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Abstract

Atherosclerosis is a complex inflammatory process driven by plaque formation in the major
elastic arteries and often leads to reduced blood flow, coronary artery disease (CAD),
myocardial infarction and stroke. CAD progression involves complex interactions and
phenotypic plasticity within and between distinct vascular and immune cell lineages. Several
single-cell RNA-seq (scRNA-seq) studies have highlighted lineage-specific transcriptomic
signatures however there remains variability on the reported cell phenotypes in humans. In this
study we meta-analyzed scRNA-seq datasets across four publications to create a
comprehensive map of human atherosclerosis cell diversity. We applied standardized QC,
processing, and integration benchmarking to harmonize 118,578 high-quality cells for this atlas.
Beyond characterizing vascular and immune cell diversity, we derived insights into smooth
muscle cell (SMC) phenotypic modulation through pseudotime, transcription factor activity
inference and cell-cell communication analyses. We also integrated genome-wide association
study (GWAS) data to identify etiologic cell types for GWAS diseases and traits, which
uncovered a critical role for modulated SMC phenotypes in CAD and coronary artery
calcification. Finally, we identified candidate markers (e.g., CRTAC1) of synthetic and
osteochondrogenic SMCs that may serve as proxies of atherosclerosis progression. Together,
this represents an important step towards creating a unified cellular map of atherosclerosis to
inform cell state-specific mechanistic and translational studies of cardiovascular diseases.

Introduction

Cardiovascular diseases, such as coronary artery disease (CAD), are the leading global causes
of mortality and morbidity’. The pathological hallmark of CAD is atherosclerosis, a chronic build-
up of plaque inside arterial walls, which can lead to thrombus formation and myocardial
infarction (MI) or stroke?™. This process involves a complex interplay of both immune and
vascular cell types and cell state transitions along a continuum®’. In response to injury of the
inner vessel layer by oxidized low density liporoteins (ox-LDL) and immune cells, contractile
smooth muscle cells (SMCs) transition to a more proliferative and migratory state®°. Similarly,
endothelial cells transition to a mesenchymal state in early and advanced atherosclerosis'®"".

Recent single-cell RNA sequencing (scRNA-seq) studies have resolved the cellular diversity
and gene signatures in human and murine atherosclerotic lesions'?' as well as in non-lesion
arteries'’. By combining lineage tracing and scRNA-seq, studies have shown that SMC readily
transform into a multipotent “pioneer” cell type in response to pro-atherogenic stimuli'®=2°.
However, the fate of SMCs after this transition remains controversial; a few studies generally
agree that these pioneer cells can become fibroblast-like (fibromyocytes)'® or osteogenic-like
(fibrochondrocytes; FCs)'?; other studies suggest that pioneer SMCs adopt pro-inflammatory or
macrophage-like properties®?°. Limited sample sizes, experimental design or other technical
factors could potentially confound the biological interpretation of these individual studies. Thus,
there remains a need for a consensus single-cell reference®'~2%, which spans atherosclerotic
disease stages in humans.
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Here, we harmonize and meta-analyze four single-cell studies of human atherosclerosis,
encompassing both early and advanced lesion and non-lesion samples (Fig. 1a and
Supplementary Table 1). This high-resolution atlas of 118,578 high quality cells enables the
discovery of previously missed vascular and immune cell types and clarifies markers for known
disease-relevant immune cells (e.g., inflammatory, and foamy macrophages). We perform
integrative downstream analyses and GWAS trait enrichment to define cardiovascular traits and
disease-relevant etiologic cell types and states. We further validate SMC phenotypes identified
in lineage-tracing studies, reveal underrepresented SMC states from individual scRNA-seq
studies and highlight CRTAC1 as a new candidate marker of pro-calcifying SMCs and plaque
stability in humans. This comprehensive map of vascular and immune cell diversity in human
atherosclerosis provides a critical step towards translating mechanistic knowledge and
developing more targeted interventions.

Results
Integration of lesion and non-lesion artery datasets

We sought to build a comprehensive single-cell reference that would be well-powered to further
investigate complex vascular processes such as SMC phenotypic modulation. In order to avoid
biases towards lymphoid (e.g., T-cells) and myeloid (e.g., macrophage) cells and achieve
proper representation of mural cells (SMC and pericytes), the current version of this atlas was
assembled using data from three studies, Wirka et al '®, Pan et al °, and Alsaigh et al ® profiling
human atherosclerotic lesions in coronary or carotid arteries. We also included a recently
published dataset of non-lesion coronary arteries'” with the goal of spanning the continuum of
CAD risk (Supplementary Table 1). We then established a standardized pipeline for quality
control (QC) and uniform processing of the 22 raw sequencing libraries, involving removal of
doublets®* and ambient RNA ? as well as normalization to account for variable cell sequencing
depth?®?’ (Supplementary Fig. 1 and Methods). We visually inspected cell embeddings and
observed optimal separation and cohesion of cell clusters post-filtering (Supplementary Fig. 1).

The choice of single-cell integration approach highly depends on the context of the individual
datasets, the magnitude of batch effect and cell number. Thus, we independently evaluated
tools recommended by 3 recent benchmarks?*~*° including Canonical Correlation Analysis +
Mutual Nearest Neighbors (CCA + MNN), reciprocal PCA (rPCA)?, Harmony®' and Scanorama
32 (Methods). We tested a subset of the included libraries'®'®'° and found that rPCA and
Harmony outperformed the other tools in terms of running time (Supplementary Fig. 1). We
also evaluated the effectiveness of batch removal from each approach using integration Inverse
Local Simpson Index (iLISI)*" and conservation of biological variation using the “cell type LISI”
(cLISI)®'. Finally, clustering purity was measured using silhouette coefficients, which capture
elements of both sample mixing and local structure®®. To avoid over- or under-clustering, we
calculated silhouette coefficients across a wide range of resolutions (0.8-1.8). From this
benchmark, we found that rPCA achieved the best balance in terms of running time, batch
mixing and conservation of biological variation. This method also achieved the highest
clustering purity across all tested resolutions (Supplementary Fig. 1). Integration of libraries
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with rPCA vyielded a total of 118,578 high-quality cells and 41 Louvain clusters (Supplementary
Fig. 1).

Next, we used a combination of manual and automated annotation tools to label the broad cell
(level 1) and granular subtype (level 2) compartments. We defined level 1 annotations by
reprocessing and transferring cell type labels from the Tabula Sapiens (TS) vasculature single-
cell atlas®. We found that labels were assigned with remarkably high confidence
(Supplementary Fig. 2). These annotations were supported by the expression of well-
established marker genes in corresponding level 1 clusters (Fig. 2a-b) and confirmed that batch
effects had been properly removed while conserving biological variation.

We observed a balanced number of cells labeled as macrophages and endothelial cells across
studies. However, there were slightly more SMCs in Pan et al and T/NK cells in Alsaigh et al
and slight biases from small clusters (e.g., plasma cells, B cells) between studies (Fig. 2c). This
shows that individual studies may under-represent key cell types. We also observed
overrepresented fibroblasts from coronary datasets (Wirka et al and Hu et al), as expected
given the intact coronary vessel wall layers compared to carotid plaques (Fig. 2c). When
comparing cell type frequencies across disease status, we observed a greater proportion of B
cells, plasma cells and pDCs in lesion samples (Fig. 2c-d). Further, libraries from Alsaigh et al
had the highest proportion of T cells among all studies, consistent with the advanced stage of
the carotid lesions (Supplementary Fig. 2).

To further ensure the accuracy of our level 1 cell type annotations, we ran a differential
expression (DE) analysis to obtain cell type gene markers (Methods and Supplementary
Table 2). As expected, SMCs and endothelial cells (EC) were enriched for gene ontology (GO)
terms such as “muscle contraction” and “endothelium development”, respectively. We also
observed SMCs enriched for terms such as “extracellular matrix organization”, likely due to the
presence of phenotypically modulated SMCs that have acquired synthetic properties °.
(Supplementary Fig. 2, Supplementary Table 3). In contrast, myeloid and lymphoid clusters
were enriched for immune-related terms such as “antigen processing and presentation” and
“regulation of T cell activation” (Supplementary Fig. 2, Supplementary Table 3).

Defining candidate etiologic cell types for complex traits

Next, we identified etiologic cell types enriched for atherosclerosis-related traits using our level 1
cell type annotations. Briefly, we performed stratified LD score regression (S-LDSC) analysis®***
using GWAS summary statistics for cardiovascular disease (CVD) and non-CVD traits as
described®*'. To improve the specificity of GWAS enrichment per cell type, we first derived an
expression specificity matrix using SCTransform-normalized counts where each value (ES,)
represents the average of multiple differential expression metrics*? (Methods). SMC and
pericyte gene signatures were significantly enriched (FDR < 0.05) for CV traits such as pulse
pressure, CAD, and MI (Fig. 2e and Supplementary Table 4). On the other hand, EC
signatures were enriched for carotid plaque associations (Fig. 2e). Consistent with previous
studies®“**, we observed macrophages were highly enriched for Alzheimer’s disease and white
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blood cell count GWAS signals. We also found high enrichment of neurons for body mass index
(BMI). These findings highlight the value of integrating single-cell and human genetic data to
discover atherosclerosis trait-relevant cell types, such as SMC and ECs.

Defining cell subtype heterogeneity in human atherosclerosis

Next, we surveyed the 41 clusters using a combination of automated and manual annotation
(Methods). Manual annotations included markers of lymphoid, myeloid and endothelial cell
subtypes from the literature®'-2*#44°_ We then verified manual annotations using the CellTypist
machine learning classifier *° resulting in a more granular map of cell diversity in human
atherosclerosis (Fig. 3a). We summarize some of the most representative cell subpopulations
below:

Endothelial diversity: Within the endothelial compartment, we identified cells highly expressing
classical endothelial markers (PECAM1, CLDNS5) relative to neighboring clusters (Fig. 3a,
Supplementary Table 5). Expression of homeostatic EC marker genes such as RAMP2°") led
to the annotation of this cluster as “Intimal ECs”. We also identified a cluster of cells marked by
the upregulation of vasa vasorum genes such as ACKR1°? and angiogenesis-related genes
such as AQP1 and FABP4 55 | Adjacent to pro-angiogenic ECs, we identified a cluster marked
by elevated expression of chemokine and adhesion molecules (SELE, CCL2,) (Fig. 3a-b,
Supplementary Table 5), likely reflecting a pro-inflammatory state®. EndoMT ECs®” were
defined by the expression of ECM genes (COL1A2, FN1) and contractile genes
(Supplementary Table 5). Finally, we defined a small subcluster of lymphatic ECs based on
the expression of LYVET and CCL21%® (Fig. 3a-b, Supplementary Table 5).

Myeloid diversity: We identified a subset of myeloid cells, inflammatory macrophages, which
express known markers of inflammation (/L71B, TNF), characteristic of the polarized M1
macrophage state (Fig. 3a-b, Supplementary Table 5). We defined foamy macrophages
marked by high expression of lipid metabolism and lipoprotein uptake genes such as APOE and
FABPS5, along with a reduced inflammatory profile’>2"?3 (Fig. 3a-b, Supplementary Table 5).
We also identified resident macrophages (LYVE1, FOLRZ2), classical monocytes (S100A8,
S100A9, LYZ), and conventional dendritic cells (CD1C, CLEC10A)***°" (Fig. 3a-b,
Supplementary Table 5). Importantly, we resolved critical smaller myeloid populations
overlooked by previous individual human scRNA-seq datasets, including plasmacytoid dendritic
cells (pDCs)??%® and neutrophils (NAMPT, S100A8) (Fig. 3a-b). Consistent with myeloid cell
infiltration during atherosclerosis, we found that monocytes, foamy macrophages, and other
myeloid populations were substantially more prevalent in libraries from lesions (Fig. 2c).

Lymphoid diversity: Within the largest lymphoid cell compartment (T/NK), we identified Natural
Killer (NK) and several subpopulations of T cells. First, we identified a cluster of NK cells
defined by expression of XCL1, NKG7 and GNLY (Fig 2a-b). Expression of CD69, a classical
early activation marker of lymphocytes®, suggests this cluster contains activated NK cells (Fig.
2a, Supplementary Fig. 2 and Supplementary Table 5). We then defined populations of CD8
T cells based on expression of CD8A and CD8B (Fig. 2b and Supplementary Table 5) and
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found two CD8+ clusters with strong expression of chemokines and granzymes (CCL5, GZMK)
displaying variable expression of CD69 and IL7R (Supplementary Fig. 5), suggesting the
presence of early activated and memory/naive CD8 cytotoxic T cells (CTLs)%*¢. We also found
an adjacent CD8+ cluster expressing CD3E, NKG7, granzymes and GNLY lacking CD69
expression (Supplementary Fig. 2) which suggests terminally differentiated CTLs'®.
Additionally, we found 3 clusters of T cells lacking CD8 expression and showing subtle but
noticeable expression of the TFs RORyt and GATA3 (Supplementary Fig. 2), hallmark drivers
of Th17 and Th2 helper cells, respectively®’. We also found a T cell cluster with a more
concentrated expression of FoxP3, a master driver of regulatory T cells (Trg)?” (Supplementary
Fig. 2). Finally, we defined clusters of B cells (CD79A, CD79B) and plasma cells (IGLC2, IGHM,
JCHAIN). While all lymphoid populations showed larger frequencies in lesions, we found that B
cells, plasma cells and pDCs were highly depleted in non-lesion libraries (Supplementary Fig.
2).

Fibroblast diversity: Defining fibroblast diversity in atherosclerosis is particularly challenging
given the low specificity of widely used fibroblast markers*®. We found that most cells in this
compartment express traditional fibroblast ECM markers such as LUM and DCN
(Supplemental Table 5). We were able to dissect a subset of fibroblasts that upregulated the
contractile marker ACTAZ2 (Fig. 2b) as well as complement genes (C3 and C7). This subset
likely represents activated fibroblasts (myofibroblasts) known to adopt increased contractile,
ECM-producing, and pro-inflammatory states in response to injury or atherosclerotic stimuli*®*’.
Of note, we identified a group of cells within the fibroblast compartment strongly expressing
APOE in addition to the chemokine ligands CXCL12 and CXCL14 and complement genes,
which we term APOE fibroblasts (Supplemental Table 5).

Characterization of SMC phenotypes in human atherosclerosis

To refine the role of SMC phenotypes in our human scRNA reference, we performed gene set
enrichment of gene modules from a recent scRNA meta-analysis of murine vascular SMCs?.
First, we subset the full atlas to include only SMCs, pericytes and a subset of fibroblasts. We
then assessed enrichment of lineage-traced murine SMC gene modules on a per-cell basis
using the UCell R package (Methods)®®. This analysis showed a progressive loss of the murine
SMC contractile signature within a portion of the human subset, coincident with a gain in the
Lgals3+ transitional gene signature (Fig. 4a), supporting a transitional SMC signature in
humans. Further, we detected an enriched signature of the murine calcification-promoting
fibrochondrocytes distinct from non-SMC-derived fibroblasts (Fig. 4a). Cluster DE markers and
UCell module enrichment scores were used as a guide to annotate SMCs as contractile, ECM-
rich transitional SMCs, fibromyocytes and fibrochondrocytes (FCs) (Fig. 4b-c, Supplementary
Fig. 3, Supplementary Table 6).

We observed similar proportions of contractile, transitional ECM SMCs and fibromyocytes
across arterial beds and lesion status, consistent with previous reports®®. However, FCs
predominated in lesions compared to non-lesion samples (Supplementary Fig. 3), in line with
their role in calcification. The FC annotation was further supported by higher ES, values for
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SOX9 and RUNX2, known master regulators of SMC osteochondrogenic transitions’
(Supplementary Fig. 3). At a global level, SMCs, transitional SMCs, fibromyocytes, and FCs
were enriched for relevant biological processes thus validating our annotation approach
(Supplementary Fig. 3 and Supplementary Table 7). Interestingly, we also identified a cluster
enriched for a lipid metabolism transitional SMC gene signature (APOE, APOC1, AGT) (Fig. 4b-
¢, Supplementary Fig. 3, Supplementary Table 6), which we termed “foam-like” SMCs. These
cells also expressed ECM-remodeling genes such as TIMP1 and pro-inflammatory genes
CCL19, CCL2, IGFBP3, consistent with a potential role in leukocyte recruitment’”.

Finally, we leveraged these SMC labels to dissect the disease relevance of SMC modulated
phenotypes using S-LDSC. Fibromyocytes and foam-like SMCs were highly enriched for CAD
heritability, while fibromyocytes were enriched for MI and subclinical CAD traits (Fig. 4d and
Supplemental Table 8). In contrast, we observed FCs enriched for coronary artery calcification
(CAC) using our recent meta-analysis summary data’ (Fig 4d). This FC enrichment is
consistent with our understanding of the biology of CAC, but to our knowledge has not been
previously reported in any integrative single-cell and human genetic analysis.

Cell crosstalk in human atherosclerosis

We then dissected key cellular crosstalk from our level 1 and 2 annotations across lesion status
using CellChat™. We observed strong interactions between SMCs and fibroblasts in non-lesion
samples, while SMC and EC interactions with macrophages and T/NK were stronger in lesions
(Fig. 5a). Unexpectedly we observed tumor necrosis factor alpha (TNFa) and platelet-derived
growth factor (PDGF) signaling pathways were less represented in lesions (Fig. 5b), likely due
to the higher proportion of inflammatory macrophages in non-lesion samples from Hu et al.
While we did not find significant differences in information flow for these two pathways by lesion
status (Supplementary Table 9), tumor-necrosis factor-like weak inducer of apoptosis
(TWEAK) and osteopontin (SPP1) mediated signaling pathways were highly enriched in lesion
samples (Fig. 5b). TWEAK mediated interactions between SMC and monocyte/DC were also
greater compared to other myeloid subtypes (Supplementary Fig. 4). Signaling involving
osteopontin (SPP1)'*2", specifically targeted SMCs and was mostly driven by macrophage foam
cell clusters (Fig. 5¢). We subsequently used our SMC subtype annotations to further
understand interactions with myeloid populations (Fig. 5d). Among pathways where SMC
subtypes were noted as signaling targets, we found TGF-8, NOTCH, PDGF, granulin (GRN),
vascular cell adhesion molecule (VCAM), TWEAK and SPP1 signaling (Supplementary Table
10). Given TWEAK and SPP1 enrichment in lesions, we focused on these pathways and
observed more TWEAK mediated interactions between contractile/transitional SMCs with
distinct myeloid subtypes in lesion samples (Supplementary Fig. 4). We also found that
incoming SPP1 mediated signals from foamy macrophage cells (foamy mac1) specifically
targeted contractile and transitional SMCs (Fig. 5e). Finally, using ligand-receptor contribution
analyses, we found that cells expressing genes encoding SPP1 ligand preferentially signal via
the heterodimeric ITGA8/ITGB1 receptor (Fig. 5f).

Modeling SMC gene expression across pseudotime
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Current evidence suggests that SMCs transition into fibromyocytes/FCs through an Lgals3+
transitional state'®? . We modeled SMC de-differentiation via pseudotime analysis using
Monocle 37, in which we defined MYH11-expressing contractile SMCs as the starting point of
phenotypic modulation (Fig. 6a). This inferred trajectory revealed a branchpoint where
transitional SMCs could adopt either a fibromyocyte or FC fate (Fig. 6a). In addition, we
observed more FCs in lesion samples towards the latter pseudotime stages, consistent with
calcification in advanced lesions (Fig. 6a-b). Using differential expression and Louvain
community analysis (Methods), we identified modules specific to transitional SMC (Modules 5
and 10), fibromyocytes (Module 4) and FCs (Module 9) (Supplementary Fig. 5). Transitional
SMC modules harbored genes involved in early SMC investment in atherosclerotic lesions (e.g.,
LGALS3)®, as well as cell division and proliferation (e.g., TUBA1B and SIRT6)"®> and ECM
remodeling (e.g. KRT8 and SRARC) (Supplementary Fig. 5). As expected, fibromyocyte
module 4 included known markers (e.g., FN1, VCAN, COL4A1/2, PDGFRB) (Supplementary
Fig. 5). In contrast, the FC module 9 harbored chrondrocyte related genes such as BMP4 ™,
WISP2, and SPRY1"" in addition to known ECM genes LUM and DCN.

Next, we modeled the expression dynamics of our DE genes using cubic spline interpolation
across pseudotime. As expected, expression of canonical SMC contractile markers, MYH11 and
CNN1 sharply decreased across pseudotime (Fig 6c), whereas ACTA2 and TAGLN persisted
longer (Supplementary Fig. 5). Interestingly some fibromyocyte markers such as FN1, AEBP1
and LTBP1 showed a steady increase with adoption of the transitional state (Fig. 6c, upper
panel), while genes such as PDGFRB, were increased later suggesting a distinct role in the
fibromyocyte state (Fig. 6¢, upper panel). In parallel, we inspected FC markers from our
previous DE analysis (Supplementary Table 6) as well as genes from module 9 such as
MMP2. We observed a steady increase in expression of COL1A2 and MMP2, whereas IBSP,
CRTACT and COMP were increased at later pseudotime stages, presumably as transitional
SMCs adopt a FC fate (Fig. 6¢, lower panel).

TF activity inference analysis

We next investigated the upstream transcriptional factors driving cell specific expression
changes using TF activity inference with VIPER® and the DoRothEA collection of well-curated
and stable human regulons™. This analysis revealed known regulators of fibromyocytes and
FCs such as TCF21 and SOX9 (Fig. 6d) in addition to AP-1 (e.g., JUN, FOSL), TEAD, ETV and
ETS factors (Supplemental Fig. 5)%°. Interestingly, we observed increased regulon activity of
the TGF-B signaling mediator SMAD3 in fibromyocytes and FCs compared to contractile and
transitional SMCs (Fig. 6d). To confirm these results we interrogated our previously published
coronary artery snATAC-seq data®, analyzed using ArchR®'. Besides confirming increased
accessibility of AP1 factors, we found that accessible regions in the ECM-rich SMC cluster were
specifically and highly enriched for SMAD3 motifs compared to contractile SMCs
(Supplemental Fig. 5). This suggests that SMAD3 activity is critical as SMCs transdifferentiate
towards more synthetic phenotypes.
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CRTAC1 as candidate marker of FC and atherosclerosis progression

Given that arterial calcification is a major risk factor for clinical cardiovascular disease events
8283 \we further explored specific markers of FCs. Using the top FC marker genes, we found a
previously unreported marker of this cell type, cartilage acidic protein (CRTAC1) expressed 3-
fold higher relative to other SMC clusters (Fig. 4c, Supplementary Fig. 3, Supplemental Table
6). CRTACT has been previously established as a specific marker for human chondrocytes
during ossification’®®, and has been implicated in osteoarthritis®®. In the Genotype Tissue
Expression (GTEx) database, CRTAC1 showed highly arterial-specific expression compared to
other tissues (Supplementary fig. 6). We also observed expression in SMCs enriched for
murine FC gene signatures along with the calcification marker, IBSP*'° (Fig. 4a and Fig. 7a).
By comparing all co-expressed genes in contractile SMCs and FCs, we found that CRTAC1 was
positively correlated with known ECM markers (e.g., DCN and LUM) and other
osteochondrogenic markers (e.g., COL1A2, SOX9) and negatively correlated with canonical
SMC markers (e.g., MYH11, CNN1) (Fig. 7b). This suggests that expression of this gene in
SMCs is associated with loss of the SMC contractile phenotype and gain of pro-calcification
gene programs®®%’,

To further validate CRTAC1 as a potential marker of human atherosclerosis, we queried our
human coronary bulk RNA-seq and proteomics data as well as public datasets. Using coronary
arteries from a cohort of 45 individuals, we found that IBSP and CRTAC1 were significantly
upregulated in lesions compared to non-lesion samples (Fig. 7c). We also observed a
significant increase in CRTAC1 protein abundance in lesion samples (Fig. 7d). Consistently,
CRTACT was upregulated in unstable relative to stable carotid plaques in a published datase
(Fig. 7e), suggesting a potential role for CRTAC1 in calcification underlying plaque stability.
Next, we queried the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task
(STARNET) gene regulatory networks across seven cardiometabolic tissues®®. CRTAC1 was
identified as a significant key driver within its co-expression module (Supplementary table 11
and 12), which was highly associated with CAD genes, C-reactive protein (CRP), LDL
cholesterol (Fig. 7f), and enriched for “ossification” and “extracellular matrix organization” GO
terms, further suggesting a link to calcification (Supplementary table 13).

t88

To complement these expression-based analyses, we queried our coronary artery snATAC-seq
data. Differential analysis of chromatin accessibility in SMC and modulated SMC peaks
revealed increased chromatin accessibility near known fiboromyocyte and FC markers (TCF21,
RUNX2 and SOX9) (Supplementary Fig. 6). We also observed increased accessibility near
CRTAC1 and within a portion of modulated SMCs which overlapped increased SOX9 but not
RUNX?2 accessibility-derived gene activity (Supplementary Fig. 6), suggesting a chondrogenic
rather than osteoblastic transition. Together these findings strongly support CRTAC1 as a new
marker for atherosclerosis development and SMC modulation in humans.

Discussion

In this study we generated the first comprehensive single-cell transcriptomic atlas of human
atherosclerosis, encompassing 22 sequencing libraries (Supplementary Fig. 2) from 4 different
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studies’®"?, which included data from atherosclerotic coronary and carotid arteries. After

performing extensive QC and benchmarking of batch correction methods, we harmonized
118,578 high-quality cells for annotation and analysis. Using both automated cell annotation
and manual curation we defined major vascular and immune cells and subtypes, many of which
have not been previously identified from human atherosclerosis scRNA-seq studies. We further
performed heritability enrichment to define disease-relevant cell types, as well as cell-cell
communication and gene regulatory network inference to gain insights into atherosclerosis
mechanisms. Finally, we provide external and internal validation for a new marker of SMC-
derived FCs, CRTACT.

26,50

We showcase the discovery potential of this scRNA-seq reference by investigating SMC
phenotypic modulation in humans and identifying etiologic cell types in disease. Defining SMC
phenotypes in human lesions has been previously achieved by transferring labels from mouse
lineage tracing scRNA-seq studies'®2°. However, this restricts SMC annotations to murine-
defined labels, which may limit the discovery of human-specific disease markers. We addressed
this by instead using lineage-traced murine SMC genes for per-cell enrichment analysis of our
>30,000 mural cells prior to subclustering and differential marker discovery. Beyond
corroborating known SMC phenotypes reported in murine studies'®2°, this helped us uncover
rare transcriptomic SMC clusters including a “foam-like” state. This provides unbiased support
of previous in vitro and ex vivo studies reporting a SMC-derived foam-like phenotype upon
exposure to lipoproteins®®! and in human lesions®2. The lower abundance of these foam-like
SMCs in previous scRNA-seq studies could be due to their high sensitivity to single-cell
digestion protocols. These cells expressed lipid metabolism genes (e.g., APOE, APOC1) but no
other traditional macrophage markers, in line with previous findings®. Their expression of ECM
genes such as TIMP1 suggest SMC-derived foam cells may acquire a unique gene signature
from their monocyte-derived counterparts.

Our granular SMC annotations were also critical to define etiologic SMC phenotypes for
cardiovascular diseases and traits. Previous work from our group and others®™* has
established a substantial contribution of SMCs towards CAD risk. By leveraging larger cell
numbers, we further separated the SMC signal to prioritize fibromyocytes and foam-like SMCs
underlying cardiovascular diseases. Supporting the emerging role of fibromyocytes in plaque
stability’® we demonstrate enrichment for these cells in CAD and Ml risk. These heritability
analyses also linked SMC-derived FCs to coronary artery calcification, an established
pathological hallmark of subclinical and advanced atherosclerotic lesions®.

Though it has been shown that both fibromyocytes and FCs originate from SMCs'®2°% these
two ECM-rich phenotypes are postulated to play opposing roles in plaque stability® and their
exact lineage relationship is not well understood. Murine studies have previously suggested
fiboromyocytes are progenitors of FCs’". Using pseudotime analysis we revealed a branchpoint
where transitional SMCs could adopt either fibromyocyte or FC fates. This does not preclude
the possibility that fiboromyocytes could be primed to become FCs as suggested by Cheng et al.
Our TF activity inference results showed high SOX9 in FCs, but we also observed a gradient of
decreasing TCF21 and increasing SMADS activity from fibromyocytes to FCs, hinting at a
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fibromyocyte-FC transition. Due to limitations of pseudotime techniques, however, we note that
additional lineage-tracing experiments will be needed to address the plausibility of these two
lineage paths.

SMADS3 has been previously defined as a causal CAD GWAS gene and increased expression
levels are associated with elevated disease risk®*%, yet the precise role of this gene in human
SMC modulation is less understood. Previous studies suggest that SMAD3 antagonizes
atheroprotective TCF21 modulation activity, constraining SMCs from migrating to the lesion and
fibrous cap®®. Moreover, recent SMC-specific Smad3 KO mice resulted in increased proportions
of FCs at the expense of fibromyocytes’". Interestingly we observed increased SMAD3 motif
accessibility in ECM-rich SMCs (fibromyocytes and FCs) compared to contractile SMCs using
our combined human scRNA-seq based regulons and snATAC data. Although the specific role
of SMADS in osteochondrogenic SMC transitions has not been completely elucidated, TGF-3
signaling during atherosclerosis has been linked to increased calcification®® and Smad3 shown
to stimulate chondrogenesis in mesenchymal stem cells by enhancing Sox9 transcriptional
activity'®'"_ Given the versatility of SMAD3 co-activators and targets, we speculate that this TF
might play different roles along different stages of SMCs transition towards ECM-rich
phenotypes, but additional mechanistic studies will be required to fully address this possibility.

Our single-cell reference also provides further insights into the FC gene signature in
atherosclerotic lesions (Fig. 6b and Supplementary Fig. 3). Differential gene expression in
SMC subtypes identified CRTAC1 as a top, previously unreported FC marker. Our single-cell
analysis as well as in-house bulk coronary RNA-seq and proteomics data showed elevated
CRTAC1 in coronary lesions, which also correlated with osteochondrogenic markers such as
COMP and IBSP?**. While CRTAC1 was also upregulated in unstable carotid plaques®, its role
in plaque rupture is unknown. More exhaustive ex vivo and in vivo functional characterization is
required to pinpoint its role in diverse calcification phenotypes (e.g. micro/puncate vs.
macro/sheet-like)'**'% and plaque stages (e.g. thin-cap fibroatheromas vs. fibrocalcific
plaques).

There are known limitations of this study worth noting. Although non-lesion samples, as denoted
throughout this study, had no discernible lesions according to available histology data or clinical
CAD diagnosis'’, these arteries were extracted from patients with dilated cardiomyopathies
(DCM). Some of the most striking differences in cell type frequency we observed across lesion
status included a strong enrichment of foamy macrophages, monocytes, B cells, plasma cells,
pDCs and FCs in lesion compared to non-lesion libraries. This is consistent with the strong
immune landscape and development of calcification with atherosclerosis progression. Also,
while the higher representation of inflammatory macrophages in non-lesion libraries (Fig. 3c) is
unexpected, this could be potentially attributed to events such as subclinical diffuse intimal
thickening. We also acknowledge the potential over-simplification of our lesion status in our
group comparisons, which is less refined than in murine studies. Nonetheless, this represents a
valuable step forward given the limited metadata from published arterial samples in both healthy
and diseased individuals.
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Taken together, we provide a comprehensive map of cell diversity in human atherosclerosis
(Supplementary Fig. 7). With newly generated large-scale single-cell datasets, there will be a
need to address the variability of reported phenotypes and create a unified map of human
atherosclerosis. As demonstrated through GWAS meta-analyses, integrative analyses hold
promise in capturing more robust and subtle signals. We expect this atlas will represent the first
iteration of future references to build upon scientific discoveries and help annotate new single-
cell multi-omic datasets. Ultimately this will catalyze mechanistic and translational studies and
contribute towards developing novel therapeutic strategies for CAD.

Figures and Legends
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Fig. 1. General workflow of the study. Briefly, we collected human atherosclerosis scRNA-seq
libraries across four publications. Three of them originated from atherosclerotic lesions of
varying stages'®'®'® while one harbored samples that had no CAD diagnosis or discernable
lesions'”. We devised a pipeline for rigorous QC and processing of each scRNA library and
benchmarked four state-of-the-art batch-correction methods to find the integration approach that
best fit the included data. We then used Transfer learning as well as machine learning
classifiers and literature markers to define broad (level 1) and more granular (level 2) cell type
annotations across vascular and immune lineages. We also leveraged murine lineage-traced
smooth muscle cell (SMC) gene modules to identify modulated SMC populations in human data.
In addition to cell communication analyses and integration of GWAS data for identification of
etiologic cell types in disease, we further characterized modulated SMC phenotypes through
pseudotime inference, TF activity predictions and identification of candidate novel human-
specific gene markers. Details of scRNA-seq libraries QC and processing can be found in
Methods and Supplementary figures.
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Fig. 2. Integration of single cell data conserves major cell compartments in
atherosclerosis. (a) UMAP representation of 118,578 cells based on rPCA integration of 22
sequencing libraries. Dot colors depict broad cell lineage labels (level 1) defined through
Transfer learning with the TS vasculature subset as annotation reference. (b) Dot plot of top five
marker genes SCTransform-normalized expression by major cell lineage compartment. Dot size
represents the portion of cells expressing the gene per level 1 compartment. (c) Stacked bar
plot showing the distribution of level 1-annotated cells across included publications, arterial beds
(coronary, carotids), and lesion status (lesion, non-lesion). (d) Distribution of level 1-annotated
cells across lesion status in UMAP space. (e) Stratified LD Score Regression (S-LDSC)
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analyses prioritizing the contribution of level 1-annotated cell type to cardiovascular and non-
cardiovascular GWAS traits. LDSC analysis was carried out using a gene expression specificity
matrix generated with CELLEX 2. Large circles depict cells that passed the cutoff of FDR < 5%
at -log10(P) = 1.301.
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Fig. 3. Human atherosclerosis cell subpopulations (level 2) and distribution of myeloid
subtypes across disease status. (a) UMAP representation of cell subtypes (level 2 labels)
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2 labels were defined using a combination of the CellTypist classifier and survey of the
literature. (b) UMAP plots of genes delineating immun and non-immune cell subtypes.
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2 Myeloid cell subtypes according to lesion status. Frequencies for each subtype shown in the
bar plot are normalized to the total number of cells in each condition (lesion n=59691; non-

lesion n=58887) and shown as percentages.
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Fig. 4. Characterization of etiologic SMC phenotypes for cardiovascular traits and
diseases. (a) UCell enrichment of meta-analyzed SMC murine gene modules (Contractile,
Lgals3+ transitional, Fibrochondrocytes) and non-SMC-derived fibroblasts in the level 1 SMC
compartment as well as a Fibroblasts. UCell®® scores were calculated for each cell based on the
Mann-Whitney U statistic where higher scores depict a higher enrichment for the tested gene
signature. (b) UMAP embeddings of subclustered cells described in (a) SMC level 2 labels in
addition pericytes and a subset of Fibroblasts. Labels were defined using UCell scores as
reference for SMC differentiation state in addition to DE markers from Louvain clusters at a
resolution=0.9. (c) Dot plot representing top marker genes SCTransform-normalized expression
for SMC level 2 labels. Dot size represents the portion of cells expressing the gene. (d)
Stratified LD score regression (S-LDSC) analyses prioritizing the contribution of SMC
phenotypes, Pericytes and Fibroblasts to cardiovascular GWAS traits. Type 2 diabetes was
used as a negative control in this analysis. LDSC was carried out using a gene expression
specificity matrix for SMC clusters generated with CELLEX*2. Large circles depict cells that
passed the cutoff of FDR < 5% at -log10(P) = 1.301.
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Fig. 5. Summary of cell crosstalk in human atherosclerosis. (a) Circle plots depicting
aggregated cell-cell communication network for level 1-labeled cell compartments leveraging
the CellChat™ human database. Interactions considered include secreted signaling, ECM-
receptor and cell-cell contacts. Interactions were calculated separately across disease status
(lesion vs non-lesion). Top 30% of interactions are shown in the plot. (b) Stacked bar plot
showing conserved and disease status-specific signaling pathways. Signaling enrichment is
based on changes on pathways information flow (defined by the sum of communication
probability among all pairs of cell groups in the inferred network or total weights in the network).
Pathways in bold denote those that showed statistically significant (P < 0.05) enrichments in
each disease condition. (c¢) Circle plot depicting sources and targets for SPP1 signaling using
level 2 labels for myeloid cells and level 1 SMC labels. (d) Circle plot showing the aggregated
cell-cell communication network for level 2 Myeloid and SMC labels. Top 15% of interactions
are shown in the plot. (e) Circle plot depicting SPP1 signaling sources and targets for level 2
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Myeloid and SMC labels. (f) Bar plot showing the relative contribution of each ligand-receptor
pair for SPP1 signaling. Width of the edges in the circle plot depicts the weight/strength of the
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Fig. 6. Pseudotime and TF inference activity for ECM-rich SMC phenotypes. (a) UMAP
embeddings showing supervised pseudotime trajectory from Contractile to modulated SMCs
calculated with Monocle 37*. SMC phenotypes for this analysis included contractile, transitional
SMCs, fibromyocytes and fibrochondrocytes (FCs). The numbered circle depicts the root of the
trajectory, which was defined as the subset of Contractile SMCs with highest MYH11
expression. (b) Pseudotime trajectory with SMCs grouped according to lesion status. Inset plot
depicts the density of cells from lesions and non-lesion libraries across pseudotime. (¢) Cubic
spline interpolation of SCTransform-normalized gene expression as a function of pseudotime.
Genes plotted include hits from Monocle 3 and Seurat DE tests (FDR < 0.05). DE genes from
SMC to fibromyocyte trajectory: FN1, LGALS3, AEBP1, LTBP1, PDGFRB. DE genes from SMC
to FC trajectory: COL1A2, IBSP, CRTAC1, COMP, MMP2. (d) Transcription factor (TF) activity
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prediction with VIPER"® based on DoRothEA regulons for contractile and ECM-rich SMC
phenotypes. Only regulons with confidence scores A-C (based on the number of supporting
evidence) were used for this analysis. Highly variable TFs were selected for plotting and scale
indicates relative predicted activity per TF.
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Fig. 7. CRTAC1 as a novel candidate marker of atherosclerosis progression. (a) UMAP
embeddings for SCTransformed normalized expression of CRTAC1. UMAP of cells highly
enriched for the murine FC gene signature is shown as reference for the location of human FCs.
IBSP is used as a control marker of calcification. (b) Pearson correlation plot of CRTAC1 with
every other gene across SMCs and FC clusters. Selected examples of canonical contractile and
ECM-related genes regulated during SMC modulation are shown. (¢) Bulk RNA-seq expression
of CRTAC1 and IBSP in coronary arteries from healthy (n=27) and diseased samples (n=21).
Data points represent normalized expression counts (TPMs). P values were calculated using a
non-parametric Wilcoxon rank sum test. (d) Log-normalized protein expression of CRTAC1 in
category 1 (n=27) and 3 (n=29) disease samples. For details in definition of disease category
(Methods). P value was calculated using a parametric unpaired Student’s T-test. Boxplots in (c)
and (d) represent the median and the inter-quartile (IQR) range with upper (75%) and lower
(25%) quartiles shown, and each dot represents a separate individual. (e) Dot plot showing
normalized expression (FPKMs) from a public RNA-seq dataset of human fresh carotid lesions.
Dots of the same color represent matched patient (n=4) samples of stable and unstable plaque
regions (stable, n=4; unstable, n=4). (f) Clinical trait enrichment for CRTAC 1-containing module
in a subclinical mammary artery in STARNET gene regulatory network datasets. Pearson’s
correlation P values (gene-level) were aggregated for each co-expression module using a two-
sided Fisher’s exact test. Case/control differential gene expression (DEG) enrichment was
estimated by a hypergeometric test.
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Supplementary Fig. 1. scRNA processing pipeline and integration benchmark metrics. (a)
Workflow for standardizing processing of each scRNA-seq library and integration. Doublets
were first identified and removed using scDblIFinder'®. Upon doublet removal, ambient RNA
was removed using decontX®. The decontaminated matrix was then used for downstream
filtering of cells based on 1) number of detected genes 2) number of UMIs 3) percentage of
reads mapping to mitochondrial genome 4) percentage of reads mapping to hemoglobin genes
using Seurat ?°. Libraries were normalized using SCTransform?’ integrated using four
approaches (CCA + MNN, rPCA %, Harmony *!, Scanorama *?). PCA embeddings from each
approach were then used for measuring LISI scores and silhouette coefficients. Finally, rPCA
was used to harmonize the 22 included sequencing libraries and level 1 labels were added
using Transfer learning with the Tabula Sapiens Vasculature subset as reference. (b) UMAP
embeddings of a representative library before and after going through the scRNA-seq
processing pipeline. (¢) Running time of each of the four integration approaches tested. The Y
axis shows time in minutes. (d) Mean integration LISI (iLISI) scores calculated for each
integration approach. Higher iLISI scores depict improved mixing and batch removal. (e) Mean
cell type LISI (cLISI) calculated for each integration approach. Lower cLISI scores represent
increased biological conservation. (f) Mean silhouette coefficients calculated for each integration
approach. Silhouette coefficients were calculated using euclidean distances across a range of
clustering resolutions (0.8-1.8) to determine optimal clustering resolutions. Silhouette scores
range from (-1, 1) where higher scores depict improved clustering quality or purity. PCA
embeddings (30 PCs) were used for calculation of metrics in (d-g). Visual inspection of batch
removal through UMAPs for the 41 Louvain clusters generated after integration with rPCA and
cells grouped by the “Study” variable. For additional details on processing and benchmark see
Methods.
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Supplementary Fig. 2. Additional characterization of level 1 and level 2 cell type
annotations. (a) Confidence scores from predicted labels using the Seurat Transfer learning
classifier with the TS vasculature reference. Confidence scores range from 0-1 where higher
scores refer to unambiguous calls. (b) Gene set enrichment analysis (GSEA) for level 1
annotated cell types. This analysis was carried out with gProfiler2'% and the top seven
significantly enriched terms (FDR <0.05) were selected for plotting. (¢) Bar plot showing the
distribution of level 1 annotated cell types across the 22 sequencing libraries included in this
study. (d) UMAPs of SCTransform-normalized expression of genes defining key T cell states
and subtypes (CD69: early activation; RORC: Th+7 cells; GATAS3: Th cells; SELL and IL7R:
memory/naive T cells. (e) UMAP and bar plot of level 2 Lymphoid cell subtypes according to
lesion status. Frequencies for each subtype shown in the bar plot are normalized to the total
number of cells in each condition (lesion n=59691; non-lesion n=58887) and shown as
percentages.
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Supplementary Fig. 3. Additional characterization of SMC subtypes. (a) Barplot depicting
silhouette analysis using PCA embeddings for reference subset (SMCs, Pericytes and
Fibroblasts). As before, silhouette coefficients were calculated across a range of resolutions to
find optimal parameters for subclustering. Silhouette scores range from (-1, 1) where higher
scores depict improved clustering quality or purity. (b) Stacked bar plot showing the distribution
of level 2 annotations for SMCs (as well as Pericytes and Fibroblasts included in the
subclustering step across studies, arterial beds (Coronary or Carotid) and sample disease
status (lesion and non-lesion). (¢) Dot plot showing ES, values for canonical contractile markers
(MYOCD, CNN1, ACTA2) as well as synthetic (TNFRSF11B) and osteochondrogenic markers
(RUNX2, SOX9, IBSP) of SMC modulation for Contractile and ECM-rich SMC phenotypes
(Fibromyocytes and FCs). ES, values were plotted from a gene expression specificity matrix
generated with CELLEX*. For additional details on ES, values see Methods. (d) Gene set
enrichment analysis (GSEA) for level 2 annotated SMCs. This analysis was carried out with
gProfiler2'® and the top nine significantly enriched terms (FDR < 0.05) were selected for
plotting.
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TWEAK signaling network In lesions

Supplementary Fig. 4. TWEAK signaling for myeloid and SMC cell types. Circle plot
depicting sources and targets for TWEAK signaling using level 2 labels for myeloid cells and
level 1 SMC labels. Circle plot within the square depicts TWEAK signaling using level 2 labels
for myeloid and SMC labels. Width of the edges depicts weight or strength of the interaction
based on calculated communication probability between a pair of cell types. Interactions were
calculated using the CellChat’® human database.
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Supplementary Fig. 5. Differential gene expression through pseudotime and snATAC-seq
TF activity inference. (a) Heatmap of varying gene module expression as Contractile SMCs
transition into ECM-rich phenotypes (fiboromyocytes and FCs). Differential genes across
pseudotime were calculated using graph autocorrelation analysis with Monocle 3 and then
grouped into modules using Louvain community analysis. Color scale represents aggregated
expression of genes in each module across the above-mentioned SMC phenotypes. Boxes
(right) list key genes found in each module. (b) Cubic spline interpolation of SCTransform-
normalized expression of canonical contractile markers (LMOD1, MYH11, ACTA2, TAGLN) as a
function of pseudotime. (¢) UMAP and Louvain clustering of coronary arteries snATAC-seq
data. Each dot represents an individual cell colored by cluster assignment. Cell type labels in
bold represent Contractile and ECM-rich modulated SMC populations as defined in Turner et al
8, (d) UMAPs of ChromVAR TF motif accessibility deviation scores for factors shown as highly
variable in previous SMC analysis with DoRothEA regulons (SRF, TEAD4, SMAD3, FOSL1,
JUN).
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Supplementary Fig. 6. External validation for CRTAC1 activity in arteries and SMCs. (a)
Violin plot showing Expression expression across GTEX tissues (sorted according to normalized
expression). The Y axis shows log-normalized expression values (TPMs) and violin plot shows
median as well as inter-quartile (IQR) range with upper (75%) and lower (25%) quartiles. Dots
represent outliers. (b) Volcano plot of differential accessibility analysis comparing ECM-rich
Modulated to Contractile SMCs. Analysis was carried out using a Wilcoxon test as implemented

in ArchR®¥'. Peaks with significant differences at FDR<0.05 and log, fold change > 1 were

colored red (Modulated SMC upregulated) and blue (Modulated SMC downregulated). Each dot
represents a differentially accesible region. Regions were annotated with the nearest protein
coding genes using GenomicRanges'” and key contractile and modulated SMC genes are
shown. (¢) UMAP plots of snATAC-seq cells colored according to accessibility-derived gene
scores (Methods) for canonical contractile factors (MYOCD) as well as modulated SMC ECM
and osteochondrogenic markers (VCAN, SOX9, CRTAC1). CRTAC1 gene scores are elevated
within a position of the Modulated SMC cluster and overlap with higher SOX9 activity,
suggesting a chondrogenic transition.
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Supplementary Fig. 7. Summary of cell type diversity in human atherosclerosis. Riverplot
depicting the relationship between level 1 cell compartments and level 2 cell subtypes for
vascular and immune lineages. This plot was generated using the ggalluvial R package.
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Methods
Ethics statement

Details regarding data collection for scRNA-samples included in this meta-analysis can be found
in each publication'®"°. Collection of coronary artery samples for bulk RNA-seq and proteomics
data generation described in this manuscript complies with ethical guidelines for human
subjects research under approved Institutional Review Board (IRB) protocols at Stanford
University (no. 4237 and no. 11925) and the University of Virginia (no. 20008), for the
procurement and use of human tissues and information, respectively.

QC and normalization of scRNA-seq sequencing libraries

Raw count matrices from each library across the 4 studies were downloaded from GEO and
Zenodo (Data Availability, Supplementary Table 1). Processing for each of the 22 sequencing
libraries was standardized in the following manner: Each library was loaded into the R
programming environment (v.4.0.3) using Seurat®® (v.4.1.0). For each library we did a first pass
of clustering with SCTransform normalization?” without removing low-quality cells.

In order to remove doublets, we referred to a recent benchmark of doublet-removal tools'*® and
chose the scDbIFinder R package'® (v.1.4.0) given its superior accuracy compared to other
tools. Seurat objects for each library were converted to SingleCellExperiment objects and used
as input to generate artificial doublets using the cluster-based modality of scDblFinder. Briefly,
scDblIFinder creates a K-Nearest Neighbors graph using the union of real cells and artificial
doublets and estimates the density of artificial doublets in the neighborhood of each cell. Since
artificial-doublet generation approaches tend to display slight variance across different runs, we
only kept consensus doublets from 3 iterations of the above-described process. Cell-barcodes
that were marked as doublets were then removed from each raw counts matrix.

Ambient RNA contamination is a key issue during 10x protocols and can negatively impact
clustering and extraction of gene markers. To filter out reads from ambient RNA, we ran
DecontX? within the celda R package (v1.6.1) in doublets-filtered raw counts matrices using
default parameters. The decontaminated raw count matrices output by DecontX were then
added into each Seurat object. We then set quality filters to keep cells that had 1) >= 200 and
<= 4000 uniquely expressed genes 2) >= 200 and <= 20000 UMIs 3) <= 10% of reads mapped
to the mitochondrial genome; cells with high percentages of reads mapped to mitochondrial
genomes are considered to be low quality as this indicates cell membrane breaches and 4) <=
5% of reads mapped to hemoglobin genes since these cells likely depict contaminating
erythrocytes as done in Alencar et al.

Raw count matrices were then normalized using SCTransform?’ with parameter (vst.flavor=v2),
which accounts for sequencing depth variability across cells. This omits the need for heuristic
steps such as log-transformation and it has been shown to improve variable gene selection,
dimensionality reduction and differential expression®’. To avoid clustering results confounded by
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cell cycle state, cell cycle variance was regressed out during SCTransform normalization. We
then carried out dimensionality reduction of the normalized counts matrix using PCA. The first
30 principal components (PCs) were used as input for clustering in Seurat, which relies on a
Shared-Nearest-Neighbors (SNN) and Louvain community detection approach. We then applied
Uniform Manifold Approximation and Projection (UMAP) non-linear dimensionality reduction
using the first 30 PCs. UMAP embeddings were used for visualization of Louvain clustering
results. Processed matrices were then stored as seurat objects for batch-correction.

Integration benchmarking and building the reference

In order to harmonize processed sequencing libraries, we selected the following methods
recommended from three recent benchmarks?®2%1% of single-cell transcriptomic data
integration: Canonical Correlation Analysis + Mutual Nearest Neighbors (CCA + MNN),
reciprocal PCA (rPCA)* (v.4.1.0), Harmony®' (v.1.0) and Scanorama® (v.1.7.1). We focused on
four different metrics to choose a method: running time, efficiency of batch effect removal as
denoted by the integrative Inverse Local Simpson Index (iLISI), conservation of biological
variation using the “cell type” LISI (cLISI) and clustering purity measured by silhouette
coefficients. The silhouette score provides a measure of how well each cell has been classified
by measuring how similar it is to its own cluster (cohesion) compared to other clusters
(separation). For the benchmark, we used a subset of the data including 3 studies: Wirka et al,
Alsaigh et al and Pan et al. Libraries from these studies were integrated as follows:

CCA + MNN: we created a list of selected Seurat objects and then selected 3000 highly variable
genes. Integration with those variable genes was done using the PrepSCTIntegration(),
FindIntegrationAnchors() and IntegrateData() functions. The batch-corrected expression matrix
was then used for PCA dimensionality reduction, creation of the shared-nearest-neighbors
(SNN) graph using 30 PCs and visualization with UMAP embeddings.

Harmony: libraries were first stored into a list and highly variable genes extracted using the
function SelectintegrationFeatures(). Libraries were merged into a single seurat object, and the
list of highly variable genes was used for PCA dimensionality reduction. We used the first 30
PCs as input for RunHarmony() from the harmony package (v1.0), setting sequencing libraries
(sample column in metadata) as the variables to correct for batch effects. Harmony embeddings
were used for subsequent generation of the SNN graph, Louvain clustering and visualization
with UMAP by setting reduction="Harmony” within the FindNeighbors() and RunUMAP() Seurat
functions and using the first 30 PCs.

rPCA: we created a list of processed Seurat objects and extracted the 3000 most highly variable
genes using SelectintegrationFeatures(). We then ran PCA across each library using the 3000
variable genes, identified integration anchors using FindIntegrationAnchors() setting
reduction="rpca” and harmonized datasets using IntegrateData(). As done for CCA, the batch-
corrected expression matrix was then used for PCA dimensionality reduction, creation of the
shared-nearest-neighbors (SNN) graph using 30 PCs and Louvain clustering followed by
visualization with UMAP embeddings.
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Scanorama: We used the reticulate R package (v.1.18) to import the Scanorama python module
(v.1.7.1) into the R environment. We created a list with seurat objects containing the datasets to
be integrated and stored normalized SCTransform-normalized counts and gene names for each
dataset into a new list. We then batch corrected the data using the function using the correct()
function from the Scanorama package setting the following parameters (return_dimred=TRUE
and reurn_dense=TRUE). The batch-corrected expression matrix output by correct() was used
to create a new Seurat object and Scanorama-produced dimensionality reduced embeddings
were inserted into the Seurat object using the CreateDimReducObject() function. Scanorama
embeddings were subsequently used to create a shared-nearest-neighbors (SNN) graph for
Louvain clustering and for visulaization with UMAP using the first 30 PCs.

Running time measurements:Running times for each integration task were then measured using
base R Sys.time() functions. Sys.time() was defined at the beginning and the end of each
integration task and then the time difference was calculated as end_time - start_time.

Silhouette analysis: Here we measured the quality or “goodness” of resulting clusters using the
silhouette coefficient. For silhouette analyses, we extracted PCA embeddings from seurat
objects with CCA+MNN, rPCA, Harmony and Scanorama integration outputs keeping the first
30 PCs. We then used these embeddings to compute an Euclidean distance matrix. Cluster IDs
for each cell were obtained iteratively across a range of clustering resolutions (0.8-1.8) and
Euclidean distance matrices were used to calculate silhouette width values using the cluster R
package (v.2.1.0). The purpose of using the above range was to control for the clustering
granularity parameter and to identify a range of clustering resolutions that would not lead to
over- or under-clustering of the data.

Calculation of LISI scores: Briefly, iLISI scores are a measure of the diversity within each cell
neighborhood on a K-nearest-neighbor (KNN) graph. Higher iLISI scores depict increased
mixing of batches within a cell neighborhood and therefore suggest improved removal of batch
effects. For each of the integration methods described above we extracted PCA embeddings
(30 first PCs) from the corresponding integrated Seurat object. We then created a data frame
with each row corresponding to one cell and columns depicting batch variables (“Study”). We
then computed iLISI scores for each cell using the compute_lisi() function from the lisi R
package®' (v.1.0). Mean iLISI values were plotted and compared across different integration
methods. cLISI scores, in turn, are considered a metric that measures conservation of biological
variation. With the assumption that each cluster should generally harbor cells from the same
type, we created a dataframe with each row corresponding to each cell and a column depicting
Louvain cluster identities. cLISI scores for each cell were calculated and plotted as described
above.

Integration of scRNA libraries and additional quality control: Upon determining the appropriate
integration approach for the datasets of interest, we used rPCA to harmonize the 22 sequencing
libraries as described in the above section. Upon integrating libraries, we reduced
dimensionality of the data using PCA. A SNN graph was constructed using 50 nearest
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neighbors and the first 30 PCs as input. Clusters were identified using the above graph with a
resolution of 1, which was within the range of higher mean silhouette coefficients from the
previous benchmark. Gene markers for each cluster were identified using PrepSCTMarkers()
and the Wilcoxon Rank Sum test as implemented in the FindAlIMarkers() function from Seurat
(v.4.0). We considered genes that were expressed in at least 25% of the clusters being
compared (one cluster vs all others) and that had a logfc.threshold=0.25. Genes fulfilling that
criteria in addition to having multiple-testing adjusted P-values <= 0.05 were considered as
differential cluster markers. Upon inspection of the gene signatures of each cluster, we found
two small clusters comprising 432 cells (0.36% of cells in the integrated reference) expressing
markers of multiple major lineages, which likely represent residual doublets and thus were
removed from the reference. Upon removing these residual doublets, cells were re-clustered
using the above-described parameters. Finally, inspection of cluster markers expression in
UMAP space allowed us to identify and remove UMAP artifacts (e.g., cells with Natural Killer
signatures within candidate fibroblast clusters). The 306 cells (0.25% of cells in the reference)
comprising these artifacts were removed to obtain the final iteration of the reference. This step
was necessary to ensure robustness of cell type and subtype annotations as well as other
downstream analyses.

Cell type annotations

To annotate cell types in the integrated reference, we used a systematic approach to define
broad labels (level 1) as well as more granular cell subtype labels (level 2).

Level 1 annotations: To define broad cell type partitions, we accessed public data from the
Tabula Sapiens (TS) consortium (https://tabula-sapiens-portal.ds.czbiohub.org/organs). To
improve the specificity of annotations, we downloaded the vasculature subset of this
transcriptomic atlas. Upon downloading the TS vaculature h5ad file, this dataset was converted
into a Seurat-compatible format using the SeuratDisk R package (v.0.0.0.9019). To match the
normalization workflow described in the scRNA sequencing library processing section, we
extracted the TS vasculature raw counts matrix and normalized gene expression data using
SCTransform. We then applied Seurat’s reference-based transfer learning (using
FindIntegrationAnchors() and TransferData() to annotate cells in our meta-analyzed reference.
In this case, the TS vasculature seurat object with author-provided cell type annotations was
defined as reference for label transfer. Confidence scores of predicted labels ranging from 0-1
(where 1 indicates that labels were annotated in a fully unambiguous manner) were extracted
from the output of TransferData() and are shown in the Data Supplement. Gene markers for
level 1 annotations were obtained using the PrepSCTMarkers() and FindAllIMarkers() functions
from Seurat (v.4.1.0) setting the following thresholds: logFC=0.25 and min.pct=0.25

Level 2 annotations for endothelial, fibroblasts and immune cells: To define more granular cell
subtypes for the meta-analyzed data, we used a combination of automated and manual
annotations. We first annotated cell subtypes for endothelial, myeloid and lymphoid lineages
using markers from atherosclerosis murine scRNA meta-analyses of SMCs and immune cells
as well as relevant human atherosclerosis scRNA studies?'2*#49 Annotations using curated

33


https://doi.org/10.1101/2022.10.24.513520
http://creativecommons.org/licenses/by-nc-nd/4.0/

0O ~NO Ok, WN -

A A DB DR OOWWWWWWWWNDNDNDDNDNDDNDNDNDDNDNDN=_2 =22 A QA A A A A
A OWON-_O0COO0ONOOODAPRPRWON OO NOOOAOPRLPWON_~OCCOONOOOOGOPR,WOWN-~OO

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.24.513520; this version posted October 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

markers from the literature were corroborated with the assistance of experts at UVA. To further
confirm and inspect immune cell subtype annotations in our reference, we used a logistic-
regression with stochastic gradient-descent framework implemented by the command-line tool
CellTypist *°. CellTypist leverages a database of 20 different tissues and 19 reference datasets
with a focus on myeloid and lymphoid cells. Specifically, we applied CellTypist low-hierarchy
classifiers (using the Immune_All_Low.pkl and Immune_All_AddPIP.pkl models which harbor 90
and 101 cell types, respectively) to our SCT-normalized reference counts matrix using both
default settings as well as the majority voting classifier. Gene markers for level 2 annotations
were obtained using the PrepSCTMarkers() and FindAlIMarkers() functions from Seurat
(v.4.1.0) setting the following thresholds: logFC=0.25 and min.pct=0.25

Level 2 annotations for SMCs: To explore SMC diversity in human atherosclerosis, we subset
the main meta-analyzed reference to include only the pericyte-SMC-fibroblast level1 partitions.
This subset was then reclustered using Seurat (v.4.0) with a resolution of 0.9 based on an
additional silhouette width benchmark. Next, gene modules (encompassing top markers from
differential expression analyses) specific to contractile (n=50), Lgals3+ pioneer (n=50), and
fibrochondrocyte (n=50) SMC phenotypes were extracted from a recent SMC lineage-traced
murine scRNA meta-analysis. We also extracted a non-SMC-derived fibroblast module (n=50)
as a negative enrichment control. Genes in each module were ranked by Log2FC and then
converted to human homologs nomenclature and filtered to keep those with a one-to-one
orthology relationship using custom wrapper functions with the biomaRt R package'"® (v.2.46).
We then calculated the enrichment of murine gene modules on individual cells within the
pericyte-SMC-Fibroblast human subset using the UCell R package® (v1.3.1) . In addition to the
enrichment of murine gene modules, we also obtained gene markers for each of the 17 SNN-
derived clusters using the PrepSCTMarkers() and FindAlIMarkers() functions from Seurat
(v.4.1.0) setting the following thresholds: logFC=0.25 and min.pct=0.1. Final annotations for
SMC subtypes were derived based on the UCell enrichment scores along UMAP coordinates
and cluster markers.

LD score regression analyses

LDSC for SMC level 1 cell type annotations: Integration of sScRNA and GWAS summary
statistics was performed using the LDSC wrapper within the CELLECT python pipeline*?. First,
we created a gene expression specificity matrix for level 1 annotations using the SCTransform-
normalized expression matrix as input for the CELLEX python pipeline*2. Shortly, gene
expression specificity values (ES,) output by CELLEX are derived using four different
expression specificity metrics (Differential expression T-statistic, Gene enrichment score,
Expression proportion and Normalized specificity index) and they represent a score that a gene
is specifically expressed on a given cell type (level 1 annotation).

36.

We downloaded GWAS summary statistics for: CAD (van der Harst et al)*°; Myocardial
infarction®; carotid intima-media thickness®, carotid artery plaques®®, diastolic blood pressure,
systolic blood pressure and pulse pressure from the Million Veterans Program *°; Alzheimer
disease*’; type 2 diabetes (UK Biobank)*'; body mass index (UK Biobank)*'; White blood cell
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count (UK Biobank)*'. UK Biobank summary statistics were downloaded from
https://alkesgroup.broadinstitute.org/UKBB/.

We used custom R scripts (https://github.com/MillerLab-CPHG/Human_athero _scRNA meta)
as well as the provided mtag_munge.py python script
(https://qgithub.com/pascaltimshel/ldsc/tree/d869cfd 1e9fe1abc03b65c00b8a672bd530d0617) to
convert GWAS summary statistics to a format compatible with that of the CELLECT S-LDSC
wrapper. We then performed S-LDSC with the gene expression specificity matrix for level 1
annotations across the above described GWAS studies using the established CELLECT
snakemake workflow as shown in https://github.com/perslab/CELLECT/wiki/CELLECT-LDSC-
Tutorial.

LDSC for SMC level 2 cell type annotations: We proceeded to subset the whole meta-analyzed
reference Seurat object to include only cells along the pericyte-SMC-Fibroblast partitions.
Metadata of this subset were used to generate the gene expression specificity matrix for level 2
annotations. In addition to GWAS studies described above, we also included summary statistics
from our recent Coronary Artery Calcification (CAC) multi-ancestry GWAS meta-analysis’.
Munging of GWAS summary statistics and subsequent S-LDSC analyses were performed as
described above.

Cell communication analyses

Cell communication analyses were carried out using the Cellchat R package’ (v.1.5.0). We
selected the CellChat human database (Interactions considered include secreted signaling,
ECM-receptor and cell-cell contacts). First, we extracted SCTransform-normalized counts from
the integrated Seurat object. For the first round of analyses, we separated cells from each
disease status (lesion and non-lesion) and grouped them according to level 1 labels. We
created a ‘Cellchat’ object for matrices from each disease status using the createCellChat()
function. We subsequently identified overexpressed genes in each condition using the
identifyOverExpressedIinteractions(). Communication probabilities were estimated with
computeCommunProb() and aggregated cell communication networks calculated with the
aggregateNet() function. We then merged lesion and non-lesion cellchat objects using the
mergeCellChat() function. In order to identify pathways between Myeloid cells and SMCs that
were enriched in each condition compared to the other, we input the merged ‘Cellchat’ object to
the function rankNet() with parameters (mode="comparison, sources.use="Macrophage”,
targets.use="SMC”). Significantly enriched pathways were denoted as those with P<0.05. To
further explore differentially enriched pathways with increased granularity, we created a new
‘CellChat’ object using normalized counts from Macrophages and SMCs from lesions and
grouped them using their respective level 2 annotations. We computed communication
probabilities and aggregated cell communication networks as described above. Circle plots for
specific signaling pathways were generated with the netvisualAggregate() function. The top 30%
of interactions (based on interaction weights/strength from computed communication probability)
were used for plotting interactions between level 1-annotated cell types. Given that we had a
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larger number of cell types when deriving networks with level 2 labels, we chose to plot the top
15% of interactions.

Pseudotime analyses for SMCs

Cells within the pericyte-SMC-fibroblast axis were subset to contain only contractile SMCs,
transitional-ECM-SMCs, fibromyocytes and fibrochondrocytes. Single cell transcriptomic
pseudotime analyses were performed using monocle3™ (v1.0.0). Given that gene expression
within this subset was normalized, the SCTransform-normalized expression matrix and
corresponding metadata were extracted from the corresponding seurat object. Metadata and
SCT counts were used to create a ‘cell_data_set’ object. To preserve clustering structure from
previous analyses, we also extracted PCA/UMAP embeddings, cluster IDs and cell type
annotations from the processed seurat object and inserted those into the corresponding slots of
the ‘cell_data_set’ object. A trajectory was then inferred using the learn_graph() and
order_cells() functions setting contractile SMCs with the highest expression of MYH11 as the
root of the trajectory. DEG across the trajectory were calculated with grapth_test() and grouped
into modules using the find_gene_modules() function. To model gene expression dynamics
across pseudotime, we extracted pseudotime assignment values for each cell in the trajectory
as well as SCTransform-normalized expression values and cell type annotations from the
‘cell_data_set’ object. We then wrote a custom script to plot gene expression changes as a
function of pseudotime where we applied cubic spline interpolation to expression values using
the geom_smooth() function with parameters (method=“Im”, formula =y ~ splines::ns(x, 3)).

TF activity inference using DorothEA regulons

For inference of TF activity, we also used a subset of the main reference only including SMCs,
transitional SMCs, fibromyocytes and FCs. We downloaded a collection of curated TF regulons
from the DoRothEA R package™ (v.1.8.0). We accessed human regulons using the
dorothea_hs() function and only kept those with A, B and C confident scores for a more
accurate prediction of regulon activity on each cell. Confidence scores had been previously
defined based on the number of supporting evidence for each regulon’. TF activities for each
cell were then estimated with the R package VIPER (v.1.24.0)"® providing the list of filtered
regulons and the processed seurat object as input. Mean TF activities were then calculated
across the SMC annotations of interest and the most variable TFs were selected for plotting.

Human coronary artery tissue procurement

Freshly explanted hearts from orthopedic heart transplant recipients were obtained at Stanford
University under approved Institutional Review Board (IRB) protocols with the respective
informed consents. Hearts were arrested in cardioplegic solution and rapidly transported from
the operating room to adjacent laboratory on ice. The proximal 5-6 cm of three major coronary
arteries (LAD, LCX, RCA) were dissected from the epicardium, trimmed of surrounding adipose,
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rinsed in cold PBS and snap-frozen in liquid nitrogen. Human coronary artery tissue
biospecimens were also obtained at Stanford University from non-diseased donor hearts
rejected for orthotopic heart transplantation and processed following the same protocol as
hearts for transplant. Reasons for rejected hearts included size incompatibility, risk for
cardiotoxicity or comorbidities. Tissues were de-identified and clinical and histopathology
information was used to classify ischemic, non-ischemic hearts and lesion and non-lesion
containing arteries. All normal arteries originated from hearts with left ventricular ejection
fraction (LVEF) greater than 50%. Frozen tissues were transferred to the University of Virginia
through a material transfer agreement and IRB approved protocols.

Coronary artery snATAC-seq tissue processing and data analysis

Coronary artery samples processing and nuclei isolation for snATAC: We performed snATAC-
seq on four coronary artery samples per day. Nuclei isolation was done using a similar protocol
to Omni-ATAC, which has been optimized for frozen tissues. Using approximately 50 mg of
tissue per sample, we set the iodixanol gradient and then carefully took the band containing the
nuclei. Nuclei was then added to 1.3 ml of cold Nuclei Wash Buffer (10 mM Tris-HCI (pH 7.4),
10 mM NaCl, 3mM MgCI2, 1% BSA, 0.1% Tween-20) in a 1.5-ml Lo-Bind microcentrifuge tube.
The tube was then inverted five times, gently mixed by pipetting and contents were then passed
through a 40-um Falcon cell strainer (Corning) into a new 1.5-ml Lo-Bind microcentrifuge tube
(Eppendorf). Nuclei were then pelleted by centrifugation for 5 min at 500g at 4C and
supernatant removed. Nuclei were then resuspended in 100 ul of the Nuclei Buffer provided with
the 10X snATAC kit. Nuclei concentration was measured using Trypan blue (Thermo Fisher)
and the Countess Il instrument (Thermo Fisher).

snATAC-seq library preparation, sequencing and data quality control: We used the 10X
Genomics Chromium Single Cell ATAC kit for all snATAC-seq experiments. snATAC-seq
libraries were shipped on ice to the Genome core facility at the Icahn School of Medicine at
Mount Sinai (New York, NY, USA) for sequencing on an lllumina NovaSeq 6000. Resulting
FASTQ files were preprocessed using the 10x Genomics Cellranger pipeline (CellRanger ATAC
v1.2.0) using the hg38 reference genome and default parameters. Samples from different
patients were preprocessed separately. Cellranger outputs were used to filter low-quality cells
with the ArchR pipeline®! (v.1.0.2) as follows: TSS enrichment > 7, unique number of fragments
> 10000 and a doublet ratio < 1.5.

Dimensionality reduction, clustering of snATAC-seq data and generation of gene activity scores:
Fragment files for each of the 41 patients were used to generate ArchR arrow files. The genome
was then divided into 500bp windows and then fragments within each window were used to
generate a tile matrix (28316 cells x ~ 6 million tiles). Iterative latent semantic index (LSI) was
then used to reduce dimensionality of the tile matrix. We checked for batch effects using
Harmony (v.1.0) and did not observe major differences in the data clustering structure (clusters
driven by individual samples). We then used the first 30 components output by LSI for running
non-linear dimensionality reduction (UMAP). Subsequent cell clustering was performed using
the SNN modularity optimization-based algorithm as implemented in Seurat (v.4.1.0).
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Chromatin accessibility (defined as the number of fragments within each tile) within gene bodies
as well as proximally/distally from the TSS was used to infer gene expression by means of a
gene activity score model. In this model, the number of fragments inside tiles of gene bodies are
considered as well as surrounding tiles. To account for the activity of putative distal regulatory
elements, an exponential weighting function is applied where tiles that reside further from genes
TSS are assigned lower weights. Additionally, this model imposes gene boundaries to minimize
the contribution of unrelated regulatory elements to a specific gene score.

Differential accessibility for SMC phenotypes: Using cell type groupings defined in our recenet
publication®, peaks were called for each ‘pseudo bulk’ sample (reads from each cell type
cluster were combined as a new sample) using the addReproduciblePeakSet() function in
ArchR (with parameters cutOff = 0.05, extendSummits = 250). Peaks called during this analysis
had a width of 500 bp. Regions with differential accessibility between Modulated and Contractile
SMCs were identified using a Wilcoxon-test as implemented in ArchR. The threshold for
differential peak significance was set at FDR <= 0.05 and Log2 fold change > 1, resulting in a
total of 5681 significantly upregulated peaks and 2121 downregulated peaks. For differential
peak annotation, protein coding gene coordinates were extracted with ensembldb'" (v.2.14.04)
and EnsDb.Hsapiens.v86 (v.2.99.0). Upregulated and downregulated peaks were annotated
with the nearest protein coding gene using GenomicRanges'?” (v1.42.0). This annotation was
validated using the R package ChIPseeker''? (v1.26.0) along with
TxDb.Hsapiens.UCSC.hg38.knownGene (v.3.10.0).

TF motif enrichments: Enriched TF motifs for each cell type were predicted using the
addMotifAnnotations() function in ArchR. Z deviation scores for each TF were then estimated
with the chromVAR R package'"® (v.1.12.0).

Coronary artery calcification GWAS meta-analysis data

The GWAS meta-analysis for coronary artery calcification (CAC) was conducted on 16 cohorts
including 26,909 participants of European ancestry and 8,867 participants of African ancestry.
CAC scores were calculated from computed tomography imaging at baseline, or first
examination as described’?. Genotyping quality control, imputation (1000 Genomes Phase 3),
and variant filtering was performed as described. A joint meta-analysis of all available CAC
GWAS was performed using a fixed-effects meta-analysis in METAL, using sample size
weighted SNP p-values. The summary statistics from each study were combined using an
inverse variance weighted meta-analysis.

Pearson correlation calculations and gene set enrichment analyses
Normalized counts for cell types of interest were extracted from the corresponding Seurat
object. Matrices were transposed to define genes as variables and then we calculated pairwise

Pearson correlations for a gene of interest (e.g., CRTAC1) with all of the other genes across the
cell types of interest using apply() and cor.test() functions with parameters (method="pearson”)
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from the stats R package (v.4.0.3). P-values from the correlations were then adjusted for
multiple testing using the Benjamini Hochberg correction as implemented in the R stats package
with the p.adjust() function with parameters (method="fdr”).

For gene set enrichment analyses, we calculated DE genes as described in the above section.
We ranked genes by log2 fold change values (log2FC) and extracted the top 100 hits per cell
annotation. We then use the gost() function within the R gProfiler2 package'® (v.0.2.1) with
parameters (order=TRUE) to weight genes according to their log2FC values. We then selected
significant GO:BP ontology terms (FDR < 0.05) and ranked them according to their adjusted P-
values for plotting using custom functions from our scRNA_processing_utils.R script
(https://github.com/MillerLab-CPHG/Human_athero scRNA meta). We found that the top
GO:BP terms for fibrochondrocytes were highly redundant. Therefore, we used the gosemsim
package'™ (v2.16.1) and a custom script adapted from (https://github.com/YulLab-
SMU/clusterProfiler/blob/master/R/simplify.R) in order to calculate semantic similarity between
GO:BP terms. We removed highly redundant terms accordingly.

Gene expression analysis in coronary artery datasets

RNA Extraction, QC, library construction and sequencing: Total RNA was extracted from frozen
coronary artery segments using the Qiagen miRNeasy Mini RNA Extraction kit (catalog
#217004). Approximately 50 mg of frozen tissue was pulverized using a mortar and pestle under
liquid nitrogen. Tissue powder was then further homogenized in Qiazol lysis buffer using
stainless steel beads in a Bullet Blender (Next Advance) homogenizer, followed by column-
based purification. RNA concentration was determined using Qubit 3.0 and RNA quality was
determined using Agilent 4200 TapeStation. Samples with RNA Integrity Number (RIN) greater
than 5.5 and lllumina DV2qo values greater than 75 were included for library construction. Total
RNA libraries were constructed using the lllumina TruSeq Stranded Total RNA Gold kit (catalog
#20020599) and barcoded using lllumina TruSeq RNA unique dual indexes (catalog #
20022371). After re-evaluating library quality using TapeStation, individually barcoded libraries
were sent to Novogene for next generation sequencing. After passing additional QC, libraries
were multiplexed and subjected to paired end 150 bp read sequencing on an lllumina NovaSeq
S4 Flowcell to a median depth of 100 million total reads (>30 G) per library.

RNA-seq processing and analysis: The raw passed filter sequencing reads obtained from
Novogene were demultiplexed using the bcl2fastq script. The quality of the reads was assessed
using FASTQC and the adapter sequences were trimmed using trimgalore. Trimmed reads
were aligned to the hg38 human reference genome using STAR''® (v.2.7.3a) according to the
GATK Best Practices for RNA-seq. To increase mapping efficiency and sensitivity, novel splice
junctions discovered in a first alignment pass with high stringency, were used as annotation in a
second pass to permit lower stringency alignment and therefore increase sensitivity. PCR
duplicates were marked using Picard and WASP was used to filter reads prone to mapping bias.
Total read counts and Transcripts per million normalization (TPM) for both genes and isoforms
was calculated from individual bam files using the RSEM
(https://deweylab.github.io/RSEM/README.html) rsem-calculate-expression command with the
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paired-end option and gencode version 32 as a reference''®. CRTAC1 and IBSP expression
were plotted comparing ischemic vs normal disease classification. All normal samples were
from donor hearts with no evidence of atherosclerosis.

Coronary artery proteomics data generation and analysis

Tissue processing: Frozen human coronary artery segments were shipped in 1.5 mL
microcentrifuge tubes to King’s College London (London, United Kingdom). First, extracellular
matrix (ECM) and associated ECM proteins were isolated from the frozen coronary artery
samples using a 3-step extraction procedure (NaCl, SDS, and guanidine-HCI). Diced coronary
artery tissue was vortexed thoroughly in 0.5 M NaCl, 0.1% SDS, and 4 M guanidine-HCI,
sequentially. All 3 extracts were collected, and we subsequently used the guanidine extract for
mass spectrometry and ECM protein analysis. Next, to remove glycans attached to ECM
proteins, we used deglycanation enzymes (Heparinase Il (Sigma-Aldrich H6512-10UN),
Chondroitinase ABC (Sigma-Alrich C3667-5UN), Keratanase (G6920-5UN)) and a glycoprotein
deglycosylation kit (Merck catalog #362280). We then used Water-180 (97% atom) to label N-
linked glycosylation sites. After deglycosylation the ECM protein samples (n=150) underwent
denaturing, reduction, alkylation, precipitation, and overnight trypsin digestion. We purified the
resultant ECM fragments with AssayMAP C18 cartridges (Agilent) on an Agilent Bravo
AssayMAP robot. We analyzed the purified peptide samples using nanoflow liquid
chromatography tandem mass spectrometry (LC-MS/MS). We performed data-dependent
analysis (DDA) (on the top 15 ions in each full MS scan) using a nanoflow LC system (Dionex
UltiMate 3000 RSLC nano) coupled to a high-resolution accurate-mass Orbitrap mass analyzer
(Q Exactive HF, Thermo Fisher Scientific).

Proteomics data analysis: We used the Thermo Scientific Proteome Discoverer software (v.2.3)
to search the raw proteomic data files against the human database (UniProtKB/Swiss-Prot version
2019_01, containing 20,349 protein entries) using the Mascot server (version 2.6.0, Matrix
Science). We measured protein abundance in each sample using label-free quantitation (LFQ).
Since the data was generated with the guanidine-HCI extract, we focused analysis on matrisome-
related proteins. Data was analyzed according to the King's College London pipeline and
processing protocol'"''®, Data was normalized according to the total ion intensity and
subsequently scaled to remove batch effects. We filtered out proteins with more than 30% missing
values. For the remaining missing values, we performed imputation with the K-nearest neighbor
(KNN) impute algorithm. To tune the parameter k of the KNN-impute method we experimentally
tested the Euclidean distance of the imputed values compared to the real ones for 100 randomly
selected values, testing for k=2 until 20. The optimal k value was set to 5 according to this
procedure and this was applied to impute all the remaining missing values. Values were then
displayed in Log2 scale.

Disease categories: Disease status of coronary artery segments was determined as previously
described®. Briefly, samples containing no evidence of atherosclerosis were included in
category 1. Samples that are lesion-free and have no evidence of atherosclerosis, however the
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patient has evidence of ischemic heart disease were included in category 2. Samples that have
evidence of atherosclerosis due to presence of lesion were included in category 3.

STARNET regulatory networks and clinical trait enrichment analysis

Based on STARNET® multi-tissue bulk RNA-seq data, tissue specific and cross-tissue co-
expression modules were inferred using WGCNA'"®. Enrichment for clinical traits was computed
by aggregating Pearson’s correlation P values by co-expression module using Fisher's method.
Enrichment for DE genes was calculated with the hypergeomteric test using DESeq2 called
genes (30% change, FDR <0.01) adjusting for age and sex covariates. The gene regulatory
network for CRTAC1 co-expressed genes was inferred using GENIE3'?°. Weighted key driver
analysis was then applied to identify hub or highly influential genes in the regulatory network

using the Mergeomics R package'?’.

Data Availability

Raw count matrices included in this study were accessed through GEO and Zenodo. Raw count
matrices for Wirka et al '®, Pan et al '°, Alsaigh et al '® were obtained through the following
accession numbers: Wirka et al (GSM3819856, GSM3819857, GSM3819858, GSM3819859,
GSM3819860, GSM3819861, GSM3819862, GSM3819863); Alsaigh et al (GSM4837523,
GSM4837524, GSM4837525, GSM4837526, GSM4837527, GSM4837528); Pan et al
(GSM4705589, GSM4705590, GSM4705591). Raw count matrices from Hu et al '” were
obtained from Zenodo (https://zenodo.org/record/6032099#.Y 1RDa-zMITU). The corresponding
accession numbers can also be found in Supplementary Table 1.

Bulk RNA-seq data from human carotid lesions®® was accessed through GEO with the
accession number GSE120521.

Code Availability
Code used for processing of raw count matrices, integration benchmark and other downstream

analyses can be found in the following Github repository: https://github.com/MillerLab-
CPHG/Human_athero_scRNA meta
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