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Abstract: The elucidation of biomechanics furthers understanding of brain tumor biology. Brillouin spectroscopy
is a new optical method that addresses viscoelastic properties down to subcellular resolution in contact-free
manner. Moreover, it can be combined with Raman spectroscopy to obtain co-localized biochemical information.
Here, we applied co-registered Brillouin and Raman spectroscopy to U87-MG human glioblastoma cells in vitro.
Using 2D and 3D cultures, we related biomechanical properties with local biochemical composition at subcellular
level, as well as cell phenotype. Brillouin and Raman mapping of adherent cells showed that the nucleus and
nucleoli are stiffer than the perinuclear region and the cytoplasm. The biomechanics of cell cytoplasm is affected
by culturing conditions, i.e. cells grown as spheroids being stiffer than adherent cells. Inside the spheroids, the
presence of lipid droplets as assessed by Raman spectroscopy reveals higher Brillouin shifts which is not related to
local stiffness increase, but due to a higher refractive index combined with a lower mass density. This highlights
the importance of locally defined biochemical reference data for a correct interpretation of the Brillouin shift of cells
and tissue in future studies investigating the biomechanics of brain tumor models by Brillouin spectroscopy.
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1. Introduction

The importance of biomechanics for tumor biology is increasingly acknowledged (1). Tumors generally
exhibit biochemical and biomechanical properties that differ from those of normal tissue. In addition,
the metastatic potential of tumor cells is linked to the cell’s mechanical properties (2). Softer cell nuclei
are related to higher metastatic spread (3). Moreover, recent research suggests that mechanical stress
and increased activation of mechanosignaling promote malignant transformation and metastatic
processes (4). It also affects tissue perfusion, as well as angiogenesis (1). Comprehensive analysis of
biomechanics provides important insights into disease-induced changes in stiffness (5). Therefore,
strategies that consider tumor mechanics might lead to effective therapeutic approaches of treatment-
resistant or metastatic cancer (6).

In neurooncology, the study of cell biomechanics is still in its infancy, with some research attributing
tremendous importance to it. Atomic force microscopy (AFM) allowed discriminating WHO grade II,
III and IV astrocytomas and thus between different degrees of malignancy (7). In experimental gliomas
and brain metastases, magnetic resonance elastography demonstrated decreased viscosity and elasticity
compared to brain parenchyma. In this regard, brain metastases with an infiltrative growth pattern were
softer than solid glioma (8). Furthermore, a correlation between the strength of the extracellular matrix
and the aggressiveness of brain tumors was established based on a change in mechanosignaling (9) and
durotactic stimuli were identified as a major factor for glioma cell migration (10). Structure, motility and
proliferation of glioma cells are influenced by biomechanical properties of the tissue (11). However,
there appears to be high interpatient variability with respect to responses to biomechanical stimuli, as
shown in experiments with primary glioblastoma cell lines (12). Systematic studies addressing cellular
and subcellular biomechanical properties of brain tumor cells are lacking so far.

The mechanics of cells can be determined by various methods, however AFM is currently most
commonly used in tumor research (13). Several studies performed with AFM show that cancer cells can
be distinguished from normal tissue, as well as original and metastatic cancer cells, by analyzing their
mechanical properties. Metastatic carcinoma cells were identified by mechanical studies using AFM
(14,15). Furthermore, several authors reported tumor cells being generally softer than normal cells (16—
18). However, all studies with AFM have an inherent problem arising from the contact between the
measuring instrument and the sample: Since AFM probes the surface of the sample, just information
about the biomechanics of the cell as a whole is obtained.

As an alternative optical contact-free technique, Brillouin spectroscopy exploits the inelastic scattering
of photons of a laser beam upon interaction with GHz-frequency acoustic phonons in the sample. This
technique is used to determine the elastic properties of materials by probing the frequency of the
Brillouin shift. Brillouin spectroscopy avoids any contact with the sample while providing
biomechanical information at subcellular level (19). The Brillouin shift describes viscoelasticity and is
thus not equivalent to an analysis of rigidity (Young's modulus) that is obtained by AFM. Furthermore,
the Brillouin shift depends also on the local index of refraction n and mass density p, which shall be
known to retrieve the longitudinal elastic modulus. Nevertheless, it has been shown that Brillouin
spectroscopy can reveal local changes in biomechanics of cells and tissues also without a priori
knowledge of n and p (20,21), and that changes in Brillouin shift correlate with changes in Young's
modulus (20,22). Therefore, the Brillouin shift is considered a proxy for the stiffness of biological
materials.

Brillouin spectroscopy became available only recently for biomedical applications because of unsolved
technical challenges. The Brillouin shift is extremely small (< 0.001 nm), thus separating the Rayleigh
scattering from the Brillouin scattering and the spectral analysis of the latter is difficult when measuring
turbid materials like biological samples. Only in 2016, Fiore et al. described a relatively simple approach
with a spectrograph for Brillouin spectroscopy, encompassing a multi-pass Fabry-Pérot interferometer
as ultra-narrow bandpass filter and a highly dispersive optical element obtained by combining two
virtually-imaged phased arrays (VIPA) (23). This enabled near-lossless optical isolation of the Brillouin
signal that opened the avenue to the study of biological tissue.
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Recently, Brillouin microscopy was applied to 3D spheroids which simulate tumors in a more realistic
way than single cells by accounting for cell-cell contacts, diffusion gradients, proliferation rates and
drug responses (24-26). Studies on colorectal tumor spheroids showed that the mechanical properties
were altered heterogeneously across the spheroid after drug treatment (27). Moreover, it was shown
that the osmolality of surrounding medium affects the biomechanics of ovarian cancer cell spheroids
(22). Furthermore, the effect of micro-environmental stiffness and degradability of hydrogels on breast
cancer spheroids was demonstrated (28).

The combination of Brillouin spectroscopy and microscopic setups allows high resolution mapping of
biomechanical properties. Thanks to tight laser beam focalization coupled with confocal detection, small
spot sizes (~1 pum) are achieved, enabling analysis of distinct cell compartments, e.g., cytoplasm,
nucleus, and nucleolus (29,30). It should be mentioned that even smaller spot sizes are not useful as the
acoustic phonon wavelength limits further resolution increase (31). Furthermore, Brillouin spectroscopy
can be easily combined with Raman spectroscopy for simultaneous chemo-mechanical spectroscopic
analysis (32). As Raman spectroscopy allows to draw conclusions about the biochemical composition of
a sample (i.e. lipids, proteins, nucleic acids), it may be used as a reference to correlate biochemistry and
biomechanics at the very same measurement position. The benefit of a combined measurement has been
already demonstrated in some studies including single cells (32-34), human epithelial (35,36) and
corneal (37) tissue as well as transgenic mouse hippocampus (38). Besides the general feasibility of
combined measurements, it was shown that the biochemical information present in the Raman spectra
can be used for interpreting the Brillouin shift (39,40).

The possibility to perform Brillouin spectroscopy with near infrared excitation in order to avoid
photodamage and attain much larger penetration depth on bulk samples was demonstrated for in vivo
measurement by Schliifiler et al. in 2018, who performed Brillouin spectroscopy of the spinal cord of
living zebrafish larvae by using a VIPA-based spectrometer and excitation at 780 nm (41). However,
combined systems exploiting near infrared excitation found so far only limited application. Also VIPA-
based spectrometers are rarely used in combined systems, where predominantly Fabry-Pérot-based
spectrometers were utilized in combination with 532 nm excitation wavelength (32,38,42). However, the
sequential spectrum acquisition of Fabry-Pérot-based spectrometers comes along with long acquisition
times due to the scanning through the frequencies (43).

Here, we addressed the relationship between Brillouin spectrum and cellular components in brain
tumor models in vitro by using a combined Brillouin and Raman confocal microscopic system with
near-infrared laser excitation to avoid any photodamage. Aim of this study is the correlation of
biomechanics with cancer cell phenotype and biochemical properties of glioma cells cultured in
different conditions. Therefore, we addressed adherent and spheroid cell culture preparations of U87-
MG glioblastoma. First, we used Raman spectroscopy to identify the cell compartments and used this
information to determine the Brillouin shift of each compartment, showing that these have different
viscoelastic properties. Then, we addressed the comparison between adherent (2D) and spheroid (3D)
cultures of U87-MG glioblastoma cells, showing that the Brillouin shift of spheroid cells is globally
higher than of adherent cells. Furthermore, the combination of Raman and Brillouin spectroscopy
highlighted biochemical cues underlining the local variation of Brillouin shift observed within the
spheroids.
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2. Materials and Methods
Cell culture and sample preparation

For adherent cultivation (2D cell preparations), 20,000 - 50,000 human U87-MG cells were seeded on
Raman-grade CaF: slides and cultured for two to three days in Dulbecco’s Modified Eagle Medium
(DMEM, Thermo Fisher Scientific Inc., Waltham, United States) at 37°C and 5% CO2. For Raman-
Brillouin mappings, slides were transferred to a dish and completely covered with fresh DMEM. For
reference measurements, adherent cells grown on CaF: slides were fixed with 4% formalin for 30 min
and washed with aqua dest. twice.

For 3D spheroid cultivation, U87-MG tumor cells were suspended in a cell culture flask and cultured
with abundant DMEM for one week. The upright positioning of the culture flask prevented the
suspended cells from adhering to the walls, which initially led to the formation of cell clusters in the
culture medium, which later on grew up to spheroids. It should be mentioned that no special scaffold
was used to enforce any spheroid formation. No hydrogel or scaffold was used but spheroids were
cultured free floating in DMEM. Culture flasks were gently shaken to resuspend the spheroids every
two to three days. For the measurement, few spheroids were transferred on a CaF: slide and covered
with DMEM.

For multiphoton microscopy (MPM), spheroids were collected, embedded in cryotome matrix (OCT,
CellPath Ltd., Newtown, United Kingdom) and frozen at -80°C. Cryosections of 10 um were prepared
on glass slides, whereby the fifth section through a spheroid was stored at -20°C until use. CARS
imaging of whole spheroids proved homogeneity between internal and external regions, which is in
line with previous findings (44).

Combined Brillouin and Raman spectroscopic system

The layout of the combined Brillouin and Raman system is shown in Figure 1. A tunable diode laser
(TApro, TOPTICA Photonics AG, Grafelfing, Germany) was used as photon source. Stabilization to the
rubidium #Rb Fg= 3 transition at A = 780.24 nm ensured high wavelength accuracy by using Doppler-
free saturation spectroscopy (CoSy, TOPTICA Photonics AG, Grifelfing, Germany). Two Bragg gratings
(NoiseBlock, ONDAX Inc., Monrovia, United States) filtered out the amplified spontaneous emission
(ASE) in order to suppress the background. A doubly passed Fabry-Pérot interferometer (Tunable
Fabry-Pérot-Etalon FSR = 15 GHz, LightMachinery Inc., Nepean, Canada) further suppressed the ASE
to ensure highest signal-to-noise ratio. In this process, a A/4-wave plate rotated the light polarization
direction so that the light was reflected off the polarizing beam splitter on the return path. One of the
ghost beams appearing at the polarizing beam splitter was used to stabilize the Fabry-Pérot
interferometer to its maximum transmission by detecting the light power via a photodiode. Another
ghost beam was used as excitation light source for a reference beam path.

The excitation light was coupled in a single mode fiber and propagated to an upright reflection
microscope (WITec alpha 300R, WITec GmbH, Ulm, Germany). Inside the microscope a 30:70 beam
splitter directed the monochromatic light to the sample being placed on a xyz stage. The laser power on
the sample was 20 mW. A Zeiss N-Achroplan 40x/0.75NA water-dipping objective was used for
adherent cell and spheroid measurements in medium and a Zeiss Epiplan-Neofluar 50x/0.8N A objective
for fixed samples.

The backscattered light was separated by wavelength using a dichroic mirror. Light with a wavelength
above 785 nm (Raman scattered light) was passed to a commercial Raman spectrometer (UHTS 400,
WITec GmbH, Ulm, Germany) whereas light with a wavelength below 785 nm (Brillouin and Rayleigh
scattered light) was passed to the Brillouin spectrometer.
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In the Brillouin spectrometer, two vapor cells (Rubidium Vapor Cell TG-ABRB-Q, Precision
Glassblowing Inc., Englewood, United States) were used to remove the Rayleigh scattered light
exploiting absorption on the same rubidium transition used for laser stabilization. A two-stage virtually
imaged phased array (VIPA, LightMachinery Inc.,, Nepean, Canada) set-up (45) was used for the
spectral analysis of Brillouin scattering. The orthogonally-arranged VIPAs had a free spectral range of
FSRi1=15 GHz and FSR2= 21.6 GHz resulting in a further suppression of the ASE (46). A CCD camera
(iDUS 420A-BR-DD, Andor Technology Ltd., Belfast, Northern Ireland) with a magnification objective
(InfiniProbe TS-160, Infinity Photo-Optical Company, Centennial, United States) was used to acquire
the Brillouin spectra. The detector resolution was 44 MHz/pixel. The optical contrast of the spectrometer
(peak-to-background ratio) amounted to 90 dB and the spectral resolution (FWHM of the laser line) was
~400 MHz.

In a reference beam path, the Brillouin signal of methanol was continuously acquired in order to
calibrate the spectral axis and thus precisely determine the frequency of the Brillouin band of the
measured sample compensating thermally-induced changes.

Acquisition parameters (integration times, accumulations, step sizes) are stated in results section for the
different experimental approaches.
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Figure 1. Experimental set-up of the combined Brillouin and Raman system consisting of a 780.24 nm laser, a
compact saturation spectroscopy module (CoSy), single/multi-mode fibers (SMF/MMF), Bragg gratings (BG), a
polarizing beam splitter (PBS), a Fabry-Pérot interferometer (FPI), a photodiode (PD), neutral beam splitter (BS),
cylindrical/spherical lenses (CL/SL) and virtually imaged phased arrays (VIPA).

Data analysis

After fitting the Brillouin spectrum with Lorentzian functions using custom-written Matlab software
(Matlab, MathWorks Inc., Natick, United States), which is based on the Isqnonlin function, the known
Brillouin shift of methanol (v = 3.81 GHz (45)) was exploited in combination with the condition that
the absolute frequency of the sample’s Stokes and anti-Stokes signal have to be equal. The absolute shift
frequency (center), the linewidth (full-width-half-maximum) and the intensity (maximum) of the
Brillouin band of the sample were retrieved from the fitting procedure and used to build maps of
samples’ biomechanics. Lorentzian functions were used for fitting the Brillouin bands, because they
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mathematically take the damped-harmonic-oscillator characteristic of an acoustic phonon into account.
An exemplary fitted Brillouin spectrum is depicted in the supporting information Figure S1.

For the analysis of single cell Brillouin shift maps, the contribution of surrounding culturing medium
was removed in order to focus on the information of the cell itself. Therefore, after fitting the frequency
histogram with multiple Gaussian functions (using Matlab’s Isqnonlin function), the curve being
associated with the medium was subtracted, as it was reported earlier (47,48). Gaussian functions were
used, because they take the normal distribution of the measured values into account. It should be
mentioned that the elimination of the medium contribution does not affect further analysis of the cells’
mean Brillouin shift, but is rather performed to better visualize the information of interest. Exemplarily,
frequency histograms with and without medium contribution are shown in supporting Figure S2.

The Raman spectra were processed according to established protocols for biological samples: Baseline
correction followed by intensity normalization were applied (Matlab functions msbackadj and msnorm).
In order to build maps of samples’ chemometric from the Raman data, k-means clustering was used
(kmeans function of Matlab with squared Euclidean distance metric).

CARS microscopy and quantification of lipid droplets

The CARS microscope is described in detail elsewhere (49). Briefly, two pulsed Erbium fiber laser
(Femto Fiber pro NIR and TNIR, TOPTICA Photonics AG, Gréfelfing, Germany) emitting at a
wavelength of 781 nm and 1005 nm were used to resonantly excite the coherent anti-Stokes Raman
scattering (CARS) signal of symmetric stretching of the CH: groups, which are mostly contained in
lipids. By scanning the lasers over the sample (laser scanning module LSM 7, Carl Zeiss AG, Jena,
Germany) the CARS signal is acquired and used to build 2D intensity images (2048 x 2048 pixels,
236 x 236 um?) that enable visualization of lipid droplets within the tissue. Fiji software (43) was used
to quantify lipid droplets in CARS images. An empirical determined color threshold of 220 was set for
the 8-bit CARS signal to identify areas of high lipid concentration. Afterwards, the analyze particles
function was used to first determine the number of identified areas with a pixel size greater than 10 and
then evaluate the total pixel size of these areas.

3. Results

3.1. Subcellular compartments of U87-MG glioblastoma cells identified by Raman spectroscopy show different
Brillouin shifts

Combined Brillouin and Raman maps were acquired on living U87-MG adherent cells (n = 4, 155
integration time and averaging of 2 accumulations for each measurement point, 1 pm step size between
adjacent points). Figure 2 shows one representative example. The results of the other specimens are
shown in supporting information Figure S3.1-53.3. In Figure 2a the bright field image of the cell is shown
and the box indicates the region mapped by spectroscopy.

First, Raman spectroscopy was exploited for identification of mapped regions (Figure 2b). Cluster
analysis of the Raman spectra was performed revealing the cell culture medium around the cell (gray
cluster) and different cellular compartments. The centroid spectra of the three clusters associated with
the cell are depicted in Figure 2c. The blue cluster was attributed to the nucleus with its characteristic
DNA bands at 785 cm, 1341 cmand 1579 cm™ (50). The red cluster was associated with a perinuclear
region containing characteristic (phospho)lipid bands at 1264 cm! and 1308 cm! (50). The cyan cluster
was associated with the cytoplasm consisting of different protein bands (e.g. 820 cm™ (50)). The
assignments of the clusters to the respective cell compartments are consistent with the measurement
positions as indicated in the bright field image. This assignment was also confirmed on fixed U87-MG
cells (n = 8), which showed very similar Raman spectra in the same compartments (supporting
Figure 54).
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The Brillouin shifts plotted as heat map are shown in Figure 2d. A region with higher Brillouin shifts is
located in the center of the cell, whereas the cell boundary is characterized by lower Brillouin shifts. By
using the results of Raman cluster analysis, the Brillouin shift at the different measurement positions
was assigned to the respective cell compartment (Figure 2e). The median Brillouin shift is 5.32 GHz for
the nucleus (blue cluster), 5.29 GHz for the perinuclear region (red cluster), 5.22 GHz for the cytoplasm
(cyan cluster), and 5.10 GHz for the medium surrounding the cell (gray cluster). Therefore, the highest
Brillouin shift was observed in the nucleus, which is consistent with existing literature (47,48).
Moreover, it is possible to identify the nucleolus as an intracellular compartment with the highest
Brillouin shift.

In Figure 2f, single Brillouin spectra of each cluster are exemplarily shown. The Brillouin band shifts
towards higher frequencies by moving from the medium (gray) to the nucleus (blue). Figure 2f also
shows that the intensity of Brillouin bands decreases with higher Brillouin shifts. The Brillouin band of
methanol used for calibration of the Brillouin shift frequency is visible at 3.81 GHz with constant
intensity in all spectra. The Brillouin intensities map is plotted as heat map in Figure 2g and revealed
the same morphology as the Brillouin shift. The Brillouin intensity is highest within the culturing
medium and decreases inside the nucleus, being lowest in the cell nucleolus. Therefore, both these
(inverse correlated (51,52)) parameters enabled mapping of the cell structure.

The width of the Brillouin band was also investigated as proxy for the viscosity (53). A region with
highest values is located within the nucleus (Figure 2h). In agreement with (21), this was assigned to the
high viscosity of the nucleolus.
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Figure 2. (a) Bright field image of a living U87-MG cell; white box is 15 x 15 um?. (b) Raman cluster map of this
cell consisting of four different clusters. (c) Mean Raman spectra of the three clusters associated with the cell
being the nucleus (blue), perinuclear region (red) and the cytoplasm (cyan). (d) Simultaneously acquired
Brillouin shift and (g) Brillouin intensity map revealing both the cellular structure. (e) Brillouin shift values for
each pixel are assigned to the respective cell compartment obtained by the cluster analysis of Raman spectra. (f)
Exemplary Brillouin single spectra of each cluster showing the reference methanol band at 3.81 GHz and the
sample’s band which shifts to higher values and decreases when going from the gray to the blue cluster. (h)
Brillouin linewidth map revealing the high viscosity of the nucleolus.

3.2. Brillouin spectroscopy reveals significantly higher Brillouin shifts for U87-MG spheroids in comparison to
U87-MG adherent cells

As acquisition of Raman spectra requires long measurement time, thereby limiting the amount of data
that can be acquired on living cells, only the Brillouin spectra were acquired in order to statistically
compare the properties of adherent cells and spheroids. Brillouin maps of n = 11 U87-MG adherent cells
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and n =9 U87-MG spheroids were acquired using an integration time of 0.2 s (one accumulation for
each measurement point, step size of 1 um for adherent cells and 2 um for cell spheroids). An example
of spheroid mapping is shown in Figure 3. The bright field image of the spheroid is shown in Figure 3a.
Corresponding Brillouin maps are depicted in Figure 3b and 3c using the Brillouin shift and the
Brillouin intensity as contrast mechanism, respectively. In both maps, which are cross-sections through
the spheroid, the spheroid cells can be distinguished from the surrounding culturing medium, which
has lower Brillouin frequencies and higher Brillouin intensities. However, not all structures (cf. red
arrows) visible in the Brillouin intensity map are observable in the Brillouin shift map and vice versa.
This phenomenon might be caused by a sort of shadowing effect, because of absorption and scattering
on cells lying above the measurement point, wherefore the Brillouin intensity is reduced. In contrast,
the Brillouin shift remains unaffected due to confocal measurement. As the Brillouin intensity is altered
in dependence of the absorption of above lying cells, the Brillouin intensity map does not only contain
anatomic structures within the plane as reported earlier (41), but rather gives information about the
three-dimensional morphological structure.

Brillouin shift / GHz Brillouin intensity / a.u.

(b) : "' 5.5 70
5.4 o
50
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Figure 3. (a) Exemplary bright field image of a U87-MG spheroid, where the black box indicates the measured
area. Corresponding Brillouin maps of the same spheroid using (b) the Brillouin shift and (c) the Brillouin
intensity as contrast mechanism. Red arrows indicate positions where the structural information between the
maps is different to each other.

In order to compare the stiffness of adherent cells and cell spheroids, the Brillouin shifts retrieved from
mappings were cumulatively plotted in frequency histograms (Figure 4a and 4b). Here, the data related
to culturing medium was eliminated as described in the methods section. Gaussian fitting revealed that
the main contributions in the cell and the spheroid maps are different, being the one of spheroid cells
located at higher frequency (at about 5.4 GHz vs 5.3 GHz for adherent cells). Additionally, in both
histograms a minor contribution is visible at 5.15 GHz, which was associated with the border of cells
and is due to a combination of signals from the cell and the medium, based on the results described in
the previous section (compare with Figure 2e). Moreover, in the spheroid histogram a minor
contribution at 5.34 GHz was associated with the intercellular spaces within the spheroid (compare
Brillouin map in Figure 3b). The statistical analysis of the main contributions of the independent
measurements showed that the mean Brillouin shift of the cell spheroids is significantly higher than the
mean Brillouin shift of the cells (Figure 4c, Mann-Whitney U-test, n=9 and 11, p <0.001). The broader
distribution in the case of adherent cells is due to a focusing issue, i.e. the Brillouin shift is also
dependent on the axial position within a cell. This effect is minor in the case of spheroid maps, because
several cells with different axial position are measured, resulting in an averaging and ta smaller
distribution.
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Figure 4. Cumulative frequency histograms (normalized) of the Brillouin shift values of all (a) U87-MG cell
(n=11) and all (b) U87-MG spheroid (n=9) mappings showing that there are different contributions fitted by
Gaussian curves: Main contributions are at 5.3 GHz and 5.4 GHz, respectively. (c) Brillouin shift frequencies
of the main contribution of the individual maps are significantly different (Mann-Whitney U-test; ** p <
0.001).

3.3. Combined Brillouin and Raman line scans of U87-MG spheroids highlight biochemical cues underlining the
changes of Brillouin shift within spheroids

In order to identify the biochemical reason underlying the higher Brillouin shift that characterizes
spheroids in comparison to adherent cells, combined Raman and Brillouin measurements were needed.
As the acquisition of Brillouin spectra is about 100 times faster than the acquisition of useful Raman
spectra, high resolution maps - as shown in section 3.2 - were only practicable for Brillouin spectroscopy,
while for combined measurements the number of measuring points had to be reduced. Therefore, we
performed combined Brillouin and Raman line scans across the spheroids, using 15 s integration time,
4 accumulations, 1 um step size. Two examples of 50 pum long line scans are shown in Figure 5. The
Brillouin shift varied in the range of ~5.3 GHz to ~5.55 GHz across the sample (Figure 5a and 5b). A shift
in the range ~5.4-5.5 GHz (e.g. in line scan 1 at 9 pm and in line scan 2 at 6 pm) was attributed to the cell
body and the Raman spectra were generally characterized by a similar spectral profile as found for cells’
cytoplasm. Regions where the Brillouin shift is close to ~5.3 GHz were interpreted as intercellular spaces
(compare with Figure 3b). The highest Brillouin shifts of ~5.5 GHz were observed only in few defined
positions. The comparison with Raman spectra at these positions revealed two different spectral
patterns (Figure 5c and 5d). One spectral pattern was observed in line scan 1 at 35 pm and in line scan
2 at 32 um: here the analysis of Raman bands (Figure 5e and 5f) of single spectra allowed clear
identification of lipids, based on presence of strong bands at 1267 cm?, 1306 cm™, 1441 cm, 1659 cm!
and 1748 cm™. In other regions (line scan 1 at 15 um and line scan 2 at 46 um), the Raman spectra
indicated presence of protein-rich structures based on the bands at 863 cm?, 939 cm, 1341 cm”,
1462 cm?, 1659 cm (50).
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Figure 5. Results of combined line scans on U87-MG spheroids. Brillouin shift profiles (a, b) show regions with
high frequencies which can be correlated with spectral patterns visible in the Raman heat maps (c, d), in which
the area-normalized Raman intensity is color-coded. Single Raman spectra at specific positions can be attributed
to cytoplasm, lipids and protein-rich structures (e, f). Note that the Raman spectrum at 46 pm in line scan 2
actually shows a linear combination of lipid and protein bands indicating the presence of both within the
measuring volume.

In order to confirm the presence of lipid accumulation within the spheroids, CARS microscopy was
used on fixed spheroids after in vivo spectroscopic measurement. CARS images (n =7) revealed in fact
the presence of intracellular lipid droplets with dimension of few micrometers (Figure 6a), thus
compatible with the results of line scans. A quantification (Figure 6b) revealed that lipid droplets
accounted for a mean average of 0.58% of the imaged area, which is compatible with the amount of
measurement points characterized by a Brillouin shift close or above 5.5 GHz (compare with histogram
in Figure 4b).
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Figure 6. (a) Exemplary CARS image of a U87-MG spheroid cryosection revealing that there are several
lipid droplets within the spheroids. (b) Quantification of the lipid droplet content for n =7 CARS images
revealed values between 0.2% and 1.3%, whereby the CARS image in (a) corresponds to image number 1.

4. Discussion

Brillouin spectroscopy is a rather new territory in medical research and the interpretation of the
Brillouin shift as proxy for the stiffness is still matter for investigations. In contrast, Raman spectroscopy
is a successfully established technology on the verge of clinical translation.

As Raman and Brillouin scattering are simultaneously generated in the interaction of laser beams and
materials, and because they can be spectrally split by a dichroic mirror, it is possible to combine the two
measurements using one excitation laser, one confocal Raman microscope and two spectrometers
(32,34,54). We exploited the same principles and realized the system with an infrared laser to reduce
elastic scattering and absorption by the tissue and avoid potential photodamage. In order to perform
fast acquisition of Brillouin spectra with high extinction and low signal losses, we used a two-stage
VIPA setup consisting of two VIPAs with different FSRs resulting in an increased contrast (46). In our
system we attained very fast acquisition times for Brillouin spectra, which allowed acquisition of high
resolution maps on living cells. In addition, the Brillouin and Raman spectra were measured
simultaneously so that biochemical and biomechanical data are registered to allow correlative analysis.
However, Raman spectroscopy turned out to be the bottleneck for acquisition time. This limited the
acquisition of Raman spectra to relatively small maps of single cells or to line scans across spheroids.

The Raman analysis of U87-MG cells allows to distinguish three different compartments; i.e. the cell
nucleus, a perinuclear region and the cytoplasm, independently whether the cells are fixed or living.
On the other hand, Brillouin analysis on living cells in culture medium showed an increasing Brillouin
shift when going from the cell boundary to the center. By using the Raman spectral information of each
pixel, a direct correlation to the Brillouin shift was possible. The three clusters attributed to the cell show
higher Brillouin shifts than the surrounding culturing medium, which agrees with previous
measurements (47). The cell nucleus has a higher Brillouin shift than the cytoplasm. The nucleolus
displays the highest Brillouin shift within adherent cells, and increased Brillouin bandwidth, which
indicates higher viscosity. These results are fully consistent with former findings on other types of cells
(30,48,55).

Comparing the Brillouin shifts of adherent cells and cell spheroids of the same cell line U87-MG
revealed significantly higher values for the latter ones. The Brillouin shift difference of about 0.1 GHz is
in line with previous reported values of single cells and spheroids of breast cancer cells (MCF-7) (28).
Line scans through spheroids showed local variations of the Brillouin shift. Brillouin shifts of about 5.5
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GHz were associated with protein-rich structures and lipid droplets. Regions attributed to cytoplasm
based on Raman spectra have a Brillouin shift higher than that of the cytoplasm of adherent cells.

Now, the question is which changes of Brillouin shift indicate also a change in stiffness, as the Brillouin
shift vz depends not only on the longitudinal modulus, but also on the refractive index and the mass
density, as defined by the following equation:

2 M
VBZTH P )

where 7 is the index of refraction, p the mass density, M the longitudinal modulus and A the excitation
wavelength. Thus, local variations of n and p may lead to changes in the Brillouin shift even without
any change of M.

For cytoplasm, nucleus and nucleolus the changes of n and p are expected to compensate each other
according to the two-substance mixture model (21,56-58). Therefore, the higher Brillouin shift measured
in the cell nucleus and in the nucleolus of cells indicates a higher stiffness of these cellular
compartments. Similarly, the higher Brillouin shifts measured in the cytoplasm of spheroid cells
compared to adherent cells underline a change of biomechanical properties, i.e. higher stiffness of
spheroid cells compared to adherent cells. We attributed the difference to the culturing conditions. This
finding demonstrates that the choice of brain tumor model (adherent cells vs. cell spheroids) is highly
relevant for analysis of biomechanics and in agreement with other studies on breast cancer spheroids
and single cells in hydrogels (28). Future studies on other cell lines may show whether this is a general
trend of tumor cells or not.

In case of lipid droplets, the higher Brillouin shift does not indicate stiffness higher than the surrounding
cytoplasm: the mass density of lipids is lower compared to cytoplasm (p = 930 kg/m? (59) vs. p =
1000 kg/m? (60)) while n is higher (n = 1.41 (21) vs. n = 1.375 (61)), so that the two contributions do not
compensate and the ratio % is about 6% higher for lipids compared to the cytoplasm. Indeed, the

Brillouin shift of lipid droplets measured in our experiments (~5.5 GHz) is approximately 5% higher
than that of the cytoplasm of adherent cells (5.22 GHz). This result agrees with previous studies on
adipocytes, where lipid droplets display a Brillouin shift higher than cytoplasm (21,62), but a 10% lower
stiffness by correcting the results for the index of refraction co-registered by optical diffraction
tomography (21).

The presence of lipid droplets in glioblastoma cell culture is not surprising, as it is known that they
exhibit abnormal lipid metabolism, which plays an important role in aggressiveness (63,64). Lipid
droplets function as energy reservoir for glioblastoma and are consumed to support survival by
decreased glucose levels (65). This might explain the absence of lipid droplets in the adherent cells,
which are known to express lipid droplets mainly during hypoxia while they are missing under
normoxic conditions (66,67). Whether there are mechanisms by which cytoplasmic lipid droplets alter
glioma cell biomechanics has not been investigated yet. On the other side, lipids possess a clear
spectroscopic signature in Raman spectroscopy and their presence and localization can be readily
recognized with this technique, thus providing a well-suited reference tool for future investigation of
biomechanics of brain tumors.

5. Conclusions

Combined Brillouin and Raman spectroscopy proved to be a powerful tool for investigating the
interplay between biochemistry and biomechanics of glioblastoma cell cultures. The subcellular
resolution of the optical system allowed for a detailed mechanical analysis of adherent cells, whereby
the biochemical fingerprint from Raman spectroscopy enabled a correlation of biomechanical properties
to cell compartments. The nucleus and especially the nucleolus possess different viscoelastic properties
compared to cytoplasm. Moreover, culturing conditions, which result in different cellular architecture
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and appearance, have an impact on biomechanics, i.e. stiffness is significantly higher in spheroid than
in adherent cells, which emphasizes the importance of choosing the appropriate tumor model in future
investigations on brain tumor biomechanics. The availability of a co-localized biochemical information
obtained by Raman spectroscopy enabled discerning stiffness-related changes of the Brillouin shift as
well as localization of stiffness changes at subcellular level. The availability of co-registered biochemical
information is very important for a correct interpretation of the biomechanical data on multicellular
systems, in particular in the heterogeneous structure of a brain tumor environment. This heterogeneity
may also be addressed in future studies e.g. by investigating the microenvironment of spheroids.
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