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Abstract

Spontaneous fluctuations in functional Magnetic Resonance Imaging (fMRI) signals correlate
across distant brain areas, shaping functionally relevant intrinsic networks. However, the
generative mechanism of fMRI signal correlations - and in particular their link with
locally-detected ultra-slow oscillations - remain unclear. To investigate this link, we record
ultrafast ultrahigh field fMRI signals (9.4 Tesla, temporal resolution = 38 milliseconds) from
rat brains across three anesthesia conditions. Power at frequencies extending up to 0.3 Hz is
detected consistently across rat brains, and is modulated by anesthesia level. Principal
component analysis reveals a repertoire of modes, in which transient oscillations organize
with fixed phase relationships across distinct cortical and subcortical structures. Oscillatory
modes are found to vary between conditions, resonating at faster frequencies under
medetomidine sedation and reducing both in number, frequency, and duration with the
addition of isoflurane. Peaking in power within clear anatomical boundaries, these oscillatory
modes point to an emergent systemic property, questioning current assumptions regarding
the local origin of oscillations detected in fMRI and providing novel insights into the

organizing principles underpinning spontaneous long-range functional connectivity.
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Introduction

Spontaneous fluctuations in signals detected with functional Magnetic Resonance
Imaging (fMRI) correlate across spatially distributed brain areas forming functional networks
that appear disrupted in numerous psychiatric and neurological disorders, pointing to a key
role in brain function (Fox and Raichle 2007, Biswal, Mennes et al. 2010, Stam 2014, Fornito,
Zalesky et al. 2015, Gozzi and Zerbi 2022). However, the organizing principle driving long
range correlations between brain areas remains unclear.

A wide range of low-rank decomposition techniques have been put forward to
characterize the spatial organization of spontaneous fMRI signal fluctuations, including
among others independent component analysis (Damoiseaux, Rombouts et al. 2006, Smith,
Fox et al. 2009), co-activation patterns (Eickhoff, Bzdok et al. 2011, Liu and Duyn 2013, Liu,
Zhang et al. 2018, Gutierrez-Barragan, Basson et al. 2019), low-dimensional gradients
(Margulies, Ghosh et al. 2016, Huntenburg, Bazin et al. 2018), leading eigenvector dynamics
analysis (Cabral, Vidaurre et al. 2017, Lord, Expert et al. 2019), dynamic mode decomposition
(Casorso, Kong et al. 2019) and quasi-periodic patterns (QPPs) (Yousefi, Shin et al. 2018, Bolt,
Nomi et al. 2022). Despite the differences inherent to each technique, most methods
converge in a discrete repertoire of intrinsic modes exhibiting features of stationary wave
patterns, where correlated activity is detected among spatially distributed regions (or poles),
with gradually varying phase relationships across space (Uddin, Yeo et al. 2019). These
intrinsic modes have been shown to emerge transiently and recurrently during rest (Calhoun,
Miller et al. 2014, Preti, Bolton et al. 2017), to be selectively recruited during specific tasks
(Smith, Fox et al. 2009) and to replicate across mammals (Hutchison, Leung et al. 2011, Lu,
Zou et al. 2012, Fulcher, Murray et al. 2019, Gutierrez-Barragan, Basson et al. 2019, Coletta,

Pagani et al. 2020).
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In the frequency domain, correlated fluctuations in fMRI signals exhibit power at
ultra-slow frequencies, peaking typically below 0.1 Hz in human brains at rest, although
intrinsic functional networks have been detected at frequencies extending even beyond 0.5
Hz (Lee, Zahneisen et al. 2013, Chen and Glover 2015, Lewis, Setsompop et al. 2016, Trapp,
Vakamudi et al. 2018, Vohryzek, Deco et al. 2020). Crucially, it remains unclear whether the
spectral power at low frequencies is associated solely with aperiodic activations of the
characteristically slow and region-specific hemodynamic response function or additionally
reflects the existence of damped oscillatory components (Gonzalez-Castillo, Saad et al. 2012,
Lewis, Setsompop et al. 2016, Cabral, Kringelbach et al. 2017, Casorso, Kong et al. 2019).
Mainly detected with electro- and magnetoencephalography (EEG/MEG), macroscale
oscillatory components in brain activity have been targeted by neural field theories,
demonstrating how the frequency spectrum and correlation structure can be predicted from
brain geometry (Mukta, Maclaurin et al. 2017, Gabay, Babaie-Janvier et al. 2018, Tewarie,
Abeysuriya et al. 2018). Although intrinsic modes detected with fMRI have been shown to
spatially align with eigenmodes of brain structure (either from surface geometry of diffusion
networks), theoretical predictions of mode-specific temporal responses remain to be
adequately addressed in fMRI (Friston, Kahan et al. 2014, Atasoy, Donnelly et al. 2016,
Robinson, Zhao et al. 2016, Xie, Cai et al. 2021). Given recent insights demonstrating that the
fMRI signals underpinning intrinsic networks relate to macroscopic waves of propagating
activity (Schwalm, Schmid et al. 2017, Casorso, Kong et al. 2019, Gu, Sainburg et al. 2021,
Raut, Snyder et al. 2021), it is crucial to obtain a detailed characterization of the modes’
spatial and temporal signatures to empirically investigate their oscillatory nature and their
link with neural field theories.

Studies in rodents and humans have shown that some ultra-slow frequency

components in fMRI signals have a periodic nature and are coupled with electrophysiological
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and electroencephalographic (EEG) signals (He, Snyder et al. 2008, Pan, Thompson et al.
2013, Thompson, Pan et al. 2014, Fultz, Bonmassar et al. 2019). These periodic fluctuations
have been proposed to be linked to arteriole vibrations entrained by fast oscillations in local
field potentials, pointing to a potentially more direct relationship with the underlying neural
activity (Mateo, Knutsen et al. 2017, Drew, Mateo et al. 2020). Still, how these oscillations
organize at the macroscopic level and their relationship to ‘functional connectivity’ between
brain areas remains unclear.

Intrinsic networks analogous to the ones identified in humans have been identified
in rats and to be modulated by the sedation/anesthesia state (Weber, Ramos-Cabrer et al.
2006, Nasrallah, Tay et al. 2014, Paasonen, Stenroos et al. 2018, Gutierrez-Barragan, Basson
et al. 2019, van Alst, Wachsmuth et al. 2019). In particular, sedation with low doses of
medetomidine has been shown to reveal consistent intrinsic networks but also to drive
abnormal high amplitude oscillations in fMRI signals at frequencies extending beyond 0.1 Hz
(Thompson, Pan et al. 2014, Paasonen, Stenroos et al. 2018). The addition of isoflurane at
low concentrations suppresses these ‘high frequency’ oscillations while maintaining the
typical human resting-state frequencies < 0.1 Hz, such that the combination
medetomidine/isoflurane (MED/ISO) is currently the state-of-the-art protocol to
approximate ‘resting-state’ brain activity in rats (Grandjean, Schroeter et al. 2014, Pradier,
Wachsmuth et al. 2021).

The solid evidence from rat experiments across sedation/anesthesia protocols offers
an ideal setting to analyze the spatiotemporal organization of fMRI signal oscillations and
their relationship with intrinsic network patterns(Grandjean, Schroeter et al. 2014, Wu,
Mishra et al. 2016, Bukhari, Schroeter et al. 2017). However, the precise characterization of
oscillations across space and over time is complex and benefits from an adequate

spatiotemporal resolution and high signal-to-noise (SNR) ratio to adequately capture
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transient phase-relationships between voxels. Ultra-high field fMRI studies in rats achieve
increased SNR by attenuating thermal noise using cryogenic coils(Ratering, Baltes et al. 2008,
Arbabi, Noakes et al. 2022). Moreover, for increased precision in the characterization of
oscillatory signals, long scanning times are needed to ensure high frequency specificity at
slow frequencies, and fast sampling helps preventing frequency aliasing from undersampled
periodic components of physiological and/or scanner artifacts. At the spatial level, a large
field of view is necessary to capture macroscale organization, while ensuring a sufficient
spatial resolution to resolve distinct brain regions.

Therefore, we harness an ultrafast ultrahigh field fMRI approach, with long scan
durations of 10 minutes sampled at 38 milliseconds (16000 frames per scan) resolution to
characterize the spatial organization of oscillations detected in fMRI signals in a single slice of
the rat brain, achieving high SNR ratio via a 9.4 Tesla magnetic field and a cryogenic coil. This
approach exposes unreported features of rat brain activity, providing insights into the

fundamental organizing principles driving long-range functional connectivity in the brain.

Results

Long range functional connectivity

A typical seed-based functional connectivity analysis was performed to confirm the
detection of long-range correlations in fMRI signals in the range of frequencies typically
considered in resting-state studies, i.e., ranging between 0.01 and 0.1 Hz Figure 1 (a-b). In
panel ¢, we plot the band-pass filtered fMRI signals in the same 3 seeds together with their
contralateral voxels (cf. Supplementary Figure S1 for the corresponding brain atlas). When
applying sliding-window correlation (SWC) analysis, fluctuations were detected between
sustained periods of positive correlation (yellow shades) and periods of weak or even

negative correlation (orange to magenta shades). The same analysis was applied to a scan
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from a post-mortem rat to ensure that the periods of sustained correlations are detected at

levels beyond any conceivable artifacts (Supplementary Figure S2).
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Figure 1 - Static and dynamic resting-state functional connectivity analysis in band-pass filtered fMRI signals.
(a) Correlation matrix of the fMRI signals in all voxels within the brain mask, bandpass filtered in a range typically
considered in resting-state studies, i.e., 0.01-0.1Hz (no nuisance regressor nor spatial smoothing applied). Each
line/column in the matrix corresponds to the correlation map of each voxel. (b) Seed-based correlation maps are
represented for 3 different seeds (white asterisks), where each voxel is colored according to its degree of
correlation with the seed. A voxel contralateral to each seed is represented by a black circle. All colorbars are
truncated between -0.8 and 0.8. (c) Filtered fMRI signals recorded in each seed (red) and corresponding
contralateral voxel (black). Colored shades represent the sliding window correlation (SWC) using a 30-second
window, showing that correlation is not constant but fluctuates between transients of long-range phase locking.
The same figure obtained from a postmortem scan is reported in Sl figure S1.

Space-frequency analysis of fMRI signals across conditions

To investigate whether the transient correlations are associated with oscillatory
phenomena, we turn to analyze the spectrum of frequencies detected in brain voxels across
three different sedation/anesthesia protocols: under medetomidine only (which we term
sedation), after the addition of isoflurane at 1% concentration (light anesthesia), and after
increasing isoflurane concentration to 3% (deep anesthesia) (see Methods for details).

Applying a space-frequency analysis on 36 ultrafast fMRI scans (12 per condition, each 10
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minute long at 26.3 Hz sampling rate), the 3 different conditions are compared in terms of
power at different frequency bands and across brain voxels with respect to a baseline
defined from postmortem scans (Figure 2). Power at frequencies up to 0.30 Hz — extending
well beyond the range typically considered in resting-state studies - is detected in the brains
of sedated and lightly anesthetized rats significantly above deep anesthesia levels (Figure

2b).
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Figure 2 — Spectral power of the fMRI signals in each brain voxels changes in each condition consistently across
rats. A — Spatial maps of spectral power averaged across all fMRI signals recorded from a frontal brain slice in
each condition (power averaged across 12 scans/condition and normalized by the mean power in postmortem
scans). B — Power across the 12 scans in each condition and in each frequency band relative to the mean power in
postmortem scans. Error bars represent the standard error across scans in each condition. Symbols indicate
statistical significance between: 0’ sedation vs light anesthesia; '+’ sedation vs deep anesthesia; ‘x’ light vs deep
anesthesia. Black symbols indicate Bonferroni-corrected p-values for both the number of conditions and frequency
bands compared (p<0.05/3/8), while red symbols survive correction only for the number of conditions compared
(p<0.05/3). RS, resting-state.

Power in fMRI signals is found to peak within well-defined cortical boundaries
consistently between 0.20 and 0.25 Hz in rats sedated with medetomidine (Figure 2). Voxels

in the striatum (subcortical) are found to exhibit power at frequencies peaking between 0.1

8
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and 0.15Hz. The addition of isoflurane at 1% is found to specifically affect the power of fMRI
signal fluctuations between 0.15-0.25Hz, whereas isoflurane at 3% significantly decreases
the power in the broad frequency range between 0.05 and 0.3Hz (Figure 2b and
Supplementary Figures S3-S6). Above 0.40 Hz, only signatures associated with cardiac and
respiratory frequencies are detected (Supplementary Figure S7 and Table S1). Ultra-slow
fluctuations below 0.05 Hz, i.e., with a period longer than 20 seconds, persist even in deeply
anesthetized animals.
Spatial, temporal, and spectral properties of principal components

While the space-frequency analysis provides information about which voxels have
more power in each frequency band, it does not reveal how the signals evolve in time or
organize in space. As can be seen in Video 1, fluctuations are not globally correlated, but
instead exhibit complex phase relationships across space that appear recurrent over time
and consistent across different rats in the same condition. Signals co-varying in phase across
distant voxels symmetrically aligned with respect to the vertical midline point to a link with
long-range functional connectivity. In deep anesthesia, despite applying exactly the same
filtering, no particular spatial organization or fine structure is detected except for ultra-slow
globally correlated fluctuations.

fMRI signals band-pass filtered between 0.01 and 0.3 Hz
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Video 1 (still image)— fMRI signals band-pass filtered between 0.01 and 0.3 Hz in 3 different rats and in 3
different conditions (Sedation: Medetomidine only; Light Anesthesia: Medetomidine + 1% isoflurane; Deep
anesthesia: Medetomidine + 3% isoflurane). To account for expected differences in power across conditions,
colorbar limits are set to +4 standard deviations of the band-pass filtered signals in each scan.

To characterize whether the fluctuations have a characteristic spatial organization,
we extract the principal components of the fMRI signals filtered below 0.3Hz in each
condition (e.g., the eigenvectors of the covariance matrix, see Figure 3 and Methods for
details). Principal component analysis has the advantage of returning orthogonal modes of
covariance without making any assumption regarding the oscillatory properties of the
components, unlike other decomposition techniques that a priori assume an oscillatory
nature of the components, such as dynamic decomposition analysis (Schmid 2010, Casorso,
Kong et al. 2019). The spatial patterns associated with the 10 principal components detected
above postmortem baseline reveal spatially fixed phase relationships between the fMRI
signals in distinct brain subsystems (Figure 3d). These phase-relationships varying gradually
and symmetrically across space exhibit characteristics of standing waves, where regions of
strong amplitude (red/blue) represent the ‘anti-nodes’ of the wave, whereas regions of low
amplitude between anti-nodes (green) represent the wave’s nodes (points of no motion).

To investigate the dynamic behavior of the principal components, we subsequently
analyze the temporal signatures associated with each spatial pattern. In particular, we aim to
verify the existence of periodicity between positive and negative representations of the

spatial patterns (Figure 3d), which is not necessarily a property of principal components,
given that signals can co-vary aperiodically. The temporal signature Ti(t) of each principal
component o for each scan S is obtained by performing a matrix multiplication that contracts
the ‘n’ dimension as: Ti(t) = 1|Ja(n) l{Js(n, t), where LIJa(n) represents the spatial pattern of

S
each principal component a and ¥ (n, t) represents the activity recorded with fMRI across

all voxels n and timepoints t for scan S (Figure 3).
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Figure 3 — Spatial, temporal, and spectral signatures of the principal components in medetomidine-sedated
rats. a — The NxN covariance matrix of fMRI signals (filtered within the range where significant spectral power
was detected in the cortex, i.e., between 0.01 and 0.3Hz) averaged across the 12 sedated rat scans. b — Carpet

s
plot of the fMRI signals in all brain voxels, n, over time, t, represented by the wave function ¥" (n, t), here shown
for a representative scan S of a sedated rat in the frequency range [0.01-0.5Hz]. Voxels are sorted according to the

elements in the largest magnitude eigenvector LIJ]. Values correspond to fMRI signal change with respect to the

mean in each voxel. A zoom into the first 100 voxels over 60 seconds is inserted to illustrate oscillations in the
signals. ¢ — Power spectrum of the mean fMRI signal across voxels for: (black) the scan shown in b and (red) a scan
performed postmortem (PM). d — The 10 principal components lIJa obtained as the eigenvectors from (a) with

eigenvalue 7\[1 above PM baseline are scaled by 1 (left) and -1 (right) to illustrate the activity pattern when the

temporal signature oscillates between positive and negative values. e — Temporal signature associated to each of
N

the 10 principal components given by Ta(t) = lIJa(n)‘Ps(n, t) for the same scan shown in b. Clear oscillations with

fluctuating amplitude can be observed. f — Power spectra of the temporal signatures from e (blue) and in a
postmortem scan (red). See Video 2 to observe the behavior of each principal component over time.

The reconstruction lPR(n, =Y Lpa(n)ri(t) describes the linear superposition of a
o

basis of wave patterns locked in space lIJa(Tl) and evolving in time Ta(t). Video 2 illustrates

how the essential macroscopic dynamics of the recorded fMRI signals in a rat brain are
11
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captured using a low-rank approximation considering only the reduced common basis of 10

principal components L|Ja(7’l) detected across sedated rats, and the 10 scan-specific temporal

S
signatures Ta(t) associated with these components. As observed in Figure 3 and Video 2, the

principal components are found to oscillate around the mean with slowly fluctuating

amplitudes, generating patterns akin to those of transiently resonating stationary waves.
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Video 2 (still image)- Reconstruction of a representative fMRI recording as the superposition of 10
condition-specific principal components with scan-specific temporal signatures. (left) fMRI signals band-pass
filtered between 0.01 and 0.3 Hz recorded from a representative rat under medetomidine only. (middle) Each of
the 10 principal components obtained from the covariance matrix averaged across all 12 sedated rat scans is
scaled by the associated scan-specific temporal signature. (Right) To account for differences in power across
components, colorbar limits are set to +4 standard deviations of the temporal signatures.

The detection of oscillations associated with the spatial patterns benefited from the
fast sampling combined with long scan durations (totaling 16000 images per 10 minute
scan), by preventing frequency aliasing from physiological rhythms (i.e., with Nyquist
frequency above breathing and cardiac frequencies) and by ensuring sufficient resolution in
the power spectrum at low frequencies, i.e., with precision below 0.01 Hz (see
Supplementary Figures $10-11). As shown in Figure 4 (top row), when projecting the 1xN

spatial component (here lIJa:7) on the NxT ultrafast unfiltered fMRI signals, the temporal

signature L exhibits clearly visible oscillations between positive and negative
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representations of the spatial pattern. As the sampling factor is increased, even if a resonant
peak frequency can still be detected, the signal to noise ratio is decreased. Indeed, we find

that the principal component L|JO(:7 fails to be detected with a sampling as fast as 380 ms,

which coincides with the sampling rate at which the breathing frequency (~2 Hz) cannot be
adequately resolved given the Nyquist theorem (analysis shown in Supplementary figures
$12-516). In Supplementary Figure S15 we reorder the spatial patterns and demonstrate that

the temporal signatures are specific to the spatial organization of the phases.
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Figure 4 — Effect of the sampling rate in the power spectrum given a fixed scan duration. Left: The unfiltered
temporal signal r‘;(c) associated with the 7th principal component detected in ultrafast fMRI signals from
medetomidine-sedated rats (Time of Repetition, TR= 38 milliseconds, ms) is downsampled by considering only one
in every 3, 5, 10, 20, 30, 40 and 50 frames (corresponding to intervals of 114, 190, 380, 760, 1140, 1520 and 1900
ms between frames). Plots shown for 250 seconds from a representative scan S (same from Figure 3). Right: The
power spectral density (PSD) of the sampled signals computed for scan S (blue) and for a scan performed
postmortem (red). For each downsampling factor, both PSD (red and blue) are normalized by the total power in
the postmortem scan. PSD are computed over the entire scan duration of 590 seconds.

With the addition of isoflurane at 1% concentration (Figure 5 top), the repertoire of

principal components is modified, not only in number - with only 6 components detected
13
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above the postmortem baseline - but also in terms of spatial configuration, with different
brain subsystems oscillating in phase or anti-phase with each other. Regarding the temporal
signatures associated with the different components, although some transient oscillations
can still be detected, these last visibly shorter and with different periodicity over time (Figure
5e), which is reflected in a broader distribution of power across the spectrum, peaking at

lower frequencies with respect to the sedation condition (Figure 5f).
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Figure 5 — The addition of isoflurane at 1% and 3 % concentrations alters the spatial, temporal, and spectral
signatures of principal components. (a,a’) The NxN covariance matrix of fMRI signals band-pass filtered between
0.01 and 0.3Hz, averaged across 12 scans after the addition of isoflurane at 1% (top) and 3% (bottom)
concentrations. (b,b’) Carpet plot of the fMRI signals recorded in all brain voxels, n, over time, t, represented by

. S . .
the wave function W (n,t), here shown for two scans S of the same rat from Figure 3 in the frequency range
[0.01-0.5Hz]. Voxels are sorted according to the elements in the largest magnitude eigenvector s . Values
correspond to fMRI signal change with respect to the mean in each voxel. A zoom into the first 100 voxels over 60
seconds is inserted to illustrate oscillations in the signals. (c,c’) — Power spectrum of the mean fMRI signal across

voxels. (d,d’) The principal components detected with eigenvalue above baseline are scaled by 1 (left) and -1
(right) to illustrate the activity pattern when the temporal signature oscillates between positive and negative
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values. (e,e’) Temporal signature associated to each of the supra-threshold principal components given by

‘ti(t) = lpa(n)‘}’s(n, t) for the same scan shown in b. (f,f’) Power spectra of the temporal signatures from e.
When the concentration of isoflurane is further increased to 3% (Figure 5 bottom),
the variance above postmortem baseline is explained by a single principal component where
the cortex and striatum oscillate together in phase (Figure 5d’) and at very low frequencies
(Figure 5f’). These ultraslow global fluctuations are particularly visible in the carpet plot in

Figure 5b’.

The oscillatory nature of principal components

While in Figures 3 and 5 we show the results from one representative animal, in
Figure 6 we report the peak frequency and stability of the oscillations associated with each
principal component in each of the 36 scans, i.e., for the 6 rats scanned twice in each
condition. The stability of the oscillations is assessed from the resonance Q-factor, which is
proportional to the number of cycles before the amplitude decays to ~37% (e™?) of its initial
value, consisting the ratio between the peak frequency and the power spectrum’s
full-width-at-half-maximum (FWHM). Both the peak frequencies and the Q-factors were
found to be significantly higher (and with larger variability across scans) in sedation and light
anesthesia with respect to deep anesthesia (Bonferroni-corrected p-values reported in

Supplementary Table S2).
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Figure 6 — Principal components oscillate at higher frequencies and with less damping under medetomidine.
(a,b) The temporal signatures associated to the principal components detected in each condition are
characterized in terms of peak frequency and Q-factor for each of the 12 scans in each condition (2 scans per rat
per condition). Error bars represent the mean + standard error across scans. (c) To illustrate the stability of the

oscillations, the autocorrelation functions of the temporal signatures T associated to the first principal

component in each condition are reported. Examples are shown for 3 scans from the same rat and from a
postmortem scan. As can be seen, the autocorrelation function under medetomidine exhibits 3 oscillations before
the amplitude decays to 1/e (~37%), 2 cycles after adding isoflurane at 1% and no complete cycle under deep
anesthesia, similar to what is observed in the postmortem scan.

. . . S
The autocorrelation functions of the wave temporal signatures (here shown for Tl(t)

in each condition) illustrate that the number of sustained cycles before the amplitude decays
to 1/e decreases with increasing levels of isoflurane, as estimated by the Q-factor (Figure 6c).
We use the Hilbert transform to obtain a representation of the autocorrelation functions in
complex domain (with real and imaginary components) and plot the corresponding phase
portraits (Figure 6¢ bottom). The representation of the phase portraits serves to classify the

temporal signatures of the components within the framework of dynamical systems stability
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theory, demonstrating that the components have a ‘spiral sink’ trajectory back to equilibrium

according to the Poincaré diagram (Teschl 2012).

Stochastic resonance of standing waves

The presence of a spiral sink in the autocorrelation function of a dynamical system is
indicative of underdamped oscillatory motion, where the system returns to a fixed point
equilibrium upon perturbation with an oscillation with decaying amplitude. An
underdamped system will resonate at its natural frequency either when perturbed at its
natural frequency or in the presence of background noise due to stochastic resonance (see
Supplementary Figure S16 for an illustration).

Given that the principal components detected in rat brain activity have spatial
features of standing waves (in line with previous studies) and, as we demonstrate here,
exhibit transient oscillations over time, it can be hypothesized that their phenomenology is
associated with the stochastic resonance of standing waves. In such a mechanistic scenario,
the differences detected across conditions can be further hypothesized to be related with
alterations in the properties of the medium through which the waves propagate, while the
anatomical structure remains unchanged. Indeed, while medetomidine is found to increase
the number, peak frequency and Q-factor of resonant modes, isoflurane is found to gradually
dampen the resonant modes of the system, with only global aperiodic fluctuations being
detected under deep anesthesia (Figure 6).

To demonstrate that the stochastic resonance of stationary wave patterns can
generate the patterns of intrinsic functional connectivity observed experimentally, we model
the signals in the brain slice as the superposition (i.e., linear sum) of modes whose spatial

configuration llJa(Tl) is fixed and given by the principal components detected empirically, and

17


https://doi.org/10.1101/2022.01.06.475200
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.06.475200; this version posted November 29, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

the temporal signature Za(t) is obtained using the Stuart-Landau equation to simulate the

behavior of an oscillator in the underdamped regime in the presence of background noise as:

Model

Wm0 = R 7 (O,

with

dz jdt =7 (iw_—|Z |+ a) + Bn,

where w_ is the resonant frequency of each mode, a (negative) scales the decay rate

and 1 is the added gaussian white noise 1 with standard deviation f.
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Figure 7 — Stochastic resonance of standing waves drives transient long-range correlations in simulated signals.
The spatial configurations and temporal signatures of the principal components align with the hypothesis that
they represent standing waves, whose phenomenology is inherently associated with resonance phenomena. To
model the dynamics emerging from the transient resonance of standing waves in the presence of background
noise, we simulate a temporal signature for each of the spatial patterns detected in medetomidine sedated rats
(a) as the behavior of an underdamped oscillator perturbed with gaussian white noise, with natural frequency
fitted to the peak frequency obtained from one representative scan, and fitting the standard deviation to the
temporal signatures of the same scan (b). Multiplying the Tx1 temporal signatures by the corresponding 1xN
spatial patterns and summing across modes results in a NxT spatiotemporal pattern representing the result from
the stochastic resonance of a repertoire of standing waves.

As shown in Figure 7, the stochastic resonance of a repertoire of standing waves

(here considering the repertoire detected empirically in sedated animals) results in a

spatiotemporal pattern sharing features with what is detected from fMRI recordings. This
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model includes the possibility to tune the oscillators in the overdamped regime, in which
case it can approximate the results obtained in deeply anesthetized animals, where no
resonant oscillations are detected but only aperiodic fluctuations. In other words, the model
of stochastic resonance does not exclude the hypothesis of scale-free fluctuations driving the
fMRI signals, but it considers it to be a particular case where the oscillatory modes are
overdamped.

In Figure 7d, we show snapshots of activity generated from the superposition of
standing waves resonating in the presence of background noise to illustrate the multiplicity
of patterns that can be generated at the instantaneous level, as observed in empirical
recordings. Finally, to link with long-range functional connectivity, we compute the
correlation matrix of the simulated signals, demonstrating that the stochastic resonance of
standing waves is a possible mechanism to generate correlations between contralateral brain

regions located at the wave antinodes.

Expansion to the whole-brain level

To expand our results obtained in a single slice to the whole-brain level, the principal
components were obtained from six 15-minute-long fMRI scans covering 12 brain slices of 3
rat sedated with medetomidine. Despite the necessarily lower temporal resolution of
multi-slice acquisitions (here TR= 350 ms), oscillations could still be visually observed (see
Video 3), organizing with phase relationships that overlap (in slice 6) with the ones detected
in the frontal slice of ultrafast fMRI recordings, supporting the hypothesis that the
conclusions drawn from the single slice ultrafast acquisitions can be expanded to the
whole-brain level (Supplementary Figures $17-S19). However, although consistent principal
components were detected at the spatial level (the first 5 are rendered in a transparent brain
in Figure 8a), the limited temporal resolution and the added artifacts resulting from

multi-slice acquisitions were found reduce the sensitivity to transient oscillations such that
19
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even in the fMRI scan that exhibited most power > 0.15 Hz, the sensitivity to
frequency-specific oscillations is much lower than the one observed in single-slice

acquisitions (Supplementary Figure S19).

Slice 1 Slice 2 Slice 3 Slice 4

i -~ \ Y
Slice 5 Slice 6 Slice 7 Slice 8
- » . - L ¥

’ N 4 N - . « ’,
Slice 9 Slice 10 Slice 11 Slice 12
Y "'Q - P> = - R
\ ~ . . N :u "I

fMRI 0.15-0.25Hz (t =99.4 s)

Video 3 (still image) — Multi-slice acquisitions reveal that the patterns detected in the frontal slice extend to the
whole brain level. fMRI signals recorded from a rat sedated with medetomidine with TR=0.350 seconds from 12
slices covering the whole brain (anterior to posterior) filtered between 0.15-0.25 Hz (no other signal processing
performed).

In summary, our experiments revealed that: i) power at frequencies extending up to
0.3Hz is consistently detected in the fMRI signals from rat brains, peaking in power in the
cortex of rats sedated under medetomidine; ii) fMRI signal fluctuations organize into a
discrete repertoire of modes with fixed phase relationships across space; iii) high sampling
rates allow detecting transient fine-tuned oscillations in the modes’ temporal signatures; iv)
the oscillatory modes are sensitive to anesthesia varying both in number, frequency, stability
and spatial configuration; v) the oscillatory modes detected exhibit features of a dynamical
system operating in the subcritical range of a Hopf bifurcation; vi) the stochastic resonance

of stationary patterns generates patterns of long-range functional connectivity similar to the

ones detected empirically; vii) These findings support the emerging hypothesis that
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resting-state activity detected with fMRI results from the superposition standing waves
emerging from resonance phenomena within the brain’s anatomical structure, which in turn
drive fluctuations in sliding-window correlations between the brain subsystems located at

the wave antinodes (Figure 8b).
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Figure 8 — Mechanistic model for the spontaneous resonance of standing waves driving the activation of
functional brain networks. D — Diagram illustrating a mechanistic scenario for brain activity, where each
functional network is represented by a spatial pattern l]Ja responding to perturbation with a damped harmonic

motion. E - Like the response of a spring, the temporal signature of brain modes can be approximated by a
damped oscillator. Despite the lower temporal resolution inherent to multi-slice acquisitions hindering the
detection of resonant behavior, the consistency of spatial patterns reinforces the hypothesis that the damped
oscillatory response of functional networks extends to the whole-brain level, here represented by the first 5
eigenvectors of the average covariance matrices across 6 whole-brain scans (from 3 different rats).
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Discussion

Rhythms at frequencies ranging from 0.5 up to >100 Hz have been shown to emerge
from intrinsic neural processes (Engel, Fries et al. 2001, Buzsaki 2006, Wang 2010). However,
the role and generative mechanisms of rhythms below 0.5 Hz detected both with fMRI, EEG
and electrophysiology remain under vigorous debate (Breakspear 2017, Cabral, Kringelbach
et al. 2017, Drew, Mateo et al. 2020, Pradier, Wachsmuth et al. 2021, Henderson, Aquino et
al. 2022). Using fMRI experiments with hitherto unprecedented spatiotemporal resolution
we provide new insights into this problem by demonstrating the existence of intrinsic
macroscale oscillatory modes in fMRI signals, which organize with mode-specific phase
relationships across extended areas across the cortex and subcortex, driving correlated
activity between distant regions.

The oscillatory modes detected were found to be consistent across rats within the
same anesthetic condition, but to vary in terms of spatial configuration, peak frequency and
damping coefficient across conditions. Despite these differences, the modes detected across
conditions are qualitatively similar in terms of organization through phase gradients within
anatomically defined cortical and subcortical boundaries, indicating they likely share a
common generative principle. Thus, the new parameters that become accessible when
characterizing these intrinsic modes may be beneficial compared with the more conventional
‘functional connectivity’ or ‘dynamic functional connectivity’ metrics, as they provide
guantitative parameters on the nature of the correlation. It is further worth noting that the
snapshots of our intrinsic mode oscillations resemble the spatial patterns exposed by
quasi-periodic patterns (QPPs) (Yousefi, Shin et al. 2018, Bolt, Nomi et al. 2022) and
co-activation patterns (Gutierrez-Barragan, Singh et al. 2022), which were found to improve
the characterization of early Alzheimer’s disease stages (Belloy, Shah et al. 2018, van den

Berg, Adhikari et al. 2022) compared with more conventional resting-state fMRI functional
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connectivity metrics. Extending such characterizations using the Intrinsic macroscopic
oscillatory mode framework may shed further light into disease, as well as how activating or
silencing specific areas contributes to whole-brain modulations (Zerbi, Floriou-Servou et al.
2019, Rocchi, Canella et al. 2022).

Our results also align with neural field theories for macroscale brain dynamics
describing large-scale wave propagation of neuronal activity including a spatial Laplacian to
incorporate the brain geometry of the brain (Jirsa and Haken 1996, Robinson, Rennie et al.
1997, Deco, lJirsa et al. 2008, Gabay and Robinson 2017). While these neural field theories
have historically been used to describe macroscale brain activity detected with EEG, recent
studies suggest that the structural eigenmodes (defined either from brain surface geometry
or from diffusion networks) may also be at the origin of macroscopic activity patterns
detected with fMRI, namely the so-called ‘resting-state networks’ or ‘intrinsic connectivity
networks’ (Friston, Kahan et al. 2014, Atasoy, Donnelly et al. 2016, Robinson, Zhao et al.
2016, Tewarie, Abeysuriya et al. 2018, Xie, Cai et al. 2021). This has been recently reinforced
by a study demonstrating high spatial similarity between the covariance eigenvectors of fMRI
signals and the theoretical prediction of Helmholtz eigenmodes of the Laplace-Beltrami
operator starting from a brain surface mesh (Henderson, Aquino et al. 2022). Overall, these
studies support our interpretation that the principal components detected empirically from
the fMRI signals are eigenmodes intrinsic to the brain structure, including not only the cortex
but also subcortical structures, such as the striatum. Indeed, a closer inspection of the spatial
configuration of the modes shown in Figure 3 reveals that distinct eigenmodes emerge not
only in the cortex but also in the striatum, with some possibly representing fundamental (i.e.,

global) modes of specific brain structures (i.e., 1]11 for the cortex and 1]J4for the striatum),

while others may represent subsequent harmonic modes with increasing spatial frequencies

(i.e., q16’2,3’5,7 for the cortex and 1|18 for the striatum).
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While under medetomidine alone, strong oscillations were detected up to 0.3Hz in
agreement with previous literature (Thompson, Pan et al. 2014), the addition of, isoflurane at
1% concentration was found to particularly suppress the power between 0.10 and 0.25 Hz,
leaving the power in the typical range considered in resting-state studies (i.e. < 0.1 Hz)
mostly unchanged. Further increasing isoflurane concentration to 3%, most oscillatory power
is lost and only very slow (<0.05Hz) global and aperiodic fluctuations are detected. It remains
unclear whether these non-linear effects are related with the differential effects of
medetomidine and isoflurane on blood vessels or can be explained by more direct changes in
the resistivity of the medium through which the waves propagate, altering its resonant
quality.

The differences detected across anesthetic conditions question the theoretical
predictions of modes depending on the brain geometric structure alone, because it is implicit
that the anatomy of the brain is invariant across conditions. Indeed, it is generally known
that the resonant modes of a system depend not only on the structural geometry of the
system, but also on the resistivity of the propagating medium, which directly affects not only
the spatial patterns, but also the resonant frequency and the stability of the oscillations.
Given that anesthetics directly affect diverse properties of the brain tissue and vasculature,
our results raise the importance to consider not only the brain geometry but also the
resistivity of the medium through which the waves propagate to possibly explain the
differences in resonant quality observed across anesthetic conditions.

Though many models can be used to describe damped oscillatory motion, we find
the Stuart-Landau equation in the subcritical range of a Hopf bifurcation to be appropriate
since it is the canonical form to describe a system in the vicinity of a limit cycle, responding
to perturbation with oscillations with decaying amplitude from basic mathematical

principles, with the imaginary component ensuring the conservation of angular momentum
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(Ashwin, Coombes et al. 2016). Hopf bifurcation models have been used in models of
spontaneous brain activity to represent local field oscillations interacting through the
connectome structure(Deco, Cabral et al. 2017, Deco, Cruzat et al. 2019, Cabral, Castaldo et
al. 2022). Here instead, we demonstrate that the oscillations detected with fMRI are not
purely local since they lock in phase across distinct subsystems and therefore each oscillator
model is associated to a distributed spatial map of phase relationships, analogous to the
modes of vibration in a violin string or a drum membrane (Sapoval, Gobron et al. 1991,
Robinson, Henderson et al. 2021, Henderson, Aquino et al. 2022). We show that the
temporal signature of the wave patterns can be approximated by an oscillator model with
varying natural frequency and damping coefficients. In such a framework, the less damped
the system is, the more it resonates at its natural frequency in the presence of naturally
occurring noise. We hypothesize this is what is occurring under medetomidine. If the
damping is increased (as observed with the addition of isoflurane), then the oscillations are
sustained over fewer cycles and at slower frequencies.

Being inherently associated with resonance, standing waves are a fundamental
property of matter, resulting from the constructive interference of waves travelling in
opposite directions, driving correlated (and anti-correlated) oscillations in the wave's
anti-nodes. The general principle of wave superposition implies that the brain can engage
simultaneously in multiple functional networks, instead of switching from one functional
network to another, as often considered in the analysis of dynamic functional
connectivity(Allen, Damaraju et al. 2014, Hansen, Battaglia et al. 2015, Cabral, Vidaurre et al.
2017, Stevner, Vidaurre et al. 2019). In other words, our results substantiate that the activity
recorded herein with fMRI aligns with neural field theories (Nunez 1974, Jirsa and Haken
1996, Nunez and Srinivasan 2014, Henderson, Aquino et al. 2022), where at any given

moment, the wave function W - representing the collective systemic activity - results from
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the superposition of a discrete set of wave functions with damped oscillatory response. This
resonance framework offers simultaneously an explanation for i) the spontaneous
emergence of ultra-slow oscillations in brain activity, ii) the profile of phase relationships
across space (as observed in gradient-like functional connectivity patterns) and iii) the
difference in damping coefficients across conditions.

The generalization of these findings to other animal species including humans can
only be discussed in the light of existing literature and needs further experimental validation.
On one side, the similarity of the principal components detected herein with intrinsic
network patterns detected using different methodologies suggest these are expressions of
the same emergent phenomena, typically referred to as ‘resting-state networks’ (RSNs) or
‘intrinsic connectivity networks’ (ICNs). Since both rats, mice, monkeys, and humans exhibit
qualitatively similar RSNs/ICNs, it can be expected that they are expressions of the same
phenomenon. Indeed, a wide range of studies have demonstrated that intrinsic macroscale
modes of brain activity (detected across modalities) exhibit spatial features of standing
waves, so it can be expected that their temporal signature exhibits a damped harmonic
motion. Even if no clear periodicity is detected in resting state fMRI in humans and the
fluctuations closely approximate the canonical hemodynamic response function, one cannot
exclude the possibility that the fluctuations reflect an overdamped oscillatory response
associated with the transient and short-lived resonance of a stationary wave, providing a
new generative hypothesis for the dynamic patterns observed empirically.

A question that typically arises in this context is how closely the fMRI signals track
the underlying neural activity, mainly due to the involvement of neurovascular coupling
mechanisms. Although this study did not attempt to deconfound neural activity from
vascular coupling, it is interesting to note that the mode temporal signatures did not follow

the canonical hemodynamic response function. Instead, a ubiquitous transiently sustained
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periodicity occurs within a range of frequencies extending significantly above the range
typically associated with the BOLD signal, but below cardiac and respiratory physiological
rhythms. Recent studies combining simultaneous electrophysiological recordings of local
field potentials (LFPs) and fMRI in rats reported significant coherence between the two
signals precisely in the range of frequencies detected herein (Pan, Thompson et al. 2013,
Thompson, Pan et al. 2014). Therefore, one cannot exclude the possibility that the
oscillations observed with fMRI are linked with other factors beyond blood flow/volume
effects alone, and may provide a more direct measurement of neuronal activity (Lewis,
Setsompop et al. 2016, Toi, Jang et al. 2022). Still, given that hemodynamic blurring is
expected (Gonzalez-Castillo, J., Saad, Z.S., et al., 2012.) further local spectral properties may
have been obscured by this blurring.

The advantages of exploring fMRI signals at faster resolutions extend well beyond
this work and certainly deserve further exploration. While previous ultrafast fMRI
experiments in rodents have reached up to 20 frames per second, they have focused mostly
on stimulus-driven responses in specific regions of interest (Yu, Qian et al. 2014, Yu, He et al.
2016, Kay, Jamison et al. 2020, Lake, Ge et al. 2020, Gil, Fernandes et al. 2021), and much
remains to be explored at the level of spontaneous long-range interactions. Allowing for a
large span of scales both in space (from micrometer to meter) and in time (from millisecond
to hour), exploring the full possibilities of MRl may provide relevant insights into the brain
organizational principles in the spatial, temporal, and spectral domains (Toi, Jang et al. 2022).
Indeed, the traditionally low temporal resolution of fMRI studies has limited the analysis to
spatial correlations between ultra-slow fluctuations in distant areas. More recent dynamic
analysis of functional connectivity has revealed the non-stationary nature of network
interactions (Hutchison, Womelsdorf et al. 2013, Calhoun, Miller et al. 2014, Preti, Bolton et

al. 2016). Still, under the Connectomics framework, even dynamic studies measure spatial
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connectivity patterns over time, rather than investigating deeper origins of the signals. These
new insights may help resolve the conflicting - yet not mutually exclusive - hypotheses that
have been put forth on the nature of functional connectivity, ranging from stochastic
resonance(Deco, Jirsa et al. 2009), metastable synchronization (Cabral, Hugues et al. 2011,
Ponce-Alvarez, Deco et al. 2015, Cabral, Castaldo et al. 2022), superposition of harmonic
modes (Atasoy, Donnelly et al. 2016, Robinson, Zhao et al. 2016, Henderson, Aquino et al.
2022) or transitions between phase-locking patterns (Vohryzek, Deco et al. 2020), among
others.

In conclusion, this work reveals evidence for macroscopic oscillatory modes in
spontaneous fMRI signals that organize across the brain in standing wave patterns, providing
fresh insight into the organizing principles giving rise to intrinsic connectivity networks.
Future work disentangling the different underlying sources of the fMRI signal, as well as
studying the impact of specific therapeutic effects, such as direct electromagnetic
stimulation or pharmacological manipulations, should deepen our understanding of intrinsic
oscillatory modes in the brain. Ultimately, by promoting a better understanding of brain
dynamics, this work provides new perspectives for the advance in the diagnosis and

treatment of brain disorders.
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Methods

Experimental Design

All animal experiments followed the European Directive 2010/63 and were preapproved by
the Institution’s Review Board and the national competent authority.

Ultrafast resting-state fMRI recordings were obtained from a single brain slice of 6 rats
scanned under 3 different conditions, namely medetomidine(Weber, Ramos-Cabrer et al.
2006) combined with 3 concentrations of isoflurane: 0% (sedation), 1% (light anaesthesia)
and 3% (deep anaesthesia). Two additional postmortem scans were recorded from a seventh
rat to serve as baseline. Moreover, resting-state fMRI recordings covering 12 slices of the rat

brain were acquired from 3 rats under medetomidine. Below, we elaborate on each phase.

Animal preparation

Long-Evans female rats (N=7) weighing 206 + 16 g and aged 8.3 + 1.3 weeks were used in this
study. Animals were reared in a temperature-controlled room and held under a 12h/12h
light/dark cycle with ad libitum access to food and water.

Anaesthesia was induced with 5% isoflurane (Vetflurane™, Virbac, France) mixed with
oxygen-enriched (27-30%) air in a custom-built plastic box. Rats were then weighed, moved
to the animal bed (Bruker, Germany) and isoflurane was reduced to 2.5%. Eye ointment
(Bepanthen Eye Drops, Bepanthen, Germany) was applied to prevent eye dryness. A 0.05
mg/kg bolus of medetomidine solution (Dormilan, Vetpharma Animal Health, Spain: 1
mg/ml, diluted 1:10 in saline) was injected subcutaneously 5-8 min after induction,
immediately followed by a constant infusion of 0.1 mg/kg/h s.c. of the same solution (25),
delivered via a syringe pump (GenieTouch™, Kent Scientific, USA) until the end of the

experiment, and by a 10 min-long period where isoflurane was gradually decreased to 0%.
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fMRI acquisitions began once the animals stabilized in this condition (the time after
isoflurane is reported in Table S1

for each scan). For each rat, 2 fMRI scans were first acquired under medetomidine only
(sedation condition). Subsequently, fMRI scans were acquired after increasing isoflurane
concentration to 1% (light anaesthesia condition) and finally to 3% (deep anaesthesia
condition), waiting 10 min after each isoflurane increase for anaesthesia stabilization.

The breathing frequency and rectal temperature were monitored throughout the MRI
sessions using a pillow sensor and an optic fiber probe (SA Instruments Inc., Stony Brook,
USA), respectively. In the end of the experiments, medetomidine sedation was reverted by
injecting 0.25 mg/kg s.c. of atipamezole (Antisedan, Vetpharma Animal Health, Spain: 5
mg/ml, diluted 1:10 in saline).

A seventh rat, reared in the same conditions, was injected with 1 mL (60 mg) pentobarbital

i.p. and scanned postmortem with the same MRI protocol to serve as a control.

MRI protocol

Animals were imaged using a 9.4 T BioSpec® MRI scanner (Bruker, Germany) equipped with
an AVANCE™ Il HD console, producing isotropic pulsed field gradients of up to 660 mT/m
with a 120 s rise time. RF transmission was achieved using an 86 mm-ID quadrature
resonator, while a 4-element array cryoprobe (Bruker, Fallanden, Switzerland) was used for
signal reception. Following localizer experiments and routine adjustments for center
frequency, RF calibration, acquisition of B, maps and automatic shimming, anatomical
images were acquired using a T,-weighted RARE sequence in the coronal plane: TR/TE =
2000/36 ms, FOV = 18 x 16.1 mm?, in-plane resolution = 150 x 150 pm?, RARE factor = 8, slice
thickness = 0.6 mm, 22 slices, t,,, = 3 min 28 s, and sagittal plane: TR/TE = 2000/36 ms, FOV =
24 x 16.1 mm?, in-plane resolution = 150 x 150 pm?, RARE factor = 8, slice thickness = 0.5
mm, 20 slices, t,,, = 3 min 28 s. These images were used to place the slices of interest.
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Single-slice ultrafast fMRI acquisitions

To minimize the repetition time, we focused our analysis in a single 1.2 mm-thick slice of the
rat brain, choosing a frontal slice that covered a large cortical area and with a FOV of 21 x 21
mm?, as shown in Fig. S1 A-B. The slice was placed between -0.2 and 1.0 mm from Bregma
according to the Paxinos & Watson rat brain atlas(Paxinos and Watson 2009) (Supplementary
Figure Sic).

Six resting-state scans (2 per condition) were acquired from each of N=6 living rats (totaling
36 scans) using a gradient-echo echo planar imaging (GE-EPI) sequence (TR/TE = 38/11 ms,
flip angle = 15°, matrix size = 84 x 84, in-plane resolution = 250 x 250 um?, number of time
frames = 16000, t,,, = 10 min 8 s). Two postmortem scans were acquired with the same
parameters. Additionally, a Multi-Gradient Echo sequence (MGE, TE = 2.5:5:97.5 ms, TR =
300 ms, flip angle = 40°, matrix size = 210 x 210, in-plane resolution = 100 x 100 pm’, t,., = 4
min 12 s) and a Time-Of-Flight (TOF) FLASH sequence (TR/TE = 8.2/3.3 ms, flip angle = 80°,
matrix size = 210 x 210, in-plane resolution = 100 x 100 pm?, t.q = 17 s 219 ms) sequence
were acquired from all rats to obtain additional anatomical and vascular information about
the slice, respectively. Details of time after isoflurane induction, breathing frequency and

rectal temperature are reported for each scan in Table S1.

Whole-brain fMRI acquisitions

Resting-state data was acquired twice under medetomidine sedation from N=3 rats using a
multi-slice GE-EPI sequence covering the entire rat brain, from the frontal part of the
cerebellum to the posterior part of the olfactory bulb, and with the following parameters:
TR/TE = 350/11 ms, flip angle = 40°, FOV = 24 x 24 mm?, matrix size = 70 x 70, in-plane
resolution = 342.9 x 342.9 um?, slice thickness = 1.2 mm, slice gap = 0.15 mm, 12 slices,

number of time frames = 2572, t,., = 15 min 0 s 200 ms.
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Brain masks

Individual brain masks were defined manually and aligned across rats to a common central
coordinate. All individual rat masks were superposed to define a common brain mask
containing N=1463 voxels in the single slice and N=7426 voxels in the whole brain.

In the single slice, no spatial or temporal interpolation was applied to the signals, such that
the signal in each brain voxel corresponds to the raw fMRI signal recorded.

In multi-slice acquisitions, slice-timing correction was applied using linear interpolation over

time.

Space-frequency analysis of fMRI data

Power spectra were computed for the fMRI signals on each of the 84 x 84 = 7056 voxels using
the fast Fourier transform, after removing the first 500 frames (19 seconds) and detrending.
Voxel power spectra were obtained up to the Nyquist frequency of (2TR)* = 13.1579 Hz.
Images of the power across a selected range of frequencies were obtained by averaging the
band-limited power in each voxel across scans in the same condition. All spectral analyses
were performed at the single scan level and metrics statistically compared between

conditions. Analysis up to the Nyquist frequency are reported in Supplementary Figure S5.

Principal Component analysis
For each scan, the fMRI signals in N = 1463 brain voxels were band-pass filtered between

0.01 and 0.3Hz and the NxN covariance matrix was computed. The largest magnitude
. PM
eigenvalue, 7\1 was calculated for the two postmortem scans, and the largest one selected

as the baseline threshold. The covariance matrices were averaged across the 12 scans in

each condition, and, for each condition the a Nx1 eigenvectors with eigenvalue

condition PM

)La > }‘1 were extracted, representing the principal components detected in each

condition with magnitude above the postmortem baseline.
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The same analysis performed using decreasing sampling rates is reported in Supplementary
Figures S10. The modes detected using correlation - instead of covariance - above

postmortem baseline are reported in Supplementary Figure S11.

Statistical analysis

We compared the power between conditions at different frequency bands using a
non-parametric permutation-based t-test (10 000 permutations to ensure robustness of
results) to detect the frequency range most sensitive to the 3 different conditions. P-values
were conservatively corrected by the number of comparisons performed (Bonferroni
correction), considering both the number of between-group comparisons (considering only
independent hypotheses) as well as the number of frequency bands considered (considering
dependent hypotheses as well, which is even more conservative).

The resonance Q-factors and peak frequencies were statistically compared using the same
permutation test.

Standard error is calculated as the standard deviation divided by the square root of the

number of values compared.

Resonance analysis

Resonance was evaluated by computing the Q-factor, a measure typically used in acoustics
and engineering to quantify resonance phenomena. Importantly, it is not implied by
definition that a covariance mode will oscillate, since signals can co-vary aperiodically,
without necessarily oscillating. The Q-factors were estimated for the temporal signatures
associated to the principal component detected in each condition, for all the 12 scans in each

condition and statistically compared between conditions (p-values reported in Table S2).
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Damped Oscillator Model
To illustrate the response of an oscillatory system with different damping coefficients, we

used the Stuart-Landau equation:

dZ
dt

= Z(io — |2°| + a)

where Z is complex (with real and imaginary components), w is the natural frequency, and a
defines the position of the system with respect to the Hopf bifurcation at a = 0, such that
for a > 0 the system displays self-sustained oscillations with constant amplitude scaled by a,
whereas for a < 0 the oscillations are damped and the system decays back to the fixed
point equilibrium at Z = 0 at a rate scaled by the magnitude of a (i.e., the more negative
the a, the stronger the damping).

A single unit pulse (i.e., a Dirac delta function) is applied at t=0 to illustrate the intrinsic

response of the system in Supplementary Figure S16. Further, to illustrate the response to

continuous perturbation with a stochastic input, we add complex Gaussian white noise as:

dZ
dt

, 2 ,
= Z(m) — |Z |+ a)+ Bnl + anZ,
where n, and n, are independently drawn from a Gaussian distribution with standard

deviation § = 1 (integrated as B\/E). Simulations were obtained using the Euler method for

numerical integration with a time step dt = 10 seconds.
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