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Abstract

Spontaneous fluctuations in functional Magnetic Resonance Imaging (fMRI) signals correlate

across distant brain areas, shaping functionally relevant intrinsic networks. However, the

generative mechanism of fMRI signal correlations - and in particular their link with

locally-detected ultra-slow oscillations - remain unclear. To investigate this link, we record

ultrafast ultrahigh field fMRI signals (9.4 Tesla, temporal resolution = 38 milliseconds) from

rat brains across three anesthesia conditions. Power at frequencies extending up to 0.3 Hz is

detected consistently across rat brains, and is modulated by anesthesia level. Principal

component analysis reveals a repertoire of modes, in which transient oscillations organize

with fixed phase relationships across distinct cortical and subcortical structures. Oscillatory

modes are found to vary between conditions, resonating at faster frequencies under

medetomidine sedation and reducing both in number, frequency, and duration with the

addition of isoflurane. Peaking in power within clear anatomical boundaries, these oscillatory

modes point to an emergent systemic property, questioning current assumptions regarding

the local origin of oscillations detected in fMRI and providing novel insights into the

organizing principles underpinning spontaneous long-range functional connectivity.
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Introduction

Spontaneous fluctuations in signals detected with functional Magnetic Resonance

Imaging (fMRI) correlate across spatially distributed brain areas forming functional networks

that appear disrupted in numerous psychiatric and neurological disorders, pointing to a key

role in brain function (Fox and Raichle 2007, Biswal, Mennes et al. 2010, Stam 2014, Fornito,

Zalesky et al. 2015, Gozzi and Zerbi 2022). However, the organizing principle driving long

range correlations between brain areas remains unclear.

A wide range of low-rank decomposition techniques have been put forward to

characterize the spatial organization of spontaneous fMRI signal fluctuations, including

among others independent component analysis (Damoiseaux, Rombouts et al. 2006, Smith,

Fox et al. 2009), co-activation patterns (Eickhoff, Bzdok et al. 2011, Liu and Duyn 2013, Liu,

Zhang et al. 2018, Gutierrez-Barragan, Basson et al. 2019), low-dimensional gradients

(Margulies, Ghosh et al. 2016, Huntenburg, Bazin et al. 2018), leading eigenvector dynamics

analysis (Cabral, Vidaurre et al. 2017, Lord, Expert et al. 2019), dynamic mode decomposition

(Casorso, Kong et al. 2019) and quasi-periodic patterns (QPPs) (Yousefi, Shin et al. 2018, Bolt,

Nomi et al. 2022). Despite the differences inherent to each technique, most methods

converge in a discrete repertoire of intrinsic modes exhibiting features of stationary wave

patterns, where correlated activity is detected among spatially distributed regions (or poles),

with gradually varying phase relationships across space (Uddin, Yeo et al. 2019). These

intrinsic modes have been shown to emerge transiently and recurrently during rest (Calhoun,

Miller et al. 2014, Preti, Bolton et al. 2017), to be selectively recruited during specific tasks

(Smith, Fox et al. 2009) and to replicate across mammals (Hutchison, Leung et al. 2011, Lu,

Zou et al. 2012, Fulcher, Murray et al. 2019, Gutierrez-Barragan, Basson et al. 2019, Coletta,

Pagani et al. 2020).
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In the frequency domain, correlated fluctuations in fMRI signals exhibit power at

ultra-slow frequencies, peaking typically below 0.1 Hz in human brains at rest, although

intrinsic functional networks have been detected at frequencies extending even beyond 0.5

Hz (Lee, Zahneisen et al. 2013, Chen and Glover 2015, Lewis, Setsompop et al. 2016, Trapp,

Vakamudi et al. 2018, Vohryzek, Deco et al. 2020). Crucially, it remains unclear whether the

spectral power at low frequencies is associated solely with aperiodic activations of the

characteristically slow and region-specific hemodynamic response function or additionally

reflects the existence of damped oscillatory components (Gonzalez-Castillo, Saad et al. 2012,

Lewis, Setsompop et al. 2016, Cabral, Kringelbach et al. 2017, Casorso, Kong et al. 2019).

Mainly detected with electro- and magnetoencephalography (EEG/MEG), macroscale

oscillatory components in brain activity have been targeted by neural field theories,

demonstrating how the frequency spectrum and correlation structure can be predicted from

brain geometry (Mukta, MacLaurin et al. 2017, Gabay, Babaie-Janvier et al. 2018, Tewarie,

Abeysuriya et al. 2018). Although intrinsic modes detected with fMRI have been shown to

spatially align with eigenmodes of brain structure (either from surface geometry of diffusion

networks), theoretical predictions of mode-specific temporal responses remain to be

adequately addressed in fMRI (Friston, Kahan et al. 2014, Atasoy, Donnelly et al. 2016,

Robinson, Zhao et al. 2016, Xie, Cai et al. 2021). Given recent insights demonstrating that the

fMRI signals underpinning intrinsic networks relate to macroscopic waves of propagating

activity (Schwalm, Schmid et al. 2017, Casorso, Kong et al. 2019, Gu, Sainburg et al. 2021,

Raut, Snyder et al. 2021), it is crucial to obtain a detailed characterization of the modes’

spatial and temporal signatures to empirically investigate their oscillatory nature and their

link with neural field theories.

Studies in rodents and humans have shown that some ultra-slow frequency

components in fMRI signals have a periodic nature and are coupled with electrophysiological
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and electroencephalographic (EEG) signals (He, Snyder et al. 2008, Pan, Thompson et al.

2013, Thompson, Pan et al. 2014, Fultz, Bonmassar et al. 2019). These periodic fluctuations

have been proposed to be linked to arteriole vibrations entrained by fast oscillations in local

field potentials, pointing to a potentially more direct relationship with the underlying neural

activity (Mateo, Knutsen et al. 2017, Drew, Mateo et al. 2020). Still, how these oscillations

organize at the macroscopic level and their relationship to ‘functional connectivity’ between

brain areas remains unclear.

Intrinsic networks analogous to the ones identified in humans have been identified

in rats and to be modulated by the sedation/anesthesia state (Weber, Ramos-Cabrer et al.

2006, Nasrallah, Tay et al. 2014, Paasonen, Stenroos et al. 2018, Gutierrez-Barragan, Basson

et al. 2019, van Alst, Wachsmuth et al. 2019). In particular, sedation with low doses of

medetomidine has been shown to reveal consistent intrinsic networks but also to drive

abnormal high amplitude oscillations in fMRI signals at frequencies extending beyond 0.1 Hz

(Thompson, Pan et al. 2014, Paasonen, Stenroos et al. 2018). The addition of isoflurane at

low concentrations suppresses these ‘high frequency’ oscillations while maintaining the

typical human resting-state frequencies < 0.1 Hz, such that the combination

medetomidine/isoflurane (MED/ISO) is currently the state-of-the-art protocol to

approximate ‘resting-state’ brain activity in rats (Grandjean, Schroeter et al. 2014, Pradier,

Wachsmuth et al. 2021).

The solid evidence from rat experiments across sedation/anesthesia protocols offers

an ideal setting to analyze the spatiotemporal organization of fMRI signal oscillations and

their relationship with intrinsic network patterns(Grandjean, Schroeter et al. 2014, Wu,

Mishra et al. 2016, Bukhari, Schroeter et al. 2017). However, the precise characterization of

oscillations across space and over time is complex and benefits from an adequate

spatiotemporal resolution and high signal-to-noise (SNR) ratio to adequately capture
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transient phase-relationships between voxels. Ultra-high field fMRI studies in rats achieve

increased SNR by attenuating thermal noise using cryogenic coils(Ratering, Baltes et al. 2008,

Arbabi, Noakes et al. 2022). Moreover, for increased precision in the characterization of

oscillatory signals, long scanning times are needed to ensure high frequency specificity at

slow frequencies, and fast sampling helps preventing frequency aliasing from undersampled

periodic components of physiological and/or scanner artifacts. At the spatial level, a large

field of view is necessary to capture macroscale organization, while ensuring a sufficient

spatial resolution to resolve distinct brain regions.

Therefore, we harness an ultrafast ultrahigh field fMRI approach, with long scan

durations of 10 minutes sampled at 38 milliseconds (16000 frames per scan) resolution to

characterize the spatial organization of oscillations detected in fMRI signals in a single slice of

the rat brain, achieving high SNR ratio via a 9.4 Tesla magnetic field and a cryogenic coil. This

approach exposes unreported features of rat brain activity, providing insights into the

fundamental organizing principles driving long-range functional connectivity in the brain.

Results

Long range functional connectivity

A typical seed-based functional connectivity analysis was performed to confirm the

detection of long-range correlations in fMRI signals in the range of frequencies typically

considered in resting-state studies, i.e., ranging between 0.01 and 0.1 Hz Figure 1 (a-b). In

panel c, we plot the band-pass filtered fMRI signals in the same 3 seeds together with their

contralateral voxels (cf. Supplementary Figure S1 for the corresponding brain atlas). When

applying sliding-window correlation (SWC) analysis, fluctuations were detected between

sustained periods of positive correlation (yellow shades) and periods of weak or even

negative correlation (orange to magenta shades). The same analysis was applied to a scan
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from a post-mortem rat to ensure that the periods of sustained correlations are detected at

levels beyond any conceivable artifacts (Supplementary Figure S2).

Figure 1 – Static and dynamic resting-state functional connectivity analysis in band-pass filtered fMRI signals.
(a) Correlation matrix of the fMRI signals in all voxels within the brain mask, bandpass filtered in a range typically
considered in resting-state studies, i.e., 0.01-0.1Hz (no nuisance regressor nor spatial smoothing applied). Each
line/column in the matrix corresponds to the correlation map of each voxel. (b) Seed-based correlation maps are
represented for 3 different seeds (white asterisks), where each voxel is colored according to its degree of
correlation with the seed. A voxel contralateral to each seed is represented by a black circle. All colorbars are
truncated between -0.8 and 0.8. (c) Filtered fMRI signals recorded in each seed (red) and corresponding
contralateral voxel (black). Colored shades represent the sliding window correlation (SWC) using a 30-second
window, showing that correlation is not constant but fluctuates between transients of long-range phase locking.
The same figure obtained from a postmortem scan is reported in SI figure S1.

Space-frequency analysis of fMRI signals across conditions

To investigate whether the transient correlations are associated with oscillatory

phenomena, we turn to analyze the spectrum of frequencies detected in brain voxels across

three different sedation/anesthesia protocols: under medetomidine only (which we term

sedation), after the addition of isoflurane at 1% concentration (light anesthesia), and after

increasing isoflurane concentration to 3% (deep anesthesia) (see Methods for details).

Applying a space-frequency analysis on 36 ultrafast fMRI scans (12 per condition, each 10
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minute long at 26.3 Hz sampling rate), the 3 different conditions are compared in terms of

power at different frequency bands and across brain voxels with respect to a baseline

defined from postmortem scans (Figure 2). Power at frequencies up to 0.30 Hz – extending

well beyond the range typically considered in resting-state studies - is detected in the brains

of sedated and lightly anesthetized rats significantly above deep anesthesia levels (Figure

2b).

Figure 2 – Spectral power of the fMRI signals in each brain voxels changes in each condition consistently across
rats. A – Spatial maps of spectral power averaged across all fMRI signals recorded from a frontal brain slice in
each condition (power averaged across 12 scans/condition and normalized by the mean power in postmortem
scans). B – Power across the 12 scans in each condition and in each frequency band relative to the mean power in
postmortem scans. Error bars represent the standard error across scans in each condition. Symbols indicate
statistical significance between: ‘o’ sedation vs light anesthesia; ’+’ sedation vs deep anesthesia; ‘x’ light vs deep
anesthesia. Black symbols indicate Bonferroni-corrected p-values for both the number of conditions and frequency
bands compared (p<0.05/3/8), while red symbols survive correction only for the number of conditions compared
(p<0.05/3). RS, resting-state.

Power in fMRI signals is found to peak within well-defined cortical boundaries

consistently between 0.20 and 0.25 Hz in rats sedated with medetomidine (Figure 2). Voxels

in the striatum (subcortical) are found to exhibit power at frequencies peaking between 0.1
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and 0.15Hz. The addition of isoflurane at 1% is found to specifically affect the power of fMRI

signal fluctuations between 0.15-0.25Hz, whereas isoflurane at 3% significantly decreases

the power in the broad frequency range between 0.05 and 0.3Hz (Figure 2b and

Supplementary Figures S3-S6). Above 0.40 Hz, only signatures associated with cardiac and

respiratory frequencies are detected (Supplementary Figure S7 and Table S1). Ultra-slow

fluctuations below 0.05 Hz, i.e., with a period longer than 20 seconds, persist even in deeply

anesthetized animals.

Spatial, temporal, and spectral properties of principal components

While the space-frequency analysis provides information about which voxels have

more power in each frequency band, it does not reveal how the signals evolve in time or

organize in space. As can be seen in Video 1, fluctuations are not globally correlated, but

instead exhibit complex phase relationships across space that appear recurrent over time

and consistent across different rats in the same condition. Signals co-varying in phase across

distant voxels symmetrically aligned with respect to the vertical midline point to a link with

long-range functional connectivity. In deep anesthesia, despite applying exactly the same

filtering, no particular spatial organization or fine structure is detected except for ultra-slow

globally correlated fluctuations.
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Video 1 (still image)– fMRI signals band-pass filtered between 0.01 and 0.3 Hz in 3 different rats and in 3
different conditions (Sedation: Medetomidine only; Light Anesthesia: Medetomidine + 1% isoflurane; Deep
anesthesia: Medetomidine + 3% isoflurane). To account for expected differences in power across conditions,
colorbar limits are set to ± 4 standard deviations of the band-pass filtered signals in each scan.

To characterize whether the fluctuations have a characteristic spatial organization,

we extract the principal components of the fMRI signals filtered below 0.3Hz in each

condition (e.g., the eigenvectors of the covariance matrix, see Figure 3 and Methods for

details). Principal component analysis has the advantage of returning orthogonal modes of

covariance without making any assumption regarding the oscillatory properties of the

components, unlike other decomposition techniques that a priori assume an oscillatory

nature of the components, such as dynamic decomposition analysis (Schmid 2010, Casorso,

Kong et al. 2019). The spatial patterns associated with the 10 principal components detected

above postmortem baseline reveal spatially fixed phase relationships between the fMRI

signals in distinct brain subsystems (Figure 3d). These phase-relationships varying gradually

and symmetrically across space exhibit characteristics of standing waves, where regions of

strong amplitude (red/blue) represent the ‘anti-nodes’ of the wave, whereas regions of low

amplitude between anti-nodes (green) represent the wave’s nodes (points of no motion).

To investigate the dynamic behavior of the principal components, we subsequently

analyze the temporal signatures associated with each spatial pattern. In particular, we aim to

verify the existence of periodicity between positive and negative representations of the

spatial patterns (Figure 3d), which is not necessarily a property of principal components,

given that signals can co-vary aperiodically. The temporal signature of each principalτ
α
𝑆(𝑡)

component for each scan S is obtained by performing a matrix multiplication that contractsα

the ‘n’ dimension as: , where represents the spatial pattern ofτ
α
𝑆(𝑡) = ψ

α
(𝑛) Ψ𝑆 𝑛, 𝑡( ) ψ

α
(𝑛)

each principal component and represents the activity recorded with fMRI acrossα Ψ𝑆 𝑛, 𝑡( )

all voxels n and timepoints t for scan S (Figure 3).
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Figure 3 – Spatial, temporal, and spectral signatures of the principal components in medetomidine-sedated
rats. a – The NxN covariance matrix of fMRI signals (filtered within the range where significant spectral power
was detected in the cortex, i.e., between 0.01 and 0.3Hz) averaged across the 12 sedated rat scans. b – Carpet

plot of the fMRI signals in all brain voxels, n, over time, t, represented by the wave function , here shownΨ𝑆(𝑛, 𝑡)
for a representative scan S of a sedated rat in the frequency range [0.01-0.5Hz]. Voxels are sorted according to the

elements in the largest magnitude eigenvector . Values correspond to fMRI signal change with respect to theψ
1

mean in each voxel. A zoom into the first 100 voxels over 60 seconds is inserted to illustrate oscillations in the
signals. c – Power spectrum of the mean fMRI signal across voxels for: (black) the scan shown in b and (red) a scan
performed postmortem (PM). d – The 10 principal components obtained as the eigenvectors from (a) withψ

α
eigenvalue above PM baseline are scaled by 1 (left) and -1 (right) to illustrate the activity pattern when theλ

α
temporal signature oscillates between positive and negative values. e – Temporal signature associated to each of

the 10 principal components given by for the same scan shown in b. Clear oscillations withτ
α
𝑆(𝑡) = ψ

α
𝑛( )Ψ𝑠 𝑛, 𝑡( )

fluctuating amplitude can be observed. f – Power spectra of the temporal signatures from e (blue) and in a
postmortem scan (red). See Video 2 to observe the behavior of each principal component over time.

The reconstruction describes the linear superposition of aΨ𝑅 𝑛, 𝑡( ) =
α
∑ ψ

α
(𝑛)τ

α
𝑆(𝑡)

basis of wave patterns locked in space and evolving in time . Video 2 illustratesψ
α
(𝑛) τ

α
𝑆(𝑡)

how the essential macroscopic dynamics of the recorded fMRI signals in a rat brain are
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captured using a low-rank approximation considering only the reduced common basis of 10

principal components detected across sedated rats, and the 10 scan-specific temporalψ
α
(𝑛)

signatures associated with these components. As observed in Figure 3 and Video 2, theτ
α
𝑆(𝑡)

principal components are found to oscillate around the mean with slowly fluctuating

amplitudes, generating patterns akin to those of transiently resonating stationary waves.

Video 2 (still image)– Reconstruction of a representative fMRI recording as the superposition of 10
condition-specific principal components with scan-specific temporal signatures. (left) fMRI signals band-pass
filtered between 0.01 and 0.3 Hz recorded from a representative rat under medetomidine only. (middle) Each of
the 10 principal components obtained from the covariance matrix averaged across all 12 sedated rat scans is
scaled by the associated scan-specific temporal signature. (Right) To account for differences in power across
components, colorbar limits are set to ± 4 standard deviations of the temporal signatures.

The detection of oscillations associated with the spatial patterns benefited from the

fast sampling combined with long scan durations (totaling 16000 images per 10 minute

scan), by preventing frequency aliasing from physiological rhythms (i.e., with Nyquist

frequency above breathing and cardiac frequencies) and by ensuring sufficient resolution in

the power spectrum at low frequencies, i.e., with precision below 0.01 Hz (see

Supplementary Figures S10-11). As shown in Figure 4 (top row), when projecting the 1xN

spatial component (here ) on the NxT ultrafast unfiltered fMRI signals, the temporalψ
α=7

signature exhibits clearly visible oscillations between positive and negativeτ
α=7
𝑆
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representations of the spatial pattern. As the sampling factor is increased, even if a resonant

peak frequency can still be detected, the signal to noise ratio is decreased. Indeed, we find

that the principal component fails to be detected with a sampling as fast as 380 ms,ψ
α=7

which coincides with the sampling rate at which the breathing frequency (~2 Hz) cannot be

adequately resolved given the Nyquist theorem (analysis shown in Supplementary figures

S12-S16). In Supplementary Figure S15 we reorder the spatial patterns and demonstrate that

the temporal signatures are specific to the spatial organization of the phases.

Figure 4 – Effect of the sampling rate in the power spectrum given a fixed scan duration. Left: The unfiltered
temporal signal associated with the 7th principal component detected in ultrafast fMRI signals fromτ

7
𝑆(𝑡)

medetomidine-sedated rats (Time of Repetition, TR= 38 milliseconds, ms) is downsampled by considering only one
in every 3, 5, 10, 20, 30, 40 and 50 frames (corresponding to intervals of 114, 190, 380, 760, 1140, 1520 and 1900
ms between frames). Plots shown for 250 seconds from a representative scan S (same from Figure 3). Right: The
power spectral density (PSD) of the sampled signals computed for scan S (blue) and for a scan performed
postmortem (red). For each downsampling factor, both PSD (red and blue) are normalized by the total power in
the postmortem scan. PSD are computed over the entire scan duration of 590 seconds.

With the addition of isoflurane at 1% concentration (Figure 5 top), the repertoire of

principal components is modified, not only in number - with only 6 components detected
13

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.01.06.475200doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475200
http://creativecommons.org/licenses/by-nc-nd/4.0/


above the postmortem baseline - but also in terms of spatial configuration, with different

brain subsystems oscillating in phase or anti-phase with each other. Regarding the temporal

signatures associated with the different components, although some transient oscillations

can still be detected, these last visibly shorter and with different periodicity over time (Figure

5e), which is reflected in a broader distribution of power across the spectrum, peaking at

lower frequencies with respect to the sedation condition (Figure 5f).

Figure 5 – The addition of isoflurane at 1% and 3 % concentrations alters the spatial, temporal, and spectral
signatures of principal components. (a,a’) The NxN covariance matrix of fMRI signals band-pass filtered between
0.01 and 0.3Hz, averaged across 12 scans after the addition of isoflurane at 1% (top) and 3% (bottom)
concentrations. (b,b’) Carpet plot of the fMRI signals recorded in all brain voxels, n, over time, t, represented by

the wave function , here shown for two scans S of the same rat from Figure 3 in the frequency rangeΨ𝑆(𝑛, 𝑡)
[0.01-0.5Hz]. Voxels are sorted according to the elements in the largest magnitude eigenvector . Valuesψ

1
correspond to fMRI signal change with respect to the mean in each voxel. A zoom into the first 100 voxels over 60
seconds is inserted to illustrate oscillations in the signals. (c,c’) – Power spectrum of the mean fMRI signal across
voxels. (d,d’) The principal components detected with eigenvalue above baseline are scaled by 1 (left) and -1
(right) to illustrate the activity pattern when the temporal signature oscillates between positive and negative
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values. (e,e’) Temporal signature associated to each of the supra-threshold principal components given by

for the same scan shown in b. (f,f’) Power spectra of the temporal signatures from e.τ
α
𝑆(𝑡) = ψ

α
𝑛( )Ψ𝑠 𝑛, 𝑡( )

When the concentration of isoflurane is further increased to 3% (Figure 5 bottom),

the variance above postmortem baseline is explained by a single principal component where

the cortex and striatum oscillate together in phase (Figure 5d’) and at very low frequencies

(Figure 5f’). These ultraslow global fluctuations are particularly visible in the carpet plot in

Figure 5b’.

The oscillatory nature of principal components

While in Figures 3 and 5 we show the results from one representative animal, in

Figure 6 we report the peak frequency and stability of the oscillations associated with each

principal component in each of the 36 scans, i.e., for the 6 rats scanned twice in each

condition. The stability of the oscillations is assessed from the resonance Q-factor, which is

proportional to the number of cycles before the amplitude decays to ~37% (e-1) of its initial

value, consisting the ratio between the peak frequency and the power spectrum’s

full-width-at-half-maximum (FWHM). Both the peak frequencies and the Q-factors were

found to be significantly higher (and with larger variability across scans) in sedation and light

anesthesia with respect to deep anesthesia (Bonferroni-corrected p-values reported in

Supplementary Table S2).
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Figure 6 – Principal components oscillate at higher frequencies and with less damping under medetomidine.
(a,b) The temporal signatures associated to the principal components detected in each condition are
characterized in terms of peak frequency and Q-factor for each of the 12 scans in each condition (2 scans per rat
per condition). Error bars represent the mean ± standard error across scans. (c) To illustrate the stability of the

oscillations, the autocorrelation functions of the temporal signatures associated to the first principalτ
1
𝑆

component in each condition are reported. Examples are shown for 3 scans from the same rat and from a
postmortem scan. As can be seen, the autocorrelation function under medetomidine exhibits 3 oscillations before
the amplitude decays to 1/e (~37%), 2 cycles after adding isoflurane at 1% and no complete cycle under deep
anesthesia, similar to what is observed in the postmortem scan.

The autocorrelation functions of the wave temporal signatures (here shown for τ
1
𝑆(𝑡)

in each condition) illustrate that the number of sustained cycles before the amplitude decays

to 1/e decreases with increasing levels of isoflurane, as estimated by the Q-factor (Figure 6c).

We use the Hilbert transform to obtain a representation of the autocorrelation functions in

complex domain (with real and imaginary components) and plot the corresponding phase

portraits (Figure 6c bottom). The representation of the phase portraits serves to classify the

temporal signatures of the components within the framework of dynamical systems stability

16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.01.06.475200doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475200
http://creativecommons.org/licenses/by-nc-nd/4.0/


theory, demonstrating that the components have a ‘spiral sink’ trajectory back to equilibrium

according to the Poincaré diagram (Teschl 2012).

Stochastic resonance of standing waves

The presence of a spiral sink in the autocorrelation function of a dynamical system is

indicative of underdamped oscillatory motion, where the system returns to a fixed point

equilibrium upon perturbation with an oscillation with decaying amplitude. An

underdamped system will resonate at its natural frequency either when perturbed at its

natural frequency or in the presence of background noise due to stochastic resonance (see

Supplementary Figure S16 for an illustration).

Given that the principal components detected in rat brain activity have spatial

features of standing waves (in line with previous studies) and, as we demonstrate here,

exhibit transient oscillations over time, it can be hypothesized that their phenomenology is

associated with the stochastic resonance of standing waves. In such a mechanistic scenario,

the differences detected across conditions can be further hypothesized to be related with

alterations in the properties of the medium through which the waves propagate, while the

anatomical structure remains unchanged. Indeed, while medetomidine is found to increase

the number, peak frequency and Q-factor of resonant modes, isoflurane is found to gradually

dampen the resonant modes of the system, with only global aperiodic fluctuations being

detected under deep anesthesia (Figure 6).

To demonstrate that the stochastic resonance of stationary wave patterns can

generate the patterns of intrinsic functional connectivity observed experimentally, we model

the signals in the brain slice as the superposition (i.e., linear sum) of modes whose spatial

configuration is fixed and given by the principal components detected empirically, andψ
α
(𝑛)
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the temporal signature is obtained using the Stuart-Landau equation to simulate the𝑍
α
(𝑡)

behavior of an oscillator in the underdamped regime in the presence of background noise as:

,Ψ𝑀𝑜𝑑𝑒𝑙 𝑛, 𝑡( ) =
α
∑ ψ

α
(𝑛)𝑍

α
(𝑡)

with

𝑑𝑍
α
/𝑑𝑡 = 𝑍

α
(𝑖ω

α
− |𝑍

α
|2 + 𝑎) +  βη,

where is the resonant frequency of each mode, (negative) scales the decay rateω
α

𝑎

and is the added gaussian white noise with standard deviation .η η β

Figure 7 – Stochastic resonance of standing waves drives transient long-range correlations in simulated signals.
The spatial configurations and temporal signatures of the principal components align with the hypothesis that
they represent standing waves, whose phenomenology is inherently associated with resonance phenomena. To
model the dynamics emerging from the transient resonance of standing waves in the presence of background
noise, we simulate a temporal signature for each of the spatial patterns detected in medetomidine sedated rats
(a) as the behavior of an underdamped oscillator perturbed with gaussian white noise, with natural frequency
fitted to the peak frequency obtained from one representative scan, and fitting the standard deviation to the
temporal signatures of the same scan (b). Multiplying the Tx1 temporal signatures by the corresponding 1xN
spatial patterns and summing across modes results in a NxT spatiotemporal pattern representing the result from
the stochastic resonance of a repertoire of standing waves.

As shown in Figure 7, the stochastic resonance of a repertoire of standing waves

(here considering the repertoire detected empirically in sedated animals) results in a

spatiotemporal pattern sharing features with what is detected from fMRI recordings. This
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model includes the possibility to tune the oscillators in the overdamped regime, in which

case it can approximate the results obtained in deeply anesthetized animals, where no

resonant oscillations are detected but only aperiodic fluctuations. In other words, the model

of stochastic resonance does not exclude the hypothesis of scale-free fluctuations driving the

fMRI signals, but it considers it to be a particular case where the oscillatory modes are

overdamped.

In Figure 7d, we show snapshots of activity generated from the superposition of

standing waves resonating in the presence of background noise to illustrate the multiplicity

of patterns that can be generated at the instantaneous level, as observed in empirical

recordings. Finally, to link with long-range functional connectivity, we compute the

correlation matrix of the simulated signals, demonstrating that the stochastic resonance of

standing waves is a possible mechanism to generate correlations between contralateral brain

regions located at the wave antinodes.

Expansion to the whole-brain level

To expand our results obtained in a single slice to the whole-brain level, the principal

components were obtained from six 15-minute-long fMRI scans covering 12 brain slices of 3

rat sedated with medetomidine. Despite the necessarily lower temporal resolution of

multi-slice acquisitions (here TR= 350 ms), oscillations could still be visually observed (see

Video 3), organizing with phase relationships that overlap (in slice 6) with the ones detected

in the frontal slice of ultrafast fMRI recordings, supporting the hypothesis that the

conclusions drawn from the single slice ultrafast acquisitions can be expanded to the

whole-brain level (Supplementary Figures S17-S19). However, although consistent principal

components were detected at the spatial level (the first 5 are rendered in a transparent brain

in Figure 8a), the limited temporal resolution and the added artifacts resulting from

multi-slice acquisitions were found reduce the sensitivity to transient oscillations such that
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even in the fMRI scan that exhibited most power > 0.15 Hz, the sensitivity to

frequency-specific oscillations is much lower than the one observed in single-slice

acquisitions (Supplementary Figure S19).

Video 3 (still image) – Multi-slice acquisitions reveal that the patterns detected in the frontal slice extend to the
whole brain level. fMRI signals recorded from a rat sedated with medetomidine with TR=0.350 seconds from 12
slices covering the whole brain (anterior to posterior) filtered between 0.15-0.25 Hz (no other signal processing
performed).

In summary, our experiments revealed that: i) power at frequencies extending up to

0.3Hz is consistently detected in the fMRI signals from rat brains, peaking in power in the

cortex of rats sedated under medetomidine; ii) fMRI signal fluctuations organize into a

discrete repertoire of modes with fixed phase relationships across space; iii) high sampling

rates allow detecting transient fine-tuned oscillations in the modes’ temporal signatures; iv)

the oscillatory modes are sensitive to anesthesia varying both in number, frequency, stability

and spatial configuration; v) the oscillatory modes detected exhibit features of a dynamical

system operating in the subcritical range of a Hopf bifurcation; vi) the stochastic resonance

of stationary patterns generates patterns of long-range functional connectivity similar to the

ones detected empirically; vii) These findings support the emerging hypothesis that
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resting-state activity detected with fMRI results from the superposition standing waves

emerging from resonance phenomena within the brain’s anatomical structure, which in turn

drive fluctuations in sliding-window correlations between the brain subsystems located at

the wave antinodes (Figure 8b).

Figure 8 – Mechanistic model for the spontaneous resonance of standing waves driving the activation of
functional brain networks. D –– Diagram illustrating a mechanistic scenario for brain activity, where each
functional network is represented by a spatial pattern responding to perturbation with a damped harmonicψ

α
 

motion. E - Like the response of a spring, the temporal signature of brain modes can be approximated by a
damped oscillator. Despite the lower temporal resolution inherent to multi-slice acquisitions hindering the
detection of resonant behavior, the consistency of spatial patterns reinforces the hypothesis that the damped
oscillatory response of functional networks extends to the whole-brain level, here represented by the first 5
eigenvectors of the average covariance matrices across 6 whole-brain scans (from 3 different rats).
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Discussion

Rhythms at frequencies ranging from 0.5 up to >100 Hz have been shown to emerge

from intrinsic neural processes (Engel, Fries et al. 2001, Buzsáki 2006, Wang 2010). However,

the role and generative mechanisms of rhythms below 0.5 Hz detected both with fMRI, EEG

and electrophysiology remain under vigorous debate (Breakspear 2017, Cabral, Kringelbach

et al. 2017, Drew, Mateo et al. 2020, Pradier, Wachsmuth et al. 2021, Henderson, Aquino et

al. 2022). Using fMRI experiments with hitherto unprecedented spatiotemporal resolution

we provide new insights into this problem by demonstrating the existence of intrinsic

macroscale oscillatory modes in fMRI signals, which organize with mode-specific phase

relationships across extended areas across the cortex and subcortex, driving correlated

activity between distant regions.

The oscillatory modes detected were found to be consistent across rats within the

same anesthetic condition, but to vary in terms of spatial configuration, peak frequency and

damping coefficient across conditions. Despite these differences, the modes detected across

conditions are qualitatively similar in terms of organization through phase gradients within

anatomically defined cortical and subcortical boundaries, indicating they likely share a

common generative principle. Thus, the new parameters that become accessible when

characterizing these intrinsic modes may be beneficial compared with the more conventional

‘functional connectivity’ or ‘dynamic functional connectivity’ metrics, as they provide

quantitative parameters on the nature of the correlation. It is further worth noting that the

snapshots of our intrinsic mode oscillations resemble the spatial patterns exposed by

quasi-periodic patterns (QPPs) (Yousefi, Shin et al. 2018, Bolt, Nomi et al. 2022) and

co-activation patterns (Gutierrez-Barragan, Singh et al. 2022), which were found to improve

the characterization of early Alzheimer’s disease stages (Belloy, Shah et al. 2018, van den

Berg, Adhikari et al. 2022) compared with more conventional resting-state fMRI functional
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connectivity metrics. Extending such characterizations using the Intrinsic macroscopic

oscillatory mode framework may shed further light into disease, as well as how activating or

silencing specific areas contributes to whole-brain modulations (Zerbi, Floriou-Servou et al.

2019, Rocchi, Canella et al. 2022).

Our results also align with neural field theories for macroscale brain dynamics

describing large-scale wave propagation of neuronal activity including a spatial Laplacian to

incorporate the brain geometry of the brain (Jirsa and Haken 1996, Robinson, Rennie et al.

1997, Deco, Jirsa et al. 2008, Gabay and Robinson 2017). While these neural field theories

have historically been used to describe macroscale brain activity detected with EEG, recent

studies suggest that the structural eigenmodes (defined either from brain surface geometry

or from diffusion networks) may also be at the origin of macroscopic activity patterns

detected with fMRI, namely the so-called ‘resting-state networks’ or ‘intrinsic connectivity

networks’ (Friston, Kahan et al. 2014, Atasoy, Donnelly et al. 2016, Robinson, Zhao et al.

2016, Tewarie, Abeysuriya et al. 2018, Xie, Cai et al. 2021). This has been recently reinforced

by a study demonstrating high spatial similarity between the covariance eigenvectors of fMRI

signals and the theoretical prediction of Helmholtz eigenmodes of the Laplace-Beltrami

operator starting from a brain surface mesh (Henderson, Aquino et al. 2022). Overall, these

studies support our interpretation that the principal components detected empirically from

the fMRI signals are eigenmodes intrinsic to the brain structure, including not only the cortex

but also subcortical structures, such as the striatum. Indeed, a closer inspection of the spatial

configuration of the modes shown in Figure 3 reveals that distinct eigenmodes emerge not

only in the cortex but also in the striatum, with some possibly representing fundamental (i.e.,

global) modes of specific brain structures (i.e., for the cortex and for the striatum),ψ
1

ψ
4

while others may represent subsequent harmonic modes with increasing spatial frequencies

(i.e., for the cortex and for the striatum).ψ
6,2,3,5,7

  ψ
8
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While under medetomidine alone, strong oscillations were detected up to 0.3Hz in

agreement with previous literature (Thompson, Pan et al. 2014), the addition of, isoflurane at

1% concentration was found to particularly suppress the power between 0.10 and 0.25 Hz,

leaving the power in the typical range considered in resting-state studies (i.e. < 0.1 Hz)

mostly unchanged. Further increasing isoflurane concentration to 3%, most oscillatory power

is lost and only very slow (<0.05Hz) global and aperiodic fluctuations are detected. It remains

unclear whether these non-linear effects are related with the differential effects of

medetomidine and isoflurane on blood vessels or can be explained by more direct changes in

the resistivity of the medium through which the waves propagate, altering its resonant

quality.

The differences detected across anesthetic conditions question the theoretical

predictions of modes depending on the brain geometric structure alone, because it is implicit

that the anatomy of the brain is invariant across conditions. Indeed, it is generally known

that the resonant modes of a system depend not only on the structural geometry of the

system, but also on the resistivity of the propagating medium, which directly affects not only

the spatial patterns, but also the resonant frequency and the stability of the oscillations.

Given that anesthetics directly affect diverse properties of the brain tissue and vasculature,

our results raise the importance to consider not only the brain geometry but also the

resistivity of the medium through which the waves propagate to possibly explain the

differences in resonant quality observed across anesthetic conditions.

Though many models can be used to describe damped oscillatory motion, we find

the Stuart-Landau equation in the subcritical range of a Hopf bifurcation to be appropriate

since it is the canonical form to describe a system in the vicinity of a limit cycle, responding

to perturbation with oscillations with decaying amplitude from basic mathematical

principles, with the imaginary component ensuring the conservation of angular momentum
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(Ashwin, Coombes et al. 2016). Hopf bifurcation models have been used in models of

spontaneous brain activity to represent local field oscillations interacting through the

connectome structure(Deco, Cabral et al. 2017, Deco, Cruzat et al. 2019, Cabral, Castaldo et

al. 2022). Here instead, we demonstrate that the oscillations detected with fMRI are not

purely local since they lock in phase across distinct subsystems and therefore each oscillator

model is associated to a distributed spatial map of phase relationships, analogous to the

modes of vibration in a violin string or a drum membrane (Sapoval, Gobron et al. 1991,

Robinson, Henderson et al. 2021, Henderson, Aquino et al. 2022). We show that the

temporal signature of the wave patterns can be approximated by an oscillator model with

varying natural frequency and damping coefficients. In such a framework, the less damped

the system is, the more it resonates at its natural frequency in the presence of naturally

occurring noise. We hypothesize this is what is occurring under medetomidine. If the

damping is increased (as observed with the addition of isoflurane), then the oscillations are

sustained over fewer cycles and at slower frequencies.

Being inherently associated with resonance, standing waves are a fundamental

property of matter, resulting from the constructive interference of waves travelling in

opposite directions, driving correlated (and anti-correlated) oscillations in the wave's

anti-nodes. The general principle of wave superposition implies that the brain can engage

simultaneously in multiple functional networks, instead of switching from one functional

network to another, as often considered in the analysis of dynamic functional

connectivity(Allen, Damaraju et al. 2014, Hansen, Battaglia et al. 2015, Cabral, Vidaurre et al.

2017, Stevner, Vidaurre et al. 2019). In other words, our results substantiate that the activity

recorded herein with fMRI aligns with neural field theories (Nunez 1974, Jirsa and Haken

1996, Nunez and Srinivasan 2014, Henderson, Aquino et al. 2022), where at any given

moment, the wave function - representing the collective systemic activity - results fromΨ
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the superposition of a discrete set of wave functions with damped oscillatory response. This

resonance framework offers simultaneously an explanation for i) the spontaneous

emergence of ultra-slow oscillations in brain activity, ii) the profile of phase relationships

across space (as observed in gradient-like functional connectivity patterns) and iii) the

difference in damping coefficients across conditions.

The generalization of these findings to other animal species including humans can

only be discussed in the light of existing literature and needs further experimental validation.

On one side, the similarity of the principal components detected herein with intrinsic

network patterns detected using different methodologies suggest these are expressions of

the same emergent phenomena, typically referred to as ‘resting-state networks’ (RSNs) or

‘intrinsic connectivity networks’ (ICNs). Since both rats, mice, monkeys, and humans exhibit

qualitatively similar RSNs/ICNs, it can be expected that they are expressions of the same

phenomenon. Indeed, a wide range of studies have demonstrated that intrinsic macroscale

modes of brain activity (detected across modalities) exhibit spatial features of standing

waves, so it can be expected that their temporal signature exhibits a damped harmonic

motion. Even if no clear periodicity is detected in resting state fMRI in humans and the

fluctuations closely approximate the canonical hemodynamic response function, one cannot

exclude the possibility that the fluctuations reflect an overdamped oscillatory response

associated with the transient and short-lived resonance of a stationary wave, providing a

new generative hypothesis for the dynamic patterns observed empirically.

A question that typically arises in this context is how closely the fMRI signals track

the underlying neural activity, mainly due to the involvement of neurovascular coupling

mechanisms. Although this study did not attempt to deconfound neural activity from

vascular coupling, it is interesting to note that the mode temporal signatures did not follow

the canonical hemodynamic response function. Instead, a ubiquitous transiently sustained
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periodicity occurs within a range of frequencies extending significantly above the range

typically associated with the BOLD signal, but below cardiac and respiratory physiological

rhythms. Recent studies combining simultaneous electrophysiological recordings of local

field potentials (LFPs) and fMRI in rats reported significant coherence between the two

signals precisely in the range of frequencies detected herein (Pan, Thompson et al. 2013,

Thompson, Pan et al. 2014). Therefore, one cannot exclude the possibility that the

oscillations observed with fMRI are linked with other factors beyond blood flow/volume

effects alone, and may provide a more direct measurement of neuronal activity (Lewis,

Setsompop et al. 2016, Toi, Jang et al. 2022). Still, given that hemodynamic blurring is

expected (Gonzalez-Castillo, J., Saad, Z.S., et al., 2012.) further local spectral properties may

have been obscured by this blurring.

The advantages of exploring fMRI signals at faster resolutions extend well beyond

this work and certainly deserve further exploration. While previous ultrafast fMRI

experiments in rodents have reached up to 20 frames per second, they have focused mostly

on stimulus-driven responses in specific regions of interest (Yu, Qian et al. 2014, Yu, He et al.

2016, Kay, Jamison et al. 2020, Lake, Ge et al. 2020, Gil, Fernandes et al. 2021), and much

remains to be explored at the level of spontaneous long-range interactions. Allowing for a

large span of scales both in space (from micrometer to meter) and in time (from millisecond

to hour), exploring the full possibilities of MRI may provide relevant insights into the brain

organizational principles in the spatial, temporal, and spectral domains (Toi, Jang et al. 2022).

Indeed, the traditionally low temporal resolution of fMRI studies has limited the analysis to

spatial correlations between ultra-slow fluctuations in distant areas. More recent dynamic

analysis of functional connectivity has revealed the non-stationary nature of network

interactions (Hutchison, Womelsdorf et al. 2013, Calhoun, Miller et al. 2014, Preti, Bolton et

al. 2016). Still, under the Connectomics framework, even dynamic studies measure spatial
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connectivity patterns over time, rather than investigating deeper origins of the signals. These

new insights may help resolve the conflicting - yet not mutually exclusive - hypotheses that

have been put forth on the nature of functional connectivity, ranging from stochastic

resonance(Deco, Jirsa et al. 2009), metastable synchronization (Cabral, Hugues et al. 2011,

Ponce-Alvarez, Deco et al. 2015, Cabral, Castaldo et al. 2022), superposition of harmonic

modes (Atasoy, Donnelly et al. 2016, Robinson, Zhao et al. 2016, Henderson, Aquino et al.

2022) or transitions between phase-locking patterns (Vohryzek, Deco et al. 2020), among

others.

In conclusion, this work reveals evidence for macroscopic oscillatory modes in

spontaneous fMRI signals that organize across the brain in standing wave patterns, providing

fresh insight into the organizing principles giving rise to intrinsic connectivity networks.

Future work disentangling the different underlying sources of the fMRI signal, as well as

studying the impact of specific therapeutic effects, such as direct electromagnetic

stimulation or pharmacological manipulations, should deepen our understanding of intrinsic

oscillatory modes in the brain. Ultimately, by promoting a better understanding of brain

dynamics, this work provides new perspectives for the advance in the diagnosis and

treatment of brain disorders.
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Methods

Experimental Design

All animal experiments followed the European Directive 2010/63 and were preapproved by

the Institution’s Review Board and the national competent authority.

Ultrafast resting-state fMRI recordings were obtained from a single brain slice of 6 rats

scanned under 3 different conditions, namely medetomidine(Weber, Ramos-Cabrer et al.

2006) combined with 3 concentrations of isoflurane: 0% (sedation), 1% (light anaesthesia)

and 3% (deep anaesthesia). Two additional postmortem scans were recorded from a seventh

rat to serve as baseline. Moreover, resting-state fMRI recordings covering 12 slices of the rat

brain were acquired from 3 rats under medetomidine. Below, we elaborate on each phase.

Animal preparation

Long-Evans female rats (N=7) weighing 206 ± 16 g and aged 8.3 ± 1.3 weeks were used in this

study. Animals were reared in a temperature-controlled room and held under a 12h/12h

light/dark cycle with ad libitum access to food and water.

Anaesthesia was induced with 5% isoflurane (VetfluraneTM, Virbac, France) mixed with

oxygen-enriched (27-30%) air in a custom-built plastic box. Rats were then weighed, moved

to the animal bed (Bruker, Germany) and isoflurane was reduced to 2.5%. Eye ointment

(Bepanthen Eye Drops, Bepanthen, Germany) was applied to prevent eye dryness. A 0.05

mg/kg bolus of medetomidine solution (Dormilan, Vetpharma Animal Health, Spain: 1

mg/ml, diluted 1:10 in saline) was injected subcutaneously 5-8 min after induction,

immediately followed by a constant infusion of 0.1 mg/kg/h s.c. of the same solution (25),

delivered via a syringe pump (GenieTouchTM, Kent Scientific, USA) until the end of the

experiment, and by a 10 min-long period where isoflurane was gradually decreased to 0%.
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fMRI acquisitions began once the animals stabilized in this condition (the time after

isoflurane is reported in Table S1

for each scan). For each rat, 2 fMRI scans were first acquired under medetomidine only

(sedation condition). Subsequently, fMRI scans were acquired after increasing isoflurane

concentration to 1% (light anaesthesia condition) and finally to 3% (deep anaesthesia

condition), waiting 10 min after each isoflurane increase for anaesthesia stabilization.

The breathing frequency and rectal temperature were monitored throughout the MRI

sessions using a pillow sensor and an optic fiber probe (SA Instruments Inc., Stony Brook,

USA), respectively. In the end of the experiments, medetomidine sedation was reverted by

injecting 0.25 mg/kg s.c. of atipamezole (Antisedan, Vetpharma Animal Health, Spain: 5

mg/ml, diluted 1:10 in saline).

A seventh rat, reared in the same conditions, was injected with 1 mL (60 mg) pentobarbital

i.p. and scanned postmortem with the same MRI protocol to serve as a control.

MRI protocol

Animals were imaged using a 9.4 T BioSpec® MRI scanner (Bruker, Germany) equipped with

an AVANCETM III HD console, producing isotropic pulsed field gradients of up to 660 mT/m

with a 120 µs rise time. RF transmission was achieved using an 86 mm-ID quadrature

resonator, while a 4-element array cryoprobe (Bruker, Fallanden, Switzerland) was used for

signal reception. Following localizer experiments and routine adjustments for center

frequency, RF calibration, acquisition of B0 maps and automatic shimming, anatomical

images were acquired using a T2-weighted RARE sequence in the coronal plane: TR/TE =

2000/36 ms, FOV = 18 x 16.1 mm2, in-plane resolution = 150 x 150 µm2, RARE factor = 8, slice

thickness = 0.6 mm, 22 slices, tacq = 3 min 28 s, and sagittal plane: TR/TE = 2000/36 ms, FOV =

24 x 16.1 mm2, in-plane resolution = 150 x 150 µm2, RARE factor = 8, slice thickness = 0.5

mm, 20 slices, tacq = 3 min 28 s. These images were used to place the slices of interest.
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Single-slice ultrafast fMRI acquisitions

To minimize the repetition time, we focused our analysis in a single 1.2 mm-thick slice of the

rat brain, choosing a frontal slice that covered a large cortical area and with a FOV of 21 x 21

mm2, as shown in Fig. S1 A-B. The slice was placed between -0.2 and 1.0 mm from Bregma

according to the Paxinos & Watson rat brain atlas(Paxinos and Watson 2009) (Supplementary

Figure S1c).

Six resting-state scans (2 per condition) were acquired from each of N=6 living rats (totaling

36 scans) using a gradient-echo echo planar imaging (GE-EPI) sequence (TR/TE = 38/11 ms,

flip angle = 15°, matrix size = 84 x 84, in-plane resolution = 250 x 250 µm2, number of time

frames = 16000, tacq = 10 min 8 s). Two postmortem scans were acquired with the same

parameters. Additionally, a Multi-Gradient Echo sequence (MGE, TE = 2.5:5:97.5 ms, TR =

300 ms, flip angle = 40°, matrix size = 210 x 210, in-plane resolution = 100 x 100 µm2, tacq = 4

min 12 s) and a Time-Of-Flight (TOF) FLASH sequence (TR/TE = 8.2/3.3 ms, flip angle = 80°,

matrix size = 210 x 210, in-plane resolution = 100 x 100 µm2, tacq = 17 s 219 ms) sequence

were acquired from all rats to obtain additional anatomical and vascular information about

the slice, respectively. Details of time after isoflurane induction, breathing frequency and

rectal temperature are reported for each scan in Table S1.

Whole-brain fMRI acquisitions

Resting-state data was acquired twice under medetomidine sedation from N=3 rats using a

multi-slice GE-EPI sequence covering the entire rat brain, from the frontal part of the

cerebellum to the posterior part of the olfactory bulb, and with the following parameters:

TR/TE = 350/11 ms, flip angle = 40°, FOV = 24 x 24 mm2, matrix size = 70 x 70, in-plane

resolution = 342.9 x 342.9 µm2, slice thickness = 1.2 mm, slice gap = 0.15 mm, 12 slices,

number of time frames = 2572, tacq = 15 min 0 s 200 ms.
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Brain masks

Individual brain masks were defined manually and aligned across rats to a common central

coordinate. All individual rat masks were superposed to define a common brain mask

containing N=1463 voxels in the single slice and N=7426 voxels in the whole brain.

In the single slice, no spatial or temporal interpolation was applied to the signals, such that

the signal in each brain voxel corresponds to the raw fMRI signal recorded.

In multi-slice acquisitions, slice-timing correction was applied using linear interpolation over

time.

Space-frequency analysis of fMRI data

Power spectra were computed for the fMRI signals on each of the 84 x 84 = 7056 voxels using

the fast Fourier transform, after removing the first 500 frames (19 seconds) and detrending.

Voxel power spectra were obtained up to the Nyquist frequency of (2TR)-1 = 13.1579 Hz.

Images of the power across a selected range of frequencies were obtained by averaging the

band-limited power in each voxel across scans in the same condition. All spectral analyses

were performed at the single scan level and metrics statistically compared between

conditions. Analysis up to the Nyquist frequency are reported in Supplementary Figure S5.

Principal Component analysis

For each scan, the fMRI signals in brain voxels were band-pass filtered between𝑁 = 1463

0.01 and 0.3Hz and the covariance matrix was computed. The largest magnitude𝑁𝑥𝑁

eigenvalue, was calculated for the two postmortem scans, and the largest one selectedλ
1
𝑃𝑀

as the baseline threshold. The covariance matrices were averaged across the 12 scans in

each condition, and, for each condition the eigenvectors with eigenvalueα 𝑁𝑥1

were extracted, representing the principal components detected in eachλ
α
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛> λ

1
𝑃𝑀

condition with magnitude above the postmortem baseline.
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The same analysis performed using decreasing sampling rates is reported in Supplementary

Figures S10. The modes detected using correlation - instead of covariance - above

postmortem baseline are reported in Supplementary Figure S11.

Statistical analysis

We compared the power between conditions at different frequency bands using a

non-parametric permutation-based t-test (10 000 permutations to ensure robustness of

results) to detect the frequency range most sensitive to the 3 different conditions. P-values

were conservatively corrected by the number of comparisons performed (Bonferroni

correction), considering both the number of between-group comparisons (considering only

independent hypotheses) as well as the number of frequency bands considered (considering

dependent hypotheses as well, which is even more conservative).

The resonance Q-factors and peak frequencies were statistically compared using the same

permutation test.

Standard error is calculated as the standard deviation divided by the square root of the

number of values compared.

Resonance analysis

Resonance was evaluated by computing the Q-factor, a measure typically used in acoustics

and engineering to quantify resonance phenomena. Importantly, it is not implied by

definition that a covariance mode will oscillate, since signals can co-vary aperiodically,

without necessarily oscillating. The Q-factors were estimated for the temporal signatures

associated to the principal component detected in each condition, for all the 12 scans in each

condition and statistically compared between conditions (p-values reported in Table S2).
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Damped Oscillator Model

To illustrate the response of an oscillatory system with different damping coefficients, we

used the Stuart-Landau equation:

𝑑𝑍
𝑑𝑡 = 𝑍 𝑖ω − 𝑍2| | + 𝑎( )

where is complex (with real and imaginary components), is the natural frequency, and𝑍 ω 𝑎

defines the position of the system with respect to the Hopf bifurcation at , such that𝑎 = 0

for the system displays self-sustained oscillations with constant amplitude scaled by ,𝑎 > 0 𝑎

whereas for the oscillations are damped and the system decays back to the fixed𝑎 < 0

point equilibrium at at a rate scaled by the magnitude of (i.e., the more negative𝑍 = 0 𝑎

the , the stronger the damping).𝑎

A single unit pulse (i.e., a Dirac delta function) is applied at t=0 to illustrate the intrinsic

response of the system in Supplementary Figure S16. Further, to illustrate the response to

continuous perturbation with a stochastic input, we add complex Gaussian white noise as:

,
𝑑𝑍
𝑑𝑡 = 𝑍 𝑖ω − 𝑍2| | + 𝑎( ) + βη

1
+ 𝑖βη

2

where and are independently drawn from a Gaussian distribution with standardη
1

η
2

deviation (integrated as ). Simulations were obtained using the Euler method forβ = 1 β 𝑑𝑡

numerical integration with a time step = 10-3 seconds.𝑑𝑡
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