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Abstract

We present a chromosome-length genome assembly and annotation of the Black Petaltail
dragonfly (Tanypteryx hageni). This habitat specialist diverged from its sister species over 70
million years ago, and separated from the most closely related Odonata with a reference genome
150 million years ago. Using PacBio HiFi reads and Hi-C data for scaffolding we produce one of
the most high quality Odonata genomes to date. A scaffold N50 of 206.6 Mb and a BUSCO
score of 96.8% indicate high contiguity and completeness.
Keywords
Dragonfly genomics, Odonata, Insecta, Fens, Habitat specialist
Significance

We provide a chromosome-length assembly of the Black Petaltail dragonfly (Tanypteryx
hageni), the first genome assembly for any non-libelluloid dragonfly. The Black Petaltail
diverged from its sister species over 70 million years ago. T. hageni, like its confamilials,
occupies fen habitats in its nymphal stage, a life history uncommon in the vast majority of
dragonflies. We hope that the availability of this assembly will facilitate research on T. hageni
and other petaltail species, to better understand their ecology and support conservation efforts.
Introduction

The Black Petaltail dragonfly (Tanypteryx hageni), found in montane habitats from
California to British Columbia, is something of an evolutionary enigma. It is a member of the
odonate family Petaluridae (known as ‘petaltails’ due to the broad, petal-like claspers at the end
of the male abdomen), which is estimated to have originated approximately 150 million years
ago (Ware et al. 2014)(fig. 1). The relative position of Petaluridae with respect to other dragonfly

(suborder Anisoptera) families has varied with taxon sampling, data source, and phylogenetic
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reconstruction method (e.g., (Suvorov et al. 2021; Bybee et al. 2008; Letsch 2007; Kohli et al.
2021; Blanke et al. 2013)).

While the family originated long before most recognized insect families, the geologic
ages of its member species are even more extreme in relation with other animal species, leading
members of Petaluridae to be considered as “living fossils.” Most extant petaltails are estimated
to have appeared in the mid- to late-Cretaceous, with speciation being driven by major events
like continental drift; T. hageni is estimated to have diverged from the sister species Tanypteryx
pryeri (found in Japan) ~73 million years ago, potentially diverging when the Beringian land
bridge disappeared in the late Cretaceous (Ware et al. 2014; Fiorillo 2008). Often, species with
long geological persistence have wide geographic ranges (Hopkins 2011; Powell 2007), and tend
to be habitat generalists, or give rise to habitat generalists (Colles et al. 2009), but for T. hageni
this is not the case—the persistence of this species (as well as other petaltails) is puzzling as the
nymphs of T. hageni exclusively inhabit fens (Baird 2012), groundwater-driven habitats which
host a number of specialist animals and plants. These habitats are characterized by soils saturated
by groundwater, commonly found around springs and in riparian areas of headwater streams.
Nymphs (fig. 1) dig and maintain a burrow (a behavior displayed by a number of other petaltail
species) that fills with water.

The research on fens in North America is sparse, but it is known that while fens make up
a tiny fraction of the North American landscape, they contain a surprising proportion of the
continent's biodiversity. The US Department of Agriculture observes that between 15 and 20%
of the rare and uncommon plant species found in Deschutes National Forest (Oregon, USA) are
found in fen ecosystems (US Department of Agriculture). It is estimated that fens are the most

floristically diverse wetlands in the United States, and contain a high number of rare and


https://doi.org/10.1101/2022.10.18.512723
http://creativecommons.org/licenses/by-nc-nd/4.0/

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.18.512723; this version posted October 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

endangered species (Bedford & Godwin 2003). Research on fens across the range of T. hageni is
minimal; it is known that montane fens in Oregon (a portion of T. hageni’s range) only occur in
“low-permeability glacial-till...around 1400-1800 m in elevation, and are concentrated in areas
mantled by pumice deposits that originated primarily from the eruption of Mt. Mazama
approximately 7700 years BP” (Aldous et al. 2015). These Oregon fens are supplied by perched
aquifers in glacial till, and are therefore unaffected by the draining of deeper regional aquifers,
but they are especially susceptible to changes in recharge due to climate change (Aldous et al.
2015). It has been hypothesized that Oregon fens could be negatively affected by fire
suppression (Tolman 2007), but there is scant research evaluating how recent megafires
throughout the range of T. hageni may be influencing fens in this range. However, it is known
that fens are degrading across the continental United States (Bedford & Godwin 2003). Thus, we
have concerns not only for the survival of the Black Petaltail, but for the specialized habitats in
which they live. There is little research regarding genomic adaptations to life in fens, so it is
paramount to establish a baseline of understanding for this declining habitat.

Here, we present a chromosome-length assembly of the Black Petaltail. This genome will
be a valuable tool for studying an organism that may be especially hard hit by climate change
and habitat destruction. Additionally, this genome will shed light on an evolutionary enigma: the
petaltail dragonflies have persisted for tens of millions of years, despite exclusively occupying
fragile fen habitat as nymphs (Ware et al. 2014). Lastly, this genome will be an important
resource in resolving the phylogeny of early divergences within Odonata, as no genome of any

basal anisopteran is currently available.
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Figure 1: (Upper left) A fen in Lassen National Forest (California, USA) where T. hageni was
collected. (Upper right) T. hageni, adult. (Bottom Left) T. hageni, larvae, credit Marla Garrison.
(Bottom right) Phylogeny of Odonata (modified from Kohli et al 202).1 Families with a
reference genome highlighted in purple, Petaluridae highlighted in green.
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78  Results and Discussion

79  Sequencing and Genome Size Estimation

80 We recovered >44.6 Gb of sequence contained in HiFi reads, generated from 730 Gbp of
81  raw sequence in subreads from two PacBio SMRT cells. The estimated genome size using kmers
82  from HiFi reads with GenomeScope 2.0 was 1.47 Gb with an estimated 59.9% of unique

83  sequence (Ranallo-Benavidez et al. 2020), resulting in approximately 25x coverage (supplementary
84  figure 1).

85

86  Genome Assembly and QC

87 Our contig assembly was generated with hifiasm v.0.16.1 (Cheng et al. 2021) and

88  submitted to NCBI to identify possible contaminants. Following the removal of two possible

89  contaminants, the assembly was 1.69 Gb in length, contained 2,133 contigs, and had a contig

90 N50 >4 Mbp (supplementary table 1). After scaffolding with Hi-C data, we generated a highly
91  contiguous assembly that was 1.70 gb in length with a scaffold n50 > 206.6 Mbp, with 90.465%
92  of base pairs assigned to nine chromosomes (supplementary table 1, see supplementary fig. 5 for
93  contact map). We filtered out contigs that were assigned to proteobacteria, mollusca, cnidaria

94  and bacteroidetes by BLAST v.2.9.0 (Camacho et al. 2009) and replaced mitochondrial contigs

95  with the mitochondrial genome assembly, resulting in a final assembly length of 1.68 Gbp with a
96  scaffold N50 > 206.6 Mbp (supplementary table 1) and an overall GC content of 37.98%

97  (supplementary table 2). We recovered 96.8% of universal single copy orthologs (including

98  96.2% single and complete and an additional .6% fragmented) from the BUSCO (Manni et al.

99  2021) Insecta database indicating a high level of completeness, especially when compared to

100  most publicly available Odonata genomes (table 1).
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101 After blobtools analysis, 19.22% of our genome was assigned to chordata.

102  (supplementary fig. 2). This included two of the chromosome-length scaffolds, which had nearly
103 identical GC proportions and coverage to the other chromosome-length scaffolds (supplementary
104  fig. 2). It is unlikely that this was due to contamination, as our Hi-C experiment assigned these to
105 chromosomes.We hypothesized that this could be due to a lack of coverage of the lineage

106  Petaluridae in the BLAST database. To test this, we characterized the top BLAST hits of

107  publicly available Petaluridae transcriptomes. In the transcriptomes of Phenes raptor (Suvorov et
108 al. 2021), Tanypteryx pryeri (Suvorov et al. 2021), and Tanypteryx hageni (Misof et al. 2014) 23%,
109 10%, and 10% of contigs had a top blast hit of chordata (supplementary fig 3). This suggests that
110 alack of database coverage for Petaluridae could be a likely explanation for this phenomenon. It
111  appears that the genomes of Petaluridae have greatly diverged from what is covered in

112  databases, leading to erroneous BLAST characterizations. We also observed this phenomenon
113  when blasting the genome of the Atlantic Horseshoe Crab (Limulus polyphemus), where 9.7% of
114  BLAST hits mapped to Chordata (supplementary fig. 4). The Atlantic Horseshoe Crab also has a
115  highly repetitive genome, and lack of database coverage may be resulting in BLAST results

116  outside of the phylum.

117


https://doi.org/10.1101/2022.10.18.512723
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.18.512723; this version posted October 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

118

Table I: Comparison of publicly available Odonata genomes

Suborder Assembly | N50 (mb) | Scaffolds BUSCO | Source

level Score of
Assembly
Tanypteryx | Anisoptera | Chromosome 206.6 1,033 96.8%** | Authors
hageni
Ladona fulva | Anisoptera Contig .06 9,411 95.7% NCBI
Pantala Anisoptera | Chromosome 553 43 96.9% (Liu et
flavescens al. 2022)
Ischnura Zygoptera | Chromosome 123.6 110 97.2% | (Price et
elegans al. 2022)
Hetaerina Zygoptera Scaffold 86.1* 1583* 97.7%** NCBI
americana
Platycnemis | Zygoptera | Chromosome 88 96.9%** NCBI
pennipes 144.8
Rhinocypha Zygoptera Contig Al* | 754,445* 73.5%** NCBI
anisoptera
Calopteryx Zygoptera Contig A42* 8,896* 94.7%** NCBI
splendens
Table 1: Compares the contiguity and completeness of available Odonata genome assemblies.
*Calculated by the authors using assembly-stats (Trizna 2020)
**Calculated by the authors using BUSCO (Manni et al. 2021)
All other statistics are taken from the source.
119
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120  Annotation

121 55.12 % of the genome was classified as repetitive using RepeatModeler2v2.0.1 (Flynn et
122 al. 2020) and RepeatMasker v4.1.2 (Smit et al. 2013). 26.14% of the genome was classified as
123  “unclassified repetitive elements"”, 15.73% as DNA transposons, 11.38 % as retroelements and
124  1.53% as rolling circles. We identified 22,261 protein coding genes. The annotated protein set
125  contained 89.4% of BUSCO insecta genes, with 6.7% of the BUSCO genes duplicates, and
126  another 4.7% fragmented.

127  Mitochondrial Genome

128 We assembled the mitochondrial genome resulting in a circular contig with a length of
129 16,053 bp, and a GC content of 24.62% (supplementary table 2).

130 Conclusion

131 Here we present one of the most complete Odonata genomes to date. As the first non-
132  libelluloid Anisopteran genome, and the first genome of an odonate habitat specialist, this

133  assembly will be a valuable tool for understanding the biology of the Black Petaltail, resolving
134  the phylogeny of Anisoptera, and will provide general insights into long-persisting species.
135 Materials and Methods

136  Specimen collection, DNA extraction, and sequencing

137 We collected an immature nymph live from a burrow near Cherry Hill Campground
138  (Lassen National Forest, California, USA) in fall of 2020. The specimen was flash frozen in
139  liquid nitrogen and stored in a —80 °C freezer prior to extraction. High molecular weight DNA

140  was extracted from a single individual using the Qiagen Genomic-tip kit.
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141 Another specimen was collected from the same location in spring 2022 for Hi-C library
142  generation. It was also flash frozen in liquid nitrogen, and sent for Hi-C analysis by DNA Zoo,
143  who used the hemolymph for Hi-C library preparation.

144 High molecular weight DNA was sheared to 18 kbp using a Diagenode Megaruptor and
145  prepared into a sequencing library using the PacBio HiFi SMRTbell® Express Template Kit 2.0.
146  The library was sequenced on two PacBio Sequel 11 30 hour SMRT cells in CCS mode at the
147  BYU sequencing center.

148  Sequencing QC and genome assembly

149 We generated HiFi reads from raw subreads with PacBio SMRTIink. We then used the
150 HiFi reads to estimate genome size with Genomescope 2.0 and smudgeplot (Ranallo-Benavidez
151 etal. 2020). We generated an initial contig assembly with hifiasm v.0.16.0(Cheng et al. 2021),
152  and submitted the assembly to NCBI, through the genome submission tool, to check for

153  contamination.

154 To generate chromosome length scaffolds, we used High-throughput chromosome

155  conformation capture (Hi-C). The DNA Zoo consortium (dnazoo.org) generated an in situ Hi-C
156 library using the protocol described in Rao et al. (Rao et al. 2014). Hi-C data was then aligned to
157  the draft assembly using Juicer (Durand et al. 2016), and the candidate chromosome length

158 genome assembly was built using 3D-DNA (Dudchenko et al. 2017). The resulting contact maps
159  (supplementary fig. 5) were manually reviewed using Juicebox Assembly Tools (Durand et al.
160 2016; Dudchenko et al. 2018) Interactive contact maps were generated using juicebox.js

161  (Robinson et al. 2018), for both the draft and reference assembly and are publicly available at

162  https://www.dnazoo.org/assemblies/Tanypteryx hageni.
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163 We screened for contamination with taxon-annotated GC-coverage plots using BlobTools
164 v1.1.1 (Laetsch & Blaxter 2017). We mapped all Hi-Fi reads against the final assembly using
165 minimap2 v2.1 (Li 2018), sorted the bam file with samtools v1.13 (Danecek et al. 2021) using
166  the command samtools sort, and assigned taxonomy with megablast (Shiryev et al. 2007) using
167  the parameters: task megablast and -e-value 1e-25. We calculated coverage using the blobtools
168  function map2cov, created the blobtools database using the command blobdb, and generated the
169  blobplot with the command blobtools plot. After examining the blobplot we removed contigs
170  Dlasting to proteobacteria, bacteroides, cnidaria and mollusca.

171 To investigate whether excessive megablast assignments to chordata were due to a lack
172  of database coverage for Petaluridae, we used BLAST to classify the transcriptomes of

173  Tanypteryx hageni (Misof et al. 2014), and other members of Petaluridae, Tanypteryx pryeri and
174  Phenes raptor (Suvorov et al. 2021), against the Genbank nucleotide database, using the same
175  parameters as above: task megablast and -e-value le-25.

176  Quality Control

177 We generated all contiguity stats with assembly-stats (Trizna 2020). We also ran BUSCO
178  (Manni et al. 2021) on the other publicly available Odonata genomes for comparison (Table 1)
179  using the Insecta database, in genome mode with the flag --long to retrain BUSCO for more
180 accurate identification of genes.

181  Annotation

182 We first modeled and masked the repetitive elements of the scaffold and chromosome-
183 level assemblies using RepeatModeler2 (Flynn et al. 2020). We then annotated the masked,

184  scaffold-level assembly using MAKER v3.01.03 (Campbell et al. 2014). We ran a homology-

185 only MAKER run using the 1kite Tanpyeryx hageni transcriptome (Misof et al. 2014), the
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186 transcriptomes of the Petaluridae Tanypteryx pryeryi and Phenes raptor (Suvorov et al. 2021),
187  and the complete annotated protein sets of Ladona fulva, Pantala flavescens, and Ischnura

188 elegans. We trained Augustus (Stanke et al. 2008, 2006) on the identified protein sets using

189 BUSCO and the insecta dataset (Manni et al. 2021), and ran MAKER a second time to generate
190 ab-initio gene predictions. We then mapped these proteins to the chromosome level assembly
191  using miniprot v0.4 (Li 2022) and re-trained Augustus (Stanke et al. 2008, 2006) using the

192  scaffold-level coding sequences, with 1000 base pairs surrounding each sequence as the training
193  set. As this annotation resulted in a high number of genes, and a less-than ideal BUSCO score we
194  also mapped the protein set of Pantala flavescens (Liu et al. 2022) to the masked chromosome
195 level assembly using miniprot v0.4(Li 2022), and extracted the mapped Pantala proteins, the
196  protein set from the augustus annotation, and the protein set of the mapped proteins from their
197  respective gff files with gffread (Pertea 2022). We combined all three protein sets and clustered
198  the proteins at 80* similarity with CD-HIT v4.8.1 (Fu et al. 2012). We then mapped this

199 clustered protein set back to the chromosome-level assembly with miniprot (Li 2022), and used
200 BLAST (Shiryev et al. 2007) to align the candidate proteins to all Arthropoda proteins available
201  on NCBI using the parameters -outfmt "'6 sseqid pident evalue gseqid -max_target_seqs 1 -

202  max_hsps 1 -num_threads 16 -evalue le-15". We only retained proteins with a significant

203  BLAST hit for our final annotation, and used BUSCO, using the Insecta database, to assess
204  annotation completeness.

205

206  Mitochondrial genome assembly

10
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207 We assembled and annotated the mitochondrial genome using Mitohifi (Allio et al. 2020;
208  Uliano-Silva et al. 2021) on the scaffolded assembly, using the default parameters and the

209  mitochondrial genome of Anax parthenope (Ma et al.) as a reference.

210  Author Approvals

211  All authors have seen and approved this manuscript. It has not been submitted or published

212 elsewhere.
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