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 2 

Abstract  1 
 2 
Atherosclerosis is a complex inflammatory process driven by plaque formation in the major 3 
elastic arteries and often leads to reduced blood flow, coronary artery disease (CAD), 4 
myocardial infarction and stroke. CAD progression involves complex interactions and 5 
phenotypic plasticity within and between distinct vascular and immune cell lineages. Several 6 
single-cell RNA-seq (scRNA-seq) studies have highlighted lineage-specific transcriptomic 7 
signatures however there remains variability on the reported cell phenotypes in humans. In this 8 
study we meta-analyzed scRNA-seq datasets across four publications to create a 9 
comprehensive map of human atherosclerosis cell diversity. We applied standardized QC, 10 
processing, and integration benchmarking to harmonize 118,578 high-quality cells for this atlas. 11 
Beyond characterizing vascular and immune cell diversity, we derived insights into smooth 12 
muscle cell (SMC) phenotypic modulation through pseudotime, transcription factor activity 13 
inference and cell-cell communication analyses. We also integrated genome-wide association 14 
study (GWAS) data to identify etiologic cell types for GWAS diseases and traits, which 15 
uncovered a critical role for modulated SMC phenotypes in CAD and coronary artery 16 
calcification. Finally, we identified candidate markers (e.g., CRTAC1) of synthetic and 17 
osteochondrogenic SMCs that may serve as proxies of atherosclerosis progression. Together, 18 
this represents an important step towards creating a unified cellular map of atherosclerosis to 19 
inform cell state-specific mechanistic and translational studies of cardiovascular diseases. 20 
 21 
Introduction 22 
 23 
Cardiovascular diseases, such as coronary artery disease (CAD), are the leading global causes 24 
of mortality and morbidity1. The pathological hallmark of CAD is atherosclerosis, a chronic build-25 
up of plaque inside arterial walls, which can lead to thrombus formation and myocardial 26 
infarction (MI) or stroke2–5. This process involves a complex interplay of both immune and 27 
vascular cell types and cell state transitions along a continuum6,7. In response to injury of the 28 
inner vessel layer by oxidized low density liporoteins (ox-LDL) and immune cells, contractile 29 
smooth muscle cells (SMCs) transition to a more proliferative and migratory state8,9. Similarly, 30 
endothelial cells transition to a mesenchymal state in early and advanced atherosclerosis10,11. 31 
 32 
Recent single-cell RNA sequencing (scRNA-seq) studies have resolved the cellular diversity 33 
and gene signatures in human and murine atherosclerotic lesions12–16 as well as in non-lesion 34 
arteries17. By combining lineage tracing and scRNA-seq, studies have shown that SMC readily 35 
transform into a multipotent “pioneer” cell type in response to pro-atherogenic stimuli18–20. 36 
However, the fate of SMCs after this transition remains controversial; a few studies generally 37 
agree that these pioneer cells can become fibroblast-like (fibromyocytes)18 or osteogenic-like 38 
(fibrochondrocytes; FCs)19; other studies suggest that pioneer SMCs adopt pro-inflammatory or 39 
macrophage-like properties8,20. Limited sample sizes, experimental design or other technical 40 
factors could potentially confound the biological interpretation of these individual studies. Thus, 41 
there remains a need for a consensus single-cell reference21–23, which spans atherosclerotic 42 
disease stages in humans.  43 
 44 
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 3 

Here, we harmonize and meta-analyze four single-cell studies of human atherosclerosis, 1 
encompassing both early and advanced lesion and non-lesion samples (Fig. 1a and 2 
Supplementary Table 1). This high-resolution atlas of 118,578 high quality cells enables the 3 
discovery of previously missed vascular and immune cell types and clarifies markers for known 4 
disease-relevant immune cells (e.g., inflammatory, and foamy macrophages). We perform 5 
integrative downstream analyses and GWAS trait enrichment to define cardiovascular traits and 6 
disease-relevant etiologic cell types and states. We further validate SMC phenotypes identified 7 
in lineage-tracing studies, reveal underrepresented SMC states from individual scRNA-seq 8 
studies and highlight CRTAC1 as a new candidate marker of pro-calcifying SMCs and plaque 9 
stability in humans. This comprehensive map of vascular and immune cell diversity in human 10 
atherosclerosis provides a critical step towards translating mechanistic knowledge and 11 
developing more targeted interventions.  12 
 13 
Results 14 
 15 
Integration of lesion and non-lesion artery datasets  16 
 17 
We sought to build a comprehensive single-cell reference that would be well-powered to further 18 
investigate complex vascular processes such as SMC phenotypic modulation. In order to avoid 19 
biases towards lymphoid (e.g., T-cells) and myeloid (e.g., macrophage) cells and achieve 20 
proper representation of mural cells (SMC and pericytes), the current version of this atlas was 21 
assembled using data from three studies, Wirka et al 18, Pan et al 19, and Alsaigh et al 16 profiling 22 
human atherosclerotic lesions in coronary or carotid arteries. We also included a recently 23 
published dataset of non-lesion coronary arteries17 with the goal of spanning the continuum of 24 
CAD risk (Supplementary Table 1). We then established a standardized pipeline for quality 25 
control (QC) and uniform processing of the 22 raw sequencing libraries, involving removal of 26 
doublets24 and ambient RNA 25 as well as normalization to account for variable cell sequencing 27 
depth26,27 (Supplementary Fig. 1 and Methods). We visually inspected cell embeddings and 28 
observed optimal separation and cohesion of cell clusters post-filtering (Supplementary Fig. 1).  29 
 30 
The choice of single-cell integration approach highly depends on the context of the individual 31 
datasets, the magnitude of batch effect and cell number. Thus, we independently evaluated 32 
tools recommended by 3 recent benchmarks28–30 including Canonical Correlation Analysis +  33 
Mutual Nearest Neighbors (CCA + MNN), reciprocal PCA (rPCA)26, Harmony31 and Scanorama 34 
32 (Methods). We tested a subset of the included libraries16,18,19 and found that rPCA and 35 
Harmony outperformed the other tools in terms of running time (Supplementary Fig. 1). We 36 
also evaluated the effectiveness of batch removal from each approach using integration Inverse 37 
Local Simpson Index (iLISI)31 and conservation of biological variation using the “cell type LISI” 38 
(cLISI)31. Finally, clustering purity was measured using silhouette coefficients, which capture 39 
elements of both sample mixing and local structure26. To avoid over- or under-clustering, we 40 
calculated silhouette coefficients across a wide range of resolutions (0.8-1.8). From this 41 
benchmark, we found that rPCA achieved the best balance in terms of running time, batch 42 
mixing and conservation of biological variation. This method also achieved the highest 43 
clustering purity across all tested resolutions (Supplementary Fig. 1). Integration of libraries 44 
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with rPCA yielded a total of 118,578 high-quality cells and 41 Louvain clusters (Supplementary 1 
Fig. 1). 2 
 3 
Next, we used a combination of manual and automated annotation tools to label the broad cell 4 
(level 1) and granular subtype (level 2) compartments. We defined level 1 annotations by 5 
reprocessing and transferring cell type labels from the Tabula Sapiens (TS) vasculature single-6 
cell atlas33. We found that labels were assigned with remarkably high confidence 7 
(Supplementary Fig. 2). These annotations were supported by the expression of well-8 
established marker genes in corresponding level 1 clusters (Fig. 2a-b) and confirmed that batch 9 
effects had been properly removed while conserving biological variation.  10 
 11 
We observed a balanced number of cells labeled as macrophages and endothelial cells across 12 
studies. However, there were slightly more SMCs in Pan et al and T/NK cells in Alsaigh et al 13 
and slight biases from small clusters (e.g., plasma cells, B cells) between studies (Fig. 2c). This 14 
shows that individual studies may under-represent key cell types. We also observed 15 
overrepresented fibroblasts from coronary datasets (Wirka et al and Hu et al), as expected 16 
given the intact coronary vessel wall layers compared to carotid plaques (Fig. 2c). When 17 
comparing cell type frequencies across disease status, we observed a greater proportion of B 18 
cells, plasma cells and pDCs in lesion samples (Fig. 2c-d). Further, libraries from Alsaigh et al 19 
had the highest proportion of T cells among all studies, consistent with the advanced stage of 20 
the carotid lesions (Supplementary Fig. 2).  21 
 22 
To further ensure the accuracy of our level 1 cell type annotations, we ran a differential 23 
expression (DE) analysis to obtain cell type gene markers (Methods and Supplementary 24 
Table 2). As expected, SMCs and endothelial cells (EC) were enriched for gene ontology (GO) 25 
terms such as “muscle contraction” and “endothelium development”, respectively. We also 26 
observed SMCs enriched for terms such as “extracellular matrix organization”, likely due to the 27 
presence of phenotypically modulated SMCs that have acquired synthetic properties 9. 28 
(Supplementary Fig. 2, Supplementary Table 3). In contrast, myeloid and lymphoid clusters 29 
were enriched for immune-related terms such as “antigen processing and presentation” and 30 
“regulation of T cell activation” (Supplementary Fig. 2, Supplementary Table 3).   31 
 32 
Defining candidate etiologic cell types for complex traits 33 
 34 
Next, we identified etiologic cell types enriched for atherosclerosis-related traits using our level 1 35 
cell type annotations. Briefly, we performed stratified LD score regression (S-LDSC) analysis34,35 36 
using GWAS summary statistics for cardiovascular disease (CVD) and non-CVD traits as 37 
described36–41. To improve the specificity of GWAS enrichment per cell type, we first derived an 38 
expression specificity matrix using SCTransform-normalized counts where each value (ESμ) 39 
represents the average of multiple differential expression metrics42 (Methods). SMC and 40 
pericyte gene signatures were significantly enriched (FDR < 0.05) for CV traits such as pulse 41 
pressure, CAD, and MI (Fig. 2e and Supplementary Table 4). On the other hand, EC 42 
signatures were enriched for carotid plaque associations (Fig. 2e). Consistent with previous 43 
studies35,43, we observed macrophages were highly enriched for Alzheimer’s disease and white 44 
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 5 

blood cell count GWAS signals. We also found high enrichment of neurons for body mass index 1 
(BMI). These findings highlight the value of integrating single-cell and human genetic data to 2 
discover atherosclerosis trait-relevant cell types, such as SMC and ECs. 3 
 4 
Defining cell subtype heterogeneity in human atherosclerosis   5 
 6 
Next, we surveyed the 41 clusters using a combination of automated and manual annotation 7 
(Methods). Manual annotations included markers of lymphoid, myeloid and endothelial cell 8 
subtypes from the literature21–23,44–49. We then verified manual annotations using the CellTypist 9 
machine learning classifier 50 resulting in a more granular map of cell diversity in human 10 
atherosclerosis (Fig. 3a). We summarize some of the most representative cell subpopulations 11 
below:  12 
 13 
Endothelial diversity: Within the endothelial compartment, we identified cells highly expressing 14 
classical endothelial markers (PECAM1, CLDN5) relative to neighboring clusters (Fig. 3a, 15 
Supplementary Table 5). Expression of homeostatic EC marker genes such as RAMP251) led 16 
to the annotation of this cluster as “Intimal ECs”. We also identified a cluster of cells marked by 17 
the upregulation of vasa vasorum genes such as ACKR152 and angiogenesis-related genes 18 
such as AQP1 and FABP4 53–55 . Adjacent to pro-angiogenic ECs, we identified a cluster marked 19 
by elevated expression of chemokine and adhesion molecules (SELE, CCL2,) (Fig. 3a-b, 20 
Supplementary Table 5), likely reflecting a pro-inflammatory state56. EndoMT ECs57 were 21 
defined by the expression of ECM genes (COL1A2, FN1) and contractile genes 22 
(Supplementary Table 5). Finally, we defined a small subcluster of lymphatic ECs based on 23 
the expression of LYVE1 and CCL2158 (Fig. 3a-b, Supplementary Table 5).  24 
 25 
Myeloid diversity: We identified a subset of myeloid cells, inflammatory macrophages, which 26 
express known markers of inflammation (IL1B, TNF), characteristic of the polarized M1 27 
macrophage state (Fig. 3a-b, Supplementary Table 5). We defined foamy macrophages 28 
marked by high expression of lipid metabolism and lipoprotein uptake genes such as APOE and 29 
FABP5, along with a reduced inflammatory profile15,21,23 (Fig. 3a-b, Supplementary Table 5). 30 
We also identified resident macrophages (LYVE1, FOLR2), classical monocytes (S100A8, 31 
S100A9, LYZ), and conventional dendritic cells (CD1C, CLEC10A)59–61 (Fig. 3a-b, 32 
Supplementary Table 5). Importantly, we resolved critical smaller myeloid populations 33 
overlooked by previous individual human scRNA-seq datasets, including plasmacytoid dendritic 34 
cells (pDCs)62,63 and neutrophils (NAMPT, S100A8) (Fig. 3a-b). Consistent with myeloid cell 35 
infiltration during atherosclerosis, we found that monocytes, foamy macrophages, and other 36 
myeloid populations were substantially more prevalent in libraries from lesions (Fig. 2c).  37 
  38 
Lymphoid diversity: Within the largest lymphoid cell compartment (T/NK), we identified Natural 39 
Killer (NK) and several subpopulations of T cells. First, we identified a cluster of NK cells 40 
defined by expression of XCL1, NKG7 and GNLY (Fig 2a-b). Expression of CD69, a classical 41 
early activation marker of lymphocytes64, suggests this cluster contains activated NK cells (Fig. 42 
2a, Supplementary Fig. 2 and Supplementary Table 5). We then defined populations of CD8 43 
T cells based on expression of CD8A and CD8B (Fig. 2b and Supplementary Table 5) and 44 
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found two CD8+ clusters with strong expression of chemokines and granzymes (CCL5, GZMK) 1 
displaying variable expression of CD69 and IL7R (Supplementary Fig. 5), suggesting the 2 
presence of early activated and memory/naive CD8 cytotoxic T cells (CTLs)65,66. We also found 3 
an adjacent CD8+ cluster expressing CD3E, NKG7, granzymes and GNLY lacking CD69 4 
expression (Supplementary Fig. 2) which suggests terminally differentiated CTLs15. 5 
Additionally, we found 3 clusters of T cells lacking CD8 expression and showing subtle but 6 
noticeable expression of the TFs RORᵧt and GATA3 (Supplementary Fig. 2), hallmark drivers 7 
of Th17 and Th2 helper cells, respectively67. We also found a T cell cluster with a more 8 
concentrated expression of FoxP3, a master driver of regulatory T cells (Treg)67 (Supplementary 9 
Fig. 2). Finally, we defined clusters of B cells (CD79A, CD79B) and plasma cells (IGLC2, IGHM, 10 
JCHAIN). While all lymphoid populations showed larger frequencies in lesions, we found that B 11 
cells, plasma cells and pDCs were highly depleted in non-lesion libraries (Supplementary Fig. 12 
2).  13 
 14 
Fibroblast diversity: Defining fibroblast diversity in atherosclerosis is particularly challenging 15 
given the low specificity of widely used fibroblast markers48. We found that most cells in this 16 
compartment express traditional fibroblast ECM markers such as LUM and DCN 17 
(Supplemental Table 5). We were able to dissect a subset of fibroblasts that upregulated the 18 
contractile marker ACTA2 (Fig. 2b) as well as complement genes (C3 and C7). This subset 19 
likely represents activated fibroblasts (myofibroblasts) known to adopt increased contractile, 20 
ECM-producing, and pro-inflammatory states in response to injury or atherosclerotic stimuli48,57. 21 
Of note, we identified a group of cells within the fibroblast compartment strongly expressing 22 
APOE in addition to the chemokine ligands CXCL12 and CXCL14 and complement genes, 23 
which we term APOE fibroblasts (Supplemental Table 5).   24 
    25 
Characterization of SMC phenotypes in human atherosclerosis 26 

 27 
To refine the role of SMC phenotypes in our human scRNA reference, we performed gene set 28 
enrichment of gene modules from a recent scRNA meta-analysis of murine vascular SMCs22. 29 
First, we subset the full atlas to include only SMCs, pericytes and a subset of fibroblasts. We 30 
then assessed enrichment of lineage-traced murine SMC gene modules on a per-cell basis 31 
using the UCell R package (Methods)68. This analysis showed a progressive loss of the murine 32 
SMC contractile signature within a portion of the human subset, coincident with a gain in the 33 
Lgals3+ transitional gene signature (Fig. 4a), supporting a transitional SMC signature in 34 
humans. Further, we detected an enriched signature of the murine calcification-promoting 35 
fibrochondrocytes distinct from non-SMC-derived fibroblasts (Fig. 4a). Cluster DE markers and 36 
UCell module enrichment scores were used as a guide to annotate SMCs as contractile, ECM-37 
rich transitional SMCs, fibromyocytes and fibrochondrocytes (FCs) (Fig. 4b-c, Supplementary 38 
Fig. 3, Supplementary Table 6).  39 

We observed similar proportions of contractile, transitional ECM SMCs and fibromyocytes 40 
across arterial beds and lesion status, consistent with previous reports69. However, FCs 41 
predominated in lesions compared to non-lesion samples (Supplementary Fig. 3), in line with 42 
their role in calcification. The FC annotation was further supported by higher ESμ values for 43 
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 7 

SOX9 and RUNX2, known master regulators of SMC osteochondrogenic transitions70 1 
(Supplementary Fig. 3). At a global level, SMCs, transitional SMCs, fibromyocytes, and FCs 2 
were enriched for relevant biological processes thus validating our annotation approach 3 
(Supplementary Fig. 3 and Supplementary Table 7). Interestingly, we also identified a cluster 4 
enriched for a lipid metabolism transitional SMC gene signature (APOE, APOC1, AGT) (Fig. 4b-5 
c, Supplementary Fig. 3, Supplementary Table 6), which we termed “foam-like” SMCs. These 6 
cells also expressed ECM-remodeling genes such as TIMP1 and pro-inflammatory genes 7 
CCL19, CCL2, IGFBP3, consistent with a potential role in leukocyte recruitment71.  8 

Finally, we leveraged these SMC labels to dissect the disease relevance of SMC modulated 9 
phenotypes using S-LDSC. Fibromyocytes and foam-like SMCs were highly enriched for CAD 10 
heritability, while fibromyocytes were enriched for MI and subclinical CAD traits (Fig. 4d and 11 
Supplemental Table 8). In contrast, we observed FCs enriched for coronary artery calcification 12 
(CAC) using our recent meta-analysis summary data72 (Fig 4d). This FC enrichment is 13 
consistent with our understanding of the biology of CAC, but to our knowledge has not been 14 
previously reported in any integrative single-cell and human genetic analysis.   15 

 16 
Cell crosstalk in human atherosclerosis  17 
 18 

We then dissected key cellular crosstalk from our level 1 and 2 annotations across lesion status 19 
using CellChat73. We observed strong interactions between SMCs and fibroblasts in non-lesion 20 
samples, while SMC and EC interactions with macrophages and T/NK were stronger in lesions 21 
(Fig. 5a). Unexpectedly we observed tumor necrosis factor alpha (TNFa) and platelet-derived 22 
growth factor (PDGF) signaling pathways were less represented in lesions (Fig. 5b), likely due 23 
to the higher proportion of inflammatory macrophages in non-lesion samples from Hu et al. 24 
While we did not find significant differences in information flow for these two pathways by lesion 25 
status (Supplementary Table 9), tumor-necrosis factor-like weak inducer of apoptosis 26 
(TWEAK) and osteopontin (SPP1) mediated signaling pathways were highly enriched in lesion 27 
samples (Fig. 5b). TWEAK mediated interactions between SMC and monocyte/DC were also 28 
greater compared to other myeloid subtypes (Supplementary Fig. 4). Signaling involving 29 
osteopontin (SPP1)14,21, specifically targeted SMCs and was mostly driven by macrophage foam 30 
cell clusters (Fig. 5c). We subsequently used our SMC subtype annotations to further 31 
understand interactions with myeloid populations (Fig. 5d). Among pathways where SMC 32 
subtypes were noted as signaling targets, we found TGF-β, NOTCH, PDGF, granulin (GRN), 33 
vascular cell adhesion molecule (VCAM), TWEAK and SPP1 signaling (Supplementary Table 34 
10). Given TWEAK and SPP1 enrichment in lesions, we focused on these pathways and 35 
observed more TWEAK mediated interactions between contractile/transitional SMCs with 36 
distinct myeloid subtypes in lesion samples (Supplementary Fig. 4). We also found that 37 
incoming SPP1 mediated signals from foamy macrophage cells (foamy mac1) specifically 38 
targeted contractile and transitional SMCs (Fig. 5e). Finally, using ligand-receptor contribution 39 
analyses, we found that cells expressing genes encoding SPP1 ligand preferentially signal via 40 
the heterodimeric ITGA8/ITGB1 receptor (Fig. 5f).  41 

 42 
Modeling SMC gene expression across pseudotime  43 
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 8 

 1 
Current evidence suggests that SMCs transition into fibromyocytes/FCs through an Lgals3+ 2 
transitional state19,20 . We modeled SMC de-differentiation via pseudotime analysis using 3 
Monocle 374, in which we defined MYH11-expressing contractile SMCs as the starting point of 4 
phenotypic modulation (Fig. 6a). This inferred trajectory revealed a branchpoint where 5 
transitional SMCs could adopt either a fibromyocyte or FC fate (Fig. 6a). In addition, we 6 
observed more FCs in lesion samples towards the latter pseudotime stages, consistent with 7 
calcification in advanced lesions (Fig. 6a-b). Using differential expression and Louvain 8 
community analysis (Methods), we identified modules specific to transitional SMC (Modules 5 9 
and 10), fibromyocytes (Module 4) and FCs (Module 9) (Supplementary Fig. 5). Transitional 10 
SMC modules harbored genes involved in early SMC investment in atherosclerotic lesions (e.g., 11 
LGALS3)20, as well as cell division and proliferation (e.g., TUBA1B and SIRT6)75 and ECM 12 
remodeling (e.g. KRT8 and SRARC) (Supplementary Fig. 5). As expected, fibromyocyte 13 
module 4 included known markers (e.g., FN1, VCAN, COL4A1/2, PDGFRB) (Supplementary 14 
Fig. 5). In contrast, the FC module 9 harbored chrondrocyte related genes such as BMP4 76, 15 
WISP2, and SPRY177 in addition to known ECM genes LUM and DCN.      16 
 17 
Next, we modeled the expression dynamics of our DE genes using cubic spline interpolation 18 
across pseudotime. As expected, expression of canonical SMC contractile markers, MYH11 and 19 
CNN1 sharply decreased across pseudotime (Fig 6c), whereas ACTA2 and TAGLN persisted 20 
longer (Supplementary Fig. 5). Interestingly some fibromyocyte markers such as FN1, AEBP1 21 
and LTBP1 showed a steady increase with adoption of the transitional state (Fig. 6c, upper 22 
panel), while genes such as PDGFRB, were increased later suggesting a distinct role in the 23 
fibromyocyte state (Fig. 6c, upper panel). In parallel, we inspected FC markers from our 24 
previous DE analysis (Supplementary Table 6) as well as genes from module 9 such as 25 
MMP2. We observed a steady increase in expression of COL1A2 and MMP2, whereas IBSP, 26 
CRTAC1 and COMP were increased at later pseudotime stages, presumably as transitional 27 
SMCs adopt a FC fate (Fig. 6c, lower panel). 28 
 29 
TF activity inference analysis  30 
 31 
We next investigated the upstream transcriptional factors driving cell specific expression 32 
changes using TF activity inference with VIPER78 and the DoRothEA collection of well-curated 33 
and stable human regulons79. This analysis revealed known regulators of fibromyocytes and 34 
FCs such as TCF21 and SOX9 (Fig. 6d) in addition to AP-1 (e.g., JUN, FOSL), TEAD, ETV and 35 
ETS factors (Supplemental Fig. 5)80. Interestingly, we observed increased regulon activity of 36 
the TGF-β signaling mediator SMAD3 in fibromyocytes and FCs compared to contractile and 37 
transitional SMCs (Fig. 6d). To confirm these results we interrogated our previously published 38 
coronary artery snATAC-seq data80, analyzed using ArchR81. Besides confirming increased 39 
accessibility of AP1 factors, we found that accessible regions in the ECM-rich SMC cluster were 40 
specifically and highly enriched for SMAD3 motifs compared to contractile SMCs 41 
(Supplemental Fig. 5). This suggests that SMAD3 activity is critical as SMCs transdifferentiate 42 
towards more synthetic phenotypes.  43 
 44 
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 9 

CRTAC1 as candidate marker of FC and atherosclerosis progression 1 

Given that arterial calcification is a major risk factor for clinical cardiovascular disease events 2 
82,83, we further explored specific markers of FCs. Using the top FC marker genes, we found a 3 
previously unreported marker of this cell type, cartilage acidic protein (CRTAC1) expressed 3-4 
fold higher relative to other SMC clusters (Fig. 4c, Supplementary Fig. 3, Supplemental Table 5 
6). CRTAC1 has been previously established as a specific marker for human chondrocytes 6 
during ossification76,84, and has been implicated in osteoarthritis85. In the Genotype Tissue 7 
Expression (GTEx) database, CRTAC1 showed highly arterial-specific expression compared to 8 
other tissues (Supplementary fig. 6). We also observed expression in SMCs enriched for 9 
murine FC gene signatures along with the calcification marker, IBSP20,70 (Fig. 4a and Fig. 7a). 10 
By comparing all co-expressed genes in contractile SMCs and FCs, we found that CRTAC1 was 11 
positively correlated with known ECM markers (e.g., DCN and LUM) and other 12 
osteochondrogenic markers (e.g., COL1A2, SOX9) and negatively correlated with canonical 13 
SMC markers (e.g., MYH11, CNN1) (Fig. 7b). This suggests that expression of this gene in 14 
SMCs is associated with loss of the SMC contractile phenotype and gain of pro-calcification 15 
gene programs86,87. 16 

To further validate CRTAC1 as a potential marker of human atherosclerosis, we queried our 17 
human coronary bulk RNA-seq and proteomics data as well as public datasets. Using coronary 18 
arteries from a cohort of 45 individuals, we found that IBSP and CRTAC1 were significantly 19 
upregulated in lesions compared to non-lesion samples (Fig. 7c). We also observed a 20 
significant increase in CRTAC1 protein abundance in lesion samples (Fig. 7d). Consistently, 21 
CRTAC1 was upregulated in unstable relative to stable carotid plaques in a published dataset 88 22 
(Fig. 7e), suggesting a potential role for CRTAC1 in calcification underlying plaque stability. 23 
Next, we queried the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task 24 
(STARNET) gene regulatory networks across seven cardiometabolic tissues89. CRTAC1 was 25 
identified as a significant key driver within its co-expression module (Supplementary table 11 26 
and 12), which was highly associated with CAD genes, C-reactive protein (CRP), LDL 27 
cholesterol (Fig. 7f), and enriched for “ossification” and “extracellular matrix organization” GO 28 
terms, further suggesting a link to calcification (Supplementary table 13).   29 

To complement these expression-based analyses, we queried our coronary artery snATAC-seq 30 
data. Differential analysis of chromatin accessibility in SMC and modulated SMC peaks 31 
revealed increased chromatin accessibility near known fibromyocyte and FC markers (TCF21, 32 
RUNX2 and SOX9) (Supplementary Fig. 6). We also observed increased accessibility near 33 
CRTAC1 and within a portion of modulated SMCs which overlapped increased SOX9 but not 34 
RUNX2 accessibility-derived gene activity (Supplementary Fig. 6), suggesting a chondrogenic 35 
rather than osteoblastic transition. Together these findings strongly support CRTAC1 as a new 36 
marker for atherosclerosis development and SMC modulation in humans.  37 

 38 

Discussion 39 
 40 
In this study we generated the first comprehensive single-cell transcriptomic atlas of human 41 
atherosclerosis, encompassing 22 sequencing libraries (Supplementary Fig. 2) from 4 different 42 
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 10 

studies16–19, which included data from atherosclerotic coronary and carotid arteries. After 1 
performing extensive QC and benchmarking of batch correction methods, we harmonized 2 
118,578 high-quality cells for annotation and analysis. Using both automated cell annotation26,50 3 
and manual curation we defined major vascular and immune cells and subtypes, many of which 4 
have not been previously identified from human atherosclerosis scRNA-seq studies. We further 5 
performed heritability enrichment to define disease-relevant cell types, as well as cell-cell 6 
communication and gene regulatory network inference to gain insights into atherosclerosis 7 
mechanisms. Finally, we provide external and internal validation for a new marker of SMC-8 
derived FCs, CRTAC1.  9 
 10 
We showcase the discovery potential of this scRNA-seq reference by investigating SMC 11 
phenotypic modulation in humans and identifying etiologic cell types in disease. Defining SMC 12 
phenotypes in human lesions has been previously achieved by transferring labels from mouse 13 
lineage tracing scRNA-seq studies18–20. However, this restricts SMC annotations to murine-14 
defined labels, which may limit the discovery of human-specific disease markers. We addressed 15 
this by instead using lineage-traced murine SMC genes for per-cell enrichment analysis of our 16 
>30,000 mural cells prior to subclustering and differential marker discovery. Beyond 17 
corroborating known SMC phenotypes reported in murine studies18–20, this helped us uncover 18 
rare transcriptomic SMC clusters including a “foam-like” state. This provides unbiased support 19 
of previous in vitro and ex vivo studies reporting a SMC-derived foam-like phenotype upon 20 
exposure to lipoproteins90,91 and in human lesions92. The lower abundance of these foam-like 21 
SMCs in previous scRNA-seq studies could be due to their high sensitivity to single-cell 22 
digestion protocols. These cells expressed lipid metabolism genes (e.g., APOE, APOC1) but no 23 
other traditional macrophage markers, in line with previous findings92. Their expression of ECM 24 
genes such as TIMP1 suggest SMC-derived foam cells may acquire a unique gene signature 25 
from their monocyte-derived counterparts.  26 
 27 
Our granular SMC annotations were also critical to define etiologic SMC phenotypes for 28 
cardiovascular diseases and traits. Previous work from our group and others93–95 has 29 
established a substantial contribution of SMCs towards CAD risk. By leveraging larger cell 30 
numbers, we further separated the SMC signal to prioritize fibromyocytes and foam-like SMCs 31 
underlying cardiovascular diseases. Supporting the emerging role of fibromyocytes in plaque 32 
stability18 we demonstrate enrichment for these cells in CAD and MI risk. These heritability 33 
analyses also linked SMC-derived FCs to coronary artery calcification, an established 34 
pathological hallmark of subclinical and advanced atherosclerotic lesions96.  35 
 36 
Though it has been shown that both fibromyocytes and FCs originate from SMCs18–20,97, these 37 
two ECM-rich phenotypes are postulated to play opposing roles in plaque stability9 and their 38 
exact lineage relationship is not well understood. Murine studies have previously suggested 39 
fibromyocytes are progenitors of FCs71. Using pseudotime analysis we revealed a branchpoint 40 
where transitional SMCs could adopt either fibromyocyte or FC fates. This does not preclude 41 
the possibility that fibromyocytes could be primed to become FCs as suggested by Cheng et al. 42 
Our TF activity inference results showed high SOX9 in FCs, but we also observed a gradient of 43 
decreasing TCF21 and increasing SMAD3 activity from fibromyocytes to FCs, hinting at a 44 
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fibromyocyte-FC transition. Due to limitations of pseudotime techniques, however, we note that 1 
additional lineage-tracing experiments will be needed to address the plausibility of these two 2 
lineage paths.  3 
 4 
SMAD3 has been previously defined as a causal CAD GWAS gene and increased expression 5 
levels are associated with elevated disease risk93,98, yet the precise role of this gene in human 6 
SMC modulation is less understood. Previous studies suggest that SMAD3 antagonizes 7 
atheroprotective TCF21 modulation activity, constraining SMCs from migrating to the lesion and 8 
fibrous cap98. Moreover, recent SMC-specific Smad3 KO mice resulted in increased proportions 9 
of FCs at the expense of fibromyocytes71. Interestingly we observed increased SMAD3 motif 10 
accessibility in ECM-rich SMCs (fibromyocytes and FCs) compared to contractile SMCs using 11 
our combined human scRNA-seq based regulons and snATAC data. Although the specific role 12 
of SMAD3 in osteochondrogenic SMC transitions has not been completely elucidated, TGF-β 13 
signaling during atherosclerosis has been linked to increased calcification99 and Smad3 shown 14 
to stimulate chondrogenesis in mesenchymal stem cells by enhancing Sox9 transcriptional 15 
activity100,101. Given the versatility of SMAD3 co-activators and targets, we speculate that this TF 16 
might play different roles along different stages of SMCs transition towards ECM-rich 17 
phenotypes, but additional mechanistic studies will be required to fully address this possibility.  18 
 19 
Our single-cell reference also provides further insights into the FC gene signature in 20 
atherosclerotic lesions (Fig. 6b and Supplementary Fig. 3). Differential gene expression in 21 
SMC subtypes identified CRTAC1 as a top, previously unreported FC marker. Our single-cell 22 
analysis as well as in-house bulk coronary RNA-seq and proteomics data showed elevated 23 
CRTAC1 in coronary lesions, which also correlated with osteochondrogenic markers such as 24 
COMP and IBSP84. While CRTAC1 was also upregulated in unstable carotid plaques88, its role 25 
in plaque rupture is unknown. More exhaustive ex vivo and in vivo functional characterization is 26 
required to pinpoint its role in diverse calcification phenotypes (e.g. micro/puncate vs. 27 
macro/sheet-like)102–104 and plaque stages (e.g. thin-cap fibroatheromas vs. fibrocalcific 28 
plaques).  29 
 30 
There are known limitations of this study worth noting. Although non-lesion samples, as denoted 31 
throughout this study, had no discernible lesions according to available histology data or clinical 32 
CAD diagnosis17, these arteries were extracted from patients with dilated cardiomyopathies 33 
(DCM). Some of the most striking differences in cell type frequency we observed across lesion 34 
status included a strong enrichment of foamy macrophages, monocytes, B cells, plasma cells, 35 
pDCs and FCs in lesion compared to non-lesion libraries. This is consistent with the strong 36 
immune landscape and development of calcification with atherosclerosis progression. Also, 37 
while the higher representation of inflammatory macrophages in non-lesion libraries (Fig. 3c) is 38 
unexpected, this could be potentially attributed to events such as subclinical diffuse intimal 39 
thickening. We also acknowledge the potential over-simplification of our lesion status in our 40 
group comparisons, which is less refined than in murine studies. Nonetheless, this represents a 41 
valuable step forward given the limited metadata from published arterial samples in both healthy 42 
and diseased individuals.  43 
 44 
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Taken together, we provide a comprehensive map of cell diversity in human atherosclerosis 1 
(Supplementary Fig. 7). With newly generated large-scale single-cell datasets, there will be a 2 
need to address the variability of reported phenotypes and create a unified map of human 3 
atherosclerosis. As demonstrated through GWAS meta-analyses, integrative analyses hold 4 
promise in capturing more robust and subtle signals. We expect this atlas will represent the first 5 
iteration of future references to build upon scientific discoveries and help annotate new single-6 
cell multi-omic datasets. Ultimately this will catalyze mechanistic and translational studies and 7 
contribute towards developing novel therapeutic strategies for CAD. 8 
 9 
 10 
Figures and Legends 11 
 12 
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 1 
Fig. 1. General workflow of the study. Briefly, we collected human atherosclerosis scRNA-seq 2 
libraries across four publications. Three of them originated from atherosclerotic lesions of 3 
varying stages16,18,19 while one harbored samples that had no CAD diagnosis or discernable 4 
lesions17. We devised a pipeline for rigorous QC and processing of each scRNA library and 5 
benchmarked four state-of-the-art batch-correction methods to find the integration approach that 6 
best fit the included data. We then used Transfer learning as well as machine learning 7 
classifiers and literature markers to define broad (level 1) and more granular (level 2) cell type 8 
annotations across vascular and immune lineages. We also leveraged murine lineage-traced 9 
smooth muscle cell (SMC) gene modules to identify modulated SMC populations in human data. 10 
In addition to cell communication analyses and integration of GWAS data for identification of 11 
etiologic cell types in disease, we further characterized modulated SMC phenotypes through 12 
pseudotime inference, TF activity predictions and identification of candidate novel human-13 
specific gene markers. Details of scRNA-seq libraries QC and processing can be found in 14 
Methods and Supplementary figures. 15 
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 1 
 2 
Fig. 2. Integration of single cell data conserves major cell compartments in 3 
atherosclerosis. (a) UMAP representation of 118,578 cells based on rPCA integration of 22 4 
sequencing libraries. Dot colors depict broad cell lineage labels (level 1) defined through 5 
Transfer learning with the TS vasculature subset as annotation reference. (b) Dot plot of top five 6 
marker genes SCTransform-normalized expression by major cell lineage compartment. Dot size 7 
represents the portion of cells expressing the gene per level 1 compartment. (c) Stacked bar 8 
plot showing the distribution of level 1-annotated cells across included publications, arterial beds 9 
(coronary, carotids), and lesion status (lesion, non-lesion). (d) Distribution of level 1-annotated 10 
cells across lesion status in UMAP space. (e) Stratified LD Score Regression (S-LDSC) 11 
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analyses prioritizing the contribution of level 1-annotated cell type to cardiovascular and non-1 
cardiovascular GWAS traits. LDSC analysis was carried out using a gene expression specificity 2 
matrix generated with CELLEX 42. Large circles depict cells that passed the cutoff of FDR < 5% 3 
at -log10(P) = 1.301.      4 
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 1 
 2 
Fig. 3. Human atherosclerosis cell subpopulations (level 2) and distribution of myeloid 3 
subtypes across disease status. (a) UMAP representation of cell subtypes (level 2 labels) 4 
within the largest level 1 cell compartments (T/NK, Macrophages, Endothelial, Fibroblast). Level 5 
2 labels were defined using a combination of the CellTypist classifier and survey of the 6 
literature. (b) UMAP plots of genes delineating immun and non-immune cell subtypes. 7 
SCTransform-normalized gene expression is indicated by color. (c) UMAP and bar plot of level 8 
2 Myeloid cell subtypes according to lesion status. Frequencies for each subtype shown in the 9 
bar plot are normalized to the total number of cells in each condition (lesion n=59691; non-10 
lesion n=58887) and shown as percentages.  11 
 12 
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 17 
 18 
 19 
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 1 
Fig. 4. Characterization of etiologic SMC phenotypes for cardiovascular traits and 2 
diseases. (a) UCell enrichment of meta-analyzed SMC murine gene modules (Contractile, 3 
Lgals3+ transitional, Fibrochondrocytes) and non-SMC-derived fibroblasts in the level 1 SMC 4 
compartment as well as a Fibroblasts. UCell68 scores were calculated for each cell based on the 5 
Mann-Whitney U statistic where higher scores depict a higher enrichment for the tested gene 6 
signature. (b) UMAP embeddings of subclustered cells described in (a) SMC level 2 labels in 7 
addition pericytes and a subset of Fibroblasts. Labels were defined using UCell scores as 8 
reference for SMC differentiation state in addition to DE markers from Louvain clusters at a 9 
resolution=0.9. (c) Dot plot representing top marker genes SCTransform-normalized expression 10 
for SMC level 2 labels. Dot size represents the portion of cells expressing the gene. (d) 11 
Stratified LD score regression (S-LDSC) analyses prioritizing the contribution of SMC 12 
phenotypes, Pericytes and Fibroblasts to cardiovascular GWAS traits. Type 2 diabetes was 13 
used as a negative control in this analysis. LDSC was carried out using a gene expression 14 
specificity matrix for SMC clusters generated with CELLEX42. Large circles depict cells that 15 
passed the cutoff of FDR < 5% at -log10(P) = 1.301. 16 
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 1 
Fig. 5. Summary of cell crosstalk in human atherosclerosis. (a) Circle plots depicting 2 
aggregated cell-cell communication network for level 1-labeled cell compartments leveraging 3 
the CellChat73 human database. Interactions considered include secreted signaling, ECM-4 
receptor and cell-cell contacts. Interactions were calculated separately across disease status 5 
(lesion vs non-lesion). Top 30% of interactions are shown in the plot. (b) Stacked bar plot 6 
showing conserved and disease status-specific signaling pathways. Signaling enrichment is 7 
based on changes on pathways information flow (defined by the sum of communication 8 
probability among all pairs of cell groups in the inferred network or total weights in the network). 9 
Pathways in bold denote those that showed statistically significant (P < 0.05) enrichments in 10 
each disease condition. (c) Circle plot depicting sources and targets for SPP1 signaling using 11 
level 2 labels for myeloid cells and level 1 SMC labels. (d) Circle plot showing the aggregated 12 
cell-cell communication network for level 2 Myeloid and SMC labels. Top 15% of interactions 13 
are shown in the plot. (e) Circle plot depicting SPP1 signaling sources and targets for level 2 14 
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Myeloid and SMC labels. (f) Bar plot showing the relative contribution of each ligand-receptor 1 
pair for SPP1 signaling. Width of the edges in the circle plot depicts the weight/strength of the 2 
interactions in (a,c-e).      3 
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 1 
Fig. 6. Pseudotime and TF inference activity for ECM-rich SMC phenotypes. (a) UMAP 2 
embeddings showing supervised pseudotime trajectory from Contractile to modulated SMCs 3 
calculated with Monocle 374. SMC phenotypes for this analysis included contractile, transitional 4 
SMCs, fibromyocytes and fibrochondrocytes (FCs). The numbered circle depicts the root of the 5 
trajectory, which was defined as the subset of Contractile SMCs with highest MYH11 6 
expression. (b) Pseudotime trajectory with SMCs grouped according to lesion status. Inset plot 7 
depicts the density of cells from lesions and non-lesion libraries across pseudotime. (c) Cubic 8 
spline interpolation of SCTransform-normalized gene expression as a function of pseudotime. 9 
Genes plotted include hits from Monocle 3 and Seurat DE tests (FDR < 0.05). DE genes from 10 
SMC to fibromyocyte trajectory: FN1, LGALS3, AEBP1, LTBP1, PDGFRB. DE genes from SMC 11 
to FC trajectory: COL1A2, IBSP, CRTAC1, COMP, MMP2.  (d) Transcription factor (TF) activity 12 
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prediction with VIPER78 based on DoRothEA79 regulons for contractile and ECM-rich SMC 1 
phenotypes. Only regulons with confidence scores A-C (based on the number of supporting 2 
evidence) were used for this analysis. Highly variable TFs were selected for plotting and scale 3 
indicates relative predicted activity per TF.    4 
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 1 
Fig. 7. CRTAC1 as a novel candidate marker of atherosclerosis progression. (a) UMAP 2 
embeddings for SCTransformed normalized expression of CRTAC1. UMAP of cells highly 3 
enriched for the murine FC gene signature is shown as reference for the location of human FCs. 4 
IBSP is used as a control marker of calcification. (b) Pearson correlation plot of CRTAC1 with 5 
every other gene across SMCs and FC clusters. Selected examples of canonical contractile and 6 
ECM-related genes regulated during SMC modulation are shown. (c) Bulk RNA-seq expression 7 
of CRTAC1 and IBSP in coronary arteries from healthy (n=27) and diseased samples (n=21). 8 
Data points represent normalized expression counts (TPMs). P values were calculated using a 9 
non-parametric Wilcoxon rank sum test. (d) Log-normalized protein expression of CRTAC1 in 10 
category 1 (n=27) and 3 (n=29) disease samples. For details in definition of disease category 11 
(Methods). P value was calculated using a parametric unpaired Student’s T-test. Boxplots in (c) 12 
and (d) represent the median and the inter-quartile (IQR) range with upper (75%) and lower 13 
(25%) quartiles shown, and each dot represents a separate individual. (e) Dot plot showing 14 
normalized expression (FPKMs) from a public RNA-seq dataset of human fresh carotid lesions. 15 
Dots of the same color represent matched patient (n=4) samples of stable and unstable plaque 16 
regions (stable, n=4; unstable, n=4). (f) Clinical trait enrichment for CRTAC1-containing module 17 
in a subclinical mammary artery in STARNET gene regulatory network datasets. Pearson’s 18 
correlation P values (gene-level) were aggregated for each co-expression module using a two-19 
sided Fisher’s exact test. Case/control differential gene expression (DEG) enrichment was 20 
estimated by a hypergeometric test.  21 
 22 
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Supplementary Fig. 1. scRNA processing pipeline and integration benchmark metrics. (a) 21 
Workflow for standardizing processing of each scRNA-seq library and integration. Doublets 22 
were first identified and removed using scDblFinder105. Upon doublet removal, ambient RNA 23 
was removed using decontX25. The decontaminated matrix was then used for downstream 24 
filtering of cells based on 1) number of detected genes 2) number of UMIs  3) percentage of 25 
reads mapping to mitochondrial genome 4) percentage of reads mapping to hemoglobin genes 26 
using Seurat 26. Libraries were normalized using SCTransform27 integrated using four 27 
approaches (CCA + MNN, rPCA 26, Harmony 31, Scanorama 32). PCA embeddings from each 28 
approach were then used for measuring LISI scores and silhouette coefficients. Finally, rPCA 29 
was used to harmonize the 22 included sequencing libraries and level 1 labels were added 30 
using Transfer learning with the Tabula Sapiens Vasculature subset as reference. (b) UMAP 31 
embeddings of a representative library before and after going through the scRNA-seq 32 
processing pipeline. (c) Running time of each of the four integration approaches tested. The Y 33 
axis shows time in minutes. (d) Mean integration LISI (iLISI) scores calculated for each 34 
integration approach. Higher iLISI scores depict improved mixing and batch removal. (e) Mean 35 
cell type LISI (cLISI) calculated for each integration approach. Lower cLISI scores represent 36 
increased biological conservation. (f) Mean silhouette coefficients calculated for each integration 37 
approach. Silhouette coefficients were calculated using euclidean distances across a range of 38 
clustering resolutions (0.8-1.8) to determine optimal clustering resolutions.  Silhouette scores 39 
range from (-1, 1) where higher scores depict improved clustering quality or purity. PCA 40 
embeddings (30 PCs) were used for calculation of metrics in (d-g). Visual inspection of batch 41 
removal through UMAPs for the 41 Louvain clusters generated after integration with rPCA and 42 
cells grouped by the “Study” variable. For additional details on processing and benchmark see 43 
Methods.           44 
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Supplementary Fig.  2. Additional characterization of level 1 and level 2 cell type 25 
annotations. (a) Confidence scores from predicted labels using the Seurat Transfer learning 26 
classifier with the TS vasculature reference. Confidence scores range from 0-1 where higher 27 
scores refer to unambiguous calls. (b) Gene set enrichment analysis (GSEA) for level 1 28 
annotated cell types. This analysis was carried out with gProfiler2106 and the top seven 29 
significantly enriched terms (FDR <0.05) were selected for plotting. (c) Bar plot showing the 30 
distribution of level 1 annotated cell types across the 22 sequencing libraries included in this 31 
study. (d) UMAPs of SCTransform-normalized expression of genes defining key T cell states 32 
and subtypes (CD69: early activation; RORC: Th17 cells; GATA3: Th2 cells; SELL and IL7R: 33 
memory/naive T cells. (e) UMAP and bar plot of level 2 Lymphoid cell subtypes according to 34 
lesion status. Frequencies for each subtype shown in the bar plot are normalized to the total 35 
number of cells in each condition (lesion n=59691; non-lesion n=58887) and shown as 36 
percentages.      37 
 38 
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 40 
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Supplementary Fig. 3. Additional characterization of SMC subtypes. (a) Barplot depicting 18 
silhouette analysis using PCA embeddings for reference subset (SMCs, Pericytes and 19 
Fibroblasts). As before, silhouette coefficients were calculated across a range of resolutions to 20 
find optimal parameters for subclustering. Silhouette scores range from (-1, 1) where higher 21 
scores depict improved clustering quality or purity. (b) Stacked bar plot showing the distribution 22 
of level 2 annotations for SMCs (as well as Pericytes and Fibroblasts included in the 23 
subclustering step across studies, arterial beds (Coronary or Carotid) and sample disease 24 
status (lesion and non-lesion). (c) Dot plot showing ESμ values for canonical contractile markers 25 
(MYOCD, CNN1, ACTA2) as well as synthetic (TNFRSF11B) and osteochondrogenic markers 26 
(RUNX2, SOX9, IBSP) of SMC modulation for Contractile and ECM-rich SMC phenotypes 27 
(Fibromyocytes and FCs). ESμ values were plotted from a gene expression specificity matrix 28 
generated with CELLEX42. For additional details on ESμ values see Methods. (d) Gene set 29 
enrichment analysis (GSEA) for level 2 annotated SMCs. This analysis was carried out with 30 
gProfiler2106 and the top nine significantly enriched terms (FDR < 0.05) were selected for 31 
plotting.       32 
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Supplementary Fig. 4. TWEAK signaling for myeloid and SMC cell types. Circle plot 10 
depicting sources and targets for TWEAK signaling using level 2 labels for myeloid cells and 11 
level 1 SMC labels. Circle plot within the square depicts TWEAK signaling using level 2 labels 12 
for myeloid and SMC labels. Width of the edges depicts weight or strength of the interaction 13 
based on calculated communication probability between a pair of cell types. Interactions were 14 
calculated using the CellChat73 human database.    15 
 16 
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Supplementary Fig. 5. Differential gene expression through pseudotime and snATAC-seq 21 
TF activity inference. (a) Heatmap of varying gene module expression as Contractile SMCs 22 
transition into ECM-rich phenotypes (fibromyocytes and FCs). Differential genes across 23 
pseudotime were calculated using graph autocorrelation analysis with Monocle 3 and then 24 
grouped into modules using Louvain community analysis. Color scale represents aggregated 25 
expression of genes in each module across the above-mentioned SMC phenotypes. Boxes 26 
(right) list key genes found in each module. (b) Cubic spline interpolation of SCTransform-27 
normalized expression of canonical contractile markers (LMOD1, MYH11, ACTA2, TAGLN) as a 28 
function of pseudotime. (c) UMAP and Louvain clustering of coronary arteries snATAC-seq 29 
data. Each dot represents an individual cell colored by cluster assignment. Cell type labels in 30 
bold represent Contractile and ECM-rich modulated SMC populations as defined in Turner et al 31 
80. (d) UMAPs of ChromVAR TF motif accessibility deviation scores for factors shown as highly 32 
variable in previous SMC analysis with DoRothEA regulons (SRF, TEAD4, SMAD3, FOSL1, 33 
JUN).   34 
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Supplementary Fig. 6. External validation for CRTAC1 activity in arteries and SMCs. (a) 21 
Violin plot showing Expression expression across GTEx tissues (sorted according to normalized 22 
expression). The Y axis shows log-normalized expression values (TPMs) and violin plot shows 23 
median as well as inter-quartile (IQR) range with upper (75%) and lower (25%) quartiles. Dots 24 
represent outliers. (b) Volcano plot of differential accessibility analysis comparing ECM-rich 25 
Modulated to Contractile SMCs. Analysis was carried out using a Wilcoxon test as implemented 26 
in ArchR81. !"#$%&'()*&%(+,(-(.#,)&/(--"0",."%&#)&1234546768&#,/&9:+2 fold change > 1 were 27 
colored red (Modulated SMC upregulated) and blue (Modulated SMC downregulated). Each dot 28 
represents a differentially accesible region. Regions were annotated with the nearest protein 29 
coding genes using GenomicRanges107  and key contractile and modulated SMC genes are 30 
shown. (c) UMAP plots of snATAC-seq cells colored according to accessibility-derived gene 31 
scores (Methods) for canonical contractile factors (MYOCD) as well as modulated SMC ECM 32 
and osteochondrogenic markers (VCAN, SOX9, CRTAC1). CRTAC1 gene scores are elevated 33 
within a position of the Modulated SMC cluster and overlap with higher SOX9 activity, 34 
suggesting a chondrogenic transition.     35 
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Supplementary Fig. 7. Summary of cell type diversity in human atherosclerosis. Riverplot 28 
depicting the relationship between level 1 cell compartments and level 2 cell subtypes for 29 
vascular and immune lineages. This plot was generated using the ggalluvial R package.  30 
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Methods  1 
 2 
Ethics statement 3 
 4 
Details regarding data collection for scRNA-samples included in this meta-analysis can be found 5 
in each publication16–19. Collection of coronary artery samples for bulk RNA-seq and proteomics 6 
data generation described in this manuscript complies with ethical guidelines for human 7 
subjects research under approved Institutional Review Board (IRB) protocols at Stanford 8 
University (no. 4237 and no. 11925) and the University of Virginia (no. 20008), for the 9 
procurement and use of human tissues and information, respectively. 10 
 11 
QC and normalization of scRNA-seq sequencing libraries 12 
 13 
Raw count matrices from each library across the 4 studies were downloaded from GEO and 14 
Zenodo (Data Availability, Supplementary Table 1). Processing for each of the 22 sequencing 15 
libraries was standardized in the following manner: Each library was loaded into the R 16 
programming environment (v.4.0.3) using Seurat26 (v.4.1.0). For each library we did a first pass 17 
of clustering with SCTransform normalization27 without removing low-quality cells.  18 
 19 
In order to remove doublets, we referred to a recent benchmark of doublet-removal tools108 and 20 
chose the scDblFinder R package105  (v.1.4.0) given its superior accuracy compared to other 21 
tools. Seurat objects for each library were converted to SingleCellExperiment objects and used 22 
as input to generate artificial doublets using the cluster-based modality of scDblFinder. Briefly, 23 
scDblFinder creates a K-Nearest Neighbors graph using the union of real cells and artificial 24 
doublets and estimates the density of artificial doublets in the neighborhood of each cell. Since 25 
artificial-doublet generation approaches tend to display slight variance across different runs, we 26 
only kept consensus doublets from 3 iterations of the above-described process. Cell-barcodes 27 
that were marked as doublets were then removed from each raw counts matrix.  28 
 29 
Ambient RNA contamination is a key issue during 10x protocols and can negatively impact 30 
clustering and extraction of gene markers. To filter out reads from ambient RNA, we ran 31 
DecontX25 within the celda R package (v1.6.1) in doublets-filtered raw counts matrices using 32 
default parameters. The decontaminated raw count matrices output by DecontX were then 33 
added into each Seurat object. We then set quality filters to keep cells that had 1) >= 200 and 34 
<= 4000 uniquely expressed genes 2) >= 200 and <= 20000 UMIs 3) <= 10% of reads mapped 35 
to the mitochondrial genome; cells with high percentages of reads mapped to mitochondrial 36 
genomes are considered to be low quality as this indicates cell membrane breaches and 4) <= 37 
5% of reads mapped to hemoglobin genes since these cells likely depict contaminating 38 
erythrocytes as done in Alencar et al.  39 
 40 
Raw count matrices were then normalized using SCTransform27 with parameter (vst.flavor=v2), 41 
which accounts for sequencing depth variability across cells. This omits the need for heuristic 42 
steps such as log-transformation and it has been shown to improve variable gene selection, 43 
dimensionality reduction and differential expression27. To avoid clustering results confounded by 44 
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cell cycle state, cell cycle variance was regressed out during SCTransform normalization. We 1 
then carried out dimensionality reduction of the normalized counts matrix using PCA. The first 2 
30 principal components (PCs) were used as input for clustering in Seurat, which relies on a 3 
Shared-Nearest-Neighbors (SNN) and Louvain community detection approach. We then applied 4 
Uniform Manifold Approximation and Projection (UMAP) non-linear dimensionality reduction 5 
using the first 30 PCs. UMAP embeddings were used for visualization of Louvain clustering 6 
results. Processed matrices were then stored as seurat objects for batch-correction.  7 
 8 
Integration benchmarking and building the reference 9 
 10 
In order to harmonize processed sequencing libraries, we selected the following methods 11 
recommended from three recent benchmarks28,29,109 of single-cell transcriptomic data 12 
integration: Canonical Correlation Analysis + Mutual Nearest Neighbors (CCA + MNN), 13 
reciprocal PCA (rPCA)26 (v.4.1.0), Harmony31 (v.1.0) and Scanorama32 (v.1.7.1). We focused on 14 
four different metrics to choose a method: running time, efficiency of batch effect removal as 15 
denoted by the integrative Inverse Local Simpson Index (iLISI), conservation of biological 16 
variation using the “cell type” LISI (cLISI) and clustering purity measured by silhouette 17 
coefficients. The silhouette score provides a measure of how well each cell has been classified 18 
by measuring how similar it is to its own cluster (cohesion) compared to other clusters 19 
(separation). For the benchmark, we used a subset of the data including 3 studies: Wirka et al, 20 
Alsaigh et al and Pan et al. Libraries from these studies were integrated as follows:  21 
 22 
CCA + MNN: we created a list of selected Seurat objects and then selected 3000 highly variable 23 
genes. Integration with those variable genes was done using the PrepSCTIntegration(), 24 
FindIntegrationAnchors() and IntegrateData() functions. The batch-corrected expression matrix 25 
was then used for PCA dimensionality reduction, creation of the shared-nearest-neighbors 26 
(SNN) graph using 30 PCs and visualization with UMAP embeddings.  27 
 28 
Harmony: libraries were first stored into a list and highly variable genes extracted using the 29 
function SelectIntegrationFeatures(). Libraries were merged into a single seurat object, and the 30 
list of highly variable genes was used for PCA dimensionality reduction. We used the first 30 31 
PCs as input for RunHarmony() from the harmony package (v1.0), setting sequencing libraries 32 
(sample column in metadata) as the variables to correct for batch effects. Harmony embeddings 33 
were used for subsequent generation of the SNN graph, Louvain clustering and visualization 34 
with UMAP by setting reduction=”Harmony” within the FindNeighbors() and RunUMAP() Seurat 35 
functions and using the first 30 PCs.  36 
 37 
rPCA: we created a list of processed Seurat objects and extracted the 3000 most highly variable 38 
genes using SelectIntegrationFeatures(). We then ran PCA across each library using the 3000 39 
variable genes, identified integration anchors using FindIntegrationAnchors() setting 40 
reduction=”rpca” and harmonized datasets using IntegrateData(). As done for CCA, the batch-41 
corrected expression matrix was then used for PCA dimensionality reduction, creation of the 42 
shared-nearest-neighbors (SNN) graph using 30 PCs and Louvain clustering followed by 43 
visualization with UMAP embeddings.  44 
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 1 
Scanorama: We used the reticulate R package (v.1.18) to import the Scanorama python module 2 
(v.1.7.1) into the R environment. We created a list with seurat objects containing the datasets to 3 
be integrated and stored normalized SCTransform-normalized counts and gene names for each 4 
dataset into a new list. We then batch corrected the data using the function using the correct() 5 
function from the Scanorama package setting the following parameters (return_dimred=TRUE 6 
and reurn_dense=TRUE). The batch-corrected expression matrix output by correct() was used 7 
to create a new Seurat object and Scanorama-produced dimensionality reduced embeddings 8 
were inserted into the Seurat object using the CreateDimReducObject() function. Scanorama 9 
embeddings were subsequently used to create a shared-nearest-neighbors (SNN) graph for 10 
Louvain clustering and for visulaization with UMAP using the first 30 PCs.   11 
 12 
Running time measurements:Running times for each integration task were then measured using 13 
base R Sys.time() functions. Sys.time() was defined at the beginning and the end of each 14 
integration task and then the time difference was calculated as end_time - start_time.   15 
 16 
Silhouette analysis: Here we measured the quality or “goodness” of resulting clusters using the 17 
silhouette coefficient. For silhouette analyses, we extracted PCA embeddings from seurat 18 
objects with CCA+MNN, rPCA, Harmony and Scanorama integration outputs keeping the first 19 
30 PCs. We then used these embeddings to compute an Euclidean distance matrix. Cluster IDs 20 
for each cell were obtained iteratively across a range of clustering resolutions (0.8-1.8) and 21 
Euclidean distance matrices were used to calculate silhouette width values using the cluster R 22 
package (v.2.1.0). The purpose of using the above range was to control for the clustering 23 
granularity parameter and to identify a range of clustering resolutions that would not lead to 24 
over- or under-clustering of the data.   25 
 26 
Calculation of LISI scores: Briefly, iLISI scores are a measure of the diversity within each cell 27 
neighborhood on a K-nearest-neighbor (KNN) graph. Higher iLISI scores depict increased 28 
mixing of batches within a cell neighborhood and therefore suggest improved removal of batch 29 
effects. For each of the integration methods described above we extracted PCA embeddings 30 
(30 first PCs) from the corresponding integrated Seurat object. We then created a data frame 31 
with each row corresponding to one cell and columns depicting batch variables (“Study”). We 32 
then computed iLISI scores for each cell using the compute_lisi() function from the lisi R 33 
package31 (v.1.0). Mean iLISI values were plotted and compared across different integration 34 
methods. cLISI scores, in turn, are considered a metric that measures conservation of biological 35 
variation. With the assumption that each cluster should generally harbor cells from the same 36 
type, we created a dataframe with each row corresponding to each cell and a column depicting 37 
Louvain cluster identities. cLISI scores for each cell were calculated and plotted as described 38 
above.      39 
          40 
Integration of scRNA libraries and additional quality control: Upon determining the appropriate 41 
integration approach for the datasets of interest, we used rPCA to harmonize the 22 sequencing 42 
libraries as described in the above section. Upon integrating libraries, we reduced 43 
dimensionality of the data using PCA. A SNN graph was constructed using 50 nearest 44 
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neighbors and the first 30 PCs as input. Clusters were identified using the above graph with a 1 
resolution of 1, which was within the range of higher mean silhouette coefficients from the 2 
previous benchmark. Gene markers for each cluster were identified using PrepSCTMarkers() 3 
and the Wilcoxon Rank Sum test as implemented in the FindAllMarkers() function from Seurat 4 
(v.4.0). We considered genes that were expressed in at least 25% of the clusters being 5 
compared (one cluster vs all others) and that had a logfc.threshold=0.25. Genes fulfilling that 6 
criteria in addition to having multiple-testing adjusted P-values <= 0.05 were considered as 7 
differential cluster markers. Upon inspection of the gene signatures of each cluster, we found 8 
two small clusters comprising 432 cells (0.36% of cells in the integrated reference) expressing 9 
markers of multiple major lineages, which likely represent residual doublets and thus were 10 
removed from the reference. Upon removing these residual doublets, cells were re-clustered 11 
using the above-described parameters. Finally, inspection of cluster markers expression in 12 
UMAP space allowed us to identify and remove UMAP artifacts (e.g., cells with Natural Killer 13 
signatures within candidate fibroblast clusters). The 306 cells (0.25% of cells in the reference) 14 
comprising these artifacts were removed to obtain the final iteration of the reference. This step 15 
was necessary to ensure robustness of cell type and subtype annotations as well as other 16 
downstream analyses.      17 
 18 
Cell type annotations  19 
 20 
To annotate cell types in the integrated reference, we used a systematic approach to define 21 
broad labels (level 1) as well as more granular cell subtype labels (level 2).  22 
 23 
Level 1 annotations: To define broad cell type partitions, we accessed public data from the 24 
Tabula Sapiens (TS) consortium (https://tabula-sapiens-portal.ds.czbiohub.org/organs). To 25 
improve the specificity of annotations, we downloaded the vasculature subset of this 26 
transcriptomic atlas. Upon downloading the TS vaculature h5ad file, this dataset was converted 27 
into a Seurat-compatible format using the SeuratDisk R package (v.0.0.0.9019). To match the 28 
normalization workflow described in the scRNA sequencing library processing section, we 29 
extracted the TS vasculature raw counts matrix and normalized gene expression data using 30 
SCTransform. We then applied Seurat’s reference-based transfer learning (using 31 
FindIntegrationAnchors() and TransferData() to annotate cells in our meta-analyzed reference. 32 
In this case, the TS vasculature seurat object with author-provided cell type annotations was 33 
defined as reference for label transfer. Confidence scores of predicted labels ranging from 0-1 34 
(where 1 indicates that labels were annotated in a fully unambiguous manner) were extracted 35 
from the output of TransferData() and are shown in the Data Supplement. Gene markers for 36 
level 1 annotations were obtained using the PrepSCTMarkers() and FindAllMarkers() functions 37 
from Seurat (v.4.1.0) setting the following thresholds: logFC=0.25 and min.pct=0.25  38 
 39 
Level 2 annotations for endothelial, fibroblasts and immune cells: To define more granular cell 40 
subtypes for the meta-analyzed data, we used a combination of automated and manual 41 
annotations. We first annotated cell subtypes for endothelial, myeloid and lymphoid lineages 42 
using markers from atherosclerosis murine scRNA meta-analyses of SMCs and immune cells 43 
as well as relevant human atherosclerosis scRNA studies21–23,44–49. Annotations using curated 44 
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markers from the literature were corroborated with the assistance of experts at UVA. To further 1 
confirm and inspect immune cell subtype annotations in our reference, we used a logistic-2 
regression with stochastic gradient-descent framework implemented by the command-line tool 3 
CellTypist 50. CellTypist leverages a database of 20 different tissues and 19 reference datasets 4 
with a focus on myeloid and lymphoid cells. Specifically, we applied CellTypist low-hierarchy 5 
classifiers (using the Immune_All_Low.pkl and Immune_All_AddPIP.pkl models which harbor 90 6 
and 101 cell types, respectively) to our SCT-normalized reference counts matrix using both 7 
default settings as well as the majority voting classifier. Gene markers for level 2 annotations 8 
were obtained using the PrepSCTMarkers() and FindAllMarkers() functions from Seurat 9 
(v.4.1.0) setting the following thresholds: logFC=0.25 and min.pct=0.25 10 
 11 
Level 2 annotations for SMCs: To explore SMC diversity in human atherosclerosis, we subset 12 
the main meta-analyzed reference to include only the pericyte-SMC-fibroblast level1 partitions. 13 
This subset was then reclustered using Seurat (v.4.0) with a resolution of 0.9 based on an 14 
additional silhouette width benchmark. Next, gene modules (encompassing top markers from 15 
differential expression analyses) specific to contractile (n=50), Lgals3+ pioneer (n=50), and 16 
fibrochondrocyte (n=50) SMC phenotypes were extracted from a recent SMC lineage-traced 17 
murine scRNA meta-analysis. We also extracted a non-SMC-derived fibroblast module (n=50) 18 
as a negative enrichment control. Genes in each module were ranked by Log2FC and then 19 
converted to human homologs nomenclature and filtered to keep those with a one-to-one 20 
orthology relationship using custom wrapper functions with the biomaRt R package110 (v.2.46). 21 
We then calculated the enrichment of murine gene modules on individual cells within the 22 
pericyte-SMC-Fibroblast human subset using the UCell R package68 (v1.3.1) . In addition to the 23 
enrichment of murine gene modules, we also obtained gene markers for each of the 17 SNN-24 
derived clusters using the PrepSCTMarkers() and FindAllMarkers() functions from Seurat 25 
(v.4.1.0) setting the following thresholds: logFC=0.25 and min.pct=0.1. Final annotations for 26 
SMC subtypes were derived based on the UCell enrichment scores along UMAP coordinates 27 
and cluster markers.    28 
 29 
LD score regression analyses 30 
 31 
LDSC for SMC level 1 cell type annotations: Integration of scRNA and GWAS summary 32 
statistics was performed using the LDSC wrapper within the CELLECT python pipeline42. First, 33 
we created a gene expression specificity matrix for level 1 annotations using the SCTransform-34 
normalized expression matrix as input for the CELLEX python pipeline42. Shortly, gene 35 
expression specificity values (ESμ) output by CELLEX are derived using four different 36 
expression specificity metrics (Differential expression T-statistic, Gene enrichment score, 37 
Expression proportion and Normalized specificity index) and they represent a score that a gene 38 
is specifically expressed on a given cell type (level 1 annotation).  39 
 40 
We downloaded GWAS summary statistics for: CAD (van der Harst et al)36; Myocardial 41 
infarction37;  carotid intima-media thickness38, carotid artery plaques38, diastolic blood pressure, 42 
systolic blood pressure and pulse pressure from the Million Veterans Program 39; Alzheimer 43 
disease40; type 2 diabetes (UK Biobank)41; body mass index (UK Biobank)41; White blood cell 44 
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count (UK Biobank)41. UK Biobank summary statistics were downloaded from 1 
https://alkesgroup.broadinstitute.org/UKBB/.  2 
 3 
We used custom R scripts (https://github.com/MillerLab-CPHG/Human_athero_scRNA_meta) 4 
as well as the provided mtag_munge.py python script 5 
(https://github.com/pascaltimshel/ldsc/tree/d869cfd1e9fe1abc03b65c00b8a672bd530d0617) to 6 
convert GWAS summary statistics to a format compatible with that of the CELLECT S-LDSC 7 
wrapper. We then performed S-LDSC with the gene expression specificity matrix for level 1 8 
annotations across the above described GWAS studies using the established CELLECT 9 
snakemake workflow as shown in https://github.com/perslab/CELLECT/wiki/CELLECT-LDSC-10 
Tutorial.  11 
 12 
LDSC for SMC level 2 cell type annotations: We proceeded to subset the whole meta-analyzed 13 
reference Seurat object to include only cells along the pericyte-SMC-Fibroblast partitions. 14 
Metadata of this subset were used to generate the gene expression specificity matrix for level 2 15 
annotations. In addition to GWAS studies described above, we also included summary statistics 16 
from our recent Coronary Artery Calcification (CAC) multi-ancestry GWAS meta-analysis72. 17 
Munging of GWAS summary statistics and subsequent S-LDSC analyses were performed as 18 
described above. 19 
 20 
Cell communication analyses 21 
 22 
Cell communication analyses were carried out using the Cellchat R package73 (v.1.5.0). We 23 
selected the CellChat human database (Interactions considered include secreted signaling, 24 
ECM-receptor and cell-cell contacts). First, we extracted SCTransform-normalized counts from 25 
the integrated Seurat object. For the first round of analyses, we separated cells from each 26 
disease status (lesion and non-lesion) and grouped them according to level 1 labels. We 27 
created a ‘Cellchat’ object for matrices from each disease status using the createCellChat() 28 
function. We subsequently identified overexpressed genes in each condition using the 29 
identifyOverExpressedInteractions(). Communication probabilities were estimated with 30 
computeCommunProb() and aggregated cell communication networks calculated with the 31 
aggregateNet() function. We then merged lesion and non-lesion cellchat objects using the 32 
mergeCellChat() function. In order to identify pathways between Myeloid cells and SMCs that 33 
were enriched in each condition compared to the other, we input the merged ‘Cellchat’ object to 34 
the function rankNet() with parameters (mode=”comparison, sources.use=”Macrophage”, 35 
targets.use=”SMC”). Significantly enriched pathways were denoted as those with P<0.05. To 36 
further explore differentially enriched pathways with increased granularity, we created a new 37 
‘CellChat’ object using normalized counts from Macrophages and SMCs from lesions and 38 
grouped them using their respective level 2 annotations. We computed communication 39 
probabilities and aggregated cell communication networks as described above. Circle plots for 40 
specific signaling pathways were generated with the netvisualAggregate() function. The top 30% 41 
of interactions (based on interaction weights/strength from computed communication probability) 42 
were used for plotting interactions between level 1-annotated cell types. Given that we had a 43 
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larger number of cell types when deriving networks with level 2 labels, we chose to plot the top 1 
15% of interactions.              2 
 3 
 4 
Pseudotime analyses for SMCs 5 
 6 
Cells within the pericyte-SMC-fibroblast axis were subset to contain only contractile SMCs, 7 
transitional-ECM-SMCs, fibromyocytes and fibrochondrocytes. Single cell transcriptomic 8 
pseudotime analyses were performed using monocle374 (v1.0.0). Given that gene expression 9 
within this subset was normalized, the SCTransform-normalized expression matrix and 10 
corresponding metadata were extracted from the corresponding seurat object. Metadata and 11 
SCT counts were used to create a ‘cell_data_set’ object. To preserve clustering structure from 12 
previous analyses, we also extracted PCA/UMAP embeddings, cluster IDs and cell type 13 
annotations from the processed seurat object and inserted those into the corresponding slots of 14 
the ‘cell_data_set’ object. A trajectory was then inferred using the learn_graph() and 15 
order_cells() functions setting contractile SMCs with the highest expression of MYH11 as the 16 
root of the trajectory. DEG across the trajectory were calculated with grapth_test() and grouped 17 
into modules using the find_gene_modules() function. To model gene expression dynamics 18 
across pseudotime, we extracted pseudotime assignment values for each cell in the trajectory 19 
as well as SCTransform-normalized expression values and cell type annotations from the 20 
‘cell_data_set’ object. We then wrote a custom script to plot gene expression changes as a 21 
function of pseudotime where we applied cubic spline interpolation to expression values using 22 
the geom_smooth() function with parameters (method=“lm”,  formula = y ~ splines::ns(x, 3)).    23 
 24 
 25 
TF activity inference using DorothEA regulons 26 
 27 
For inference of TF activity, we also used a subset of the main reference only including SMCs, 28 
transitional SMCs, fibromyocytes and FCs. We downloaded a collection of curated TF regulons 29 
from the DoRothEA R package79 (v.1.8.0). We accessed human regulons using the 30 
dorothea_hs() function and only kept those with A, B and C confident scores for a more 31 
accurate prediction of regulon activity on each cell. Confidence scores had been previously 32 
defined based on the number of supporting evidence for each regulon79. TF activities for each 33 
cell were then estimated with the R package VIPER (v.1.24.0)78  providing the list of filtered 34 
regulons and the processed seurat object as input. Mean TF activities were then calculated 35 
across the SMC annotations of interest and the most variable TFs were selected for plotting.  36 
 37 
Human coronary artery tissue procurement 38 
 39 
Freshly explanted hearts from orthopedic heart transplant recipients were obtained at Stanford 40 
University under approved Institutional Review Board (IRB) protocols with the respective 41 
informed consents. Hearts were arrested in cardioplegic solution and rapidly transported from 42 
the operating room to adjacent laboratory on ice. The proximal 5-6 cm of three major coronary 43 
arteries (LAD, LCX, RCA) were dissected from the epicardium, trimmed of surrounding adipose, 44 
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rinsed in cold PBS and snap-frozen in liquid nitrogen. Human coronary artery tissue 1 
biospecimens were also obtained at Stanford University from non-diseased donor hearts 2 
rejected for orthotopic heart transplantation and processed following the same protocol as 3 
hearts for transplant. Reasons for rejected hearts included size incompatibility, risk for 4 
cardiotoxicity or comorbidities. Tissues were de-identified and clinical and histopathology 5 
information was used to classify ischemic, non-ischemic hearts and lesion and non-lesion 6 
containing arteries. All normal arteries originated from hearts with left ventricular ejection 7 
fraction (LVEF) greater than 50%. Frozen tissues were transferred to the University of Virginia 8 
through a material transfer agreement and IRB approved protocols. 9 
    10 
Coronary artery snATAC-seq tissue processing and data analysis 11 
 12 
Coronary artery samples processing and nuclei isolation for snATAC: We performed snATAC-13 
seq on four coronary artery samples per day. Nuclei isolation was done using a similar protocol 14 
to Omni-ATAC, which has been optimized for frozen tissues. Using approximately 50 mg of 15 
tissue per sample, we set the iodixanol gradient and then carefully took the band containing the 16 
nuclei. Nuclei was then added to 1.3 ml of cold Nuclei Wash Buffer (10 mM Tris-HCl (pH 7.4), 17 
10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.1% Tween-20) in a 1.5-ml Lo-Bind microcentrifuge tube.  18 
The tube was then inverted five times, gently mixed by pipetting and contents were then passed 19 
through a 40-µm Falcon cell strainer (Corning) into a new 1.5-ml Lo-Bind microcentrifuge tube 20 
(Eppendorf). Nuclei were then pelleted by centrifugation for 5 min at 500g at 4C and 21 
supernatant removed. Nuclei were then resuspended in 100 µl of the Nuclei Buffer provided with 22 
the 10X snATAC kit. Nuclei concentration was measured using Trypan blue (Thermo Fisher) 23 
and the Countess II instrument (Thermo Fisher).   24 
 25 
snATAC-seq library preparation, sequencing and data quality control: We used the 10X 26 
Genomics Chromium Single Cell ATAC kit for all snATAC-seq experiments. snATAC-seq 27 
libraries were shipped on ice to the Genome core facility at the Icahn School of Medicine at 28 
Mount Sinai (New York, NY, USA) for sequencing on an Illumina NovaSeq 6000. Resulting 29 
FASTQ files were preprocessed using the 10x Genomics Cellranger pipeline (CellRanger ATAC 30 
v1.2.0) using the hg38 reference genome and default parameters. Samples from different 31 
patients were preprocessed separately. Cellranger outputs were used to filter low-quality cells 32 
with the ArchR pipeline81 (v.1.0.2) as follows: TSS enrichment > 7, unique number of fragments 33 
> 10000 and a doublet ratio < 1.5.  34 
 35 
Dimensionality reduction, clustering of snATAC-seq data and generation of gene activity scores: 36 
Fragment files for each of the 41 patients were used to generate ArchR arrow files. The genome 37 
was then divided into 500bp windows and then fragments within each window were used to 38 
generate a tile matrix (28316 cells x ~ 6 million tiles). Iterative latent semantic index (LSI) was 39 
then used to reduce dimensionality of the tile matrix. We checked for batch effects using 40 
Harmony (v.1.0) and did not observe major differences in the data clustering structure (clusters 41 
driven by individual samples). We then used the first 30 components output by LSI for running 42 
non-linear dimensionality reduction (UMAP). Subsequent cell clustering was performed using 43 
the SNN modularity optimization-based algorithm as implemented in Seurat (v.4.1.0).  44 
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Chromatin accessibility (defined as the number of fragments within each tile) within gene bodies 1 
as well as proximally/distally from the TSS was used to infer gene expression by means of a 2 
gene activity score model. In this model, the number of fragments inside tiles of gene bodies are 3 
considered as well as surrounding tiles. To account for the activity of putative distal regulatory 4 
elements, an exponential weighting function is applied where tiles that reside further from genes 5 
TSS are assigned lower weights. Additionally, this model imposes gene boundaries to minimize 6 
the contribution of unrelated regulatory elements to a specific gene score.  7 
 8 
Differential accessibility for SMC phenotypes: Using cell type groupings defined in our recenet 9 
publication80, peaks were called for each ‘pseudo bulk’ sample (reads from each cell type 10 
cluster were combined as a new sample) using the addReproduciblePeakSet() function in 11 
ArchR (with parameters cutOff = 0.05, extendSummits = 250). Peaks called during this analysis 12 
had a width of 500 bp. Regions with differential accessibility between Modulated and Contractile 13 
SMCs were identified using a Wilcoxon-test as implemented in ArchR. The threshold for 14 
differential peak significance was set at FDR <= 0.05 and Log2 fold change > 1, resulting in a 15 
total of 5681 significantly upregulated peaks and 2121 downregulated peaks. For differential 16 
peak annotation, protein coding gene coordinates were extracted with ensembldb111 (v.2.14.04) 17 
and EnsDb.Hsapiens.v86 (v.2.99.0). Upregulated and downregulated peaks were annotated 18 
with the nearest protein coding gene using GenomicRanges107 (v1.42.0). This annotation was 19 
validated using the R package ChIPseeker112 (v1.26.0) along with 20 
TxDb.Hsapiens.UCSC.hg38.knownGene (v.3.10.0).  21 
 22 
TF motif enrichments: Enriched TF motifs for each cell type were predicted using the 23 
addMotifAnnotations() function in ArchR. Z deviation scores for each TF were then estimated 24 
with the chromVAR R package113 (v.1.12.0).  25 
 26 
Coronary artery calcification GWAS meta-analysis data 27 
 28 
The GWAS meta-analysis for coronary artery calcification (CAC) was conducted on 16 cohorts 29 
including 26,909 participants of European ancestry and 8,867 participants of African ancestry. 30 
CAC scores were calculated from computed tomography imaging at baseline, or first 31 
examination as described72. Genotyping quality control, imputation (1000 Genomes Phase 3), 32 
and variant filtering was performed as described. A joint meta-analysis of all available CAC 33 
GWAS was performed using a fixed-effects meta-analysis in METAL, using sample size 34 
weighted SNP p-values. The summary statistics from each study were combined using an 35 
inverse variance weighted meta-analysis.        36 
 37 
 38 
Pearson correlation calculations and gene set enrichment analyses  39 
 40 
Normalized counts for cell types of interest were extracted from the corresponding Seurat 41 
object. Matrices were transposed to define genes as variables and then we calculated pairwise 42 
Pearson correlations for a gene of interest (e.g., CRTAC1) with all of the other genes across the 43 
cell types of interest using apply() and cor.test() functions with parameters (method=”pearson”) 44 
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from the stats R package (v.4.0.3). P-values from the correlations were then adjusted for 1 
multiple testing using the Benjamini Hochberg correction as implemented in the R stats package 2 
with the p.adjust() function with parameters (method=”fdr”).   3 
 4 
For gene set enrichment analyses, we calculated DE genes as described in the above section. 5 
We ranked genes by log2 fold change values (log2FC) and extracted the top 100 hits per cell 6 
annotation. We then use the gost() function within the R gProfiler2 package106 (v.0.2.1) with 7 
parameters (order=TRUE) to weight genes according to their log2FC values. We then selected 8 
significant GO:BP ontology terms (FDR < 0.05) and ranked them according to their adjusted P-9 
values for plotting using custom functions from our scRNA_processing_utils.R script 10 
(https://github.com/MillerLab-CPHG/Human_athero_scRNA_meta). We found that the top 11 
GO:BP terms for fibrochondrocytes were highly redundant. Therefore, we used the gosemsim 12 
package114 (v2.16.1) and a custom script adapted from (https://github.com/YuLab-13 
SMU/clusterProfiler/blob/master/R/simplify.R) in order to calculate semantic similarity between 14 
GO:BP terms. We removed highly redundant terms accordingly. 15 
 16 
Gene expression analysis in coronary artery datasets 17 
 18 
RNA Extraction, QC, library construction and sequencing: Total RNA was extracted from frozen 19 
coronary artery segments using the Qiagen miRNeasy Mini RNA Extraction kit (catalog 20 
#217004). Approximately 50 mg of frozen tissue was pulverized using a mortar and pestle under 21 
liquid nitrogen. Tissue powder was then further homogenized in Qiazol lysis buffer using 22 
stainless steel beads in a Bullet Blender (Next Advance) homogenizer, followed by column-23 
based purification. RNA concentration was determined using Qubit 3.0 and RNA quality was 24 
determined using Agilent 4200 TapeStation. Samples with RNA Integrity Number (RIN) greater 25 
than 5.5 and Illumina DV200 values greater than 75 were included for library construction. Total 26 
RNA libraries were constructed using the Illumina TruSeq Stranded Total RNA Gold kit (catalog 27 
#20020599) and barcoded using Illumina TruSeq RNA unique dual indexes (catalog # 28 
20022371). After re-evaluating library quality using TapeStation, individually barcoded libraries 29 
were sent to Novogene for next generation sequencing. After passing additional QC, libraries 30 
were multiplexed and subjected to paired end 150 bp read sequencing on an Illumina NovaSeq 31 
S4 Flowcell to a median depth of 100 million total reads (>30 G) per library.  32 
  33 
RNA-seq processing and analysis: The raw passed filter sequencing reads obtained from 34 
Novogene were demultiplexed using the bcl2fastq script. The quality of the reads was assessed 35 
using FASTQC and the adapter sequences were trimmed using trimgalore. Trimmed reads 36 
were aligned to the hg38 human reference genome using STAR115 (v.2.7.3a) according to the 37 
GATK Best Practices for RNA-seq. To increase mapping efficiency and sensitivity, novel splice 38 
junctions discovered in a first alignment pass with high stringency, were used as annotation in a 39 
second pass to permit lower stringency alignment and therefore increase sensitivity. PCR 40 
duplicates were marked using Picard and WASP was used to filter reads prone to mapping bias. 41 
Total read counts and Transcripts per million normalization (TPM) for both genes and isoforms 42 
was calculated from individual bam files using the RSEM 43 
(https://deweylab.github.io/RSEM/README.html) rsem-calculate-expression command with the 44 
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paired-end option and gencode version 32 as a reference116. CRTAC1 and IBSP expression 1 
were plotted comparing ischemic vs normal disease classification. All normal samples were 2 
from donor hearts with no evidence of atherosclerosis.  3 
 4 
Coronary artery proteomics data generation and analysis 5 
  6 
Tissue processing: Frozen human coronary artery segments were shipped in 1.5 mL 7 
microcentrifuge tubes to King’s College London (London, United Kingdom). First, extracellular 8 
matrix (ECM) and associated ECM proteins were isolated from the frozen coronary artery 9 
samples using a 3-step extraction procedure (NaCl, SDS, and guanidine-HCl). Diced coronary 10 
artery tissue was vortexed thoroughly in 0.5 M NaCl, 0.1% SDS, and 4 M guanidine-HCl, 11 
sequentially. All 3 extracts were collected, and we subsequently used the guanidine extract for 12 
mass spectrometry and ECM protein analysis. Next, to remove glycans attached to ECM 13 
proteins, we used deglycanation enzymes (Heparinase II (Sigma-Aldrich H6512-10UN), 14 
Chondroitinase ABC (Sigma-Alrich C3667-5UN), Keratanase (G6920-5UN)) and a glycoprotein 15 
deglycosylation kit (Merck catalog #362280). We then used Water-18O (97% atom) to label N-16 
linked glycosylation sites. After deglycosylation the ECM protein samples (n=150) underwent 17 
denaturing, reduction, alkylation, precipitation, and overnight trypsin digestion. We purified the 18 
resultant ECM fragments with AssayMAP C18 cartridges (Agilent) on an Agilent Bravo 19 
AssayMAP robot. We analyzed the purified peptide samples using nanoflow liquid 20 
chromatography tandem mass spectrometry (LC-MS/MS). We performed data-dependent 21 
analysis (DDA) (on the top 15 ions in each full MS scan) using a nanoflow LC system (Dionex 22 
UltiMate 3000 RSLC nano) coupled to a high-resolution accurate-mass Orbitrap mass analyzer 23 
(Q Exactive HF, Thermo Fisher Scientific). 24 

  25 
Proteomics data analysis: We used the Thermo Scientific Proteome Discoverer software (v.2.3) 26 
to search the raw proteomic data files against the human database (UniProtKB/Swiss-Prot version 27 
2019_01, containing 20,349 protein entries) using the Mascot server (version 2.6.0, Matrix 28 
Science). We measured protein abundance in each sample using label-free quantitation (LFQ). 29 
Since the data was generated with the guanidine-HCl extract, we focused analysis on matrisome-30 
related proteins. Data was analyzed according to the King’s College London pipeline and 31 
processing protocol117,118. Data was normalized according to the total ion intensity and 32 
subsequently scaled to remove batch effects. We filtered out proteins with more than 30% missing 33 
values. For the remaining missing values, we performed imputation with the K-nearest neighbor 34 
(KNN) impute algorithm. To tune the parameter k of the KNN-impute method we experimentally 35 
tested the Euclidean distance of the imputed values compared to the real ones for 100 randomly 36 
selected values, testing for k=2 until 20. The optimal k value was set to 5 according to this 37 
procedure and this was applied to impute all the remaining missing values. Values were then 38 
displayed in Log2 scale. 39 
 40 
Disease categories: Disease status of coronary artery segments was determined as previously 41 
described80. Briefly, samples containing no evidence of atherosclerosis were included in 42 
category 1. Samples that are lesion-free and have no evidence of atherosclerosis, however the 43 
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patient has evidence of ischemic heart disease were included in category 2. Samples that have 1 
evidence of atherosclerosis due to presence of lesion were included in category 3.     2 
 3 
STARNET regulatory networks and clinical trait enrichment analysis  4 
 5 
Based on STARNET89 multi-tissue bulk RNA-seq data, tissue specific and cross-tissue co-6 
expression modules were inferred using WGCNA119. Enrichment for clinical traits was computed 7 
by aggregating Pearson’s correlation P values by co-expression module using Fisher’s method. 8 
Enrichment for DE genes was calculated with the hypergeomteric test using DESeq2 called 9 
genes (30% change, FDR <0.01) adjusting for age and sex covariates. The gene regulatory 10 
network for CRTAC1 co-expressed genes was inferred using GENIE3120. Weighted key driver 11 
analysis was then applied to identify hub or highly influential genes in the regulatory network 12 
using the Mergeomics R package121.  13 
 14 
Data Availability 15 
 16 
Raw count matrices included in this study were accessed through GEO and Zenodo. Raw count 17 
matrices for Wirka et al 18, Pan et al 19, Alsaigh et al 16 were obtained through the following 18 
accession numbers: Wirka et al (GSM3819856, GSM3819857, GSM3819858, GSM3819859, 19 
GSM3819860, GSM3819861, GSM3819862, GSM3819863); Alsaigh et al (GSM4837523, 20 
GSM4837524, GSM4837525, GSM4837526, GSM4837527, GSM4837528); Pan et al 21 
(GSM4705589, GSM4705590, GSM4705591). Raw count matrices from Hu et al 17 were 22 
obtained from Zenodo (https://zenodo.org/record/6032099#.Y1RDa-zMITU). The corresponding 23 
accession numbers can also be found in Supplementary Table 1.  24 
 25 
Bulk RNA-seq data from human carotid lesions88 was accessed through GEO with the 26 
accession number GSE120521.  27 
 28 
 29 
Code Availability 30 
 31 
Code used for processing of raw count matrices, integration benchmark and other downstream 32 
analyses can be found in the following Github repository: https://github.com/MillerLab-33 
CPHG/Human_athero_scRNA_meta  34 
 35 
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