse®4-%8, Similarly, the proenkephalin encoding gene Penk is differentially expressed in
Sst+ neurons and across different glial cell types and is associated with cocaine, opioid and
cannabinoid use®®1,

To identify pathways with altered regulation between high and low Al rats, we performed gene
set enrichment analysis (GSEA)’>"3 to measure KEGG pathway enrichment in the cell type-
specific DEGs. We identified significant enrichment of several pathways related to addiction
(e.g. nicotine addiction and morphine addiction), neurotransmission (e.g. GABAergic,
glutamatergic and dopaminergic synapse), stress (e.g. Cushing syndrome and cortisol
synthesis), energy metabolism (e.g. glycolysis, pyruvate metabolism, and oxidative
phosphorylation), and others (Fig. 3e, Table S5). Most cell types showed dysregulation of
oxidative phosphorylation which, together with glucose metabolism, is the main energy source
for synaptic activity and action potentials’#">. This observation suggests that addiction-like
behaviors are associated with alterations in the metabolic state of amygdalar cell populations,
which can directly impact neural network activity within the amygdala.

We closely examined the DEGs belonging to the GABAergic synapse pathway, which was
significantly enriched in the DEGs of astrocytes, excitatory and Sst+ neurons (Fig. 3f) and found
that genes involved in GABA type A (GABAA) receptor signaling were more highly expressed in
high versus low Al rats, including four GABAA receptors subunits (Gabrg2, Gabrg3, Gabrb1l,
Gabra3), four voltage-gated calcium channels (VGCCs) isoforms (Cacanla, Cacanlb,
Cacanlc, Cacanld), and three protein kinase C (PKC) isoforms (Prkca, Prkcb, Prkcg). Long-
term changes in GABAAx receptor activity can be induced by signaling cascades, which are
triggered by calcium influx through VGCCs and subsequent phosphorylation by PKC376-78,
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These results suggest that differences in GABAAa receptor signaling in specific amygdalar cell
types may be involved in cocaine addiction-related behaviors.

The development of cocaine addiction-like behaviors is linked to
GABAA receptor-mediated hyperpolarizing inhibition in the
amygdala

Based on the above results, we hypothesized that altered energy metabolism within the
amygdala can alter GABAA. receptor activity in the amygdala of high Al rats following prolonged
abstinence from cocaine IVSA. To test this hypothesis, we measured GABAergic transmission
by recording spontaneous inhibitory postsynaptic currents (sIPSCs) in the central amygdala
(CeA). CeA slices were collected from a separate cohort of 5 low Al and 5 high Al HS rats that
were subjected to prolonged abstinence following the same behavioral protocol described for
the snRNA-seq and snATAC-seq experiments (Fig. 4a). As a control, we used CeA slices
prepared from 5 age-matched naive HS rats to record baseline GABAergic transmission. There
were significant differences in means among the groups (one-way ANOVA F;2,=6.77,
p=0.0051), and in post hoc tests, naive versus high Al rats were significantly different (Tukey
HSD adjusted p-value=0.0037), reflecting an increase in GABAergic transmission from naive to
low Al to high Al (Fig. 4b). These results suggest that the development of severe cocaine
addiction-like behaviors coincides with a hyperpolarization of GABAergic transmission in the
amygdala and are consistent with the results from our snRNA-seq differential gene expression
analysis (Fig. 3a-b).

To further investigate the link between GABAergic transmission and energy metabolism in the
amygdala with cocaine addiction-like behaviors, we modulated the activity of GABAa receptors
by altering the endogenous levels of methylglyoxal (MG), which is a byproduct of glycolysis that
has been shown to act as a competitive partial agonist of GABAa receptors’. To modulate MG
levels in the amygdala, we inhibited glyoxalase 1 (GLO1), the rate limiting enzyme for the
metabolism of MG, using S-bromobenzylglutathione cyclopentyl diester (pBBG)’°8°. When we
applied pBBG to CeA slices from naive, low Al or high Al rats, pBBG reduced the sIPSC
frequency compared to vehicle for both high and low Al rats (paired t-tests, p=7.6e-5 and
p=3.9e-3, respectively), but not naive rats (p=0.51) (Fig. 4c-f). These findings demonstrate that
GABAA receptor-mediated hyperpolarization in high Al rats is normalized by the inhibition of
GLO1.

These results led us to hypothesize that GLO1 inhibition would revert behavioral responses
after prolonged abstinence from cocaine IVSA. To test this hypothesis, we measured cue-
induced reinstatement of cocaine seeking behavior in a separate cohort of 26 low and high Al
rats 30 minutes after systemic injection of pBBG or vehicle following 4 weeks of abstinence from
cocaine IVSA (Fig. 4g). During this test, rats were subjected to the same operant conditions of
cocaine IVSA, but without drug availability. Then, reinstatement was triggered by re-exposure to
the cocaine infusion-associated light cue. The two-way repeated measures ANOVA showed a
significant interaction between the addiction index and pharmacological treatment (F124=6.609,


https://drive.google.com/drive/folders/1QZ3XQDNxK8TFvh5ub0o2vlO-pStGSlmt?usp=sharing
https://drive.google.com/drive/folders/1QZ3XQDNxK8TFvh5ub0o2vlO-pStGSlmt?usp=sharing
https://drive.google.com/drive/folders/1QZ3XQDNxK8TFvh5ub0o2vlO-pStGSlmt?usp=sharing
https://www.zotero.org/google-docs/?8e0uLC
https://www.zotero.org/google-docs/?pa4amz
https://doi.org/10.1101/2022.09.08.506493
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.08.506493; this version posted September 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

8

270  p<0.05), indicating that pBBG versus vehicle reduced cue-induced reinstatement in high Al rats
271  (p-value<0.05, post hoc comparisons with Bonferroni correction), but not in low Al rats (p>0.05).
272  Overall. these results demonstrate that modulating GABAA transmission with the

273  pharmacological inhibition of GLO1 decreases relapse-like behaviors in animals with high

274  cocaine Al.

275 Mapping differences in chromatin accessibility associated with to
276 ~cocaine addiction-like behaviors

277  To identify regions of open chromatin from the snATAC-seq data, we used MACS2%! to call
278  accessible chromatin peaks from the aligned reads for each rat and created a union peak set
279  across rats. We examined pseudo bulk chromatin accessibility at the TSS of selected cell type
280 marker genes and observed cell type-specific patterns of accessibility at the expected marker
281  genes of each cell type (Fig. 5a, Fig. 2c-d), indicating that the chromatin accessibility

282  corresponds well with the transcriptome measurements.

283

284  Open chromatin regions harbor cell type-specific regulatory elements®283, and enrichment

285 analyses that measure intersections between ATAC-seq peaks and GWAS signals can yield
286 insight into the mechanisms by which genetic variants confer risk®. However, cell type-specific
287  measurements of chromatin accessibility are difficult to obtain from human brain tissues. To
288  assess whether our rat sSnATAC-seq data is meaningful for interpreting human addiction-related
289 traits, we mapped the accessible chromatin peaks to the human reference genome and

290 performed cell type-specific LD score regression®. We chose to use summary statistics from
291  well-powered GWAS for alcohol and tobacco use®*® because there is significant genetic

292  overlap among GWAS for all known substance use disorders® and because available GWAS
293  for cocaine use disorder are much smaller and less powerful. We found significant enrichments
294  (FDR<10%) of SNP heritability in every trait tested in almost every cell type (Fig. 5b), with the
295  most significant enrichments in neurons, astrocytes, oligodendrocytes and OPCs. Overall, these
296  results support the hypothesis that, despite the millions of years of evolution separating humans
297 and rats, the regulatory architecture identified in HS rats that are divergent for IVSA-related
298 phenotypes is relevant for human addiction-related traits.

299

300 To better understand the regulatory mechanisms involved in cocaine addiction, we analyzed
301 differences in chromatin accessibility between high and low Al rats. We performed negative
302  binomial tests to measure cell type-specific differential chromatin accessibility (Table S6), and
303 compared the observed p-values to those obtained from permuted data (as we did for our DEG
304  analysis). The p-values of the permuted data resemble the null expectation, confirming that the
305 differential peaks between high and low addiction are likely true biological differences rather
306 than batch effects (Fig. S13, Table S7). In total we identified >20,000 peaks across cell types
307  with significant differential accessibility (FDR<10%), however, as with gene expression, most
308 differences are small (log.FC < 0.1) (Fig. S14). This indicates that differences in addiction-like
309 behaviors between rats are associated with modest regulatory changes at a large number of
310 sites.

311
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The differential peaks can be subdivided into those where accessibility is higher (upregulated)
or lower (downregulated) in the high Al rats (Fig. S14). In astrocytes, there are roughly equal
numbers of up- and downregulated peaks, but the other cell types have profound biases.
Excitatory neurons are the most biased with only two detected downregulated peaks, and over
8000 upregulated peaks. Inhibitory neurons show the opposite bias with over 4000
downregulated peaks but only ~500 upregulated peaks (Fig. S14). These biases likely reflect
differences in the activity of specific TFs that control large transcriptional programs.

To determine whether the differential chromatin accessibility is consistent with the differential
gene expression, we tested whether the promoters of DEGs are enriched for differential
accessibility. We overlapped the significant differential accessible chromatin peaks in each cell
type with the promoters of DEGs and computed a log odds ratio (log.OR) as a measure of
enrichment. Across all of the major cell types, there is a large and significant (Fisher’s exact
test, p<0.05) enrichment of differentially accessible peaks at the promoters of DEGs compared
to non-DEGs (Fig. 5¢, Table S8). This confirms that the differential chromatin accessibility and
differential gene expression are concordant, and is additional evidence that the observed
differences between high and low Al rats are true biological effects.

To characterize differentially accessible chromatin, we examined the genomic annotations for
the significant differential peaks (Fig. S15). Differentially accessible peaks are highly enriched in
promoter regions (compared to non-differential peaks), occurring there at least four times more
frequently than expected in most of the major cell types (Fisher’s exact test, FDR<10%) (Fig.
5d, Table S9). This enrichment may indicate that changes in chromatin are more concentrated
at promoters, or that we have greater statistical power to detect changes at promoters, due to
larger effect sizes or greater overall chromatin accessibility.

We hypothesized that differences in chromatin accessibility between high and low Al rats are
caused by differential TF activity. To test this hypothesis, we analyzed the snATAC-seq data
using chromVAR, which identifies TF motifs associated with differential accessibility using
sparse single cell data®. A large number of motifs have significant differences in accessibility
between the high and low Al rats, and since many TFs recognize similar motifs, we grouped
them into motif clusters (see Methods) and summarized results across cell types (Fig. 5e).

The motif cluster with the most significant difference in accessibility between high and low Al
rats contains motifs for basic helix-loop-helix (BHLH) TFs. This motif cluster has substantially
higher accessibility within the excitatory neurons of high Al rats compared to low Al rats
(deviance 3.8, p=1e-280), as well as a modest increase in accessibility in inhibitory neurons
(deviance 0.38, p=1e-34) (Fig. 5f-h). The top-ranked motifs in this cluster all harbor the
sequence CAGATGG, which is a close match to binding site motifs for multiple neuronal pioneer
TFs including NeuroD1, NeuroD2, NeuroG2 and Atoh1%°%, Thus, the widespread increases in
chromatin accessibility in excitatory neurons of high Al rats could reflect increased activity of
pioneer TFs that recruit chromatin remodelers.
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We noticed that many motif clusters with increased accessibility in the neurons of high Al rats
have decreased accessibility in oligodendrocytes (Fig. 5e-h). Prominent among these motif
clusters are those containing FOX and RFX motifs (Fig. 5e-h).

Several motif clusters also have opposite effects between excitatory and inhibitory neurons.
SOX motifs have decreased accessibility in high Al rats in excitatory neurons but increased
accessibility in all other major cell types including inhibitory neurons (Fig. 5e). MEF2 and FOS
(AP1) motifs all have increased accessibility in the excitatory neurons of high Al rats but
decreased accessibility in inhibitory neurons (Fig. 5e). AP1 and MEF2 motifs are of particular
interest because they are associated with addiction®2-% and their expression increases in the
brain following chronic exposure to cocaine and other drugs®-1%,

While our analysis cannot pinpoint the precise TFs involved, it implicates many motif clusters
that are associated with addiction-like behaviors across thousands of regulatory regions and in
a cell type-specific manner.

Discussion

To better understand the molecular basis of addiction and illuminate long-term changes in gene
regulation and chromatin accessibility associated with chronic drug use, we have generated an
atlas of single-cell gene expression and chromatin accessibility in the amygdala of rats that
showed divergent cocaine addiction-like behaviors. Our dataset is the largest resource of cell
types in the mammalian amygdala, with over 163,000 nuclei in our shnRNA-seq dataset and
81,000 nuclei in our snATAC-seq dataset (Fig. 2a-b). The snATAC-seq dataset provides the first
map of cell type-specific regulatory elements in the amygdala, which has allowed us to identify
TF motifs that may drive addiction-related processes.

Previous single cell transcriptomic studies have focused on the effects of acute passive
treatment with psychoactive drugs in rodents3¢-3’, which cannot fully capture the motivational
processes underlying addiction. In contrast, our behavioral protocol involves extended access to
cocaine IVSA and reflects several key aspects of cocaine addiction, including escalation of drug
use, enhanced motivation for drug seeking and taking, and persistent drug use despite adverse
consequences, which might reflect compulsive-like drug consumption®. Thus, our study is the
first to examine long-term molecular changes in distinct brain cell populations following
abstinence from chronic voluntary cocaine use.

One striking finding from our study is that there are thousands of significant differences in gene
expression and chromatin accessibility between high and low Al rats (Fig. 3d, Fig. S14). Most of
these differences were small, which suggests that cocaine addiction-related behaviors may
result from the combined action of many small effects on gene expression and chromatin
accessibility. Because the HS rats are genetically diverse, the molecular differences between
high and low Al rats could arise from genetic differences or from the consumption of different
guantities of cocaine. These results are consistent with a polygenic model wherein addiction-like
behaviors would result from the collective action of a large number of genetic risk loci with small
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individual effects. This is a plausible explanation because of the high genetic diversity in the HS
rats and because complex traits in humans are highly polygenic!°21%, Further support for this
hypothesis comes from DEGs such as Pplrlb and Penk (Fig. 3a-b) which have gene
expression quantitative trait loci (€QTLs) in HS rats%, indicating that heritable differences
influence their expression. Alternatively, the effects could be mediated by a relatively small
number of TFs that affect many downstream genes and chromatin sites. Because some of the
motifs with the strongest chromatin accessibility differences (Fig. 5e-h) are recognized by
pioneer TFs (e.g. BHLH, SOX, FOX), it is tempting to speculate that widespread differences in
accessibility are due to pioneer TFs, which have an intrinsic ability to modify chromatin,
These explanations are not mutually exclusive and it is likely that some differences are caused
by eQTLs while others are caused by differences in the activity of upstream regulators (which
themselves may be affected by genetics or other factors). To properly uncouple pre-existing
genetically controlled gene expression differences from cocaine-induced neuroadaptations
would require larger datasets of genotyped rats. One way this could be accomplished is through
the use of polygenic risk scores for addiction-related traits, which will become possible as more
rat behavioral GWAS are completed??44-46.106,

Human and animal studies have provided genetic and behavioral evidence that GABAa
receptor-mediated pathways are involved in addiction®!°"111 Qur differential gene expression
(Fig. 3f) and electrophysiology (Fig. 4b) results support these prior findings and provide
evidence for excessive GABAergic transmission in the high Al rats. Moreover, we found that
inhibition of GLO1, the enzyme responsible for MG metabolism, normalizes electrophysiological
(Fig. 4c-f) and behavioral differences (Fig. 4h) associated with severe addiction-like behaviors.
While the pharmacological inhibition experiments are not cell type-specific, the transcriptomic
data suggest that increases in GABAergic synapse-related genes may be specific to astrocytes,
excitatory and Sst+ neurons. Furthermore, our results corroborate previous findings that MG
acts as an endogenous competitive agonist for GABA receptors'® 12 and offer a promising
pharmacological target for improving therapeutic approaches for cocaine addiction. While our
single-cell assays used only male rats, our validation experiments included both male and
female rats. Future experiments including both sexes will be necessary to determine the
influence of sex on gene expression and chromatin accessibility in the amygdala.

The results from the GLO1 inhibition experiments indicate a close connection between localized
energy metabolism and neurotransmission*®. Moreover, genes which are differentially
regulated in high versus low Al rats are enriched in pathways related to energy metabolism,
including glycolysis, pyruvate metabolism, and oxidative phosphorylation (Fig. 3e). Most
notably, the expression levels of genes related to oxidative phosphorylation, which determines
cellular ATP levels!!4, are altered across most amygdalar cell types. Not only is ATP crucial for
sustaining electrophysiological activity and cell signaling in the brain!>1€ but it is also required
for ATP-dependent chromatin remodeling events initiated by pioneer TFs!’. This could
potentially explain why excitatory and inhibitory neurons show opposite directions of regulation
in chromatin accessibility (Fig. S14) and in the enrichment of DEGs in the oxidative
phosphorylation pathway (Fig. 3e). In combination, these observations suggest that an altered
metabolic state within the amygdala impacts multiple cellular processes that are involved in
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vulnerability to and development of addiction. Future experiments that directly manipulate the
expression of specific metabolic enzymes or pioneer TFs in a cell type-specific manner will be
necessary to fully elucidate their role in addiction.

In conclusion, the cellular atlas created by this study is a valuable resource for understanding
cell type-specific gene regulatory programs in the amygdala and their role in the development of
cocaine addiction-related behaviors. Our results emphasize the contribution of the GABA,-
mediated signaling to the enduring effects of cocaine use, which led us to perform experiments
that manipulate GABAA transmission and identify a novel potential target for treatment of
cocaine addiction. We anticipate that future studies will utilize our data to further investigate
novel cell type-specific mechanisms involved in addiction.

Methods

Experimental

Animals

All protocols were reviewed and approved by the institutional Animal Care and Use Committee
at the University of California San Diego. HS rats (Rat Genome Database NMcwiWFsm
#13673907, sometimes referred to as N/NIH) which were created to encompass as much
genetic diversity as possible at the NIH in the 1980’s by outbreeding eight inbred rat strains
(ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N) were provided by Dr.
Leah Solberg Woods (Wake Forest University School of Medicine). To minimize inbreeding and
control genetic drift, the HS rat colony consists of more than 64 breeder pairs and is maintained
using a randomized breeding strategy, with each breeder pair contributing one male and one
female to subsequent generations. To keep track of the rats, their breeding, behavior, organs
and genomic info, each rat received a chip with an RFID code. Rats were shipped at 3-4 weeks
of age, kept in quarantine for 2 weeks and then housed two per cage on a 12 h/12 h reversed
light/dark cycle in a temperature (20-22°C) and humidity (45-55%) controlled vivarium with ad
libitum access to tap water and food pellets (PJ Noyes Company, Lancaster, NH, USA). We
used 57 HS rats for the behavioral experiments, of which 31 male rats were used for the
generation of genomic data and 26 rats (13 female, 13 male) were used for cue-induced
reinstatement. For snRNA-seq we used 19 male rats (6 high Al, 6 low Al, 7 naive). For the
SnATAC-seq we used 12 male rats (4 high Al, 4 low Al, 4 naive). In addition, we used 15 female
and male rats (5 high Al, 5 low Al, 5 naive) for the electrophysiology experiments.

Drugs

Cocaine HCI (National Institute on Drug Abuse, Bethesda, MD, USA) was dissolved in 0.9%
saline (Hospira, Lake Forest, IL, USA) and administered intravenously at a dose of 0.5
mg/kg/infusion as described below. pBBG was synthesized in the laboratory of Prof. Dionicio
Siegel (University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical
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Sciences). pBBG was dissolved in a vehicle of 8% dimethylsulfoxide, 18% Tween-80, and 74%
distilled water and administered intraperitoneally 30 minutes before the test session.

Brain Samples

Brain tissues were obtained from the cocaine brain bank at UCSD?®, which collects tissues from
HS rats that are part of an ongoing study of addiction-like behavior?. We used 31 HS rats for
the generation of single-cell genomic data reported in this study which were selected as having
low or high Al for cocaine addiction-related behaviors, using behavioral methods previously
described*’. Brain tissues were extracted and snap-frozen (at -30°C). Cryosections of
approximately 500 microns (Bregma -1.80 - 3.30mm) were used to dissect the amygdala on a
—-20°C frozen stage, including the central nucleus of the amygdala, basolateral amygdala, and
medial amygdala from both hemispheres. Punches from three sections were combined for each
rat.

Single-cell library preparation, sequencing, and alignment

Single nucleus RNA-seq was performed by the Center for Epigenomics, UC San Diego using
the Droplet-based Chromium Single-Cell 3’ solution (10x Genomics, v3 chemistry). Briefly,
frozen amygdala tissue was homogenized via glass dounce. Nuclei were then resuspended in
500 pL of nuclei permeabilization buffer (0.1% Triton-X-100 (Sigma-Aldrich, T8787), 1X
protease inhibitor, 1 mM DTT, and 1U/puL RNase inhibitor (Promega, N211B), 2% BSA (Sigma-
Aldrich, SRE0036) in PBS). Sample was incubated on a rotator for 5 min at 4°C and then
centrifuged at 500 rcf for 5 min (4°C, run speed 3/3). Supernatant was removed and pellet was
resuspended in 400 pL of sort buffer (1 mM EDTA 0.2 U/uL RNase inhibitor (Promega, N211B),
2% BSA (Sigma-Aldrich, SRE0036) in PBS) and stained with DRAQ7 (1:100; Cell Signaling,
7406). Up to 75,000 nuclei were sorted using a SH800 sorter (Sony) into 50 uL of collection
buffer consisting of 1 U/uL RNase inhibitor in 5% BSA; the FACS gating strategy sorted based
on particle size and DRAQ?7 fluorescence. Sorted nuclei were then centrifuged at 1000 rcf for 15
min (4°C, run speed 3/3) and supernatant was removed. Nuclei were resuspended in 35 pL of
reaction buffer (0.2 U/uL RNase inhibitor (Promega, N211B), 2% BSA (Sigma-Aldrich,
SREO0036) in PBS) and counted on a hemocytometer. 12,000 nuclei were loaded onto a
Chromium Controller (10x Genomics). Libraries were generated using the Chromium Single-Cell
3' Library Construction Kit v3 (10x Genomics, 1000075) with the Chromium Single-Cell B Chip
Kit (10x Genomics, 1000153) and the Chromium i7 Multiplex Kit for sample indexing (10x
Genomics, 120262) according to manufacturer specifications. cDNA was amplified for 12 PCR
cycles.

For snATAC-seq library preparations, nuclei were purified from frozen amygdala tissues using
an established method**®. Briefly, frozen amygdala tissue was homogenized using a 2 ml glass
dounce with 1 ml cold 1x Homogenization Buffer (HB). The cell suspension was filtered using a
70 um Flowmi strainer (BAH136800070, Millipore Sigma) and centrifuged at 350g for 5 min at
4°C. Nuclei were isolated by iodixanol (D1556, Millipore Sigma) density gradient. The nuclei
iodixanol solution (25%) was layered on top of 40% and 30% iodixanol solutions. Samples were
centrifuged in a swinging bucket centrifuge at 3,000g for 20 min at 4°C. Nuclei were isolated
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520 from the 30-40% interface. Libraries were generated using the Chromium Next GEM Single Cell
521 ATAC vl.1 (10x Genomics, PN-1000175) with the Chromium Next GEM Chip H Single Cell Kit
522  (10x Genomics, 1000162) and the Chromium i7 Multiplex Kit for sample indexing (10x

523  Genomics, 1000212) according to manufacturer specifications. DNA was amplified for 8 cycles.
524  For both library types, SPRISelect reagent (Beckman Coulter, B23319) was used for size

525 selection and clean-up steps. Final library concentration was assessed by Qubit dsSDNA HS
526  Assay Kit (Thermo-Fischer Scientific) and post library QC was performed using Tapestation
527  High Sensitivity D1000 (Agilent) to ensure that fragment sizes were distributed as expected.
528  Final libraries were sequenced using the NovaSeq6000 (lllumina).

529

530 Raw base call (BCL) files were used to generate FASTQ files using Cell Ranger 3.1.0 with the
531  ‘cellranger mkfastq” command for RNA-seq reads and “cellranger-atac mkfastq™ for ATAC-seq
532 reads!®!?° Next, we used "cellranger count™ and “cellranger-atac count™ to align the reads to a
533  custom rat reference genome based on the UCSC rn6 reference genome!?*-123, This reference
534  genome was created from FASTA and genome annotation files for Rattus norvegicus Rnor_6.0
535 (Ensembl release 98)'?* and JASPAR2022 motifs!?®, We then filtered cells based on quality
536  control metrics and performed barcode and UMI counting for the RNA-seq and ATAC-seq

537  reads.

538 Electrophysiology

539 Slices of the CeA were prepared from cocaine dependent rats during protracted abstinence or
540 age-matched naive rats. High Al (n=5), low Al (n=5) and naive (n=5) rats were used for patch
541  clamp baseline recordings. Slices from each group were also used to record iPSCs after pBBG
542  treatment. The naive rats received sham IV surgery. The rats were deeply anesthetized with
543 isoflurane and brains were rapidly removed and placed in oxygenated (95% O, 5% CO.) ice-
544  cold cutting solution that contained 206 mM sucrose, 2.5 mM KCI, 1.2 mM NaH;PO., 7 mM

545 MgCl,, 0.5 mM CacCl,, 26 mM NaHCOs3, 5 mM glucose, and 5 mM Hepes. Transverse slices
546 (300 um thick) were cut on a Vibratome (Leica VT1200S; Leica Microsystems) and transferred
547  to oxygenated artificial cerebrospinal fluid (aCSF) that contained 130 mM NacCl, 2.5 mM KCI, 1.2
548 mM NaH;PO4, 2.0 mM MgS04-7H,0, 2.0 mM CaCl,, 26 mM NaHCOs, and 10 mM glucose. The
549  slices were first incubated for 30 min at 35°C and then kept at room temperature for the

550 remainder of the experiment. Individual slices containing CeA were transferred to a recording
551  chamber that was mounted on the stage of an upright microscope (Olympus BX50WI). The

552  slices were continuously perfused with oxygenated aCSF at a rate of 3 mL/min. Neurons were
553  visualized with a 60A~ water-immersion objective (Olympus), infrared differential interference
554  contrast optics, and a charge coupled device camera (EXi Blue; QImaging). Whole-cell

555  recordings were performed using a Multiclamp 700B amplifier (10-kHz sampling rate, 10-kHz
556 low-pass filter) and Digidata 1440A and pClamp 10 software (Molecular Devices). Patch

557  pipettes (4-6 MQ) were pulled from borosilicate glass (Warner Instruments) and filled with 70
558 mM KMeSOy, 55 mM KCI, 10 mM NacCl, 2 mM MgCl,, 10 mM Hepes, 2 mM Na-ATP, and 0.2
559 mM Na-GTP. Pharmacologically isolated spontaneous inhibitory postsynaptic currents (sIPSCs)
560 were recorded in the presence of the glutamate receptor blockers, CNQX (Tocris #0190) and
561 APV (Tocris #189), and the GABA-B receptor antagonist CGP55845 (Tocris #1246).

562  Experiments with a series resistance of >15 MQ or >20% change in series resistance were
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excluded from the final dataset. pBBG (2.5uM) was acutely applied in the bath. The frequency,
amplitude, and kinetics of sSIPSCs were analyzed using semi-automated threshold-based mini
detection software (Easy Electrophysiology) and visually confirmed. Data were analyzed using
Prism 9.0 software (GraphPad, San Diego, CA, USA) with one-way ANOVA followed by post
hoc Tukey HSD test or with paired t-tests. The data are expressed as mean + SEM unless
otherwise specified. Values of p < 0.05 were considered statistically significant.

Behavioral experiments

Intravenous catheterization and behavioral testing of rats used for the generation of ShnRNA-seq
and snATAC-seq were carried out using an established protocol of extended access to cocaine
IVSA, PR testing, and foot shock, as reported previously3®47:48_ Briefly, after surgical
implantation of intravenous catheters and a week of recovery, HS rats were trained to self-
administer cocaine (0.5 mg/kg/infusion) in 10 short access (ShA) sessions (2h/day, 5 days per
week). Next, the animals were allowed to self-administer cocaine in 14 long access (LgA)
sessions (6h/day, 5 days/week) to measure the escalation of drug intake. Following the
escalation phase, rats were screened for motivation using the PR test and for persistent drug-
seeking despite adverse consequences using contingent foot-shock. Rats were classified as
having a low or high Al by a median split. Al was computed by averaging normalized
measurements (z-scores) for the three behavioral tests (escalation, motivation, resistance to
punishment)!?®, The z-scores are calculated as follows z = XTT” where x is the raw value, u is the

mean of the cohort, and ¢ is the standard deviation of the cohort. Brain tissues were collected after
four weeks of abstinence.

For the pBBG studies, rats were placed back in the self-administration chambers without the
availability of cocaine 28 days after the last drug self-administration session and the number of
responses to the previous drug-paired lever (cocaine seeking behavior) was measured 30
minutes after intraperitoneal injection of pBBG (15 mg/kg/ml) or its vehicle, in a Latin square
design. Specifically, the rats were presented with a neutral stimulus (SN) in a 2 h session to
control for the specificity of the discriminative stimulus (SD) in reinstating extinguished cocaine-
seeking behavior. During the SN session, the illumination of a 2.8 W house light that is located
at the top of the chamber’s front panel served as a SN that signaled the non-availability of the
reinforcer. Responses on the right, active lever were followed by 70-dB white noise, during
which the lever remained inactive for 20 s. Two days later, the rats were presented with the SD.
Reintroduction of the cocaine-related SD but not neutral cues significantly reinstated
extinguished cocaine-seeking behavior that was measured as mean number of lever presses.
Data were analyzed using Prism 9.0 software (GraphPad, San Diego, CA, USA). Self-
administration data were analyzed using repeated-measures analysis of variance (ANOVA) or
mixed effect model followed by Bonferroni post-hoc tests when appropriate. For pairwise
comparisons, data were analyzed using the unpaired t-test. The data are expressed as mean +
SEM unless otherwise specified. Values of p < 0.05 were considered statistically significant.
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Computational

Quiality control and preprocessing of ShnRNA-seq data

All snRNA-seq preprocessing was performed with 10x Genomics Cell Ranger 3.1.0 and Seurat
v3.2.3%L, FASTQ files were aligned to the Rattus norvegicus Ensembl v98 reference genome
(Rnor_6.0). For each sample, we loaded the filtered feature barcode matrices containing only
detected cellular barcodes returned by “cellranger count™ into Seurat. We computed the number
of unique genes detected in each cell (nFeature_ RNA); the total number of molecules detected
within a cell (nCount_RNA); and the percentage of reads mapping to the mitochondrial genome
(percent.mt) (Fig. S1-3, Table S1). We removed all cells for which the value of any of these
metrics was more than three standard deviations from the mean within the sample (x > u + 30).
Next, we normalized the count data for each sample using sctransform??” with percent.mt as a
covariate.

Integrating snRNA-seq data across samples and clustering

To integrate sShRNA-seq data across all of our samples, we used reciprocal principal component
analysis (RPCA), as implemented in Seurat®1?8, First, we identified 2000 highly variable
features (genes) across all of the samples to use as integration features using the
“SelectintegrationFeatures()” function, which we passed as anchor features ("anchor.features’)
to the "PrepSCTIntegration()" function. Next, we performed dimensionality reduction with PCA
on each sample using "RunPCA()". After this, we ran the "FindIntegrationAnchors()" function to
find a set of anchors between the list of Seurat objects from all of our samples using the same
anchor features passed to "PrepSCTIntegration()’, specifying RPCA as the dimensional
reduction method to be performed for finding anchors (‘reduction = rpca’) and the first 30 RPCA
dimensions to be used for specifying the k-nearest neighbor search space. Two rats (1 high Al,
1 low Al) were used as reference samples for the integration. We used the resulting anchor set
to perform dataset integration across all of our samples using “IntegrateData()". We clustered
the integrated dataset by constructing a K-nearest neighbor (KNN) graph using the first 30 PCs
followed by the Louvain algorithm, implemented in Seurat using the "FindNeighbors()" function
followed by "FindClusters()". Finally, we ran PCA once again on the integrated dataset and
visualized the data using uniform manifold approximation and projection (UMAP). Visualization
of the integrated data in two-dimensional space indicated that batch correction was successful
(Fig. S8a-c).

Cell type assignment for snRNA-seq data

We identified marker genes of each cluster in our integrated snRNA-seq dataset using MAST®°,
implemented with the "FindMarkers()" function in Seurat. Cell type identities were assigned
based on expression of known marker genes of cell types known to be found in the amygdala.
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638 Cell type-specific gene expression analysis for snRNA-seq data

639  Within each cell type, we tested for DEGs between the high Al rats and the low Al rats. We used
640 MAST® implemented with the "FindMarkers()" function in Seurat to identify differential

641  expression between groups, using percent.mt, the library prep date, and the rat sample ID as
642  covariates. We did not pre-filter genes for testing based on log-fold change or minimum fraction
643  of cells in which a gene was detected. This approach allowed us to detect weaker signals

644  because we tested all observed genes in the dataset. Multiple testing correction was performed
645  using the Benjamini-Hochberg method and we used a false discovery rate of 10% as a

646  significance threshold (FDR<10%). Permutation tests were performed using the same methods,
647  covariates, and filtering options but with shuffled addiction index labels and results were

648 compared by visualizing the distributions of uncorrected p-values with QQ-plots (Fig. S11, Table
649  S4). We used ClusterProfiler'?® to perform gene set enrichment analysis (GSEA) of KEGG

650 pathways for DEGs from each cell type. Multiple testing correction for GSEA results was

651  performed using Benjamini-Hochberg adjustment, with statistical significance assessed at a
652 FDR<10%.

653 Per sample quality control and preprocessing of SnATAC-seq data

654  As with the snRNA-seq data, we aligned the reads to the Rattus norvegicus Ensembl v98

655 reference genome (Rnor_6.0). All ShATAC-seq data preprocessing was performed with

656 MACS28! (for peak calling) and Signac®2. Although peak calling is performed during alignment
657 by “cellranger-atac count’, we chose to call peaks separately using MACS2 because Cell

658 Ranger’s peak calling function has been observed to merge multiple distinct peaks into a single
659  region**°. To minimize loss of informative features for clustering and downstream analysis, we
660 first called peaks on the sSnATAC-seq BAM files for each rat with MACS2 (‘macs2 callpeak -t
661 {input} -f BAM -n {sample} --outdir {output} {params} --nomodel --shift -100 --ext 200 --gval 5e-2
662 -B--SPMR"). We confirmed that MACS2 calls more peaks and peaks with smaller widths

663 compared to Cell Ranger (Fig. S16). Next, we merged overlapping peaks across all of our

664  samples to generate a combined peak set using BEDtools®! (‘bedtools merge’). We generated
665 a new peak by barcode matrix for each sample using this combined peak set and all detected
666 cellular barcodes using the “FeatureMatrix()” function in Signac. We used these new matrices to
667 create ChromatinAssay objects in Signac with the BSgenome.Rnorvegicus.UCSC.r6122

668 reference genome using the "CreateChromatinAssay()" function. From these ChromatinAssay
669  objects we created Seurat objects with "CreateSeuratObject()’, which are compatible with

670 functions from the Seurat package. We computed several quality control metrics for each

671 sample: nucleosome banding pattern (nucleosome_signal); transcriptional start site (TSS)

672  enrichment score (TSS.enrichment); total number of fragments in peaks

673 (peak_region_fragments); and fraction of fragments in peaks (pct_reads_in_peaks) (Fig. S4-6,
674  Table S2). We removed all cells for which the value of any of these metrics was more than two
675 standard deviations from the mean within the sample (x > u + 20). We removed one rat

676 (FTL_463_M757_933000320046135) from our dataset, due to the very low number of detected
677  fragments per cell in this sample (Fig. S17).

678
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Integrating snATAC-seq data across samples and clustering

Each sample was normalized using term frequency-inverse document frequency (TF-IDF)
followed by singular value decomposition (SVD) on the TF-IDF matrix using all features
(peaks)®?>1*°, The combined steps of TF-IDF followed by SVD are known as latent semantic
indexing (LSI)'32133, Non-linear dimensionality reduction and clustering were performed using
UMAP and KNN following the same procedure used, respectively, just as we did for the snRNA-
seq data. We merged the data across all samples within Signac and repeated the process of
LSl in the same manner as it was applied to individual samples. We then integrated the merged
dataset using Harmony*** implemented by Signac, integrating over the sample library variable to
account for the effects of different sequencing libraries used for different samples. We observed
successful reduction of batch effects following integration Fig. S8d-f. We once again performed
non-linear dimensionality reduction and clustering with UMAP and KNN, respectively. Notably,
LSI, UMAP and KNN are used for visualization purposes; raw counts were used for downstream
differential accessibility analyses.

Label transfer and cell type assignment for snATAC-seq data

We created a gene activity matrix for the integrated snATAC-seq data using the “GeneActivity()
function in Signac. This counts the number of fragments per cell overlapping the promoter
region of a given gene and uses that value as a gene activity score. Gene activity serves as a
proxy for gene expression as gene expression is often correlated with promoter accessibility.
The gene activity scores were log normalized using the "NormalizeData()" function in Seurat
with the normalization method set to "LogNormalize™ and the scaling factor set to the median
value of nCount_RNA across all cells, based on the gene activity scores. Cell type identities
were assigned by integrating the snATAC-seq data with the integrated snRNA-seq data and
performing label transfer®! as described in Signac. Briefly, this approach identifies shared
correlation patterns in the gene activity matrix and the scRNA-seq dataset to identify matched
biological states across the two modalities. The process returns a classification score for each
cell for each cell type defined in the scRNA-seq data. Each cell was assigned the cell type
identity with the highest prediction score. Additionally, by identifying matched cells in the
snRNA-seq dataset, we were able to impute RNA expression values for each of the cells in our
SNATAC-seq dataset. This enabled us to perform correlative analyses of chromatin accessibility
and gene expression in later downstream analyses, as it produced a pseudo-multimodal
dataset.

Differential chromatin accessibility analysis of sSnATAC-seq data

Similar to our differential analyses of the snRNA-seq data, we tested for differentially accessible
genomic regions between nuclei from the high versus low Al rats within each cell type. We used
the negative binomial test!?"13 implemented with the "FindMarkers()® function from Seurat to
model the raw snATAC-seq count data using peak_region_fragments, library batch date, and rat
sample ID as covariates. Multiple testing correction was performed using Benjamini-Hochberg
adjustment and a false discovery rate below 10% (FDR<10%) was used to determine statistical
significance. Permutation tests were performed in the same manner as for the differential gene
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expression analyses (using the same statistical test and covariates with shuffled addiction index
labels).

Partitioned heritability analysis

We downloaded summary statistics for the Liu et al. 2019 GWAS of tobacco and alcohol use®
and used the munge_sumstats.py script from LD Score (LDSC) to parse the summary
statistics file into the proper format for downstream analyses. We used the sets of significant
differential peaks (FDR<10%) for each cell type as foreground peaks and DNasel
hypersensitivity profiles for 53 epigenomes from ENCODE Honeybadger2. We used the UCSC
liftOver tool to convert the foreground peaks from rn6 to hg19. There was no need to lift over the
background peaks as Honeybadger2 is already in hg19. Next, we generated partitioned LD
scores for the background and foreground regions. We used the make_annot.py script to make
annotation files and the Idsc.py script to compute annotation-specific LD scores. We used the
European 1000 Genomes Phase 3 PLINK'® files to compute the LD scores. Finally, using the
baseline model and standard regression weights from the LDSC Partitioning Heritability tutorial,
we ran a cell type-specific partitioned heritability analysis with the LD scores we computed.

Annotation of open chromatin regions

Before performing any differential analyses, we first used the annotatePeaks.pl script from the
HOMER suite to annotate open chromatin regions and significant differential peaks (FDR<10%)
for each cell type in our integrated dataset'®’. For each cell type, we performed a Fisher’s Exact
Test to measure the enrichment of genomic regions annotated as a promoter region within the
differential peaks compared to the set of all peaks in the dataset and observed significant
results for all cell types tested. Specifically, we compared the ratio of peaks annotated as
promoter regions to non-promoter regions in the significant differential peaks (FDR<10%)
versus all other peaks.

Fisher's Exact Tests

We first performed a Fisher’s Exact Test to measure enrichment of DEGs (FDR<10%) with
differentially accessible promoters. We defined the latter as the case where the promoter region
of a gene overlaps a significant differentially accessible peak (FDR<10%). We obtained gene
coordinates from the TxDb.Rnorvegicus.UCSC.rn6.refGene annotation package and defined
promoter regions as being 1500 bases upstream and 500 bases downstream of the TSS
(‘promoters(genes(TxDb.Rnorvegicus.UCSC.rn6.refGene), upstream = 1500, downstream =
500)"). We then generated a confusion matrix from the following four values: the number of
DEGs with differentially accessible promoters; the number of DEGs with non-differentially
accessible promoters; the number of non-DEGs with differentially accessible promoters; and the
number of non-DEGs with non-differentially accessible promoters. We then performed a
Fisher's Exact Test to measure enrichment of differentially accessible peaks (FDR<10%) which
were annotated as TSS/promoter regions by HOMER (annotatePeaks.pl). We generated a
confusion matrix from the following four values: the number of differential peaks with a
TSS/promoter annotation; the number of differential peaks without a TSS/promoter annotation;
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the number of non-differential peaks (FDR>10%) with a TSS/promoter annotation; and the
number of non-differential peaks (FDR>10%) without a TSS/promoter annotation.

Measuring differential activity of transcription factors with chromVAR

We measured cell type specific motif activities using chromVAR to test for per motif deviations
in accessibility between nuclei from high versus low Al rats. Motif data was pulled from the
JASPAR2020 database, and integrated with snATAC-seq data using the ~AddMotifs()" function
in Signac. After adding motifs to our snATAC-seq dataset, we ran chromVAR with the
"RunChromVAR()" wrapper in Signac. Differential analysis of chromVAR deviation scores was
performed using the Wilcoxon Rank-Sum test between high Al rats versus lowly addicted rats
within each cell type. Differential testing was performed using Seurat’s ‘FindMarkers()" function
with the mean function set as ‘rowMeans()" to calculate average difference in deviation scores
between groups. Multiple testing correction was performed using Benjamini-Hochberg
adjustment and a false discovery rate below 10% (FDR<10%) was used to determine statistical
significance. Motif clusters were defined using the provided cluster numbers from JASPAR's
matrix clustering-results and the names of the clusters were annotated by hand based on the
what TFs were present in each cluster.When selecting clusters to visualize, we retrieved the top
50 motifs (FDR<10%) per cell-type and highlighted their respective clusters. Volcano plots and
heatmap data were generated using Plotly in Python. Hierarchical ordering of heatmap clusters
was generated with Plotly’s “figure_factory.create_dendrogram()" function, which wraps the
“cluster.hierarchy.dendrogram()” function in SciPy.

Data availability

The following publicly available datasets were used:

Rattus norvegicus Ensembl v98 reference genome and genome assembly (Rnor_6.0);
JASPAR2022 transcription factor binding profiles for vertebrates; ENCODE Honeybadger 2
ChIP-seq; 1000 Genomes European reference panel; Liu et al. 20198 GWAS for tobacco and
nicotine addiction.
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Figure 1. Experimental design and rat IVSA cocaine model of addiction. a) Schematic of
the study design. b) Timeline of the behavioral protocol. ¢) Individual differences in number of
lever presses in self-administration (SA), progressive ratio (PR) and shock-paired (Shock)
sessions. d) Barplot showing differences in addiction index scores between high and low Al
rats. e) Plot showing differences in mean of lever presses across ShA and LgA IVSA sessions
between high and low Al rats. f) Barplot showing results of breakpoint analysis between high
and low Al rats under ShA versus LgA. g) Barplot showing differences in mean of lever
presses despite footshock between high and low Al rats. Error bars represent the standard
error of the mean (d-g). Statistic represents the difference between low and high Al rats

(**p <0.001 were obtained with Two-way ANOVA in (e), mixed effect model in (f), and
unpaired t-test in (g), or using Bonferroni’s multiple comparison test in e-g).

1381
1382


https://doi.org/10.1101/2022.09.08.506493
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.08.506493; this version posted September 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

35
1383 Figure 2
a snRNA-seq b SNATAC-seq
e Oligodendrocytes
Endothelial
% ® Astrocytes
® Cck+NVip+
Microglia
1 ©® Chat+
o ©® Endothelial
3 »\ 5 @ ExNeuron
Chat+ g 3 @ InhNeuron
_f:f E ® Microglia
i ; ® Nosi+
Y ® Oligodendrocytes
ExNi on:v -t éNeon oA i
xNeur xNeur
/ InhNeuron
® Reln+
¢ . 3
RS Qy I ® Sst+
Microglia 9
C Gl (Astrocytes) Ctss (Microgiia) Crp (Ol y Pdgfra (OPC) e
- ( - e
10 LY . i 10 ; ° @ ¢
o 3 3 . s 3 *0
0 2 0 2 0 ’ 0 2 Reln+ B ® 2
s ' : .| . ¢ + e.00:"
0 0 - 0 0
10 +10) 4 10 @ -10 - Chat+ e o (N ] o
A 0 10 0 0 10 40 0 10 4 0 10 Sst+ 1 . e - -+ 00O O
Sle17a7 (ExNeuron) Gad1 (InhNeuron) Gad2 (InhNeuron) Cldn5 (Endothelial) "
Nost+4 ® ®
10 PRL ¢ | PR ‘ m 1
- & R . r}" b . ”7}’ i ; InhNeuron 4 -+ 90
20 w05 (W o " N 2 of @7 | : 0
= & | U ‘b' 1 " - {] ; Cck+NVip+ ® - . ® e +» @ o
7 - § [] : [) ) 0 -
ot ¢ -10) 2 -10) . 10 % - g
o 0 10 W00 w0 0 00 R §
UMAP 1 UMAP 1 UMAP 1 UMAP 1
SnATAC
d Gt astooytes) Ctss (Microglia) Cnp (Olig y Pdgfra (OPC) (# of nudlei)
10 10) 10 . 10
5 25 5 5 3 5
a0 bl “ :: o | X 0
3 hiF 10 ; 9|
. 05 5 05 5| 1 '
10} L 10] 9 10} ¢ 10}
-15 R S i | -15| i S (e W ] -15 T T G e N ST | -15) VOO G i ST S |
450 5 0 5 10 15 4540 5 0 5 10 15 4540 5 0 5 10 15 4540 5 0 5 10 15
Slc17a7 (ExNeuron) Gad1 (InhNeuron) Gad? (InhNeuron) Cldn5 (Endothelial)
10 10) 1)) 0f o
20 b g 20 St @& . 20 8
§° ' l:‘: 0 I‘-5 0 i:’, |'5 0
10 10
S a 05 -5 s 5L B B g 05 5
10 ¢ ? 0] % 10 § ? 40
-15| e -15) 151 o 15
4510 5 0 5 10 15 4540 5 0 65 10 15 4540 5 0 5 10 15 4540 5 0 5 10 15
UMAP 1 UMAP 1 UMAP 1 UMAP 1

Figure 2. Summary of single nucleus RNA-seq and ATAC-seq data from the rat
amygdala. a) Uniform Manifold Approximation and Projection (UMAP) plot of single nucleus
RNA-seq (snRNA-seq) data from the rat amygdala. Data are combined across 19 samples,
with high-, low- and -naive addiction labels. Cells are colored by cluster assignments
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performed with K-nearest neighbors. We assigned cell type labels to the clusters based on the
expression of known marker genes. b) UMAP plot of single nucleus ATAC-seq data from 12
rat amygdala samples. shnATAC-seq data was integrated with the snRNA-seq data and cluster
labels were transferred to the sSnATAC-seq cells. c) Feature plot showing expression of
marker genes used to label major subsets of cells: Gjal (astrocytes), Ctss (microglia), Chp
(oligodendrocytes), Pdgfra (oligodendrocyte precursor cells (OPCs), Slcl7a7 (excitatory
neurons), Gadl and Gad2 (inhibitory neurons), and Cldn5 (endothelial cells). d) Feature plot
showing imputed gene expression of cell type-specific marker genes in SnATAC-seq dataset.
e) Expression of marker genes in cell clusters corresponding to highly specific subsets of
inhibitory neurons. The shading and diameter of each circle indicate the estimated mean
expression and the percentage of cells within the cluster in which the marker gene was
detected. f) The number of nuclei assigned to each cell type cluster for the shnATAC-seq and
snRNA-seq datasets.

1384
1385


https://doi.org/10.1101/2022.09.08.506493
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.08.506493; this version posted September 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

37

1386 Figure 3

a DEGs - neuronal cell types b DEGs - non-neuronal cell types
Downregulated Pt Upregulated Downregulated i Upregulated
Snhg11 : ! H H
Ck/Vip+ {1 Astrocytes
Chat+ i ® Oligodendrocytes
® ExNeuron 4- “OPC
207 o inhiNewon
® Nost+ Sr;\?hg\ |: Pppirib
@ Reln+ §y~;1,‘ l’{]r-!ﬂr‘l @
§ Sste obx1] | §,
100 A " bl - 20~
. v | & - * [Cabpa
5 I i 0a Cabp4 0-" ---------- < 1 T
-0 5 5 10 -0 5 o 5 10
Cell type-specific differential expression (Z-score) Cell type-specific differential expression (Z-score)
€ TNF signaling pathway 4 .
C  InhNeuron Steroid biosynthesis{
Retrograde abinoid | o o
Y +g10(g)
« Observed y
200 « Permuted Pyruvate metabolism 1 . @ o
" Oxidative phosphorylation{ « ® ® © @ ® :g
3 Ncotive addicion{ + ® ® ® @ o o O
1004 / Morphine addiction . . NES
2
Ghoylated doabonate |, . l1
il L Glycolysis/Gluconeogenesis 1 . . ?‘
0 1 2 3 4 Glutamatergicsynapse{ © ¢ @ o e o
Expected -log1oP GABAergc ls @
Dopaminergic synapseq *
d - Cushing syndrome{ .
Sst+ Calcium signaling pathway4 * . .
M Downregulated g % & 8 &
Reln+ 2 Il Downregulated (ave log2FC<=-0.1) é’ é § § § g e 3
Upregulated
M Upregulated (ave log2FC>= 0.1) 2 g a €
OPC
S
Oligodendrocytes l f GABAergic synapse (ExNeuron)
ol "’ : Downregulated Upregulated
Microglia f %
) = i s
L = Downregulated i
& Upregulated X, 7
Chat+ ~ .
688 0 '
Cck+/Vip+ ! gt
0 5 0 5
Ast 455
rocpes : Cell type-specific differential expression (Z-score)

Figure 3. Differential gene expression between high and low addiction index rats. a)
Volcano plot summarizing differential gene expression between high and low Al rats. Points
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are colored by cell type, and the five most-significant genes for each cell type are indicated
with labels. Within each cell type, we normalized the log fold changes with a z-score and
plotted the cell type-specific z-scores of the log fold changes on the x-axis. The -log10 false
discovery rate (FDR) corrected p-values (g-values) are plotted on the y-axis. b) Volcano plot
summarizing differential gene expression between high and low Al rats for non-neuronal (glial)
cell type clusters. ¢) Quantile-quantile plot comparing the distributions of p-values for
differential gene expression tests between high and low Al rats performed in astrocytes. The
x-axis is the expected -log10 p-values under the null hypothesis of no differential expression,
and the y-axis is the observed -log10 differential expression p-values. P-values for differential
expression were computed using MAST®. The blue points provide results from the same
statistical test, performed after shuffling the addiction labels of the rats. d) Barplot showing
numbers (labeled) of significant (FDR<10%) up- and downregulated DEGs by cell type.
Darker shades indicate DEGs with a large foldchange (abs(avg_log2FC)>0.1). e) KEGG
pathways that are enriched for differentially expressed genes by cell type. f) Volcano plot of
differential gene expression in excitatory neurons. Core enrichment genes in the glyoxalase
pathway with significant differential expression are highlighted with labels.
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Figure 4. Electrophysiology and GLOL1 inhibition experiments implicate GABAergic
inhibition in cocaine addiction-like behaviors. a) Schematic showing animal model used
for electrophysiology recording in the CeA. HS rats were subjected to prolonged abstinence
following the same behavioral protocol used to generate the snRNA-seq and shATAC-seq
data. CeA slices were harvested following this period of prolonged abstinence and treated
with pBBG. Electrophysiological recordings were taken before and after pBBG treatment. b)
Baseline iPSC frequency (measured before pBBG injection). Significant differences in the
means between the three groups was observed. ¢) iPSC frequency following pBBG treatment.
We observe reduced frequency in the high and low Al rats following pBBG treatment. Change
in SIPSC frequency following pBBG treatment in naive (d), low (e), and high rats (f). g)
Schematic of animal model used to test cocaine-seeking behavior in high and low Al rats
following pBBG injection. Rats were injected with pBBG following a period of prolonged
abstinence and re-exposed to the self-administration chambers in the absence of cocaine. g)
Following injection of pBBG, high Al rats showed significantly higher cocaine-seeking
behavior compared to low Al rats, which was reduced by pBBG treatment. Error bars
represent the standard error of the mean (b, c, h). Statistic represents the difference between
low and high rats (## p<0.001, **p <0.01, *p<0.05 were obtained with unpaired t-test in (c)
and Two-way ANOVA for each measure, using Bonferroni’s multiple comparison test in c, h).
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Figure 5. Analysis of chromatin accessibility and regulatory elements involved in
cocaine dependence. a) Pseudobulk chromatin accessibility at the promoter regions of
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marker genes for major cell types identified in our analysis. b) LD score regression results
showing significance (-log10p) of enrichment of heritability for several traits related to alcohol
and nicotine addiction in cell type-specific OCRs (mapped to hgl9). ¢) Enrichment of
significant DEGs for each major cell type whose promoters are also significantly differentially
accessible in the snATAC-seq data. We found that all cell types tested were significantly
enriched for this criterion, indicating that the findings of our snRNA-seq and snATAC-seq
analyses support one another and point to long-term transcriptional changes driven by
changes in accessibility of gene promoters. d) Enrichment of cell type specific significant
differentially accessible peaks are enriched for TSS/promoter regions compared to non-
differentially accessible peaks in our snATAC-seq data. This indicates that our differential
analysis detects functionally relevant regulatory elements and can discriminate against
genomic regions of less functional importance. €) Heatmap showing differential activity of
various motifs in the significant differential peaks of each cell type. Values indicate average
difference of chromVar deviation scores with -log10(p) in parentheses below. There are many
cases where motifs display increased activity in the peaks which are more accessible in
upregulated peaks in neurons while also displaying decreased activity in downregulated
peaks in oligodendrocytes. f-h) Volcano plots showing average difference (x-axis) and -
log10(q) (y-axis) of chromVAR deviation scores for top 50 motif clusters in f) excitatory
neurons, g) inhibitory neurons, and h) oligodendrocytes.
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Supplementary figure legends

Figure S1. snRNA-seq profiles of 6 high Al rats. For each rat the number of unique genes
detected per cell (nFeature_RNA), total number of reads within each cell (hCount_RNA), and
percentage of percent mitochondrial reads are shown for each cell. Quality metrics calculated
with Seurat.

Figure S2. snRNA-seq profiles of 6 low Al rats. For each rat the number of unique genes
detected per cell (nFeature_RNA), total number of reads within each cell (hCount_RNA), and
percentage of percent mitochondrial reads are shown for each cell. Quality metrics calculated
with Seurat.

Figure S3. snRNA-seq profiles of 7 naive rats. For each rat the number of unique genes
detected per cell (nFeature_RNA), total number of reads within each cell (hCount_RNA), and
percentage of percent mitochondrial reads are shown for each cell. Quality metrics calculated
with Seurat.

Figure S4. snATAC-seq profiles of 4 high Al rats. For each rat the ratio of mononucleosomal to
nucleosome-free fragments (nucleosome_signal), percentage of fragments that fall within
ATAC-seq peaks (pct_reads_in_peaks), total number of fragments in peaks
(peak_region_fragments), and transcription start site enrichment score (TSS.enrichment) are
shown for each cell. Quality metrics calculated with Signac.

Figure S5. snATAC-seq profiles of 4 low Al rats. For each rat the ratio of mononucleosomal to
nucleosome-free fragments (nucleosome_signal), percentage of fragments that fall within
ATAC-seq peaks (pct_reads_in_peaks), total number of fragments in peaks
(peak_region_fragments), and transcription start site enrichment score (TSS.enrichment) are
shown for each cell. Quality metrics calculated with Signac.

Figure S6. snATAC-seq profiles of 4 low naive rats. For each rat the ratio of mononucleosomal
to nucleosome-free fragments (nucleosome_signal), percentage of fragments that fall within
ATAC-seq peaks (pct_reads_in_peaks), total number of fragments in peaks
(peak_region_fragments), and transcription start site enrichment score (TSS.enrichment) are
shown for each cell. Quality metrics calculated with Signac.

Figure S7. UMAP visualization of the clusters identified in integrated single-cell data sets. (a)
Clustering of integrated snRNA-seq dataset revealed 49 clusters. We first performed a k-
nearest neighbors analysis (KNN) using the first 30 dimensions calculated by reciprocal
principal component analysis (PCA). This was implemented with the FindNeighbors() function in
Seurat. Next we used a modularity optimization technique using the Louvain algorithm to cluster
the data, implemented with the FindClusters() function in Seurat with a resolution parameter of
0.8. (b) Clustering of integrated snATAC-seq data revealed 41 clusters. Latent semantic
indexing (LSI) was used for dimensionality reduction rather than PCA. The first 30 dimensions
minus the first dimension were used for KNN and clustering and the algorithm used for
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1436  clustering was the smart local moving (SLM) algorithm. These steps were implemented with the
1437  same Seurat functions.

1438

1439  Figure S8. UMAPS of snRNA-seq and snATAC-seq profiles, respectively, following batch

1440 correction of integrated datasets, grouped on: addiction index (a, d), rat sample (b, €), and

1441  batch information (c, f). These plots demonstrate that cells do not cluster by any of these

1442  covariates following batch correction. Integration and batch correction of the snRNA-seq dataset
1443  was performed using SCTransform while Harmony was used for the snATAC-seq dataset.

1444

1445  Figure S9. Feature plots showing gene activity of marker genes for each major cell type in the
1446  snATAC-seq data. Gene activity was calculated with the "GeneActivity()™ function in Signac.
1447  This quantifies the number of fragments mapping anywhere within a 2kb window of an

1448  annotated gene in the genome. The gene activity information was used for integration of the
1449  snATAC-seq dataset with the snRNA-seq dataset and for imputing gene expression into the
1450 cells of the snATAC-seq dataset (see Fig. 2d).

1451

1452  Figure S10. Heatmap of top five marker gene expression within subclustered excitatory

1453  neurons.

1454

1455  Figure S11. QQ plots showing distribution of p-values for our differential gene expression
1456  analysis performed on our observed versus permuted data (addiction index labels associated
1457  with each cell were shuffled). MAST was the statistical test used for the analysis of both the
1458 observed and permuted datasets.

1459

1460 Figure S12. Venn diagram showing the number of significant DEGs (FDR<10%) that are
1461  up/downregulated with large (abs(avg_log.FC)>0.1) or small (abs(avg_log.FC)<0.1) fold
1462  changes.

1463

1464  Figure S13. QQ plots showing distribution of p-values for our differential peak accessibility
1465  analysis performed on our observed versus permuted data (addiction index labels associated
1466  with each cell were shuffled). The negative binomial test was used for the analysis of both the
1467  observed and permuted datasets.

1468

1469  Figure S14. Bar plot showing number of significant (FDR<10%) differentially accessible peaks
1470  between high vs. low rats in each cell type.

1471

1472  Figure S15. Pie chart showing genomic annotations of all OCRs in our ShnATAC-seq dataset
1473  across all rats.

1474

1475  Figure S16. Histograms showing distribution of peak sizes for peaks called by MACS2 (on the
1476  BAM files for the snATAC-seq data) versus Cell Ranger’s internal peak calling algorithm.
1477  MACS?2 calls smaller, more precise peaks.

1478
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1479  Figure S17. Ridge plot quantifying the number of unique fragments (logio(nFrags)) per sample
1480 inthe ATAC. Sample FTL_463_M757_933000320046135 was removed at this step and not
1481 included in any of our snATAC-seq due to its low number of fragments.

1482

1483  Supplementary tables

1484  Table S1

1485  List of snRNA-seq rat samples included in analysis, their addiction indexes, batch information,
1486  and Cell Ranger summary metrics.

1487 Table S2

1488 List of snATAC-seq rat samples included in analysis, their addiction indexes, batch information,
1489 and Cell Ranger summary metrics.

1490 Table S3

1491  All cell type-specific differential gene expression analysis results (MAST)

1492 Table S4

1493  Permutation test for differential gene expression analysis results

1494  Table S5

1495 KEGG GSEA results

1496 Table S6

1497  All cell type-specific differential peak accessibility analysis results (neghinom)

1498 Table S7

1499  Permutation test for differential peak accessibility analysis results

1500 Table S8

1501 Fisher’s exact test for enrichment of DEGs with differentially accessible promoters
1502 Table S9

1503 Fisher’s exact test for enrichment of differential peaks with TSS/promoter annotations
1504
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